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Abstract
In this paper, we develop a heuristic model based on Gaussian processes to
determine synthetic sets of trips in urban networks, considering only supply-
related information. This is an alternative to the benchmark method used in
the literature, which consists of repeating several trials of Monte Carlo simu-
lations and therefore requiring a complex calibration task and large computa-
tional resources. The developed heuristic model explicitly leverages the proba-
bilistic nature of Gaussian processes and exploits their properties to iteratively
select origin–destination (od) pairs of nodes in the city network. The model then
determines the shortest trip in distance for the selected od pairs and appends
it to the synthetic set. We discuss the implementation and performance of both
the benchmarkmethod and the developed heuristic model on two city networks.
We show that the presented model is more robust and computationally efficient
than the benchmark method. This is evidenced by its ability to determine syn-
thetic sets with much smaller sizes, naturally reducing the computational bur-
den, when compared to the benchmark method. We also discuss how the choice
of the kernel function and calibration of the hyperparameters influence the per-
formance of the presented heuristic model.

1 INTRODUCTION

Aggregated traffic models based on the macroscopic fun-
damental diagram (MFD) (Daganzo, 2007; Geroliminis
& Daganzo, 2008; Godfrey, 1969; Vickrey, 2020) repre-
sent a promising tool in the design of traffic manage-
ment schemes tomitigate congestion inmetropolitan areas
worldwide. The application of this kind of traffic model
typically requires the partitioning of the city network
into regions (Ji & Geroliminis, 2012; Lopez et al., 2017;
Saeedmanesh & Geroliminis, 2017), that is, definition of
a regional network, as depicted in Figure 1. Traffic is
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modeled as exchanged flows between adjacent regions. In
each region, vehicles circulate at approximately the same
average speed, and the traffic states are described by an
MFD, that reflects the relationship between the number
of vehicles (or accumulation) within the region and the
average circulating flow (Daganzo, 2007; Geroliminis &
Daganzo, 2008; Vickrey, 2020). The aggregated trafficmod-
els based on the MFD (Jin, 2020; Mariotte et al., 2020)
have been used in a wide range of applications, including
perimeter control strategies (Haddad & Zheng, 2018; He
et al., 2019; Ren et al., 2020; Sirmatel & Geroliminis, 2019),
route guidance (Batista & Leclercq, 2019; Yildirimoglu &
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F IGURE 1 (a) Example of trips in the city network; (b) sequence of traveled regions by the trips; (c) example of paths on a regional
network

Geroliminis, 2014), pricing schemes (Gu et al., 2019; Yang
et al., 2019), urban parking (Cao et al., 2019), and environ-
mental control schemes (Ingole et al., 2020).
The proper partitioning of a city network forMFD-based

applications is still a question of research in the litera-
ture. From an MFD perspective (Lopez et al., 2017; Saeed-
manesh & Geroliminis, 2017), the partitioning of the city
network should lead to regions that are compact, well
defined, fully connected, and homogeneous in terms of
traffic conditions, that is, links inside each region should
be in similar traffic states at any given time. Therefore,
the partitioning is based on features of the supply (i.e.,
characteristics of the city network) and observable traffic
conditions. Another alternative is to create traffic analysis
Zones (TAZs) based on sociodemographic data and land-
use information (Sinha et al., 1980). This approach leads to
a partitioning of the city network that is consistentwith the
mobility demand. However, it does not guarantee that the
resulting partitioning is appropriate for MFD-based appli-
cations, the same way that a partitioning based on sup-
ply features and observable traffic conditions might not be
suitable for demand analysis. This research gap should be
further explored, but is out of the scope of this study. In this
paper, we focus on supply and traffic conditions informa-
tion, inspired by the MFD-based applications, to partition
the city network.
The partition of the city network permits determining

the regional network, where routing options are defined
(Batista & Leclercq, 2019; Batista et al., 2019). For any given
pair of origin (O) and destination (D) regions, different
paths are possible, each characterized by a different travel
distance. Figure 1a depicts the example of three trips in the
city network, each defined by an ordered sequence of trav-
eled links from the origin node (o) to the destination node
(d). The trips travel a different sequence of regions (see Fig-
ure 1b), thus representing different paths on the regional

network. A path on the regional network—regional path—
is represented by an ordered sequence of traveled regions
from O to D, as shown in Figure 1c). The trips represented
by the dashed line in Figure 1b are associated to the same
regional path. One can observe in Figure 1a that each of
these trips has a different traveled distance inside each of
the regions. As a result, each path is characterized by a dis-
tribution of travel distance on each region traveled (Batista
et al., 2019). The information about trips in the city net-
work is not only useful for determining the paths on the
regional networks but also useful to directly characterize
their explicit distributions of travel distances.
The question is then how to determine a set of trips that

is representative of the travelers’ daily trip patterns in the
city network. One alternative is to utilize real traffic data,
such as vehicle trajectories gathered from license plate
recognition data (Dixon & Rilett, 2002; Mo et al., 2020) or
traffic counts (Cantelmo et al., 2018;Wen et al., 2018). How-
ever, the full information about trip patterns is typically
unknown, and only a partial set of trips is available at best.
Moreover, the representativeness of such a partial set is not
guaranteed by any means. Alternatively, in the absence of
any real data, one could develop a methodology to sample
virtual trips in the city network (Batista & Leclercq, 2019;
Batista et al., 2019). One solution would be to consider all
possible shortest trips in distance or time that connect all
origin–destination (od) pairs in the network.However, this
would require a large number of computational resources,
especially for large metropolitan areas, as the computa-
tional power required rapidly increases with the number
of nodes of the city network (Kuehnel et al., 2020). Instead,
Batista et al. (2019) used Monte Carlo simulations to ran-
domly choose a smaller sample of od pairs in the city net-
work, for which to determine the shortest trips in distance
or time. Herein, we refer to such an approach as the bench-
mark method. It requires a complex calibration process to
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ensure good network coverage (Batista et al., 2019), which
makes it unfeasible for large networks. This task becomes
even more complex when shortest trips in time are to be
considered, as those are dynamic and need to be updated
often.
In this paper, we develop an alternative andmore robust

methodological framework based onGaussian processes, to
address these limitations. Gaussian processes (Rasmussen
&Williams, 2006) are a stochastic nonparametric Bayesian
approach used for solving regression and classification
problems. They have been used in many applications in
traffic-related problems, such as the prediction of public
transport flows in special events (Rodrigues et al., 2017),
traffic volumes (Xie et al., 2010), mobility on demand
(Chen et al., 2015), or real-time traffic (Min & Wynter,
2011), to name a few. Here, we focus on the application
of Gaussian processes for solving regression problems, that
is, kernel regression. We present a heuristic model that
explicitly leverages the probabilistic nature of the Gaus-
sian process and exploits its properties when sampling trips
in the city network. However, we formulate the applica-
tion of Gaussian processes differently than in classical ker-
nel regression problems. We define the city network as
a large Gaussian process and focus only on the charac-
teristics of the supply to determine a set from all possi-
ble od pairs connecting all origin and destination regions.
The developed heuristic model iteratively utilizes Gaus-
sian processes to model and reduce the uncertainty asso-
ciated with a specific data set. Additionally, the heuris-
tic leverages the concept of lazy Gaussian processes (Ram
et al., 2019) to ensure a fast computation even for large net-
works. The main contributions of this research are four-
fold. First, we develop a heuristicmodel based on the appli-
cation of Gaussian processes for determining synthetic sets
of trips using only supply-related information, showing
how variability in data can be converted into quantified
uncertainty in estimates of travel distances. Second, we
analyze the computational efficiency and robustness of the
developed heuristic model in comparison to the bench-
markmethod to determine synthetic sets of trips. Third, we
show how the choice of the kernel function influences the
performance of the developed heuristic model. Fourth, we
investigate the scalability of the developed heuristic model
to account for approximated methods to estimate the set
of hyperparameters.
The remainder of this paper is organized as follows. In

Section 2, we introduce the formulation of the benchmark
method used in the literature. In Section 3, we discuss the
developed heuristic model based on Gaussian processes,
as well as a solution algorithm. In Section 4, we evaluate
the performance of both methods using two city networks.
In Section 5, we summarize the main conclusions of this
paper and discuss several lines for future research as well

as the potential and applicability of the described method-
ological framework beyondwhat is presented in this paper.
In the Appendix, we introduce a table of nomenclature
used in this paper.

