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Abstract

Independent from their intended purpose, the understanding of structural char-

acteristics of random packings of particles having defined shapes is important to

understand and optimize fluid dynamic behaviour, heat, and mass transfer. The

packing structure can be described by the coordination number, local porosity

profiles, the average porosity, and pore characteristics, which are influenced

by the wall and thickness effect; the material, shape, and size distribution of

the packing particles; the packing and compaction mode; and the shape and

material of the packing’s containing walls. Therefore, existing knowledge on the

structure of randomly packed mono-sized particles is reviewed to provide an

updated selection of relevant parameters and their derived correlations obtained

by experimental, numerical, and analytical means.
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1 | INTRODUCTION

Random packings of particles having defined shapes are
deployed in all kinds of industrial applications and come
in all orders of magnitude. The most prominent examples
comprise micro-sized particle beds as commonly used in
chromatography packed columns,[1–3] packed-bed reac-
tors filled with catalytic shaped bodies having millimetre
size,[4,5] packed columns used in separation processes
such as distillation incorporating particles in the lower
centimetre range,[6,7] and the pebble-bed reactor, which
is a gas-cooled nuclear reactor, moderated by a packing
of graphite spheres.[8–10] In addition to those, numerous
less-known applications of packed-beds exist, ranging
from powder-bed 3D printers,[11] solar-energy storage
systems,[12] earth science,[13] civil engineering,[14,15] and

pharmaceutical processing,[16] to the pyrolysis of pellet-
ized wood fuels,[17] to name but a few.

Irrespective of its intended purpose, the extent of a
packed-bed is limited by a confining wall of commonly
cylindrical shape, though flat plates and other container
geometries are possible. Despite its generally random
nature, close to this confinement the particles’ placement
is naturally forced to align with the wall’s geometry. This
imposed order reaches a couple of particle diameters into
the packing and is usually named the wall effect. Its
influence on the overall packed-bed characteristics
decreases with increasing tube-to-particle diameter ratio
λ= D

dp
. While most applications operate in an only

sparsely affected λ-range, this effect becomes dominant,
for instance, in catalytic multitubular reactors, typically
performing at λ = 4-7[18] or a single-pellet-string reactor
with a λ<2.[19] Moreover, some packed-bed utilizations,
especially chromatography columns, have very delicate
requirements regarding bed homogeneity and its derived
characteristics.

Abbreviations: DEM, discrete element method; Erfc, error function; J0,
Bessel function of first kind and zero order; MRJ, maximally random
jammed; RCP, random close packing; RLP, random loose packing.
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In general, random packed-beds are typically investi-
gated in regard to the void distribution,[20,21] single- and
multi-phase flow aspects,[22] the extent of pressure loss along
the bed height,[23] axial and radial dispersion qualities[24] in
common with inter- and intraparticle heat,[25] and mass
transfer properties. In this contribution, parameters that
describe and influence the structural characteristics are
reviewed, clustered, and compared. Parameters describing
the packing structure comprise the coordination number
�Nc, the radial porosity distribution ε(r), the axial porosity
distribution ε(z), the average bed porosity �ε, and the pore
size characteristics. These parameters are influenced by the
wall effect, the thickness effect, the packing and compaction
mode, the particle material, shape and size distribution, and
the container’s shape and material. Results can be obtained
by partially elaborate experiments; however, the sheer num-
ber of recently published numerical approaches,[26] includ-
ing the generation of random packed-beds using, for
instance, the discrete element method (DEM) with subse-
quent flow, heat, and/or mass transfer simulation by known
tools such as COMSOL Multiphysics®, Ansys Fluent®,
STAR-CCM+®, or OpenFOAM®, speaks for itself. Although
the developed numerical procedures require delicate valida-
tion, the gain in knowledge from employing the detailed res-
olution and visualization options is impressive.

The focus of this contribution is to review the differ-
ent published methodologies and results to characterize
the structure of random packed-beds using both experi-
mental and numerical approaches.

2 | EXPERIMENTAL
INVESTIGATION OF PACKED-BED
STRUCTURES

Random packings of particles having a distinct shape are
characterized by the size, distribution, and the mean void
fraction of the voids between the solids (porosity ε), the coor-
dination number �Nc describing the average number of con-
tact points between adjacent particles, and their average
contact angle �ϕc . Besides the tube-to-particle diameter ratio
λ, these parameters may be influenced by the particle’s
material, shape and size distribution, the container’s mate-
rial and shape, and the applied deposition and compaction
methods.[27,28]

2.1 | Regular arrangements of spatially
extended mono-sized ideal spheres

Regular arrangements of spheres are characterized by a
repeating pattern whose smallest repetition unit, the unit
cell, represents the whole packing. It is the simplest case

of a packed-bed and its structural characteristics can be
derived by mathematical considerations.[29,30] Table 1
summarizes typical arrangements and their quantities.
For more details, see the relevant reviews on this
topic.[13,21,31,32] Although these packed-beds are usually
not utilized directly, they define the maximum porosity
range a sphere packing can adapt to in the absence of a
confining wall. Here, Taylor et al[14] defined the packing
factor αm as the ratio between the volumes of the unit
cells of the actual packing and the cubic packing of
which the packing properties are compared. Moreover,
regular arrangements can be used as a starting point to
derive models for more realistic sphere packings,[33]

liquids,[34] or other porous systems.[14,15]

2.2 | Random packings of smooth mono-
sized ideal spheres in cylindrical confining
walls

Random packings of smooth, mono-sized, ideally spheri-
cal particles in cylindrical confining walls are frequently
taken as the standard or reference packing arrangement.
It is by far the most evaluated and researched packed-bed
configuration, though in many cases not adequately rep-
resenting the reality in industry.

2.2.1 | Coordination number and angle

The number of contact points between one particle and
its neighbours in combination with the angular distribu-
tion of these along the surface of the particles is of special
interest for heat transfer investigations[35] and the general
modelling of transport phenomena.[36] While regular
packings have one distinct coordination number for each
arrangement, varying from 6-12 (Table 1), random pack-
ings are characterized by having a distribution of coordi-
nation numbers.

TABLE 1 Characteristics of regular sphere packings[14,29–31]

Arrangement
Coordination
number Nc

Mean bed
porosity �ε

Packing
factor αm

(−) (−) (−)

Cubic 6 0.476 1

Orthorhombic 8 0.395
ffiffiffi
3

p
=2

Body-centred
cubic

8 0.320

Tetragonal-
sphenoidal

10 0.302 0.75

Rhombohedral 12 0.260
ffiffiffi
2

p
=2
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Experimental
The traditional experimental evaluation of the coordina-
tion number is obtained by filling the voids within a
packed-bed of spheres with a marker liquid. After drain-
age, the marker liquid will be retained at the true contact
points by capillary forces.[37] Furthermore, near contact
points are marked as well, as capillary forces allow bridg-
ing of narrow gaps.[38] True and near contact points can
be distinguished, as a circle of marker substance with a
non-marked centre indicates true contact points, whereas
near contact points are marked by a filled circle.[38] The
number and the distribution of true and near contacts
can be obtained by counting the marker dots on each
sphere. The mean coordination numbers and their cumu-
lative frequency distribution as obtained by experiments
are displayed in Figures 1 and 2.

Some of the first researchers to address the experi-
mental evaluation of the coordination number was Smith
et al.[37] They used a packing of lead shot and acetic acid,
forming white lead acetate as marker liquid. However, it
was noted that the data was erroneous[21] and it was
eventually re-evaluated by Wadsworth.[39]

A similar approach was selected by Bernal and
Mason,[38] except for the fact that they used ball bearings
with black paint as a marker. They were the first to distin-
guish between true and near contacts and investigated two
packed-bed densities. The same procedure was selected by
Oda,[42] investigating mono-sized sphere packings as well
as binary and quaternary mixtures. While Arakawa and
Nishino[40] used red ink to mark contact points between
spheres, the utilization of shellac in methylated spirit was
preferred by Pinson et al[41] and Zou et al.[47]

A completely different approach was selected by
Goodling and Khader.[36] Here, a packed-bed of spheres
was solidified with epoxy resin, layers were cut, and pho-
tographs were taken. It was ensured that each sphere was
cut at least twice so that the centre of each sphere could
be determined. The contact points of each sphere were
then obtained by mathematical considerations.

Modern imaging techniques allow the highly resolved
determination of packed-bed structures. Aste et al[44,45]

used X-ray computed tomography for the evaluation of
the contacts between mono-sized spheres. Here too,
uncertainty remained as to the distinction between true
and near contacts due to voxel resolution. Similar studies
were performed by Georgalli and Reuter,[48] Reimann
et al,[49–51] and Auwerda et al.[46]

The radial distribution function
For further investigations of the contact behaviour,
Scott[52] determined the sphere centres in a packed-bed
by filling the voids with molten wax, and after solidifica-
tion removed each sphere separately from the matrix
while noting each sphere’s position. From this, he com-
puted a radial density distribution using the distance nor-
malized by the sphere diameter of the centres of the
spheres from the wall of the random packed-bed. This
distribution was averaged for 25 randomly selected
spheres. Mason and Clark[53,54] added a direct sphere dis-
tance measuring technique in order to refine the near
contacts portion.[38] The obtained plot is known as the
radial distribution function and is used to model fluids
(spheres represent atoms or molecules) or colloids (see
Scott and Mader,[55] Finney,[56] Urquidi et al,[57] Dohn

FIGURE 1 Experimental results obtained from the literature for the mean coordination number �Nc as a function of porosity �ε. Full

symbols represent data of homogeneous spheres, crosses those of size mixtures[21,39–46]
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et al,[58] and Soper.[59]) It is to be noted that any investi-
gation of radial distribution functions requires the
absence of confinement influence.

Extrapolation and analytical considerations
When it comes to deriving mean contact number-porosity
correlations it has to be considered that stable and realis-
tic sphere packings only come in a small porosity range.
It is generally accepted that the simple cubic arrange-
ment constitutes the lower limit of a stable sphere pack-
ing. The range of realistic packings is even smaller. In
order to overcome this barrier, Meissner et al[60] tried to
extrapolate available coordination number data by inves-
tigating sphere arrangements looser than the regular
cubic packing. Similar approaches were performed by
Melmore[61] and Heesch and Laves.[62] Further analytical
investigations regarding extra loose sphere packings were
performed in the context of sedimentation pro-
cesses.[63,64] Bennett[65] investigated packings artificially
packed according to local and global criteria.

A completely different approach to overcome the prob-
lem that stable sphere packings only come in a very small
porosity range is proposed by evaluating micro- and
nanosized particles, as the porosity increases with decreas-
ing particle size.[66–69] However, in this size range, the con-
tact behaviour can only be determined numerically.[66,70]

In contrast to this, pure analytical approaches were
described by Liu and Davies,[71] who derived sphere contact
information from the radial distribution function. Beck and
Volpert[72] used the gapped gapless packing model[73–76] in
combination with a fixed fraction annular and a self-same
contact distribution to derive the contact behaviour of
homogeneous spheres and binary mixtures. A similar

approach was used by Richard et al,[77] incorporating radi-
cal and Voronoï tessellation as well as the navigation map.
Other analytical-parametric models were developed by Yu
and Standish[78] and Iwata and Homma.[79]

Furthermore, investigations of the contact behaviour of
numerically generated packed-beds were conducted.[70,80–90]

Among these, Clarke and Jónsson[86] could confirm the
results of Bernal and Mason.[38] Most others focussed on
multi-component packings. An et al[90] tried to determine
whether the packing of uniform spheres under gravity is
quasi-universal. Therefore, extensive numerical screening
was done, trying to extrapolate the known results by com-
paring micro- and normal-sized particles, vibrated and non-
vibrated beds, filling beds in liquid, and air surroundings.
Packing porosities between 0.8-0.26 are obtained, relating to
a clear trend in regard to the coordination number.

