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Excess Gibbs energy models are often fitted to binary experimental data of phase equilibria. Even in the case of two binary

parameters fitted to two binary infinite-dilution activity coefficients, multiple solutions for the parameters may occur. The

present work shows that this is also true, if more data – like vapor-liquid equilibrium data sets – is used. Chemical systems

and conditions are identified that lead to multiple solutions. It is shown that the multiple solutions may lead to signifi-

cantly different results when the models are used in simulation of separation processes.
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1 Introduction

Models of the excess Gibbs energy (gE models) are an
important class of thermodynamic models for liquid phases
and they are intensely used in process simulation of fluid
separation processes in the chemical industry. Although old
(the versions that are most frequently used today date back
to 1960s and 1970s), gE models are still quite popular. They
are a convenient approach to model liquid phase non-ideal-
ity by fitting adjustable parameters to different types of
experimental data of phase equilibria and excess quantities.
From a mathematical standpoint, gE models – when ex-
pressed in intensive variables – are giving the molar excess
Gibbs energy gE as a function of the mole fractions x and up
to two other intensive state variables (typically only the
temperature T) and some adjustable parameters t.

gE ¼ gE x;T; tð Þ (1)

In systems with more than two components, gE is typical-
ly modeled for all binary subsystems individually, followed
by the calculation of gE for the whole system through empir-
ical interpolation formulas. In all commonly used gE

models, there are only adjustable parameters in the gE

models of the binary subsystems. There are typically no
additional adjustable ternary or higher parameters. Thus,
fitting binary parameters is the single-most important step
when modeling liquid mixtures with gE models.

The most common case is fitting the two binary parame-
ters, let us say tij and tji, of a binary gE model directly to
experimental data of the respective binary system (i + j).
(Note that the binary parameters are not necessarily to be
fitted to binary data only. If ternary and higher data is pres-
ent, it could be considered in the fit of the binary parame-

ters by simultaneously considering the interpolation func-
tions.) In this case, Eq. (1) turns into

gE ¼ gE xi; xj;T; tij; tji
� �

(2)

which comes in many different flavors depending on the gE

model in use, e.g., NRTL [1], UNIQUAC [2], Wilson [3],
Margules and van Laar [4]. In all cases, gE is translated via
thermodynamic relations, e.g.,

RT lngi ¼
¶GE

¶ni

� �
nj;T;p

(3)

or

hE

RT2 ¼ �
¶ gE=RTð Þ

¶T

� �
x;p

(4)

to experimentally accessible quantities such as activity coef-
ficients gi or excess enthalpies hE.

Which experimental data to use in the fitting of tij and tji

depends of course firstly on the availability. If available,
however, the literature often suggests using the two activity
coefficients at infinite dilution g¥

i and g¥
j to determine tij
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and tji [5–8]. In this case, one does not have to solve the
typical minimization problem of parameter regression. At
known experimental temperature, one arrives at two equa-
tions

lng¥
i ¼ Fi tij; tji

� �
(5)

lng¥
j ¼ Fj tij; tji

� �
(6)

for the two unknowns tij and tji. The form of the functions
Fi and Fj depends of course on the gE model that is used.
One can solve the system of the two equations – in doubt
numerically – and obtain a model that gives exactly the
experimental values for g¥

i and g¥
j .

At this point, an important observation is made: most of
the commonly used gE models including NRTL, UNIQUAC
and Wilson, lead to highly nonlinear functions Fi and Fj

that may lead to multiple solutions for tij and tji when solv-
ing the Eqs. (5) and (6). Initially, Renon and Prausnitz, who
came up with NRTL, have (wrongly) denied such multiple
solutions, cf. [8]: ‘‘At a given temperature T [...] values of g¥

1
Tð Þ and g¥

2 Tð Þ uniquely determine values of parameters t12

and t21.’’ Later, several authors have studied the equations
of specific gE models in detail and have proven Renon and
Prausnitz wrong. Tassios [9] has shown that multiple solu-
tions only occur if both g¥

i and g¥
j are smaller than 1. The

existence of multiple solutions was shown for UNIQUAC
and Wilson as well [4, 10, 11].

