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Abstract
Ageneralized Fourier–Hermite semi-discretization for theVlasov–Poisson equation is
introduced. The formulation of themethod includes as special cases the symmetrically-
weighted and asymmetrically-weighted Fourier–Hermite methods from the literature.
The numerical scheme is formulated as a weighted Galerkin method with two separate
scalingparameters for theHermite polynomial and the exponential part of the newbasis
functions. Exact formulas for the error inmass,momentum, and energy conservation of
the method depending on the parameters are devised and L2 stability is discussed. The
numerical experiments show that an optimal choice of the additional parameter in the
generalized method can yield improved accuracy compared to the existing methods,
but also reveal the distinct stability properties of the symmetrically-weighted method.
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1 Introduction

The Vlasov–Poisson equations models the evolution of charged particles in their self-
consistent electric field. In this work, we consider the spectral discretization of the
Vlasov–Poisson system. Compared to the widely used Particle-In-Cell (PIC)methods,
which employmacroparticles thatmove throughout the computationalmesh according
to Newton’s equations, spectral methods are not prone to statistical noise. Spectral
methods naturally introduce increased computational costs per degree of freedom in
exchange for improved accuracy. That is why, even though the first advancements in
this area were made as early as 1963 [9], these methods became popular only recently
due to the rapid increase of the computational power available. For test cases that
are periodic, the Fourier basis is the natural choice for the spatial discretization. For
the velocity discretization, one of the most common choices are Hermite-type basis
functions. In this work, we introduce Hermite-type functions in a generalized form and
build a mathematical framework for the solution in this basis. Alternatively, Fourier
[18], Chebyshev [27], or Legendre [22] bases have also been used in velocity.

1.1 Previous Fourier–Hermite discretizations of the Vlasov equation

Hermite-type basis functions have been proposed already in early 1d1v Vlasov–
Poisson simulations [2,3,15,17]. Later Holloway formalized two possible velocity
discretizations of the Vlasov equation based on Hermite polynomials [16]. His first
approach was based on standard Hermite functions

ψ�(v) = π−1/4

√
2��!h�(v)e−v2/2, (1.1)

as the basis in velocity. Then, the standard Galerkin method was used with Hermite
functions as the test functions. This method is called symmetrically-weighted (SW)
Hermite method. However, it turned out that mass andmomentum cannot be conserved
simultaneously for thismethod. To overcome that pitfall, the so-called asymmetrically-
weighted (AW) Hermite basis was introduced

ψa
� (v) = π−1/2

√
2��!h�(v)e−v2 .

In this case, in order to preserve orthogonality, another set of functions was used as
test functions,

ψa
�,test(v) = 1√

2��!h�(v).

For this method, it turned out to be possible to conserve mass, momentum, and
energy exactly. For both methods scaling of the argument of the basis functions was
considered. Certain choices of the scaling parameter proved to provide significant
improvements in the quality of the results. It is consistent with the result of Boyd [5]
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that scaling of the series of Hermite functions is beneficial for accuracy. In addition,
a shift in velocity is sometimes added depending on the initial value.

In the follow up work [26], Schumer & Holloway carried out a thorough numerical
study of both methods which indicated that even though the AW method preserves
mass, momentum, and energy, the SW method is more robust and better suited for
long-time simulations. Despite that, most of the further developments were focusing
on the AWmethod with a stabilization that is achieved through filtering of high modes
(cf. e.g. [16, Sec. 3.3.3]). In [20,21] both spectral Galerkin and spectral collocation
methods for the AWFourier–Hermite discretization have been considered. Around the
same time, the Hermite-based solution of the linearized Vlasov–Maxwell model has
been investigated in [7]. A multi-dimensional spectral Vlasov–Maxwell solver based
on the AW discretization has been proposed by Delzanno [8]. Camporeale, Delzanno,
Bergen, & Moulton [6] demonstrated that for certain test cases the AW Fourier–
Hermite method can be significantly more accurate than the PIC method. The spectral
solver has been further enhanced by adding an adaptive strategy for regulating the
number of basis functions [29],which is the basis for theSpectralPlasmaSolver
code [30]. Moreover, the AW method was also considered for gyrokinetics [25].

On the other hand, some analysis was carried out for the SW case: Gibelli &
Shizgal studied the convergence of the expansion of the distribution functions via
Hermite functions in [12]. Convergence theory for the SW Fourier–Hermite method
was provided in [23]. This study is, however, limited to a finite velocity interval.

1.2 Our contribution

We introduce a generalized Hermite basis based on results from the doctoral thesis
[31], that contains the symmetric and the asymmetric basis as special cases. The con-
tribution of this work is twofold: Firstly, a generalization of the method is introduced
by the general formulation that includes two independent scaling parameters for the
Gaussian and the polynomial part, which allows to include intermediate cases in the
description. Secondly, we systematically study the conservation properties as well as
the initialization procedure of the generalized Fourier–Hermite method with the aim
of providing a mathematical foundation of the methods.

1.3 Organization of the paper

In the next section, we define our generalized Hermite basis. Section 3 introduces the
Vlasov–Poisson model and describes its phase-space discretization in the generalized
Fourier–Hermite basis. In Sect. 4, we find analytic expressions for the error in mass,
momentum, and energy for the general method and discuss L2 norm conservation.
Finally, a numerical study of the method is provided in Sect. 5.
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884 K. Kormann , A. Yurova

2 Generalized Hermite basis

As a basis in velocity space, we introduce the generalized Hermite basis of the form

Hγ,ε

� (v) = 1√
2��!h�(γ εv)e−ε2v2 , � ∈ N0, (2.1)

where ε > 0 is a suitable scaling parameter and γ > 0 defines the discretization
method. We refer to the PhD thesis [31] for a detailed analysis of this class of func-
tions. Note that we have slightly changed the definition such that our parameter γ

corresponds to γ
ε
in [31]. Other than the standard Hermite functions, these functions

are not orthonormal in the standard L2(R) inner product. Instead, the basis is orthonor-
mal in the following weighted space,

L2
ω(R) =

{
f : R → R

∣∣∣∣
∫
R

| f (x)|2ω(x) dx < ∞
}

with the weight ω : R → R+

ω(v) = π−1/2γ εe(2−γ 2)ε2v2

and the inner product

〈 f , g〉L2
ω(R) =

∫
R

f (x)g(x)ω(x) dx .

We later refer to 〈·, ·〉L2
ω(Rd ) as 〈·, ·〉ω. Let us note that the symmetrically and asym-

metrically weighted Hermite bases, known from the literature, are included in our
generalized setup. The symmetric basis is obtained—up to a constant scaling factor,
that does not influence the corresponding spectral Galerkin scheme—by the choice

γSW = √
2 with weight w(v) ≡ wSW =

√
2

π
ε.

The asymmetrically-weighted basis is obtained for

γAW = 1 with weight wAW(v) = ε√
π
eε2v2 . (2.2)

From the orthogonality and completeness of the Hermite functions in L2, the orthog-
onality and completeness of the generalized Hermite functions (2.1) in the weighted
L2 space can be deduced as stated in the following Lemma.

