Macrocyclic Ligands

Activation of Molecular Oxygen by a Cobalt(II) Tetra-NHC Complex**

Jonas F. Schlagintweit ${ }^{+},{ }^{[a]}$ Philipp J. Altmann ${ }^{+[a, b]}$ Alexander D. Böth, ${ }^{[a]}$ Benjamin J. Hofmann, ${ }^{[a]}$ Christian Jandl, ${ }^{[b]}$ Clemens Kaußler, ${ }^{[a]}$ Linda Nguyen, ${ }^{[a, c]}$ Robert M. Reich, ${ }^{[a]}$ Alexander Pöthig, ${ }^{[b]}$ and Fritz E. Kühn*[a]

Abstract

The first dicobalt(III) μ_{2}-peroxo N-heterocyclic carbene (NHC) complex is reported. It can be quantitatively generated from a cobalt(II) compound bearing a 16membered macrocyclic tetra-NHC ligand via facile activation of dioxygen from air at ambient conditions. The reaction proceeds via an end-on superoxo intermediate as demonstrated by EPR studies and DFT. The peroxo moiety can be cleaved upon addition of acetic acid, yielding the corresponding Co"I acetate complex going along with $\mathrm{H}_{2} \mathrm{O}_{2}$ formation. In contrast, both $\mathrm{Co}^{\text {II }}$ and $\mathrm{Co}^{\text {III }}$ complexes are also studied as catalysts to utilize air for olefin and alkane oxidation reactions; however, not resulting in product formation. The observations are rationalized by DFTcalculations, suggesting a nucleophilic nature of the dicobalt(III) μ_{2}-peroxo complex. All isolated compounds are characterized by NMR, ESI-MS, elemental analysis, EPR and SC-XRD.

The activation of molecular oxygen by iron- and coppercontaining metalloproteins plays a vital role in biological processes, comprising oxygen transport and enzymatic oxidation reactions, amongst others. ${ }^{[1]}$ Active intermediates primarily include superoxo, (hydro)peroxo and oxo species. ${ }^{[1-2]}$ The remarkable efficiency of these compounds led to the development of several bio-inspired complexes, which have been applied in oxidation catalysis and studied regarding their ability to activate dioxygen, preferably from air at ambient conditions. ${ }^{[1 a, b, 2 a-c, 3]}$

Although of lower biological relevance in comparison to copper and iron, the study of bio-inspired cobalt complexes
towards O_{2} activation is of interest due to the higher thermodynamic and kinetic stability of Co"I dioxygen adducts formed upon reaction of their corresponding Co" compounds with $\mathrm{O}_{2}{ }^{[4]}$ Starting in the 1970s with coboglobin, a cobalt analogue of hemoglobin, ${ }^{[5]}$ major progress has been made in this research field. ${ }^{[4,6]}$ Recently, A. Company et al. reported a Co" complex bearing the bio-inspired pyridine triazacyclononane (PyTACN) ligand, which forms a Co ${ }^{\text {III }}$ superoxo species upon reaction with O_{2} at $-80^{\circ} \mathrm{C}$. ${ }^{[7]}$ Subsequently, it converts to a dicobalt(III) μ_{2}-peroxo compound when increasing the temperature to $-35^{\circ} \mathrm{C}$. Further heating to room temperature results in the re-release of O_{2} to form the initial Co" complex (Scheme 1, bottom right). ${ }^{[7]}$ Although those results suggest a catalytic application to make use of air, the low stability of the peroxo species at room temperature requires cooling. ${ }^{[7]}$ Ideally, O_{2} activation should proceed at room temperature to provide more applicable and sustainable conditions. For this purpose, a suitable ligand capable of stabilizing high valent species occurring during this process is vital.

