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“The behavior of large and complex aggregates of

elementary particles is not to be understood in terms

of a simple extrapolation of the properties of a few

particles. Instead, at each level of complexity entirely

new properties appear, and the understanding of the

new behaviors requires research as fundamental in

its nature as any other.”

— P.W. Anderson (1923 – 2020)

in More is different





A B S T R A C T

We study the thermalization dynamics of many-body quantum systems, ranging

from many-body chaos close to a phase transition over eigenstate thermalization

in quantum simulators and gauge theories to the emergence of superdiffusive

transport in long-range systems. We also develop non-equilibrium probes of phases

of matter, including spin spiral order, a Hartree Fock theory of the disordered

Coulomb gas and a time dependent spectroscopy protocol for spinon excitations.

K U R Z Z U S A M M E N FA S S U N G

Wir untersuchen die Thermalisierungsdynamik von Quantensystemen, vom Vielteil-

chenchaos in der Nähe eines Phasenübergangs über Eigenzustandsthermalisierung

in Quantensimulatoren und Eichtheorien bis zum superdiffusiven Transport in

langreichweitig wechselwirkenden Systemen. Wir entwickeln auch Nichtgleichge-

wichtsproben für Materiephasen, einschließlich des Zerfalls von Spinspiralen, einer

Hartree-Fock-Theorie des ungeordneten Coulomb-Gases und eines zeitabhängigen

Spektroskopieprotokolls für Spinonanregungen.
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S U M M A RY

How do closed many-body quantum systems prepared in a non-equilibrium state

relax to thermal equilibrium? In this thesis, we study this question through the

lens of two-time correlation functions, which allow to identify the underlying

mechanisms in detail. We study several stages of the thermalization process and

develop protocols to probe them via two-time correlators in quantum simulators.

At the earliest times, quantum information is spread quickly through the sys-

tem. We use the two-time out-of-time-ordered correlation function to quantify the

spreading of many-body chaos in a relativistic scalar field theory. We find that

close to the thermal phase transition, chaos spreads quickest. This is contrary to the

expectation that dynamics are in general slowed down on approach to criticality.

The eigenstate thermalization hypothesis (ETH) has been conjectured to be the

mechanism underlying the thermalization process. We find a way of probing the

off-diagonal part of ETH in quantum simulators without any theory input via

two-time correlators, enabling the study of thermalization in a regime inaccessible

to numerical methods. In systems which do not thermalize fast, we show how to

identify non-thermal excitations directly in experiment.

We furthermore develop a non-equilibrium quantum field theory method for

quantum electrodynamics in one spatial dimension. We characterize thermalization

of a string via two-time correlators, finding several distinct time scales in the

relaxation.

At the latest times, classical hydrodynamic transport of conserved quantities is ex-

pected to dominate the dynamics as the quantum system has effectively dephased

itsself. However, this regime is challenging to capture both numerically and in

quantum simulation experiments as it only appears at late times. We show that non-

equilibrium quantum field theory methods can access the hydrodynamic regime. In

particular, we find that long-range interacting systems exhibit superdiffusive emer-

gent transport at late times by calculating the two-time correlation function related

to the conserved quantity. We test our predictions by comparing our theoretical

results to a quantum simulation experiment with trapped ions, finding agreement.

The universality of these thermalization phenomena become apparent when

considering the range of physical implementations which we study in this thesis,

ranging from non-relativistic to relativistic systems, from fermionic over bosonic

species to spin systems, and from short- over long-range to gauge-boson-mediated

interactions.
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In the second part of the thesis, we use some of these results to probe equilibrium

phases of matter. First, in the Heisenberg model, we characterize the instabilities of

spin spiral states related to sought-after spin superfluids, showing that they decay

via the build-up of transverse fluctuations. Second, we develop a Hartree-Fock

method which includes screening to describe the three dimensional disordered

Coulomb gas. Third, we develop a protocol to measure time-dependent angle-

resolved-photoemission spectra, a two-time function, with cold atoms. In particular,

we show that unoccupied spinon states can be excited by a magnetic field gradient

and imaged by our spectroscopy method, enabling more detailed studies of spinon

Fermi seas appearing in spin liquids.

Z U S A M M E N FA S S U N G

Wie relaxieren geschlossene Vielteilchenquantensysteme, die sich in einem Nicht-

gleichgewichtszustand befinden? In dieser Arbeit untersuchen wir diese Frage aus

dem Blickwinkel der Zwei-Zeiten-Korrelationsfunktionen, die es ermöglichen, die

zugrunde liegenden Mechanismen im Detail zu identifizieren. Wir untersuchen

verschiedene Phasen des Thermalisierungsprozesses und entwickeln Protokolle,

die die Untersuchung von Thermalisierung mit Hilfe von Zwei-Zeiten-Korrelatoren

in Quantensimulatoren ermöglichen.

Zu den frühesten Zeitpunkten wird Quanteninformation schnell durch das Sys-

tem verbreitet. Wir verwenden die zeitlich ungeordnete Korrelationsfunktion, um

die Ausbreitung von Vielteilchenchaos in einer relativistischen Skalarfeldtheorie

zu quantifizieren. Wir stellen fest, dass sich in der Nähe des thermischen Pha-

senübergangs das Chaos am schnellsten ausbreitet. Dies steht im Gegensatz zu

der Erwartung, dass die Dynamik bei Annäherung an den kritischen Punkt im

Allgemeinen verlangsamt wird.

Die Eigenzustandsthermalisierungshypothese (ETH) beschreibt den zugrunde-

liegenden Mechanismus für Thermalisierung. Wir haben einen Weg gefunden,

den Nebendiagonalteil der ETH in Quantensimulatoren ohne die Zuhilfenahme

von numerischen Ergebnissen über Zwei-Zeiten-Korrelatoren zu untersuchen. Dies

ermöglicht die Untersuchung der Thermalisierung in einem Bereich, der für nume-

rische Methoden unzugänglich ist. In Systemen, die nicht schnell thermalisieren,

zeigen wir, wie man nichtthermische Anregungen direkt im Experiment identifizie-

ren kann.

Darüber hinaus entwickeln wir eine Nichtgleichgewichtsquantenfeldtheorieme-

thode für die Quantenelektrodynamik in einer räumlichen Dimension. Wir charak-

x



terisieren die Thermalisierung eines Strings mit Hilfe von Zwei-Zeiten-Korrelatoren

und finden mehrere unterschiedliche Zeitskalen in der Relaxation.

Es wird erwartet, dass zu den spätesten Zeitpunkten die Dynamik vom klassi-

schen hydrodynamischen Transport von Erhaltungsgrößen dominiert wird, da das

Quantensystem sich selbst effektiv dekoheriert hat. Es ist jedoch schwer, dieses Re-

gime sowohl numerisch als auch in Quantensimulationsexperimenten zu erfassen,

da es erst zu späten Zeitpunkten auftritt. Wir zeigen, dass Methoden der Nicht-

gleichgewichtsquantenfeldtheorie den Zugang zum hydrodynamischen Regime

ermöglichen. Insbesondere stellen wir fest, dass langreichweitig wechselwirkende

Systeme superdiffusiven emergenten Transport zu späten Zeiten entwickeln, indem

wir die Zwei-Zeiten-Korrelationsfunktion in Bezug auf die Erhaltungsgröße berech-

nen. Wir testen unsere Vorhersagen, indem wir unsere theoretischen Ergebnisse

mit einem Quantensimulationsexperiment mit gefangenen Ionen vergleichen und

Übereinstimmung feststellen.

Die Allgemeingültigkeit dieser Thermalisierungsphänomene wird deutlich, wenn

man die Bandbreite der physikalischen Implementierungen betrachtet, die wir in

dieser Dissertation untersuchen: von nichtrelativistischen bis zu relativistischen

Systemen, von fermionischen über bosonische Spezies bis hin zu Spinsystemen und

von kurz über langreichweitige bis hin zu eichbosonvermittelten Wechselwirkungen.

Im zweiten Teil der Dissertation nutzen wir einige dieser Ergebnisse, um Gleich-

gewichtsphasen von Materie zu untersuchen. Zunächst charakterisieren wir im

Heisenbergmodell die Instabilitäten von Spin-Spiral-Zuständen, die mit Spinsu-

praflüssigkeiten zusammenhängen, und zeigen, dass sie durch den Aufbau von

Transversalfluktuationen zerfallen. Zweitens entwickeln wir eine Hartree-Fock-

Methode, die Abschirmung beinhaltet, um das dreidimensionale ungeordnete

Coulomb-Gas zu beschreiben. Drittens entwickeln wir ein Protokoll zur Mes-

sung von zeitabhängigen und winkelaufgelösten Photoemissionsspektren, einer

Zwei-Zeiten-Funktion, mit kalten Atomen. Insbesondere zeigen wir, dass unbesetz-

te Spinonzustände durch einen Magnetfeldgradienten angeregt und mit unserer

Spektroskopiemethode abgebildet werden können, was detailliertere Studien von

Spinonfermiseen in Spinflüssigkeiten ermöglicht.
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1
I N T R O D U C T I O N

1.1 thermalization of closed many-body systems

1.1.1 Classical mechanics

Scientists have been fascinated for centuries by a process called thermalization, the

fundamental mechanism of how non-equilibrium states relax toward thermal equi-

librium. Famously, Boltzmann [1] and Loschmidt [2] discussed in a fiery exchange

how macroscopic, irreversible, thermodynamics with an apparent arrow of time [3]

emerge from the microscopic, reversible dynamics described by Newton’s equations.

One important hall-mark of thermal equilibrium is that only very little information

is needed to accurately describe the macroscopic behaviour. Only a single function,

for example the free energy, needs to be known to determine macroscopic observ-

ables such as specific heat or susceptibilities. Contrastingly, the location and velocity

of every single constituent particle, or in case of quantum physics, the wavefunction

of the system, needs to be known to specify the microscopic state of the system. The

thermalization process is hence accompanied by a drastic reduction of the amount

of information needed to describe the macroscopic properties of the system. This ob-

servation marks thermalization as a classic example of an emergent phenomenon as

termed by Anderson [4], and, in the context of ecology, by Haber [5]: the interaction

between many microscopic constituents can lead to an entirely different effective

description of the macroscopic behaviour. For example, it is not necessary to un-

derstand the quantum physics of every single molecule to describe the behaviour

of living cells. However, how emergence works in detail is unknown despite the

ubiquity of this concept and understanding emergence in specific circumstances

is one of the most challenging problems in science in general. For example, the

emergence of human consciousness from the seemingly simple mechanics of neural

networks belongs to this class of problems. Similarly, thermalization is the process

of the emergence of statistical mechanics from Newton’s equations. It is clear that

this process must involve some ignorance from the observer’s perspective: If they

could follow every single particles’ trajectory, reversibility would always be retained

as Newton’s equations would allow a perfect recovery of the initial state [6], i.e.

the dynamics are reversible. On the contrary, thermodynamics is irreversible as

postulated in the second law. Boltzmann thought he had found a theorem proving

1



2 introduction

the approach to equilibrium [1], now called the “H-theorem” because of the cap-

ital letter he used for the quantity corresponding to the entropy. He showed this

quantity to increase with time as demanded by the second law of thermodynamics.

However, his way of introducing “ignorance” into the description, molecular chaos

(Stoßzahlansatz), later was identified to artificially introduce irreversibility. Modern

explanations of thermalization in classical systems are based on two assumptions,

which are partially based on analytical and numerical evidence 1, dynamical chaos

and the ergodic hypothesis.

chaos The discovery of dynamical chaos [8] in numerical simulations gave

some explanation for the emergence of an effective arrow of time. Chaos is the

observation that the distance between two states initially prepared close to each

other increases very quickly with time. As we cannot know the initial state with

arbitrary precision, this means that following the state of a large system of particles

is close to impossible. This effect has also been termed the “butterfly effect”: In

principle, a small difference in how a butterfly flaps its wings could mean the

difference between a storm being created on the other end of the world, or not.

Dynamical chaos is a result of the non-linearity of classical interacting systems,

leading to the potential of large forces being created by a small perturbation. See

Refs. [9, 10] for more thorough introductions into this field.

ergodicity The ergodic hypothesis [11] is the other cornerstone of explaining

the emergence of statistical mechanics in classical systems. It formulates the expec-

tation that the time evolved state visits every possible phase space point during

the dynamics. This assumption serves as a way to make the ensemble formulation

of statistical mechanics plausible: Despite the fact that a physical system only ex-

ists once, statistical mechanics calculates its properties from many realizations of

the same system, the ensemble. In the microcanonical ensemble, for instance, all

phase space configurations within a small shell of the conserved quantities such as

energy and particle number serve as members of the ensemble, where every state

is assumed to be equally probable. The ergodic hypothesis replaces the ensemble

picture with a time evolution: As it assumes that the time evolving system visits

every single phase space point (under the constraints of conserved quantities) and

spends the same time in each state, observing a single system over a long time is the

same as averaging over all states. Although the ergodic hypothesis has been proven

in some systems [12–15], its practical implications are weakened by the fact that the

time it takes to explore the whole phase space of the system scales exponentially

1 The presentation in the remainder of this subsection as well as the following subsection is based on

Ref. [7]
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with its size. Moreover, following the ergodic hypothesis, only the time averaged

state would look thermal, but not the state at every instance of time. However, it

is clear from both experiments and our everyday experience that thermalization

is in general faster than exponential and macroscopic objects are in equilibrium

even for one instance of time. One may hence formulate a different hypothesis:

One does not need to observe all phase space points of a system in order to find

agreement with the ensemble average. Instead, a single phase space point suffices

because macroscopic observables take similar values in most phase space points.

Hence, thermalization only amounts to reaching a “typical” phase space point

rather than exploring all possible phase space points and averaging over all of

them. “Typical” in this case means that macroscopic observables agree between

typical phase space points. While this hypothesis makes sense intuitively, it is hard

to rigorously formulate in classical mechanics. As we will see in the following,

quantum mechanics enables the definition of thermalization in much more concrete

terms, related to a similar notion of typicality of states, despite initial difficulties in

porting the concepts of ergodicity and chaos to the quantum world.

1.1.2 Quantum mechanics

With the advent of quantum mechanics, explaining irreversibility from microscopic

laws seemed even more difficult than in classical mechanics. Dynamical chaos

is absent in the Schrödinger equation when employing a straight-forward gen-

eralization of the classical concept. To see this, consider two initial states |Ψ1〉
and |Ψ2〉 and define the “distance” between the two states as | |Ψ1〉 − |Ψ2〉 |2 =

2(1− Re(〈Ψ1|Ψ2〉)). The states evolved under a time-independent Hamiltonian Ĥ

are given by |Ψ1/2(t)〉 = e−iĤt |Ψ1/2〉. Therefore, the distance measure between the

two time evolved states does not diverge exponentially but is in fact constant, as

〈Ψ1(t)|Ψ2(t)〉 = 〈Ψ1|Ψ2〉. Of course, this is a quite naive generalization of classical

dynamical chaos, relying on the intuition that the components of the wavefunction

are the generalization of classical phase space. However, the wavefunction of a

macroscopically large system is not measurable as it would require exponentially

many measurements in system size/number of particles. Similarly, the ergodic

hypothesis is difficult to generalize to quantum systems as even the notion of

trajectories is ambiguous due to two reasons: On the one hand, the momentum

and position of a particle can not be measured at the same time due to the uncer-

tainty principle. On the other hand, particles are indistinguishable and hence their

trajectory can not be traced individually. While Wigner-Weyl quantisation offers

a generalization of phase space to quantum systems, the resulting phase-space



4 introduction

function can be negative and therefore can not be interpreted as a probability

distribution, contrary to the classical phase space distribution. Finally, it has been

explicitly shown that most states of the exponentially large Hilbert space are only

reached in exponential time under time evolution [16]. Hence, the notion of ergod-

icity is not useful in practice. Von Neumann already recognized these difficulties in

a pioneering work aimed at generalizing Boltzmann’s H-theorem to quantum me-

chanics [17, 18]. He proposed to focus on observables rather than the wave function

when discussing thermalization, similar in spirit to the “typical phase space point”

approach we discussed in the context of classical systems. However, it took another

major innovation to put this picture on more sturdy feet: random matrix theory.

quantum chaos The application of the theory of random matrices [19, 20]

to the study of quantum Hamiltonians is often called “quantum chaos”, despite it

being unrelated to dynamical chaos in classical systems. Loosely speaking, however,

they share the common concept of introducing randomness through complexity. In

the case of dynamical chaos, complexity is introduced by the non-linear equations

of motion. In quantum chaos, the exponentially large Hilbert space leads to the

Hamiltonian having statistical properties resembling those of a random matrix.

Wigner introduced this hypothesis in the context of studying the energy levels of

large nuclei [21]. More generally, interacting, time-reversal symmetric quantum

systems show statistical properties resembling a Gaussian orthogonal ensemble

(GOE)2. It is defined by the probability distribution

P(Ĥ) ∝ exp
(
− 1

2σ2 Tr
(

Ĥ2)
)

, (1.1)

where σ2 sets the variance, i.e. the energy scale and Ĥ are real symmetric matrices.

A frequently used statistic to compare non-random Hamiltonians of many-body

systems to random matrices is the ratio of consecutive levelspacings

ri =
min(Ei+1 − Ei)

max(Ei+1 − Ei)
, (1.2)

where Ei are the sorted eigenvalues. For the GOE, the probability distribution of the

ri is approximately given by

PGOE(r) =
27
4

r + r2

(1 + r + r2)5/2 . (1.3)

One of the most important features of this distribution is that limr→0PGOE(r) = 0,

which is often referred to as level repulsion3. It is the many-body generalization

2 The Gaussian orthogonal ensemble is replaced by the Gaussian unitary ensemble if time-reversal

symmetry is broken, e.g. in the presence of a magnetic field.
3 In order to see random matrix behaviour in non-random Hamiltonians, one needs to look at a suffi-

ciently small energy window as well as resolve all symmetries. We will discuss the first requirement
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of avoided crossings induced by off-diagonal elements in a 2× 2 matrix and is

therefore usually attributed to the presence of many-body interactions 4. Contrarily,

a non-interacting system has been conjectured by Berry and Tabor [23] to have a

nearest-neighbour level spacing statistic following the one of a Poisson distribution,

PPOI(r) = 2/(1+ r)2. Crucially, this distribution has its maximum at vanishing level

spacing. This means that free systems have an energy level statistic as if energy

levels were simply sprinkled on an interval. Contrarily, interacting systems show

correlations between energy levels, reducing the probability for them to be close

in energy. The emergence of random matrix behaviour has been tested in many

circumstances and we will show one specific example in section 6.2.

One of the most intriguing features of random matrices is the structure of the

matrix elements of Hermitian matrices Â = ∑k Ak |k〉 〈k| (i.e. observables) with

respect to the eigenstates |n〉 of random matrices,

〈m|Â|n〉 ≈ Āδmn +

√
A2

D Rmn, (1.4)

where Al = 1
D ∑k Al

k, D is the dimension of the Hilbert space and Rmn are random

numbers with vanishing mean and variance 1 (off-diagonal elements) or 2 (diagonal

elements). As Al is a D-independent number, the above expression shows that for

random matrices, the ensemble average over many matrices is equivalent to the

“infinite volume limit” D → ∞ in a fixed random matrix - in both cases, the off-

diagonal matrix elements vanish. This is similar to the corresponding assumption

in traditional statistical mechanics.

eigenstate thermalization For a non-random many-body Hamiltonian

Ĥ it is clear that the random matrix theory result for matrix elements of operators

(1.4) must be modified to include an energy dependence of the right hand side as

microcanonical expectation values depend on energy. In particular, the off-diagonal

elements must be adapted to account for the energy dependence of the density of

states. In a seminal paper [24], Srednicki proposed the following ansatz based on

previous works [25, 26], now known as the eigenstate thermalization hypothesis:

〈n|Â|m〉 = A(Ē)δnm + e−S(Ē)/2 fA(Ē, Em − En)Rnm, (1.5)

where A(Ē) is the microcanonical expectation value of operator Â at energy Ē =

(En + Em)/2, S is the thermodynamic entropy, Rnm are random numbers with mean

in detail when introducing the eigenstate thermalization hypothesis. The second requirement comes

from the fact that states in two symmetry sectors do not have any reason for repelling each other as

the two symmetry sectors do not interact. Hence, level repulsion would be artifically reduced.
4 See Ref. [22] for a short introduction to level repulsion and its generalization to the interaction of a

single level with a continuum.
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zero and unit variance. fA(Ē, Em − En) and A(Ē) are smooth functions of their

arguments. To see the implications for thermalization of the ETH ansatz, consider

the expectation value of Â with respect to a time evolved state,

〈Ψ(t)|Â|Ψ(t)〉 = ∑
m
| 〈m|Ψ〉 |2 〈m|Â|m〉+ ∑

m,n 6=m
〈m|Ψ〉 〈Ψ|n〉 〈n|Â|m〉 e−i(Em−En)t.

(1.6)

In order to show thermalization, this expectation value needs to agree with the

microcanonical expectation, i.e. A(EΨ), where EΨ = 〈Ψ|Ĥ|Ψ〉 is the energy of the

initial state. In a system without extensive degeneracies, the second, time-dependent

term is expected to average to zero due to dephasing between the oscillating terms,

which may be enforced by taking the long time average. Then, inserting the ETH

ansatz, we get

〈Ψ(t)|Â|Ψ(t)〉 t→∞−→∑
m
| 〈m|Ψ〉 |2A(Em) ≡ Ā. (1.7)

This agrees with the microcanonical expectation value if the energy fluctuations of

the | 〈m|Ψ〉 |2 are small (i.e. subextensive), because the function A(E) in the ETH

ansatz is assumed to be smooth. Energy fluctuations are indeed small for most

physical initial states, see e.g. Ref. [27] for a proof that product states fulfill this

condition. Put differently, the overlaps with the initial state | 〈m|Ψ〉 |2 represent a

new thermodynamic ensemble which agrees with the microcanonical one due to

the vanishing energy fluctuations.

In a similar way, it can be shown from ETH that fluctuations around the long-time

value are small,
(
〈Ψ(t)|Â|Ψ(t)〉2 − Ā2

)
t→∞−→ ∑

m,n 6=m
| 〈m|Ψ〉 |2| 〈n|Ψ〉 |2| 〈n|Â|m〉 |2 (1.8)

≤ max| 〈n|Â|m〉 |2 (1.9)

∝ e−S(Ē)/2 (1.10)
L→∞−→ 0 (1.11)

due to the extensivity of the thermodynamic entropy. Hence, the diagonal part

of ETH dictates that expectation values of operators in a time evolved state agree

with the microcanonical expectation and the off-diagonal part leads to vanishing

fluctuations of the time-evolved expectation values. Experimentally, the diagonal

part of ETH can hence be probed by preparing an initial state and seeing whether

the time evolved state agrees with the microcanonical expectation. The off-diagonal

part is however harder to probe due to it being vanishingly small. Moreover, even

the microcanonical expectation values are in general hard to calculate for quantum
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many-body systems. It is one of the achievements of this thesis to show how the off-

diagonal part of ETH can be experimentally probed by using two-time correlation

functions without the need of any theory input, see chapter 4. While initially,

eigenstate thermalization was proposed as a sufficient condition for thermalization,

it has recently been proposed [28] that it is in fact also a necessary condition.

approach to equilibrium While ETH can make remarkably precise state-

ments about the long-time value of expectation values and their agreement with

the thermal expectation, the temporal approach to this value can not be predicted

by ETH. In the discussion above, we always used either the infinite time limit or

an average over infinitely long times, similar in spirit to the long-time average

envisioned in the classical ergodic hypothesis. The actual dephasing process be-

tween many-body eigenstates naively takes exponentially long time as the level

spacing is exponentially small in system size. In numerical simulations and quan-

tum simulation experiments, it has nevertheless been shown that thermalization

is indeed a fast process, with the thermalization time often even independent of

system size. For example, Rigol et al. [27] studied this question for a very small

system containing just four particles. Importantly, not only the approach to equi-

librium was confirmed in this work, but also that ETH is indeed the mechanism

which leads to thermalization. In a recent experiment, the emergence of many-body

behaviour has been impressively shown by the appearance of a Fermi sea for as

few as five fermions [29]. Numerous methods have been developed to study the

non-equilibrium dynamics of quantum systems and to confirm ETH. In section 1.2,

we will introduce some of these methods in more detail and the results obtained by

them.

scrambling While it is so far not possible to predict just from the Hamiltonian

describing a specific system how quickly it will thermalize, some progress has been

made recently to further characterize the approach to equilibrium and the processes

involved. At the center stage is the question of how quickly quantum information is

spread throughout the system. The half-system entanglement entropy, for instance,

grows linearly with time in most systems [30], indicating an efficient loss of the

details of the initial state 5. Some of the most general results on entanglement

spreading come from a time-dependent generalization of random matrix theory,

random unitary circuits, where random entangling gates are acted on a set of

qubits. They serve as generic, time-discretized models of time evolution in quantum

systems. For instance, the linear growth of the entanglement entropy has been

5 Of course, the entanglement entropy of the whole system stays constant due to the unitary of the

dynamics
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shown to fulfill the Kardard-Parisi-Zhang equation [31–33], which was later also

confirmed in a Hamiltonian model [34]. A second notion of information spreading is

the scrambling of operators. This has been termed in the context of the thermalization

of black holes [35] and constitutes a semi-classical generalization of the ideas behind

classical dynamical chaos to quantum dynamics. Instead of studying trajectories

of the wavefunctions, scrambling describes the process of operator spreading in

the Heisenberg picture, i.e. how correlated a time evolved operator is with an

operator at the initial time. In systems with a well-defined semi-classical limit

involving a “small parameter” playing the role of the reduced Planck’s constant h̄,

this spreading does indeed happen exponentially quickly in time [36–39]. Moreover,

these systems show a ballistic spreading of chaos without a broadening of the

wavefront. Systems without a semi-classical limit, such as spin 1/2 systems and

bosonic systems with a fixed particle number, do not show exponential growth of

many-body chaos [33, 40]. Instead, the presence of an upper bound of the chaos

measure leads to a quick saturation to the maximally possible value. Moreover, the

ballistic wavefront broadens diffusively. In random unitary circuits, the scrambling

process and the two limits discussed above has been studied to great depth and in

some cases even analytically [41–43]. We will study in section 3 how scrambling

happens near a thermal phase transition, where in principle, slow dynamics are

expected.

emergent classical transport Scrambling is a fast process, leading to

the evolving quantum system looking essentially classical as if it was dephased

by an environment. On the contrary, the spreading of conserved quantities such

as the energy density or particle number need to fulfill the continuity equation

and hence are much slower processes. In general, it is hence expected that slow,

classical transport emerges as the latest stage in the thermalization of quantum

systems. Establishing this assumption and, furthermore, determining the transport

coefficients of the hydrodynamic theory for specific quantum systems is a hard

problem, due to the absence of controlled analytical approaches and the amount of

computational resources required to model the quantum entanglement present in

the time evolved state [30, 32, 40, 44, 45]. In recent years, Feynman’s idea of using

quantum computational resources to simulate quantum systems has been established

to realize and explore quantum systems (see section 1.2). However, it remains an

open challenge to precisely track the evolution to the late-time hydrodynamic

regime, as large, coherent quantum systems are required. In chapter 6 we will use

field theoretical methods (which we introduce in chapter 2) as well as a quantum

simulation realized in a collaboration with the trapped ions group in Innsbruck
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to show that hydrodynamics indeed emerges in the thermalization dynamics of

closed quantum systems.

detours to or absence of equilibrium While most many-body systems

relax to equilibrium in the way we discussed above, many cases have been dis-

covered recently in which thermalization either happens very slowly, not at all

or only via a detour. Prethermalization [46–48] is a phenomenon in the presence

of two very different time scales in the system, which induce an approximately

conserved quantity. Only after times exponentially long in the inverse size of the

term breaking the conservation does the system relax to its true equilibrium. Even

more extremely, highly excited bosonic systems can first approach a fixed point

of the dynamics which is not thermal equilibrium, termed a non-thermal-fixed-

point [49–51]. These dynamics are characterized by turbulent transport as well as

algebraically slow, self-similar dynamics. Disordered, one-dimensional systems have

been shown to exhibit many-body-localization[52–57], where an extensive set of

local integrals of motion lead to emergent integrable dynamics and the system fails

to thermalize on accessible timescales. Most recently, special many-body eigenstates

termed many-body scars [58, 59] have been discovered in systems with dynamical

constraints [60–62], leading to extremely slow, “glassy” relaxation6¸. Furthermore,

conservation of multipole moments lead to a fragmentation of the Hilbert space into

extensively many blocks [61], creating a failure to thermalize. If the fragmentation

is perturbed, a subdiffusive approach to equilibrium has been shown [65].