2 BENCHMARKMETHOD

This paper focuses on the calculation of a set of virtual trips
𝜒𝑂𝐷 in the city network, that is representative of the set
𝜂𝑂𝐷 encompassing all possible combinations of od pairs
connecting all origin and destination regions. We describe
𝜂𝑂𝐷 mathematically as

𝜂𝑂𝐷 =
{ ⋃

𝑖∈𝜂𝑂

𝑗∈𝜂𝐷

(𝑖, 𝑗)
}
, ∀(𝑂, 𝐷) ∈ 𝑊 (1)

where 𝜂𝑂 and 𝜂𝐷 represent the sets of all nodes in the origin
or destination regions, respectively; and𝑊 is the set of all
regional OD pairs.
Batista et al. (2019) determined the representative sets

𝜒𝑂𝐷 that approximate 𝜂𝑂𝐷 , by randomly sampling origin
and destination pairs of nodes in the city network, without
accounting for the definition of the partitioning. Instead, in
this paper, we performMonte Carlo sampling of origin and
destination pairs of nodes lying inside the respective origin
and destination regions and then determine the shortest
trips in distance or time between each pair.
The benchmark method assumes that all nodes lying

inside the origin and destination regions have a simi-
lar likelihood of being selected. The probability, 𝑝((𝑖, 𝑗) ∈
𝜂𝑂𝐷), of selecting one generic (𝑖, 𝑗) pair of nodes from 𝜂𝑂𝐷

is then

𝑝((𝑖, 𝑗) ∈ 𝜂𝑂𝐷) =
1|𝜂𝑂𝐷| , ∀(𝑂, 𝐷) ∈ 𝑊 (2)

where |.| represents the size of 𝜂𝑂𝐷 .
Themain challenge when implementing the benchmark

method is determining whether the set 𝜒𝑂𝐷 is representa-
tive of the full set 𝜂𝑂𝐷 , for each OD pair. For notation pur-
poses, we define𝐍 as a vector containing the optimal num-
ber of od pairs, 𝑁𝑂𝐷 , listed on each set 𝜒𝑂𝐷, ∀(𝑂, 𝐷) ∈ 𝑊:

𝐍 =

{ ⋃
(𝑂,𝐷)∈𝑊

𝑁𝑂𝐷

}
(3)

The optimal size of 𝜂𝑂𝐷 varies across the different
OD pairs. For simplicity and to generalize this procedure
across all OD pairs, we define 𝛽𝑂𝐷 as the ratio between
𝑁𝑂𝐷 and the size of 𝜂𝑂𝐷 . Mathematically, the parameter
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𝛽𝑂𝐷 is defined as

𝛽𝑂𝐷 =
𝑁𝑂𝐷|𝜂𝑂𝐷| , ∀(𝑂, 𝐷) ∈ 𝑊 (4)

where 𝛽𝑂𝐷 ∈ [1∕|𝜂𝑂𝐷|, 1], since𝑁𝑂𝐷 ≥ 1. The goal is then
to determine the value of 𝛽𝑂𝐷 such that 𝜒𝑂𝐷 is representa-
tive of 𝜂𝑂𝐷 for each OD pair. In this paper, since we focus
only on the supply side, we consider the distributions of
travel distances determined from the virtual trips to infer
the representativeness of 𝜒𝑂𝐷 .

Definition 1. The set 𝜒𝑂𝐷 is representative
if the estimated distribution of travel distances
𝐿̂𝑂𝐷 = {𝑙𝑜𝑑}, ∀(𝑜, 𝑑) ∈ 𝜂𝑂𝐷 ∧ ∀(𝑂,𝐷) ∈ 𝑊, deter-
mined from its listed virtual trips, represents a
good approximation of the target distribution
𝐿𝑂𝐷 = {𝑙𝑜𝑑}, ∀(𝑜, 𝑑) ∈ 𝜂𝑂𝐷 ∧ ∀(𝑂,𝐷) ∈ 𝑊, determined
from the full set of virtual trips listed in 𝜂𝑂𝐷 .

The procedure to determining the optimal size of 𝜒𝑂𝐷

requires the computation of this set for different values of
𝛽𝑂𝐷, ∀(𝑂, 𝐷) ∈ 𝑊. Ideally, and to avoid the enumeration
of all possible virtual trips, |𝜒𝑂𝐷| << |𝜂𝑂𝐷|, ∀(𝑂, 𝐷) ∈ 𝑊.
However, small values of 𝛽𝑂𝐷 cannot ensure sufficient cov-
erage of the city network, so the Monte Carlo sampling of
the od pairs (see Equation (2)) could influence the distri-
butions of travel distances 𝐿̂𝑂𝐷 . This means that different
trials even with the same 𝛽𝑂𝐷 could potentially yield sig-
nificantly different distributions of 𝐿̂𝑂𝐷 . This bias induced
by the random sampling decreases as 𝛽 → 1, that is, as we
get close to the full enumeration. Therefore, we also have
to consider different trials to determine the set 𝜒𝑂𝐷 for
each of the input 𝛽𝑂𝐷 values. Let 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 be the number
of times that we repeat the experiment (or trial) for each
value of 𝛽𝑂𝐷 . With this procedure, we can also determine
how the bias introduced by the random sampling of the
od pair influences the distribution of travel distances 𝐿̂𝑂𝐷 .
For this analysis, we calculate the interquartile range (IQR)
of all distributions of travel distances 𝐿̂𝑂𝐷 determined for
each of the𝑁𝑡𝑟𝑖𝑎𝑙𝑠, and each value of 𝛽𝑂𝐷 . The optimal size
𝑁𝑂𝐷 corresponds to the 𝛽𝑂𝐷 value for which the IQR is less
than the threshold Φ (m). This threshold is set such that
the variability of the IQR of 𝐿̂𝑂𝐷 is small for the different
𝑁𝑡𝑟𝑖𝑎𝑙𝑠 experiments.

3 METHODOLOGICAL FRAMEWORK:
GAUSSIAN SAMPLING APPROACH

In this section, we start by formulating the network as a
machine learning problem and then discuss why we chose

Gaussian processes as the basis for the developed heuris-
tic model. We also provide a brief introduction toGaussian
processes, before presenting the heuristic for obtaining rep-
resentative sets 𝜒𝑂𝐷 based on Gaussian sampling. The last
subsection introduces the solution algorithm for the devel-
oped heuristic model.

3.1 Problem formulation

Let Υ = {𝐗,𝐘} = {𝑥𝑖, 𝑦𝑖}, ∀𝑖 = 1, … , 𝑆 be the training set of
amachine learning problem. The variable𝑋 represents the
array of 𝑆 measurements locations, and 𝑌 is a vector of
measurements made at locations 𝑋, for each OD pair. In
this paper, we are focusing only on the characteristics of
the supply. Therefore, for each OD pair, the array of mea-
surement locations 𝑋 corresponds to the Cartesian coor-
dinates of the od pairs, and the vector 𝑌 to the measured
travel distances associatedwith these od pairs. For eachOD
pair, the training set Υ contains all od pairs for which one
hasmeasured the travel distances. Note that, thismight not
correspond to the full set 𝜂𝑂𝐷 .
The goal is to predict the travel distances𝐘∗ = {𝑦∗

𝑖
}, ∀𝑖 =

1, … , 𝑆∗, associated to another set 𝐗∗ = {𝑥∗
𝑖
}, ∀𝑖 = 1, … , 𝑆∗

that contains the 𝑆∗ od pairs for which we do not have
the measured travel distances. We also define the test set
as Λ = {𝐗∗, 𝐘∗}. This process is performed in two steps,
that is, the training and testing phases of the model (see
Figure 2a).
First, in the training phase and given Υ, we can define

a model(⋅) that describes the relationship between the
location of the od pairs and their associated travel dis-
tances:

𝐘 = (𝐗,𝚯) (5)

where 𝚯 is a set of model-specific hyperparameters. The
model (⋅) can be any supervised learning model, such
as neural networks (e.g., Alam et al., 2020; Pereira et al.,
2020). Given the training set Υ, we can use optimization
techniques to train the model (⋅) and estimate the val-
ues of 𝚯 that better reproduce the data. After 𝚯 has been
calibrated, themodel(⋅) becomes a generalization of the
transport network that can be used to predict the travel dis-
tances 𝐘∗ associated to the set 𝐗∗ of od pairs:

𝐘∗ = (𝐗∗,𝚯) (6)

The accuracy of the prediction model defined in Equa-
tion (6) depends entirely on the values of the hyperparam-
eters 𝚯, which in turn depend on the training set Υ. As
the set of coordinates 𝐗 defines the domain of the func-
tion(⋅), Equation (6) will return good estimations if and
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(a) (b)