Lemma 2.1 Generalized Hermite functions are orthogonal in L2
ω(Rd) and the set of

functions {Hγ,ε

� }�∈N0 is complete in L2
ω(R), i.e.,

f =
∑
�∈N0

〈 f , Hγ,ε

� 〉ω Hγ,ε

� for all f ∈ L2
ω(R).
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From the recursion relation of the Hermite polynomials (see [11, §6.4, p. 186]), we
deduce the following recursion relations for the generalized Hermite functions:

∂ Hγ,ε

� (v)

∂v
=

√
2ε

γ

(
(γ 2 − 1)

√
�Hγ,ε

�−1(v) − √
� + 1Hγ,ε

�+1(v)
)

; (2.3)

vHγ,ε

� (v) = 1√
2γ ε

(√
�Hγ,ε

�−1(v) + √
� + 1Hγ,ε

�+1(v)
)

. (2.4)

Let us now derive a couple of other properties that involve integrals of the basis
function overR. These formulas will be useful for the computation of the observables.
Analogous formulas for the SW and AW cases were considered in [16,26]. We now
derive them for the generalized setup.

Lemma 2.2 Denote

I� =
∫
R

Hγ,ε

� (v)dv, J� =
∫
R

vHγ,ε

� (v)dv, Ī� =
∫
R

v2Hγ,ε

� (v)dv.

Then, the following relations hold:

1.

I�+2

I�
=
√

� + 1

� + 2

(
γ 2 − 1

)
(2.5)

for even integers � ≥ 2 with I0 =
√

π

ε
. Moreover, I� = 0 for odd � ∈ N0.

2.

J�+1 = γ

ε

√
� + 1

2
I� =

√
� + 1

�

(
γ 2 − 1

)
J�−1 (2.6)

for odd � ≥ 3 with J1 = γ

ε2

√
π
2 = γ

ε

√
1
2 I0. Moreover, J� = 0 for even �.

3.

Ī� = 1

γ ε
√
2

(
� + (� + 1)(γ 2 − 1)√

�

)
J�−1. (2.7)

for even � ≥ 2 with Ī0 = 1
2

√
π

ε3
. Moreover, Ī� = 0 for odd �.

In particular, in the AW case (γ = 1) it holds that I� = 0 for � 
= 0, J� = 0 for � 
= 1,
and Ī� = 0 for � 
= 0, 2.

Proof First, we note that even (odd) Hermite polynomials are of even (odd) functions
and so are the generalized Hermite functions. Therefore, even moments of the basis
integrate to zero for odd indices, and odd moments for even indices.

123



886 K. Kormann , A. Yurova

1. For I0, we get I0 = ∫
R

Hγ,ε
0 (v)dv = ∫

R
e−ε2v2dv =

√
π

ε
. For 2�, � > 0, we use

the following result from [1, Expr. 22.13.17],

∫
R

e−a2 H2m(ax)da = √
π

(2m)!
m! (x2 − 1)m for all x ∈ R, m ∈ N0.

With the coordinate transformation ṽ = εv, we can use this result to find

I2� =
√

π

ε
√
22�(2�)!

(2�)!
�!

(
γ 2 − 1

)�

.

With the analogous expression for I2�+2, the fraction (2.5) can be found.
2. The formula for J1 follows from [14, 3.381, Expr. 11]. For the first equality in

(2.6), we use (2.5) and property (2.4) of the generalized Hermite functions to find

J�+1
(2.4)= 1

γ ε

(√
� + 1

2
I� +

√
� + 2

2
I�+2

)

(2.5)= 1

γ ε

(√
� + 1

2
I� +

√
� + 2

2

√
� + 1

� + 2

(
γ 2 − 1

)
I�

)
= γ

ε

√
� + 1

2
I�.

Applying the same formula to J�−1, we find

J�−1 = γ

ε

√
� − 1

2
I�−2

(2.5)= γ

ε

√
� − 1

2

1

γ 2 − 1

√
�

� − 1
I� = γ(

γ 2 − 1
)
ε

√
�

2
I�.

This gives an expression for I� in terms of J�−1 which can be inserted to the first
part of (2.6) to obtain its second part.

3. The formula for Ī0 follows from [14, 3.381, Expr. 11]. The second expression
in (2.6) together with the property (2.4) of generalized Hermite functions yields
relation (2.7) for � 
= 0

γ ε
√
2 Ī�

(2.4)=
∫
R

v
(√

�Hγ,ε

�−1(v) + √
� + 1Hγ,ε

�+1(v)
)
dv =

(√
�J�−1 + √

� + 1J�+1

)

(2.6)=
(√

�J�−1 + � + 1√
�

(
γ 2 − 1

)
J�−1

)
=
(

� + (� + 1)(γ 2 − 1)√
�

)
J�−1.

��
Remark 2.1 We note that the AW case has the very special property that the mth order
moment of H1,ε

� vanishes for all � > m. This property is particularly useful when
filtering of higher modes is applied (cf. [7, Sec. 3]), since then the low order moments
of the solution are not affected. In the same way, a velocity shift can be added to the
Hermite polynomials without destroying conservation (cf. [6]).
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3 Phase-space discretization with the generalized Hermite–Fourier
method

In this section, we first introduce the Vlasov–Poisson model, followed by a discussion
of the phase-space discretization and the projection of the initial value.

3.1 TheVlasov–Poissonmodel

The d-dimensional Vlasov–Poisson system for the distribution function f : Ω ×R
d ×

R
+ → R for electrons in neutralizing background on the domain Ω ⊂ R

d reads as,

∂ f (x, v, t)

∂t
+ v · ∇x f (x, v, t) − E(x, t) · ∇v f (x, v, t) = 0,

− Δφ(x, t) = 1 − ρ(x, t), E(x, t) = −∇φ(x, t),

x ∈ [0, Lx ], Lx ∈ R, v ∈ R, t ∈ R+, (3.1)

where the electric field E(x, t) is computed via the Poisson equation and the density
is given by

ρ(x, t) =
∫
R

f (x, v, t)dv.

Note that we use dimensionless units. In this paper, wewill restrict ourselves to the one
dimensional case on a periodic domain [0, Lx ] in x and the whole spaceR in velocity.
To close the system, some initial distribution f0(x, v)need to be specified.TheVlasov–
Poisson system exhibits a lot of structure and many quantities are conserved over time
(see, for example, [28, § 3.2.2]). In particular, the following observables are conserved
over time:

1. mass M(t) = ∫
R

∫ Lx
0 f (x, v, t)dxdv;

2. momentum P(t) = ∫
R

∫ Lx
0 v f (x, v, t)dxdv;

3. energy W (t) = WK(t) + WE(t) with WK(t) = 1
2

∫
R

∫ Lx
0 v2 f (x, v, t)dxdv and

W E (t) = 1
2

∫ Lx
0 E(x, t)2dx ;

4. all L p norms for 1 ≤ p ≤ ∞.

We now introduce a spectral discretization and discuss the conservation of these
observables on the semi-discrete level.

3.2 Discretization in velocity

We now proceed to the discretization of the Vlasov equation in velocity. We look for
an approximation fNv of the distribution function f in the approximation space

VNv = span{Hγ,ε
1 , Hγ,ε

2 , . . . , Hγ,ε

Nv−1}
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888 K. Kormann , A. Yurova

of generalized Hermite functions

fNv (x, v, t) =
Nv−1∑
�=0

c�(x, t)Hγ,ε

� (v). (3.2)

In order to treat the coefficients with the indices outside of the range 0, . . . , Nv − 1,
we need a closure scheme. The most obvious choice is to assign them to zero

c�(x, t) = 0, for all, � /∈ 0, . . . , Nv − 1, x ∈ R, t ∈ R+.