In this section we have introduced some of the established notions to explain why

many-body systems reach thermal equilibrium, most importantly the eigenstate

thermalization hypothesis. Before we move to the main part of this thesis, we

discuss some of the methods used to study quantum many-body dynamics and the

challenges met in doing so.

6 In classical systems, such slow dynamics can for example occur in glasses [63, 64], which is why slow

relaxation to equilibrium is often referred to as “glassy dynamics”.
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1.2 simulating quantum-many-body dynamics

1.2.1 Classical simulation

why time evolving quantum many-body systems is hard. The dynam-

ics of non-relativistic quantum many-body systems is described by the Schrödinger

equation7

i
d
dt
|ψ〉 = Ĥ |ψ〉 . (1.12)

Although the formal solution of this equation is easy to write down in terms of a

matrix exponential,

|ψ(t)〉 = e−iĤt |ψ(0)〉 , (1.13)

solving this equation in practice is in general a hard problem. This is because

of two reasons. On the one hand, the dimension of the state |ψ〉 expanded in a

suitable basis in general scales exponentially in the size of the problem, i.e. the

system size and/or particle number. For example, spin 1/2 degrees of freedom have

local Hilbert space dimension 2 consisting of the states |↑〉 , |↓〉. A state describing

a system comprising of L such sites then has a total Hilbert space dimension of

2L. As the amplitudes of the state are in general complex, representing such a

state on a classical computer with double precision takes 2L × 16 bytes of memory.

Hence, even a state describing a system with just 32 sites would already exhaust

the memory of most current laptop computers, requiring 69 Gigabytes of RAM

just to store the state. Moreover, the Hamiltonian expressed in the same basis is a

(2L)2 matrix and would therefore require even more memory to be stored. Luckily,

it turns out that for most problems the Hamiltonian is a sparse matrix such that

only the non-zero elements have to be stored. For slightly larger problems than the

ones accessible by exact diagonalization, this enables the use of Trotterization and

efficient sparse matrix-vector multiplications [66] to solve Eq. 1.13 by

|ψ(t)〉 ≈ (e−iĤ(t/n))n |ψ(0)〉 . (1.14)

However, this procedure has an error increasing with the time step (t/n) as well as

the total number of steps n, limiting its general range of applicability to short times.

This is a first manifestation of the second problem of evolving quantum many-body

systems: reaching long times.

It turns out that the “reaching long times” problem is in fact almost the same

problem as “reaching large systems”. This becomes more apparent if one formulates

7 In this chapter and throughout the thesis we will work in units where h̄ = 1 = kB.
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time evolution in the context of “traditional” computer science complexity classes.

An example for a difficult classical problem is the famous travelling salesman

problem, which is in the complexity class NP-complete [67]. This means that the

solution can be verified in a time polynomial in the size of the problem, but finding

this solution takes a superpolynomial time. Moreover, finding a solution to the

traveling salesman problem is equivalent to finding a solution to any other problem

in NP-complete as problems in this class can be translated to each other with a

polynomial overhead. Finding an efficient solution to NP-complete problems is one

of the biggest outstanding challenges in computer science 8.

Where does time evolving a quantum system fit into these complexity consid-

erations? The first observation is that classical computer science problems do not

need exponential memory, but only exponential time, whereas the quantum time

evolution algorithm quoted above takes exponential memory, but only linear time,

so a direct comparison seems difficult. However, there exist algorithms which

trade the exponential memory with exponential time. The simplest one is called

“Feynman algorithm” [68–70]. It follows a similar procedure as the construction

of the path integral formulation of quantum mechanics [71–73] by trading the n

multiplications of the 2L × 2L matrix e−iĤ(t/n) on the 2L statevector with a sum

over the (2L)n−1 possible histories or paths. This is done by inserting a complete

basis set between the applications of e−iĤ(t/n). This way, the transition probability

from one of the basis states to another can be computed without storing the full

initial state. Using that Ĥ is local, matrix elements of e−iĤ(t/n) between basis states

can also be computed without explicitly constructing Ĥ, showing that we have

successfully traded exponential memory with exponential time. From this first look,

the computational resources needed to time evolve many-body quantum systems

scales as unfavourably with the system size n as some of the hardest problems

known in computer science. We note however, that to our knowledge this hardness

is not proven so far, i.e. there may be an efficient classical algorithm which has

simply not been found yet.

Even more troubling than this exponential requirement for resources is that

contrary to problems in NP, there is no obvious way to check the consistency of the

result of the computation. This means, in a sense, that quantum time evolution is

even harder than NP problems. In practice, this means that we need to cross-check

results between different approximate methods, hoping that agreement between two

complementary methods signals proximity to the exact solution. However, we of

course do not have a guarantee that we get the correct solution if two approximate

solutions agree. Throughout this thesis, we will try to compare as many numerical

8 So much so that whoever “simply” proves whether or not this is possible (known as the “P=NP or

P 6=NP” problem) will get awarded a million dollars by the Clay Mathematics Institute.
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methods and analytical results as were accessible to us to gain confidence about

our results.

Many methods exist to somewhat alleviate the exponential resources required

for evolving many-body quantum systems. Most of them rely on the observation

that the full amplitude vector |ψ〉 contains a lot of information which is not directly

relevant to local observables, i.e. |ψ〉 contains information which is not realistically

measurable in experiment. In the last years, at least two major ways have been

established to use this observation: In the first, the state is compressed by using

some measure of “complexity” and only taking into account the most relevant

contributions. In the second, the notion of a state is entirely scrapped and local

observables are evolved directly.

Starting with Yuri Manin’s [74] and Richard Feynman’s [75] visions, a new

possibility to simulate the dynamics of quantum systems has been established in

recent years: the simulation with another quantum system which can be highly

controlled. We will discuss below that this can in fact be done in two ways: In

a “digital” approach, time evolution is broken down to basic building blocks,

called gates in analogy to classical computation, which are then acted on discrete

quantum degrees of freedom. In “analogue” approaches, a certain Hamiltonian Ĥ

is implemented with high confidence and the time evolution of an initial state is

studied by observing the system after some time.

In the following, we will first discuss the state-of-the-art method to evolving low-

dimensional lattice systems in time by compressing the state using the entanglement

entropy as a complexity measure, matrix product state (MPS) methods. Then, we

will discuss methods based on directly evolving observables in time. In chapter 2

we will introduce one method in this class in more depth: non-equilibrium quantum

field theory. Afterwards, we will introduce digital as well as analogue quantum

simulation methods.

matrix product states One of the major advances in the study of strongly

correlated quantum systems has been the discovery of the density matrix renormal-

ization group [76], whose efficiency to find ground states of gapped Hamiltonians

is based on the fact that such states obey the so-called “area law” [77, 78]. This

means that the entanglement entropy, a measure for the complexity of the state,

only grows with the size of the boundary of the system, rather than the system

size itself. In particular, in 1D this means that the entanglement entropy of the

ground state of a gapped Hamiltonian is constant as a function of system size. MPS

have been shown to capture this type of “low complexity” state very efficiently.

Moreover, they contain a “tuning knob” with which the complexity that the MPS

can capture can be increased. In fact, any quantum state can be represented by



1.2 simulating quantum-many-body dynamics 13

an MPS. This would however again need a memory scaling exponentially in the

system size. More specifically, the MPS ansatz for the wave function can be written

as [79]

|ψ〉 =
d

∑
i1,...,iL=1

L

∏
α=1

Mα
iα
|i1, . . . , iL〉 , (1.15)

where d is the local Hilbert space dimension (e.g. d = 2 for the spin 1/2 electron ex-

ample used above) and |i1, . . . , iL〉 are the product states spanning the Hilbert space.

On each site, there are d matrices of dimension χα × χα+1 which are multiplied

together to yield the state coefficient. χα is called the bond dimension of the matrix

product state. It can be shown that the maximum entanglement entropy that a

matrix product state can capture scales logarithmically with the bond dimension χα.

As generic states follow the volume law, i.e. entanglement entropy scaling linearly

in the number of sites L, this means that the bond dimension needed to express a

generic state scales exponentially in the size of the system. However, as mentioned

above, ground states of gapped Hamiltonians in 1D follow an area law and hence

can be described by a matrix product state with finite bond dimension. For us, it

is important to know that the entanglement entropy in general increases linearly

with time [30]. This means that, starting from a low entanglement initial state, the

maximum time to which an MPS can be evolved to scales logarithmically in the

bond dimension.

In most of the cases we are going to be interested in during this thesis, the initial

state will be given by a product state, which can be represented by an MPS of

bond dimension 1. For example, a Néel state in a 1D spin model, |↓↑ · · · ↓↑〉 can be

written with 4 matrices as

M2i
0 = 0, M2i

1 = 1, (1.16)

M2i+1
0 = 1, M2i+1

1 = 0, with i ≤ L/2. (1.17)

There are many algorithms to time evolve matrix product states, for example the

time-dependent-variational principle [80, 81] (most suitable for systems with long

range interactions [44, 82]), the WI/WII matrix-product-operator algorithm [83]

(suited for evolution of two-dimensional systems in a cylinder geometry and long-

range systems, e.g. for calculating spectral functions [84–86] and single excitation

dynamics [87]). One of the most widely used algorithms is time evolving block

decimation [88], which is well-adapted for one-dimensional problems with nearest-

neighbour interactions. We will be employing this algorithm in chapter 8 in this

thesis. It relies on a Trotterization of the time evolution operator Û = (e−iĤdt)n ≡
(Udt)

n with dt = t/n, similarly to the sparse matrix method discussed above.
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Udt Udt Udt

UdtUdtUdt

Udt Udt Udt

Figure 1.1: Schematic depiction of the TEBD algorithm. The blobs indicate the sites iα of

the system while time proceeds from top to bottom.

However, it goes one step further by assuming a nearest-neighbour form of the

Hamiltonian Ĥ = ∑i ĥi,i+1. In this case, a single time step can be decomposed as

e−iĤdt ≈ ∏
i odd

e−iĥi,i+1dt ∏
i even

e−iĥi,i+1dt. (1.18)

In Fig. 1.1 we give a schematic of this algorithm. After application of a single time

step, the bond dimension of the matrices will have increased due to the entangle-

ment created by the two-site gates. Usually, a maximum bond dimension χmax is

defined, to which the matrices are truncated after each time step by performing a

Schmidt decomposition (technically done by using the singular value decomposi-

tion) and only keeping the largest χmax values. Expectation values of observables

can then be obtained by representing the operators in a matrix product form. Finally,

χmax is increased until convergence, where the needed χmax increases with time

due to the growth of entanglement during the time evolution. See Ref. [89] for a

more complete and thorough introduction.

evolving observables instead of wavefunctions All previous meth-

ods to calculating or simulating quantum dynamics were based on evolving the

Schrödinger equation (1.12). This yields the complete wavefunction |ψ(t)〉 as a

function of time. From the wavefunction, arbitrary observables can be evaluated.

However, one can also follow a different approach by directly evolving expectation

values of observables in time. The obvious starting point for such an approach are

the Heisenberg equations of motion for a closed system for the observables Â,

−i∂t Â = [Ĥ, Â]. (1.19)

Evaluating the commutator and taking the expectation value, we can then evaluate

the time evolution of 〈Â(t)〉 as a function of a different observable 9, 〈[Ĥ, Â]〉. To

9 This procedure is related to matrix product operator (MPO) techniques [79, 90–95]. However, in MPO

methods, the full operator is evolved and could then in principle be evaluated with respect to any

initial state. Here, we discuss directly evolving expectation values of operators by starting with the

initial value of the observable in a specific initial state.
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solve these equations, we need to evaluate the time evolution of 〈[Ĥ, Â]〉 which is

determined by yet another observable, 〈[Ĥ, [Ĥ, Â]]〉. It is obvious that this hierarchy

of equations of motion does not close in general for interacting systems and an

infinite number of coupled equations of motions need to be solved simultaneously.

This hierarchy of equations of motion is also called the Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy [96–101]. As exactly solving the hierarchy is

not possible in general, the prime goal in this approach to quantum dynamics is

to find a way to close this hierachy in a controlled manner. Most importantly, this

needs to be done in a self-consistent way. To see this 10, consider a naive perturbative

expansion of Â(t) using the Baker-Campbell-Hausdorff formula,

Â(t) = Â(0) + it[Ĥ, Â(0)] +
t2

2
[Ĥ, [Ĥ, Â(0)]] +O(t3). (1.20)

It is immediately clear that such an expansion will fail at times t ≈ 1 if ||Ĥ|| = 1.

Hence, in order to go to non-perturbatively long times, a possible approximation to

the right hand side of the Heisenberg equation of motion needs to be dependent

on the value of Â at time t. In chapter 2 we will show how to introduce such a

self-consistent approximation scheme using non-equilibrium quantum field theory.

1.2.2 Digital quantum simulation

Quantum computers are machines which can perform a “universal” set of opera-

tions on qubits, which are nothing else than the spin 1/2 degrees of freedom we

discussed so far. “Universal” means in this case that any unitary operator Û can be

implemented using only a given set of operations. It was shown [103], that any such

unitary can be decomposed into a sequence of single qubit and two-qubit operations.

Hence, performing a quantum computation has a similar “brick-wall” structure as

the TEBD algorithm represented in Fig. 1.1, albeit without a truncation step and

with different gates in every layer. Conversely, this means that a quantum computer

can perform time evolution of a spin 1/2 quantum system using Trotterization and

a decomposition into single and two-qubit gates. As no truncation is performed in

this case, a quantum computer can in principle efficiently evolve a quantum system

in time, using only O(L× n) two-qubit gates, i.e. it scales both linearly with system

size and the maximum time [104–106]. In particular, it has been shown that all

states that are reached via time evolution with a local Hamiltonian in polynomial

time can be efficiently represented by a quantum circuit [16].

However, today’s quantum computers are still very noisy, meaning that gates can

not be performed with perfect efficiency. This introduces an error in the calculation

10 See also section 1.1.1. in Ref. [102] for an illustrative example why non-self-consistent approximations

fail for dynamics.
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with every time step and therefore limits the maximum time until the quantum com-

puter can precisely evolve the quantum system. This gate error plays an analogous

role to the truncation step in the MPS TEBD algorithm, as it reduces the amount of

entanglement captured by the computer. This argumentation has recently been used

in reverse to construct an MPS algorithm which limits the entanglement akin to

noise [45]. The analogy between noise in a quantum computer and MPS truncation

has also recently been studied [107] in order to compare their performance. The

authors show that a quantum computer with a one-dimensional (nearest-neighbour)

geometry and a two-qubit fidelity of no better than 99% can be simulated with ma-

trix product state methods with a linear cost in both L and n. This shows that while

quantum computers hold the promise of efficiently solving the time evolution of

quantum systems, classical computational schemes will stay competitive until error

correction [108–110] can be widely implemented. While we only discussed the most

straight-forward way of simulating quantum many-body dynamics with quantum

computers, other algorithms have been developed. For example, a recent hybrid

quantum-classical algorithm optimizes a variational state during the time evolution,

reaching far longer times than naive trotterization [111]. Moreover, representing

an infinite MPS opens up the possibility to simulate infinitely large systems on a

quantum computer with a finite number of qubits [112, 113].

1.2.3 Analogue quantum simulation

Analogue quantum simulators realize a specific Hamiltonian, which is connected

to the microscopic dynamics in the experiments. Crucially, the Hamiltonian is

precisely known and the parameters can be tuned within certain limits. Initial states

are prepared as ground or thermal states of some extreme limit of the parameters,

and time evolution is probed by rapidly changing the parameters. This is also

called a “quench” experiment, in analogy to experiments on glasses, where the

temperature is rapidly changed to bring the system out of equilibrium. The last

crucial ingredient for studying time evolution is the measurement of observables.

Here, again, the possible measurements are related to the specific platforms. It is

one crucial goal of this thesis to expand the range of observables which can be

studied in quantum simulators, see chapters 4, 6, and 9.

Historically, analogue quantum simulators were the first step towards digital

approaches. In their famous visions, Yuri Manin [74] and Richard Feynman [75]

proposed a simulator based on the “analogue” intuition described above: In order

to simulate a quantum mechanical system governed by a Hamiltonian Ĥsystem,

find a different quantum mechanical system, the simulator, which can be more
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easily controlled and is governed by the same, or a related Hamiltonian Ĥsimulator.

Take, for example, the cuprate materials as our “system” we would like to learn

about. They exhibit a vast range of quantum mechanical phases including a Mott

insulating state [114] with anti-ferromagnetic spin order and high temperature

superconductivity [115]. The main features of these materials are conjectured to be

described by the two-dimensional Fermi-Hubbard model [116, 117]

ĤHubbard = −t ∑
〈i,j〉,σ

(ĉ†
iσ ĉjσ + h.c.) + U ∑

i
n̂i↓n̂i↑, (1.21)

where ci,σ are electronic annihilation operators of spin σ and niσ = c†
iσciσ is the den-

sity operator of electrons with spin σ at site i. t, U denote hopping between nearest-

neighbour sites and on-site interactions strength, which result from Coulomb

repulsion between electrons [118]. In the cuprates, the scale of the hopping is on the

order of 0.5 eV [119], corresponding to a timescale of 10 femtoseconds, rendering it

challenging to observe electronic dynamics in a time-resolved way [120]. Moreover,

disorder as well as subleading couplings render it difficult to compare theory to

experiment. Lastly, the coherence time of the system is generally quite short such

that time evolution of closed quantum systems is difficult to study in materials. In an

analogue quantum simulator, on the contrary, the Hamiltonian Hsimulator is known

very well and couplings to the environment are small compared to intrinsic time

scales. In the following, we will briefly discuss how cold atoms in optical lattices

enable the observation of dynamics in the Hubbard model before moving on to the

quantum simulation of spin systems in Rydberg atoms and trapped ions. We finish

with a brief overview over other platforms for quantum simulation of dynamics.

cold atom quantum simulation The observation of a Bose Einstein con-

densate [121, 122] in laser cooled Alkali atoms impressively showed the potential

of quantum optics experiments to probe many-body states of matter in a well-

controlled way [123, 124]. Another milestone towards quantum simulation was

the observation [125] of the superfluid-Mott insulator transition in cold atoms in

optical lattices [126], showing that they are indeed excellent simulators of Hubbard

models. As atoms are neutral, one might at first think that the the on-site term

can not be implemented. Here, however, the “analogue” aspect of the simulator

becomes most apparent: The physical mechanism leading to a certain term in the

Hamiltonian is irrelevant, what matters is only that the Hamiltonian is exactly the

one aimed for. In cold atoms, the on-site term can for example be implemented

by representing the spin degree of freedom with two long-lived hyperfine levels

of the ground state. Scattering between two atoms is at low temperatures dom-

inated by s-wave scattering, which is local. In an optical lattice, this means that
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atoms on a single site interact, leading to the sought-after on-site term. Interactions

between neighbouring sites, contrarily, are negligible due to the neutrality of the

atoms. Cold atom simulators can also tune the ratio t/U by changing the depth

V of the lattice: while U ∼ V3/4, the hopping scales as t ∼ V3/4 exp−2V1/2 [126].

Therefore, t/U is exponentially sensitive to changes of the lattice depth and can

hence be tuned over a wide range. In the extreme limit of U/t → ∞ and unit

filling, i.e. one atom per site, the system enters a Mott-insulating phase, i.e. each

atom is localized on one lattice site. In terms of dynamics, this result has been

used ten years later to prepare a global quantum quench by removing an atom

on every second lattice site, producing a charge density wave product state [127].

The time evolution of this charge density wave was then probed by simply taking

pictures of the position of the atoms as a function of time. Of course, in a solid,

trying to image the dynamics of an electronic charge density wave would be very

challenging because electrons are about 105 times lighter and therefore move much

faster. Moreover, the lattice spacing in cold atoms is much larger, given by the

wavelength of the light which traps the atoms and hence on the order of 1 µm.

This means that tunneling is suppressed. In total, tunneling times are on the order

of a millisecond [127], making it possible to picture the time evolution with a

simple CCD camera when making the atoms fluoresce 11. The time evolution of the

charge density wave state was shown to match a matrix product state simulation

remarkably well, which only took into account coherent quantum dynamics. As

the MPS simulation had to be stopped at times earlier than those accessible by

the quantum simulator, this experiment was an early example of “quantum advan-

tage” for studying non-equilibrium dynamics [127]. Other experimental studies of

nonequilibrium dynamics in cold atoms in optical lattices include the observation

of prethermalization [47], many-body-localization [129], and the observation of

integrable dynamics [130–132]

Another major milestone for quantum simulation in cold atoms was the develop-

ment of the “quantum gas microscope” [133–139], enabling single site resolution.

This lead to a whole range of significant advances in studying strongly correlated

phases, including the observation of anti-ferromagnetic order in the Mott-insulating

state [140], bad metallic transport in the attractive (U < 0) Hubbard model [141],

the detection of string patterns in the doped system [142, 143]. See Ref. [144, 145]

for a more complete overview over the advances in studying equilibrium phases

with cold atoms. Moreover, quantum gas microscopy enabled the time and space

resolved observations of closed quantum many-body dynamics in Hubbard mod-

11 In studies of equilibrium properties, however, the small hopping comes at a price: reaching tem-

peratures T that are small in units of the hopping is very challenging [128] as typical tunnelings

corresponds to nanokelvin temperatures.
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els, including the measurement of the growth of the entanglement entropy [146],

the propagation of holes in an antiferromagnet [147, 148], Floquet prethermal-

ization [149], slow dynamics [150, 151], and more detailed studies of many-body

localization [152–155, 155–159].

quantum simulation of spin systems in cold atoms Cold atoms in

optical lattices can also study the dynamics of spin systems by using the superex-

change mechanism in a Mott-insulator: single particle hops are detuned by the

large on-site interactions while second order processes of two atoms exchanging

position are resonant. This way, it is possible to implement the Heisenberg model

ĤHeisenberg = J ∑
〈i,j〉

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j + ∆Ŝz

i Ŝz
j

)
, (1.22)

where Ŝα
i are the spin operators fulfilling

[
Ŝα

i , Ŝβ
j

]
= iεαβγŜγ

j as well as S2 =

S(S + 1). Importantly, the anisotropy ∆ can be tuned by the intra and interspecies

interactions using a magnetic Feshbach resonance. Motivated by experiments using

this mechanism [160–163], we will study the dynamics of spin spirals in chapter 8.

rydberg atoms Another approach, which has progressed rapidly in the last

years, is to use strong interactions between atoms that are highly excited to a large

principal quantum number n, so-called Rydberg atoms. In particular, the second

order Van-der-Waals interactions scale with n11, leading to interaction time scales

on the order of 10 nanoseconds with lifetimes in the range of microseconds [59].

There are many ways to encode a spin 1/2 in atoms. One possibility is to use the

ground and Rydberg level, which enables the study of coherent dynamics in the

long-range transverse field Ising model in a longitudinal field,

ĤIsing = ∑
i,j

JijŜz
i Ŝz

j + Ω ∑
i

Ŝx
i + ∆ ∑

i
Ŝz

i , (1.23)

where Jij ∼ 1/|i− j|6 for Van-der-Waals interactions and Ω, ∆ are Rabi frequency

and detuning of the ground-Rydberg transition 12. Experiments also studied spin

dynamics in disordered systems by exciting atoms in a cloud to two different

Rydberg states, which leads to a different encoding of a spin 1/2 than the one

above [164, 165]. Resonant dipole interactions between these levels, falling off with

distance as Ji,j ∼ 1/|i− j|3, leads to the implementation of an XY model instead

of the transverse field Ising model quoted above. Due to the blockade effect, two

Rydberg excitations are separated by several micrometers, leading to well-separated

atoms despite the fact that a cloud of atoms was considered. Due to the strong

12 In this notation, the detuning contains a shift due to the Van-der-Waals interactions.
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interactions, the movement of the cold atoms was also negligible, leading to a lattice

model with positional disorder. The advent of arrays of optical tweezers [166, 167]

(Nobel prize 2018) lead to the removal of disorder, enabling almost arbitrary

lattices [168, 169]. This enabled the observation of quantum phases [170], including

a topological spin liquid [171], as well as the discovery of constrained dynamics

due the presence of many-body scars [59]. Moreover, Kibble-Zurek dynamics across

a quantum phase transition [172] have been observed. Rydberg interactions can

also be used to “dress” the dynamics of ground orbital state atoms, which has been

used in several experiments on dynamics of spin systems dynamics with long-range

interactions [173]. Some of the protocols we will discuss in chapter 4 will be aimed

at the Rydberg platform or contain the tweezer technology as a probe of cold atoms

in optical lattices.

trapped ions A third quantum simulation platform which we will be heavily

motivated by is ions trapped in electromagnetic fields [174, 175]. In the most

widely used linear Paul trap, a time-varying quadrupole field in radial direction

is combined with a static electric field in the axial direction to confine a string of

ions in an anisotropic three-dimensional harmonic potential. Due to the repulsion

between the ions, they form a regular Coulomb crystal, i.e. a regular chain in the

case of a Paul trap and a triangular lattice in the case of two-dimensional traps. As

in the case of cold atoms, a spin 1/2 degree of freedom can be encoded by using two

long-lived internal states of the ions, e.g. hyperfine levels of the electronic ground

state (e.g. in Yb+) or a combination of electronic ground state and a metastable

electronic excited state (e.g. in Ca+). This choice also determines how local control

is implemented: hyperfine levels have transition frequencies in the radio-frequency

regime and therefore focussed light beams cannot be used to address locally due

to the typical distances between ions being far smaller than the wavelength of

the light. More involved techniques such as a combination of optical pumping

and a stimulated Raman transition have to be used in this case to establish local

addressing. Contrarily, encoding a spin in electronic states enables direct addressing

with tightly focussed laser beams, which is the approach our collaborators used

in the experiment we report on in chapter 6. A coupling between the ions in the

string can be induced by using the phonon modes of the ion crystal. When exciting

an ion with a bichromatic laser, the momentum of the photon is absorbed by the

lattice, creating a phonon. This phonon can in turn be absorbed by a different

ion, which de-excites its internal state. In the regime of strong detuning from this

transition, the phonons are only virtually occupied and can hence be integrated out.