Recently, we reported a heme-analogous iron(II) complex bearing a methylene-bridged 16-membered macrocyclic tetraNHC ligand (cCCCC; Figure 1, center) and its iron(III) derivative. ${ }^{[8]}$ This unique ligand induces unprecedented activity in olefin epoxidation catalysis of the respective Fe ${ }^{\text {III }}$ complex (TOF up to $180000 \mathrm{~h}^{-1}$ without additives; TOF up to $415000 \mathrm{~h}^{-1}$ in presence of strong Lewis acids), ${ }^{[8 b, 9]}$ considerably exceeding that of the optimized homogeneous benchmark system methyltrioxorhenium (MTO, TOF up to $40000 \mathrm{~h}^{-1}$). ${ }^{[10]}$ Both iron and rhenium containing catalysts utilize $\mathrm{H}_{2} \mathrm{O}_{2}$ as oxidant. ${ }^{[8 b, 10]}$ While it is generally considered environmentally friendly, as water is formed as the only by-product, ${ }^{[11]}$ risks are associated when

[^0]Lichtenbergstraße 4
85747 Garching bei München (Germany)
${ }^{[}{ }^{+}$These authors contributed equally to this work.
[**] NHC: N-heterocyclic carbene.
\square Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/chem. 202004758.
of © 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of Creative Commons Attribution NonCommercialNoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Scheme 1. Synthesis of cobalt tetra-NHC 1; activation of O_{2} from air resulting in formation of $\mathbf{2}$ via superoxo intermediate $\mathbf{4} \mathrm{e}^{\text {nd-on }}$; reaction of μ_{2}-peroxo complex 2 with HOAc resulting in formation of 3 and $\mathrm{H}_{2} \mathrm{O}_{2}$. Reaction conditions: a: $75^{\circ} \mathrm{C}, 18 \mathrm{~h},(\mathrm{MeCN})$; b: r.t., $2 \mathrm{~h},(\mathrm{MeCN})$; c: r.t., $30 \mathrm{~min},(\mathrm{MeCN})(\mathrm{Supporting} \mathrm{In}-$ formation for experimental details). Bottom right: formation of $\left[\mathrm{CO}_{2}(\operatorname{PyTACN})_{2}\left(\mu_{2} \mathrm{O}_{2}\right)(\mathrm{MeCN})_{2}\right]^{4+}$ by activation of O_{2} at $-35^{\circ} \mathrm{C}$ and re-release of O_{2} at r.t. reported by A. Company et al. ${ }^{[7]}$.

Figure 1. Structurally related macrocyclic tetra-NHC ligands by F. Meyer et al., D. M. Jenkins et al. and our group. ${ }^{[8,15 a, 17]}$
working with higher concentrations. ${ }^{[12]}$ In contrast, O_{2} from air is far less problematic, environmentally benign, readily accessible and exhibits superior atom-efficiency. Hence, it is the ideal oxidant candidate, which motivated us to study the reactivity of $\mathrm{Fe}^{\text {II }}$ cCCCC complex with $\mathrm{O}_{2} \cdot{ }^{[11,13]}$ When exposed to air, a $\mu_{2}-$ oxo diiron(III) compound is formed. Although such $\mathrm{Fe}^{\text {III }}-\mathrm{O}-\mathrm{Fe}{ }^{\text {III }}$ compounds are generally regarded inactive, ${ }^{[14]}$ the respective cCCCC complex catalytically oxidizes 1,4-hydroquinone employing O_{2}. ${ }^{[13 \mathrm{c}]}$

Utilizing a different, yet related 18-membered tetra-NHC (Figure 1, left), F. Meyer et al. could isolate and crystallize an iron(IV) oxo complex, usually considered a highly reactive intermediate. ${ }^{[15]}$ Employing another related dianionic 16-membered tetra-NHC (Figure 1, right), D. M. Jenkins et al. synthesized a Cr ${ }{ }^{V}$ oxo and $\mathrm{Fe}^{\mathrm{IV}}$ imide. ${ }^{[16]}$ Although slight structural differences modify their reactivity, the ligands illustrated in Figure 1 share a common characteristic, that is, they stabilize high valent metal centers exceptionally well. ${ }^{[19,3 a, 14 c, 18]}$ Lately, we were able to utilize this remarkable trait of cCCCC to isolate the first bench-stable copper(III)-NHC complex. ${ }^{[19]}$