This is the most common closure scheme but the alternatives can e.g. be found in [9].
Inserting expression (3.2) into the Vlasov equation (3.1) and exploiting the relations
(2.3) and (2.4), yields

Nv−1∑
�=0

∂c�(x, t)

∂t
Hγ,ε

� (v) +
Nv−1∑
�=0

∂c�(x, t)

∂x

1√
2γ ε

(√
�Hγ,ε

�−1(v) + √
� + 1Hγ,ε

�+1(v)
)

− E(x, t)
Nv−1∑
�=0

c�(x, t)

√
2ε

γ

(
(γ 2 − 1)

√
�Hγ,ε

�−1(v) − √
� + 1Hγ,ε

�+1(v)
)

= 0

(3.3)

We now discretize the Vlasov equation by a Galerkin method in the weighted space
L2

ω(R), i.e. the approximative distribution function fNv (x, v, t) ∈ VNv should satisfy,

∂ fNv

∂t
∈ VNv and

〈
∂ fNv

∂t
+ v · ∇x fNv − E(x, t) · ∇v fNv , φ

〉
ω

= 0 ∀φ ∈ VNv .

Using the basis {Hγ,ε

� }Nv−1
�=0 of VNv also as test functions and using expression (3.3)

together with the orthonormality of the basis, we arrive to the following system of
partial differential equations for the coefficients c�(x, t), � = 0, . . . , Nv − 1,

∂c�(x, t)

∂t
+ 1

γ ε
√
2

(√
� + 1

∂c�+1(x, t)

∂x
+ √

�
∂c�−1(x, t)

∂x

)

−
√
2E(x, t)ε

γ

(
(γ 2 − 1)

√
� + 1c�+1(x, t) − √

�c�−1(x, t)
)

= 0. (3.4)

3.3 Discretization in space

We now discretize our system in space via the Fourier basis. For all � = 0 . . . Nv − 1,
we take the following ansatz,

fNx ,Nv (x, v, t) =
Nx∑

k=−Nx

Nv−1∑
�=0

ck
�(t) exp

(
2πkix

Lx

)
Hγ,ε

� (v). (3.5)
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For the convenience of notation,we consider only an odd number of Fouriermodes. For
an even number ofmodes, when k = −Nx , . . . , Nx +1, the coefficients corresponding
to the indices 0 and Nx +1 have to be tackled separately to preserve the symmetricity,
but all our results equally apply.

The electric field E can be represented in the Fourier basis as

E(x, t) =
Nx∑

m=−Nx

Em(t) exp

(
2πmix

Lx

)
.

The product E(x, t)c�(x, t) is given in terms of the corresponding Fourier coefficients
as

E(x, t)c�(x, t) =
2Nx∑

p=−2Nx

exp

(
2π pix

Lx

)
[E(t) ∗ c�(t)][p],

where E(t) is the vector of the coefficients {Em(t)}Nx
m=−Nx

, c�(t) is the vector of

coefficients {ck
�(t)}Nx

k=−Nx
and the vector E(t) is additionally padded with zeros for all

other indices. Here ∗ denotes the convolution

[E(t) ∗ c�(t)][p] =
Nx∑

j=−Nx

E p− j (t)c
j
� (t) =: β

p
� (t). (3.6)

With a standard Galerkin method in Fourier space, we get the following system of
differential equations for the coefficients:

dck
�(t)

dt
+ 1

γ ε
√
2

2πki

Lx

(√
� + 1ck

�+1(t) + √
�ck

�−1(t)
)

−
√
2ε

γ

(
(γ 2 − 1)

√
� + 1[E(t) ∗ c�+1(t)][k] − √

�[E(t) ∗ c�−1(t)][k]
)

= 0

(3.7)

for all γ, ε > 0, k = −Nx . . . Nx , � = 0 . . . Nv − 1, t ∈ R+. We will later refer to the
discretization (3.7) as the generalized Fourier–Hermite discretization.

3.4 Computation of the electric field

To complete the formulation of the method, it is now left to compute the coefficients
{Em(t)}Nx

m=−Nx
of the electric field E in the Fourier basis. From the representation of

the distribution function in (3.5), we get

ρ(x, t) =
Nv−1∑
�=0

Nx∑
k=−Nx

ck
�(t)I� exp

(
2πkix

Lx

)
.
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890 K. Kormann , A. Yurova

A spectral Galerkin scheme for the Poisson equation gives the following Fourier
representation of the electric field

Ek(t) = iLx

2πk

Nv−1∑
�=0

ck
�(t)I� for k 
= 0 (3.8)

and the constant mode should vanish for the electric field E0(t) = 0.

3.5 Representation of the initial distribution in the generalized Fourier–Hermite
basis

For the complete setup of the method, we need to discuss the representation of the
initial distribution function in the generalized Fourier–Hermite basis. This is obtained
by a (weighted) Galerkin projection to the discrete spaces. In many cases, the initial
distribution is separable in space and velocity variable, and the spatial part is given
by a trigonometric function and the velocity part by a (sum of) shifted Gaussians.
Representing a trigonometric function in Fourier space is trivial. Let us therefore
consider the weighted Galerkin projection f v

Nv
(v) = ∑Nv−1

�=0 〈 f v
0 , Hγ,ε

� 〉ω Hγ,ε

� (v) in
velocity space for a function of the form,

f v
0 (v) =

NG∑
n=1

an

σn
√
2π

e
− (v−vn )2

2σ2n , an, σn, vn ∈ R, NG ∈ N0.

This task is particularly simple for a single Gaussian centered at zero, which is exactly
represented by the 0th basis function if the width of the basis is chosen as ε = 1

σ1
√
2
.

For the general case, the generalized Fourier coefficients can be computed as a linear
combination of the coefficients for the individual Gaussians according to the following
proposition.

Proposition 3.1 For a Gaussian gn(v) = 1
σn

√
2π

e
− (v−vn )2

2σ2n , the generalized Fourier

coefficients of can be computed according to the following formula

〈gn, Hγ,ε

� 〉ω =

⎧⎪⎨
⎪⎩

εγ

ε̃n
√

π
exp
(

ε2v2n
ε̃2n

) (
1−2σ 2

n ε2

ε̃2n

)�/2
H

γ̄n ,
εγ
ε̃n

� (vn), σn 
= 1
ε
√
2
,

ε�+1
√
2�

γ �
√

π
√

�!e
v2nε2

(
1

γ 2
−1
)
v�

n, σn = 1
ε
√
2
,

where

ε̃n =
√
1 + 2ε2σ 2

n

(
γ 2 − 1

)
and γ̄n = εγ

ε̃n
√
1 − 2σ 2

n ε2
.
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Proof With the definition of the function Hγ,ε

� and some simplification, we get

〈gn, Hγ,ε

� 〉ω = εγ

σn
√
2π

∫
R

1√
2��!h�(εγ v)e

ε2(1−γ 2)v2− (v−vn )2

2σ2n dv.