It can then be shown [174] that this coupling effectively implements the long-range
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transverse field Ising model13 in equation (1.23). While the form of the Hamiltonian

is the same as in the case of Rydberg atoms, the couplings Jij are different and

depend on the laser and phonon properties. Importantly, by changing the detuning

of the bichromat from the different phonon modes, the form of the Jij can be tuned.

The couplings approximately follow a power-law behaviour Jij ∼ 1/|i− j|α, with

long-range exponent α ∈ [0, 3].

The tunability of the long-range exponent in trapped ions is a remarkable feature

of the system which sparked research into the dynamics of such systems, not only

experimentally but also theoretically. Of central importance is the question of how

quickly quantum information and excitations spread and how this spread depends

on the long range exponent α, which only recently got settled for α > 1. Early

experiments studied the propagation of correlations [176], which sparked inten-

sive research into the modification of Lieb-Robinson bounds [177] for short range

systems. Recently, this question was settled at least for α > 1, and it was shown

that faster-than-linear light cones appear for α < 3 [178]. Other dynamical phenom-

ena studied in trapped ions include many-body localization [179], pair creation

in the Schwinger model [180], dynamical quantum phase transitions [181, 182],

prethermalization [183], measurement induced phase transitions [184], environment-

assisted transport [185], scrambling [186] and quasiparticle propagation [187]. In

chapter 6 of this thesis, we will show that transport of a conserved quantity is also

strongly modified in the presence of long-range interactions, both theoretically and

in collaboration with the trapped ions group in Innsbruck also experimentally.

other systems In the previous sections, we focussed on the most commonly

employed analogue quantum simulators for studying dynamics, and those which

we will have in mind in the following chapters. However, also other platforms

exist which have shown significant progress over the last years. In particular, solid

state platforms hold the promise to generalize the way ordinary computers are

built to quantum computers. For example, superconducting qubits [129], which

employ LC circuits with a Josephson junction as non-linear element [188, 189],

are not only considered to be one of the most promising platforms for digital

quantum computation [190–192], but have also been used for analogue quantum

simulation of dynamics in the Bose-Hubbard model [193, 194]. Other solid state

systems include quantum dots [195], where electrostatic gates create a box potential

to trap single electrons and which can access the extreme regime of very strong

on-site interactions where Nagaoka ferromagnetism [196] becomes important [197].

While quantum dots are rather large objects, where the confinement of electrons in

13 SySy and SzSz couplings can in principle be implemented by applying two other pairs of beams onto

the system in the two other spatial directions. This has however to our knowledge not been done yet.
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an electrostatic well leads to quantization, single dopant atoms can also be “trapped”

in the silicon lattice [198]. This enables a rather direct analogy to Rydberg atoms, as

group V donors act similarly in the silicon lattice as alkali atoms in vacuum [199].

For example, I have been involved in a study showing that the Rydberg entangling

gates developed for cold atom implementations can be ported to this platform [200].

Donors also enable the study of the Hubbard model at far lower temperatures

than the ones accessible in cold atoms [201]. Similarly, nitrogen vacancy centers

in diamond offer clean two-level-system dynamics which can even be optically

addressed. The inevitably present disorder in these systems can be characterized

well and the coherence times of the NV centers is remarkably long. This enabled the

observation of time crystalline phases [202] as well as hydrodynamic transport in a

very large spin system [203]. Cold atoms have also been used in new settings and

different species. For instance, cavities have been employed to mediate long-range

interactions between cold atoms [204, 205] and magnetic atoms have enabled the

study of supersolid phases in which short and long-range interactions compete.

Similarly, dipolar molecules promise the study of dipolar magnetism in very large

arrays [206, 207] as well as continuum systems [208].

conclusion While digital quantum simulators can universally simulate any

dynamics they meet the challenge of gate errors. Analogue simulators can only

simulate specific Hamiltonians Ĥ, however their purpose-built design means that

longer times and larger systems can already be reached, even accessing regimes

that are challenging for numerical methods. The majority of experiments probing

thermalization dynamics have been of the analogue kind and all protocols we will

develop in this thesis will be aimed at these approaches.

1.3 outline of the thesis

After having introduced some of the main concepts which this thesis will be

revolving around, we give a brief overview over its contents:

• In chapter 2 we will introduce non-equilibrium quantum field theory, one of

the most frequently employed methods in this thesis.

• In part i we will explore several aspects of the thermalization dynamics of

many-body quantum systems. The chapters describe several phases in the

approach of the quantum system toward equilibrium. They are roughly or-

dered by the time these processes appear during the dynamics. Exemplifying

the universality of the processes, the models discussed in the chapters will
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be very diverse, including relativistic, nonrelativistic, bosonic, fermionic and

spin models with short, long range and gauge-boson-mediated interactions.

– First, we investigate the scrambling of quantum information during the

first, “many-body chaos” stage of the thermalization process in chapter 3.

In particular, we will investigate how this process behaves in the vicinity

of a thermal phase transition in a relativistic scalar field theory. We

employ a semi-classical method in this chapter.

– In chapter 4, we discuss how the off-diagonal part of the eigenstate

thermalization hypothesis can be probed in analogue quantum simu-

lators by measuring two-time correlation functions and by testing the

emergence of the fluctuation dissipation relations (FDRs). We develop

protocols to measure the latter in quantum gas microscopes, Rydberg

atom spin simulators, trapped ions and superconducting qubits. We

apply our methods to not only characterize thermalization but also its

temporary absence in the case of a “prethermal” state and the presence

of confined excitations. The numerical results in this chapter are obtained

with exact diagonalization.

– In chapter 5, we use the lessons learnt in the previous chapter to study

thermalization in a 1+1 dimensional lattice gauge theory. We use non-

equilibrium quantum field theory, introduced in chapter 2, to study

thermalization of strings in this model. Furthermore, we extend these

methods to directly study spectral functions at infinite temperature and

develop a 1/N expansion to study thermalization in SU(N) symmetric,

non-abelian gauge theories.

– In chapter 6 we study the last stage of the thermalization dynamics: The

slow transport of conserved quantities across the system. In particular,

we study how conventional diffusion is altered by the presence of long-

range interactions. We test our results from analytical, semi-classical

methods and spin 2PI (introduced in chapter 2) in a collaboration with

a quantum simulation experiment with trapped ions.

• In part ii we apply some of the intuitions and methods we found while

studying the non-equilibrium dynamics of quantum systems to learning

about phases of matter, i.e. equilibrium phases. A central role will be taken

by identifying the relevant excitations and we will use out-of-equilibrium or

near-equilibrium techniques to do so.

– In chapter 7 we aim to describe a recently discovered new state of

matter termed the “marginal Fermi glass”, found by two-dimensional
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spectroscopy measurements. We use a screened Hartree Fock theory and

an effective description of particle hole states.

– Chapter 8 contains an analysis of the stability of spin spiral states in the

Heisenberg model. We employ a Holstein Primakoff analysis to identify

the excitations relevant for its decay as well as semiclassical, spin 2PI

and MPS techniques to verify our description.

– In chapter 9 we show how to implement time-dependent angle-resolved

photoemission spectroscopy (tdARPES) in quantum gas microscopes and

investigate spinon excitations not occupied in the ground state with a

quench protocol within exact diagonalization.
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N O N - E Q U I L I B R I U M Q UA N T U M F I E L D T H E O RY

In this chapter, we will introduce the two-particle-irreducible effective action ap-

proach [209, 210]. It enables a systematic way to derive self-consistent approxima-

tions for the non-equilibrium dynamics of quantum systems. We will first introduce

the formalism for fermions before moving on to spins, which are more challenging

to describe. For both cases, we will give some benchmarks, showing that these

methods can qualitatively describe many important non-equilibrium phenomena,

sometimes even with quantitative precision.

2.1 fermions

Fermions are defined by their anticommutation relations
{

ĉi, ĉ†
j

}
= δij. We consider

the general normal ordered Hamiltonian

Ĥ = ∑
ij

Jij ĉ†
i ĉj +

1
2 ∑

ij
Uij ĉ†

i ĉ†
j ĉj ĉi, (2.1)

In general, Jij may contain a diagonal component hiδij, for example in the presence

of a disordered external field. While at first glance, we restrict ourselves to spinless

fermions, the Hamiltonian is in fact more general. Spins σ can for example be

introduced by redefining the index i→ (i, σ) and considering a suitable form of the

interaction Uij. However, we assume that there are no pairing terms ∼ ĉ† ĉ† + h.c.

and that there is no pairing in the initial state. While this section is not oriented

along the lines of a specific source, the reviews by Schluenzen et al. [211] and

Berges [210] as well as the book by Stefanucci and Van Leeuwen [212] are very good

primers into the field.

2.1.1 Equations of motion from the 2PI effective action

closed time contour Field theory is usually formulated in terms of correla-

tion functions, as we outlined in section 1.2.1. Of central importance is the two-time

correlation function

〈ĉi(t1)ĉ†
j (t2)〉 , (2.2)

with the expectation value taken with respect to the initial state. This function

will turn out to be the natural basic building block of approximations within

25
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Im(t)

Re(t)

t0 t→ ∞

t0

ĉj(t2)

ĉi(t1)

Figure 2.1: Closed time contour depiction of a two point correlation function.

nonequilibrium QFT. By explicitly expanding the time evolution of the Heisenberg

operators, 〈ĉ†
i (t1)ĉj(t2)〉 = 〈eiĤt1 ĉie−iĤ(t1−t2) ĉ†

j e−iĤt2〉, we see that read from the

right, time evolution proceeds from the initial state to time t2, then from t2 to t1 and

from t1 back to the initial time. This can be visualized in the closed time contour

depicted in Fig. 2.1, where the two branches are extended to imaginary time for

better visibility.

generating functional With the notion of a closed time contour at hand,

we can now formulate a generating functional for non-equilibrium correlation

functions, given by

Z[R] =

〈
TC exp

{
i
∫

C
dt1dt2 ∑

ij
ĉi(t1)Rij ĉ†

j (t2)

}〉
, (2.3)

where TC denotes time ordering along the closed time contour and
∫
C an integration

along this contour. Correlation functions can now be obtained from Z by functional

derivation with respect to the source field R. In particular, the Green’s function

Dij(t1, t2) = 〈TC ĉi(t1)ĉ†
j (t2)〉 is given by

δZ
iδRij(t1, t2)

= Dij(t1, t2) (2.4)

To make contact with field theory, we reformulate Z in terms of a Grassmann path

integral by trotterizing the time ordered exponential and inserting fermion coherent

state identities inbetween the time steps 1 (see e.g. [210] for a detailed derivation).

This leads to

Z[R] =
∫
Dc̄Dc exp

{
i
(
S[c, c̄] +

∫

C
dt1dt2 ∑

ij
ci(t1)Rij c̄j(t2)

)}
, (2.5)

where we assumed that the initial state is a fermionic Gaussian state by absorbing

its value into the initial value of the source field R. The action S on the closed time

contour C corresponding to the Hamtilonian Ĥ is given by

S[c, c̄] =
∫

C
dt ∑

ij

[
c̄i
{

i∂tδij − hij
}

cj −
1
2

Uij c̄i c̄jcjci

]
, (2.6)

1 The Hamiltonian needs to be normal ordered for this procedure. Above we have already assumed

this form.
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where the operators ĉ, ĉ† have been replaced with Grassmann numbers c, c̄.

2pi effective action The generating functional Z is formulated in terms

of the source field R. In analogy to thermodynamic potentials, we can change the

quantities with respect to which the theory is formulated by Legrende transforma-

tion. The so-called two-particle-irreducible effective action Γ[D] can be found in

this way by a Legrende transformation

Γ[D] = −i ln(Z[R])−
∫

C
dt1dt2 ∑

ij
Rij(t1, t2)Dij(t1, t2) (2.7)

The 2PI effective action can be written into a sum of the one-loop part and a “rest”

Γ2,

Γ[D] = −i Tr ln D−1 − i Tr
{

D−1
0 D

}
+ Γ2[D] + const., (2.8)

where Γ2[D] contains all two-particle irreducible diagrams with propagator lines

represented by the full Green’s function D [209]. The free correlator D0 may be read

off from the action by noting that SU=0 =
∫
C dt1

∫
C dt2 ∑ij c̄iiD−1

0 cj, such that

iD−1
0,ij(t1, t2) =

(
i∂tδij − Jij

)
δC(t1 − t2). (2.9)

The equations of motions of the correlator are obtained from the variation of the

effective action, δΓ/δD = 0 and results in

D−1
ij (t1, t2) = D−1

0,ij(t1, t2)− Σij(t1, t2), (2.10)

with the self energy defined as 2

Σij(t1, t2) = −i
δΓ2[D]

δDji(t2, t1)
. (2.11)

Convoluting Eq. (2.10) from the right with D, we get equations of motion for the

correlator,

[i∂t1 δik − Jik] Dkj(t1, t2) = iδijδC(t1 − t2) + i
∫

C
dtΣik(t1, t)Dkj(t, t2). (2.12)

These equations are not yet amenable to a numerical procedure due to the reference

to the closed time contour. In order to get rid of the latter, we decompose D into

spectral and statistical components

Dij(t1, t2) = Fij(t1, t2)−
i
2

sgnC(t1 − t2)ρij(t1, t2), (2.13)

2 Note that the indices are switched around in the denominator. This is because δ
δDab

f (D) = f ′(D)ba.

For example, suppressing time indices, δ
δDab

Tr(D−1
0 D) = δ

δDab
∑cd D−1

0,cdDdc = ∑cd D−1
0,cdδadδbc = D−1

0,ba.
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with

Fij(t1, t2) =
1
2
〈
[
ĉi(t1), ĉ†

j (t2)
]
〉 , (2.14)

ρij(t1, t2) = i 〈
{

ĉi(t1), ĉ†
j (t2)

}
〉 . (2.15)

We arrive at the Kadanoff-Baym equations

(
i∂t1 δik − J̃ik(t1)

)
Fkj(t1, t2) =

∫ t1

0
dtΣρ

ik(t1, t)Fkj(t, t2)−
∫ t2

0
dtΣF

ik(t1, t)ρkj(t, t2),

(2.16)
(
i∂t1 δik − J̃ik(t1)

)
ρkj(t1, t2) =

∫ t1

t2

dtΣρ
ik(t1, t)ρkj(t, t2). (2.17)

Above, we separated a time-local part of the self-energy, according to Σ(t1, t2) =

−iΣ(0)(t1)δC(t1 − t2) + ΣF(t1, t2)− i
2 sgnC(t1 − t2)Σρ(t1, t2) and absorbed it into the

quadratic part of the Hamiltonian according to Jij → J̃ij(t1) = Jij + Σ(0)
ij (t1).

interpretation of F and ρ The physical meaning of F and ρ becomes clear

when considering the equilibrium limit. In this case, both F and ρ do not depend on

central time (t1 + t2)/2 and we can Fourier transform with respect to the relative

time, ρ(ω) =
∫

d(t1 − t2)eiω(t1−t2)ρ(t1 − t2). Considering for the moment also a

translationally invariant situation and transforming to momentum space p, we find

by inserting complete sets of many-body eigenstates that

ρp(ω) =
i
Z ∑

n
e−βEn

(
∑
m

δ(ω− (Em − En))| 〈m|c†
p|n〉 |2

+∑
m

δ(ω + (Em − En))| 〈m|cp|n〉 |2
)

. (2.18)

The spectral function hence gives direct access to many-body excitations, with the

matrix element dictating that both “particle” and “hole” excitations are probed. The

meaning of F can be found from the fluctuation-dissipation relation which connects

it to ρ by

Fij(ω) = −i
(

1
2
− nF

β,µ(ω)

)
ρij(ω), (2.19)

with the Fermi-Dirac distribution nF
β,µ(ω) = 1/

(
eβ(ω−µ) + 1

)
at inverse temper-

ature β and chemical potential µ. Hence, F also contains information about the

occupation of the many-body-eigenstates which motivates its name “statistical func-

tion”. We emphasize however, that F and ρ are independent of each other in

non-equilibrium settings. Lastly, we note that in angle-resolved-photoemission

spectroscopy experiments, which we will discuss in one of the later chapters in this

thesis, the “hole/occupied spectral function” A = 〈c†c〉 is measured, which can
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be obtained from F and ρ by A = −i
2 ρ− F. In equilibrium, A = nFρ, i.e. only the

occupied states are visible in this technique.

For a given approximated self energy, the Kadanoff-Baym equations of motion

can be solved numerically by employing initial conditions for a product state,

Fij(0, 0) =
(

1
2
− 〈n̂i(0)〉

)
δij, (2.20)

ρij(0, 0) = iδij, (2.21)

where the latter is a consequence of the commutation relations. The time evolution

of the occupation numbers can then be read out according to

〈n̂i(t)〉 =
(

1
2
− Fii(t, t)

)
. (2.22)

The Kadanoff-Baym equations are exact if the exact expression for Σ is known.

In general, this is not the case. In the following, we will discuss two approxima-

tion schemes for Σ: a perturbative loop expansion and the non-perturbative GW

approximation.

2.1.2 Loop expansion

The 2PI effective action consists out of all two-particle irreducible, connected vac-

uum diagrams. To perform a loop expansion, we identify the interaction part of the

action by

iSint =
∫

C
dt ∑

ij

(
−i

Uij

2

)
c̄i c̄jcjci. (2.23)

We then proceed as if we were making a perturbative loop expansion, with vertex

factors given by −i Uij
2 , propagator lines by D and the 2PI effective action carries

an overall factor of (−i). The overall sign of each diagram is determined by the

number L of loops with more than one vertex as (−1)L.

two loops The expansion of Γ2 up to two loops is given by

Γ2 loop
2 = (−i)

∫

C
dt ∑

ij
(−i

Uij

2
)
[
− Dji(t, t)Dij(t, t) + Dii(t, t)Djj(t, t)

]
. (2.24)

The self energy up to two loops is hence given by

Σ2 loop
ij (t1, t2) = i

(
∑

k
Dkk(t1, t1)Uikδij −UijDij(t1, t1)

)
δC(t1 − t2), (2.25)
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where we used Uij = Uji. At equal times, the construction of the path integral in

terms of coherent states 3 dictates Dij(t, t) = Fij(t, t)− 1
2 δij. Hence, it follows for the

time local part of the self energy

Σ(0),2 loop
ij (t) = −

(
∑

k

(
Fkk(t, t)− 1

2

)
Uikδij −UijFij(t, t)

)
. (2.26)

Moreover, ΣF = 0 = Σρ, showing that to this order the memory integrals van-

ish. The two loop approximation is also known as self-consistent Hartree-Fock

approximation.

three loops The contributions to Γ2 with three loops are given by

Γ3 loop
2 = (−i)

1
2!
(−i)2 ∑

ijkl

Uij

2
Ukl

2

∫

C
dt1

∫

C
dt2×

×
[
− 2Dli(t2, t1)Dik(t1, t2)Dkj(t2, t1)Djl(t1, t2)

+ 2Dik(t1, t2)Dki(t2, t1)Djl(t1, t2)Dl j(t2, t1)

]
.

(2.27)

The self-energy follows as

Σ3 loop
nm (t4, t3) = ∑

jk
UnjUkm

(
− Dnk(t4, t3)Dkj(t3, t4)Djm(t4, t3)

+ Dnm(t4, t3)Dkj(t3, t4)Djk(t4, t3)
)
. (2.28)

3 Here we argue why Dij(t, t) = Fij(t, t)− 1
2 δij. Above we implicitly constructed a (Grassmann) coherent

state path integral to get our action S, see Ref. [213] for an explicit derivation. In order to do

so, resolutions of the identity from the coherent states |η〉 get inserted between trotterized time

evolution operators. Then, the relations 〈η| ĉ† = 〈η| c∗, ĉ |η〉 = c |η〉, are used to replace operators

with Grassmann numbers in the path integrals. Therefore, ĉ† operators always need to act on an

infinitesimally later time slice than the ĉ operators. Hence, when evaluating G(t, t′) for t = t′,

the time t′ corresponding to the ĉ† operator is in fact given by t + ε. Hence, when using the

decomposition in Eq. (2.13) for t = t′, the contour sign function does not vanish as naively expected,

but return sgnC(t − (t + ε) = −1 and we get using the equal-time commutation relations that

Gij(t, t) = Fij(t, t) + i
2 ρij(t, t) = Fij(t, t)− 1

2 δij.
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Decomposition into F/ρ components yields

ΣF,3 loop
nm =

1
4 ∑

jk
UnjUkm

(
ρnkρ∗jkFjm + ρnkF∗jkρjm + Fnkρ∗jkρjm − 4FnkF∗jkFjm

)

−
(

ρnmρ∗jkFjk + ρnmF∗jkρjk + Fnmρ∗jkρjk − 4FnmF∗jkFjk

)
,

(2.29)

Σρ,3 loop
nm = −∑

jk
UnjUkm

(
ρnkF∗jkFjm + Fnkρ∗jkFjm + FnkF∗jkρjm −

1
4

ρnkρ∗jkρjm

)

−
(

ρnmF∗jkFjk + Fnmρ∗jkFjk + FnmF∗jkρjk −
1
4

ρnmρ∗jkρjk

)
,

(2.30)

where we omitted the time arguments (all the same).

2.1.3 GW approximation - effective Bose-Fermi mixture

The loop expansion discussed in the previous section is only valid at small in-

teraction strengths. Here, we discuss the non-perturbative “GW” approximation,

which resums part of the perturbative series. It can be derived by reorganizing the

diagrammatic series by introducing a Hubbard-Stratonovich field, which introduces

a new bosonic, non-dynamical field. In this effective Bose-Fermi mixture, the quartic

vertex is replaced by a cubic Yukawa-type vertex. The GW approximation then

corresponds to keeping only the diagram with two vertices, i.e. the lowest order in

Bose-Fermi interactions.

hubbard-stratonovich field in density channel We introduce a real

bosonic Hubbard-Stratonovich field ψ by using the identity
∫
Dψe

i
2 ∑ij[U−1]ij

ψiψj =

const. A shift ψi → ψi −∑k Uik c̄kck then leads to the action

S[c, c̄, ψ] =
∫

C
dt ∑

ij
c̄i
{

i∂tδij − hij
}

cj +
1
2 ∑

ij

[
U−1

]
ij

ψiψj −∑
j

ψj c̄jcj. (2.31)

We have hence traded the four-point fermionic interaction with a Yukawa-type

interaction between the non-dynamical density field ψ and the fermions. We can

now proceed as in the case for a purely fermionic theory, constructing the 2PI

effective action, deriving the equations of motion and finally constructing the

approximation from a loop expansion in Bose-Fermi interactions.
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2pi effective action The 2PI effective action corresponding to the above

classical action is given by

Γ [ψ̄, G, D] =S[ψ̄] +
i
2

Tr ln G−1 +
i
2

Tr{G−1
0 G}

− i Tr ln D−1 − i Tr{D−1
0 [ψ̄]D}+ Γ2[D, G], (2.32)

where ψ̄i(t1) = 〈ψi(t1)〉, Gij(t1, t2) = 〈TCψi(t1)ψj(t2)〉 = Gji(t2, t1), Dij(t1, t2) =

〈TCci(t1)c̄j(t2)〉 = D∗ji(t2, t1). Note that there are no cross-correlators between

bosonic and fermionic fields because 〈c〉 = 0 (for a discussion, see Refs. [214, 215]).

Γ2 includes all two-particle irreducible vacuum diagrams formed by the vertex

iSint = −i ∑j ψj c̄jcj and the propagators G, D. The free propagators are given by

iD−1
0,ij(t1, t2) =

(
i∂tδij − (Jij + ψ̄j(t1)δij

)
δC(t1 − t2), (2.33)

iG−1
0,ij(t1, t2) =

[
U−1

]
ij

δC(t1 − t2). (2.34)

As before, the equations of motion for the mean field ψ̄ and the propagators D,G

are obtained from evaluating the effective action at an extremum, δΓ = 0. Contrary

to before, we now also get an equation of motion for the mean field from δΓ/δψ̄ = 0.

From this we get

ψ̄j(t) = ∑
k

UjkDkk(t, t), (2.35)

[i∂t1 δik − (Jik + ψ̄i(t1)δik)] Dkj(t1, t2) = iδijδC(t1 − t2)

+ i
∫

C
dtΣik(t1, t)Dkj(t, t2), (2.36)

Gij(t1, t2) = iUijδC(t1 − t2)

+ iUik

∫

C
dtΠkl(t1, t)Gl j(t, t2),

(2.37)

where the fermionic and bosonic self energies are given as

Σij(t1, t2) = −i
δΓ2

δDji(t2, t1)
, Πij(t1, t2) = 2i

δΓ2

δGji(t2, t1)
. (2.38)

As we are only interested in the real-time part of the contour, we decompose the

correlators into spectral and statistical (a.k.a. Keldysh) components according to

Dij(t1, t2) = Fij(t1, t2)−
i
2

sgnC(t1 − t2)ρij(t1, t2), (2.39)

Gij(t1, t2) = iUijδC(t1 − t2) + Uik

(
χF

kl(t1, t2)−
i
2

sgnC(t1 − t2)χ
ρ
kl(t1, t2)

)
Ul j,

(2.40)

where we split off the time-singular part of the bosonic correlator. We denote the

time-non-singular part with χ and split off the interactions for later convenience.
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Figure 2.2: Diagram with smallest number of loops formed by the vertex ∼ ψc̄c. Wiggled

line corresponds to the bosonic propagator G, solid arrow line to the fermionic

propagator D.

The equation for the mean field becomes

ψ̄j(t) = ∑
k

Ujk

(
Fkk(t, t)− 1

2

)
, (2.41)

where we used that Dij(t, t) = Fij(t, t)− δij
2 . Inserting this into the effective Hamil-

tonian and using that Fkk = 1
2 − 〈n̂k〉 we recognise that this corresponds to the

familiar Hartree term.