Today, the existence of the multiple solutions is a proved,
albeit rather unknown fact in the scientific literature and
textbooks. Only very few reference books, e.g., [4, 12–14],
mention the occurrence of the multiple solutions. Almost
nothing has been reported about the practical implication
of these multiple solutions. It is the goal of the present
paper to study when exactly multiple solutions occur when
fitting parameters of gE models to binary mixture data and
how to possibly avoid them by fitting to diverse data. Fur-
thermore, it is studied how thermodynamic models and
process models propagate the deviations between the multi-
ple solutions into the predictions of property data, and ulti-
mately into results of process simulations. It is explored
whether the multiple solutions may even lead to signifi-
cantly different process designs.

2 Occurrence and Avoidance of Multiple
Solutions when Fitting Binary Data

In the following, we will focus on one of the most common gE

models: the NRTL model as presented by Renon and Praus-
nitz [1]. Similar results for other common models like the
UNIQUAC or the Wilson model could be obtained following
our scheme. The NRTL model for binary systems is given by

gE

RT
¼ xixj

tjiGji

xi þ xjGji
þ

tijGij

xj þ xiGij

" #
(7)

where

Gij ¼ exp �atij
� �

(8)

Gji ¼ exp �atji
� �

(9)

tij ¼ Dgij= RTð Þ (10)

tji ¼ Dgji= RTð Þ (11)

Therein, xi and xj are the mole fractions of the com-
pounds i and j. The parameter a is often assigned a preset
temperature-independent value. We will present our results
for several preset values of a. There might arise the question
whether the t or the Dg are the fitting parameters. As a rule,
in case of isothermal data one could use the t and ignore
the last two equations, otherwise one would have to stick to
the Dg.

For a start, let us look at the problem of determining the
binary interaction parameters tij and tji from the activity
coefficients at infinite dilution g¥

i and g¥
j at constant tem-

perature. By using Eq. (3) and considering the limits at in-
finite dilution, one obtains for NRTL:

lng¥
i ¼ tji þ tij exp �atij

� �
(12)

lng¥
j ¼ tij þ tji exp �atji

� �
(13)

To grasp when the system of Eqs. (12) and (13) has multi-
ple solutions, Eq. (12) is solved for tji and the result is in-
serted into Eq. (13). The following equation is obtained.

0 ¼ f tij
� �

¼ tij � lng¥
j þ lng¥

i � tij exp �atij
� �� �

· exp �a lng¥
i

� �
exp atij exp �atij

� �� �� � (14)

Finding solutions for the system (12)–(13) is equivalent
to searching roots of the right-hand side of Eq. (14), which
is here shortly referred to as the function f(tij). Fig. 1 shows
a plot of the function f(tij) for two combinations of g¥

i and
g¥

j , both at a = 0.3. The solid curve has three roots, the
dashed curve only one. Consequently, the system of
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Figure 1. Graph of the right-hand side of Eq. (14) for
g¥

i ¼ g¥
j ¼ 0:5; a = 0.3 (solid curve) and g¥

i ¼ g¥
j ¼ 2; a = 0.3

(dashed curve).
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Eqs. (12) and (13) has also three solutions or only one solu-
tion, respectively.

A function analysis shows that if at least one of g¥
i or g¥

j
is greater than 1, the graph of f(tij) is monotonically in-
creasing and the system of Eqs. (12) and (13) has only one
unique solution. Every choice of g¥

i ; g
¥
j

� �
˛ 0; 1ð Þ · 0; 1ð Þ

leads to a graph with one maximum and one minimum. To
which extent this also leads to three roots of f(tij) depends
on the value of a. Fig. 2 visualizes the combination of g¥

i , g¥
j

and a, that leads to three solutions. Generally, it holds that
the larger the value of a, the larger is the area in the g¥

i ; g¥
j

space that leads to three solutions.

As an example, we have selected the ternary system
(acetone, benzene, chloroform), which has an interesting
topology in the vapor-liquid equilibrium (VLE) and has,
therefore, served as an academic example in many studies
in process design and simulation, e.g., [15–17]. The com-
pounds can be conveniently abbreviated by A, B, and C.
Tab. 1 shows the binary activity coefficients at infinite dilu-
tion in the system at 65 �C, which were calculated using a
model from the literature [16]. The values of a were
adopted from the same source. Solving the system of
Eqs. (12) and (13) leads to one solution in binary AB, and
three solutions in BC and AC, cf. Tab. 1. This is in full
agreement with the findings presented in Fig. 2. In the sys-
tem AB, both activity coefficients are greater than 1. In the
systems BC and AC, they are both smaller than one and in
the region where three solutions are expected. Interestingly,

the three solutions are not necessarily close to each other in
the parameter space. Even the signs of the parameter values
change from solution to solution for some parameters. Note
that Tab. 1 does give the Dg (obtained simply by Eqs. (10)
and (11)) and not the t. In this point, this makes no differ-
ence. Later, when the temperature is considered no longer
to be constant, it is essential to use the Dg.