We observe that

ε2(1 − γ 2)v2 − (v − vn)
2

2σ 2
n

= −
(

ε̃nv

σn
√
2

− vn

ε̃nσn
√
2

)2

+ v2nε2
(
1 − γ 2

ε̃2n

)
.

Denoting v̄ = ε̃nv

σn
√
2
we get

〈gn, Hγ,ε

� 〉ω = εγ

πε̃n

√
2��!e

v2nε2
(

1−γ 2

ε̃2n

) ∫
R

h�

(
σnεγ

√
2

ε̃n
v̄

)
e
−
(
v̄− vn

ε̃nσn
√
2

)2
dv̄. (3.9)

In order to evaluate the integral, we use the formulas [14, §7.374, Expr. 8 and 6] for
α, y ∈ R

∫
R

h�(αx)e−(x−y)2dx =
{

π1/2y�2�, if α = 1,

π1/2(1 − α2)�/2h�

(
αy√
1−α2

)
, else.

(3.10)

Inserting (3.10) with α = σnεγ
√
2

ε̃n
and y = vn

ε̃nσn
√
2
into (3.9), together with the

definition of γ̄n , yields the assertion. ��
Note that we only consider the case of a single set of basis functions as opposed to
an ansatz with multiple sets of basis functions for each Gaussian proposed e.g. in [6].
For this reason, we do not consider a shift in velocity space.

Theoptimal choice of the parameterwith respect to the initial value is not necessarily
the best choice of the parameter after time has evolved (cf. the findings in [10] in the
context of a semi-Lagrangian Hermite discretization). The accuracy of the method can
therefore be improved by readapting the parameter to time evolution of the velocity
moments of the solution.

3.6 Temporal discretization

The main focus of our paper is on the spatial discretization. For the temporal dis-
cretization, we choose the following form of amid-point rule to compute the numerical
approximation ck,m

� at time tm from the approximation at time tm−1 = tm − Δt :

ck,m
� = ck,m−1

�

+ Δt

(
− 1

γ ε
√
2

2πki

Lx

(√
� + 1

(
ck,m−1
�+1 + ck,m

�+1

2

)
+ √

�

(
ck,m−1
�−1 + ck,m

�−1

2

))
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+
√
2ε

γ

(
(γ 2 − 1)

√
� + 1

[
Em−1 + Em

2
∗ cm−1

�+1 + cm
�+1

2

]
[k]

− √
�

[
Em−1 + Em

2
∗ cm−1

�−1 + cm
�−1

2

]
[k]
))

(3.11)

This form of the temporal discretization was also chosen in [7] for the AW method.
The advantage of this scheme is that the conservation of energy translates from the
semi-discrete to the fully discrete system as we will see in Sect. 4.6.

4 Computation of the observables and conservation properties

In this section, we provide formulas for mass, momentum, energy, and L2 norm for
the numerical scheme and analyze how they evolve over time.

4.1 Telescopic sums

As a preparation, we first compute some telescopic sums in our generalized setup
that will be useful in the sequel. Note that Holloway [16] already used the idea of
telescoping sums to show conservation for his two special cases.

Lemma 4.1 (Telescopic sums) Consider a sequence {a�}Nv

�=−1 of real numbers with
a1− = 0. Denote

SI = ε2
Nv−1∑
�=0

I�
(
(γ 2 − 1)

√
� + 1a�+1 − √

�a�−1

)
.

Let SJ and SĪ be the same sums as above but with the terms J� or Ī� instead of I�,
respectively. Then, the following expressions hold for these sums

SI = ε3
√
2(γ 2 − 1)

γ

{
JNv aNv , for Nv odd,

JNv−1aNv−1, for Nv even.
(4.1)

SJ = εγ√
2

{
Nv INv−1aNv−1 −∑Nv−1

�=0 a� I�, for Nv odd,

Nv INv aNv −∑Nv−1
�=0 a� I� for, Nv even.

(4.2)

SĪ =
⎧⎨
⎩
(
γ 2(Nv−1)+γ 2−1

)
ε

γ
√
2

JNv aNv − γ ε
√
2
∑Nv−1

�=0 J�a�, for Nv odd,(
γ 2Nv+γ 2−1

)
ε

γ
√
2

JNv−1aNv−1 − γ ε
√
2
∑Nv−1

�=0 J�a�, for Nv even.
(4.3)

Proof Let us first prove the expression for SI . Using expression (2.6) of I� through
J�+1 and J�−1, we get

SI
(2.6)= I0ε

2(γ 2 − 1)a1
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+
Nv−1∑
�=2

(
ε3

√
2(γ 2 − 1)

γ
J�+1a�+1 − ε3

√
2(γ 2 − 1)

γ
a�−1 J�−1

)

= I0ε
2(γ 2 − 1)a1 + ε3

√
2(γ 2 − 1)

γ

Nv−1∑
�=2

(J�+1a�+1 − J�−1a�−1).

Then, telescoping the sum above and noting that

ε3
√
2(γ 2 − 1)

γ
J1a1 = √

π(γ 2 − 1)εa1 = I0(γ
2 − 1)ε2a1

we arrive to the formula (4.1).
The formula for SJ can be proved in similar fashion, but this time we express J�

through I�−1 with the help of (2.6).

SJ
(2.6)=

Nv−1∑
�=1

εγ

√
�

2
I�−1

(
(γ 2 − 1)

√
� + 1a�+1 − √

�a�−1

)

(2.5)= εγ√
2

Nv−1∑
�=1

((� + 1)I�+1a�+1 − �I�−1a�−1)

= εγ√
2

Nv−1∑
�=1

((� + 1)I�+1a�+1 − (� − 1)I�−1a�−1) − εγ√
2

Nv−2∑
�=0

a� I�.

We note that the first term is a telescopic sum and can be computed as

Nv−1∑
�=1

((� + 1)I�+1a�+1 − (� − 1)I�−1a�−1)

=
{

(Nv − 1)INv−1aNv−1 for Nv odd.

Nv INv aNv for Nv even,

We observe that INv−1 = 0 for even Nv , therefore
∑Nv−2

�=0 a� I� =∑Nv−1
�=0 a� I� in this

case. On the other hand, for odd Nv , we can borrow the missing term −INv−1aNv−1
from the result of the telescopic sum. Putting it all together we arrive at the expression
(4.2).

For the last sum SĪ let us first use the representation (2.7) of Ī� through J�−1. This
yields two terms similar to the ones obtained for SI and SJ that can then be shown to
vanish with the same arguments. ��
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4.2 Mass

For a solution represented in the generalized Fourier–Hermite basis, the semi-discrete
mass is defined as

MNv,Nx (t) =
Nv−1∑
�=0

I�

∫ Lx

0

Nx∑
k=−Nx

ck
�(t) exp

(
2π ikx

Lx

)
dx = Lx

Nv−1∑
�=0

I�c0�(t).(4.4)

Analytically, the mass is conserved and for the semi-discrete version we have the
following result.

Theorem 4.1 (Fourier–Hermite mass evolution) The mass is preserved for an odd
number of basis functions Nv . Moreover,

dMNv,Nx (t)

dt
=
{
0, for Nv odd,

Lx
2ε2

γ 2 (γ 2 − 1)JNv−1[E(t) ∗ cNv−1(t)][0], for Nv even.