Results collected from the literature
A comprehensive selection of derived correlations
obtained by the above-described experiments, analytical
models, and extrapolation approaches is summarized in
Figure 3 and Table 2.

The mean coordination number of sphere packings as
obtained by experiments ranges from 6-8. From regular
packings it is obvious that a packed-bed may have differ-
ent coordination numbers for the very same porosity
(refer to Table 1). Incorporating analytical and numerical
data, a mean coordination number of around 6 is gener-
ally accepted for a typical packed-bed of mono-sized
spheres.[41,44,45,47,56,70,85,87,88,101] For a random close pack-
ing, a value of up to 7 is determined.[44,45,49] Deviations
between experiments are often explained by the poor dis-
crimination of true and near contacts.

FIGURE 2 Experimental results obtained from the literature for the cumulative frequency distribution of the mean coordination

number �Nc
[21,36,38–42,46]

4 von SECKENDORFF AND HINRICHSEN



TABLE 2 Overview of known correlations relating the mean contact number �Nc to the packing porosity �ε of smooth mono-sized sphere

packings

Source Formula Scope

Smith et al[37] �Nc = 15:75−26:49��ε
1−�ε 0:259<�ε≤ 0:476

Rumpf[92] and Manegold et al[30] �Nc = 3:1
�ε 0:259<�ε≤ 1

Field[93] cited by Oda[42] �Nc =12� 1−�εð Þ n.a.

Meissner et al[60] �Nc =2�exp 2:4� 1−�εð Þð Þ 0:259<�ε≤ 1

Haughey and Beveridge[94] �Nc =22:47−39:39��ε 0.259 < λ ≤ 0.5

Ridgway and Tarbuck[95] cited by
Suzuki and Oshima[64]

�Nc =13:84−116� 0:01724��ε−0:00428ð Þ1=2 0<�ε≤ 0:82

Nakagaki and Sunada[63] �Nc =1:61��ε−1:48 0<�ε≤ 0:82

Ridgway and Tingate[96] �Nc =24− 2
3 � π

1−�ε

� �2
0:26<�ε≤ 0:47

Gotoh[97] cited by Suzuki and
Oshima[64]

�Nc =20:7� 1−�εð Þ−4:35 0:3<�ε≤ 0:53

�Nc =36�1−�επ �ε>0:53

Nagao[98] cited by Suzuki and
Oshima[64]

�Nc =21:80� 1−�εð Þ2 n.a.

Ouchiyama and Tanaka[99] �Nc = 32
13 � 7−8��εð Þ n.a.

Suzuki et al[83] cited by Suzuki and
Oshima[64]

�Nc =2:812� 1−�εð Þ−1=3

b=dpð Þ2 � 1+ b=dpð Þ2
� � 0:24<�ε≤ 0:54

with 1−�εð Þ−1=3 =
1+ b=dpð Þ2

1+ b=dpð Þ�exp dp=bð Þ2�Erfc dp=bð Þ
Suzuki et al[100] cited by Georgalli and
Reuter[48]

with b
dp
= 0:07318+2:193��ε−3:357��ε2 + 3:294��ε3

Liu and Davies[71] �Nc = 1−�εð Þ� b
r

� �3−1+ 0:22<�ε≤ 0:66

+ 24� 1−�εð Þ�a� a2−c2ð Þ
r3� a2 + c2ð Þ3 + 6� 1−�εð Þ� 3a2−c2ð Þ

r2 � a2 + c2ð Þ2 �br + 6� 1−�εð Þ�a
r� a2 + c2ð Þ � b

r

� �2
with b=2�r+ 1

c
π
2 + arctan c

a

� �
, a= 2�π

r 4�π� �ε
1−�ε

� �2h i
and c=2�π� 1−�εr

Yang et al[70] �Nc =2:02�1+ 87:38� 1−�εð Þ4
1+ 25:81� 1−�εð Þ4 0:39<�ε≤ 1

Zhang et al[80] �Nc = 1
0:183−659:248� 1−�εð Þ20:961 0:37<�ε≤ 0:45

Du Toit et al[91] cited by
Antwerpen et al[25]

�Nc =25:952��ε3−62:362��ε2
+ 39:724��ε−2:02

0:24<�ε≤ 0:54

FIGURE 3 Comparison plot of known correlations regarding the relation of mean coordination number �Nc and mean packed-bed

porosity �ε for random packings and abstract arrangements of mono-sized spheres[25,30,37,42,60,63,64,70–72,79,80,83,90–99]
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While most researchers exclude the particles close
to the confining walls, the wall effect on the mean
coordination number was explicitly investigated by
Pinson et al,[41] Goodling and Khader,[36] Auwerda
et al,[46] and Reimann et al.[49] A decrease in the coor-
dination number is observed only for the outermost
and potentially the second ring of spheres adjacent to
the wall, whereas Du Toit et al[25,91] observed a signifi-
cant difference in mean coordination number between
bulk and near-wall region. Furthermore, Reimann
et al[49] investigated the influence of the flat container
bottom, finding a constant coordination number of
9 for the very bottom layer of spheres, while a coordi-
nation number of just below 12 could be obtained for
the following three sphere layers in quasi-close packing
conditions.

Contact angle
The angular distribution was experimentally determined
by Scott and Mader,[55] finding certain angular structures
at about 60�, 120�, and 180� by using an averaged polar
plot of the surface of the spheres. Reimann et al[49,50]

divided the contact angle into the poloidal angle ϕc,
describing orientation along the container axis and the
azimuthal angle ψ , describing the orientation in the
radial direction. In the bulk region, the angle distribution
is quite homogeneous, but developing a certain structure
at 30� and 150� in the poloidal orientation and 0� and
180� in the azimuthal orientation close to the confining
sidewall and bottom. Du Toit et al[25,91] found a mean
bulk contact angle in the poloidal direction of 31.97�

which was detected to relate to the coordination number
according to Equation (1)[25]:

�ϕc = −6:1248� �Nc
2 + 73:419� �Nc−186:68 ð1Þ

2.2.2 | Radial porosity distribution

Regarding packings enclosed by a cylindrical wall, the
structure of the random packings is typically character-
ized by plotting the circumferentially and axially aver-
aged void space (porosity ε) against the radial position
within the cylindrical tube starting at the tube wall and
normalized to the particle diameter (dp), zr = (R − r)/dp.
The occurrence of local deviations from the theoretical
bulk packing porosity in random packings is regarded as
an indicator of the influence of the confining wall on the
near-wall packing structure.

Experimental
Referring to Schneider and Rippin,[102,103] four kinds of
general experimental procedures can be clustered to

determine the local void fraction distribution within
packed-beds:

1. The first is solidification and incremental removal.
The experimental investigation of axially-averaged
radial porosity profiles was historically conducted by
filling the voids between the packing particles with
molten wax or curable resins and the subsequent cut-
ting or machining of the solidified matrix into thin
radial or axial slices. Either the filler material is
removed and the weight difference noted,[104–108] or
photographs of the slices can be subjected to image
analysis resulting in the filled void content of each
slice.[103,109–115] Due to the small size of many packed-
beds combined with the inaccuracy of cutting tools,
these early investigations result in quite coarse and
potentially erroneous curves. Moreover, loss of parti-
cles during the cutting procedure due to insufficient
bonding strength between the particles and the filler
material are commonly reported.[104,105,109] As an
improvement, the resin can be mixed with metal
powders[107] or hardening additives.[103,107]

2. Incremental filling is a completely different approach,
comprising a centrifuged packed-bed to which small
amounts of liquid, predominantly water, are added.
The liquid forms an annular layer and the increment
in layer thickness for a known amount of added water
depends on the available void space, assuming a
homogeneous void distribution for each radial
section.[116–120] However, the precise determination of
small variances in liquid level, especially considering
the meniscus, makes this technique challenging.
Lerou and Froment[119] improved this setup by accu-
rately measuring the water level using a pressure
transducer.

3. Individual particle measurement is the easiest way, if
quite erroneous, involving the use a grid on a trans-
parent container and counting the particles of which
the centres are within a certain grid cell.[121] For more
accurate results, the packed-beds can again be solidi-
fied with resin, and each and every sphere can be
scratched out from the resin basis after noting its
position.[52–54] Schuster and Vortmeyer[122] used a pis-
ton with sticky tape to remove the spheres of a
packed-bed layer by layer, taking a photograph of
each layer and subsequently allocating each sphere to
a grid of position on the piston.

4. Projection of the bed is the last procedure. Initially,
the solidified and cut packed-bed slices were
scanned with an x-ray beam in order to improve data
acquisition.[109] Later, x-ray tomography was used
for non-destructive analysis of the whole packed-
bed.[10,46,49,50,123–128] A stack of sliced packed-bed
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images is obtained where subsequent image analysis
has to be performed. Most frequently, the computer-
based image analysis includes the binarization of the
obtained grayscale images in order to specify solid
and void area. From these, the void ratio at a certain
radial position can be estimated directly or the cen-
tre position of each sphere can be determined,
requiring the subsequent mathematical calculation
of radial profiles. The specification of the black-
white threshold is frequently identified as the major
source of error. Additionally, Buchlin et al,[129] whose
work was later adopted by Schneider and Rippin,[102]

used the fluorescence of a slightly impure organic liq-
uid having the same refractive index as transparent
spheres to visualize the particle locations. Besides X-ray
tomography, magnetic resonance imaging may be used
as well to investigate local structures within packed-
beds.[130–134] Again, a proper image analyzing proce-
dure is required.[131]

Results collected from the literature
Regarding the obtained radial porosity data, some specific
properties are generally accepted, including[20]:

• The porosity directly at the tube wall has a value of 1.
• The curve resembles a damped oscillatory function

with distinct extrema until reaching 4-5 particle diame-
ters into the tube.

• The first minimum is at zr = dp/2 and the first maxi-
mum is at zr = dp.

Further properties of the radial porosity distribu-
tion under discussion comprise the initial shape of two

consecutive parabolas transitioning to a sinusoidal var-
iation when moving further away from the tube wall,
the non-constant period of oscillation within a specific
bed, and the amplitude, which varies when different
experimental results and the derived correlations are
compared.[20]

Gathering the majority of experimental data ranging
from λ > 2 to >>10 as presented in the literature into a
single figure (Figure 4), reveals a surprising consensus
even without preference in regard to packing mode and
material specifications. Significant differences can be
seen for packed-beds of low tube-to-particle diameter
ratios where the values in the tube centre are signifi-
cantly larger at zr ≈ 1 (data of Benenati and
Brosilow,[105]) zr ≈ 2 (data of Lovreglio et al,[139] Mariani
et al,[127] Mueller,[135] Wensrich[140]), zr ≈ 3 (data of
Mueller[135]), and zr ≈ 4 (data of Lovreglio et al,[139] and
Giese et al[136]).