The successful stabilization of high valent Fe and Cu centers by macrocyclic tetra-NHC ligands led to the question, whether this also holds true for related cobalt compounds and their application in dioxygen activation. Intrigued by this question, in this work, we report the synthesis of cobalt(II) complex 1 bearing the cCCCC ligand, its reactivity with molecular oxygen
from air and first studies towards hydrogen peroxide formation.
The reaction of external bases and imidazolium salts in the presence of metal salts comprises a well-established method for the preparation of various transition metal-NHC complexes ${ }^{[20]}$ and has been found to be most efficient for the synthesis of cobalt(II) tetra-NHC 1. When reacting ligand precursor $\left[\mathrm{H}_{4}(\mathrm{cCCCC})\right]\left(\mathrm{PF}_{6}\right)_{4}$, anhydrous CoCl_{2} and an excess of $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 1$ is obtained as a yellow solid in 71% yield (Scheme 1 a). Due to the paramagnetic nature of 17 -valence-electron $\mathrm{Co}^{\prime \prime}$ complex 1, two broad NMR peaks are observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum at 27.18 ppm and 4.58 ppm with relative integrals of 8 corresponding to the backbone and methylene protons, respectively. An equimolar amount of non-coordinating MeCN conforming to a sharp singlet at 1.96 ppm is observed, indicating the lability of the axial ligand and a fast exchange process with the deuterated solvent.

In addition, 1 was characterized by SC-XRD, displaying a slightly distorted quadratic pyramidal structure, as the $\mathrm{C}_{\mathrm{NHC}}{ }^{-}$ Co1-N9 angles between 93° and 98° differ from the ideal 90° (Figure 2). The Co-C distances between 1.889(2) \AA and 1.901(2) \AA are within the typical range of other Co" NHCs reported in literature. ${ }^{[21]}$ As expected, the Co-C distances are in between those of the octahedral $\mathrm{Fe}^{\prime \prime}$ (1.904(3) to 1.912(3) \AA) and $\mathrm{Fe}^{\mathrm{III}}$ (1.937(3) to $1.944(2) \AA$) complexes on the one hand and square planar Cu'II complex (1.879(5) to $1.833(5) \AA$) on the other hand, also bearing cCCCC ligand. ${ }^{[8,19]}$
When a solution of $\mathbf{1}$ in MeCN is exposed to air at room temperature, an immediate color change from yellow to green is observed. After addition of $\mathrm{Et}_{2} \mathrm{O}$, a green precipitate is formed. Interestingly, the ${ }^{1} \mathrm{H}$-NMR spectrum of the latter depicts one multiplet in the range of 7.8 ppm to 7.4 ppm attributable to the backbone protons and a second between 6.5 ppm and 5.9 ppm belonging to the methylene bridges with an integral ratio of approximately $1: 1$, thus conforming to one diamagnetic compound. These findings point to a reaction

Figure 2. ORTEP-style representation of the cationic fragment of compound $1 .{ }^{[30]}$ Hydrogen atoms, co-crystallized solvent molecules and hexafluorophosphate anions are omitted for clarity. Thermal ellipsoids are shown at a 50% probability.
of complex 1 with dioxygen, which is often only observed at lower temperatures for other related Co" complexes. ${ }^{[7,22]}$ After growing crystals, trans μ_{2}-peroxo dicobalt(III) complex 2 is unequivocally identified as the newly obtained species (Scheme 1 b ; Figure 3). It is formed in a redox-reaction oxidizing two $\mathrm{Co}^{\prime \prime}$ centers to Co^{11} and reducing O_{2} to a μ_{2}-peroxo ligand bridging two Co-centers in trans configuration.
The driving force of the reaction is the formation of a thermodynamically favored 18 -valence-electron complex, which ex-