F IGURE 2 (a) General machine learning heuristic model; (b) developed heuristic model

only if 𝐗∗ falls into this domain. Fortunately, the domain
is limited to the full set 𝜂𝑂𝐷 of od pairs. Moreover, by defi-
nition, the set 𝜒𝑂𝐷 is representative of 𝜂𝑂𝐷 . Hence, if 𝜒𝑂𝐷

is used to train the model in Equation (5), then the model
defined in Equation (6) should be able to predict the travel
distances for all od pairs in 𝜂𝑂𝐷 .
In this paper, we develop a heuristic model that does not

rely on a specific training set but instead learns how to cre-
ate a representative sample 𝜒𝑂𝐷 . This is based on a spe-
cific set of rules that we formulate later in this section. The
developed heuristic relies on an iterative process. As the
domain of 𝜂𝑂𝐷 is known, the heuristic model starts from
a nonrepresentative training set Υ = {Ω𝑂𝐷, 𝐿̂𝑂𝐷}, where
Ω𝑂𝐷 contains the selected od pairs. The developed heuris-
tic model then iteratively adds new points that include the
Cartesian coordinates of each od pair and corresponding
travel distance. Based on this, we can estimate the distri-
bution of travel distances 𝐿̂𝑂𝐷 at each iteration. Once the
convergence is achieved, the representative set is given by
𝜒𝑂𝐷 = Ω𝑂𝐷 . Figure 2 depicts a schematic flowchart of the
developed heuristic model.
The problem with this representation is that many

machine learning algorithms only use the training set Υ to
estimate the set of hyperparameters 𝚯. Once 𝚯 has been
estimated, Υ does not have an active role in the predic-
tion phase, as shown in Equation (6). This leads to the
need for training a newmodel at each iteration as shown in
Figure 2a.
To avoid this problem, the heuristic developed here

focuses on Gaussian processes (Rasmussen & Williams,
2006), instead of othermachine learning algorithms.Given
a training set Υ and the set of hyperparameters 𝚯, instead
of performing an explicit generalization of the problem,
Gaussian processes use a kernel function(𝐱𝑖, 𝐱

∗
𝑖
) to mea-

sure the similarity between a new unseen instance 𝐱∗
𝑖
and

another instance 𝐱𝑖 already available in the training set.We

can then write Equation (6) as

𝐘∗ = (𝐗∗, 𝐗,𝚯) (7)

This process leads to a more efficient framework as
depicted in Figure 2b. Moreover, the kernel function
(𝐱𝑖, 𝐱

∗
𝑖
) provides a useful indicator to determine whether

a certain sampleΩ𝑂𝐷 is representative of the entire domain
𝜂𝑂𝐷 . To formalize the developed heuristic, we also need to
define (i) an objective function (OF) for the convergence
of the iterative process and (ii) a set of criteria to select
which od nodes should be appended to the setΩ𝑂𝐷 at each
iteration of the model. While any model based on kernel
functions could be used with the developed heuristic algo-
rithm,Gaussian processes are a fully probabilistic approach
that, given a set of dependent and independent variables,
permit to explicitly model the uncertainty 𝜎2

𝑜𝑑
associated

with each prediction. This is the key advantage of Gaus-
sian processes compared to other models based on kernels,
and the reason to adopt it in this study. We leverage this
unique property of Gaussian processes to define the repre-
sentativeness of a sample (i.e., as the OF of the problem)
as well as to select od pairs to be included in the setΩ𝑂𝐷 at
each iteration. Once the convergence is achieved, the rep-
resentative set is given by 𝜒𝑂𝐷 = Ω𝑂𝐷 . Below, we provide
a brief introduction to Gaussian processes and discuss the
different steps of the developed methodology.

3.2 Gaussian sampling

Below, we introduce the mathematical formalism ofGaus-
sian processes. It assumes that the data points in the train-
ing set Υ are jointly Gaussian distributed. The predictive
function of aGaussian process is defined as the conditional
probability of observing some data 𝐘∗ given 𝐗∗ and the
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training set Υ:

(𝐘∗∖𝐗∗, Υ) ∼  (𝛍, 𝚺) (8)

where 𝛍 and 𝚺 represent the mean and the covari-
ance of the Normal distributions, respectively. Note
that the outcomes 𝐘∗ and 𝐘 are also jointly Gaussian
distributed.
TheGaussian processes require the definition of a covari-

ance matrix. This matrix is positive semidefined, and the
kernel functions respect this property. This covariance
matrix serves as a distance function for the developed
heuristic model, and it is exploited by the model to deter-
mine when a sample is a representative (Heilmann et al.,
2011). Therefore, we set 𝚺 to be represented by a kernel
function𝐗,𝐗∗ that defines how the training points 𝐗 and
the test points 𝐗∗ are correlated. Generically, the kernel
function𝐗,𝐗∗ is a block matrix defined as

𝐗,𝐗∗ =

[
(𝐗,𝐗) (𝐗,𝐗∗)

(𝐗∗, 𝐗) (𝐗∗, 𝐗∗)

]
(9)

where the block(𝐗,𝐗) is the variancematrix of the train-
ing data; the blocks(𝑋, 𝑋∗) and(𝑋∗, 𝑋) are the covari-
ance matrices between the training and the test data sets;
and the block (𝑋∗, 𝑋∗) is the variance matrix of the test
data set. The kernel function determines the confidence
level of the outcome estimation 𝐘∗. This means that if the
test and training data are highly correlated, the prediction
𝐘∗ is highly reliable.
The kernel functions are characterized by a set of hyper-

parameters 𝚯, that must be calibrated during the train-
ing phase (see Figure 2b). In this paper, we focus on the
conventional radial-based kernel function (RBF) and the
Matérn kernel function (MKF) (Rasmussen & Williams,
2006). We then determine the representative set 𝜒𝑂𝐷 from
the set 𝜂𝑂𝐷 , during the test phase. Following Figure 2b, we
apply the Gaussian processes in two steps:

1. Training phase: Definition of the initial training set Υ
and estimation of the set of hyperparameters𝚯 for each
regional OD pair.

2. Test phase: Given the hyperparameters and the train-
ing set Υ, the test phase assesses whether the developed
heuristic model is a good generalization of the set 𝜂𝑂𝐷 ,
that is, able to properly predict the distribution of travel
distances 𝐿𝑂𝐷 .

During the first iterations, the developed heuristic
model is not a good representation of the problem. At each
iteration, the heuristic creates a new model by changing
the training set Υ, while keeping the same hyperparame-
ters𝚯. The uncertainty 𝜎2

𝑜𝑑
, that is, the domain knowledge

provided by the kernel, is exploited within the optimiza-
tion process to create a new, more representative training
set. This only works because of the way the problem has
been formulated. More specifically, (i) the domain 𝜂𝑂𝐷 is
known and (ii) we assume that the initial set of hyperpa-
rameters 𝚯 can approximate the relationship that maps
𝜂𝑂𝐷 to 𝐿𝑂𝐷 . For any application when these two condi-
tions do not hold, the developed heuristic model will not
be able to provide good results and might instead overfit
the data. In the next sections, we describe the two phases
of the developed heuristic model in more detail.

3.3 Training phase: Estimation of 𝚯

The training phase consists of determining the optimal set
of hyperparameters 𝚯 that characterizes the kernel func-
tion, given the training data setΥ. One possibility is to esti-
mate the posterior distribution over the hyperparameters
by utilizingBayesian inference (Flaxman et al., 2015).How-
ever, this might not always be feasible from a pragmatic
perspective. Another solution consists in determining the
hyperparameters by maximizing the log-likelihood (Ras-
mussen & Williams, 2006). This requires solving a Gaus-
sian model involving the computation of a kernel function
that has the same size as the training data setΥ. A practical
computational problem arises when the size of Υ becomes
too large, which means that handling and storing the ker-
nel matrix become quickly unfeasible. The computational
requirements of the exact implementation of a Gaussian
process scale with (𝑆3) for the computational time, and
with (𝑆2) for the computational memory (Bauer et al.,
2016; Titsias, 2009). This problem depends only on the
number of od pairs listed in the training data set Υ. In
the case of Equation (12), this means storing a covariance
matrix 𝑆 × 𝑆 and determining its inverse (see Quiñonero-
Candela & Rasmussen, 2005).
Below, we first discuss an approach based on the log-

likelihood maximization that is utilized when the size of
𝜂𝑂𝐷 is manageable. We then discuss approximation meth-
ods of Gaussian processes that can be utilized within the
developed heuristic for determining the hyperparameters
𝚯 during the training phase, for when the size of 𝜂𝑂𝐷 is
too large.