In Figure 4, the experimental studies of Schwartz and
Smith[141] and Shaffer[117] are not considered as absurd
bulk porosity values for sphere packings of as low as 0.32
and 0.28 were obtained, respectively. Furthermore, the
study of Pillai[121] and Korolev et al[123] could not be con-
sidered, as the data is incomplete. The study of Al-Falahi
and Al-Dahhan[125] is not considered since obvious devia-
tions from the generally accepted oscillatory behaviour is
seen, as well as questionable porosity values close to the
wall. The experimental study of Ismail et al[112,113] is not
considered because the results for the radial porosity pro-
file do not fit with all other results in the following
points: the extrema positions are overall slightly shifted
to higher numbers and the curve shape of especially the
first maximum appears very smooth.

FIGURE 4 Gathered experimental

literature data of radial porosity

distributions ϵ(r) obtained by using various

experimental methods and packing

procedures and containing spheres of

different materials enclosed by a

cylindrical confining

wall[10,49,91,104–107,109,116,119,122,126,127,133–140]
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Schneider and Rippin[102] evaluated the radial loca-
tions of the minima and maxima of their own data and
those from Benenati and Brosilow[105] and Goodling
et al[107] depending on λ. It was found that the locations
of the extrema are independent of λ in the tested range
(2.5-15), so that the maxima occur at 1.00, 1.86, 2.75,
3.63, and 4.50 sphere diameters from the tube wall.
Except for the very first maximum, the period of oscilla-
tion appears constant with 0.86-0.88 sphere diameters
between consecutive minima and maxima. For valida-
tion, the detected maxima positions are marked as dotted
lines in Figure 4 showing a great consensus, with the
gathered experimental data.

Derived correlations
The above-described experiments led to a selection of
empirical correlations being derived to describe the tan-
gentially and axially averaged radial porosity profile,
complemented by some (semi-)analytical models. A com-
prehensive selection of correlations are shown in Table 3.
These can generally be classified into the following cate-
gories: (a) exponential decay functions,[144,148–152] which
completely ignore the oscillation close to the wall;
(b) damped oscillatory functions, combining a cosine
oscillation with an exponential decay[20,110,145–147] or
by using a Bessel function of zero order[135,153,154];
(c) scaleable approaches, that take λ-specific differences

TABLE 3 Selection of known wall effect correlations for the radial void distribution ϵ(r) of spherical packed-beds in cylindrical

confinements

Source Formula �εinf Scope

De Klerk[20] ε rð Þ=2:14�z2r −2:53�zr +1 - zr ≤ 0.637

ε rð Þ=�εinf + 0:29exp −0:6�zrð Þ�
cos 2:3�π� zr−0:16ð Þð Þ½ �
+0:15exp −0:9�zrð Þ

n.a. 0.637 < zr

Johnson[142] cited by Roshani[103] ε rð Þ=�εinf + 0:62�
exp −1:7� zrð Þ0:434� �� cos 6:67� zrð Þ1:13� �� � 0.38 zr ≤ 4

ε rð Þ=�εinf 0.38 4 < zr

Moallemi[143] cited by Roshani[103] ε rð Þ=�εinf −0:6� 1−exp −1:7� zrð Þ0:52� ���
cos 5:57� zrð Þ1:25� �� �Þ

n.a. n.a.

Chandrasekhara and Vortmeyer[144] ε rð Þ=�εinf � 1+ b�exp −c�xð Þð Þ with b =1 c =3 n. a. n. a.

Martin[145] ε(r) = εmin + (1 − εmin) � (2�zr − 1)2 - zr ≤ 0.5

ε rð Þ=�εinf + εmin−�εinfð Þ�
exp −0:25� 2�zr−1ð Þ½ �� cos π=a�ð½ 2�zr−1ð ÞÞ�

0.39 0.5 < zr

for λ = 20.3: εmin = 0.23 a = 0.876

Cohen and Metzner[146] ε rð Þ=1− 1−�εinfð Þ�4:5� zr− 7
9 � zrð Þ2� �

n. a. zr ≤ 0.25

ε rð Þ=�εinf + 1−�εinfð Þ�0:3463�exp −0:4273�zrð Þ
�cos 2:45�zr−2:2011ð Þ�πð Þ

n.a. 0.25 < zr < 8

ε rð Þ=�εinf 8 < zr

Mueller[135] ε rð Þ=�εinf + 1−�εinfð Þ�J0 a�zrð Þ�exp −b�zrð Þ 0.365 λ ≥ 2.02

with a=7:45− 3:15
λ b=0:315− 0:725

λ - 2.02 ≤ λ ≤ 13.0

or a=7:45− 11:25
λ b=0:315− 0:725

λ - λ ≥ 13.0

Bey and Eigenberger[147] ε rð Þ= εmin + 1−εminð Þ� zr
zmin

�
−1Þ2 - zr

zmin
−1≤ 0

ε rð Þ=�εinf + εmin−�εinfð Þ�exp −0:1�½
zr
zmin

−1
� �

�� cos π=0:876� zr
zmin

−1
� �� �h i 0.375 0< zr

zmin
−1

for εmin = 0:24 zmin = λ
2 � 1−

ffiffiffiffiffiffiffiffiffi
1− 2

λ

q� �

Giese[148] ε rð Þ=�εinf � 1+ 1:36�exp −5:0�zrð Þð Þ - -

Vortmeyer and Schuster[149] ε rð Þ=�εinf � 1+ 1−�εinf
�εinf �exp 1ð Þ �exp 1+ zrð Þ

� �
- -

Suzuki et al[138] ε rð Þ=�εinf + a�exp −b�zrcð Þ�cos 2�π�zrd
� �

n.a. λ ≥ 4.5

a = 0.018 � ln(λ) + 0.483; b = 0.312 � ln(λ)
+ 0.58; c = 0.2061 � ln(λ)
+ 0.128; d = − 0.033 � ln(λ) + 1.177
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into account[135,138,155]; and (d) statistical sphere centre
re-estimations based on experimental radial porosity pro-
files with subsequent re-calculation of the radial porosity
distribution.[33,156–159] This last approach was adopted for
λ < 2 where the sphere locations can be expressed analyt-
ically assuming a regular packing arrangement based on
λ-dependent unit cell considerations.[160] However, while
actually not being a correlation but an inconvenient
mathematical approach, it becomes obsolete when sphere
centres are determined as experimental output.

Herein, Martin,[145] Chandrasekhara and Vortmeyer,[144]

Vortmeyer and Schuster,[149] and Johnson[142] used the data
of Benenati and Brosilow[105] to derive their correlations.
Cohen and Metzner[146] averaged the experimental data of
Roblee et al[104] and Ridgway and Tarbuck.[137] De Klerk[20]

and Bey and Eigenberger[147] incorporated a larger
selection of existing experimental data. However, the
calculation of minima position zmin as proposed by Bey
and Eigenberger[147] is questionable; for a λ < 2 no
results can be obtained and for λ = 2, the minima posi-
tion is at one particle diameter from the wall. The posi-
tion value decreases with increasing λ approaching 0.5
for infinite λ. Replacing zmin with a constant 0.5 is more
realistic and in accordance with other results. Doing so,
this equation becomes similar to one by Martin.[145]

For comparison, a selection of correlations are plotted
for a specific tube-to-particle diameter ratio λ = D/dp = 5
as displayed in Figure 5 with the anonymized experimen-
tal data taken from Figure 4. Here, only data for packed-
beds with λ > 5 are considered, as packings with lower λ

behave significantly different, and do not seem to be rep-
resentable by current correlations.[161]

While a good consensus among experimental data
exists in regard to amplitude and period of the radial void
distribution, most empirical correlations struggle to pro-
ject in particular the correct oscillation period which
becomes evident at higher zr. Only the semi-analytical
correlation of Mueller[155] trying to describe the obtained
radial void distribution behaviour with a string of parab-
olas rather than a damped cosine function can correctly
reproduce the oscillation period and amplitude of the
used data pool. This may be explained with the known
inconsistent oscillation period, where the first period is
1.00 and the following periods are around 0.87.[102] The
slight overprediction at zr < 0.5 of the Bessel function
proposed by Mueller[135] and queried by Theuerkauf
et al[161] can be decreased using a recently published
functional improvement.[153]

Some experimental procedures result in the provision
of sphere centre points rather than directly in the void
size distribution. From the centre point coordinates and
the sphere’s dimensions, axial and radial porosity profiles
can be calculated by cutting imaginary plane and cylin-
drical slices through the mathematically reconstructed
spheres.[155,162–166] These slices may have a designated
thickness characterizing the volume-based method or
not, resulting in the area-based method.

In summary, a wide selection of experimental
methods are known for the determination of the tangen-
tially and axially averaged radial porosity distribution, a
key parameter for the evaluation of packing structure,
though most come with unsatisfactory accuracy for a sin-
gle measurement. However, when gathering all available
literature data regarding packings of spheres into one
plot, an impressive consensus can be seen. This consen-
sus cannot be reproduced by most available correlations,
especially regarding the oscillation period.

2.2.3 | Pore size and shape

Characterizing the size and shape of the voids within a
packed-bed is rather challenging, as pores are non-circular
and irregularly converge, diverge, and intersect.[21]

The void size and distribution characterization were
first performed in a 2D analytical setup, packing mono-
sized circles[167]and later size-distributed circles.[168] The
obtained models were then transformed into 3D packings
of mono-sized spheres, typically investigated in sliced,
solidified packings by image analysis showing circles of
different sizes.[114,169] However, several different defini-
tions of pore size exist: Alonso et al[167,169] define the void
size as the probability of finding a circle (2D) or sphere

FIGURE 5 Comparison of anonymized experimental radial

void distribution data ϵ(r) obtained with λ > 5.0 and a selection of

empirical and semi-analytical correlations as presented in the

literature[20,103,135,138,142,143,146,148,155]
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(3D) having a certain diameter completely fitting into a
void (no particle intersection), whereas Gotoh et al[170] sea-
rch for spheres of certain diameter not overlapping with
solid sphere centres allowing particle intersections. More-
over, the diameter of void spheres with centres equidistant
from four particle centres may be searched.[171,172] Besides
spherical void representations, the void size may be calcu-
lated by arbitrarily setting a point into the void of a
packed-bed and measuring the distance in the axis direc-
tions to the next solid boundary.[173] This allows a separate
void characterization in the radial and axial directions.

Du et al[114] investigated the pore size and pore size dis-
tribution. Although using non-uniform natural packings,
the general trends are clear. The larger the particles, the
larger the voids while the breadth of distribution is unaf-
fected. The lower the porosity, the smaller the voids and
the higher the sphericity of the particles, the broader the
distribution.

Pore shapes within packed-beds of random spheres
are considered to have distorted tetrahedral and octahe-
dral shape commonly used to describe regular packing
arrangements and crystal unit cells.[171] A detailed classi-
fication of pore shapes was for instance done by
Frost.[172] The mean packing configuration and thus the
void shape can be related to the radial distribution func-
tion. Configurational entropy can be derived to describe
the structural randomness of packings.