Figure 3. ORTEP-style representation of the cationic fragment of compound $2{ }^{[30]}$ Hydrogen atoms, co-crystallized solvent molecules and hexafluorophosphate anions are omitted for clarity. Thermal ellipsoids are shown at a 50% probability.
plains the quantitative reaction (98% isolated yield of 2). ${ }^{[4,7]}$ Each Co atom is coordinated in a distorted octahedral fashion (Figure 3). Both Co centers are bridged by a trans μ_{2} peroxo ligand, which is a commonly observed coordination mode of Cu complexes and enzymes capable of O_{2} activation. ${ }^{[23]}$ The Co-C distances between 1.888(5) \AA and 1.905(5) \AA are in range of other Co ${ }^{\text {III }}$ NHCs reported in literature. ${ }^{[21 a, b, 24]}$ The Co-O bond lengths of $1.902(4) \AA$ and $1.890(4) \AA$ as well as the Odistance of $1.442(5) \AA$ are also in good accord with other Co"I μ_{2} peroxo complexes. ${ }^{[21 \mathrm{~b}, 25]}$

Although a variety of dicobalt(III) peroxo compounds with porphyrins and other N -donor ligands are known, in general such organometallic NHC complexes are extremely rare. ${ }^{[7,22]}$ In fact, the only other Co ${ }^{111}-\mathrm{NHC}$ peroxo complex besides octahedral 2 was reported by K. Meyer et al. and is a mononuclear compound with a trigonal bipyramidal structure featuring a side-on coordinating η^{2}-peroxo ligand. The side-on coordination is facilitated by a more flexible tripodal $\left[\mathrm{C}_{3} \mathrm{~N}\right]$ ligand bearing bulky mesityl wingtips, preventing the formation of a $\mu_{2}{ }^{-}$ peroxo complex. ${ }^{[21 b]}$ Thus, 2 is the first reported NHC complex with a Co ${ }^{\text {III }}-\mathrm{O}-\mathrm{O}-\mathrm{Co}^{\text {III }}$ structural motif, making it particularly interesting for studies towards an application of the observed selective dioxygen activation, especially when considering its remarkable stability at room temperature in comparison to other bio-inspired μ_{2}-peroxo dicobalt(III) complexes like $\left[\mathrm{Co}_{2}(\text { PyTACN })_{2}\left(\mu_{2} \mathrm{O}_{2}\right)(\mathrm{MeCN})_{2}\right]^{4+}$, which is only stable at $-35^{\circ} \mathrm{C}$ and re-releases O_{2} at room temperature (Scheme 1). ${ }^{[7]}$ The formation of such compounds usually occurs stepwise via superoxo intermediates. ${ }^{[7,26]}$ In order to investigate the existence of an elusive Co superoxo species in the present case, in situ EPR spectroscopy studies were conducted, monitoring the reaction of 1 with O_{2} from air. The X-band EPR spectrum of 1 was recorded at 173 K in a frozen solution of MeCN (Figure 4, left top). As characteristic for ${ }^{59} \mathrm{Co}(I=7 / 2)$ EPR, eight splitting lines are observed, six of which are resolved and two overlap with the low-field components, in accordance with comparable ${ }^{59} \mathrm{Co}$ compounds. ${ }^{[27]}$ Simulation of the recorded spectrum was achieved with $g=(2.230,2.225,2.015)$ and $A\left\{{ }^{59} \mathrm{Co}\right\}=(70,70$, 405) MHz . The values of $g_{\mathrm{x}} \approx g_{\mathrm{y}}>g_{\mathrm{z}} \approx g_{\mathrm{e}}$ correspond to the highly symmetrical spin density of 1 in the plane of the tetraNHC ligand, in line with calculated values using DFT (Supporting Information, Figure S4, Table S1). Repeated short exposure of the EPR sample to air leads to reduction of the signal of compound 1 and the concurrent appearance of a second, high-field shifted signal assignable to a new paramagnetic species (Figure 4, left bottom), also measured after full disappearance of 1 (Figure 4, center top). It exhibits a strong interference pattern with significantly smaller values for the hyperfine coupling tensor and g-values, marginally shifted from g_{e} pointing to a non-cobalt centered radical. Simulation of the spectrum is achieved with $g=(2.005,2.005,2.079)$ and $A\left\{{ }^{59} \mathrm{Co}\right\}=$ ($25.4,36.5,42.7$) MHz. This signal is attributable to a superoxo species, as observed for other Co compounds upon reaction with $\mathrm{O}_{2} \cdot{ }^{[7,21 \mathrm{~b}, 28]}$ As assigned by DFT calculations, the species depicts an end-on superoxo and an additional trans axial MeCN ligand ($\left.4^{\text {end-on }}\right)$, thereby ruling out a side-on coordination, amongst other conceivable structures of the intermediate in