3.3.1 Log-likelihood maximization

From Equation (8), given a training set Υ, the conditional
probability of estimating a specific set of hyperparameters
𝚯 is given by

(𝚯∖Υ) ∼  (𝛍, 𝚺) (10)
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The main challenge is to define an initial set Υ for esti-
mating the hyperparameters. We thus need to artificially
create a training set Υ that emulates the characteristics of
the problem. We do so with a two-step approach. First,
we determine the Cartesian coordinates of the centroid 𝐂̄𝐫

for each origin and destination pair of regions. If 𝐂̄𝐫 does
not match any of the Cartesian coordinates of the od pairs
listed in 𝑋, we assign the centroid to the closest od pair
based on the following metrics:

min𝑓(𝐗 − 𝐂̄𝐫) (11)

where 𝑓(⋅) is a performance function measuring the
Euclidean distance between each node and the center of
the region. One option is to use performance indicators
such as the root mean squared error (RMSE) to compute
𝑓(⋅). Alternatively, the kernel function can also be used to
compute this distance.
In the second step,we define the training setΥ to be used

in Equation (10) as

Υ = {𝜂𝑂𝐷, 𝐿̃𝑂𝐷} (12)

where 𝐿̃𝑂𝐷 = {𝑙𝑜𝑑}, ∀(𝑜, 𝑑) ∈ 𝜂𝑂𝐷 ∧ ∀(𝑂,𝐷) ∈ 𝑊 repre-
sents an artificial distribution of travel distances. This
distribution is created by assuming that the travel dis-
tances 𝑙𝑜𝑑, between all od pairs listed in 𝜂𝑂𝐷 , are equal to
the distance traveled between the centroids of the origin
and destination regions. We determine 𝑙𝑜𝑑 based on the
calculation of the shortest trip in distance between the
centroids of the regions.
Equation (12) returns suboptimal values for the hyper-

parameters. However, they do represent one of the infinite
numbers of possible solutions to the problem, as they can
map 𝜂𝑂𝐷 to 𝐿̃𝑂𝐷 and satisfy the conditions imposed by the
Gaussian process. Additionally, the artificial training set
allows tuning the hyperparameters to the specific network
model, as the hyperparameters need to consider whether
the information is expressed in meters or kilometers.

3.3.2 Sparse Gaussian models

Several approximation methods have been described to
improve the scalability of theGaussian processes, including
inducing points (Titsias, 2009), stochastic variational opti-
mization (Hensman et al., 2015), and kernel manipulation
(Wang et al., 2019). At the current stage, several approxima-
tion methods have been successfully applied to large data
sets with several millions of training points (Krauth et al.,
2017;Wang et al., 2019).While thesemodels can potentially
be used to estimate the initial value of the hyperparame-
ters, approximation methods do not always preserve the

properties of the exact formulation of a Gaussian process.
We then need to investigate whether approximatedmodels
can capture the dynamics discussed in the previous sec-
tion and to estimate the set of hyperparameters 𝚯, within
the context of the developed heuristic model. As finding
the best performing model is out of the scope of this paper,
we use sparse Gaussian processes to handle large data sets.
This family of models is the most widely adopted in the lit-
erature.
Sparse models use a small set of training points, called

inducing points, 𝑀 as support (or inducing) variables,
leading to a computational time that scales with (𝑀 ×

𝑆2),𝑀 < 𝑆 (Bauer et al., 2016). In Sparse models, inducing
variables are treated exactly, while all the remaining vari-
ables are approximated. There are several sparse approxi-
mations discussed in the literature. In this paper, we focus
on two of the most common models, namely, the subset of
data (SoD) and the fully independent training conditional
(FITC). In both these models, we replace the set 𝜂𝑂𝐷 in
Equation (12) by a smaller set of observations Γ𝑂𝐷 , such
that |Γ𝑂𝐷| ≤ |𝜂𝑂𝐷|.
In the SoD (Bauer et al., 2016), one canmanually (or ran-

domly) choose𝑀 od pairs of nodes from 𝜂𝑂𝐷 , and append
them to the set Γ𝑂𝐷 . However, the reliability of the hyper-
parameters determined using the SoD strongly depends on
how well the set Γ𝑂𝐷 approximates 𝜂𝑂𝐷 .
In the FITC (Quiñonero-Candela & Rasmussen, 2005),

the 𝑀 inducing points are randomly extracted (e.g., from
the training set) and then optimized over the data (see
Equation (10)). As different inducing points lead to differ-
ent predictions, the FITC treats them as hyperparameters
that are jointly estimated with 𝚯. These inducing points
will define the set Γ𝑂𝐷 . We then rewrite Equation (10) as

(𝚯, Γ𝑂𝐷∖𝜂𝑂𝐷, 𝐿̃𝑂𝐷) ∼  (𝜇, Σ) (13)

Besides treating the inducing points as parameters,
FITC also considers the training points as a function of
the inducing points (Quiñonero-Candela & Rasmussen,
2005)—hence the term inducing points, as they induce the
dependencies between training and test points. By using
the inducing points to quantify the correlation between
training and test points, the model uses a simplified
marginal likelihood to learn the hyperparameters and
the best set Γ𝑂𝐷 from the data through a gradient-based
optimization.

3.4 Test phase: Estimation of 𝝌𝑶𝑫

After having calibrated the set of hyperparameters 𝚯 for
each regional OD pair, we need to determine a representa-



8 BATISTA et al.

tive training set Υ = {Ω𝑂𝐷, 𝐿̂𝑂𝐷}, given the full set of data
points 𝜂𝑂𝐷 . This is done during the testing phase depicted
in Figure 2b. During this step, the Gaussian regression
will give an estimation of the distribution of travel dis-
tances 𝐿̂𝑂𝐷 associated with the set Ω𝑂𝐷 that is iteratively
populated, given the test points 𝜂𝑂𝐷 . Mathematically, we
describe this process as the conditional probability of esti-
mating 𝐿̂𝑂𝐷 given the test points 𝜂𝑂𝐷 , the training set Υ,
and the set of hyperparameters 𝚯:

(𝐿̂𝑂𝐷𝜂𝑂𝐷, Υ,𝚯) ∼  (𝜇,(𝜂𝑂𝐷,Ω𝑂𝐷,𝚯)) (14)

Themodel defined in Equation (14) provides a good esti-
mation of 𝐿̂𝑂𝐷 , that is, 𝐿𝑂𝐷 ≈ 𝐿̂𝑂𝐷 , if and only if the set
Ω𝑂𝐷 is representative and the set of hyperparameters 𝚯 is
properly calibrated. The goal is to determine the smallest
set Ω𝑂𝐷 , for each OD pair, such that the condition from
Definition 1 is satisfied. The developed heuristic model
starts with a small nonrepresentative training set Υ. Then,
at each iteration, the heuristic model appends the od pair
with the largest uncertainty (or standard deviation) 𝜎2

𝑜𝑑
,

to the set Ω𝑂𝐷 . The standard deviation 𝜎2
𝑜𝑑
is determined

using theKernel function (see Equation (9)). If two ormore
od pairs have similar uncertainties, the heuristic model
randomly chooses one candidate to append to the setΩ𝑂𝐷 .
The travel distance for the selected od pair is determined
based on the calculation of the shortest trip in distance.
This travel distance is then appended to 𝐿̂𝑂𝐷 . By selecting
the od pair with the largest uncertainty 𝜎2

𝑜𝑑
, the heuristic

model ensures that the overall uncertainty of the system is
minimized. This is similar to using a sampling technique
that provides the best coverage of the input space (Ge &
Menendez, 2017). The question now is to define the stop-
ping criterion of this iterative process, that is, when the
training set Υ becomes representative. For this, we use the
average uncertainty 𝜎

2 of Υ at each iteration 𝑘, to deter-
mine the convergence of the iterative process. This idea is
based on traditional techniques for ensuring convergence
in optimization (Spall, 2005). We define an OF that we try
to minimize, as follows:

𝑂𝐹 =
𝜎
2

𝑘𝛾
(15)

where 𝛾 ∈ [0, 1] is a free parameter that must be cali-
brated. Note that (i) for 𝛾 = 0, the denominator in Equa-
tion (15) goes to 1; and (ii) the closer 𝛾 is to 1, the faster the
convergence is achieved.
The iterative process stops when the OF (Equation (15))

is inferior to a predefined threshold Δ and when for two
consecutive iterations 𝑘 and 𝑘 − 1, the estimated distribu-
tion of travel distances does not change significantly, that
is, 𝐿̂𝑂𝐷

𝑘
≈ 𝐿̂𝑂𝐷

𝑘−1
. For each OD pair, the final representative

A l g o r i t hm 1 Implementation pseudo-code of the developed
heuristic model

set 𝜒𝑂𝐷 corresponds to Ω𝑂𝐷 . The size of Ω𝑂𝐷 gives the
value of 𝛽𝑂𝐷 .