In summary, pores have been evaluated rarely; how-
ever, no clarity exists in regard to the definition of the
pore size measure and the actual necessity of evaluation.

2.2.4 | The thickness effect (influence of
the tube height-to-particle diameter ratio)

The influencing effect of the confining base (and top) plate
analogous to the wall effect was first addressed by
Wadsworth[39] (cited by Haughey and Beveridge[21]) noting
that the coordination number decreased from the second
to the eighth layer, expressed as the tube height-to-particle
diameter ratio κ = H/dp of the packing, indicating a
decreasing order. Furthermore, Haughey and Beveridge[21]

mention that the first plane layer is found to be perfectly
regular. With decreasing distance, however, the distinct
layers disappear due to increasing sphere placement
options causing an increased amount of randomness.

The thickness effect was further investigated by several
research groups[28,49,103,111,113,120,126,128,174] resulting in var-
ious recommendations in regard to the minimal packing
height that is required to neglect the thickness effect. It
was repeatedly shown that at least the bottom plate has an
effect similar to that of the surrounding confinement,
reaching 4-5 particle diameters into the tube.[120,126]

The most comprehensive study so far regarding the
influence of packing height was presented by Zou and
Yu[175] investigating the mean porosity by systematically
varying κ from 2.5-100. A sharp decrease in porosity is
found by increasing κ from 2.5 to around 15 (Δ�ε=0:06).
From there on, a slight linear decrease can be observed
(Δ�ε=0:03 ). The obtained results are displayed in Fig-
ures 6 and 7. As a consequence, there are two options in
order to study packings independently from the top and
bottom effects: either a κ large enough to ensure that the
effects of the top and bottom are negligible needs to be
selected, which is according to their data κ>20; or the
top and bottom fraction need to be cut away completely.

FIGURE 6 Influence of packing height-to-particle diameter

ratio κ on the overall bed porosity �ε as of Zou and Yu[175] for a

dense and a loose random packing arrangement

FIGURE 7 Influence of both λ and κ on the overall bed

porosity �ε for a dense packing arrangement as of Zou and Yu[175]
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The thickness effect can also be derived from the axial
porosity profiles. Starting from the container’s bottom,
axial porosity profiles show a similar damped oscillating
trend as the radial porosity profiles for the first 3-5 particle
diameters. This is then reduced to a noisy constant bulk
porosity value throughout the bulk of the packing, before
porosity variations increase again when reaching the top
of the packing. Only rarely do experimental studies discuss
the axial porosity profiles, such as Reimann et al[49] for
packings with large λ and Du Toit[162] presenting the rec-
alculated axial porosity profiles of Mueller’s[135] data. Only
recently, Du Toit[176] presented profiles for packings of
λ < 2 showing a very regular arrangement of particles in
the axial direction. However, the axial porosity distribution
is a measure of the consistency of the packed bed along
the tube height and should therefore be at least included
as an illustration in future research work.

2.2.5 | Tube-to-particle diameter ratio

Despite the detailed information local porosity distribu-
tions may offer, in some applications and for a general
overview it is frequently sufficient to only know the glob-
ally averaged bed porosity �ε . The reduced information is
remendied by significantly easier experimentation and thus
availability of large data sets. Especially in applications of
large λ and κ, where the influence of the confinement sur-
faces (eg, wall and bottom) is neglectable, the averaged bed
porosity may be the primary structural parameter.

Experimental
The most commonly used methods to determine the
mean bed porosity are the water displacement

method,[112,174,177–180] determining the volume of water
needed to completely fill the voids of a packing, and the
weighing method,[181,182] which simply weighs all
packed-bed particles and determines the void volume via
the particle density. The water displacement method is
challenging in regard to the elimination of air pockets,
the proper determination of the meniscus level, and the
pre-soaking of the porous particles. It is of further impor-
tance which packing mode is selected; it is therefore thor-
oughly discussed in section 2.2.6.

Results collected from the literature
The known experimental average bed porosity data
depending on the tube-to-particle diameter ratio λ has
been summarized in Figure 8. A clear trend and a good
consensus of data points can be seen. According to this,
the mean packed-bed porosity increases sharply before
reaching a global maximum around λ ≈ 1.7, followed by
a sharp decrease until reaching λ ≈ 2, and hereinafter
flattens out until λ ≈ 10. Besides the clear global maxi-
mum, further extrema, especially a minimum at λ = 3.0
and two possible maxima around λ = 2.7 and λ = 3.7, are
at least indicated by the given data. In this low-λ range,
the possible packing arrangements of spheres in very thin
containers significantly affect the porosity. While for
λ < 2 no two spheres fit next to each other into the con-
tainer, a very regular packing arrangement is obtained
and may be described using unit cell considerations. The
original results by Govindarao et al[160] have recently
been upgraded by Du Toit.[176] Additionally, Guo
et al[200] thoroughly investigated packings of 2 < λ < 3
using an analytical approach and experiments. The opti-
mal packing size for integral sphere layers at low λ was
studied by McGeary.[192] These theoretically obtained

FIGURE 8 Summary of

experimental literature results for the

average bed porosity �ε when varying

the tube-to-particle diameter ratio λ

for smooth

spheres[20,112,118,174,175,177,179,181,183–199]
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results are added to Figure 8 and the following structural
characteristics were identified for the λ = 2-5 region. For
a sphere number up to five per layer, only one ring can
be formed inside the container. One inner sphere fits into
a complete ring of 5-7 spheres (making 6-8 spheres in
total), three inner spheres can be placed into an inner
ring of 6-9 spheres (making 9-12 spheres in total). From
there on, an orthorhombic arrangement is assumed
where the innermost ring has four, the next one 10, and
if needed the following 17, 24, 31, and so on. Based on
these findings, a sharp porosity minimum at λ = 3.0 and a
subsequent maximum at λ = 3.75 can be identified. A
smaller minimum/maximum pair can be found at λ = 2.41
and λ = 2.68 and for λ = 4.04 and λ = 4.41. It must be
noted that for λ = 3.0 two configurations exist comprising
either 6 or 7 spheres. While the seven-sphere arrangement
causes the minimum, the six-sphere arrangement fits
perfectly into the generally assumed decreasing function.
Furthermore, De Klerk[20] mentions bed voidage values
higher or lower than expected for tube-to-particle diameter
ratios 2.4, 3.0, and 4.6. Moreover, for a diameter ratio of
3.0, two data points were recorded, deviating considerably

from the average to higher values. This last finding is in
agreement with the study of McGeary.[192]

Derived correlations
Based on the obtained experimental data, a large number
of correlations regarding the influence of tube-to-particle
diameter ratio on the average packing porosity were
derived. A comprehensive summary can be found in
Table 4. For comparison, these correlations were plotted
in Figure 9 together with the anonymized literature data
as displayed in Figure 8.

While the given correlations fit the overall scope of
the experimental data well, they vary in regard to the
infinite bed porosity obtained for λ ! ∞, which is
strongly dependent on the packing method and material
characteristics. From the considered correlations, the one
presented by Foumeny et al[174] represents the overall
trend best. It must be noted that no further extrema than
the obvious global peak are considered in the known cor-
relations. Only Zou and Yu[175] included a detected maxi-
mum at around λ = 4.0 into their piecewise defined
correlation.

TABLE 4 Overview of known wall effect correlations

Source Formula �εinf Scope

Carman[201] �ε=1− 2
3 � 1

λ

� �3� 1ffiffiffiffiffiffi
2
λ−1

p - 1 < λ ≤ 1.866

Aerov[202] �ε=�εinf + 0:07
λ + 0:54

λ2
0.39 λ ≥ 2

Sonntag[185] �ε=�εinf + 1−�εinfð Þ�0:526λ 0.359 10 ≤ λ ≤ 30

Jeschar[183] �ε=�εinf + 0:34
λ 0.375 6.25 ≤ λ ≤ 100

Ayer and Soppet[182] �ε=�εinf + 0:216�exp −0:313�λð Þ 0.365 3 ≤ λ ≤ 32

Beavers et al[179] �ε=�εinf � 1+ 2
λ � �εw

�εinf
−1

� �h i
0.368 4≤ λ<45 �εw =0:476

Froment and Bischoff[203] �ε=�εinf + 0:073� 1− λ−2ð Þ2
λ2

h i
0.38 n.a.

Griffiths[118] cited by Roshani[103] �ε=�εinf + 0:035
λ−3:5ð Þ0:27 0.38 λ > 3.5

Dixon[181] �ε=�εinf + 0:05
λ + 0:412

λ2
0.40 λ ≥ 2

Fand and Thinakaran[191] �ε=�εinf + 0:151
λ−1 0.36 2.033 ≤ λ < 40

Fand and Thinakaran[191] �ε=1:8578−0:6649�λ - 1.866 ≤ λ < 2.033

Foumeny et al[174] �ε=�εinf + 0:254� λ−0:923ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:723�λ−1

p 0.383 1.866 ≤ λ < 22

Mueller[135] �ε=�εinf + 0:220
λ 0.365 λ ≥ 2.02

Zou and Yu[175] �ε=�εinf + 0:002� exp 15:306
λ

� �
−1

� �
0.372 3.95 ≤ λ < 35

Zou and Yu[175] �ε=0:681− 1:363
λ + 2:241

λ2
- 1.866 ≤ λ < 3.95

De Klerk[20] �ε=�εinf + 0:35exp −0:39�λð Þ n.a. 2 ≤ λ < 20

Benyahia and O’Neill[177] �ε=�εinf + 1:74
λ+1:14ð Þ2 0.39 1.5 ≤ λ < 50

Puschnov[204] �ε=12:6�λ6:1�exp −3:6�λð Þ - 1 ≤ λ < 2.4

Puschnov[205] �ε=�εinf + 1
λ2

- 2 ≤ λ < 20

Cheng[206]
�ε= 1

0:8� λ−1ð Þ0:27ð Þ3 +
1

�εinf � 1+ λ−1ð Þ−1:9ð Þð Þ3
	 
−1=3 0.38 1 ≤ λ < 100

Ribeiro[184] �ε=�εinf + 0:917exp −0:824�λð Þ 0.373 2 ≤ λ < 19
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In summary, a large data pool is available relating the
average bed porosity to the tube-to-particle diameter ratio
of a packing. These data can be well represented by a
large selection of known correlations, except some details
such as local extrema.

2.2.6 | Influence of packing mode

Haughey and Beveridge[20,21] determined four particular
methods of bed formation. The associated porosity ranges
are based on a range of literature data and are valid when
wall effects are insignificant (λ ! ∞). The modes
comprise:

1. Very loose random packing (�ε≈0:44) obtained by set-
tling a fluidized bed, by sedimentation, or by inversion
of the bed container.

2. Loose random packing (�ε≈0:40−0:41) obtained by let-
ting the spheres roll individually into place, individual
hand packing, or by dropping the spheres as complete
loose mass.