Figure 4. Left: EPR spectra of 1 (top) and after exposure to air (bottom); experimental spectra in black and simulated in red. Center: EPR spectra of $4 \mathrm{e}^{\text {nd-on }}$; experimental spectrum in black, simulated in red and calculated for end-on $4 \mathrm{e}^{\text {nd-on }}$ in blue. Right: Spin density of $4 \mathrm{e}^{\text {nd-on }}$. (Isovalues: $\mathrm{MO}=0.02$, Densi$t y=0.0004)$.
the formation of diamagnetic 2 (see the Supporting Information for discussion).
As 2 shows a remarkable stability at room temperature, when compared to other μ_{2}-peroxo dicobalt(III) complexes, ${ }^{[7]}$ the compound is studied to make use of its ability to activate molecular oxygen from air at ambient conditions.
When acetic acid is added to a solution of $\mathbf{2}$ in MeCN , an immediate deepening of the green color occurs, resulting from the quantitative formation of octahedral 18 -valence-electron complex 3 featuring $\mathrm{Co}^{\text {III }}$ and an additional axial acetate (Scheme 1 c ; Figure 5). Thereby, the peroxo ligand is cleaved. Possible reactions of the peroxo moiety include the formation of $\mathrm{H}_{2} \mathrm{O}$ and O_{2} on the one hand, as well as $\mathrm{H}_{2} \mathrm{O}_{2}$ on the other, which often occur as competing reactions. ${ }^{[266]}$ Following a previously applied procedure to unequivocally detect $\mathrm{H}_{2} \mathrm{O}_{2}$ in presence of iron complexes, when treated with diluted reaction solution (1:5 ratio in water), test strips sensitive to low $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations react positively. ${ }^{[29]}$ The detection of $\mathrm{H}_{2} \mathrm{O}_{2}$ in conjunction with the quantitative formation of 3 shows, that the peroxo species is accessible with Brønsted acids.

This reactivity is supported by DFT calculations revealing a nucleophilic oxygen species, as the HOMO of 2 (Figure 6) is of

Figure 5. ORTEP-style representation of the cationic fragment of compound $3 .{ }^{[30]}$ Hydrogen atoms, co-crystallized solvent molecules and hexafluorophosphate anions are omitted for clarity. Thermal ellipsoids are shown at a 50% probability.

Figure 6. Electronic structure of the HOMO of 2, with mostly π^{*} character located on the $\mathrm{O}-\mathrm{O}$ bond (Isovalues: $\mathrm{MO}=0.02$, Density $=0.0004$).
π^{*} character, mainly being localized on the peroxo moiety, and further affirmed by the fact, that no oxygen centered orbitals are observed for the LUMO and energetically higher orbitals (analyzed for LUMO to LUMO $_{+26}$). In line with the reactivity assigned by DFT, control experiments for electrophilic oxygen species like olefin epoxidation and $\mathrm{C}-\mathrm{H}$ oxidation do not result in formation of oxidized products (Supporting Information for details).
In summary, Co" complex 1 bearing the 16 -membered macrocyclic tetra-NHC ligand cCCCC is synthesized and characterized by NMR spectroscopy, elemental analysis, ESI-MS, EPR spectroscopy and SC-XRD. The yellow 17-valence-electron complex selectively activates dioxygen from air at ambient conditions, resulting in the formation of green 18 -valence-electron dicobalt(III) μ_{2}-peroxo complex 2, the first reported NHCcomplex with a Co-O-O-Co structural motif. The reaction proceeds via an elusive end-on coordinated superoxo intermediate ($4^{\text {end-on }}$), as demonstrated by EPR spectroscopy, simulations and supported by DFT calculations. Conversion of 2 with acetic acid, providing the simplest electrophile, that is, protons, results in the cleavage of the peroxo moiety. Thereby, dark green octahedral Co ${ }^{\text {III }}$ complex 3 bearing a monodentate axial acetate ligand is quantitatively formed, going along with hydrogen peroxide formation. DFT calculations suggest a nucleophilic nature of the peroxo moiety, explaining the observed reactivity. These results pave the way to utilize dioxygen from air as a
sustainable in situ hydrogen peroxide source for co-catalytic reactions. Optimization of a potentially competing formation of water and dioxygen is in the focus of future research.