The equations of motion for the fermionic correlators then become

(
i∂t1 δik − h̃ik(t1)

)
Fkj(t1, t2) =

∫ t1

0
dtΣρ

ik(t1, t)Fkj(t, t2)−
∫ t2

0
dtΣF

ik(t1, t)ρkj(t, t2),

(2.42)
(
i∂t1 δik − h̃ik(t1)

)
ρkj(t1, t2) =

∫ t1

t2

dtΣρ
ik(t1, t)ρkj(t, t2), (2.43)

where we introduced the effective Hamiltonian h̃ij(t) = hij + ψ̄i(t)δij + Σ(0)
ij (t),

where a possible time local part of the self energy was introduced by decomposing

Σ(t1, t2) = −iΣ(0)(t1)δC(t1− t2)+ΣF(t1, t2)− i
2 sgnC(t1− t2)Σρ(t1, t2). Similarly, the

equations of motion for the bosonic correlator are given by

χF
ij(t1, t2) = −ΠF

ij(t1, t2) +
∫ t1

0
Πρ(t1, t)ikUklχ

F
lj(t, t2)

−
∫ t2

0
ΠF(t1, t)ikUklχ

ρ
l j(t, t2) (2.44)

χ
ρ
ij(t1, t2) = −Πρ

ij(t1, t2) +
∫ t1

t2

Πρ(t1, t)ikUklχ
ρ
l j(t, t2), (2.45)

where we again decomposed Π(t1, t2) = ΠF(t1, t2)− i
2 sgnC(t1 − t2)Πρ(t1, t2).

approximation As discussed before, the GW approximation corresponds to

taking into account the diagram with the smallest number of loops given in Fig. 2.2.

The corresponding Γ2 is given by

Γ2 = (−i)(−i)2 1
2!

∫

C
dt1

∫

C
dt2 ∑

ij
Dij(t1, t2)Dji(t2, t1)Gij(t1, t2), (2.46)

where one factor of (−i) comes from the definition of the effective action, (−i)2

comes from the two vertices and 1
2! comes from the expansion of the exponential.
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After decomposition into time-local, spectral and statistical components, the self

energies are given by

Σ(0)
ij (t) = −UijFij(t, t), (2.47)

ΣF
ij(t1, t2) = ∑

kl
UikUl j

(
Fij(t1, t2)χ

F
kl(t1, t2)−

1
4

ρij(t1, t2)χ
ρ
kl(t1, t2)

)
, (2.48)

Σρ
ij(t1, t2) = ∑

kl
UikUl j

(
Fij(t1, t2)χ

ρ
kl(t1, t2) + ρij(t1, t2)χ

F
kl(t1, t2)

)
, (2.49)

ΠF
ij(t1, t2) =

1
4
|ρij(t1, t2)|2 − |Fij(t1, t2)|2, (2.50)

Πρ
ij(t1, t2) = −Fij(t1, t2)ρ

∗
ij(t1, t2)− ρij(t1, t2)F∗ij(t1, t2). (2.51)

Note that the bosonic self energies Π correspond to the fermionic bubble Π ∼ DD∗,

such that the equations of motion for χ correspond to the RPA resummation of

fermionic bubbles. Moreover, Σ(0) corresponds to the Fock contribution and the

term χ̄ appearing in the free correlator D(0) is equivalent to the Hartree contribution.

Hence, the GW approximation contains the full 2-loop contribution discussed above.

As a last remark, we note that the GW theory discussed here can be immediately

adapted to describe mixtures with dynamical bosonic degrees of freedom, i.e.

situations with a term ψ̄i(∂t − JB
ij )ψ in the action. This would replace the free

correlator G−1
0 of the bosons as well as turn the equations for χF/ρ into integro-

differential equations. The GW approximation then corresponds to a two-loop

approximation for the interactions between fermions and bosons. See e.g. Ref [216]

for a study of a relativistic mixture.

2.1.4 Observables

The 2PI Formalism gives access to a wide variety of observables, some of which are

difficult to access even for numerically exact methods.

single particle density matrix and local occupations F contains

information about the single particle occupations and coherences. At equal times,

we can obtain the single particle density matrix via

〈ĉ†
i (t)ĉj(t)〉 = −Fji(t, t) +

1
2

δij, (2.52)

where for equal sites, we obtain the local occupations via

〈n̂i(t)〉 =
1
2
− Fii(t, t). (2.53)

spectra In time-dependent angle-resolved-photoemission-spectroscopy, a probe

we will discuss more in depth in chapter 9, a correlation function of the form
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A< ∼ 〈c†c〉 is probed, i.e. the hole spectral function. More specifically, we can

obtain the spectrum from F and ρ by transforming to central time T = (t1 + t2)/2

and relative time τ = t1 − t2 and Fourier transforming with respect to relative time.

Moreover, in a translationally invariant system, we transform from the lattice indices

to momentum p. Using the definitions of F and ρ in terms of the (anti-)commutator,

Eqs. (2.14), (2.15), we find

A<
p (T, ω) =

∫
dτeiωτ

(
−i
2

ρp(T, τ)− Fp(T, τ)

)
(2.54)

for the time, frequency and momentum resolved hole spectrum measured in ARPES.

Equivalently, the particle spectrum A> measured in angle resolved inverse pho-

toemission spectropy (ARIPES), can be obtained via

A>
p (T, ω) =

∫
dτeiωτ

(
−i
2

ρp(T, τ) + Fp(T, τ)

)
. (2.55)

density-density equal-time correlations We can obtain density corre-

lations via

∑
k

Uik 〈n̂k(t)n̂i(t)〉 = −i∂t1 Fii(t1, t2)
∣∣
t1=t2

+∑
j

JkjFjk(t1, t1) +
1
2 ∑

j
Ujk 〈n̂j〉 . (2.56)

This equation is in particular interesting for a spinful Hubbard model with only

on-site interactions between up and down fermions. In this case, this equation

directly yields the double occupation 〈n̂i↑n̂i↓〉 [217]. Interpreting our lattice system

as the discretized version of a continuum Fermi gas, the double occupation directly

yields the Tan contact, one of the most crucial quantities determining the properties

of such systems [218–221]. In the case of nearest neighbour interactions, we can

obtain the nearest-neighbour density correlations in this way.

In the following, we will show this identity. Consider the Heisenberg equations

of motion for the annihilation operator,

i∂tck =
[
ĉk, Ĥ

]
(2.57)

= ∑
j

Jkj ĉj + ∑
j

Ukj ĉ†
j ĉj ĉk. (2.58)

Multplying ĉ†
l (t2) from the right, we get

i∂t1 ĉk(t1)ĉ†
l (t2) = ∑

j
Jkj ĉj(t1)ĉ†

l (t2) + ∑
j

Ukj ĉ†
j (t1)ĉj(t1)ĉk(t1)ĉ†

l (t2). (2.59)

Together with the equivalent equation by multplying ĉ†
l (t2) from the left, we find

i∂t1 Fkl(t1, t2)
∣∣
t1=t2,k=l =

i
2

∂t1

(
〈ĉk(t1)ĉ†

l (t2)− ĉ†
l (t2)ĉk(t1)〉

) ∣∣
t1=t2,k=l (2.60)

= ∑
j

JkjFjk(t1, t1) +
1
2 ∑

j
Ukj 〈n̂j〉 −∑

j
Ukj 〈n̂jn̂k〉 . (2.61)

Rearranging terms, we find the above result.
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energy Using the result for the density correlations, we can also get the total

energy, i.e. the expectation value of the Hamiltonian, by

〈Ĥ〉 = − i
2 ∑

j
∂t1 Fjj(t1, t2)

∣∣
t1=t2

+
1
4 ∑

jk
Ukj 〈n̂j〉 −

1
2 ∑

jk
JkjFjk(t1, t1) +

1
2 ∑

j
Jjj. (2.62)

By separating off the contributions to the energy resulting from the quadratic

part as well as the Hartree-Fock contribution, a correlation energy can be defined,

quantifying the part of the energy arising from beyond-mean-field correlations. This

formula is also valid in cases where Ĥ is not constant. In Ref. [222] this was used to

study heating in a periodically driven system.

two-particle two-time correlations from the auxiliary field cor-

relator Here we show that in the exact theory, the auxiliary field correlators

χF and χρ appearing in the GW approximation represent the two-time density

correlations. To do so, we follow the procedure in App. D of Ref. [215] of the

author, and introduce a source field coupling to the auxiliary field into the action in

Eq. (2.31) via

S[c, c̄, ψ]→ S[c, c̄, ψ] +
∫

C
dt ∑

j
ηjψj. (2.63)

Completing the square and integrating out the auxiliary field, we find

Z[η] ∝
∫
Dc̄Dc exp

[
iS[c̄, c] + i

∫

C
dt ∑

ij
Uij

(
ηi c̄jcj −

1
2

ηjηj

)]
. (2.64)

Using this expression, we can obtain the correlation functions of ψ in terms of c̄, c

via functional differentiation. As a first check, the one-point-function

〈ψi(t)〉 =
1
Z

δZ
iδηi(t)

∣∣∣∣
η=0

= ∑
j

Uij 〈c̄jcj〉 , (2.65)

is in agreement with Eq. (2.41), which was obtained from the equations of motion.

For the two-point function, we find

〈TCψi(t1)ψj(t2)〉 =
1
Z

δZ
iδηj(t2)δηi(t1)

∣∣∣∣
η=0

(2.66)

= iUijδC(t1 − t2) + ∑
kl

UikUjl 〈c̄k(t1)ck(t1)c̄l(t2)cl(t2)〉 . (2.67)

Using that the left-hand-side is equivalent to Gij(t1, t2) + ψ̄i(t1)ψ̄j(t2), we find

together with the definition of χF, χρ in Eq. (2.40) that

χF
ij(t1, t2) =

1
2
〈{n̂i(t1), n̂j(t2)}〉 , (2.68)

χ
ρ
ij(t1, t2) = i 〈

[
n̂i(t1), n̂j(t2)

]
〉 . (2.69)
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Hence, the density two-point correlators can be probed via the auxiliary field

correlators. We note however, that the above equations only strictly hold in the exact

theory as we used the equivalence of operator expectation values and path integral

expectation values, which can fail in the presence of 2PI approximations [214]. This

can lead for example to violations of sum rules. Most notably, the identity

χF
ii(t, t) = 〈(n̂i(t))2〉 = 〈n̂i(t)〉 (2.70)

can be violated as this relies on the “crossing symmetry” 〈ĉ†
i ĉi ĉ†

i ĉi〉 = 〈ĉ†
i (1− ĉ†

i ĉi)ĉi〉,
which is in general broken for conserving approximations [223].

2.1.5 Numerical solution and benchmark

The Kadanoff-Baym equations are causal integro-differential equations which can

be solved by discretizing both the derivative using a finite-difference expression

and the integral using Newton-Cotes discretisation. This needs to be done in a way

which does not hamper the conservation of conserved quantities, in particular the

particle number conservation. Predictor-corrector methods enable such a conserving

evolution of the equations of motion and they have been established as a “gold-

standard” to solving non-relativistic Kadanoff-Baym equations. For more details

on the implementation, see App. F of Ref. [215] of the author. For a particularly

elegant scheme suited for large quadratic terms in the Hamiltonian, see App. B of

Ref. [212]. For relativistic theories, a symmetric discretization of the second order

time derivative leads to a simpler, also conserving evaluation of the equations of

motion [210].

To benchmark the method, we compare 2PI to exact diagonalization results for

a four site Hubbard model with nearest neighbour hoppings and interactions,

Uij = Uδ〈i,j〉, Jij = −δ〈i,j〉 with a relatively large interaction strength U = 1. We

prepare the system in an inital charge density wave, i.e. 〈n̂i〉 = 1 on even sites

and zero otherwise. In Fig. 2.3 we show the comparison for the three different

approximations discussed above, the two perturbative ones (2 loop/Hartree Fock

and 3 loop) and the non-perturbative GW approximation. We study the imbalance of

the system ∑3
i=0(−1)i 〈n̂i〉. It is clearly visible that all approximations are successfull

in describing the short time dynamics, while deviations occur at longer times.

Remarkably, all three approximations are almost exact up to times Jt ∼ 2, which is

about a factor of two longer than the validity of non-self-consistent time-dependent

perturbation theory, which diverges at roughly Jt ≈ 1. Moreover, we can see that

going further in the perturbative expansion elongates the times in which 2PI is

exact to about Jt ≈ 3.5. Lastly, even though deviations occur at longer times in all

approximations, the qualitative behaviour resembles the exact dynamics. The GW
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Figure 2.3: Comparison between 2PI and exact diagonalization for a four site spinless

Fermi-Hubbard model starting from a charge density wave initial state.

approximation only contains one of the two 3-loop diagrams and hence deviates

earlier from the exact results. However, for longer times its partial inclusion of

higher orders of the perturbation series becomes visible as the deviations increase

slower than for the other two approximations. For a more in-depth comparison of

2PI methods to exact numerics, see Ref. [217].

2.1.6 Thermal equilibrium

The 2PI formalism can also be used to obtain equilibrium properties of many-

body systems. In particular, it enables the calculation of dynamical correlation

functions directly in real-time, which is challenging in the imaginary time Matsubara

formalism due to the nececessity to perform analytic continuation. While the

Matsubara formalism can also be used in conjunction with 2PI by adding an

additional imaginary part to the real time contour (see e.g. [212]), we here only

discuss a formalism directly in real time by using simplifications introduced by

thermal equilibrium.

They are given by

• time-translational invariance Two time functions only depend on

the relative time, e.g. F(t1, t2) = F(t1 − t2). We can then Fourier transform

with respect to time via F(t) =
∫ dω

2π e−iωtF(ω). Similarly, one-time functions

are independent of time, in particular the effective single particle Hamiltonian

h̃.
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• fluctuation-dissipation relations Spectral and statistical components

are related by the fluctuation-dissipation relations

F(ω) = −i
(

1
2
− nF

β,µ(ω)

)
ρ(ω), (2.71)

χF(ω) = −i
(

1
2
+ nB

β(ω)

)
χρ(ω), (2.72)

with the Fermi-Dirac distribution nF
β,µ(ω) = 1/

(
eβ(ω−µ) + 1

)
and Bose-

Einstein distribution nB
β(ω) = 1/

(
eβω − 1

)
with inverse temperature β and

chemical potential µ. Note that in the case of the GW approximation, the

latter does not enter the bosonic fluctuation-dissipation relation as χ corre-

sponds to a correlator of fermionic bilinears, which are not the raising/low-

ering operators corresponding to a conserved quantity. fermionic/bosonic

fluctuation-dissipation relations similarly relate the fermionic/bosonic self

energies Σ/Π.

In order to transform the equations of motion to frequency space, we first send

the initial time to the distant past t0 → −∞ and introduce the retarded Green’s

functions

DR(t1 − t2) = Θ(t1 − t2)ρ(t1 − t2), (2.73)

χR(t1 − t2) = Θ(t1 − t2)χ
ρ(t1 − t2) (2.74)

One can then show that

DR(ω) = −
[
ω− h̃− ΣR(ω)

]−1
, (2.75)

χR(ω) = −
[
1−ΠR(ω)U

]−1
ΠR(ω). (2.76)

The self energies are most conveniently calculated in real time, where

h̃ij = Jij + ∑
k

Ujk

(
Fkk(t = 0)− 1

2

)
−UijFij(t = 0), (2.77)

ΣR
ij(t) = ∑

kl
UikUl j

(
Fij(t)χR

kl(t) + DR
ij (t)χ

F
kl(t)

)
, (2.78)

ΠR
ij(t) = −Fij(t)(DR

ij (t))
∗ − DR

ij (t)(Fij(t))∗. (2.79)

After initializing DR, e.g. with the free solution, the self-consistency loop proceeds

as follows:

1. Calculate spectral function from

ρij(ω) = DR
ij (ω)−

(
DR

ji (ω)
)∗

. (2.80)

and calculate F from fluctuation-dissipation relation, Eq. (2.71). Note that ρ is

not proportional to the imaginary part of DR (only for i = j). Do the same for

χρ and χF.
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2. Fourier transform F and DR to real time and calculate effective Hamiltonian

h̃ from Eq. (2.77), as well as the bosonic self energy from Eq. (2.79).

3. Fourier transform bosonic self energy to frequency space and evaluate χR

from Eq. (2.76)

4. Fourier transform χR to real time and evaluate ΣR from Eq. (2.78). Finally,

Fourier transform ΣR to frequency space and evaluate DR from Eq. (2.75).

An alternative approach would be to Fourier transform the spectral function to

real time, evaluating Σρ, Πρ, multiply with the Θ(t) function to get the retarded

components and then transform back to frequency space.

The thus obtained thermal equilibrium state can also be used as an initial state

for the real-time evolution under a different Hamiltonian than the one used for

calculating the equilibrium state. To do so, all correlation functions are transformed

back to a two-time form, where they are constant along the central time axis. The

thus obtained two-time blocks are then inserted into the non-equilibrium Kadanoff-

Baym equations and convergence with respect to the size of the block needs to be

checked.

2.2 spins

In this section, we discuss the recently developed [48] extension of 2PI techniques

to spin Hamiltonians of the form

Ĥ =
1
2 ∑

ij
∑
αβ

Jαβ
ij Ŝα

i Ŝβ
j , (2.81)

where the spin operators fulfill [Ŝα
i , Ŝβ

j ] = iδijε
αβγŜα

i and ∑α(Ŝα
i )

2 = 3
4 .

As spin operators can not easily be translated into a coherent state path integral 4,

we need to first use a mapping to either bosons or fermions in order to use the

procedure developed in the previous section. We will discuss both alternatives in

the following two sections.

2.2.1 Majorana fermion mapping

The original formulation [48] uses a mapping to Majorana fermions η̂α
i by

Ŝα
i = − i

2
εαβγη̂

β
i η̂

γ
i . (2.82)

4 While spin coherent states and a corresponding path integral can be constructed [224], the resulting

form is not directly amenable to 2PI techniques due to the presence of Berry phase terms.
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The anticommuation relations {η̂α
i , η̂

β
j } = δαβδij automatically guarantee both the

spin commutation relations and the length constraint ∑α(Ŝα
i )

2 = 3
4 .

In the following, we will discuss the derivation of the spin 2PI equations for

Majorana fermions. While it follows similar steps as Ref. [48], we will use the

formulation in terms of spectral and statistical components of the Green’s function

rather than greater/lesser components to make the derivation coherent with our

previous discussion of fermions.

classical and effective action The closed-time path action correspond-

ing to the spin Hamiltonian Ĥ expressed in terms of Majoranas is given by

S[η] =
∫

C
dt

{
1
2 ∑

j
ηα

j (t)i∂tη
α
j (t) +

1
8 ∑

ij
Jαβ
ij εαδ1δ2 εβγ1γ2 ηδ1

i (t)ηδ2
i (t)ηγ1

j (t)ηγ2
j (t)

}
,

(2.83)

where from now on we imply summation over repeated indices. As J is the only

scale in the problem, a loop expansion is problematic. Therefore, we seek to perform

a GW approximation as discussed in the previous section. To do so, we introduce a

real bosonic Hubbard Stratonovich field χ, giving the action

S[η, χ] =
∫

C
dt

{
1
2 ∑

j
ηα

j (t)i∂tη
α
j (t) +

1
2 ∑

ij
[J−1]

αβ
ij χα

i χ
β
j +

i
2 ∑

i
χα(t)εαβγη

β
i (t)η

γ
i (t)

}
.

(2.84)

The 2PI effective action corresponding to this action is given by

Γ[D, G] = S[χ̄]− i
2

Tr ln D−1− i
2

Tr{D−1
0 D}+ i

2
Tr ln G−1 +

i
2

Tr{G−1
0 G}+Γ2[G, D],

(2.85)

where Dαβ
ij (t1, t2) = 〈TCηα

i (t1)η
β
j (t2)〉 and Gαβ

ij (t1, t2) = 〈TCχα
i (t1)χ

β
j (t2)〉. Note also

the symmetry properties Gαβ
ij (t1, t2) = Gβα

ji (t2, t1) and Dαβ
ij (t1, t2) = −Dβα

ji (t2, t1).

equations of motion The equations of motion for the correlators G, D and

the mean field χ̄ follow from varying the effective action δΓ = 0, giving

χ̄α
i (t) = −

i
2 ∑

k
Jαγ
ik εγδβDδβ

kk (t, t), (2.86)

(
i∂tδ

αδ + iεαδγχ̄
γ
i (t1)

)
Dδβ

ij (t1, t2) = iδijδC(t1 − t2) + i
∫

C
dtΣαγ

ik (t1, t)Dγβ
kj (t, t2),

(2.87)

Gαβ
ij = i Jαβ

ij δC(t1 − t2) + i Jαγ
ik

∫

C
dtΠγδ

kl Gδβ
l j (t, t2),

(2.88)
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where Σ = −2i δΓ2
δD , Π = 2i δΓ2

δG are the Majorana and auxiliary field self energies.

We decompose the Majorana correlator into spectral and statistical parts by

D(t1, t2) = F(t1, t2)− i
2 sgnC(t1 − t2)ρ(t1, t2), yielding

(
i∂tδ

αδ + iεαδγχ̄
γ
i (t1)

)
Fδβ

ij (t1, t2) =
∫ t1

0
dtΣρ,αγ

ik (t1, t)Fγβ
kj (t, t2)

−
∫ t2

0
dtΣF,αγ

ik (t1, t)ργβ
kj (t, t2), (2.89)

(
i∂tδ

αδ + iεαδγχ̄
γ
i (t1)

)
ρ

δβ
ij (t1, t2) =

∫ t1

t2

dtΣρ,αγ
ik (t1, t)ργβ

kj (t, t2). (2.90)

Similarly, we decompose the auxiliary field correlator as G(t1, t2) = i JδC(t1 − t2) +

J[χF(t1, t2)− i
2 sgnC(t1 − t2)χρ(t1, t2)]J, with which we get

χ
F,αβ
ij (t1, t2) = −ΠF,αβ

ij (t1, t2) +
∫ t1

0
Πρ,αγ

ik (t1, t)Jγδ
kl χ

F,δβ
l j (t, t2)

−
∫ t2

0
ΠF,αγ

ik (t1, t)Jγδ
kl χ

ρ,δβ
l j (t, t2), (2.91)

χ
ρ,αβ
ij (t1, t2) = −Πρ,αβ

ij (t1, t2) +
∫ t1

t2

Πρ,αγ
ik (t1, t)Jγδ

kl χ
ρ,δβ
l j (t, t2). (2.92)

gw approximation We use the approximation with the smallest number of

vertices, given by

Γ2[G, D] =
i
4

εαγδεα′γ′δ′
∫

C
dt1

∫

C
dt2Gαα′

ij (t1, t2)Dγγ′

ij (t1, t2)Dδδ′
ij (t1, t2), (2.93)

where the overall prefactor is comprised out of (−1/2)2 from the two vertex

prefactors, 1/2! from the expansion of the exponential, (−i) from the definition of

Γ2, (−1) from one fermion loop and a factor of 2 for the two equivalent possibilities

to form this loop.

The self energies follows as

ΣF,αα′

ij (t1, t2) = −εαβγεα′β′γ′
(

Jβδ
ik χ

F,δξ
kl Jξβ′

l j Fγγ′

ij −
1
4

Jβδ
ik χ

ρ,δξ
kl Jξβ′

l j ρ
γγ′

ij

)
, (2.94)

Σρ,αα′

ij (t1, t2) = −εαβγεα′β′γ′
(

Jβδ
ik χ

ρ,δξ
kl Jξβ′

l j Fγγ′

ij + Jβδ
ik χ

F,δξ
kl Jξβ′

l j ρ
γγ′

ij

)
, (2.95)

ΠF,αα′

ij (t1, t2) = −
1
2

εαβγεα′β′γ′
(

Fββ′

ij Fγγ′

ij −
1
4

ρ
ββ′

ij ρ
γγ′

ij

)
, (2.96)

Πρ,αα′

ij (t1, t2) = −
1
2

εαβγεα′β′γ′
(

Fββ′

ij ρ
γγ′

ij + ρ
ββ′

ij Fγγ′

ij

)
, (2.97)

where we omitted a Fock-type contribution Σ ∝ JijGijδC(t1 − t2) as this will turn

out to vanish for physical initial states.

Solving the above set of equations, we can extract the time evolution of spin

expectation values by

〈Ŝα
i (t)〉 = −

i
2

εαβγFβγ
ii (t, t). (2.98)
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physical initial states and translational invariance The initial

value of ρ is given by the Majorana anticommutation relations as

ρ
αβ
ij (0, 0) = iδαβδij. (2.99)

The initial value of F results from the initial spin expectation values as

Fαβ
ij (0, 0) = iεαβγ 〈Ŝγ

j 〉 δij. (2.100)

Therefore, physical initial states imply Dij(0, 0) ∼ δij, and therefore Σij ∼ δij

and Πij ∼ δij. Moreover, for translational invariant initial states, D, Σ, Π, χ̄ become

independent of lattice site and Dij, Jij are only dependent on the relative coordinate.

In Fourier space, we write Jk = 1
N ∑ij eik(ri−rj) Jij, and the resulting set of equations

of motions is

χ̄α(t) = − i
2

Jαγ
k=0εγδβFδβ(t, t), (2.101)

(
i∂tδ

αδ + iεαδγχ̄γ(t1)
)

Fδβ(t1, t2) =
∫ t1

0
dtΣρ,αγ(t1, t)Fγβ(t, t2)

−
∫ t2

0
dtΣF,αγ(t1, t)ργβ(t, t2), (2.102)

(
i∂tδ

αδ + iεαδγχ̄γ(t1)
)

ρδβ(t1, t2) =
∫ t1

t2

dtΣρ,αγ(t1, t)ργβ(t, t2), (2.103)

χ
F,αβ
k (t1, t2) = −ΠF,αβ(t1, t2)

+
∫ t1

0
Πρ,αγ(t1, t)Jγδ

k χ
F,δβ
k (t, t2)

−
∫ t2

0
ΠF,αγ(t1, t)Jγδ

k χ
ρ,δβ
k (t, t2), (2.104)

χ
ρ,αβ
k (t1, t2) = −Πρ,αβ(t1, t2)

+
∫ t1

t2

Πρ,αγ(t1, t)Jγδ
k χ

ρ,δβ
k (t, t2). (2.105)

The self energies then become

ΣF,αα′(t1, t2) = −εαβγεα′β′γ′ 1
N ∑

k
Jβδ
k Jξβ′

k

(
χ

F,δξ
k Fγγ′ − 1

4
χ

ρ,δξ
k ργγ′

)
, (2.106)

Σρ,αα′(t1, t2) = −εαβγεα′β′γ′ 1
N ∑

k
Jβδ
k Jξβ′

k

(
χ

ρ,δξ
k Fγγ′ + χ

F,δξ
k ργγ′

)
, (2.107)

ΠF,αα′(t1, t2) = −
1
2

εαβγεα′β′γ′
(

Fββ′Fγγ′ − 1
4

ρββ′ργγ′
)

, (2.108)

Πρ,αα′(t1, t2) = −
1
2

εαβγεα′β′γ′
(

Fββ′ργγ′ + ρββ′Fγγ′
)

. (2.109)
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exctracting spin-spin correlations Repeating the same line of argu-

mentation as in section 2.1.4, we find that we can extract spin-spin correlations

from the auxiliary field correlators via

χ
F,αβ
k (t1, t2) =

1
2
〈〈Ŝα

k, Sβ
k〉〉 , (2.110)

χ
ρ,αβ
k (t1, t2) = i 〈

[
Ŝα

k, Sβ
k

]
〉 . (2.111)

As we will see in chapter 8, the usage of these identities is hampered by the

violation of sum rules, which appear as a result of the approximation used.