(4.5)

Proof Using the representation (4.4) together with expression (3.7), we get:

dMNv,Nx (t)

dt
=

√
2Lxε

γ

Nv−1∑
�=0

I�
(
(γ 2 − 1)

√
� + 1β0

�+1(t) − √
�β0

�−1(t)
)

,

where we have used the notation from (3.6) for the convolution. Using expression
(4.1) for the sum above with {β0

� (t)} in place of the sequence {a�}, we get

dMNv,Nx (t)

dt
= 2ε2Lx

γ 2 (γ 2 − 1)

{
JNvβ

0
Nv

(t), for Nv odd,

JNv−1β
0
Nv−1(t), for Nv even.

Keeping in mind that the closure scheme implies c0Nv
(t) = 0 for all t ∈ R+, and

hence β0
Nv

(t) = 0, for all t , we arrive to the expression (4.5). ��
Remark 4.1 Note that an analogous expression also holds on the semi-discrete level
in phase space, i.e. after the velocity discretization while the spatial variable is left
continuous.

4.3 Momentum

For our generalized Fourier–Hermite basis representation, the semi-discrete momen-
tum is given by

PNv,Nx =
Nv−1∑
�=0

J�

∫ Lx

0

Nx∑
k=−Nx

ck
�(t) exp

(
2π ikx

Lx

)
dx = Lx

Nv−1∑
�=0

J�c0�(t). (4.6)
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and evolves according to the following theorem.

Theorem 4.2 (Fourier–Hermite momentum evolution) The momentum is conserved
for even numbers of basis functions. Moreover,

dPNv,Nx (t)

dt
=
{

Lx Nv INv−1[E(t) ∗ cNv−1(t)][0], for Nv odd,

0 for, Nv even.
(4.7)

Proof Using the representation (4.6) together with the expression (3.7), we get

dPNv,Nx (t)

dt
=

√
2Lxε

γ

Nv−1∑
�=0

J�

(
(γ 2 − 1)

√
� + 1β0

�+1(t) − √
�β0

�−1(t)
)

.

Using (4.2) for the sum above with {β0
� (t)} in place of the sequence {a�}, we get

dPNv,Nx (t)

dt
= Lx

{
Nv INv−1β

0
Nv−1(t) −∑Nv−1

�=0 β0
� (t)I� for Nv odd,

Nv INvβ
0
Nv

(t) −∑Nv−1
�=0 β0

� (t)I� for Nv even.

Since the closure scheme implies c0Nv
(t) = 0, and hence β0

Nv
(t) = 0, for all t , for

even Nv , the term β0
Nv

(t) is zero. Let us now consider the sum
∑Nv−1

�=0 β0
� (t)I�. Using

formula (3.8) for the Fourier coefficients Ek(t) and E0 = 0, we get

Nv−1∑
�=0

β0
� (t)I� =

Nx∑
k=−Nx

k 
=0

i Lx

2πk

(
Nv−1∑
�=0

ck
�(t)I�

)(
Nv−1∑
�=0

c−k
� (t)I�

)
= 0.

��

4.4 Energy

Similarly to the other observables, the kinetic and the potential energies of the approx-
imated solution can be computed as

WK
Nv,Nx

(t) = Lx

2

Nv−1∑
�=0

Ī�c0�(t), W E
Nx

(t) = Lx

2

Nx∑
k=−Nx

|Ek(t)|2.

Theorem 4.3 (Fourier–Hermite energy evolution) For odd Nv , the energy is conserved,
i.e.

dWNv,Nx (t)

dt
= d

dt
(W E

Nx
(t) + W K

Nv,Nx
(t)) = 0.
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For even Nv , the time derivative of the energy can be computed as

dWNv,Nx (t)

dt
= iL2

x

2π

Nx∑
k=−Nx

ΔMk
Nv

(t)

k
E−k(t) + Lx

γ 2Nv + 1 − γ 2

2γ 2 JNv−1β
0
Nv−1(t)

(4.8)

with ΔMk
Nv

(t) = Lx
2ε2

γ 2 (γ 2−1)JNv−1β
k
Nv−1(t) and βk

Nv−1(t) = [E(t)∗cNv−1(t)][k].
Proof For the derivative of the electric energy, we need to consider the derivative of
the Fourier coefficients of the electric field. Using expression (3.8) for the coefficients
{Ek} and equation (3.7) for the coefficients ck

�(t), we get, for k 
= 0,

dEk(t)

dt
= d

dt

(
iLx

2πk

Nv−1∑
�=0

ck
�(t)I�

)
(3.7)= 1

εγ
√
2

Nv−1∑
�=0

I�(
√

�+1ck
�+1(t)+

√
�ck

�−1(t))

+
√
2iLxε

2πkγ

Nv−1∑
�=0

I�

(
(γ 2 − 1)

√
� + 1βk

�+1(t) − √
�βk

�−1(t)

)

Using (4.1) for the second sum, we get, for k 
= 0,

√
2iLxε

2πkγ

Nv−1∑
�=0

I�

(
(γ 2 − 1)

√
� + 1βk

�+1(t) − √
�βk

�−1(t)

)

=
{
0, for Nv odd,
iLx
2πk

2ε2

γ 2 (γ 2 − 1)JNv−1β
k
Nv−1(t), for Nv even,

where we used the fact that according to the closure scheme ck
Nv

(t) = 0 for all t > 0,
k = −Nx , . . . , Nx . As for the first sum, using the expression (2.6) of I� through J�−1
and J�+1, we get

1

εγ
√
2

Nv−1∑
�=0

I�(
√

� + 1ck
�+1(t) + √

�ck
�−1(t))

= I0
ck
1(t)

εγ
√
2

+ 1

γ 2

Nv−1∑
�=2

(J�+1ck
�+1(t) − J�−1ck

�−1(t)) +
Nv−1∑
�=2

J�−1ck
�−1(t).

=
{∑Nv−1

�=0 J�ck
�(t), for Nv odd,

1
γ 2 JNv−1ck

Nv−1(t) +∑Nv−2
�=0 J�ck

�(t), for Nv even,

where we used that

I0
ck
1(t)

εγ
√
2

=
√

πck
1(t)

ε2γ
√
2

= 1

γ 2 J1ck
1(t)
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and we added the term J0ck
0(t) to the sum for both odd and even Nv since J0 = 0.

The term JNv−1ck
Nv−1(t) we added for odd Nv only, since JNv−1 
= 0 for even Nv .

Introducing the notation ΔMk
Nv

(t) and putting everything together yields for even Nv

dW E
Nx

(t)

dt
= Lx

Nx∑
k=−Nx

iLx

2πk
ΔMNv (t)E−k(t)+ 1−γ 2

γ 2 JNv−1β
0
Nv−1(t)+

Nv−1∑
�=0

J�β
0
� (t)

and for odd Nv

dW E
Nx

(t)

dt
= Lx

Nv−1∑
�=0

J�β
0
� (t).

Let us now consider the kinetic energy. Using (3.7), the representation can be
expressed as

dWK
Nv,Nx

(t)

dt
= Lxε

γ
√
2

Nv−1∑
�=0

Ī�
(
(γ 2 − 1)

√
� + 1β0

�+1(t) − √
�β0

�−1(t)
)

.