Acknowledgements

J.F.S, P.J.A., A.D.B, B.J.H. and C.J. thank TUM graduate school for financial support. All authors thank AuTUM for the successful co-operation during Linda Nguyen's apprenticeship. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cobalt • dioxygen activation • dioxygen ligands macrocyclic ligands $\cdot \mathrm{N}$-heterocyclic carbenes

[1] a) M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Chem. Rev. 2004, 104, 939-986; b) H. Chen, M. Ikeda-Saito, S. Shaik, J. Am. Chem. Soc. 2008, 130, 14778-14790; c) E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659-3853.
[2] a) N. W. Aboelella, S. V. Kryatov, B. F. Gherman, W. W. Brennessel, V. G. Young, R. Sarangi, E. V. Rybak-Akimova, K. O. Hodgson, B. Hedman, E. I. Solomon, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2004, 126, 16896-16911; b) E. G. Kovaleva, M. B. Neibergall, S. Chakrabarty, J. D. Lipscomb, Acc. Chem. Res. 2007, 40, 475-483; c) C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059-2107; d) B. D. Neisen, N. L. Gagnon, D. Dhar, A. D. Spaeth, W. B. Tolman, J. Am. Chem. Soc. 2017, 139, 10220 10223.
[3] a) K. Chen, M. Costas, J. Kim, A. K. Tipton, L. Que, J. Am. Chem. Soc. 2002, 124, 3026-3035; b) L. Que Jr, W. B. Tolman, Nature 2008, 455, 333; c) A. C. Lindhorst, S. Haslinger, F. E. Kühn, Chem. Commun. 2015, 51, 17193-17212; d) S. M. Hölzl, P. J. Altmann, J. W. Kück, F. E. Kühn, Coord. Chem. Rev. 2017, 352, 517-536; e) W. N. Oloo, R. Banerjee, J. D. Lipscomb, L. Que, J. Am. Chem. Soc. 2017, 139, 17313-17326; f) S. Kal, S. Xu, L. Que Jr, Angew. Chem. Int. Ed. 2020, 59, 7332-7349; Angew. Chem. 2020, 132, 7400-7419.
[4] R. D. Jones, D. A. Summerville, F. Basolo, Chem. Rev. 1979, 79, 139-179.
[5] B. M. Hoffman, D. H. Petering, Proc. Natl. Acad. Sci. USA 1970, 67, $637-$ 643.
[6] a) J. Rosenthal, D. G. Nocera, Acc. Chem. Res. 2007, 40, 543-553; b) X. Huang, J. T. Groves, Chem. Rev. 2018, 118, 2491-2553; c) J. P. Collman, X. Zhang, K. Wong, J. I. Brauman, J. Am. Chem. Soc. 1994, 116, 62456251; d) R. Guilard, S. Brandes, C. Tardieux, A. Tabard, M. L'Her, C. Miry, P. Gouerec, Y. Knop, J. P. Collman, J. Am. Chem. Soc. 1995, 117, 11721-11729.
[7] T. Corona, S. K. Padamati, F. Acuña-Parés, C. Duboc, W. R. Browne, A. Company, Chem. Commun. 2017, 53, 11782-11785.
[8] a) M. R. Anneser, S. Haslinger, A. Pöthig, M. Cokoja, J.-M. Basset, F. E. Kühn, Inorg. Chem. 2015, 54, 3797-3804; b) J. W. Kück, M. R. Anneser, B. Hofmann, A. Pöthig, M. Cokoja, F. E. Kühn, ChemSusChem 2015, 8, 4056-4063.
[9] F. Dyckhoff, J. F. Schlagintweit, R. M. Reich, F. E. Kühn, Catal. Sci. Technol. 2020, 10, 3532 - 3536.
[10] a) W. A. Herrmann, R. W. Fischer, D. W. Marz, Angew. Chem. Int. Ed. Engl. 1991, 30, 1638-1641; Angew. Chem. 1991, 103, 1706-1709; b) P. Altmann, M. Cokoja, F. E. Kühn, Eur. J. Inorg. Chem. 2012, 3235-3239.
[11] a) C. L. Hill, Nature 1999, 401, 436-437; b) R. Noyori, M. Aoki, K. Sato, Chem. Commun. 2003, 1977-1986.
[12] X. Jia, F. Sun, Y. Fei, M. Jin, F. Zhang, W. Xu, N. Shi, Z. Lv, Process SAF Environ. 2018, 119, 218-222.
[13] a) A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 2009, 48, 8424-8450; Angew. Chem. 2009, 121, 8576-8603; b) C. Parmeggiani, C.