3.5 Solution algorithm

Algorithm 1 summarizes the implementation procedure
of the developed heuristic based on Gaussian processes to
determine a representative set 𝜒𝑂𝐷 of od pairs for each
regional OD pair. The heuristic model takes as an input
the training set Υ as well as the test setΛ, for each OD pair.
Then, it determines the od pairs of nodes that are the clos-
est to the centroids of the origins and destinations regions.
The heuristic model creates an artificial distribution of
travel distances 𝐿̃𝑂𝐷 = {𝑙𝑜𝑑}, ∀(𝑜, 𝑑) ∈ 𝜂𝑂𝐷 ∧ ∀(𝑂,𝐷) ∈ 𝑊

by assuming that 𝑙𝑜𝑑 is similar for all od pairs and equal
to the travel distance between the centroid nodes of the
corresponding origin and destination regions. This travel
distance is calculated based on a shortest trip in distance.
We then determine the set of hyperparameters𝚯 following
the discussion of Section 3.3, and depending on the size of
𝜂𝑂𝐷 . The heuristic model iteratively populates a new train-
ing set Υ = {Ω𝑂𝐷, 𝐿̂𝑂𝐷}, following the procedure described
in Section 3.4. This iterative process stops when 𝑂𝐹 ≤ Δ

(see Equation (15)). The final representative set 𝜒𝑂𝐷 cor-
responds to Ω𝑂𝐷 . We implement this procedure in Python
and utilize the libraries related toGaussian processes (GPy,
2012) called GP_pro and GPy.
The developed heuristic model can be regarded as a

lazy Gaussian process, following Ram et al. (2019). In a
conventional Gaussian process, the set of hyperparam-
eters 𝚯 is constantly updated. This procedure has two
major drawbacks. First, the iterative optimization of 𝚯 is
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computationally demanding. Second, updating 𝚯 in every
iteration entails changing the space of solutions, which is
not desirable. The Gaussian process is called lazy when
the set of hyperparameters is optimized only once because
the model assumes that 𝚯 are always correct, remain-
ing unchanged throughout all iterations. An advantage of
using a lazymodel is that when |𝜂𝑂𝐷| is large, one can use
sparse approximatedmodels to calibrate the hyperparame-
ters𝚯while leveraging the exactmodel to determine a rep-
resentative set 𝜒𝑂𝐷 . However, we should note that when a
representative 𝜒𝑂𝐷 has been determined, one should cali-
brate a new set 𝚯 and then a new set 𝜒𝑂𝐷 .

4 CASE STUDIES AND RESULTS

In this section, we test and discuss the implementation of
the benchmarkmethod and theGaussianprocessesmethod-
ology on two city networks, for determining the sets𝜒𝑂𝐷 ∈

𝜂𝑂𝐷, ∀(𝑂, 𝐷) ∈ 𝑊. First, we introduce the two test net-
works. Second, we discuss the implementation of the
benchmark method, putting in evidence its main limita-
tions. Third, we discuss the implementation of the Gaus-
sian processes, shedding light on the appropriate choice
of the kernel function and discussing the convergence
process. Moreover, we test the robustness of the conver-
gence criterion and highlight its advantages compared to
the benchmark method. Fourth, we discuss the use of the
approximation methods SoD and FITC to handle larger
data sets 𝜂𝑂𝐷 when estimating the set of hyperparameters
𝚯. We then analyze the performance of both the bench-
mark method and the Gaussian processes to estimate the
optimal sets 𝜒𝑂𝐷 ∈ 𝜂𝑂𝐷, ∀(𝑂, 𝐷) ∈ 𝑊.

4.1 Networks settings

We test and discuss the application of the benchmark
method and the Gaussian processes on two city networks,
depicted in Figure 3. These networks were gathered from
OpenStreetMaps, using the routine OSMnx (Boeing, 2017)
developed for Python. They were then processed to cor-
rect the network for bugs (e.g., missing links, unconnected
links). The sixth district of Lyon (France), depicted in Fig-
ure 3a has 757 links and 431 nodes. It is partitioned into
eight regions, leading to a total of 64 OD pairs. We use
this network to investigate and discuss the implementa-
tion of the developed heuristic model to handle smaller
sets 𝜂𝑂𝐷 . The smallest set 𝜂𝑂𝐷 contains 1299 possible od
pairs and corresponds to the OD pair 22, with the first and
last digits referring to the Origin and Destination regions,
respectively. The largest set has 6014 possible trips and cor-
responds to the OD pair 55. The metropolitan area of Inns-
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F IGURE 3 (a) Sixth district of Lyon (France) network,
partitioned into eight regions; (b) city of Innsbruck (Austria)
partitioned into four regions

bruck (Austria), depicted in Figure 3b, has 1992 nodes and
4448 links. The network is partitioned into four regions,
leading to a total of 16 OD pairs. The smallest set 𝜂𝑂𝐷 con-
tains 140,249 possible od pairs and corresponds to the OD
pair 22, while the largest set 𝜂𝑂𝐷 has 362,153 possible od
pairs and corresponds to the OD pair 33. We use this net-
work to investigate and discuss the implementation of the
developed heuristic model to handle larger data sets 𝜂𝑂𝐷 ,
for the estimation of the hyperparameters set 𝚯.
As a reference for the discussion in this section, we have

determined the full set 𝜂𝑂𝐷 and corresponding distribu-
tions of travel distances 𝐿𝑂𝐷 for all the OD pairs of both
networks, based on the calculation of shortest trips in dis-
tance. This full enumeration of trips is utilized as a refer-
ence, and its computation is only feasible because the city
networks are small compared to larger metropolitan areas
withmore than 20,000 nodes.We discuss in Section 4.5 the
computational costs of the full enumeration and the bench-
mark method compared to the developed heuristic model
based on Gaussian processes.
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F IGURE 4 (a) Evolution of the IQR of the 𝐿̂𝑂𝐷 as a function of
𝛽16. The estimated 𝐿̂𝑂𝐷 (dashed line) and target 𝐿𝑂𝐷 (solid line)
density distributions are also depicted for 𝛽16: (b) 0.05; (c) 0.25; (d)
0.50; and (e) 1.00

4.2 Benchmark method

Here, we discuss the application of the benchmark method
for determining the optimal set 𝜒𝑂𝐷 . We focus on the
OD pair 16 of the Lyon sixth district network depicted in
Figure 3a, but must stress that all other 63 OD pairs show
similar trends. We then look at values of 𝛽𝑂𝐷 starting at
0.05 and increasing until 1 with a step size of 0.05. For each
of these 𝛽𝑂𝐷 values, we run 20 trials (i.e., 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 = 20) to
determine 𝜒𝑂𝐷 , and the IQR of each of the 20 𝐿̂𝑂𝐷 distri-
butions.
Figure 4a depicts the box-and-whisker diagrams of the

IQRs of the 20 distributions of 𝐿̂𝑂𝐷 , for each value of
𝛽𝑂𝐷 . We observe that as 𝛽𝑂𝐷 increases, the variability of
the box-and-whisker diagrams decreases and converges to
the median of the distribution. Figure 4b–e depicts the
estimated distribution 𝐿̂𝑂𝐷 (dashed line) compared to the
target one 𝐿𝑂𝐷 (solid line), for 𝛽16 = 0.05, 0.25, 0.50, 0.75.
Note that we have randomly selected one out of the 20 tri-
als to plot these density distributions. One can observe that
as 𝛽16 increases, the distribution 𝐿̂16 approaches the tar-
get 𝐿16 distribution. In other words, the bias introduced by
the random sampling of od pairs in the estimated distribu-

tion decreases as the network coverage increases, that is,
𝛽16 increases.
The question now is how to determine the optimal 𝜒16.