Fig. 3 shows the profiles of the activity coefficients for all
three solutions in the binary systems AC and BC (system
AB is omitted because it has no multiple solutions). Both
graphs show the profiles of the two binary activity coeffi-
cients. For each activity coefficient there are three curves,
one for each solution from Tab. 1. In the system AC (Fig. 3
a), two solutions are very similar, one solution is clearly
different from the others. In the system BC (Fig. 3b), all
three solutions are quite similar and hard to discern. This
indicates that it is quite hard to discriminate the different
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Figure 2. Number of solutions to the problem of fitting the pa-
rameters of NRTL to infinite dilution activity coefficients. The
boundaries between one and three solutions depend on the
value of a: solid (a = 0.2), dotted (a = 0.3), dashed (a = 0.47).

Table 1. Binary activity coefficients at infinite dilutions at 65 �C [16] and NRTL parameters in the system acetone (A), benzene (B), chloro-
form (C). Solutions in italics are close to the ones reported in [16].

g¥
ij g¥

ji a Solution 1 Solution 2 Solution 3

Dgij [J mol–1] Dgji [J mol–1] Dgij [J mol–1] Dgji [J mol–1] Dgij [J mol–1] Dgji [J mol–1]

AB 1.63 1.34 0.30 –1252.19 2807.44 – – – –

BC 0.81 0.81 0.30 –283.39 –309.25 3708.77 –3098.14 –3107.70 3728.17

AC 0.43 0.55 0.16 –4221.85 2987.65 –5952.25 5971.37 11916.03 –8428.80

Figure 3. Activity coefficient profiles of two binary subsystems
of acetone (A), benzene (B), chloroform (C) at 65 �C; a) system
AC, b) system BC. In each subsystems the three model versions
from Tab. 1 are shown. The solid, dotted, dashed lines are solu-
tions 1, 2, 3, respectively.
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solutions even if more data of the binary activity coefficients
at 65 �C would be available. To quantify the extent of the
relative differences between the three solutions we used the
relative deviation from the mid-range value (RDM), i.e., for
a set X ¼ Xif gi<N , RDM Xið Þ ¼ Xi �MRV Xð Þð Þ=MRV Xð Þ.
The mid-range value (MRV) was used as an unbiased refer-
ence. MRV is a common statistical estimator of the mean
defined as the middle point between the maximum and
minimum values of a population, i.e., for a set X,
MRV Xð Þ ¼ 0:5 MIN Xð Þ þMAX Xð Þð Þ. For the system BC,
the maximum RDM of the activity coefficients obtained for
the three solutions is only ± 0.3 %. The maximum was taken
over the entire concentration profiles of both involved ac-
tivity coefficients.

In the following, it is explored for the system BC which
property data would be sufficient to discriminate the three
parameter sets. One could for example additionally account
for data of the VLE given in T,x,y form at constant pressure.
Fig. 4a shows predictions using the three parameters sets
from Tab. 1. The VLE is calculated using extended Raoult’s
law and an ideal vapor phase. The vapor pressure correla-
tions are adopted from [16]. The differences between the
three solutions are hardly discernible. Fig. 4b shows the
averaged deviation from K = 14 experimental data points
[18] defined as

S1 ¼
1

2K

XK

i¼1

Tcalc � Texp

Texp

����
����þ ycalc

i � yexp
i

yexp
i

�����
�����

" #
(15)

plotted as a heat map in the parameter space of the Dg. (In
the calculations, pressure and liquid phase composition
were specified to the experimental values.) There are three
local minima (not marked), which are located very closely
to the solutions of Tab. 1 (marked by crosses). Thus, also
when T,x,y data are used in the fit, the problem of multiple
solution remains for this example. This is not surprising,
since there is generally a strong correlation between devia-
tions in activity coefficients and deviations in the T,x,y data.