Matassini, F. Cardona, Green Chem. 2017, 19, 2030-2050; c) M. R. Anneser, S. Haslinger, A. Pöthig, M. Cokoja, V. D'Elia, M. P. Högerl, J.-M. Basset, F. E. Kühn, Dalton Trans. 2016, 45, 6449-6455.
$[14]$ a) N. A. Vermeulen, M. S. Chen, M. C. White, Tetrahedron 2009, 65, 30783084; b) L. Gómez, I. Garcia-Bosch, A. Company, J. Bene tBuchholz, A. Polo, X. Sala, X. Ribas, M. Costas, Angew. Chem. Int. Ed. 2009, 48, 5720 5723; Angew. Chem. 2009, 121, 5830-5833; c) C. Cordes née Kupper, M. Morganti, I. Klawitter, C. Schremmer, S. Dechert, F. Meyer, Angew. Chem. Int. Ed. 2019, 58, 10855-10858; Angew. Chem. 2019, 131, 10971-10974.
[15] a) S. Meyer, I. Klawitter, S. Demeshko, E. Bill, F. Meyer, Angew. Chem. Int. Ed. 2013, 52, 901-905; Angew. Chem. 2013, 125, 935-939; b) S. Ye, C. Kupper, S. Meyer, E. Andris, R. Navrátil, O. Krahe, B. Mondal, M. Atanasov, E. Bill, J. Roithová, F. Meyer, F. Neese, J. Am. Chem. Soc. 2016, 138, 14312-14325.
[16] a) M. R. Anneser, X. B. Powers, K. M. Peck, I. M. Jensen, D. M. Jenkins, Organometallics 2019, 38, 3369-3376; b) M. R. Anneser, G. R. Elpitiya, J. Townsend, E. J. Johnson, X. B. Powers, J. F. DeJesus, K. D. Vogiatzis, D. M. Jenkins, Angew. Chem. Int. Ed. 2019, 58, 8115-8118; Angew. Chem. 2019, 131, 8199-8202.
[17] M. R. Anneser, G. R. Elpitiya, X. B. Powers, D. M. Jenkins, Organometallics 2019, 38, 981-987.
[18] a) S. A. Cramer, D. M. Jenkins, J. Am. Chem. Soc. 2011, 133, 1934219345; b) S. A. Cramer, R. Hernández Sánchez, D. F. Brakhage, D. M. Jenkins, Chem. Commun. 2014, 50, 13967-13970; c) P. P. Chandrachud, D. M. Jenkins, Tetrahedron Lett. 2015, 56, 2369-2376; d) C. L. Keller, J. L. Kern, B. D. Terry, S. Roy, D. M. Jenkins, Chem. Commun. 2018, 54, 14291432.
[19] Z. S. Ghavami, M. R. Anneser, F. Kaiser, P. J. Altmann, B. J. Hofmann, J. F. Schlagintweit, G. Grivani, F. E. Kühn, Chem. Sci. 2018, 9, 8307-8314.
[20] a) W. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. Engl. 1997, 36, 2162-2187; Angew. Chem. 1997, 109, 2256-2282; b) P. de Frémont, N. Marion, S. P. Nolan, Coord. Chem. Rev. 2009, 253, 862-892.
[21] a) A. A. Danopoulos, J. A. Wright, W. B. Motherwell, S. Ellwood, Organometallics 2004, 23, 4807-4810; b) X. Hu, I. Castro-Rodriguez, K. Meyer, J. Am. Chem. Soc. 2004, 126, 13464-13473; c) Z. Lu, S. A. Cramer, D. M. Jenkins, Chem. Sci. 2012, 3, 3081-3087.