We do so by determining the first 𝛽16 value for which the
IQR is less than the predefined thresholdΦ. We setΦ = 10,
then 𝛽16 = 0.45. From Figure 4a, we observe that for 𝛽16 >
0.45, the variability of the box-and-whisker diagram is rela-
tively small and close to themedian value, and thismedian
remainsmore or less constant. The optimal size𝑁16 is then
determined following Equation (4). This procedure is valid
for all OD pairs.
This process shows that the benchmark method is com-

putationally inefficient for determining 𝜒𝑂𝐷 , as it requires
the computation of several trials for each of the 𝛽𝑂𝐷 values
considered. This is unfeasible fromapragmatic perspective
for large city networks, with thousands of shortest trips in
distance or time. In this paper, we set 𝛽𝑂𝐷 ranging from
really small values to the full enumeration, but in practice,
we should avoid doing so. We advise the user to start the
analysis with 𝛽𝑂𝐷 = 0.5 and then consider a smaller and
a larger value to evaluate the difference between the IQRs
and the thresholdΦ. This can be a cumbersome task, show-
ing another major practical limitation of the benchmark
method. The goal of this paper is to reduce the computa-
tional costs by avoiding large 𝛽𝑂𝐷 values that are close to
the full enumeration.

4.3 Gaussian processes

Below, we discuss the application of the Gaussian pro-
cesses for determining the optimal set 𝜒𝑂𝐷 for the sixth
district of the Lyon network. We start by investigating
the influence of the kernel function on the performance
of the Gaussian processes methodology. We then test the
convergence scheme described in Section 3.4. We focus
the analysis on two OD pairs, however, these observa-
tions hold for all OD pairs. In this analysis, we calibrate
the set of hyperparameters 𝚯, considering the methodol-
ogy described in Section 3.3.1 where 𝜂𝑂𝐷 is used as the
training set.

4.3.1 Influence of the kernel function

Here, we investigate the influence of the Kernel function
on the application of the Gaussian processesmethodology.
For this purpose, we focus on the conventional RBF
and MKF. These are two of the most commonly used
kernel functions to analyze spatial correlations between
variables. They also have very similar properties. Intu-
itively, the RBF is expected to perform better as its radial
nature better approximates isotropic networks such as
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Manhattan’s grid ones. Nevertheless, neither of them will
exactly reproduce the complex topological relationships
that can occur in real transport networks. Developing ad
hoc kernel functions based on topological properties is
an option. However, it would require the calculation of
adjacency matrices between nodes, demanding a complex
and computationally expensive process, which is what
we want to avoid in the first place. So, there are three
points that we aim to discuss in this subsection. (i) Is the
developed approach capable of providing a good approxi-
mation for the target distribution 𝐿𝑂𝐷? (ii) Which kernel
function better approximates the problem? (iii) What
are the consequences of adopting a suboptimal kernel
function?
To investigate these three questions, we tune the imple-

mentation of the Gaussian processes for both Kernel func-
tions, using (i) the information retrieved from the full set
𝜂𝑂𝐷 to define the training set Υ and (ii) the methodol-
ogy described in Algorithm 1 where only 10% of the nodes
listed in the full set 𝜂𝑂𝐷 are considered to estimate 𝐿̂𝑂𝐷

(𝛽𝑂𝐷 = 0.1). We focus on the regional OD 12. The results
are depicted in Figure 5. The dashed lines represent the
estimated distribution 𝐿̂12 by theGaussian processes, while
the solid lines represent the target distribution 𝐿12 deter-
mined for the full set 𝜂𝑂𝐷 . This figure also shows the scat-
ter plots between the predicted 𝑙𝑜𝑑 and real 𝑙𝑜𝑑 travel dis-
tances, where the black dashed lines represent the case of
a perfect estimation. Ideally, all the points would be posi-
tioned on this line, which wouldmean that we have a good
estimation. The results are depicted for both the MKF (a
and c panels) and RBF (b and d panels) kernels. The results
depicted in this figure clearly show that when the full set
𝜂12 is used as the training set Υ, the RBF performs better
than the MKF (a and b panels in Figure 5). The estimated
𝐿̂12 distribution almost perfectly matches the 𝐿12 one for
the RBF kernel. We can also observe that fitting the rela-
tionship between the predicted 𝑙𝑜𝑑 and real 𝑙𝑜𝑑 trip lengths,
for the RBF (see panel b.ii in Figure 5), leads to a correla-
tion coefficient of 0.993; that is, the estimated 𝐿̂12 distribu-
tion is almost a perfect representation of the real 𝐿12 one.
However, as expected, the differences between these two
distributions increase when only 10% of the nodes listed in
𝜂12 are considered as a training set (c and d panels). In any
case, RBF seems to provide overall a better representation,
as it yields a smoother distribution and seems less prone to
systematic errors. Therefore, we focus on the RBF kernel
function for the rest of this paper.
We must here remind the reader that the objective of

the developed heuristic model is not to estimate the travel
distance of a single OD pair but rather the distribution of
travel distances for a given pair of regions. This result is
achieved often even for small values of the correlation coef-
ficient (e.g., ≈ 0.75, see Figure 5).
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F IGURE 5 Left: Estimated 𝐿̂𝑂𝐷 (dashed line) and target 𝐿𝑂𝐷

(solid line) density distributions. Right: Scatter plots that show the
relationship between the predicted 𝑙𝑜𝑑 and target 𝑙𝑜𝑑 trips lengths.
The results are shown for the OD pair 12, and for the following
cases: when 𝜂12 is used as the training set, for both MKF (panel a)
and RBF (panel b); and when only 10% of the nodes listed in 𝜂12 are
considered for the training set, for both the MKF (panel c) and RBF
(panel d)

4.3.2 Investigating the convergence

In this section, we discuss how the described convergence
criterion for the Gaussian process performs for identifying
a representative set 𝜒𝑂𝐷 . The discussed convergence crite-
rion (see Equation (15)) accounts for the evolution of the
average uncertainty 𝜎̄2 of 𝜒𝑂𝐷 as a function of the sample
size or iteration 𝑘. To set up the convergence, we need to
calibrate the free parameter 𝛾 as well as the convergence
threshold or tolerance Δ. In the analysis of this section,
we consider four values for calibrating the free parameter
𝛾 = 0, 0.2, 0.5, 1.0. We run the Gaussian process until the
full enumeration is achieved for theODpair 16. For thisOD
pair, we then investigate the evolution of the convergence
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F IGURE 6 (a) Evolution of the OF as a function of 𝛽16, for
𝛾 = 0, 0.2, 0.5, 1.0. (b) Evolution of the IQR (m) for the estimated
𝐿̂𝑂𝐷 for the developed heuristic model (dashed line) as function of
𝛽16. The solid line represents the reference IQR of 𝐿𝑂𝐷 for 𝛽16 = 1.
(c) Estimated 𝐿̂𝑂𝐷 (dashed line) and target 𝐿𝑂𝐷 (solid line) density
distributions for 𝛽16 = 0.248

criterion for the four settings of 𝛾, as well as the evolution
of the IQRof the estimated distributions of travel distances.
With this analysis, we can set up the convergence thresh-
old Δ. Note that even though we discuss the case of one
OD pair, the analysis is extremely consistent across all 64
OD pairs.
Figure 6a shows the evolution of the OF as a function

of 𝛽𝑂𝐷 for the OD pair 16. Figure 6b shows the evolution
of the IQR of the estimated distribution of travel distances
𝐿̂𝑂𝐷 (dashed line) as a function of 𝛽𝑂𝐷 , for the same OD
pair. The horizontal solid line represents the IQR of the
target distribution 𝐿𝑂𝐷 . We can observe that the devel-
oped methodology minimizes the total uncertainty of the
system. For 𝛾 = 0, the convergence shows the expected
decreasing linear trend as a function of 𝛽𝑂𝐷 . In this case,
the Gaussian model would only be able to identify a rep-
resentative set 𝜒𝑂𝐷 for values of 𝛽𝑂𝐷 very close to 1, that
is, the full enumeration case, which we want to avoid. For
larger values of 𝛾 = 0.5, 1.0, the model converges too fast.
In this case, it might lead to sets 𝜒𝑂𝐷 , which yield an esti-
mated distribution of travel distances 𝐿̂𝑂𝐷 that is not a

good approximation of the target one, that is, 𝐿𝑂𝐷 . We can
observe in Figure 6 that for low 𝛽𝑂𝐷 values, the IQR still
shows a large variability. As 𝛽𝑂𝐷 increases, the variabil-
ity of the IQR of the distribution 𝐿̂𝑂𝐷 decreases, converg-
ing to a small constant value as 𝛽𝑂𝐷 → 1, that is, the IQR
converges to the median of the distribution. This confirms
the previous observation. The setting of the free parame-
ter to 𝛾 = 0.2 leads to a balance trend of the convergence,
which occurs neither too fast nor too slow. As such, we
set 𝛾 = 0.2.
There are also two other important aspects to ana-

lyze regarding the evolution of the IQR. First, the results
depicted in Figure 6b show that for low 𝛽𝑂𝐷 values, the
variability of the IQR of the estimated distribution 𝐿̂𝑂𝐷 by
the developed heuristic model for the OD pair 16 decreases
faster than the one of the distribution estimated by the
benchmark method. This gives the first hint that the devel-
oped heuristic model can identify a representative set 𝜒𝑂𝐷

as well as to provide an accurate estimation of the target
distribution 𝐿𝑂𝐷 for smaller 𝛽𝑂𝐷 values compared to the
benchmark method. Second, we can observe that the IQR
of the estimated distribution 𝐿̂𝑂𝐷 by both the developed
heuristic model and the benchmark method converges to
the same value as 𝛽𝑂𝐷 → 1. This shows that when 𝛽𝑂𝐷 =