Using the expression (4.3) for the sum above with {β0
� (t)} in place of the sequence

{a�}, we get

dWK
Nv,Nx

(t)

dt
= Lx

{−∑Nv−1
�=0 J�β

0
� (t), for Nv odd,

γ 2Nv+γ 2−1
2γ 2 JNv−1β

0
Nv−1(t) −∑Nv−1

�=0 J�β
0
� (t), for Nv even.

wherewe used again thatβ0
Nv

(t) = 0 for all t to eliminate the first termof the telescopic
sum for odd Nv .

Summing up the terms for kinetic and potential energy, we see that they cancel out
for odd Nv and find expression (4.8) for even Nv . ��

4.5 L2 norm

Finally, let us consider the L2 norm. Compared to the moments of the distribution
function, that we have considered so far, the computation of the L2 norm is more
involved, since we have a quadratic dependence on the distribution function. Let us
therefore first derive an expression for the semi-discrete L2 norm.

Proposition 4.1 (L2 norm) For a function fNv,Nx represented in the generalized Fou-
rier–Hermite basis as (3.5), the L2 norm can be computed as

‖ fNv,Nx ‖2L2

=
⎧⎨
⎩

√
π

ε
√
2Lx

∑Nx
k=−Nx

∑Nv−1
�=0 |ck

�(t)|2, if γ = √
2,

Lx
∑Nx

k=−Nx

∑Nv−1
�1,�2=0

�1+�2 is even

ck
�1

(t)c−k
�2

(t)〈Hγ,ε

�1
, Hγ,ε

�2
〉L2 , else, . (4.9)
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where

〈Hγ,ε

�1
, Hγ,ε

�2
〉L2 = 1

ε
√
2

Γ
(

�1+�2+1
2

)
√

�1!�2!
(
γ 2 − 2

) �1+�2
2

· 2F1

(
−�1,−�2; 1

2
(1 − �1 − �2);− 1

γ 2 − 2

)
,

(4.10)

with Γ and 2F1 being the gamma and hypergeometric functions, respectively.

Proof By the bilinearity of the inner product, we get

〈 fNv,Nx , fNv,Nx 〉L2([0,Lx ))×L2(R)

=
Nx∑

k1,k2=−Nx

Nv−1∑
�1,�2=0

ck1
�1

(t)c−k2
�2

(t)

〈
e
2π ik1x

Lx , e
2π ik2x

Lx

〉
L2([0,Lx ))

〈Hγ,ε

�1
, Hγ,ε

�2
〉L2(R)

= Lx

Nx∑
k=−Nx

Nv−1∑
�1,�2=0

ck
�1

(t)c−k
�2

(t)〈Hγ,ε

�1
, Hγ,ε

�2
〉L2(R),

where we have used the orthogonality of the Fourier basis in the second step.
Now, we only need to compute the products 〈Hγ,ε

�1
, Hγ,ε

�2
〉L2 . For the SW case, we

have

〈H
√
2,ε

�1
, H

√
2,ε

�2
〉L2 =

√
π

ε
√
2
δ�1,�2 .

For all other cases, we transform the integral to

〈Hγ,ε

�1
, Hγ,ε

�2
〉L2

v̄=ε
√
2v= 1

ε
√
2

1√
2�1+�2�1!�2!

∫
R

h�1

(
γ√
2
v̄

)
h�2

(
γ√
2
v̄

)
e−v̄2dv̄.

If �1 + �2 is odd, the integrand is odd and, hence, these terms vanish. When �1 + �2
is even, the expression (4.10) can be derived from [4, Eq. (1.5)]. ��
Remark 4.2 If the first two arguments of the hypergeometric function are negative
integers, the following form can be derived from [14, 9.14]

2F1 (−�1,−�2; c; z) =
min(�1,�2)∑

n=0

(
�1

n

)(
�2

n

)
n! zn

(c)n
,

where (·)n denotes the Pochhammer symbol. This gives the following expression for
the L2 product of the generalized Hermite functions

〈Hγ,ε

�1
, Hγ,ε

�2
〉L2 = 1

ε
√
2

Γ
(

�1+�2+1
2

)
√

�1!�2!
min(�1,�2)∑

n=0

(
�1

n

)(
�2

n

)
n! (−1)nξ

�1+�2
2 −n

( 12 (1 − �1 − �2))n
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with ξ = γ 2 − 2. For small values of ξ � 1, we observed the following asymptotic
behavior

〈Hγ,ε

�1
, Hγ,ε

�2
〉L2 = O

(
ξ |�1−�2|/2

)
. (4.11)

The limit ξ → 0 corresponds to γ → √
2, i.e., the limit of the SW case.

The conservation of the L2 norm is crucial for the numerical stability of themethod. Let
us first consider the special case of γ = √

2, which corresponds to the symmetrically
weighted case. Since then the weight is constant, a function f is in L2

ωSW
(R) if and

only if it is in L2(R).

Proposition 4.2 (L2 norm conservation for SW discretization) Let fNv,Nx be the
solution of the Galerkin projection of the generalized Fourier–Hermite method with
γ = √

2, i.e. the expansion coefficients satisfy (3.7). Then, the L2 norm of fNv,Nx is
preserved over time.

Proof Let us denote the differential operator of the Vlasov equation by L , i.e., we
write the Vlasov equations as ∂t f + L f = 0. By an integration by parts argument,
one can show that

〈 f , L f 〉L2((0,Lx ))×L2
ωSW

(R) = ωSW〈 f , L f 〉L2((0,Lx ))×L2(R) = 0.

Following [13, § 2, Eq. (2.5)], we write the Galerkin approximation as

∂ fNv,Nx

∂t
= L Nv,Nx fNv,Nx with L Nv,Nx = PNv,Nx L PNv,Nx ,

where PNv,Nx is the Galerkin projection operator that is selfadjoint in L2((0, Lx )) ×
L2

ωSW
(R), and hence in L2((0, Lx )) × L2(R). Therefore, we find

d

dt

∫
R

∫ Lx

0
fNv,Nx (x, v, t)2dxdv = π1/2

ε
√
2

d

dt
〈 fNv , fNv 〉L2((0,Lx ))×L2

ωSW
(R)

= π1/2

ε
√
2
〈 fNv,Nx , PNv,Nx L PNv,Nx fNv,Nx 〉L2((0,Lx ))×L2

ωSW
(R)

= π1/2

ε
√
2
〈PNv,Nx fNv,Nx , L PNv,Nx fNv,Nx 〉L2((0,Lx ))×L2

ωSW
(R)

= 〈PNv,Nx fNv,Nx , L PNv,Nx fNv,Nx 〉L2((0,Lx ))×L2(R) = 0.

��
The proof relies on the two major properties 〈 f , L f 〉L2((0,Lx ))×L2(R) = 0 and
〈PNv,Nx f , g〉L2((0,Lx ))×L2

ωSW
(R) = 〈 f , PNv,N x g〉L2((0,Lx ))×L2

ωSW
(R). If we take the

weighted Galerkin projection with a non-constant weight instead, which is the case
for all setups except for the SW one, we cannot transfer from the L2 norm of fNv,Nx to
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the weighted one by means of multiplication with a constant. Therefore, the Galerkin
projection operator is no longer self-adjoint. Indeed, the numerical results show that
the L2 norm is not conserved for all other choices of γ .