3. Poured random packing (�ε≈0:375−0:391 ), obtained
by pouring particles into the container.

4. Close random packing (�ε≈0:359−0:375 ) obtained by
vibrating, shaking, or tapping of the container.

Thus, compared to regular packings where the mean
bed porosity varies between 0.26 and 0.48 depending on
their arrangement (see Table 1), random packings may
take on values between 0.36 (Random Close
Packing(RCP)) and 0.44 (Random Loose Packing
(RLP))[21] when not confined. A comprehensive overview
of experimental data sorted by packing mode based on the

above classification was collected by Roshani.[103] Another
packing state, the so-called maximally random jammed
state (MRJ), evolved in physical contexts which are mathe-
matically precise equivalents to the RCP state.[207,208]

The upper limit, so-called RLP, was for example stud-
ied by Onoda and Leiniger[209] in settling experiments
under zero gravitational force and in shear-cell experi-
ments with glass spheres. A value of up to 0.445 ± 0.005
was obtained as an upper limit. Furthermore, it was
repeatedly shown that packed-beds generated without
significant effort to form extra loose or dense beds show
packing porosities around 0.38-0.39.[174,186,210] Conse-
quently, this small range is generally accepted as the
standard packing porosity of a sphere packing.

Regarding the evaluation of the porosity of the dens-
est possible sphere packing in the absence of global order,
Susskind and Becker[211] removed the air from balloons
filled with spherical particles. For a typical packing a
value of �εinf = 0:362 could be obtained. This value was
lowered to �εinf = 0:348 by rigorous vibration. However,
Bernal and Finney[212] remarked that even when using a
non-rigid balloon, confinement effects cannot be
neglected and recalculated the data to a RCP porosity of
around 0.36.[38,43] Nonetheless, using appropriate experi-
mental conditions, vibrated packed-beds may adopt a
global order, allowing porosities slightly below the RCP
limit.[49]

In-detail studies on packing densification were per-
formed using vibration[174,213–217] or tapping.[218,219] Typi-
cally, packed-bed porosity decreases until the
densification is saturated.[213,215,217,219] Optimal vibration
frequency and amplitude settings are required to gain the
densest packings (cf.[213–215,220]). Furthermore, inter-
particle diffusion during vibration was investigated.[215]

[206]

[205]

[204]

[202]

FIGURE 9 Anonymized experimental

literature data as displayed in Figure 8 and

known correlations regarding the influence

of tube-to-particle diameter ratio λ on the

mean bed porosity �ε of smooth

spheres[20,103,118,135,174,175,177,181–185,191,201–206]
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Besides vibration, the achieved packing densification by
tapping n taps and a certain relaxation time τ can be
described as below.[219,221,222]

Sequential addition compared to shaking was done by
Baker and Kudrolli.[220] Another filling method called
sock filling was performed by Bazmi et al[223]

Afandizadeh and Foumeny[28] investigated three differ-
ent packing methods: fast pouring, slow pouring, and the
so-called snow storm filling,[224] where the packing mate-
rial is passed over wire meshes to interrupt its free fall
inside the tube. The mean bed porosity decreased for lon-
ger filling times and a filling speed of 0.5-5 mm bed length
per second is suggested to obtain more reproducible pack-
ings. Moreover, Macrae and Gray[225] investigated the
influence of particle drop height, deposition intensity, and
filling rate (particle number per filling time). It was found
that the packing porosity decreases with a higher drop
height before reaching a final value, with a reduced parti-
cle filling rate and lower deposition intensity.

Besides the influence of densification on the average
bed density, structural studies reveal that an increase in
oscillation amplitude and a decrease in the oscillation
period affect the radial porosity distribution[49,226] along
with the increased bed densification. The more ordered a
packing gets, the more distinct the parabolic shape of the
radial void distribution gets. Very ordered packings form
tiny intermediate parabolas so that the radial porosity
distribution resembles a chain of large and small
parabolas.[33,49]

The influence of packing formation in fluids other
than air was also studied. Staněk and Eckert[120] com-
pared particle damping in air and ethanol during the
packed-bed formation, finding a decreased mean porosity
when damped in a liquid. Furthermore, Chu and Ng[190]

packed the spheres in water. Feng and Yu[67] found an
increasingly damped packing behaviour (resulting in
higher porosities) using wetted particles with increasing
liquid content. Regarding liquid characteristics, surface
tension alters the packing structure but small variations
in viscosity had no effect.

In summary, the packing mode is one of the most
crucial parameters regarding the packing structure and
average porosity. Some explicit packing modes have been
identified and allocated to certain porosity ranges. Fur-
thermore, packing densification was studied by several
research groups leading to lower overall bed porosities
and higher packing order.

2.3 | Influence of particle shape

Industrially used shapes comprise cubes and hollow
cubes, four-hole cylinders, hollow cylinders with a single

bridge or cross web and grooved cylinders, and a selec-
tion of saddles and ring shapes.[28,177,227–229] In experi-
ments, shapes comprising cylinders,[114,124,230,231] Pall
rings,[124] Raschig rings[232] and Hama beads,[124]

prisms,[230,231] ellipsoids,[231–233] trilobes,[218,223]

cubes,[114,231] polyhedrons,[232,234] and platonic
shapes[220,235] were investigated.

In order to compare shapes other than spheres, a
characteristic diameter is used, typically the Sauter
diameter dp,s or the diameter of a volume-equivalent
sphere dp,v:

dp,s = 6� vp
ap

ð2Þ

dp,v =
6�vp
π

� �1=3

ð3Þ

Further equivalent diameters (see Allen[236] for a
comprehensive list) based on physical properties are the
equivalent sphere diameter having the same sedimenta-
tion velocity as the investigated particle dp,w and the
equivalent sphere diameter having the same resistance to
flow dp,d.

The true sphericity ΨW as defined by Wadell[237] is a
frequently used shape factor to describe shape variations
in regard to spheres:

ΨW =
π1=3� 6�vp

� �2=3
ap

ð4Þ

This parameter was occasionally used to correlate
shape and packing porosity at infinite λ. Table 5 gives
an overview of the obtained correlations and
Figure 10 shows a selection of experimental data
points and plotted correlations. In general, there is for
an infinite packed bed a tendency towards a larger
packing porosity, but no clear trend nor a single all
inclusive correlation can be deduced. However, it was
not possible to diversify this plot for different packing
modes or packing materials used by the researchers,
which have a strong influence on the packing porosity
obtained for infinite packed beds. According to Zou
and Yu,[231] three branches can be identified in the
sphericity-porosity plot corresponding to elongated cyl-
inders (upper branch), flat disks (lower branch), and
all other shapes, especially hollow cylinders and sad-
dles in between these two borders. Still, the sphericity
alone is obviously not capable of describing or
predicting the packing porosity of an arbitrarily
shaped particle.
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As a second shape parameter, Lanfrey et al[229] uti-
lized the tortuosity T together with the sphericity in order
to estimate packed-bed porosities. The tortuosity is typi-
cally defined as the ratio of the actual fluid flow path and
the packing height. It reaches values around 1.4 = 1.5 for

spheres[251,252] and may be correlated to the packing
porosity.[253–257] Unfortunately, a large number of data
points of the elongated cylinders displayed in Figure 10
would be allocated a tortuosity value below unity when
applying Lanfrey et al’s correlation[229] to Figure 10.

TABLE 5 Overview of shape-porosity correlations based on the sphericity

Source Formula Scope and parameters Shapes
No. of
datapoints

Benyahia and
O’Neill[177]

�εinf = 0:1504+ 0:2024
ΨW

Sphere, cylinder, hollow
cylinder, 4-hole cylinder

9

Brown[227] �εinf =�ε1:785�ΨW
1:585−0:785�ΨW

4:897

inf,s �εinf,s = 0:47 (loose), 0.36
(dense) or 0.42 (mean)

Spheres, cylinders, hollow
cylinders, saddles

29

Yu and
Standish[228]

�εinf =�ε15:521�ΨW
3:853−14:521�ΨW

4:342

inf,s �εinf,s = 0:40 (loose), 0.36
(dense) or 0.38 (mean)

Spheres, cylinders, hollow
cylinders, saddles

Data
of[238–240]

Zou and
Yu[231,241]

�εinf = exp ΨW
5:58�exp 5:89� 1−ΨWð Þð Þ�ln 0:40ð Þ� �

Dense packing: 6.74,
8.00, 0.36

Cylinders, disks, balls,
beads, beans, lentils,
cubes, prisms

36

�εinf = exp ΨW
0:6�exp 0:23� 1−ΨWð Þ0:45� ��ln 0:40ð Þ� �

Dense packing: 0.63,
0.64,1.0, 0.36

Warren et al[242] ΨW =0:079+ 0:831� 1−�εinfð Þ+1:53� 1−�εinfð Þ3

Lanfrey et al[229] ΨW =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:23
T � 1−�εinfð Þ4=3

�εinf

q
Tortuosity T = 2.12 in
mean, between 1-3 in
general

Berl, Intalox and Torus
saddles, Raschig, Pall
and Ralu Rings,
different material and
size

> 100

Parkhouse and
Kelly[243]

�εinf = 1−2�ln a1ð Þ=a1 with ΨW =2:621 a12=3

1+ 2�a1 a1 > 7 Elongated cylinder 4

Blouwolff and
Fraden[244]

�εinf = 5:4
a1

with ΨW =2:621 a12=3

1+ 2�a1 Elongated cylinder,
different material

6

Rahli[245] cited
by Novellani
et al.[246]

�εinf = 1− 11
π

2�a1 + 6+ 2�a1 with ΨW =2:621 a12=3

1+ 2�a1 - Elongated cylinder

FIGURE 10 Experimental literature data regarding the sphericity ΨW dependent evaluation of packed-bed bulk porosity

εinf
[177,216,227–229,231,238–240,242–250]
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Moreover, Yu and Standish[228] developed a charac-
teristic packing diameter dpack that can be used together
with the sphericity to describe packings of arbitrary
shapes or size variations. This packing diameter is
defined as the diameter of a sphere that leads to a maxi-
mum packing porosity in a binary mixture with the
investigated shape. This attempt is inconvenient as it
requires a large number of experiments for the determi-
nation of a single characteristic diameter and was tested
for a small selection of convex shapes only[228,231]:

dp,v
dpack

=ΨW
2:785�exp 2:946� 1−ΨWð Þ½ �: ð5Þ

Other shape factors are known in the context of char-
acterizing undesignated granular material, as for instance
the empirical Heywood factor.[236,258,259] Here, flatness
m and elongation n of a particle are defined and related
to the shape’s sphericity[231]:

ΨW =
2:418

m�n−2ð Þ1=3 + m−2�nð Þ1=3 + m�nð Þ1=3
: ð6Þ

Moreover, a correlation of the sphericity and the
Hausner ratio known from powder beds and describing
the compressibility of a packing was found.[241,260,261] A
tendency of a larger Hausner ratio and thus packing com-
pressibility was obtained with decreasing shape sphericity
but with a large data scatter[231]:

Hr = 1:478�10−0:136�ΨW : ð7Þ

Despite a large number of available randomly packed
shapes, only a small selection is studied in further detail.
With higher complexity in particle shape, the predictabil-
ity of the packing structure becomes increasingly elabo-
rate. While a single sphere within a packing can basically
be described by two parameters, the centre location and
the (characteristic) diameter, a cylindrical shape needs to
be further characterized by its orientation (eg, rotation
matrix) and a shape factor called aspect ratio defining its
height-to-diameter ratio a1. Further improvement of the
simple cylindrical shape is done by cutting a straight
axial hole and obtaining a hollow cylinder often called
Raschig ring. The list of parameters required to entirely
describe this shape is enlarged by a second aspect ratio
giving the inner to outer ring diameter a2. Similarly, an
ellipsoid can be described completely by two aspect
ratios. Any more complex shape requires a whole set of
aspect ratios while any variation in these parameters will
presumably affect the packing characteristics (even when
keeping other influences like material or packing mode
constant). It is still possible to describe the packing of a

specific complex shape by performing the relevant stud-
ies, but it is hard to predict the performance of an arbi-
trary shape or even geometrically similar shapes from the
obtained results. Thus, experimental studies exist and
will be described in the following regarding packing
properties for cylinders and rings, although the database
is much smaller compared to spheres. A comprehensive
list of experimental studies involving shapes other than
spheres is presented in Table 6.