1, the developed heuristic model can perfectly estimate
the target distribution 𝐿𝑂𝐷 . One can also observe that for
𝛽𝑂𝐷 ≥ 0.25, the estimated distribution 𝐿̂𝑂𝐷 by the devel-
oped heuristic model has an IQR very close to the one
of the target distribution 𝐿𝑂𝐷 , as evidenced in Figure 6b.
However, for values of 𝛽𝑂𝐷 close to 0.25, the box-and-
whisker diagrams of the IQRs of the estimated distribution
𝐿̂𝑂𝐷 for the benchmarkmethod still show a large variability
around the median value. This variability only decreases
for larger 𝛽𝑂𝐷 values. We remind the reader that the opti-
mal 𝛽𝑂𝐷 = 0.45 for the benchmark method and the OD
pair 16.
We also need to infer the convergence threshold Δ to

determine the optimal sets for all the other 63ODpairs. For
this purpose and based on Figure 6b, we observe that the
IQR stabilizes around 𝛽𝑂𝐷 ∼ 0.25 for the OD pair 16. We
then check the OF value (see the solid curve in Figure 6)
that corresponds to 𝛽𝑂𝐷 = 0.25. This leads to a threshold
of Δ = 1500, that we fix to determine the optimal sets 𝜒𝑂𝐷

for the other OD pairs. We run again the model consider-
ing Δ = 1500, verifying that it converges for a very similar
𝛽𝑂𝐷 = 0.248. Figure 6c shows that the estimated distribu-
tion 𝐿̂𝑂𝐷 (dashed line) is a good approximation of the tar-
get one 𝐿𝑂𝐷 (solid line), which also shows that the model
is robust compared to its inputs.
Figure 6 also shows that the IQR is a good indica-

tor of convergence, which raises the question of whether
we should use it. The IQR enables us to infer when
the set 𝜒𝑂𝐷 is representative, that is, when 𝐿̂𝑂𝐷 ≈ 𝐿𝑂𝐷 .
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However, it does not guarantee that the developed heuris-
tic model based onGaussian processes has safely taken into
account all the nonlinearities between the data points, that
is, two nodes of the network that are close but not con-
nected might be correlated. Additionally, the IQR value
also shows a large variability for small 𝛽𝑂𝐷 values. This
could lead to premature convergence. We then use the cri-
terion OF as defined in Equation (15) for the convergence
of the developed heuristic model, and the IQR as a qual-
ity indicator to determine if the final set 𝜒𝑂𝐷, ∀(𝑂, 𝐷) ∈ 𝑊

is representative.

4.4 Sparse Gaussian models

In this section, we discuss the implementation of the SoD
and FITC models to determine the set of hyperparame-
ters 𝚯, within the developed heuristic, during the train-
ing phase. We then use the developed heuristic during the
testing phase as discussed in Section 3.4 to determine the
representative sets 𝜒𝑂𝐷 . This is feasible because the size
of 𝜒𝑂𝐷 appears to be small as discussed in the previous
section, meaning that we can still handle the computa-
tion of the covariance matrices. The tests are conducted
on the Innsbruck (Austria) network, where the size of 𝜂𝑂𝐷
is larger than 100,000 for all OD pairs. We consider the
RBF kernel function, with the set of hyperparameters 𝚯
properly calibrated, following the discussion of the previ-
ous section. Based on a similar analysis of the previous sec-
tion, we set the free parameter of the convergence function
to 𝛾 = 0.2 and the convergence thresholdΔ = 1500. To bet-
ter showcase these results, we define a criterion Ψ as the
ratio between the IQRof the distribution of travel distances
determined from 𝜒𝑂𝐷 , and the one determined from the
distribution of travel distances of 𝜂𝑂𝐷 . This criterion Ψ is
mathematically defined as

Ψ𝜒𝑂𝐷,𝜂𝑂𝐷 =
𝐼𝑄𝑅(𝜒𝑂𝐷)

𝐼𝑄𝑅(𝜂𝑂𝐷)
, ∀(𝑂, 𝐷) ∈ 𝑊 (16)

Ideally, Ψ𝜒𝑂𝐷,𝜂𝑂𝐷 would be equal to 1, meaning that the
distribution of travel distances determined from the set
𝜒𝑂𝐷 is representative of the target distribution determined
from 𝜂𝑂𝐷 . Note that we calculated the IQR of the target dis-
tribution of travel distances for all OD pairs, based on the
full enumeration of virtual trips, that is, 𝛽𝑂𝐷 = 1. Figure 7
depicts the density distributions of Ψ𝜒𝑂𝐷,𝜂𝑂𝐷 for all 16 OD
pairs as well as for both SoD and FITCmodels, used during
the training phase. As one can observe, both models per-
form very well, as shown by the distributions of Ψ𝜒𝑂𝐷,𝜂𝑂𝐷

that are centered around 1 and have a maximum deviation
of 5% among all ODs, as depicted by the histograms. This
shows that the distribution of travel distances determined
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F IGURE 7 Density distributions of Ψ for the SoD and FITC

from 𝜒𝑂𝐷 approximates well with the one estimated from
the full set 𝜂𝑂𝐷 , and therefore 𝐿̂𝑂𝐷 ≈ 𝐿𝑂𝐷 .
These results validate the use of sparse Gaussian mod-

els, in particular, the SoD and FITC, to calibrate the set
of hyperparameters 𝚯 during the training phase, for when
𝜂𝑂𝐷 is large. This shows once again the robustness of the
developed heuristic model regarding its inputs.

4.5 Investigating the performance of
both methods

In this section, we discuss the performance of both the
benchmark method and the developed heuristic model
based on Gaussian processes for estimating the set 𝜒𝑂𝐷 for
both city networks depicted in Figure 3. For this, we focus
on the distribution of the optimal 𝛽𝑂𝐷 values determined
through both methods. In the case of the network repre-
senting the sixth district of Lyon, the methodology used to
determine the optimal 𝛽𝑂𝐷 for all 64 OD pairs follows the
discussion of Section 4.2. For the case of the Innsbruck net-
work, we follow the methodology discussed in Section 4.4,
where both the SoD and FITCmodels are used in the train-
ing phase to determine the set of hyperparameters 𝚯, for
all 16 OD pairs. For this network, we also apply the bench-
mark method, considering different values of 𝛽𝑂𝐷 starting
at 0.05 and increasing until 1 with a step size of 0.05. For
each of these 𝛽𝑂𝐷 values, we run 20 trials (𝑁𝑡𝑟𝑖𝑎𝑙𝑠 = 20) to
determine optimal set 𝜒𝑂𝐷 .
Figure 8 depicts the box-and-whisker diagrams of the

distribution of the optimal 𝛽𝑂𝐷 values for both the Lyon
sixth and the Innsbruck networks and both the benchmark
method as well as the developed heuristic model based
on Gaussian processes. One can observe that the median
of the optimal 𝛽𝑂𝐷 distribution is much smaller for the
case of the developed heuristic model based on Gaussian
processes than for the benchmark method. This is true for
both city networks and shows that the developed heuristic
can identify representative 𝜒𝑂𝐷 sets with a smaller 𝛽𝑂𝐷 .
Converging on smaller 𝛽𝑂𝐷 values provides two advan-
tages. One clear advantage is the reduced computational
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F IGURE 8 Box-and-whisker diagrams of the distribution of
the optimal 𝛽𝑂𝐷 for all possible OD pairs of the (a) Lyon sixth and
(b) Innsbruck networks, for both the benchmark method and the
developed heuristic model

requirements for identifying representative sets 𝜒𝑂𝐷 . The
second one is the possibility to still use the exact model on
a larger network. Moreover, the developed heuristic based
onGaussian processes only converges when it has properly
accounted for all nonlinearities between the data points,
which is another strength of the model.
We also analyze the computational time required for

determining the optimal 𝜒𝑂𝐷 for all OD pairs of both city
networks, using the benchmark method and the developed
heuristic model. In the case of the sixth district Lyon net-
work, determining the optimal𝜒𝑂𝐷 for all the 64 OD pairs,
using the benchmark method took ∼ 1.5 days, while using
the developed heuristic model took less than 1 hr. In the
case of the Innsbruck network, the benchmark method
took ∼4 weeks for the 16 OD pairs, while the developed
heuristic model took ∼1 week. Note that the computa-
tional time for the developed heuristic model can be fur-
ther reduced if one exploits the advantages of parallel com-
puting. We discuss this in more detail in the next section.
These times mentioned above were obtained on a Mac-
Book Pro, with a 2.9 GHz Intel Core i9 processor and a
memory of 32 GB DDR4 with a frequency of 2400 MHz.