2.2.2 Schwinger boson mapping

The author of this thesis developed an alternative formulation in terms of Schwinger

bosons [215], employing

Ŝα
i =

1
4

ϕ̂a
iKα

ab ϕ̂b
i , (2.112)

where [ϕ̂a
i , ϕ̂b

j ] = δijδ
ab defines the bosonic operators. Here, a ∈ {0, 1, 2, 3}, such that

the above definition needs to be supplemented by a constraint on the occupation of

the bosons on each site [215]. The matrices K are defined as

Kα = [σx ⊗ 1] δαx + [σy ⊗ 1] δαy + [σz ⊗ 1] δαz. (2.113)

Rather than deriving the Schwinger boson spin 2PI equations, we note that they

can be obtained from the Majorana version by comparing the two definitions for

the spin operators in Eqs. (2.82), (2.112). This implies a prescription following

εαβγ → i
2
Kα

bc, (2.114)

along with replacing the (3× 3) matrices (F, ρ, ΣF, Σρ, ΠF, Πρ) with (4× 4) matrices.

Moreover, we need to replace the time derivative i∂tδ
ab in Eqs. (2.102), (2.103) with

−i[1⊗ σy]ab to account for the different type of species. Comparing the thus ob-

tained equations of motion, we indeed find the Schwinger boson spin 2PI equations

derived in Ref. [215]. Note that the initial conditions are now given by

ρab
ij (0, 0) = −[1⊗ σy]abδij (2.115)

and

Fij(0, 0) = δij




〈Ŝz
i 〉+ S + 1

2 0 〈Ŝx
i 〉 〈Ŝy

i 〉

0 〈Ŝz
i 〉+ S + 1

2 − 〈Ŝy
i 〉 〈Ŝx

i 〉

〈Ŝx
i 〉 − 〈Ŝy

i 〉 − 〈Ŝz
i 〉+ S + 1

2 0

〈Ŝy
i 〉 〈Ŝx

i 〉 0 − 〈Ŝz
i 〉+ S + 1

2




.

(2.116)
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The spin expectation values can be read out by

〈Ŝα
i (t)〉 =

1
4
Kα

abFab
ii (t, t). (2.117)

2.2.3 Benchmark: Relaxation dynamics and signatures of many body localization in the

XXZ chain

This section is based on the publication

• Alexander Schuckert, Asier Pineiro-Orioli, Jürgen Berges:

“Nonequilibrium quantum spin dynamics from two-particle irreducible func-

tional integral techniques in the Schwinger boson representation”

– Phys. Rev. B 98, 224304 (2018) [arXiv:1806.02347]

Structure and text have been rearranged and adapted here.

The question of whether and how the far-from-equilibrium dynamics on different

sides of a quantum critical point (QCP) are connected to the underlying quantum

phase transition [225] has recently gained much attention from the perspective of

dynamical phase transitions [181, 226–228]. In this section, we investigate whether

this field of study may be addressed by the Schwinger boson spin 2PI method. Here,

we consider a model studied before in this context [225, 226], the antiferromagnetic

nearest-neighbor interacting XXZ chain with periodic boundary conditions defined

by the Hamiltonian

Ĥ = J ∑
i

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + ∆Ŝz

i Ŝz
i+1
)

, (2.118)

where we choose J > 0 and ∆ denotes the anisotropy. This model exhibits a quantum

phase transition from a gapless Luttinger liquid phase with quasi-long-range order

for |∆| < 1, to an antiferromagnetic (ferromagnetic) phase with long-range order

for ∆ > 1 (∆ < −1) [225].

We study the evolution of the staggered magnetization,

∑
i
(−1)i 〈Sz

i (t)〉 , (2.119)

in a spin chain initialized with classical Néel order, i.e.

|Ψ0〉 = |↑↓↑ · · · ↑↓〉 , (2.120)

for different anisotropies ∆. The time evolution of this initial state has been exten-

sively studied with a numerically accurate method (iMPS) in the infinite length

limit [225, 229]. Those studies show different dynamical behaviour of this non-

equilibrium initial state depending on ∆. One finds exponentially damped oscilla-

tions with near constant oscillation period for ∆ ≤ 1, a simple exponential decay
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for ∆ > 1, and an algebraic decay for ∆ = 0. This behaviour was later attributed to

an underlying dynamical quantum phase transition [226].

10−4

10−3

10−2

10−1

0 1 2 3 4 5 6

|S
ta

g
g
e
re

d
m

a
g
n

e
ti

z
a
ti

o
n
|

Time: Jt

N = 4
N = 6
N = 10

Figure 2.4: Comparison of different system sizes in the dynamics of the staggered magne-

tization starting in the classical Néel state in the XXZ chain at the Heisenberg

point ∆ = 1.0. A fast convergence to the thermodynamic limit is found as chain

length 6 shows no sizeable difference to chain length 10.

Evaluation in the infinite length limit

Using our 2PI approach, we first compare in Fig. 2.4 the effect of varying the system

size on the dynamics of the staggered magnetization for ∆ = 1. Remarkably, we find

no significant changes in the dynamics for the times considered when increasing the

chain length from N = 6 to N = 10. This suggests that results with a system size of

just N = 6 can already be taken as a good approximation to the thermodynamic

limit in this particular problem. Moreover, we observed a similarly fast convergence

to the thermodynamic limit in two spatial dimensions (not shown), which indicates

that this method is also well-suited for the study of quantum dynamics of spin

systems in the infinite volume limit in higher dimensions. This fast convergence

to the thermodynamic limit is a feature resulting from the field-theoretic nature of

our method and was also found in Ref. [48]. We note that we do not use a memory

cut here as we found it to lead to an unphysical leveling-off of the exponential

damping.

Dynamics of the Néel ordered state on different sides of the QCP

Fig. 2.5 shows the time evolution of the staggered magnetization for different values

of ∆ below and above the transition as obtained from our 2PI approximation. Re-
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Figure 2.5: Time evolution of the modulus of the staggered magnetization in the XXZ chain

with different anisotropies ∆, tuning across the (dynamical) quantum phase

transition at ∆ = 1. The dynamics exhibit an oscillating exponentially damped

behaviour for ∆ < 1 and a pure exponential damping for ∆ > 1, which was

previously found with MPS [225]. Note that in mean field/LO the staggered

magnetization stays constant for all times and hence all features seen here are

solely obtained from the NLO approximation.
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Figure 2.6: Relaxation time as obtained from an exponential fit to the data in Fig. 2.5

as a function of anisotropy. As the QCP around ∆ = 1 is approached the

dynamics becomes faster, which is the anomalous behaviour found before in

this model. Furthermore, the relaxation time changes asymetrically as the QCP

is approached from above/below. The errors result from the fitting procedure

and are smaller than the dot size for most data points. The blue line (not a fit)

indicates the ∆2 behaviour previously found for the approach to the QCP from

above[225].
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markably, our method captures the qualitative behavior expected [225]. For ∆ < 1

we obtain exponentially damped oscillations, whereas for ∆ > 1 the damping be-

comes exponential and non-oscillatory. This represents a considerable improvement

compared to previous mean-field treatments based on a mapping to a spinless

fermion model [225], which found spurious algebraic decay of the staggered mag-

netization for ∆ < 1 and a constant oscillatory behaviour for ∆ > 1. Note that such

a mean-field approximation does not correspond to our LO approximation, which

is equivalent to mean-field in the original spin variables and which does not show

any dynamics here.

Fitting an exponentially damped function f (t) ∼ exp(−t/τ) to our data, where

the proportionality factor contains an oscillatory function for ∆ < 1, we extract

the relaxation time τ as a function of the anisotropy, see Fig. 2.6. As the critical

point at ∆ = 1 is approached from below we observe a fall-off of the relaxation

time, which is the behaviour expected in this model. Note that this constitutes a

rather anomalous behavior compared to the usual critical slowing down close to

quantum critical points [225, 230]. As ∆ = 1 is approached from above, an algebraic

dependence τ(∆) ∼ ∆2 has been previously found in Ref. [225]. Fig. 2.6 shows that

our results are compatible with such a quadratic dependence in the regime just

above ∆ = 15.

While all of the above results are in agreement with those found in Ref. [225]

with iMPS, the damping rates inferred do not agree quantitatively with the iMPS

results. Moreover, the quantum critical point seems to be slightly shifted away from

∆ = 1 in our approximation, as evidenced by the simple exponential damping of

the ∆ = 1 curve shown in Fig. 2.5, instead of the oscillations around zero found in

Ref. [225]. Other features not well reproduced by our approximation include the

approximate ∆-independence of the oscillation periods found for ∆ < 1 and the

algebraic decay expected for ∆ = 0.

Despite these quantitative inaccuracies, which may be improved in the next

order of the 1/N expansion, it is remarkable that our 2PI approximation is able to

reproduce most generic features of the relaxation dynamics around the QPT of the

XXZ chain, even in the strongly interacting regime around ∆ = 1. In particular, it

greatly outperforms previous mean-field treatments built on a mapping to spinless

fermions which show a qualitatively different behavior. The results presented here

open up the possibility to study dynamical quantum phase transitions in lattice

spin systems in regimes in which methods such as iMPS or other DMRG related

methods fail, e.g. in higher dimensions as previously done in the O(N) model [231].

5 While the line in this figure is not a fit we checked that vastly different power laws such as ∼ ∆ and

∼ ∆3 are clearly inconsistent with the data.
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For this purpose, our results suggest that one would not need to simulate large

system sizes owing to the fast convergence to the thermodynamic limit shown here.

Signatures of Many Body Localization

In the first applications, we have shown that the Schwinger boson spin-2PI method

is able to reproduce generic features of thermalization dynamics in interacting

spin models. In this section, we give some indicative results that it is also able to

capture the dynamics of local observables in a system which refuses to thermalize:

a many-body localized (MBL) system [52–54, 154, 179, 232]. The model best studied

in this context is the Heisenberg chain with nearest-neighbour interactions in a

random field [57, 233, 234]

Ĥ = J ∑
i

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + Ŝz

i Ŝz
i+1
)
+ ∑

i
hiŜz

i , (2.121)

where the hi are numbers drawn from a uniform random distribution in the interval

[−Θ, Θ]. Note that this Hamiltonian becomes the model (2.118) studied in the

previous section for ∆ = 1 and Θ = 0. This model can be transformed to a

Hubbard-type model using the Jordan-Wigner transformation. In Ref. [235] this

has been used to develop a Hartree-Fock theory of the many-body-localization

transition. As before, we consider as initial state the classical Néel state in Eq. (2.120)

and study the dynamics of the staggered magnetization, Eq. (2.119), in a system

with periodic boundary conditions. For the purpose of localization it is useful

to note that for this particular initial state, the staggered magnetization can be

interpreted as quantifying the correlations with the initial state by means of

∑
i
〈Ŝz

i (t)Ŝ
z
i (0)〉 =

1
2 ∑

i
(−1)i 〈Sz

i (t)〉 . (2.122)

For thermalizing systems with initial state in the zero-magnetization sector, such

as the Néel state, the correlation with the initial state, and hence the staggered

magnetization, should go to zero as a relaxing system effectively forgets its initial

state. In a localized system, however, memory of the initial state is retained and

therefore the above quantity tends to a nonzero constant in a fully many-body

localized system.

Fig. 2.7 shows the time evolution of the staggered magnetization in a chain of

six spins initialized in a Néel ordered state for various disorder strengths Θ. The

results displayed are averaged over 26 disorder realizations. Based on the finite-

size discussion of the previous section for the case without disorder (see Fig. 2.4),

we expect them to capture at least some qualitative features of the system in the

thermodynamic limit. For very weak disorder (Θ = 0.01), we observe that the time
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Figure 2.7: Time evolution of the staggered magnetization in a Heisenberg chain of 6

spins with a random field for different disorder strengths Θ, averaged over 26

realizations of the disorder. As the disorder increases, the dynamics slow down

from exponentially fast relaxation to a full arrest on the observed timescales.

Inset: Latest value of the staggered magnetization as a function of disorder

strength. Error bars are defined as the standard deviation of the disorder average.
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evolution is indistinguishable from the case of no disorder for early times and the

relaxation slows down at around Jt = 8. For larger disorder strengths, a plateau is

approached and the value of the staggered magnetization at the plateau is found to

increase with increasing disorder. For Θ = 50 no time evolution of the staggered

magnetization is visible on the observed timescale. In the inset, we show the latest

value of the staggered magnetization as a function of the disorder. A crossover

from thermalization at low disorder strength to no relaxation at strong disorder is

visible (see inset in Fig. 2.7), where the inflexion point resulting from interpolating

between the points is consistent with the value Θ ≈ 3.5 obtained in Ref. [236] for

the location of the MBL transition.

While these observations are in agreement with previous numerical studies of

MBL in this system, we note that the observed timescales as well as the system

size are not large enough to conclusively demonstrate that this method is able

to describe this phenomenon. Future studies would, however, be immediately

able to generalize results to higher dimensions and more exotic interactions (such

as long-range interactions), where other standard numerical methods become

inapplicable. Moreover, it is useful to note that in contrast to conventional field-

theoretic treatments of disordered systems [237], the disorder is taken into account

without further approximations as it is quadratic in the Schwinger boson operators.





Part I

T H E R M A L I Z AT I O N O F C L O S E D Q UA N T U M M A N Y- B O D Y
S Y S T E M S

In this part we will study various aspects of the thermalization dynamics

of many-body quantum systems, ranging from many-body chaos near

a phase transition over the use of fluctuation-dissipation relations to

characterize eigenstate thermalization to the emergence of transport

dynamics in the late-time relaxation of long-range spin systems.





3
M A N Y- B O D Y C H A O S N E A R A T H E R M A L P H A S E T R A N S I T I O N

This chapter is based on the publication

• Alexander Schuckert, Michael Knap: “Many-body chaos near a thermal phase

transition” – SciPost Phys. 7, 022 (2019) [arXiv:1905.00904]

Structure and text have been rearranged and adapted here. Section 3.8 as well as

subsection 3.7.2 have not been published yet.

We study many-body chaos in a (2+1)D relativistic scalar field theory at high

temperatures in the classical statistical approximation, which captures the quantum

critical regime and the thermal phase transition from an ordered to a disordered

phase. We evaluate out-of-time-ordered correlation functions (OTOCs) and find

that the associated Lyapunov exponent increases linearly with temperature in the

quantum critical regime, and approaches the non-interacting limit algebraically in

terms of a fluctuation parameter. OTOCs spread ballistically in all regimes, also at

the thermal phase transition, where the butterfly velocity is maximal. This chapter

contributes to the understanding of the relation between quantum and classical

many-body chaos. As an outlook, we show that our method can be applied to other

field theories dominated by classical modes at long wavelengths and generalized to

situations far-from-equilibrium.

3.1 introduction

Thermalization in classical many-body systems can be understood from the per-

spective of dynamical chaos: details of the initial state are effectively forgotten by

the exponential divergence of trajectories. In quantum many-body systems, the

same picture can not be immediately applied as the Schrödinger equation is a linear

differential equation and therefore does not directly give rise to chaos. However,

parts of the system may look thermal if their surrounding provides a thermalizing

environment, as put forward by the eigenstate thermalization hypothesis [25–27].

Thermalization can be directly probed by evaluating fluctuation-dissipation rela-

tions far from equilibrium as well [48, 238, 239]. Yet, a dynamical mechanism of

thermalization in quantum systems comparable in generality to the one offered by

chaos in classical systems has remained elusive so far.

55
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Recently, OTOCs [240, 241] have been proposed as a generalization of classical dy-

namical chaos to quantum systems. As motivated from the perspective of operator

scrambling in strongly coupled field theories with a gravity dual [242–246], they

have been shown to exhibit exponential growth in many field theories [36–38, 247–

250]. Moreover, OTOCs spread (in general) ballistically in space with a “butterfly

velocity” quantifying the speed of scrambling, which has been also found in non-

relativistic lattice systems [34, 40–42, 251–256]. Such ballistic spreading is to be

expected in systems with well-defined quasiparticles [257], but even strongly cou-

pled systems without quasiparticles exhibit a well-defined butterfly velocity. While

these results show many analogies to dynamical chaos in classical systems [258–

261], the exact relation between exponential growth in OTOCs and classical chaos

remains unclear.

Here, we study a self-interacting real scalar field theory in the strongly correlated

regime in which classical modes are expected to dominate: at high temperatures

and around a second-order thermal phase transition. While the critical dynamics

are notoriously hard to study with diagrammatic techniques [262], the classical

statistical approximation provides reliable results for the order parameter dynam-

ics in these regimes [263–267]. Furthermore, it has recently been shown that also

the leading behaviour of the OTOC is captured within semi-classical approxima-

tions [268] and we conjecture this result to generalize to our case. Hence, we

numerically obtain both the spectral function and the OTOC by evolving the classi-

cal field equations of motion of an infinitesimal perturbation and averaging over

thermal initial states. The zero-momentum spectral function exhibits algebraically

slow relaxation near the critical point as a consequence of critical slowing down,

but possesses well-defined quasi-particles at higher momentum or away from the

critical point. By contrast, we do not find signatures of critical slowing down in the

OTOC even though the studied time scales are well within the temporal correlation

length. Instead, the OTOC exhibits ballistic spreading and exponential growth in

the whole considered parameter regime. By matching the quantum field theory in

the quantum critical regime to the classical field theory via dimensional reduction,

we find the Lyapunov exponent to reproduce the linear-in-temperature scaling,

that has been found in other strongly coupled theories in accordance with the

Maldacena-Shenker-Stanford (MSS) bound [243]. Furthermore, it approaches the

non-interacting limit algebraically in a fluctuation parameter and exhibits a cusp at

the phase transition. The butterfly velocity is significantly smaller than the speed of

light and shows a global maximum near the phase transition. Lastly, the temporal

fluctuations of the OTOC follow a self-similar behaviour in agreement with the

Kardar-Parisi-Zhang (KPZ) universality class [269].
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This chapter is organized as follows. First, we introduce the real scalar field

theory, how to obtain the classical statistical approximation from dimensional

reduction and our numerical methods. Secondly, we discuss the long wavelength

excitations obtained from the spectral function at zero momentum. Finally, we show

that the dynamics of the OTOC display qualitatively different perspective on the

thermalization dynamics compared to the spectral function.

3.2 real scalar field theory at high temperature

model . We study a real scalar field theory in d = 2 spatial dimensions given by

the Hamiltonian

H =
∫

d2x
[

1
2

π2 +
1
2
(∇ϕ)2 +

1
2

m2ϕ2 +
λ

4!
ϕ4
]

, (3.1)

with bare mass m2 and interaction constant λ. π = ∂t ϕ is the canonically conjugate

momentum of the real scalar fields ϕ. This model exhibits a finite temperature

phase transition from a disordered paramagnetic phase with 〈ϕ〉 = 0 to a symmetry

broken phase with 〈ϕ〉 6= 0 in the universality class of the 2D Ising model.

the classical statistical approximation. At high temperatures and

close to the phase transition, the two dimensional classical statistical field theory

given by the Hamiltonian in Eq. (3.1) can be interpreted as an effective field theory

for the corresponding (2+1)D finite temperature quantum field theory for long-

wavelength, long-distance properties. This may be allegorically understood from

the fact that in the high-T regime and close to a thermal phase transition, dominant

long wavelength excitations have frequency ω � T and hence the Bose-Einstein

distribution reduces to the classical Rayleigh-Jeans law

1
exp(ω/T)− 1

≈ T
ω
� 1. (3.2)

For long wavelength observables, the quantum field theory is therefore expected to

be dominated by these highly occupied modes and reduces to a classical statistical

field theory. The two-dimensional classical theory may then be matched to the

corresponding (2 + 1) dimensional quantum field theory by inserting the mass

m2 and coupling λ obtained from dimensional reduction, i.e., by integrating out

all non-zero Matsubara frequencies. This procedure is based on the fact that the

latter have larger thermal masses than the zero Matsubara mode to lowest order

in an ε = 3− d expansion [267] and hence may be integrated out to obtain the

long-distance properties of the theory. While it was previously shown that this

procedure can also be used to obtain the order parameter dynamics [267, 270, 271],
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we conjecture in this chapter that it also captures the leading chaotic scrambling

dynamics in the OTOC at times shorter than the Ehrenfest time. This assumption

was previously shown to be valid in semi-classical calculations in the Bose-Hubbard

model [268]. Furthermore, a diagrammatic approach to the related O(N) model has

found the OTOC to be dominated by momenta p < T, i.e., the classical modes at

high temperature [37].

In the following, we will discuss the above arguments more in-depth, from

dimensional reduction to a dynamical argument.

Dimensional reduction

We are interested in a real scalar quantum field theory at finite temperature de-

scribed by the partition function

Z =
∫
Dφ(x, τ) exp (−S) (3.3)

with Euclidean action

S[φ] =
∫ 1/T

0
dτ
∫

d2x
{

1
2
(∂τφ)2 +

1
2
(∇xφ)2 +

1
2
(rc + r)φ2 +

g
4!

φ4
}

. (3.4)

Above we have introduced the deviation r of the quadratic coupling from the

(quantum) critical coupling rc and the quartic coupling g.

The procedure of dimensional reduction reduces the above (2 + 1) dimen-

sional quantum field theory to the two dimensional classical statistical field the-

ory discussed above. To do so, we mainly follow the line of argumentation in

Refs. [230, 262, 267].

free theory. To motivate the general procedure, consider for a moment g = 0.

Introducing the fields φ(τ, x) = ∑n∈R eiωnτφn(x) in Matsubara space, the action

becomes

SU=0[φ] =
1
T ∑

n

∫
d2x

{
1
2
(∇xφn)

2 +
1
2
(rc + r + 4π2n2T2)φ2

n

}
. (3.5)

At high temperature, the masses of the non-zero Matsubara modes become very

large. As these determine the inverse correlation length, the low momentum prop-

erties are entirely dominated by the n = 0 mode. Hence, all modes with n 6= 0 may

be omitted and the theory is described by a two dimensional classical statistical

theory involving only the n = 0 mode.

interacting theory. For g 6= 0, it is expected that the non-zero Matsubara

modes have thermal masses of order of at least T. The same procedure may hence
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be followed in cases in which the n = 0 mode has a thermal mass smaller than

T, which is especially true near a thermal phase transition [230]. Then, we can

perturbatively integrate out all non-zero Matsubara modes, replacing the bare

couplings in the action by renormalized ones in an expansion with respect to the

in general small mass of the n = 0 mode in units of temperature. We denote these

by r + rc → m2 and g→ λ. In order to render the thermal mass of the zero mode

smaller than T, we use the results from Ref. [267]. There, a ε = 3− d expansion

was used, resulting in m2 ∼ εT2 � T2. After removing the only UV divergence in

this theory by introducing a one loop renormalized mass M2 according to Eq. (3.11)

below, the couplings to be inserted into the classical effective theory result to lowest

order as

M2 =

(√
2

3
πT

)2

, (3.6)

G = 8
√

2π ≈ 35.5 (3.7)

in the high-T quantum critical regime in d = 2.

dynamics . While these arguments are strictly only valid for static properties, it

has been shown that low frequency, low momentum dynamical properties such as

the damping rate of the quasiparticle in the spectral function yields the same result

in quantum and classical field theory after matching only static quantities [270, 271].

To do so, a canonically conjugate field momentum term π = ∂t ϕ needs to be

introduced as done in Eq. (3.1). Although it is natural to choose the same form of

the field momentum in the classical theory as in the quantum theory, this is not a

unique choice as dynamical and static properties are independent in classical field

theory [272]. In the following, we give a complementary discussion of the range of

validity of the classical statistical approximation for the field dynamics from the

perspective of the equilibrium limit of non-equilibrium quantum field theory.

Equilibrium classical field theory from nonequilibrium quantum field theory

Classical statistical field theory is a good approximation for quantum field theory in

regimes in which the statistical fluctuations, given by the anticommutator of fields

F =
〈 1

2{ϕ̂, ϕ̂}
〉
− 〈ϕ̂〉2, are much larger than the quantum fluctuations, given by the

commutator of fields (i.e. the spectral function) ρ = i 〈[ϕ̂, ϕ̂]〉,

|F(t1, t2; x1, x2)| � |ρ(t1, t2; x1, x2)|. (3.8)

This classicality condition can be motivated from a slightly more restrictive, but

rigorous condition derived from two-particle irreducible effective action meth-
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ods in (non-)relativistic scalar field theories [265, 273] and is applicable both

in equilibrium and far-from-equilibrium. In thermal equilibrium, F and ρ are

only dependent on relative coordinates t1 − t2 and x1 − x2 and are linked by the

fluctuation-dissipation relations in temporal frequency space, F = −i(1/2 + nT)ρ,

where nT(ω) = 1/(exp(ω/T)− 1) is the Bose-Einstein distribution. Although the

classicality condition in Eq. (3.8) must strictly be fulfilled for all (t1, t2; x1, x2), one

may argue that a theory already behaves classically if it is dominated by modes

fulfilling this condition. Consequently, a theory in thermal equilibrium behaves

classically if the spectral function is dominated by momentum modes p with energy

ω � T as then nT(ω) ≈ T/ω � 1, i.e. the Bose-Einstein distribution reduces to the

classical Rayleigh-Jeans law.

In the presence of well-defined quasiparticles, ρ is strongly peaked at frequency

ω ≈
√

m2 + p2 (neglecting the momentum dependence of the effective mass). At

zero momentum, Eq. (3.8) can therefore then be specified to the condition

m2 � T2, (3.9)

which coincides with the condition for dimensional reduction discussed above.

Moreover, directly at the phase transition G = Gc, the classicality condition above

is exactly fullfilled as the zero-momentum spectral function diverges as ω → 0. This

justifies why zero-momentum, zero-frequency properties of quantum field theories

at finite temperature phase transitions are rigorously described by classical field

theory [263].

Having discussed the validity of the classical statistical approximation, we discuss

how to evaluate observables at finite temperature.