Alternatively, one could prove the L2 norm conservation for the SW case starting
from formula (4.9) using the differential equation (3.7) to replace the derivative. Then
the first part vanishes by a telescoping argument similar to the proofs of the other
conservation properties. The second part is not a telescopic sum but the two parts
sum up to a term multiplied by γ 2 − 2. Hence, also this part vanishes for the SW
case. However, for all other cases, the second term remains. Moreover, we will have
contributions from the off-diagonal terms in (4.9). Using (4.11) one can show that the
terms with �1 = �2 and |�1 − �2| = 2 have a linear dependence on the deviation of γ

from γSW in the limit γ → γSW, when neglecting the dependence of the coefficients
on γ . Indeed, the numerical results reported in Sect. 5.4 verify the linear decay close
to the SW case.

4.6 Conservation properties of the fully discrete system

Conservation of mass and momentum for Nv odd or even, respectively, readily trans-
lates to a time-discrete approximation. Energy conservation requires more structure
but is satisfied for the scheme proposed in Sect. 3.6 as the following theorem shows:

Theorem 4.4 For odd values of Nv the Fourier–Hermite discretization with a mid
point temporal discretization given by (3.11) conserves energy, i.e.,

WK,m+1
Nv,Nx

+ W E,m+1
Nx

= WK,m
Nv,Nx

+ W E,m
Nx

,

where

WK,m
Nv,Nx

(t) = Lx

2

Nv−1∑
�=0

Ī�c0,m� , W E,m
Nx

(t) = Lx

2

Nx∑
k=−Nx

|Em
k |2.

Proof With the same arguments as in the proof of Theorem 4.3, we find that

WK,m+1
Nv,Nx

= WK,m
Nv,Nx

− LxΔt
Nv−1∑
�=0

J�

[
Em+1 + Em

2
∗ cm−1

� + cm
�

2

]
[0]

and

Em+1
k = Em

k + Δt
Nv−1∑
�=0

J�

ck,m+1
� + ck,m

�

2
.
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With the latter expression for Em+1
k , we find

W E,m+1
Nx

= Lx

2

Nx∑
k=−Nx

(
|Em

k |2 + Δt Em+1
−k

Nv−1∑
�=0

J�

ck,m+1
� + ck,m

�

2

+Δt Em
k

Nv−1∑
�=0

J�

c−k,m+1
� + c−k,m

�

2

)

= W E,m
Nx

+ LxΔt
Nx∑

k=−Nx

Em+1
−k + Em

−k

2

Nv−1∑
�=0

J�

ck,m+1
� + ck,m

�

2

= W E,m
Nx

+ LxΔt
Nv−1∑
�=0

J�

[
Em+1 + Em

2
∗ cm−1

� + cm
�

2

]
[0].

This proves the assertion. ��

4.7 Comparative summary

For the generalized Fourier–Hermite discretization of the Vlasov–Poisson equation
with a zero closure of the truncated expansion, all even (odd) moments of the distribu-
tion function are conserved over time for an odd (even) number of basis functions. In
terms of the conservation of moments, the asymmetrically-weighted setup is special,
sincemass,momentum, and energy are conserved due to the fact that I� = J� = Ī� = 0
for all indices � > 2. In particular, the mass, momentum, and energy are defined by
the 0th, 1st, or 0th and 2nd AW Hermite function, respectively. For this reason, it is
only possible for the asymmetrically weighted method to damp higher modes or add
a velocity shift without affecting the conservation properties.

On the other hand, the L2 norm is only conserved for the symmetrically-weighted
case, where the discretization corresponds to a non-weighted Galerkin scheme. This
is of special importance, since L2 norm conservation is linked to numerical stability.
For all other choices of the method, a numerical stabilization is required by e.g. adding
(hyper)viscosity or filtering of high modes. Since the effect of such a stabilization is
unphysical, it is desirable to keep its amount as small as possible. From the dependence
of the L2 norm deviation on the parameter γ , it is clear that the norm error decreases
to zero as γ = √

2 is approached. This fact is also confirmed in our numerical exper-
iments. For this reason, the further γ from the symmetric case, the more stabilization
needs to be added. The choice of an intermediate value of γ between γAW = 1 and
γSW = √

2 offers the possibility to optimize the method parameter in such a way that
a good compromise between the amount of stabilization that is necessary is balanced
against the amount of violation of the conservation properties.
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5 Numerical results

The generalized Fourier–Hermite method has been implemented in MATLAB. The
parameter ε of the generalized Hermite basis, corresponding to the width of the Gaus-
sians, is chosen based on the initial conditions of the corresponding test cases. The
parameter γ , however, is left free and its influence is studied. For propagation in time
with the conservative mid-point scheme as described in 3.6 we use a time step of
Δt = 0.01 in all our simulations.

5.1 Test cases

First, we introduce three standard test cases that we will use for our numerical study.

5.1.1 Landau damping

The initial distribution for this case takes the following form

f0(x, v) = 1√
2π

(1 + α cos(k0x))e−v2/2, x ∈
[
0,

2π

k0

]
, v ∈ R.

For our numerical experiments, we take α = 0.05 and k = 0.5. For the verification of
the results, we compare the damping rate to the rate of −0.1533 predicted by linear
theory.

Since we only have one Gaussian, we fix ε = 1√
2
for the Hermite basis in order

to match the width of the Gaussian. Then, the initial value is exactly represented with
coefficients

c00(0) = 1√
2π

, c10(0) = c−1
0 (0) = 0.025√

2π
, c�

k = 0 otherwise.

For the Landau damping, we choose a resolution of Nx = 32—that is 65 modes—in
space and Nv = 32 or Nv = 33.

5.1.2 Two-stream instability

The following initial distribution yields the two-stream instability test case

f0(x, v) = 1

2
√
2π

(1 + α cos(k0x))

(
e− (v−v0)2

2 + e− (v+v0)2

2

)
,

x ∈
[
0,

2π

k0

]
, v ∈ R,

with α = 0.001, k = 0.2 and v0 = 3. In this case, the linear theory predicts a
growth rate of 0.569. We set ε = 1√

2
that matches the width of the Gaussians and use

Proposition 4.1 to approximate the initial value. We choose a resolution of Nx = 32
in space and Nv = 64 or Nv = 65 in velocity.
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5.1.3 Bump-on-tail instability

Finally, we consider the initial distribution

f0(x, v) = 1√
2π

(1 + α cos(kx))

⎛
⎝ δ

σ1
e
− v2

2σ21 + 1 − δ

σ2
e
− (v−vb)2

2σ22

⎞
⎠

with k = 0.3, α = 0.03, δ = 9
10 , σ1 = 1, σ2 = 1√

2
, and vb = 4.5. For the initialization

we use the result of Lemma 3.1 with the corresponding parameters. We set the width
of the Gaussian to ε = 0.83, which proved to give good results in this case. The
resolution is chosen as for the two-stream instability.