If the parameter sets from Tab. 1 are used to calculate
gE over the composition at 65 �C, there are no larger dif-
ferences to observe. However, if other temperatures are
used, the three solutions yield different values for gE. In
Fig. 5a, this effect is shown for 120 �C. Thus, different
parameter sets that lead to the same activity coefficients
at one temperature, can still lead to different temperature
dependencies of gE. This suggests that one has to fit to
data sets of different temperatures to discriminate the
parameters. Alternatively, one can also consider hE data
(even at constant temperature) to discriminate the multi-
ple solutions. This is shown in Fig. 5b and works, because
hE is correlated with the temperature dependency of gE.
To show how the integrative consideration of hE elimi-
nates the multiple solutions, another heat map in the Dg
space is shown in Fig. 5c. It shows the deviation in the fit
according to function S2, which equally weighs the devia-
tions from experimental activity coefficients at infinite

dilution at 65 �C and deviations from experimental excess
enthalpy data at 25 �C:

S2 ¼
1

2K

XK

i¼1

hE;calc � hE;exp

hE;exp

����
����

þ 1
4

g¥;calc
B � g¥;exp

B

g¥;exp
B

�����
�����þ g¥;calc

C � g¥;exp
C

g¥;exp
C

�����
�����

" # (16)

There is one single minimum (unmarked). The discus-
sion along Fig. 5 shows that using temperature-dependent
VLE data or hE data in the fit removes the multiple solu-
tions for the temperature-independent parameter set. Inde-
pendent of this finding, we want to stress that even if there
is only one solution in the fit, the fit is not very likely to de-
scribe several data well at the same time. Insights about the
trade-offs between the description qualities of the different
data sets can be obtained by considering the fitting problem
as multi-objective problem [19, 20]. And of course, one
would introduce temperature-dependent parameters in
many cases to improve the simultaneous description of
multiple data sets. Both is, however, out of the scope of the
present work.
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Figure 4. a) Boiling diagram at 101.3 kPa in the system benzene
(B) + chloroform (C). Lines are predictions using the three mod-
els from Tab. 1. The solid, dotted, dashed lines are solutions 1, 2,
3, respectively. Symbols are experimental data [18]. b) Devia-
tions from experimental data according to Eq. (15) for varying
combinations of Dgij in a heat map. Crosses indicate the solu-
tions from Tab. 1.
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3 Propagation and Amplification of
Deviations

If it is not possible to discriminate the multiple solutions
described above (e.g., due to missing experimental data), it
is interesting to know how the deviations between the mul-
tiple solutions propagate when the models are used in simu-
lations of multi-component mixtures. Still – for the sake of
brevity – we focus our studies on the multiple solutions in
the binary system BC. For the system AC, which also has
multiple solutions, we chose the second solution from
Tab. 1 and stick with it for now. Fig. 6 shows plots of the
activity coefficients of A, B and C at infinite dilution in
solutions of the respective other two components. Although
the activity coefficients in the binary systems (cf. Fig. 3) are
hardly discernible for the three solutions, it is striking that
the maximum RDM of the activity coefficients obtained for

the three considered solutions in the ternary system ABC
lies between ± 18 % and ± 30 %, depending on the regarded
species. On the one hand, this gives another chance for dis-
crimination of the solutions, e.g., by considering ternary
VLE data in the fit. Alternatively, one could argue for and
against certain solutions using a molecular point of view,
e.g., by assuming that the molecules’ association sites be-
have different in pure and mixed solvents. On the other
hand, it shows that the deviations of the different solutions
are significantly amplified.

This amplification may lead also to dramatic differences
in results of process simulations. For demonstration, we
have implemented a simulation of a process to separate
acetone, benzene, and chloroform as described in [16]. The
flowsheet in Fig. 7 is adopted from [16]. Acetone and
chloroform, which exhibit a high-boiling azeotrope, are
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Figure 5. Quantities in the binary system benzene(B) + chloro-
form (C). a) Molar excess Gibbs energy gE at 120 �C. b) Molar ex-
cess enthalpy hE at 25 �C. Lines are predictions using the three
models from Tab. 1. The solid, dotted, dashed lines are solutions
1, 2, 3, respectively. Symbols are experimental data: � [21] and
~ [22]. c) Deviations from experimental data according to
Eq. (16) for varying combinations of Dgij in a heat map. Crosses
indicate the solutions from Tab. 1.