3.3 observables at finite temperature

We evaluate all observables O in thermal equilibrium according to the classical

phase space average

〈O(x, t)〉cl =
1

Zcl

∫
Dϕ0Dπ0O(x, t) exp (−H/T) , (3.10)

where Zcl =
∫
Dϕ0Dπ0 exp {−H/T} is the classical partition sum at temperature T

and the phase space measure at the initial time is given by Dϕ0Dπ0 = Πxdϕ(x, t =

0)dπ(x, t = 0). Numerically, we regularize the model on an N × N lattice with

lattice spacing as and sample the canonical distribution with a hybrid Monte Carlo

method. For details on the implementation, see section 3.4.
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All ultraviolet divergences of the classical field theory are cancelled after lattice

regularization [274] by introducing a one-loop renormalized mass1 M according to

m2 = M2 − λT
2

∫ d2p
(2π)2

1
p2 + M2 , (3.11)

which is the classical limit of the corresponding result in thermal quantum field

theory [264, 267].

Furthermore, we use M as our unit and introduce dimensionless variables accord-

ing to x̃ = xM, t̃ = tM, ϕ̃a = ϕaT−1/2, π̃a = πa M−1T−1/2. As a result, the theory

only depends on a single dimensionless variable

G =
λT
M2 (3.12)

and results in the continuum, infinite volume limit are obtained by taking as →
0, N → ∞.

The fluctuation parameter G interpolates smoothly between the paramagnetic

phase (for small G), the high-T quantum critical regime (around G ≈ 35) [267], the

finite temperature phase transition line at Gc ≈ 61.44,2 and the symmetry broken

phase for G > Gc. We confirmed this value in our Monte Carlo simulations by

studying both the Binder cumulant, a measure for non-Gaussian fluctuations of

the order parameter (see section 3.5), and critical behaviour of the spectral function

near Gc in section 3.6.

dynamical correlation functions . The dynamics of the field can be

obtained from its equation of motion

∂2
t ϕ̃ = ∆ϕ̃− m2

M2 ϕ̃− G
6

ϕ̃3 (3.13)

on the lattice, with initial conditions obtained from Monte Carlo sampling. In the

classical limit, the spectral function ρq(t, x) = i〈[ϕ̂(x, t), ϕ̂(0, 0)]〉 is given in terms

of the Poisson bracket according to ρ(t, x) = −〈{ϕ(x, t), ϕ(0, 0)}PB〉cl and can be

obtained from the two-point correlation function using the classical fluctuation-

dissipation relation [263, 264, 267] (FDR)

ρ(t, x) = − 1
T

∂t 〈ϕ(t, x)ϕ(0, 0)〉cl . (3.14)

1 M is in general not the full renormalized mass, in particular it does not vanish at the phase transition.

In the perturbative regime at small coupling and high temperatures (small G), M is however very

close to the full renormalized mass as pointed out in [274] and shown in section 3.6.
2 Note that this value is independent of the cut-off for the latter being small enough as we have removed

all ultraviolet divergences with our renormalization procedure [275]. See Ref. [267] for a discussion of

the behaviour of G across the phase diagram.
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The spectral function can also be directly obtained from the Poisson bracket (PB),

ρ(x, t) = −
∫

ddz
〈(

δϕ(x, t)
δϕ(z, 0)

δϕ(0, 0)
δπ(z, 0)

− δϕ(x, t)
δπ(z, 0)

δϕ(0, 0)
δϕ(z, 0)

)〉

cl
(3.15)

=

〈
δϕ(x, t)
δπ(0, 0)

〉

cl
. (3.16)

The latter functional derivative can be evaluated numerically by evolving the

linearized field equations of motion in parallel,

∂2
t δϕ̃ = ∆δϕ̃− m2

M2 δϕ̃− G
2

ϕ̃2δϕ̃, (3.17)

which can also be interpreted as evolving a second field configuration with slightly

perturbed initial momenta π̃(0, x) → π̃(0, x) + εδπ̃(0, x) in the limit ε → 0. In

section 3.4 we show that obtaining the spectral function numerically with Eq. (3.16)

is equivalent to Eq. (3.14). In fact, Eq. (3.16) has some advantages over the FDR

method as it does not show finite time-step pathologies for short times. Moreover, it

can be used to evaluate the spectral function in regimes in which the FDR does not

hold, such as for out-of-equilibrium initial states, as it is related to the numerical

linear response theory introduced in Ref. [276, 277].

otoc . The classical limit of the OTOC −〈[ϕ̂(x, t), ϕ̂(0, 0)]2〉 can similarly be

obtained by replacing commutators with Poisson brackets, giving

C(x, t) =
〈
{ϕ(x, t), ϕ(0, 0)}2

PB

〉
cl

(3.18)

=

〈(
δϕ(x, t)
δπ(0, 0)

)2〉

cl
. (3.19)

Hence, the only difference to the evaluation of the spectral function in Eq. (3.16) is

to square the Poisson bracket before averaging over the thermal initial conditions.

This means that fluctuations between individual realizations do not cancel out and

the chaotic growth of initial perturbations is revealed.

In our simulations, we initialize the perturbation of the momentum as δπ(x, 0) =

cδ(x) with a random number c uniformly drawn from a small interval centred

around zero, while the field perturbation vanishes initially. Subsequently, we observe

the growth of the latter by evolving Eqs. (3.13,3.17) in parallel. We found that

choosing an initial condition with δπ(x, 0) = 0, δϕ(x, 0) = cδ(x) as initial condition,

i.e. the OTOC 〈{ϕ(x, t), π(0, 0)}2〉, gives similar results as the one in Eq. (3.19).
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3.4 numerical implementation

discretization. The Hamiltonian in Eq. (3.1) in terms of the rescaled variables

discretized on an N × N square lattice with rescaled lattice spacing ãs = as M is

given by

H/T =
1
2

ã2
s ∑

x

[
π̃2

x − ϕ̃x
1
ã2

s
∑
ei

(ϕ̃x+ei − 2ϕ̃x + ϕ̃x−ei) +
m2

M2 ϕ̃2
x +
G
12

ϕ̃4
x

]
, (3.20)

where we have partially integrated the gradient term in order to write it in terms of

a second order discretization of the resulting Laplacian. In the latter, ei denote the

lattice unit vectors. The bare mass squared is given in terms of the discretized gap

equation (Eq. (3.11)) as

m2

M2 = 1− G
2V ∑

p

1
p2 + 1

, (3.21)

where the lattice momenta are given by[210]

p2 =
2

∑
i=1

4
ã2

s
sin2

(πni

N

)
(3.22)

with ni ∈ {0, .., N − 1}.
We use a leapfrog discretization with time step dt̃ = dtM for the equations of

motion of the field,

ϕ̃x(t + 1)− 2ϕ̃x(t) + ϕ̃x(t− 1)
dt̃2

=

[
1
ã2

s
∑
ei

(ϕ̃x+ei(t)− 2ϕ̃x(t) + ϕ̃x−ei(t))−
m2

M2 ϕ̃x(t)−
G
6

ϕ̃3
x(t)

]
, (3.23)

as well as for the equations of motion of the field perturbation,

δϕ̃x(t + 1) = 2δϕ̃x(t)− δϕ̃x(t− 1) + dt̃2×
[

1
ã2

s
∑
ei

(δϕ̃x+ei(t)− 2δϕ̃x(t) + δϕ̃x−ei(t))−
m2

M2 δϕ̃x(t)−
G
2

ϕ̃2
x(t)δϕ̃x(t)

]
.

(3.24)

The initial state of the fields are given by Monte Carlo sampling as described below

whereas we initialize the perturbation of the momenta as

δπ̃x(0) = cδx0 (3.25)

where c is a random number drawn uniformly from the interval [−0.1, 0.1] and the

field perturbation δϕ̃x(0) = 0. We have checked that the results for the Lyapunov

exponent and the butterfly velocity do not depend on the choice of interval.
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discretized otoc . As we need to prepare an initial state for the perturbation

∼ δ(x) in the continuum, and therefore ∼ 1
ãd

s
δx0 on the d-dimensional lattice, the

lattice spacing dependence is given as

(
δϕ̃(t, y)
δπ̃(0, x)

)2

→ ã2d
s

(
δϕ̃y(t)
δπ̃x(0)

)2

, (3.26)

i.e. the results obtained with the initial state in Eq. (3.25) have to be divided by ã2d
s to

obtain results independent of the lattice spacing. We have furthermore tested that

using double or quadruple computer precision does not result in a considerable

difference.

Figure 3.1: Comparison of two different numerical approaches to obtain the spectral

function. Spectral function at zero momentum for G = 20 as obtained from the

fluctuation-dissipation relations (FDR) (Eq. (3.14)) and the Poisson Bracket (PB)

(Eq. (3.16)), where the former is fully converged with respect to the number of

runs. The latter converges to the FDR result as the number of runs is increased.

Deviations at early times are due to the finite time step (see text).

spectral function from fdr and pb . In Fig. 3.1 we compare the spectral

function as obtained from the fluctuation dissipation relation (Eq. (3.14)) and the

Poisson bracket (Eq. (3.16)). Both methods converge for intermediate and late times

as the number of runs is increased. Deviations occur at early times as the spectral

function obtained from the FDR, opposed to the one from the PB, does not exactly

vanish at initial time due to the finite time step [264].

critical spectral function. In order to obtain enough statistics to evaluate

the critical spectral function in Fig. 3.5, we exploit time-translational invariance [263]

of thermal equilibrium by transforming to Wigner coordinates ρ(t1, t2) = ρ(T =
1
2 (t1 + t2), τ = t1 − t2) and averaging over the ’center of mass time’ T. To transform
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to Fourier space with respect to the relative coordinate τ, we used the antisymmetry

of ρ to perform the discrete sine transform

ρ(t, p = 0) =
ad

s

Nd ∑
x

(
2
∫

dτρx(τ) sin(ωτ)

)
, (3.27)

where d is the spatial dimension. We have also used a Gaussian filter to reduce

finite-time oscillations in the Fourier transformed spectra, but have checked that

the overall behaviour is robust against change of filter window.
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Figure 3.2: Convergence of the OTOC at G = 61.5 with system size. Both the convergence

of the local OTOC (left) as well as butterfly velocity and lyapunov exponent

(right) with respect to system size indicate that there are no considerable finite

size effects for N = 300, the system size chosen for most data shown here. We

stopped the simulations at times t ∼ Nas to avoid boundary effects.

hybrid monte carlo . We start the Monte Carlo algorithm by initializing the

fields in a state drawn from the thermal state of the free theory (G = 0) with a

Gaussian of zero mean and standard deviation 1/
√
(ãs(m2/M2))2 + d, with d = 2

being the spatial dimension [210]. This initialization has lead a much shorter ther-

malization time compared to initialization with a standard deviation independent

of G. We then iterate the following Hybrid/Hamiltonian Monte Carlo (HMC) step

introduced in the context of lattice QCD [278, 279].

1. Draw some initial π̃(x) from a Gaussian distribution with zero mean and

standard deviation 1/
√

ãs. Evaluate the Hamiltonian, giving the energy E1/T.

2. Evolve this state in time using Eq. (3.23) with step size dt̃ = ε for a number of

time steps Nt.

3. Evaluate the Hamiltonian again, giving E2/T.

4. Accept the new configuration with probability min(1, exp(−(E2/T − E1/T)).
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Figure 3.3: Convergence of the out-of-time ordered correlator with lattice spacing. (left)

Although quantitative differences between lattice spacings are visible in the

out-of-time correlator at G = 35, they show the same qualitative behaviour

with lattice spacings Mas ≤ 0.1 oscillating around an exponential growth. The

oscillations become smaller when increasing the number of Monte Carlo runs

(not shown). (right) Butterfly velocity and Lyapunov exponent as a function of

lattice spacing. Both quantities are independent of lattice spacing within error

bars at around Mas = 0.2, the value chosen for all simulations shown in the

following.

We have usually chosen ε ≈ 0.01ãs and εNt ≈ 1, yet large values of G required

slightly smaller ε. Furthermore, the number of time steps was randomized by

±10% in order to circumvent possible periodicities of the trajectories. We started

the measurement runs from a pre-equilibrated state obtained after approximately

1000− 5000 Monte Carlo steps (thermalization as monitored from the convergence

of the energy was usually reached after ≈ 50 steps for small G and took longer

for larger G due to critical slowing down). Measurements were taken after ap-

proximately 30− 50 steps, where the autocorrelation of the fields with the initial

(pre-equilibrated) state was negligible. This turned out not to be the case in the

symmetry broken phase due to the difficulty of escaping one of two deep minima

of the effective potential. We hence used independently thermalized MC initial

conditions with approx 5000 Monte Carlo steps. Furthermore, we checked for sev-

eral values of G that we averaged over enough realizations (usually 103 − 104) by

checking convergence of Jackknife errors for the butterfly velocity and Lyapunov

exponent from a binning analysis [280].

convergence with system size and lattice spacing . In Figs. 3.3,3.2

we compare the time evolution of the local OTOC C(x = 0, t) as well as the butterfly

velocity and Lyapunov exponent for different lattice spacings and system sizes. No

considerable dependency on those two parameters is seen around the conventionally

chosen ones (Mas = 0.2, N = 300). We find a tendency for larger differences between

different lattice spacings than between different system sizes, indicating that the
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OTOC and its properties have a stronger dependence on the UV than the infrared

cut-off. This also holds near the phase transition, since the OTOC is not sensitive to

critical slowing down.

jackknife binning analysis . In order to estimate errors and convergence

with respect to sample size, we employed a jackknife binning analysis. Dividing

up the ensemble of samples into M blocks of size k, it proceeds by calculating an

observable O (such as the Lyapunov exponent) of an ensemble-average in which

one of those blocks has been omitted. Denoting 〈O〉 the observable calculated

on the whole ensemble and 〈O〉i the one where block i has been removed before

averaging, the jackknife estimate for the mean and standard deviation are given

by [281]

〈O〉JK = 〈O〉 − (M− 1)

(
1
M

M

∑
i=1
〈O〉i − 〈O〉

)
, (3.28)

∆O =

√√√√M− 1
M

M

∑
i=1

(
〈O〉i −

1
M

M

∑
i=1
〈O〉i

)
. (3.29)

In order to check convergence of the errors with respect to the sample size, the

standard deviation needs to be plotted as a function k for a fixed sample size. If the

standard deviation converges, then so has the sample average.

3.5 phase transition

The model considered in this chapter (c.f. Eq. (3.1)) exhibits an equilibrium phase

transition from a symmetric phase with 〈ϕ〉 = 0 to a symmetry broken phase

with 〈ϕ〉 6= 0. Due to our renormalization procedure, the critical value of G does

not strongly depend on the lattice spacing and can be found by standard finite

size scaling procedures at a small enough, but fixed as. Here, we study the Binder

cumulant B4 [282] given by

B4 = 1− 〈ϕ4〉
3〈ϕ2〉2 (3.30)

with limits B4 → 2
3 for G → ∞ and B4 → 0 for G → 0 and a universal value

B4,c ≈ 0.6104 [283] at the phase transition. In above expression, ϕ = 1
N2 ∑x ϕx

denotes the volume averaged field.

In Fig. 3.4 we determine the critical Binder cumulant B4,c as well as fluctuation

parameter Gc from the intersection of B4(G) of the three largest system sizes

considered. We find Gc = 61.38± 0.16 and B4,c = 0.604± 0.004 consistent with

previous results [275, 283] and with errors mainly resulting from residual finite-size
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effects. Furthermore, we show the finite size collapse of system sizes N ≥ 32,

assuming that B4 is directly a finite size scaling function of the form B4 = B4((G −
Gc)N1/ν, . . . ).
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Figure 3.4: Phase transition. Binder cumulant as defined in Eq. (3.30) as a function of the

fluctuation parameter G for different system sizes, where the inflexion point

as determined from the largest system sizes in inset (a) reveals the critical

fluctuation parameter to be Gc ≈ 61.4 in agreement to previous studies [275].

Rescaling all curves as shown in inset (b) with the known critical exponent

ν = 1 for the 2D Ising universality class leads to a good collapse over a large

parameter regime. Lines connecting data points are solely a guide for the eyes.

Error bars are obtained from a jackknife binning analysis.

3.6 quasiparticles and critical behaviour in the spectral func-

tion

Many properties of a many-body system can be deduced from the nature of its

elementary excitations and one might expect scrambling and the spreading of OTOCs

to be primarily determined by their properties. We discuss in the next section that

this is in fact not the case. Before doing so, we study the spectral function, discussing

the qualitatively different regimes for small G and near the phase transition at Gc.
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Figure 3.5: Spectral function in real time (left) and frequency (right). For small G, the

real time spectral function exhibits weakly damped oscillations, corresponding

to a sharp quasiparticle peak with mass gap approximately given by the one-

loop renormalized mass M. As G is increased, higher loop corrections become

important, leading to stronger damping and a shift of the maximum away from

M. At G = 50, the spectral function already exhibits critical behaviour, showing

an exponential decay with correlation length ξt ≈ 30M. Close to the phase

transition, G = 61.5, critical algebraic decay becomes apparent both in time

and frequency space as ξt is larger than the studied timescales (insets). Dashed

lines correspond to the expectations from the 2D static Ising universality class

and assuming a dynamic critical exponent z = 2. In this plot, N = 128, a = 0.2

except for G = 61.4, where N = 256. Some regimes of this figure have been

previously studied in Refs. [263, 264, 267].

well defined quasiparticles at small G . In weakly interacting theories

and in the absence of instabilities, the effective low-energy excitations are generically

given by quasiparticles with masses and lifetimes modified by interactions. In real

scalar field theory described by the Hamiltonian in Eq. (3.1), free relativistic bosonic

excitations with dispersion ω(p) =
√

p2 + m2 are dressed by classical statistical

(thermal) fluctuations3. To make this statement more explicit, consider the spectral

function ρ(ω, p), which can be written as [264, 284]

ρ(ω, p) =
−2 ImΣ(ω, p)

[ω2 + p2 + m2 − ReΣ(ω, p)]2 + [ImΣ(ω, p)]2
(3.31)

in terms of the (retarded) self-energy Σ(ω, p).

When Σ → 0, the spectral function exhibits δ peaks at the free particle exci-

tation energies ±
√

p2 + m2. When Σ 6= 0, sharp peaks still dominate the spec-

3 In the dimensionally reduced theory, quantum fluctuations only enter through the effective couplings

M and G chosen in the classical Hamiltonian.
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tral function as long as the damping rate −ImΣ(ω, p)/ω is much smaller than

p2 + m2−ReΣ(ω, p). The spectral function can then be approximated by a relativis-

tic Breit-Wigner function, reading at zero momentum,

ρQP(ω, p = 0) =
2ωΓ

(ω2 −m2
R)

2 + ω2Γ2
, (3.32)

where m2
R = m2 + ReΣ is the renormalized mass of the quasiparticle (QP) state and

Γ = −ImΣ/mR is its inverse lifetime.

In Fig. 3.5 we display the real-time and real-frequency spectral function obtained

from the classical FDR in Eq. (3.14). For G = 10, exponentially damped oscillations

in the real-time domain correspond to a quasiparticle peak with Breit-Wigner line

shape in the frequency domain, with oscillation frequency and damping rate corre-

sponding to the position and width of the peak, respectively. Fitting the line shape

in Eq. (3.32) to the data, we determine the mass of the quasiparticle as mR ≈ 0.91M

and the damping rate (inverse lifetime) as Γ ≈ 0.09/M. By studying the spectral

function with p > 0 (not shown in plot) we furthermore find that the effective

dispersion of the quasiparticles is given by ≈
√

m2
R + p2, i.e. the momentum depen-

dence of the effective mass can be approximately neglected in this regime. However,

both the height of the peak and the damping rate becomes smaller as p is increased,

which is primarily a result of the sum rule
∫ ∞

0 dω/(2π)ωρ(ω, p) = 1 (i.e. the

equal-time commutation relations) as discussed in Ref. [284]. We can conclude that

in this regime, well-defined quasiparticles are present, with self-energy corrections

beyond the one-loop contribution in Eq. (3.11) only playing a minor role. For G = 20,

the quasiparticle peak broadens and shifts to smaller frequencies as higher-loop

corrections become more important, with fit parameters resulting as mR ≈ 0.78M

and Γ ≈ 0.24/M. On the N = 100 lattice, we find the height of the quasiparticle

peak at the first nonzero lattice momentum (not shown in plot) to be already an

order of magnitude smaller. This shows that the field dynamics are dominated by

small momentum excitations.

At G = 35 (the value corresponding to the high-T quantum critical regime),

the spectral function exhibits overdamped behaviour in real time and a double

peak structure is present in the frequency domain. Apart from the remnant of

the quasiparticle peak at larger frequencies, a smaller contribution at near-zero

frequencies anticipates the low-frequency behaviour of the spectral function near

the critical point. This double-peak structure indicates an intricate interplay between

diffusive modes dominating at the critical point and the quasiparticle remnant from

the paramagnetic phase, leading to strongly correlated dynamics [264].

Finally we note that the classical spectral functions obtained here are directly

related to the ones in the high-T quantum theory by the matching procedure
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described in chapter 3.2: Inserting the renormalized mass M obtained from di-

mensional reduction leads to the quantum results for mR and the damping rate as

shown in Refs. [266, 270].

universal behaviour near G c . At a phase transition, the spectral func-

tion exhibits a qualitatively different behaviour by acquiring a universal scaling

form [263]

ρ(t, p = 0) = t
2−η

z −1g
(

t
ξt

)
, (3.33)

with anomalous dimension η, and dynamic critical exponent z, which in princi-

ple is independent of static critical exponents near thermal (i.e. classical) phase

transitions [272]. The universal scaling function g is expected to behave as

g
(

t
ξt

)
∼ exp

(
− t

ξt

)
, (3.34)

with a diverging temporal correlation length ξt at the critical point. With the exactly

known static critical exponent [285] η = 0.25 and the previously found dynamic

critical exponent z = 2 in this model [263, 286], we expect an algebraic behaviour

ρ(t, p = 0) ∼ t−1/8 and ρ(ω, p = 0) ∼ ω−7/8 for long times and small frequencies

at the critical point Gc.

In the insets of Fig. 3.5, we display the critical spectral function at G = 61.5 ≈ Gc

on a double logarithmic scale, recovering the expected algrebraic behaviour of the

spectral function with exponents in rough agreement with the expected values

(black dashed lines). As we find no exponential decay on the observed time scales

we conclude that ξt � 50/M for G = 61.5, with the algebraic decay setting in at

around Mt = 10. Remarkably, we already find near-critical behaviour of the spectral

function for G = 50, however, with the exponential decay of g(t/ξt) dominating

the dynamics. From a fit to an exponential for times Mt > 20 we find ξt ≈ 30/M.

The oscillatory behaviour before the algebraic/exponential decay is related to short-

time high-momentum physics, that are remnants of quasi-particles [263]. At higher

momentum (not plotted), we indeed find well-defined quasiparticle peaks even at

Gc with a linear dispersion ! = |p|, i.e. with a group velocity equal to the speed

of light, albeit with drastically reduced weight compared to the zero-frequency,

zero-momentum peak.

ordered phase G > Gc . In the symmetry broken phase (not plotted) we

again find a quasiparticle peak, however with a significantly higher renormalized

mass mR ≈ 3.5M and a large broadening of Γ ≈ 1.5/M at G = 90. These gapped

excitations correspond to the amplitude fluctuations in the minima of the effective
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potential. There are no gapless Goldstone modes due to the discrete Z2 symmetry

of the order parameter.
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Figure 3.6: Ballistic spreading of OTOC. Cut of the OTOC along one axis. For all values of G
(left: G = 12,, right: G = 61.44) studied in this chapter, we have found ballistic

spreading of the OTOC. However, both the butterfly velocity and the Lyapunov

exponent associated with the exponential growth within the lightcone showed

a strong dependence on G. Due to the ambiguity of the color scale, it is not

possible to read off the butterfly velocity directly from this plot. For a detailed

discussion see Sec. 3.7.2.

3.7 many-body chaos

By studying the spectral function we have found qualitatively distinct regimes

characterized by the presence of well-defined quasiparticles for small G, a cross-over

to a broad spectrum at G ≈ 35 and universal, algebraic low-frequency behaviour

near Gc without well-defined quasiparticle excitations at zero momentum. In this

section, we study the dependence of the OTOC C(x, t) on G.

ballistic spreading for all G . In Fig. 3.6 we display a cut of the OTOC

C(x, t) along one real-space axis for small G and near Gc, showing ballistic spreading.

The same holds for all other values of G studied in this chapter. Furthermore, we find

perturbations to spread throughout the lightcone. As indicated by the logarithmic

color scale, we also find exponential growth of the OTOC within the light-cone, with

the Lyapunov exponent λL associated to that growth being strongly dependent on
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the fluctuation parameter G. The ballistic spreading needs to be contrasted with the

emergent non-relativistic dynamic exponent z = 2 found from the spectral function

at the phase transition as the OTOC still shows a “z = 1” behaviour.

absence of critical slowing down in the otoc . In Fig. 3.7, we show

the time evolution of the local OTOC for several values of G. The short time behaviour

(Mt < 2) is not dependent on G and is merely related to the initial conditions chosen:

The initially non-vanishing momentum perturbation at the origin is converted into

a δ-function-like shape of the field perturbation as δπ = ∂tδϕ4. Subsequently, the

dynamics is dominated by the large gradient to neighbouring lattice sites, i.e. the

Laplacian in the equations of motion (see Eq. (3.17)) is far larger than the other

terms. As soon as the differences to neighbouring lattice sites are washed out,

the non-linear dynamis created by the interplay between the term proportional

to the mass squared and the one including the coupling to the field dominates.

Importantly, we find that for all values of G these late-time dynamics are given by

an exponential growth of C(x = 0, t), with an approximately constant exponent

for late times. This behaviour has to be contrasted with the spectral function, for

which we found algebraically slow decay for Mt & 10 at G = Gc (see Fig. 3.5). For

G & 50, the temporal correlation length is larger than Mt = 30 such that the time

scales shown in Fig. 3.7 are well within the regime showing exponential damping

in the spectral function, where the decay rate diverges as the phase transition is

approached. The OTOC instead grows exponentially with an increasing exponent as

G increases.

To assess these findings more quantitatively, we study the Lyapunov exponent

of the exponential growth, the space-time shape of the OTOC, the butterfly velocity

associated to the ballistic spreading and fluctuations of the OTOC in the following.

We have checked in section 3.4 that all our results are independent of both lattice

spacing and system size and thus determine the chaotic properties of the continuum

field theory in the thermodynamic limit.

3.7.1 Lyapunov exponent

Lyapunov exponents are a standard measure of chaos in classical dynamics [287],

quantifying the rate of separation between two neighbouring trajectories. In general,

the number of Lyapunov exponents is equal to the number of degrees of freedom,

quantifying the rate of change associated with a perturbation in every direction

of phase space. In our case, the number of degrees of freedom is given by 2×

4 This explains why the OTOC 〈{ϕ(x, t), π(x, 0)}〉 gives the same results as the one studied here.
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Figure 3.7: Local OTOC. After the trivial short-time dynamics related to the spreading of

a sharply peaked momentum-field perturbation, chaotic exponential growth

sets in with late time behaviour dominated by the largest Lyapunov exponent,

which is strongly dependent on the value of the fluctuation parameter G. For

the smallest value G = 12, exponential growth only sets in after the time scale

shown here; we hence evolved larger systems to longer times to determine the

Lyapunov exponent in that case.