The most notable results from this list are summa-
rized in Figure 11 regarding radial void distribution and
average bed porosity for equilateral cylinders, non-
equilateral cylinders, and hollow cylinders, respectively.
It was not possible when comparing the data from the
respective plots as was done for spheres, as the data
showed significant differences when comparing the data
from different research groups. Clustering was thus
impossible. Consequently, the reproduced data are
selected due to their extent, not their claim of correctness
compared to other data sets. However, some general
trends may be derived and are discussed in the following.

Equilateral cylinders
The equilateral cylinder is a cylinder with equal height and
diameter. Regarding the available radial void distribution
of cylinder packings at various tube-to-particle diameter
ratios[103] in comparison to a packing of spheres
(cf. Figure 11A), similarities in the general oscillatory trend
can be seen. However, the amplitude, period and bulk
porosity take on slightly different values. Consequently,
very similar correlations can be derived, namely Küfner
and Hofmann,[110] based on Vortmeyer and Schuster[149]:

ε zrð Þ=�εinf � 1−
1−�εinf

�εinf �exp 1ð Þ �exp 1+ zrð Þ�cos 2�π�zrð Þ
� �

, ð8Þ

Roshani[103]:

ε zrð Þ=1−0:695�ð1−exp −1:83� zrð Þ0:34� ��cos 6:65� zrð Þ1:08� �
,

ð9Þ

and Bey and Eigenberger[147]:

ε zrð Þ= εmin + 1−εminð Þ� z0−1ð Þ2 for z0 ≤ 1

ε zrð Þ=�εinf + εmin−�εinfð Þ�exp −0:5� z0−1ð Þ½ �� cos π=0:876� z0−1ð Þð Þ½ �
for 1< z0

with εmin = 0:275 z0 = 1:8−
2
λ

� �
� R−r

d

� �
:

ð10Þ

Regarding the average bed porosity as a function of
the tube-to-particle diameter ratio in Figure 11B, a very
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TABLE 6 Overview of experimental studies relating to the structural analysis of packed-beds of non-spherical particles

Source Shape Aspect ratio 1/a1 Aspect ratio ax λv �ε λð Þ ϵ(r) ϵ(z)

Giese et al[136] Cylinder 1 - 9.15 1 1 -

Hollow cylinder 1 0.75 9.15 1 1 -

Deformed sphere - - > 10 1 1 -

Benyahia[262] Cylinder 0.25 to 3 - 3.51-14.04 10 10 10

Caulkin et al[111] Cylinder 1 - 7.1 1 1 1

Hollow cylinder 1 0.16-0.47 7.2-7.7 3 3 3

4-hole cylinder 1 - 7.4 1 1 1

Baker and Kudrolli[220] Platonic 4-20 faces - 5 to 7 6 - -

Baker and Kudrolli[220] Cylinder 1 - 4.44/9.33 1 1 -

Benyahia and O’Neill[177] Cylinder 0.76-1.78 - 1.7-26.3 > 10 - -

Hollow cylinder 0.38-1.06 Not specified 1.9-14.5 > 10 - -

4-hole cylinder 1.14-1.26 Not specified 1.9-8.4 > 10 - -

Roblee et al[104] Cylinder 1 - 11.75 - 1 -

Hollow cylinder 1 0.72 11.75 - 1 -

Berl saddle Regular > 10 - - 1 -

Sonntag[185] Cylinder 1 - 11-40 >10 (✓) -

Hollow cylinder 1 0.62-0.78 5.6-25 >10 (✓) -

Lerou and Froment[119] Cylinder 1 - 5.35 1 1 -

Hollow cylinder 0.94 0.43 n.a. 1 1 -

Bey and Eigenberger[147] Cylinder 0.833-3.333 - 5.35 4 - -

Hollow cylinder 1 0.44-0.63 3.33-10 4 - -

Blouwolff and Fraden[244] Cylinder 0.4-50 - n.a. 6 - -

Chikhi et al[230] Cylinder, prism 0.88-1.4 > 10 - 6 - -

Comiti and Renaud[263] Parallelepiped 0.102-0.44 > 10 - 5 - -

Foumeny and Roshani[178] Cylinder 0.5-2 - 2-32 > 10 - -

Foumeny et al[180] Cylinder 0.5-2 - 2.76-16.67 > 10 - -

Xie et al[214] Cube, cuboid 1-4 1-2 5.5-11.5 12 - -

Xia et al[264] Ellipsoid 0.51 1 > 10 1 - -

Wang et al[265] Ring n. a. n. a. > 10 3 3 -

Zhang et al[226] Cylinder 1 - > 10 1 1 -

Lumay and Vandewalle[219] cylinder 1.67-90 - n.a. > 10 - -

Novellani et al[246] Cylinder 1.2-50.5 - n.a. 10 - -

Man et al[266] Ellipsoid 1.25:1:0.8 - 6.7-11 5 1 -

Jaoshvili et al[267] Tetrahedra reg. - n.a. 7 - -

Parkhouse and Kelly[243] Cylinder 6.8-143 - n.a. - - -

Qian et al[216] Cylinder 0.5-5 - >10 16 - -

Zou and Yu[241] Cylinder 1-100 - 4-40 > 10 - -

Montillet and Coq[115] Cylinder 5.3 - 16.3 1 1 -

Parallelepiped 0.209 - 17.7 1 1 -

Nguyen et al[134] Cylinder 1.1 - 15 1 1 -

Trilobe n.a. - 24 1 1 -

Ring 1 0.1 to 0.2 > 10 2 2 -

Wehinger et al[268] Hexagons 1.1 - 6.3, 4.6 2 2 -
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(A) (B)

(C) (D)

(E) (F)

FIGURE 11 Radial porosity distribution ε(r) for A, equilateral cylinders; C, non‐equilateral cylinders; E, hollow cylinders, and average

packing porosity ‐ε for porosity for various cylinder shapes.[103,111,124,177,178,180,181,216,262] A, radial porosity distribution ɛ(r) for equilateral
cylinders at various tube‐to‐particle diameter ratios λ.[103] B, mean packing porosity ε(r) for equilateral cylinders as a function of size ratio λ.
C, radial porosity distribution ε(r) for non‐equilateral cylinders.[262] D, mean packing porosity ε(r) for non‐equilateral cylinders as a function
of size ratio λ. E, radial porosity distribution ε(r) for hollow cylinders.[111] F, mean packing porosity ε(r) for hollow cylinders as a function of

size ratio λ

18 von SECKENDORFF AND HINRICHSEN



similar behaviour compared to spheres can be seen: the
sharp porosity increase at the beginning, the global maxi-
mum, the sharp decrease, and the flattening out after
reaching λ = 10. There is a difference in the significantly
larger data scattering, especially at large λ, and the over-
all smaller porosity. The densest cylindrical packing is
found to be 0.27.[216] Further dense packed packings have
porosities around 0.3[244] and between 0.28-0.31.[218]

Again, correlations were derived basically by adjusting
the coefficients of the already known correlations for
spheres, namely Dixon[181]:

�ε=�εinf +
0:1
λv

+
0:7

λ2v
with 1:67≤ λv ≤ 20 �εinf = 0:36

ð11Þ

�ε=1−
0:763

λ2v
with λv ≤ 1:24, ð12Þ

and Foumeny and Roshani[178]:

�ε=�εinf + 0:684�λ−0:85
v � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:837�λv−1ð Þp with λv ≤ 1:44 �εinf = 0:293:

ð13Þ

Additionally, particle orientation effects become rele-
vant. The X-ray study of Caulkin et al[124] reveals a parti-
cle axis orientation peak for angles of 50-60� to the tube
axis, decreasing in both directions. Especially particles
orientated at 0-30� are rarely found.

Non-equilateral cylinders
Regarding non-equilateral cylinders, the radial poros-
ity distribution shows a completely different and quite
irregular pattern. As displayed in Figure 11C, the peak
and minima occurrences do not appear to follow a
specific rule, or at least this rule can not be identified
with the small amount of available data. This
accounts for flat disks as well as for elongated cylin-
ders. However, the overall variance (or amplitude)
seems to be smaller compared to equilateral cylinders.
Thus, no appropriate correlation could be derived so
far to describe the radial void distribution for non-
equilateral cylinders.

The average bed porosity as a function of tube-to-
particle diameter ratio for selected available data is dis-
played in Figure 11D. Here, the data appears to follow a
similar pattern as observed for spheres and equilateral cyl-
inders. The influence of aspect ratio on the porosity of an
infinite bed was already discussed above, where the

densest packing was obtained with equilateral cylinders.
Regarding confined packings at low tube-to-particle diam-
eter ratios and low cylinder aspect ratio variation between
0.5 and 2, a difference in packing porosity was either too
small to differentiate[178,180,241,262] or results indicate a
slight influence similar to the porosity of an infinite bed,
where packing porosity increases as the aspect ratios move
away from unity.[216,262] In Figure 11D, the aspect ratio is
displayed as the gray scale of the markers, with a mean
gray representing an aspect ratio of 1. However, the devia-
tions between the data sets and the limited number of data
per set do not allow a definite conclusion. Nonetheless,
some correlations were derived including or explicitly
excluding the influence of the aspect ratio comprising
Foumeny and Roshani[178,269]:

�ϵ=�εinf �Ψa
W +0:254�Ψb

W� λvð Þ−0:293�Ψc
W

� 1

0:723�Ψd
W�λv−1

� �0:5 with �εinf = 0:383,
ð14Þ

and Benyahia and O’Neill[177]:

�ϵ=�εinf +
1:703

λ+0:611ð Þ2 with �εinf = 0:373: ð15Þ

Hollow cylinders and rings
In order to describe hollow cylinders, a second aspect
ratio a2 of the inner and outer ring diameters is included.
A selection of radial porosity profiles obtained from hol-
low cylinders[111,124] with different aspect ratios a2 are
displayed in Figure 11E. Accordingly, larger values of a2
result in a significantly higher and smoother porosity dis-
tribution. The minima in particular are clearly smoothed
compared to solid cylinders. On the contrary, new inter-
mediate maxima of which the height increases as a2
increases occur. No correlations have been derived so far.