Figure 6. Activity coefficients at infinite dilution g¥
i in the tern-

ary system acetone (A), benzene (B), chloroform (C) at 65 �C
plotted as a function of the (binary) solvent’s composition. Lines
are predictions using the three models for the binary BC from
Tab. 1. The solid, dotted, dashed lines are solutions 1, 2, 3, re-
spectively. For the system AC the second solution from Tab. 1 is
used.
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separated by adding benzene as an entrainer. In column C1,
acetone is obtained as top product with high purity. In
column C2, chloroform is separated from benzene and ob-
tained in the top product with purity. Benzene obtained at
the bottom of column C2 is partly purged and partly re-
cycled. The simulation is done with the software Aspen Plus
and the equilibrium stage model for distillation columns
(RadFrac). The VLE is modeled as described above. The
specifications are given in Tab. 2. There is one degree of
freedom left in the simulation resulting from the splitter:
the flow rate of the recycle stream 5. In our study, the re-
cycle stream is chosen such that the sum of both reboiler
duties is minimized. The calculations are done separately
for all six combinations of the three solutions in system BC
and the first two solutions in the system AC from Tab. 1.
(The last solution of AC is omitted since it is quite distinct
when only looking at binary activity coefficients, cf. Fig. 3.)

Experimental VLE data at process pressure (roughly
1 bar) is certainly crucial for the validity of the model. For
the system BC one could therefore naively argue that using
the data shown in Fig. 4 is sufficient to obtain a good model.

No matter which of the three multiple solution is obtained,
the model’s performance in binary VLE calculations is
seemingly equal. Analogous argumentation holds for the
system AC. The results shown in Fig. 8 give, however, a
completely different and striking picture: between the differ-
ent parameter sets used in the simulation, the flow rate of
the recycle and the sum of reboiler duties vary between 31
and 155 kmol h–1, and 3.5 and 6.9 MW, respectively. The rel-
ative position of the points shows some trend, indicating
that both results are connected. The large fluctuations can
be explained by the fact that in the bottom of column 1,
where traces of acetone have to be separated from a binary
mixture of chloroform and benzene, the fluctuations in the
activity coefficients discussed along Fig. 6 become signifi-
cant.

4 Conclusions

Due to the strong nonlinearity of common excess Gibbs
energy models like the NRTL model, fitting of binary
parameters to vapor-liquid equilibrium data may lead to
multiple solutions. They appear as distinct local optima in
the optimization of the parameter fitting and may be over-
looked if just the global (or one of the local) optimum is cal-
culated. Multiple solutions occur only for binary systems in
which the infinite dilution activity coefficients are smaller
than 1. In these systems, multiple solutions can be avoided/
discriminated when data at different temperatures and/or
excess enthalpy data is used in the fit. This has been demon-
strated using an exemplary ternary system, which contains
two binaries with multiple solutions that are hard to dis-
criminate when only looking at binary VLE data. Multiple
solutions, if not eliminated, may yield significant different
results when the model is used in predictions of ternary and
higher mixtures. Therefore, great attention has to be paid
when process simulations are done with systems that exhib-
it activity coefficients smaller than 1. Even if binary data is
modeled well by all the multiple solutions, large differences
in results of process simulations are possible.
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Figure 7. Flowsheet for the separation process for a mixture of
acetone, benzene, chloroform.

Table 2. Specifications used in the simulation of the separation
process for a mixture of acetone, benzene, chloroform shown in
Fig. 7 [16].

Quantity Value

Pressures (everywhere) [bar] 1.01325

Feed molar flow rate (A, B, C) [kmol h–1] 36, 40, 24

Feed state Bubble point 1.01325 bar
(66 �C)

Number of stages (C1, C2) 68, 60

Feed stage from above (C1, C2) 26, 30

Molar flow rate stream 2 [kmol h–1] 36

Mole fraction A stream 2 [mol mol–1] 0.99

Molar flow rate stream 4 [kmol h–1] 24

Mole fraction C stream 4 [mol mol–1] 0.98

Figure 8. Minimum sum of reboiler duties and respective re-
cycle flow rates for six different parameter combinations. The
annotation (i,j) indicates the i-th and j-th solution in the binaries
BC and AC, respectively, as given in Tab. 1.
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Symbols used

FRec [kmol h–1] recycle flow rate
gE [J mol–1] molar excess Gibbs energy
Dg [J mol–1] NRTL parameter
hE [J mol–1] molar excess enthalpy
p [kPa] pressure
Q [MW] reboiler duty
R [J mol–1K–1] universal gas constant
T [K] temperature
x [mol mol–1] mole fraction

Greek letters

a [–] NRTL parameter
g [–] activity coefficient
g¥ [–] activity coefficient at infinite dilution
t [–] gE model parameter

Sub- and Superscripts

calc calculated
exp experimental

Abbreviations

A acetone
B benzene
C chloroform
MAX maximum
MIN minimum
MRV mid-range value
RDM relative deviation from the mid-range value
VLE vapor-liquid equilibrium
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