5 CONCLUSIONS AND DISCUSSION

In this paper, we develop a heuristic model based on the
application of Gaussian processes to determine synthetic
sets of trips, by recognizing that data can be converted
into quantified uncertainty. This heuristicmodel considers
only supply-related information, that is, topological fea-
tures of the city network. We analyze the performance

of the developed heuristic model against the benchmark
method. This permits to extensively test and apply the
developed heuristic model without the need to formulate
any behavioral assumption regarding the users. The tests
are conducted on two networks representing the sixth dis-
trict of Lyon (France) and the city of Innsbruck (Austria).
We show that the presented approach provides a more
robust sampling of od pairs than the benchmark method,
reducing the number of trips that we have to compute and
naturally the computational complexity aswell. This is evi-
denced by its ability to efficiently determine representa-
tive sets 𝜒𝑂𝐷 with smaller 𝛽𝑂𝐷 than the ones calculated
using the benchmark method. Moreover, the efficiency of
the developed heuristic model is also shown by its abil-
ity to provide sets 𝜒𝑂𝐷 from which the estimated distribu-
tion of travel distances 𝐿̂𝑂𝐷 is a good approximation of the
𝐿𝑂𝐷 . We also show that an appropriate choice of the ker-
nel function, able to emulate the characteristics of the city
network, is required for the good performance of the devel-
oped heuristic model. The developed model can calibrate
the set of hyperparameters𝚯 for different sizes of the train-
ing set Υ. In particular, we validate the use of sparse Gaus-
sian models, notably the SoD and the FITC, to calibrate 𝚯
during the training phase for when the size of Υ is large.
This paper represents the first building block for sev-

eral promising lines for future research. The next natural
step is to include features of the demand in the developed
heuristic model. The distribution of the demand over the
network plays an important role in the calculation of syn-
thetic sets of trips. This is because all od pairs have different
prevailing levels related to how the demand is distributed
over the network. This induces different demand weights
that should be incorporated into the framework. Another
discipline where machine learning techniques are widely
adopted is traffic state estimation (Laña et al., 2019), where
there is an urgent need for efficient algorithms (Dharia
& Adeli, 2003) as well as representative samples of data
(Benkraouda et al., 2020).
The developed heuristic model is based on an iterative

process that utilizes Gaussian processes and tries to mini-
mize the average uncertainty of the system associated with
the data points. Thismodel is designed to extract transport-
related information from a network, and create small yet
representative sets. For instance, the proposed iterative
procedure permits the determination of representative pre-
vailing mobility patterns, which can be used as a reference
to gather or buy crowd-sensed information (such asGoogle
data) or GPS trajectories. However, this implies an addi-
tional cost in terms of computation, as the iterative nature
of the developed model does not permit to properly exploit
the widespread availability of high-performance comput-
ing (HPC). We also would like to emphasize that the
developed heuristic model can also be utilized to identify
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mobility patterns and travel times on other types of data,
such as bike-sharing trip data (Cantelmo et al., 2020).
In this paper, we focused on the calculation of shortest

trips in distance. However, the developed heuristic model
is fully flexible to consider other metrics such as observed
travel times instead of measured travel distances or other
models that calculate trips in urban networks. For this, it is
just necessary to replace the shortest-trip calculation with
any other approach discussed in the literature (see, e.g.,
Fischer, 2020; Flötteröd & Bierlaire, 2013), time-dependent
trips (Fakhrmoosavi et al., 2019), or focusing on the most
reliable trips (Hadjidimitriou et al., 2015; Zockaie et al.,
2016). On the other hand, the implementation of the devel-
oped heuristic model assumes independence between the
regional OD pairs. This is a fair assumption since we are
focusing on the generation of a static synthetic set of trips.
However, if one wants to account for the dynamics of the
system (i.e., traffic states), this assumption might be too
strong. Hence, we propose to formulate this problem at the
network level as a future research line,where one can focus
on time-dependent synthetic sets of trips and observed
travel times as the reference metrics.
In this paper, we have also discussed the calibration of

the hyperparameters𝚯 and the choice between two kernel
functions. Within this topic, there are two natural lines of
future research. The first is to investigate the performance
of the developed heuristic model for different kernel func-
tions. One can also consider designing new kernel func-
tions for the problem at hand. However, there is still a need
to understand how supply and demand–related character-
istics influence the optimality of the system. Additional
research is needed to include these aspects (temporal and
spatial correlations) within the kernel and to consider tem-
poral dependencies within the process, an element that
will increase problem sizes and complexity. The second is
to improve the robustness of the calibration of the hyperpa-
rameters𝚯. It would also be interesting to investigate alter-
native methods to model the hyperparameters for intrare-
gional OD pairs. In this paper, we leverage sparse models,
specifically SoD and FITC approaches, to calibrate the
hyperparameters considering large data sets and reduce
the complexity to a more manageable (𝑀 × 𝑆2),𝑀 < 𝑆.
Several approximation methods have been success-
fully applied to large data sets with millions of training
points, reducing the computational time from cubic to
quadratic—for example, (𝑆2) (Krauth et al., 2017; Ram
et al., 2019; Wang et al., 2019). These new approximations
of the sparse Gaussian should be tested in future work.
Overall, the developed heuristic model described in this

paper for determining synthetic sets of mobility patterns
represents the first building block for several promising
lines of research and applications, not only for the Traffic
Flow Theory community but also for the Network Model-

ing community and researchers focusing on the study of
urban mobility data.
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APPENDIX
Table A1 summarizes the notations used in this paper.

TABLE A1 Nomenclature used in this paper

𝑜 Origin node in the city network
𝑑 Destination node in the city network
𝑂 Origin region
𝐷 Destination region
𝑊 Set of all OD pairs of the regional network
𝜒𝑂𝐷 Optimal set of od pairs
𝜂𝑂𝐷 Full set of od pairs
𝜂𝑂 Set of all nodes in the origin region
𝜂𝐷 Set of all nodes in the destination region
𝑁𝑂𝐷 Optimal number of od’s for the OD pair
𝐍 Vector containing all optimal 𝑁𝑂𝐷 values
𝛽𝑂𝐷 Ratio between 𝑁𝑂𝐷 and the size of 𝜂𝑂𝐷

𝐿̂𝑂𝐷 Estimated distribution of travel distances from
𝜒𝑂𝐷

𝑙𝑜𝑑 Estimated travel distances for the od pair
𝐿𝑂𝐷 Target distribution of travel distances from 𝜂𝑂𝐷

𝑙𝑜𝑑 Measured travel distance for the od pair
𝑁𝑡𝑟𝑖𝑎𝑙𝑠 Number of trials for the benchmark method
Φ IQR threshold for the benchmark method
Υ = {𝐗,𝐘} Training set
𝑆 Total number of training points
𝑋 Measurement locations of the data points
𝑌 Measurements made at locations 𝑋
Λ = {𝐗∗, 𝐘∗} Test set
𝑆∗ Total number of test points
𝐗∗ Measurement locations of the test points
𝐘∗ Measurements made at locations 𝐗∗

𝚯 Set of hyperparameters.
Ω𝑂𝐷 Set of selected od pairs, that is iteratively

populated by the developed model
𝜎2
𝑜𝑑

Uncertainty of each prediction
𝜎̄2 Average uncertainty of all points
𝛍 Mean vector of the Normal distributions
𝚺 Covariance of the Normal distributions
𝐂𝐫 Centroid of a generic region 𝑟

𝐿̃𝑂𝐷 Artificial distribution of travel distances
𝑙𝑜𝑑 Travel distance between the centroids of the O

and D regions
𝑀 Number of inducing points
Γ𝑂𝐷 Set of inducing points
𝛾 Free parameter of the model
Δ Convergence threshold of the model
Ψ Ratio between the IQRs of the predicted and

target distributions of travel distances
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