N2 ≈ 105 for the typical lattice sizes, so that determining the whole Lyapunov

spectrum (scaling quadratically with the number of degrees of freedom [288]) is not

constructive. We hence focus on the largest Lyapunov exponent λL (in the following

simply called “the Lyapunov exponent”) by defining

λL = lim
t→∞

1
2t

ln C(x = 0, t). (3.35)

Here the limit of vanishing perturbation is implicit in this definition as we are

evaluating the OTOC directly in this limit, c.f. Eq. (3.17). In practice, we determine

the Lyapunov exponent by a fit with an exponential to C(x = 0, t) at late times.

Note that in this semi-classical model the OTOC is not expected to saturate, whereas,

in a full quantum theory the OTOC is expected to deviate from the semi-classical

exponential growth around the Ehrenfest time [268]. Our classical theory may hence

be viewed as an effective theory for a quantum system at high temperatures such

that the time scales studied here are below the Ehrenfest time of the correspond-

ing quantum theory. Similar conclusions have been drawn previously from the

perspective of semi-classical trajectories [268] and for fidelity-OTOCs in the Dicke

model[289]: In regimes dominated by classical modes, the exponential growth of

the OTOC is described by the classical statistical approximation. Further evidence

may be obtained from the large-N, high T calculation in Ref. [37]. There, it was

found that the rungs in the Bethe-Salpeter equation for the OTOC contributing to

the exponential growth are dominated by classical modes with p < T. This may
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Figure 3.8: Lyapunov exponent. The Lyapunov exponent λL increases as a function of G,

with a different approach to the phase transition from above and below. The

red shading indicates the range of G in which critical slowing down was found

in the spectral function. An approximate power-law behaviour ∼ G2 is found

for G . 40 (see inset). Error bars are statistical errors obtained from a jackknife

binning analysis detailed in section 3.4.

be understood from the fact that the “Wightman” correlators responsible for the

chaotic contributions of those rungs are at T � ω proportional to the correlation

functions 〈ϕϕ〉, which are hence strongly peaked at ω ≈
√

m2
R + p2 and have a

weight strongly decreasing with p (due to the FDR, c.f. the discussion of the finite

p behaviour of the spectral function in chapter 3.6). While we determined λL from

the local OTOC at position x = 0, we found exponential growth with the same λL

for all x as long as the light-cone has passed, i.e. for times Mt > |Mx|/vB, where

vB is the butterfly velocity studied below. This implies that the Lyapunov exponent

can equivalently be defined as λL = limt→∞
1
2t ln C(p = 0, t).

local , static approximations fail to reproduce exponential growth .

As we are determining the Lyapunov exponent from a local quantity, one could sus-

pect from the equations of motion of the perturbation (see Eq. (3.17)) that the chaotic

exponential growth can be related to an instability of independent anharmonic

oscillators on each lattice site with an (in general complex) frequency given in terms

of the static value of the volume average of ϕ̃2. However, in this approximation we

have found stable oscillations for all values of G considered here. Hence, they can

not reproduce the exponential growth of the OTOC, which is a genuine dynamical

many-body effect in this theory.

algebraic approach of λ L to noninteracting limit. In Fig. 3.8 we

show the Lyapunov exponent as defined in Eq. (3.35) as a function of the fluctuation

parameter G. For small G, we find an approximate power law behaviour ∼ G2,
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where G = 0 is the non-interacting limit in which λL = 0. Algebraic approach of

a non-chaotic limit has been previously found5 in many other classical dynamical

models [287, 291].

linear-in-T behaviour in quantum critical regime . By employing

the matching procedure described in section 3.2 we can relate the results for the

classical theory to the corresponding quantum theory at high temperatures in the

quantum critical regime, in which G ≈ 35 and M =
√

2πT/3 [267]. Inserting our

numerical result for G ≈ 35 and using that we measure λL in units of M we get

λ
quantum crit.
L ≈ (0.12± 0.01)πT. (3.36)

This linear-in-T scaling was conjectured to be the universal behaviour in strongly

correlated quantum systems and in particular, our result is within the conjectured

MSS bound6 λL ≤ πT [243]. In a recent large-N d = 2 calculation in the O(N)

model (for which ours is the N = 1 variant) the linear-in-T behaviour was also

reproduced, but with a substantially larger prefactor. We note however, that N = 1

is special in d = 2 due to the presence of a finite-temperature phase transition

related to the discrete symmetry of the field. The case of N = 1, d = 2 was also

shown to be special in far-from-equilibrium phenomena [292] otherwise universal

for all N and d ≤ 3 [50]. It would hence be interesting to study the N � 1 limit

within the classical statistical approximation and compare with the diagrammatic

approach.

signatures of a crossover near the phase transition. We find that

the G2 behaviour found for small G crosses over to a slower increase for large

G, with the point of the crossover between the two behaviours approximately

corresponding to Gc. Previously, a cusp-like behaviour has been found at the phase

transition of a classical XY model [293]. A maximum of the Lyapunov exponent

near second-order phase transitions found in some other models[291, 294] has later

been attributed [288] to the divergence of the specific heat near the phase transition,

i.e. the Lyapunov function to be a smooth function of the energy. We find a similar

behaviour in our case (not shown in plot), with the Lyapunov exponent decreasing

as a function of 〈H〉/VT, with large G corresponding to small 〈H〉/VT, and with

5 One is inclined to put the recently found algebraic behaviour T0.48 of the Lyapunov exponent in a

classical spin system [259] more into the perspective of this classical order-to-chaos transition rather

than the conjectured connection to the linear-in-T bound in quantum many-body chaos, especially as

in many classical dynamical models the exponent was found to be given by the Feigenbaum constant

≈ 0.449 [290].
6 Note that we define the Lyapunov exponent by a factor of two differently to the authors of the bound.
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no apparent special feature near the energy density corresponding to Gc. Directly

at the phase transition we find

(λL/M)
∣∣
G=Gc

= 0.44± 0.01. (3.37)

We note that M > 0 in the dimensional reduction scheme discussed here [267] and

in particular it stays finite at the phase transition7.

ordered phase G > G c . Even though λL is numerically difficult to obtain in

this region (see section 3.4), we found λL to continue to rise for G > Gc, however

somewhat slower than below the phase transition. In order to find more conclusive

results in the ordered phase, a description in terms of a “dual” weakly coupled

classical field theory [267, 295] might lead to further insights into the chaotic

properties of the ordered phase and make numerical simulations considerably

easier.
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Figure 3.9: Scaling collapse of the OTOC. On the left we display equally spaced time slices

in the interval Mt ∈ [10, 30] for G = 61.44 along one spatial axis, with times

increasing from bright to dark colours. The collapse in the right plot indicates

that C(t, x) ∼ exp(λ(v)t), with a scaling function λ(v) = λ(x/t). The OTOC

C(t, x)→ 0 outside the causal lightcone v/c = 1 in the limit as → 0, which we

checked numerically.

3.7.2 OTOC exponential growth from local field fluctuations

One may be tempted to try obtaining at least the qualitative features in Fig. 3.8

from approximating each lattice site x as an independent anharmonic oscillator,

with growth resulting from local field fluctuations. In this section we show that this

is not possible and conclude that the exponential growth observed is a genuine

dynamical many-body effect.

7 It is the mass renormalized by classical statistical fluctuations mR which vanishes at the phase

transition, as visible from the study of the spectral function in chapter 3.6.
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Figure 3.10: Competition between mass term and order parameter fluctuations. Time evo-

lution of the field squared at one lattice site in a single run at G = 61.44 along-

side the nearly constant volume average of the same quantity. While the latter

is always larger than the negative mass squared, the former is over a large

timespan smaller, leading to exponential growth of the perturbations.

independent oscillators at each lattice point We start by neglecting

the spatial dependence by not taking into account the Laplacian on the right hand

side of the equations of motion of the perturbation, which we reproduce here for

convenience:

∂2
t δϕ̃ = ∆δϕ̃− m2

M2 δϕ̃− G
2

ϕ̃2δϕ̃. (3.38)

This independent anharmonic oscillator approximation may be motivated by the

observation from Fig. 3.7 that the exponential growth only sets in after some

time Mt ≈ 3, presumably enough to homogenize the immediate surrounding

of x = 0 and render gradients small8. As a second approximation, we decouple

the field evolution from the perturbation by the mean-field type approximation

ϕ̃(t)ϕ̃(t)δϕ̃(t) → 〈ϕ̃(t)ϕ̃(t)〉δϕ̃(t). By replacing ensemble with volume average,

we can furthermore write 〈ϕ̃(t)ϕ̃(t)〉 ≈ 1
N2 〈ϕ̃i(t)ϕ̃i(t)〉vol. Finally, we numerically

find that the latter quantity is approximately constant, but dependent on G as can

be guessed from the fact that it is related to the transverse momentum [296], a

conserved quantity in this model [297].

Under these assumptions, we can reduce the equations of motion of the per-

turbation at each lattice site to the one of an harmonic oscillator with solution

δϕ̃(t) =
δπ0

ωHO
sin(ωHOt) , with ωHO =

√
m2

M2 +
G
2
〈ϕ̃ϕ̃〉, (3.39)

where we made use of the numerical result that ωHO ∈ R in the regime 7 < G < 200

for N = 300, as = 0.2 and used as initial conditions δφ(t = 0) = 0, δπ(t = 0) = δπ0.

8 Neglecting this term does not neglect all other lattice points completely as there is still the momentum

sum in the one-loop mass in Eq. (3.11).
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This approximation therefore fails completely to predict the exponential growth of

perturbations found by evaluating the exact equations of motion. We furthermore

find that the mass term ∼ m2/M2 is negative for G & 7, therefore competing against

the ’fluctuation term’ ∼ G〈ϕ̃ϕ̃〉 > 0, which we find numerically to be always larger

in magnitude than the mass term.

local dynamical field fluctuations lead to exponential growth

The above findings provoke reconsidering the approximations made, especially

using the volume average of the fluctuations of the local field seems too restrictive.

Indeed, in Fig. 3.10 we find the local field at one location and a single run to

fluctuate wildly as a function of time. In particular, it drops below |m2/M2| for

a large time span in the evolution. Using our above harmonic approximation as

an instantaneous approximation, we find that ωHO becomes imaginary, leading to

exponential growth of δϕ̃(t). At this point, also the approximation of independence

of neighbouring space point breaks down as sudden exponential growth at one

point leads to large gradients to neighbouring points.

We have also checked that evolving the full equations of motion for the anhar-

monic oscillator (i.e. N = 1) with m2/M2 given by the result in a 300x300 lattice

(but with Monte Carlo sampling for N = 1) leads to λL = 0 for all G. Hence each

lattice site is in a non-chaotic regime of the corresponding anharmonic oscillators.

We can therefore conclude that the exponential growth of perturbations observed

in this chapter is a genuine dynamical many-body effect as both the assumptions

of static fluctuations driving the growth and independence of neighbouring lattice

points are not able to explain the observed phenomenology and we find indications

that fluctuations in the local equal-time field fluctuations lead to the observed

exponential growth.

While so far having mainly focussed on the time evolution of the local OTOC,

we extend our analysis to the full space-time dependence in the following. After

showing that the OTOC follows an approximately self-similar time evolution, we

define the butterfly velocity unambiguously via the resulting scaling function.

Lastly, we show that the butterfly velocity exhibits a global maximum at the phase

transition.

space-time dependence of the otoc . Cuts of the OTOC along one axis of

the 2D spatial plane are shown in Fig. 3.9 for several times. The scaling collapse

obtained on the right side of the plot indicates that the OTOC follows a self-similar

time evolution of the form

C(x, t) ∼ exp(λ(v)t), (3.40)
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with a velocity-dependent Lyapunov exponent λ(v) ≡ λ(|x|/t) [34, 39, 298–300]

and where the exact functional form of λ(v) in general depends on G. We however

qualitatively found it to be similar for all values of G. In particular, it smoothly

crosses zero at some finite v and hence wave front broadening as obtained in

chaotic quantum lattice models is not present here [34, 39, 41, 42]. In order to obtain

the scaling collapse, we plot C̃(t, x) = C(t, x)− const., where the constant is the

intersection with the y-axis of the linear fit to ln(C(t, x = 0)) for Mt > 10 and is

related to the non-universal time evolution for Mt < 10.

Figure 3.11: Butterfly velocity. The velocity associated to the ballistic spreading of the OTOC

exhibits a global maximum on approach to the phase transition at ≈ 0.89c, and

is considerably smaller than the speed of light c for a wide range of values

for G. Different behaviour is seen on both sides of the phase transition: While

the butterfly velocity is slowly rising upon approaching the phase transition

from the paramagnetic phase, it steeply decreases as one moves away from it

into the symmetry broken phase. The red shading indicates the range of G in

which critical slowing down was found in the spectral function. Error bars are

obtained from a jackknife binning analysis.

butterfly velocity. The above finding of a self-similar evolution of the OTOC

in space-time motivates the definition of the butterfly velocity as the velocity vB by

λ(v = vB) = 0, (3.41)

corresponding to the “slice” of constant velocity v at which the OTOC neither grows

nor decays with time.

In Fig. 3.11 we show the butterfly velocity as a function of the fluctuation pa-

rameter G. We find that vB is always significantly smaller than the speed of light

c. In particular, in the high temperature quantum critical regime, G = 35, of the

corresponding quantum field theory we have

vquantum crit.
B = (0.853± 0.001)c, (3.42)
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which is significantly smaller than vB ≈ c found in the high-T phase of the O(N)

model at large N [37]. As the phase transition is approached from the paramagnetic

phase, the butterfly velocity saturates around G = 50 at the maximum value of

approximately 0.89c before dropping sharply just at the phase transition as one

moves into the symmetry broken phase.

The maximum of the butterfly velocity and hence maximally fast spreading of

OTOCs at the phase transition is in sharp contrast to the diffusively slow order

parameter dynamics found in the spectral function. This shows the qualitatively

different behaviour of many-body chaos and transport and shows that the former

is a new, in general independent measure of thermalization. We note however, that

λL and vB might not be completely independent parameters as a universal relation

between the diffusion constant, λL and vB has been conjectured [244, 248].

3.7.3 Fluctuations

Previous studies in quantum lattice models [34, 41, 42] showed that the growth

of the (D− 1) dimensional OTOC front can be mapped to interface growth in the

(D− 1) KPZ universality class (in 1D, diffusive behaviour of the front is found).

Classical spin chains in 1D [260], however, found indications that the effective

equations of motion of the OTOC itsself follows KPZ universality, i.e. that its run-to-

run fluctuations have a self-similar behaviour with universal exponents. In a (2+1)D

classical spin model, no such behaviour was however found [259].

Here, we study the run-to-run fluctuations of the time-dependent height variable

h(t) = ln
(
{ϕ(x = 0, t), ϕ(0, 0)}2

PB

)
/2, (3.43)

which is the single-run generalization of ln(C(t)/2). Therefore, the slope of h(t) is

the single-run generalization of the Lyapunov exponent λL. In general, however,

〈h(t)〉cl 6= ln(C(t)/2) due to the non-commutativity of sample average and loga-

rithm (see Ref. [301]). We study the time evolution of the probability distribution of

h(t) to quantify fluctuations of the local OTOC.

In Fig. 3.12 we show that the probability distribution P(h, t) follows the (in time)

self-similar scaling form

P(h, t) = t−αPS

(
h− 〈h〉(t)

tα

)
. (3.44)

In order to estimate the exponents for the scaling collapse of the fluctuations

above, we performed a χ2 analysis. First, we change the definition of the scaling

ansatz in Eq. (3.44) slightly by introducing a reference time tref,

Presc(t, h̄) =
(

t
tref

)−α

P

(
t,
(

t
tref

)−α

h̄

)
, (3.45)
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Figure 3.12: Self-similarity in the run-to-run fluctuations of the OTOC. Time dependent

probability distribution of h(t) at G = 61.44, near the phase transition. All

curves collapse after a rescaling with tα, α = 0.33± 0.06 . The scaling function

is close to a Gaussian (dashed black line), with residual deviations from scaling

and Gaussianity vanishing as time progresses. Times increase from bright to

dark lines and are given by Mt ∈ {11, 16, 21, 26, 30}.

where we also introduced h̄ = h− 〈h〉(t). Usually, we chose Mtref = 11, i.e. the

beginning of the regime in which almost no deviation from self-similar behaviour is

visible. According to this definition, a perfect scaling collapse would correspond to

∆P = Presc(t, h̄)− P(tref, h̄) = 0 ∀t ∈ scaling regime. (3.46)

In order to quantify deviations from scaling, we define the error function

χ2(α) =
1

Nt

tmax

∑
t=tref

1∫
dh̄

∫
dh̄
(

∆P(t, h̄)
P(tref, h̄)

)2

, (3.47)

where Nt is the number of times in the interval [tref, tmax], in our case usually

Mtmax = 30 and Nt = 20. Integrals over h̄ were numerically evaluated with the

trapezoidal rule as in our case P(t, h̄) is given in terms of discrete bins from a

histogram. We furthermore interpolated P(tref, h̄) linearly to evaluate it at the

arguments of Presc(t, h̄).

Finally, we minimized χ2(α) to get the most likely value ᾱ of the scaling exponent.

The error is then given by the standard deviation σ of the corresponding likelihood

function, i.e. σ =
√

χ2(ᾱ).

α = 0.33± 0.06 (3.48)

from a χ2 analysis which we discuss below. This value of α is in accordance with

the (1+1)D KPZ universality class and hence the scenario of a fluctuating OTOC

front also found in quantum lattice models [34, 41, 42]. We however can not fully

exclude the OTOC itsself fluctuating, as found in 1D classical spin chains [260], as
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(2+1)D KPZ behaviour with exponent 0.24 is within 1.5 standard deviations of our

result.

The scaling distribution PS closely follows a Gaussian with mean −0.16 and vari-

ance 0.77. Note that in the regime accessible here, a Gaussian is not distinguishable

from a Tracy-Widom distribution expected from KPZ universality [302].

short time behaviour . Times earlier than Mt ≈ 3 deviate substantially

from the self-similar scaling form in Eq. (3.44), exhibiting large (negative) skewness

as well as a shift of the maximum towards larger h, corresponding to the local

maximum in the time evolution visible in Fig. 3.7. In the range 3 < Mt < 10, the

distribution is still substantially skewed, but approximately coincides with the

scaling form around the maximum. A leftover of this evolution is visible in the

rescaled plot in Fig. 3.12 for times Mt > 10, where deviations in the tails of the

distribution from the scaling form become smaller as time progresses.

In this chapter, many-body chaos in the self-interacting λϕ4 real scalar field theory

has been discussed at high temperatures and near its second order thermal phase

transition. By employing dimensional reduction we reduced this quantum field

theory to a classical statistical field theory and argued why dynamical and chaotic

properties may be captured by this approximation. Subsequently, we employed

a numerical method motivated from linear-response theory to study the classical

equivalent of the out-of-time-ordered correlator (OTOC) and used the classical

fluctuation-dissipation relations to study the spectral function.

Opposed to the diffusive order parameter transport near the phase transition we

found ballistic spreading of OTOCs in the whole parameter regime. The Lyapunov

exponent exhibits the linear-in-T behaviour conjectured to be universal in the

quantum critical regime. Furthermore, we found some indications of a different

functional form of the approach to the critical fluctuation strength on both sides of

the phase transition. Most importantly, we found the butterfly velocity to have a

global maximum near the phase transition, indicating that OTOCs spreads quickest

in this strongly correlated regime. We contrasted these findings with the order

parameter dynamics from the spectral function and argued how many-body chaos

offers an independent characterization of thermalization dynamics.

While temporal fluctuations of the OTOC were found to be consistent with the

KPZ universality class, further investigations would be necessary to fully confirm

this. Especially spatial fluctuations could be studied, as well as the dependence of

the exponents on the dimensionality.

While we argued here that many aspects of quantum many-body chaos can be

captured by the classical statistical approximation and reproduced many results

from diagrammatic quantum field theory calculations, it would be advantageous to
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test these assumptions within a unified framework. A possible route to do so would

be to use a Bethe-Salpeter equation on a doubled Keldysh contour obtained from

the two-particle-irreducible effective action [210] in some analogy to the calculation

of the shear viscosity [303] as classical and quantum contributions can be naturally

identified in this formalism [273]. This could also offer a route to benchmarking the

non-perturbative approximations (such as the 1/N expansion) frequently employed

to diagrammatically studying OTOCs in field theories [37, 248, 265].

Furthermore, it would be interesting to investigate the connection of chaos to the

hydrodynamic modes, in this model the transverse momentum, a diffusive mode,

and the pressure, a damped ballistic mode. It has been previously shown that

the diffusion constant stays finite at the phase transition [286]. It would hence be

interesting to study whether the conjectured connection [244] D = v2
B/λL between

the diffusion constant D, the Lyapunov exponent and the butterfly velocity also

holds in this model as previously found in other classical models [259] and quantum

field theories [248].

3.8 outlook : many-body-chaos far-from-equilibrium

Our method of obtaining the OTOC can be straightforwardly applied to other bosonic

field theories in the classical statistical regime at high occupations. Here, we adapt

the methods discussed above to situations far-from-equilibrium, for both the O(N)-

model, the generalization of the theory discussed above to N field components,

and an interacting non-relativistic Bose gas. This opens the possibility to study

many-body-chaos close to non-thermal-fixed points [304] or the early stages after a

heavy-ion collision by adapting our methods to classical Yang-Mills theory [305].

o(n)-model The O(N) model is an N-component real scalar field theory in d

spatial dimensions given by Hamiltonian

H =
∫

ddx
[

1
2

π2
a +

1
2
(∇ϕa)

2 +
1
2

m2ϕ2
a +

λ

4!N
(ϕ2

a)
2
]

, (3.49)

with bare mass m2 and interaction constant λ. πa = ∂t ϕa is the canonically conjugate

momentum of the real scalar fields ϕa. A sum over the field index a is implied. The

equations of motion of the field are given by

∂2
t ϕa = ∆ϕa −m2ϕa −

λ

6N
ϕ2

b ϕa. (3.50)

and the linearized equations of motion for the perturbation around trajectories

given by

∂2
t δϕa = ∆δϕa −m2δϕa −

λ

6N
(

ϕ2
bδϕa + ϕa ϕbδϕb

)
. (3.51)
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We are primarily interested in the field averaged spectral function, given by

ρ(x, x′; t, t′) = i
1

N2 ∑
a,b

〈
[ϕa(x, t), ϕb(x′, t′)]

〉
(3.52)

and the field averaged OTOC

C(x, x′; t, t′) = − 1
N2 ∑

a,b

〈
[ϕa(x, t), ϕb(x′, t′)]2

〉
. (3.53)

In classical statistical simulations, we can obtain above quantities by replacing −i

times the commutator with the Poisson bracket [273], i.e.

−i
[
ϕa(x, t), ϕb(x′, t′)

]
→∑

c

∫
ddz

(
δϕa(x, t)
δϕc(z, 0)

δϕb(x′, t′)
δπc(z, 0)

− δϕa(x, t)
δπc(z, 0)

δϕb(x′, t′)
δϕc(z, 0)

)
.

(3.54)

The Poisson bracket can be evaluated numerically by evolving the equations of

motion of the perturbation in Eq. (3.17) in parallel with the field equations of motion

in Eq. (3.13).

interacting bose gas An interacting Bose gas described by a complex field

Ψ(x, t) evolves according

i∂tΨ(x, t) = −∇
2

2m
Ψ(x, t) + g|Ψ(x, t)|2Ψ(x, t) (3.55)

with the coupling strength g = 4πa/m given in terms of the mass m, scattering

length a in the dilute regime in which na3 � 1 with density n.

Accordingly, the linearized equations of motion are given by

i∂tδΨ(x, t) = −∇
2

2m
δΨ(x, t) + 2g|Ψ(x, t)|2δΨ(x, t) + gΨ(x, t)2δΨ†(x, t). (3.56)

The observables of interest are again given by the spectral function

ρ(x, x′; t, t′) = i
〈
[Ψ(x, t), Ψ†(x′, t′)]

〉
(3.57)

and the OTOC

C(x, x′; t, t′) = −
〈
[Ψ(x, t), Ψ†(x′, t′)]2

〉
. (3.58)

Because the canonically conjugate field of Ψ is given by iΨ†, the Poisson bracket

becomes

−i
[
Ψ(x, t), Ψ†(x′, t′)

]
→∑

c

∫
ddz

(
δΨ(x, t)
δΨ(z, 0)

δΨ†(x′, t′)
iδΨ†(z, 0)

− δΨ(x, t)
iδΨ†(z, 0)

δΨ†(x′, t′)
δΨ(z, 0)

)
.

(3.59)

Alternatively, the field operator Ψ can be split into real and imaginary components

to evaluate the Poisson bracket, as done in [273].
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numerical implementation We discuss the numerical implementation for

the O(N) model, with the interacting Bose gas following analogously. Assuming

a discretization on an Nd
s hypercubic lattice with lattice spacing as (i.e. volume

V = (asNs)d) and periodic boundary conditions, the spectral function is given by

− ρcl(x− x′; t, t′)

=

〈
∑

c
ad

s ∑
z

〈〈(
δϕa(x, t)
δϕc(z, 0)

δϕb(x′, t′)
δπc(z, 0)

− δϕa(x, t)
δπc(z, 0)

δϕb(x′, t′)
δϕc(z, 0)

)〉

x+x′

〉

a,b

〉

cl
,

(3.60)

where we have denoted the average over the initial field configurations with sub-

script ’cl’ and the average over the center of mass coordinate with subscript x + x′.

Note that care has to be taken for the latter - the number of values averaged over

depends on x− x′.

The protocol then proceeds as follows:

1. For each initial state sample, perform two runs, one in which δϕc(z, 0) 6= 0

and one in which δπc(z, 0) 6= 0 for some randomly chosen z and c, saving
δϕa(x,t)
δπc(z,0) and δϕa(x,t)

δϕc(z,0) for all x, t, a.

2. After the time evolution of both runs, calculate
〈〈(

δϕa(x, t)
δϕc(z, 0)

δϕb(x′, t′)
δπc(z, 0)

− δϕa(x, t)
δπc(z, 0)

δϕb(x′, t′)
δϕc(z, 0)

)〉

x+x′

〉

a,b
. (3.61)

3. Average over z, c and initial conditions at the same time, effectively performing

a Monte Carlo evalutation of the integral over z and the sum over c.

As we need to prepare an initial state for the perturbation δϕc(x, 0) = cδ(x− z)

in the continuum, and therefore ∼ 1
ãd

s
δxz on the d-dimensional lattice, the lattice

spacing dependence is given as
(

δϕ(t, y)
δπ(0, x)

)
→ ad

s

(
δϕy(t)
δπz(0)

)
, (3.62)

i.e. the results obtained with the above prescription have to be divided by ãd
s to

obtain results independent of the lattice spacing.