The sparsely available experimental data in the litera-
ture of average bed porosity values for different λ and
aspect ratios a2 are summarized in Figure 11F. The general
trend is in accordance with solid cylinders and spheres;
however, the porosity of an infinite bed increases signifi-
cantly with increasing a2. The most comprehensive study
in this context was performed by Dixon[181] investigating
equilateral hollow cylinders with a2 = 0.5, 0.58, 0.65, and
0.75. As correlation, the calculated solid cylinder base �εsc
Equation (11), corrected with the inner void is used:

1−�εscð Þ= 1−�ε
f � 1− a2ð Þ2� � : ð16Þ
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Regarding interpenetration of hollow cylinders with
large holes, a correction f of this correlation for a2 > 0.5
is suggested:

f =1+2� a2−0:5ð Þ2� 1:145−
1
λv

� �
: ð17Þ

Similarly, Bey and Eigenberger[147] suggest the use
of the correlation for solid cylinders with the inner
void correction by Dixon,[181] while Foumeny and
Benyahia[269] defined the interpenetration factor f* with
f � = f � 1=a22−1

� �
. This factor may take values ranging

from 0.95-1.0, especially 0.97, depending on the aspect
ratio a2. In contrast, Benyahia and O’Neill[177] suggested
a correlation suitable for all investigated aspect ratios:

�ε=�εinf +
2:030

λ+1:033ð Þ2 with 1:9≤ λv ≤ 14:5

�εinf = 0:465:
ð18Þ

Finally, investigations of the orientation distribution
reveal that the majority of rings have their opening not
facing in the main flow direction.[124]

In summary, a certain number of shapes, especially
cylinders and hollow cylinders, have been investigated in
the manner of packings of spheres. However, the existing
data is not complete and differs significantly between the
different sources consulted. While wall effect corrections
have been derived for cylinders and hollow cylinders, the
inclusion of the respective aspect ratios is inconsistent.
Consequently, much more research is needed in order to
understand the influence of simple shapes, such as cylin-
ders and hollow cylinders alone, before thinking about
more complex geometries.

2.4 | Influence of particle material

Although most researchers do not take any material
effects into consideration, Schuster and Vortmeyer[122]

realized a significant difference in the radial porosity pro-
files comparing glass and steel spheres of the same size.
Susskind and Becker[211] compared steel and glass pack-
ings in random close packing arrangements, where the
steel packing has a slightly higher overall porosity.

Regarding material diversity, packed shapes made of
almost any imaginable material have been utilized. This
includes glass,[20,67,119,120,122,125,129,175,179,180,190,191,193,211,270]

ceramic,[119,124] steel,[122,186,193,211] stone,[196,217] metal,[182,192]

lead,[103,105,106,108,111–113,217] wood,[121,231,240,241,247] beans[114,231]

or other edibles,[114,232,243] and plastic[107,109,116,123,180,232]

particles.

A small selection of studies evaluated packing mate-
rial influences, but with contradictory results. While
Crawford and Plumb[270] revealed a strong increase in
packing porosity (from 0.356 to 0.442 and 0.467) with
increasing surface roughness alias friction, while the in-
depth material study performed by Macrae and Gray[225]

resulted in only a minor influence of the coefficient of
friction, if at all, but a significant impact of the coefficient
of restitution where higher values decrease the packing
porosity. Finally, Pottbäcker and Hinrichsen[186] observed
both a decrease of porosity with lower friction and higher
restitution values.

In summary, most researchers unjustifiably neglect
the existing influence of material on the packing struc-
ture which may be problematic when comparing results
with values taken from arbitrarily selected literature
obtained under different conditions. However, the inde-
pendent evaluation of the effect of material parameters
remains impossible in experiments, as material parame-
ters cannot be varied independently. Here, numerical
tools are required to understand material-related
features.

2.5 | Influence of tube shape and
material

While almost all investigations employ cylindrical con-
finements, in some studies tubes with square cross-
sections are used.[129,179] Comparing the average bed
porosity data in a square duct[179] with those in a cylin-
drical duct,[135] very similar values are obtained. A range
of studies relate to annular ring packings where the
packing is interrupted in the bulk part by one or more
introduced tubes.[102,108,111] These annular packings are
typically applied in nuclear engineering. Furthermore,
non-rigid containers (eg, balloons) were investigated by
Susskind and Becker.[211] Additionally, Man et al[266]

and Donev et al[271] used spherical containers in their
studies; however, the difference between the results and
those obtained for cylindrical containers was not
discussed.

Besides the shape of the tube’s cross-section, tubes
having a wall structure comprised of hemispheres were
investigated.[272–274] It was found that this adjustment
may significantly flatten the porosity profile in the pack-
ings of spheres, especially close to the wall. Similarly,
Foumeny et al[174,178] tried to improve the wall-section of
a packing by introducing smaller particles into the wall
region, forming a so-called stratified bed. In summary,
the tube’s shape and material are only seldomly discussed
and evaluated probably as if they have only a minor
effect on the overall packing conditions.
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TABLE 7 Literature review on numerical packing generation studies sorted by shape

Source Shape
Aspect
ratio 1/a1 Aspect ratio ax �Nc εinf �ε λð Þ ϵ(r) θ

Wu et al[286] Cube 1 - ✓ ✓ ✓ ✓ -

Zhao et al[285] Frustums, cylinder,
cone

0.5-1.5 0-1 - ✓ - - -

Xie et al[344] Cube 0.3-1.5 - ✓ ✓ - - -

Zhao et al[345] Spherocylinder 1-11 - ✓ ✓ - - ✓

Wouterse et al[346] Spherocylinder 1-160 - ✓ ✓ - - -

Wouterse et al[347] Spherocylinder 1-6 - ✓ ✓ - - -

Wouterse et al[347] Ellipsoid 0.1-5 - ✓ ✓ - - -

Donev et al[271] Ellipsoid 0.3-3.5 - ✓ ✓ - - -

Donev et al[271] Aspherical ellipsoid 1-2 - ✓ ✓ - - -

Williams and Philipse[348] Spherocylinder 1-161 - ✓ ✓ - - -

Sherwood[349] Ellipsoids 0.07-15 - - ✓ - - -

Various[46,90,108,112,139,161,276,297,
298,300,304,309,320,332,350–355]

sphere - - ✓ ✓ ✓ ✓ -

Qian et al[356] Cylinder 0.1-10 - ✓ ✓ - - -

Zhou et al[334] Ellipsoid 0.1-7 - ✓ ✓ ✓ - -

Zhao et al[357] Superellipsoid 0.3-2.5 0.5-1.4 ✓ ✓ - - ✓

Zhao et al[281] Tetrahedra 0.4-3.0 −0.75-1.00 ✓ ✓ ✓ - ✓

Zhao et al[358] Sphero-tetrahedra 0.12-1.84 −0.75-1.000.05 to
10

- ✓ ✓ - -

Lathan et al[359] Tetrahedra 1-1.8 - - ✓ - - -

Li et al[360] Tetrahedra 0.5-1.5 - - ✓ - - -

Niegodajew and Marek[361] Hollow cylinder 0.33-3.0 const. 0.8 - ✓ ✓ - ✓

Nan et al[335] Spherocylinder 5-20 - ✓ ✓ - - -

Nan et al[362] Spherocylinder 5-50 - ✓ ✓ - - ✓

Meng et al[207] Spherocylinder 1-7 - ✓ ✓ - - -

McGrother et al[363] Spherocylinder 4-6 - - (✓) - - -

Liu et al[364] Cube 0.3-6.0 - - ✓ - - -

Delaney and Cleary[333] Superellipsoids 0.33-3.5 2-5 ✓ ✓ - - -

Li et al[289] Cone 0.5-1.5 - - ✓ - - -

Cylinder 0.5-1.5 - - ✓ - - -

Ellipsoid 0.5-1 1-2 - ✓ - - -

Spherocylinder 0.5-1.5 - - ✓ - - -

Tetrahedron 0.5-1.5 - - ✓ - - -

Kyrylyuk and Philipse[365] Spherocylinders 1-11 - - ✓ - - -

Jiao and Torquato[366] Platonic shapes regular - - ✓ - - -

Jiao et al[367] Superballs regular 0-∞ ✓ ✓ - - -

Jia et al[293] Cylinder 0.1-30 - - ✓ - - -

Spherocylinder 1-4.5 - - ✓ - - -

Gan et al[368] Ellipsoids 0.25-3.5 - ✓ ✓ - - -

Evans and Ferrar[369] Spherocylinder 1-25 - - ✓ - - ✓

Dong et al[319,370] Cylinder 0.3-2.5 - - ✓ - - -

Ellipsoids 0.3-2.5 - - ✓ ✓ - -

(Continues)
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3 | NUMERICALLY PACKED-BEDS

Numerical packing generation can be performed by a
large selection of commercial or free software packages
or an even larger selection of in-house produced codes
and algorithms presented in the literature (see
Bennett,[65] Clarke and Jónsson,[86] Jodrey and Tory,[88]

Tory et al,[89] Visscher and Bolsterli,[275] Nolan and
Kavanagh,[276] Yang et al,[277] and Zhong et al[26] and
Zhu et al[278] for an overview). While the intention of this
review is not to discuss advantages and disadvantages of
each packing procedure, the DEM[279] is by now the most
established tool for the numerical packing generation
incorporating spheres with a physically accurate descrip-
tion of the particle packing process (see eg, Zhang
et al[80] for details). Unfortunately, in order to pack parti-
cles other than spheres this method needs adaptation.
For some distinct non-spherical shape classes, theoretical
separate model developments exist (see Lu et al[280] for a
general review, for more details also Zhao et al,[281]

Kodam et al,[282,283] and Guo et al[284]). However, for the
simulation of arbitrary shapes, it may be required to
assemble the desired shape using a sufficiently large
number of overlapping spheres.[248,283,285–291] Another
attempt comprises the transfer of the DEM algorithm and
the underlying physics to voxels (cubes) and the

subsequent assembly of the desired shape by
voxels.[112,292–295] Or, ignoring certain physical condi-
tions, shapes can be represented by a surface grid.[296,297]

A good comparison of some methods with regard to
packing generation was presented by Fernengel et al[298]

for spheres, Caulkin et al[291] for cylinders, and
Flaischlen and Wehinger,[299] who investigated packings
of cylinders, hollow cylinders, and some more complex
shapes.