[22] a) J. D. Ortego, M. Seymour, Polyhedron 1982, 1, 21-30; b) Y. Le Mest, M. L'Her, J. P. Collman, N. H. Hendricks, L. McElwee-White, J. Am. Chem. Soc. 1986, 108, 533-535; c) Y. Le Mest, C. Inisan, A. Laouénan, M. L’Her, J. Talarmin, M. El Khalifa, J.-Y. Saillard, J. Am. Chem. Soc. 1997, 119, 6095-6106.
[23] a) M. J. Baldwin, P. K. Ross, J. E. Pate, Z. Tyeklar, K. D. Karlin, E. I. Solomon, J. Am. Chem. Soc. 1991, 113, 8671-8679; b) M. Suzuki, Acc. Chem. Res. 2007, 40, 609-617.
[24] T. Nishiura, A. Takabatake, M. Okutsu, J. Nakazawa, S. Hikichi, Dalton Trans. 2019, 48, 2564-2568.
[25] a) T. Tanase, T. Onaka, M. Nakagoshi, S. Yano, T. Tanase, I. Kinoshita, K. Shibata, M. Doe, J. Fujii, Chem. Commun. 1997, 2115-2116; b) S. Schmidt, F. W. Heinemann, A. Grohmann, Eur. J. Inorg. Chem. 2000, 1657-1667.
[26] a) S. Fukuzumi, K. Okamato, Y. Tokuda, C. P. Gros, R. Guilard, J. Am. Chem. Soc. 2004, 126, 17059-17066; b) J. Meng, H. Lei, X. Li, J. Qi, W. Zhang, R. Cao, ACS Catal. 2019, 9, 4551-4560.
[27] a) K. Mase, K. Ohkubo, S. Fukuzumi, Inorg. Chem. 2015, 54, 1808-1815; b) E. V. Puttock, P. Banerjee, M. Kaspar, L. Drennen, D. S. Yufit, E. Bill, S. Sproules, C. R. Hess, Inorg. Chem. 2015, 54, 5864-5873.
[28] M. Baumgarten, C. J. Winscom, W. Lubitz, Appl. Magn. Reson. 2001, 20, 35-70.
[29] a) Q. Huang, Q. Huang, R. A. Pinto, K. Griebenow, R. Schweitzer-Stenner, W. J. Weber, J. Am. Chem. Soc. 2005, 127, 1431 -1437; b) L. Mao, S. Luo, Q. Huang, J. Lu, Sci. Rep. 2013, 3, 3126.
[30] CCDC 2032593, 2032594 and 2032595 for compounds 1, 2 and 3, respectively, contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Manuscript received: October 29, 2020
Accepted manuscript online: October 30, 2020
Version of record online: December 10, 2020

[^0]: [a] J. F. Schlagintweit, ${ }^{+}$Dr. P. J. Altmann, ${ }^{+}$A. D. Böth, B. J. Hofmann, C. Kaußler,
 L. Nguyen, Dr. R. M. Reich, Prof. Dr. F. E. Kühn

 Molecular Catalysis
 Catalysis Research Center and Department of Chemistry
 Technische Universität München, Lichtenbergstraße 4
 85747 Garching bei München (Germany)
 E-mail: fritz.kuehn@ch.tum.de
 [b] Dr. P. J. Altmann, ${ }^{+}$Dr. C. Jandl, Dr. A. Pöthig
 Single Crystal XRD Laboratory of the Catalysis Research Center
 Technische Universität München
 Ernst-Otto-Fischer-Str. 1
 85747 Garching bei München (Germany)
 [c] L. Nguyen
 Ausbildungszentrum der Technischen Universität München
 Technische Universität München