5.2 Verification of themethod for an intermediate �

First, we set γ = √
2 − 0.1, which corresponds to an intermediate case between

γAW = 1 and γSW = √
2, and compare the results to linear theory. In Fig. 1a, the

evaluation of the electric energy over time is shown for simulations of the bump-on-
tail instability with Nv = 64 and Nv = 65, respectively. During the linear phase
both simulations match the results predicted by linear theory (cf. [24]). Moreover, we
compare the deviation in mass, momentum, and energy with the values obtained by
the analytic predictions derived in (4.5), (4.7), and (4.8), which we have propagated
with the same temporal approximation as the original problem. Figures 1b–d show
that the observables are indeed preserved up to machine precision where predicted and
otherwise match the analytical formulas (up to machine precision). We have repeated
the same experiments for the other two test cases as well with the same results (not
shown in the paper).

For the Landau damping test case, we have shown in Fig. 2a the evolution of the
electric energy for the SW, the AW, and an intermediate method. We observe that the
exact damping rate is recovered the longest for the intermediate value of γ , while the
well-known numerical recurrence phenomenon occurs the latest for the SW case. This
shows that the choice of γ influences the quality of the solution and intermediate values
can be advantageous. Note that the results can be improved by adding an articifical
collision term as shown in [6].

5.3 L2 stability

Figure 2b shows the evolution of the L2 norm for the Landau damping test case for
three values of γ . As predicted, the L2 norm is only conserved in the SWcase, however,
no numerical stability issues were encountered for this test case.

For the other two test cases, the choice of the parameter γ clearly affected the
numerical stability of the algorithm. In order to illustrate this, we run simulations for
γ ∈ [ε√2 − 0.4, ε

√
2 + 0.25] with a step of 0.02 and report in Figs. 3a, b the time

tmax ∈ (0, 100] that could be reached before the error in the L2 norm exceeded 10
(with analytic values between 2 and 3). One can see in the figures that the closer we
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(a) Electric energy.
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(b) Mass conservation/evolution.
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(c) Momentum conservation/evolution.

0 10 20 30 40 50

time

10 -40

10 -30

10 -20

10 -10

10 0

re
la

tiv
e 

er
ro

r i
n 

en
er

gy

(d) Energy conservation/evolution.

Fig. 1 Bump-on-tail instability. Mass and energy are preserved for odd Nv , whereas the momentum for
even Nv . The deviation in the non-preserving cases matches the analytic prediction
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Fig. 2 Landaudamping.The choice ofγ corresponding to theSWmethodyields exact L2 normconservation
and delays the recurrence in the electric field the most
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(a) Two-stream instability
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(b) Bump-on-tail instability.

Fig. 3 Maximum time in (0, 100] where the simulation can considered to be stable. One can see that setups
close to the SW case demonstrate better stability

get to the SW case (with zero deviation), the further we can run the simulation without
stability issues for both even and odd number of basis functions. For the two-stream
instability, the range of the values of the deviation where the simulation has reached
the time 100 is slightly wider for Nv = 65. However, in Fig. 3b we see that for the
bump-on-tail test case this range is the same for Nv = 64 and Nv = 65. Note that
the AW case corresponds to a deviation of about −0.29 in the two-stream instability
experiments and −0.35 for bump-on-tail.

5.4 Conservation of the observables

In this section, we study the conservation properties of themethod depending on γ .We
simulate until time 30 and report the maximum deviation in mass, momentum, energy,
and L2 norm in this time interval as a function of γ . Here, we vary γ ∈ [−0.3, 0.05]
in the two-stream instability test case and γ ∈ [−0.15, 0.05] in the bump-on-tail test
case with a step of 0.01 in both cases. In light of the results of the previous section,
we consider the simulation to be numerically stable in this range. Note that the range
does not include the AW case for the bump-on-tail test.

Figures 4a and 5a show the results for the two test cases with an even number
of basis functions. As predicted, the odd moment vanishes. The even moments are
conserved for the AW case and, remarkably, also for values close to this case, but
show a more or less monotonic increase towards the SW case and beyond. For an odd
number of basis functions, the roles of odd and even moments are swapped as shown
in Figs. 4b and 5b. Only for the two-stream instability, where the momentum is zero
due to the symmetry in the initial value, the momentum is numerically conserved as
well.

The behavior of the L2 norm shows a moderate increase for values of γ away from
the SW case. However, close to the SW case it shows a sharp decay, since the SW
case is the only choice with L2 norm conservation. We therefore show a zoom of the
L2 norm conservation in Fig. 6 in a double logarithmic plot. Close to the SW case,
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(a) Nv = 64.
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Fig. 4 Two-stream instability. The maximum error in mass and energy grows with the deviation. L2 error
is zero for the SW case and considerably larger for all other data points. Note that mass is exactly conserved
for the AWmethod, since it only depends on the zeroth coefficient that is not propagated. This explains the
hole in the curve due to the logarithmic scale
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(a) Nv = 64.
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(b) Nv = 65.

Fig. 5 Bump-on-tail instability. The maximum error in mass and energy grows with the deviation. L2 error
is zero for the SW case and considerably larger for all other data points

the error in the L2 norm decreases linearly as a function of the deviation. This can
be linked to the asymptotic behavior of the offdiagonal terms 〈Hγ,ε

�1
, Hγ,ε

�2
〉ω (cf. the

discussion at the end of Sect. 4.5).
Finally, let us observe that the conservation of mass and energy is still dominated

by roundoff erros for γ around 1.2 while the L2 norm is already several orders of
magnitude improved for this range of values of γ for the two-stream instability test in
Fig. 4a.

6 Conclusions and outlook

In this paper, we have studied a generalized Fourier–Hermite discretization of the
Vlasov–Poisson equation. We have derived exact formulas for the error in mass,
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Fig. 6 Zoomed decay of the L2 norm close to the SW setup in double logarithmic scale

momentum, and energy evolution over time. Moreover, we have performed a numer-
ical comparison of the methods depending on the scaling parameter γ . From the
experiments above, we can see the convenience of having two parameters in the basis.
The parameter ε, corresponding to the width of the Gaussian in the basis, is usually
adapted to the initial distribution. The parameter γ , however, allows to vary the scaling
of the argument of the Hermite polynomials in the basis, which in practice means that
it controls the ratio between the scaling of the exponent and the Hermite polynomial
in the basis. The AW and SW methods are just cases of specific values of γ .

The general theoretical framework derived in this paper also highlights the special
properties of the SW and AW cases. The SW setup that implies working in a standard
L2(R) space is the only method offering exact L2 norm conservation. Moreover, the
new generalized approach devised in this paper allowed us to demonstrate that this
is indeed a distinct property of the SW method and even a small deviation yields
substantial loss in L2 norm conservation. On the other hand, only the AW method
allows for simultaneous conservation of mass, momentum, and energy. However, as
we have seen in our numerical study, deviation from the AW method does not imme-
diately yield considerable losses in terms of conservation. Moreover, the analytical
formulas for the loss in conservation can potentially be used to adapt the size of the
generalized Hermite basis during simulation and for an optimization of the method
parameter. Monitoring the loss in L2 norm conservation, on the other hand, may be
used to automatically adjust the hyperviscosity in stabilizing methods other than the
SW method.

Further directions of future research include an extension of the method to multiple
dimension based on the anisotropic extension of the basis that was introduced in [19]
in the context of radial basis function stabilization. The anisotropy is supposed to be
beneficial in a setup with a guide field causing an anisotropy in the velocities parallel
and perpendicular to the field.
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