These numerical packing algorithms are frequently
used to generate packings for subsequent fluid
dynamics,[139,287,300–311] heat,[288,296,312–320] or mass transfer
simulations.[321–331] The numerical procedures are well
capable of geometric packing analysis, allowing separate
material property variation, packing procedure evaluation,
and shape factor analysis on a large scale and in a fast and
cost-efficient manner. In general, two settings have to be
distinguished, one setting incorporating the confining wall
(see Zhao et al,[281] and Mueller[332]) and one setting hav-
ing periodic boundaries and thus neglecting of the influ-
ence of the confining wall (see Zhao et al,[285] and Delaney
and Cleary[333]). When using confined packings, it is
required to use the bulk part of the packing for porosity
calculation to exclude top and bottom effects.[232] Unfortu-
nately, validation is frequently a major problem, as typi-
cally not enough experimental data is available, and the

TABLE 7 (Continued)

Source Shape
Aspect
ratio 1/a1 Aspect ratio ax �Nc εinf �ε λð Þ ϵ(r) θ

Desmond and Franklin[371] Ellipse 5-50 - - ✓ - - -

Das et al[310] Cube 0.33-1 - - ✓ ✓ ✓ ✓

Ferreiro-Cordova and
Duijneveldt[372]

Spherocylinder 1-11 - - ✓ - - -

Coelho et al[311] Ellipsoid 0.1-10 - - ✓ - - -

Cylinder 0.1-10 - - ✓ - - -

Parallelepiped 0.1-10 - - ✓ - - -

Chaikin et al[373] Ellipsoid 1-3 0-1 ✓ ✓ - - -

Bolhuis and Frenkel[374] Spherocylinder 1-4 - - (✓) - - -

Blaak et al[375] Cylinder 0.1-10 - - - - - (✓)

Baule et al[376] Lens 0.45-1 - ✓ ✓ - - -

Dimer 1-2 - ✓ ✓ - - -

Spherocylinder 1-2 - ✓ ✓ - - -

Bargiel[377] Spherocylinder 1-80 - - ✓ - - -

Kyrylyuk et al[378] Spherocylinder 1-4 - - ✓ - - -

Abreu et al[379] Spherocylinder 1-4.5 - - ✓ - - -

Freeman et al[380] Spherocylinder 5-35 - - ✓ - ✓ -

Lumay and Vandewalle[219] Cylinder 5-90 - - ✓ - - -
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available data frequently has a large error or is obtained
under uncertain or vague packing and material conditions.

3.1 | Influence of material and packing
procedure

Zhang et al[80] evaluated packing procedure properties
and found a decrease in porosity when using higher par-
ticle drop heights and lower deposition intensities (num-
ber of particles filled per second). Additionally, material
properties have been evaluated predicting a lower poros-
ity when having a lower damping coefficient which
directly correlates to the coefficient of restitution and a
lower coefficient of friction.[80] Similar results were

obtained by other scientists.[248] The decrease in porosity
for a smaller coefficient of friction values was repeatedly
obtained.[140,161,290,297,334–337] Furthermore, the porosity
increases with increasing E-modulus,[248,334] a decrease
in the coefficient of restitution,[297,335,336] and an increase
in surface energy.[335] The porosity is not dependent on
the particle’s stiffness.[335] The extent to which it is
influenced by certain material parameters can be best
evaluated using a sensitivity analysis.[338] However, the
respective material parameters are often not known, they
need to be guessed and adjusted by comparing experi-
mental and numerical outputs.[339]

Packing densification using vibration,[213,286,340]

tapping,[341,342] or air impact densification[343] was stud-
ied finding optimal densification parameters to gain the

(A) (B)

(C) (D)

[370]

[357]

[370]

[356] [359]

[358] [364]

[344]

[357]

[361]

[368] [372]

[378]

[348]

[345]

[362]

[377]

[379]

[365]

[376][373]

FIGURE 12 Mean bed porosity under the absence of confinement as a function of the aspect ratio of packings consisting of: A,

ellipsoids, aspherical ellipses (Donev et al[271]) and lenses (Baule et al[376]); B, spherocylinders; C, cylinders (empty marks), hollow cylinders

[hc], frustums and cones; and D, tetrahedra (empty marks), cubes (solid marks) and superellipsoids (star). The vertical line marks the range

of minima occurrence[207,271,285,289,293,333,334,344,345,347,348,356–362,364,365,368,370,372,373,376–379]
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densest packings. Furthermore, a lower porosity can be
obtained with fewer particles added at the same
time.[80,298,336] Thus, numerical packing generation tools
are very important for the evaluation of material or pack-
ing procedure parameters and thus understanding of
these influences, because it is impossible to vary these
independently in an experiment.

3.2 | Influence of the shape

Numerical studies investigating shape effects on packing
structure, most predominantly aspect ratio variations, are
reviewed in Table 7, clustered according to the evaluated
shapes and respective aspect ratio ranges, and the evaluated
packing parameters including mean coordination number
�NC , bulk porosity εinf and �ε λð Þ, local porosity distribution
ε(r), and the particle orientation angle θ. Additionally,
the data obtained from the literature for the calculated
average bed porosity as a function of the respective aspect
ratio are summarized in Figure 12, especially regarding:
(a) ellipsoid shapes, (b) spherocylinders, (c) cylindrical
shapes, and (d) platonic shapes. In some cases, correla-
tions for calculating the porosity based on the respective
aspect ratios are suggested.[285] The influence of curl
index when packing curved spherocylinders was
studied,[362] along with the influence of particle orienta-
tion.[361,362] For instance, in a packing of hollow cylinders,
the particle orientation is increasingly perpendicular to the
container axis with increasing aspect ratio a1.

[361]

Comparing different geometries,[289,381] a shape pack-
ing density order was identified. Accordingly, the lowest
porosity values were obtained with cubes followed by
ellipsoids, cylinders and spherocylinders, tetrahedrons,
cones, and finally spheres with the highest bulk poros-
ity.[289] As shown in Figure 12, the aspect ratios with the
lowest packing porosity were identified to be around
unity, except for the spherocylinders and ellipsoids,
where the minima are around 1.35 and 0.7.

Despite the usage of rather mathematical shapes,
Partopour and Dixon[296] compared packings of actual
catalyst shapes such as hollow cylinders and multi-
holed/fluted versions. Similarly, Moghaddam et al[336]

compared sphere, cylinder, and hollow cylinder packings
in cylindrical confining walls, especially regarding the
radial porosity distribution and λ-relation. Khartik and
Buwa[328] compared single-pellet-string packings of six
different pellet shapes used in catalysis, comprising
multi-holed cylinders, cross-web cylinders, and poly-
lobes, and Caulkin et al[111,124] investigated packings of
cylinders with different hole geometries and reactor
setups. Finally, trilobes were further studied by Boccardo
et al.[297]

In summary, numerical packing generation tools have
been frequently used to evaluate particle aspect ratio vari-
ations affecting the bulk porosity. However, as the range
of imaginable shapes and their aspect ratio variations are
infinite, we are far away from understanding a general
shape influence on packed beds. Moreover, comparing the
obtained results, large deviations can be seen relating to
different material and packing mode conditions. Conse-
quently, before being able to evaluate a universal shape
dependence, the definition of standard packing conditions
is required. Otherwise, results are impossible to compare.

3.3 | Further notable results

Besides the often studied shape,material, and packingmode
variations, some further notable studies were performed, for
instance comprising confinement shape variations includ-
ing cylindrical, half-cylindrical, square, and rectangular
cross-sections.[307,319] Moreover, studies were performed
addressing the porosity increase and packing compression
for packing particle sizes <1000 μm where interparticle
forces become relevant.[1,368,382,383] Further studies address
the effect of particle size distribution or bi-, tri-, and multi-
modal particle mixtures of the same shape or of different
shapes (see Caulkin et al,[112] Kyrylyuk et al,[378] and Dorai
et al[384]), but his is outside the scope of this review.

4 | CONCLUSION

The knowledge of random packings of mono-sized parti-
cles gained over the last hundred years of research was
reviewed and clustered. Available studies regarding the
influence of shape, size, and material properties of the par-
ticles, the packing and densification mode characterizing
the bed formation, and the influence of the confining tube
including tube shape and material, were taken into consid-
eration. Explicitly excluded is the influence of shape inho-
mogeneity and multi-modal or multi-shape particle
mixtures. Furthermore, the reviewed data is restricted to a
minimum particle size of 1 mm where gravity is the pre-
dominant force. The structural characteristics investigated
comprise the mean coordination number, the radial and
axial porosity distributions, and the average bed porosity.
While a significant amount of complementary studies with
regard to packed-beds of spheres are known to result in a
good understanding of structural bed characteristics, there
is still a significant lack of knowledge with regard to the
influence of particle shape. While this cannot be attributed
to a lack of data, as there are numerous studies addressing
shape influences on all levels, the research field is simply
too large for these studies to lead to a complete
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fundamental understanding. However, numerical tools
capable of producing and evaluating huge data sets in
short time frames open up the possibility to take the
research on packing characteristics to another level, and
the overall complexity will rise when transferring to the
real applications of packed-beds. Structural impacts on
fluid dynamics, heat, and mass transfer are far away from
being comprehensively understood while trial and error
remain the standard development method. Consequently,
the development of packing shapes might be an interesting
application example where machine learning tools might
become relevant in the future.

ACKNOWLEDGEMENTS
Financial and substantial support of MuniCat, a strategic
alliance between the Technical University of Munich
(TUM) and Clariant AG is gratefully acknowledged.
J.v.S. would further like to thank the TUM Graduate School
for their generous support. Open access funding enabled
and organized by Projekt DEAL. WOA Institution: Techni-
sche Universitat Munchen Blended DEAL: ProjektDEAL.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

AUTHOR CONTRIBUTIONS
The research “Review on the Structure of Random
Packed-Beds” was initiated by Jennie von Seckendorff and
supervised by Olaf Hinrichsen. The review was written by
Jennie von Seckendorff and supported by Olaf Hinrichsen.

NOMENCLATURE

Latin symbols
a,b,c,d pre-factor parameters (−)
a1 height to diameter aspect ratio (−)
a2 inner to outer diameter aspect

ratio (−)
a3 upper to lower diameter aspect

ratio (−)
ap particle surface area (m2)
ax any other aspect ratio (−)
cD(Re) drag coefficient (−)
d real particle diameter (m)
di inner particle diameter of hollow cyl-

inder (m)
dp particle diameter (m)
dps,dpv, dpw,
dpd,dpack

equivalent particle diameter (m)

D diameter of tube (m)
f hollow cylinder interpenetration cor-

rection (−)

FD drag force (N)
g acceleration of gravity (ms2)
h real height of a particle (m)
H height of tube (m)
Hr Hausner ratio (−)
m flatness ratio (−)
n number of taps per second (s−1)
n elongation ratio (−)
�Nc mean contact number (−)
r radial position (m)
R tube radius (m)
u0 superficial velocity (ms )
us sedimentation velocity (ms )
T tortuosity (−)
vp particle volume (m3)
z axial position (m)
zmin radial location of first porosity mini-

mum (−)
zr non-dimensional radial position (−)
zz non-dimensional axial position (−)

Greek symbols
ε porosity (−)
�ε average bed porosity (−)
εinf average bed porosity with λ ! ∞ (−)
εmin local porosity at the first minimum close to the

tube wall (−)
�εsc average reference porosity of a solid cylinder (−)
ε(r) radial porosity distribution (−)
ε(z) axial porosity distribution (−)
�ε λð Þ average porosity as a function of λ (−)
λ tube to particle diameter ratio (−)
λv tube to particle diameter ratio based on volume

equivalent particle diameter (−)
�ϱϵ packing density, = 1−�ε (−)
ϱf fluid density (kgm3)
ϱp particle density (kgm3)
τ relaxation time (s−1)
κ tube height-to-particle diameter ratio (−)
ΨW sphericity (−)
ψ azimuthal contact angle (�)
θ particle orientation in packing (�)
�ϕc mean (poloidal) contact angle (�)
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