Compared to the linear response protocol used in Refs. [276, 277] the present

one has the advantage of not involving a small perturbing field as the equations of

motion for the perturbation in Eq. (3.17) are already evaluated in the limit ε→ 0.

Therefore one can evaluate the spectral function for all (t, t′) in a single run.
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otoc The generalization of the OTOC is simply given by squaring the Poisson

bracket before averaging over initial conditions, i.e.

Ccl(x− x′; t, t′)

=

〈
∑
c′

∑
c

a2d
s ∑

z
∑
z′

〈〈(
δϕa(x, t)
δϕc(z, 0)

δϕb(x′, t′)
δπc(z, 0)

− δϕa(x, t)
δπc(z, 0)

δϕb(x′, t′)
δϕc(z, 0)

)
×

×
(

δϕa(x, t)
δϕc′(z′, 0)

δϕb(x′, t′)
δπc′(z′, 0)

− δϕa(x, t)
δπc′(z′, 0)

δϕb(x′, t′)
δϕc′(z′, 0)

)〉

x+x′

〉

a,b

〉

cl
. (3.63)

This means that four runs have to be evolved for a given initial field configuration,

one each with δϕc(z, 0) 6= 0, δπc(z, 0) 6= 0, δϕc′(z′, 0) 6= 0, δπc′(z′, 0) 6= 0.
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S I M U L AT O R S V I A F L U C T UAT I O N - D I S S I PAT I O N R E L AT I O N S

This chapter is based on the publication

• Alexander Schuckert, Michael Knap: “Probing eigenstate thermalization in

quantum simulators via fluctuation-dissipation relations” – Phys. Rev. Re-

search 2, 043315 (2020) [arXiv:2007.10347]

Structure and text have been rearranged and adapted here.

The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for

the approach to equilibrium of closed quantum many-body systems. So far, however,

experimental studies have focused on the relaxation dynamics of observables as

described by the diagonal part of ETH, whose verification requires substantial

numerical input. This leaves many of the general assumptions of ETH untested.

Here, we propose a theory-independent route to probe the full ETH in quantum

simulators by observing the emergence of fluctuation-dissipation relations, which

directly probe the off-diagonal part of ETH. We discuss and propose protocols to

independently measure fluctuations and dissipations as well as higher-order time

ordered correlation functions. We first show how the emergence of fluctuation

dissipation relations from a nonequilibrium initial state can be observed for the

2D Bose-Hubbard model in superconducting qubits or quantum gas microscopes.

Then we focus on the long-range transverse field Ising model (LTFI), which can be

realized with trapped ions. The LTFI exhibits rich thermalization phenomena: For

strong transverse fields, we observe prethermalization to an effective magnetization-

conserving Hamiltonian in the fluctuation dissipation relations. For weak transverse

fields, confined excitations lead to non-thermal features resulting in a violation of

the fluctuation-dissipation relations up to long times. Moreover, in an integrable

region of the LTFI, thermalization to a generalized Gibbs ensemble occurs and

the fluctuation-dissipation relations enable an experimental diagonalization of

the Hamiltonian. This chapter presents a theory-independent way to characterize

thermalization in quantum simulators and paves the way to quantum simulate

condensed matter pump-probe experiments.

89
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4.1 introduction

The long coherence time scales accessible in quantum simulators made it possible to

experimentally observe thermalization in isolated quantum systems [127, 146, 162,

306], the absence thereof in the presence of disorder [129, 152, 154, 179, 307] and in-

tegrability in reduced dimensions [47, 308]. Typically, these observations were based

on probing equal-time correlation functions [309–311], concluding the observation of

equilibration by comparison to the expected microcanonical expectation values at

the same energy density as the initial state. This approach in particular requires

viable theory input to compare with. However, in order to show full thermalization

also the fluctuations around the equilibrium expectation value as well as the response

of the system to small perturbations need to match the expectation in thermal

equilibrium. This can be understood from the ETH [24–27, 312], via its Ansatz for

the matrix elements of observables Â with respect to many-body eigenstates |n〉
with energy En:

〈n|Â|m〉 = A(Ē)δnm + e−S(Ē)/2 fA(Ē, ω)Rnm, (4.1)

where Ē = (En + Em)/2, ω = Em − En, A(Ē) is the value of 〈Â〉 in the microcanon-

ical ensemble at energy Ē, S(Ē) is the thermodynamic entropy (i.e. the number

of states in a small interval around energy Ē) and Rnm are Gaussian random

numbers. Measuring equal-time correlation functions in experiment only probes

the first (“diagonal”) term as in the long time limit 〈Â(t)〉 ≡ 〈ψ0|Â(t)|ψ0〉 →
Ā ≡ ∑n | 〈ψ0|n〉 |2 〈n|Â|n〉. While temporal fluctuations of equal-time correlation

functions around the steady-state value can in principle be used to probe the

off-diagonal part of ETH as 〈Â(t)〉2 − Ā2 → ∑m 6=n | 〈ψ0|n〉 |2| 〈m|ψ0〉 |2| 〈m|Â|n〉 |2,

they are exponentially small in system size since the thermodynamic entropy is

extensive. Hence, it becomes impractical to observe them in large systems [313, 314].

Equal-time correlation functions therefore only probe the diagonal part of ETH

while requiring substantial theory input to conclude thermalization in experiment

as they require a comparison with an equilibrium expectation value.

Here, we propose to measure two-time correlation functions of the form 〈Â(t1)B̂(t2)〉
to probe thermalization in quantum simulators. They are entirely determined by the

off-diagonal part of ETH while staying of O(1) in the thermodynamic limit, hence

offering a route to experimentally probe the entirety of eigenstate thermalization.

Moreover, two-time correlation functions offer a completely theory-independent route

to do so by testing the fluctuation dissipation relation (FDR) [48, 239, 277, 315–317].

FDRs relate the anticommutator (statistical) two-time function

F(t1, t2) =
1
2
〈{Â(t1), B̂(t2)}〉 − 〈Â(t1)〉 〈B̂(t2)〉 , (4.2)
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Figure 4.1: Measuring two-time correlation functions out of equilibrium. The statistical

function F can be measured by employing a non-destructive measurement on

site i at time t1 before measuring site j at time t2. The measurement at t1 can

be deferred to t2 by shelving. Alternatively, measurements of two independent

experimental realizations can be combined to yield F by averaging over global

random unitaries U acted on the initial state. The spectral function ρ can be mea-

sured by non-equilibrium linear-response (e.g. Bragg or tweezer spectroscopy),

employing light pulses on lattice site i at time t1 before measuring at time t2.

Alternatively, a Ramsey-type sequence works similarly. The protocols for F and

ρ can be realized in quantum simulators of spin models such as trapped ion

experiments as well as simulators of Bose- and Fermi-Hubbard models such

as quantum gas microscopes and superconducting qubits. The non-destructive

measurement and Ramsey protocols can be combined to measure higher-order

time ordered correlation functions.



92 probing eth in quantum simulators via fluctuation-dissipation relations

which quantifies fluctuations of the system, with the commutator (spectral function)

ρ(t1, t2) = 〈[Â(t1), B̂(t2)]〉 , (4.3)

quantifying dissipation of energy 1. Once local thermal equilibrium is approached

at late times, the fluctuations and dissipations are independent of the central time

T = (t1 + t2)/2 due to time-translational invariance. Fourier transforming the

relative time τ = (t1 − t2) to frequencies ω, we obtain the FDR

F(ω) = nβ(ω)ρ(ω). (4.4)

The Bose-Einstein distribution (plus the “quantum half”)

nβ(ω) =
1
2
+

1
exp(βω)− 1

(4.5)

at inverse temperature β links fluctuations and dissipation; see App. 4.2 for a

short derivation of the FDRs and App. 4.3 for the connection between ETH and

FDRs. As the FDR is completely independent of microscopic details and the initial

state, measuring F and ρ independently from each other out-of-equilibrium and

testing the FDRs provides a universal and theory-independent way of probing

thermalization in quantum simulators. Moreover, from the FDR one can extract the

temperature of the many-body system, which is usually challenging to determine

experimentally [320, 321].

While the ETH implies the fulfillment of FDRs, physical initial states are always

superpositions of many eigenstates such that the FDR of single eigenstates are

challenging to probe in experiments 2. However, the energy density variance of

initial states prepared as the ground state of some Hamiltonian can be shown to

vanish in the thermodynamic limit [27]. Hence, such initial states can be seen as a

superposition of eigenstates in a small energy shell. As the ETH functions A(Ē) and

fA(Ē, ω) are assumed to be smooth functions of Ē, the vanishingly small energy

variance of physical initial state implies that probing an initial state with energy Ē

and probing an arbitrary eigenstate with the same energy yields the same result at

long times.

In this chapter, we propose protocols for measuring fluctuations and dissipa-

tions independently from each other out-of-equilibrium in quantum simulators of

spin systems as well as fermionic and bosonic quantum gas microscopes employ-

ing protocols based on Ramsey pulses [323], non-destructive projective measure-

ments [323, 324], randomized measurements [325] and linear response, including

1 Heating rates in the linear response regime of periodically driven systems are determined by ρ [318]

and hence can also be used to probe the off-diagonal part of ETH [319]. However, heating rates are

challenging to measure in experiment [149].
2 A recent protocol has shown how to prepare eigenstates in finite size systems [322].
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non-equilibrium Bragg [326] and “tweezer” spectroscopy. We then discuss appli-

cations of the protocols in Sec. 4.7. As a first example, we show that the FDRs can

be probed in current quantum gas microscopes as well as superconducting qubit

experiments implementing the Bose-Hubbard model. Going beyond the case of

fast thermalization, we show that in trapped ion experiments several examples

of prethermalization [46] can be probed in the LTFI. At large transverse fields, a

single approximately conserved quantity leads to thermalization to a prethermal

Hamiltonian, which can be directly observed by testing the FDRs. In an integrable

sector of the LTFI, extensively many conserved quantities lead to thermalization

to a generalized Gibbs ensemble, which can again be observed by a generalized

FDR [327]. In turn, measuring two-time correlations enable an experimental diago-

nalization of the quadratic Hamiltonian. Finally, at small transverse fields, confined

excitations can be directly observed in the spectral function and lead to genuine

non-thermal features including a violation of the FDR observable up to long times.

Before presenting our measurement protocols, we first derive the fluctuation-

dissipation relation and show that they are implied by the eigenstate thermalization

hypothesis.

4.2 fluctuation-dissipation relations

The fluctuation-dissipation relations are a consequence of the cyclicity of the trace

and the interpretation of two-time correlators in terms of spectral and statistical

components, which follow from the commutation relations.

kubo-martin-schwinger (kms) condition in thermal equilibrium .

The KMS condition for a correlation function of two operators Â(t1) and B̂(t2)

evaluated in the Heisenberg picture with Hamiltonian Ĥ is a simple property of

the thermal density matrix:

Tr
[
e−βĤ Â(t1)B̂(t2)

]
= Tr

[
e−βĤeβĤ B̂(t2)e−βĤ Â(t1)

]

= Tr
[
e−βĤ B̂(t2 − iβ)Â(t1)

]
, (4.6)

where we only used the cyclicity of the trace. In particular, the above relation does

not depend on the commutation relations of Â and B̂ (This is in general not true

if above relations are defined in terms of a path integral as then all correlation

functions are automatically time ordered and the fermionic relation (i.e. for Â,B̂

being fermionic creation/annihiliation operators) acquires a minus sign [210].)
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Defining the two Wightman functions by using time-translational invariance of

thermal equilibrium,

G>(t1 − t2) =
1
Z

Tr
[
e−βĤ Â(t1)B̂(t2)

]
(4.7)

G<(t1 − t2) =
1
Z

Tr
[
e−βĤ B̂(t2)Â(t1)

]
, (4.8)

with Z = Tr e−βĤ, and Fourier transforming with respect to t1 − t2, G>(ω) =∫
dteiωtG>(t), the KMS condition simply becomes

G>(ω) = eβωG<(ω). (4.9)

fluctuation dissipation relations (fdrs). FDRs may be obtained from

the KMS condition by combining the Wightman functions into (bosonic or fermionic)

spectral (ρ) and statistical (F) components as

ρ(ω) := G>(ω)∓ G<(ω) (4.10)

F(ω) :=
1
2
(G>(ω)± G<(ω)) , (4.11)

where the upper (lower) sign corresponds to bosons (fermions), respectively. These

definitions respect the proper interpretation of ρ as a spectral function as may be

motivated from the sum rule
∫ dω

2π ρ(ω) = ρ(t = 0) = 〈[Â, B̂]∓〉, i.e., the equal-time

(anti-)commutation relations.

Inserting the KMS condition in Fourier space into above definitions, we find the

FDRs

F(ω) = nβ(ω)ρ(ω), (4.12)

with nβ(ω) = 1
2 ± 1/(exp(βω) ∓ 1) the Bose-Einstein/Fermi-Dirac distribution

at inverse temperature β. We emphasize that whether bosonic or fermionic FDRs

are obtained is not a mathematical property of the operators Â and B̂ but of the

physical interpretation of the (anti-)commutator as the spectral/statistical function.

In particular, this interpretation is ambiguous in the case of spin operators due to

the sum rules differing between equal-site and un-equal site operators. For example,

the raising/lowering operators σ̂±i anticommute for equal sites but commute for

un-equal sites. Conventionally, bosonic FDRs are used for spin systems [48], which

we also follow here.

We furthermore note that the FDR is not defined at ω = 0 as the KMS condition

in Eq. (4.9) implies ρ(ω = 0) = 0, with F(ω = 0) left unconstrained.

kms condition and fdr in the presence of a conserved quantity

In a grand-canonical equilibrium set-up with an additional conserved quantity N̂
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(defined by [Ĥ, N̂] = 0) and corresponding chemical potential µ, the KMS condition

may be obtained according to

Tr e−β(Ĥ−µN̂) Â(t1)B̂(t2) = Tr e−β(Ĥ−µN̂)eβ(Ĥ−µN̂)B̂(t2)e−β(Ĥ−µN̂) Â(t1)

= Tr e−β(Ĥ−µN̂)e−βµN̂ B̂(t2 − iβ)eβµN̂ Â(t1). (4.13)

Whether or not a simple relation such as the one in Eq. 4.9 emerges crucially

depends on the operator B̂. For example, if [N̂, B̂] = 0, such as the case for the

densities n̂i defined by N̂ = ∑i n̂i, the above relation returns again Eq. 4.9. Moreover,

if [B̂, N̂] = B̂, such as the case for an annihilation operator âi, defined by n̂i = â†
i âi,

we get

e−βµN̂ B̂eµN̂ = eβµB̂. (4.14)

and hence

G>(ω) = eβ(ω−µ)G<(ω). (4.15)

Similar relations follow for the creation operator â†
i . For the FDR of the annihilation

operator with some other operator we then get

F(ω) =

(
1
2
± nβ,µ(ω)

)
ρ̃(ω) (4.16)

with nβ,µ(ω) = 1/(exp(β(ω− µ))∓ 1) the Bose-Einstein/Fermi-Dirac distributions

in the presence of a chemical potential.

Crucially, if B̂ fulfills neither of the above simple commutation relations with the

conserved quantity N̂, no FDR is obtained as then there is no simple KMS condition.

4.3 fdrs and the eigenstate thermalization hypothesis

Here we summarize the arguments in Ref. [7] to show that the ETH implies the FDRs,

and that the experimental test of FDRs directly tests the off-diagonal part of ETH. We

supplement the analytical arguments by showing the FDR on the level of individual

eigenstates in the two-dimensional Bose Hubbard model.

To prove these statements, we assume B̂ = Â†, which is the case for all functions

evaluated in the main text. For general B̂ 6= Â additional assumptions not contained

in the ETH have to be made [7]. For late times T, all T dependent terms in the

Lehmann representation of the spectral and statistical functions are expected to

dephase (c.f. Eq. (4.91)), such that

lim
T→∞

F(T, ω) ≡F(ω) = ∑
n
| 〈ψ0|n〉 |2Fnn(ω), (4.17)

lim
T→∞

ρ(T, ω) ≡ρ(ω) = ∑
n
| 〈ψ0|n〉 |2ρnn(ω). (4.18)
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with the eigenstate spectral/statistical functions given by

Fnn(ω) =
1
2 ∑

l 6=n
|〈n|Â|l〉|2(δ(ω− (El − En)) + δ(ω + (El − En))) (4.19)

ρnn(ω) = ∑
l 6=n
|〈n|Â|l〉|2(δ(ω− (El − En))− δ(ω + (El − En))). (4.20)

These expressions makes explicit that the long-time value of the spectral and

statistical functions is entirely determined by the off-diagonal matrix elements of Â.

Comparing with the corresponding equilibrium expressions,

Fequ.(ω) =
1
Z ∑

n
e−βEn Fnn(ω) (4.21)

ρequ.(ω) =
1
Z ∑

n
e−βEn ρnn(ω), (4.22)

one may first be lead to believe that the |cn(0)|2 must correspond to the weights

in thermal equilibrium, 1
Z e−βEn , in order for the equilibrium FDR to hold. This is

however in general not true, as the |cn(0)|2 do not resemble any of the thermal

ensembles [328] for most physical initial states. The eigenstate thermalization

hypothesis offers a different route to thermalization in the sense of FDRs: each

eigenstate fulfills an FDR individually and hence the weighted sum over the initial state

distribution |cn(0)|2 does so, too.

Now, consider the Fourier transformed correlation function of a single eigenstate,

Cn(ω) =
∫

dτeiωτ 〈n|Â(τ)Â†(0)|n〉 (4.23)

= 2π ∑
m

δ(ω− (Em − En))| 〈n|Â|m〉 |2. (4.24)

The ETH Ansatz [24] demands that

〈n|Â|m〉 = A(Ē)δnm + e−S(Ē)/2 fA(Ē, Em − En)Rnm, (4.25)

where A(Ē) is the microcanonical expectation value of operator Â at energy Ē =

(En + Em)/2, S is the thermodynamic entropy, Rnm are random numbers with

mean zero and unit variance and fA(Ē, Em − En) and A(Ē) are smooth functions

of their arguments Ē. Inserting this ansatz into the eigenstate correlation function

and replacing the sum over energies by an integral ∑m →
∫

d(Em − En) exp[S(En +

(Em − En))] and using that the |Rnm|2 average out under the sum, we then arrive at

Cn(ω)/2π = |A(Ē)|2δ(ω)

+ eS(En+ω)−S(En+ω/2)| fA(En + ω/2, ω)|2. (4.26)

As argued in Ref. [7] both S and fA can be Taylor expanded around ω = 0 if Â is a

local few-body operator, such that

Cn(ω)/2π = |A(Ē)|2δ(ω) + eβω/2| fA(En, ω)|2, (4.27)
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where we used that dS(E)/dE = β with β = β(E) the inverse temperature. We

construct the eigenstate spectral and statistical functions from Cn(ω) by using

| fA(En, ω)|2|Rnm|2 = | fA†(En,−ω)|2|Rmn|2, resulting in

Fnn(ω)/2π = cosh(βω/2)| fA(En, ω)|2, (4.28)

ρnn(ω)/2π = 2 sinh(βω/2)| fA(En, ω)|2. (4.29)

Both F and ρ are hence entirely determined by fA and the inverse temperature

corresponding to the eigenenergy En. Moreover, we finally find that the FDR holds

on the level of a single eigenstate,

Fnn(ω) = nβ(ω)ρnn(ω) (4.30)

with nβ(ω) = 1
2 + 1/(exp(βω)− 1).

From this result we can now deduce the conditions on the initial state for the

FDR. Inserting the eigenstate FDR into the long-time limit of the non-equilibrium

statistical function (c.f. Eq. (4.17)),

F(ω) = ∑
n
|cn|2nβ(En)(ω)ρnn(ω) (4.31)

?
= nβ(ω)ρ(ω), (4.32)

we clearly see that the second equality can only be true if the |cn|2 are concentrated

around a region in which β(En) is not a strongly varying function.

numerical verification of the eth scenario. In Fig. 4.2 we verify the

FDR for a single eigenstate of the 2D Bose Hubbard model. The inverse temper-

ature β extracted from the FDR matches the expectation from the corresponding

eigenenergy, i.e. from solving En = 1
Z Tr[e−βĤ Ĥ] for β. See Ref. [329] for an in-depth

analysis of finite size effects in the FDR from the perspective of ETH.

4.4 measuring two-time correlations in spin model simulators

Solving the quantum many-body problem is equivalent to obtaining all time ordered

correlation functions [309] 〈TÂ(t1)B̂(t2)Ĉ(t3) · · · 〉. Here, we propose protocols to

measure such correlation functions in quantum simulators of lattice models by using

their decomposition into nested (anti-) commutators [330]. In particular, we will

focus on the two-time correlation function which can be decomposed into the anti-

/commutator (i.e. the statistical/spectral function) according to 〈TÂ(t1)B̂(t2)〉 =
F + 1

2 sgn(t1 − t2)ρ. In the following, we present several protocols to measure F

and ρ independently from each other in quantum simulators of spin (in this
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Figure 4.2: FDR for a single eigenstate. (a) Eigenstate statistical Fnn and spectral functions

ρnn as well as the right-hand-side of the FDR nβρnn for an eigenstate n with

eigenenergy En ≈ −9.06J in the 2D Bose Hubbard model at U/J = 4 with the

same initial state and operator proped as in Fig. 4.4 in the main text. The corre-

sponding inverse temperature β(En) ≈ 0.95J expected in thermal equilibrium

is set by the eigenenergy of the state via Eq. (4.64). To evaluate Eq. (4.24) we

used a Lorentzian broadening with FWHM of 0.2J. (b) FDR function as defined

in Eq. (4.63) for low frequencies, showing the expected linear behaviour with a

slope matching the inverse temperature.
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section) and Bose-/Fermi-Hubbard models (in the next section) and indicate how to

generalize them to higher order time ordered correlation functions. Our protocols

are summarized in Fig. 4.1.

Ramsey protocol for spectral function ρ

Many-body Ramsey interferometry has been shown to be probe spectral functions

in quantum simulators of spin models [323, 324] using local spin rotations of the

form

Rα
i (θ) = cos(θ/2)1̂i − i sin(θ/2)σ̂α

i , (4.33)

where σ̂α are the Pauli matrices 3. The protocol proceeds as follows: Starting from

some initial state |Ψ0〉, evolve for time t1, apply a local rotation Rα
i (θ) at site i,

subsequently evolve for a time (t2 − t1) and finally measure σ̂
β
j

4. The result can be

written as

〈σ̂β
j (t2)〉

θ
= cos2(θ/2) 〈σ̂β

j (t2)〉+
i
2

sin θ 〈[σ̂α
i (t1), σ̂

β
j (t2)]〉

+ sin2(θ/2) 〈σ̂α
i (t1)σ̂

β
j (t2)σ̂

α
i (t1)〉 , (4.34)

where all expectation values are written in the Heisenberg picture. The spectral

function can then be obtained by combining two runs with opposite angle θ = ±π/2

by

〈[σ̂α
i (t1), σ̂

β
j (t2)]〉 = −i 〈σ̂β

j (t2)〉
π/2

+ i 〈σ̂β
j (t2)〉−π/2

. (4.35)

Projective measurement protocol for F.

The statistical function F has been shown to be probed by replacing the pulses in

the Ramsey protocol for ρ with non-destructive projective measurements [323, 324],

which have for example been demonstrated in superconducting qubits [331], Ryd-

berg tweezer arrays [332] and trapped ions [333, 334]. In this protocol, a measure-

ment of σ̂α
i at time t1 (without disturbing the rest of the system) and a subsequent

measurement of σ̂
β
j at time t2 − t1 is combined to yield

1
2
〈
{

σ̂α
i (t1), σ̂

β
j (t2)

}
〉 = P+α+β

ij + P−α−β
ij − P+α−β

ij − P−α+β
ij , (4.36)

3 While Rabi pulses only directly implement pulses in the x-y plane of the Bloch sphere, a pulse around

the z axis can be implemented by R̂z
i (θ) = R̂x

i (π/2)R̂y
i (θ)R̂x

i (−π/2) [174].
4 Measurements of σ̂x/y can be implemented by applying local pulses before measuring σ̂z, for example

σ̂y = −R̂x(−π
2 )σ̂

zR̂x(π
2 ).
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where P+α+β
ij is the joint probability of measuring +1 for σ̂α

i (t1) and +1 for σ̂
β
j (t2).

The non-desctructive projective measurement can be replaced by spin shelving

as noted in Ref. [323]. In this variant, the measurement at time t1 is replaced by a

π pulse between one of two spin levels at site i and a third level, which does not

participate in the many-body dynamics. At time t2 this third level gets measured as

well, effectively projecting the state onto one of the two measurement outcomes at

time t1. This variant of the protocol has a speed advantage as single-site pulses are

usually much faster than measurements and the many-body dynamics.

Randomized measurement protocol for F.

We propose statistical correlations between randomized measurements [307, 325,

335–338] as an alternative to measure the statistical correlation function F in small

systems. It relies on acting with global random unitaries û on the initial state

|Ψ0〉. After time evolving for a time t1, Â is measured. Preparing the same initial

state (with the same unitary û) to measure B̂ after evolving for time t2 as well as

measuring the overlap 〈ρ0〉u ≡ | 〈Ψ0|û|Ψ0〉 |2 of the initial state with û |Ψ0〉 in a

separate measurement, one can then extract F by averaging over random unitaries

as

〈{Â, B̂}〉 = N 3
H〈Â(t1)〉u 〈B̂(t2)〉u 〈ρ0〉u −NHC(t1, t2), (4.37)

where NH � 1 is the Hilbert space dimension, the overline denotes averaging over

random unitaries and we assumed Â, B̂ to be traceless. The second term is the

infinite temperature correlation function

C(t1, t2) ≡
1
NH

Tr(Â(t1)B̂(t2))

= NH〈Â(t1)〉u 〈B̂(t2)〉u, (4.38)

which is interesting in its own right as it quantifies thermalization and transport in

the middle of the spectrum in systems with a bounded local Hilbert space. Note

that both F and C can be obtained from the same experimental data. Moreover, if

Â = B̂ only a single time trace needs to be measured for every unitary u (along

with 〈ρ0〉u).

Global random unitaries can be implemented by adding local quenched disorder

to a many-body Hamiltonian [325, 339].

We present the proofs of Eqs. (4.37) and (4.38) below. They follow straightfor-

wardly from the ones presented in Ref. [338] for the out-of-time-ordered correlation

function (OTOC). We also present a generalization to operators which are not trace-

less and a simplification of the protocol in case of thermal equilibrium ρ̂0 ∝ e−βĤ . In
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the proofs, we assume u to be a unitary 3-design, i.e. moments up to the third order

have to match the circular unitary ensemble (C can be measured with 2-designs).

proof of eq . (4 .38). In Ref. [338] it was shown from the properties of u that

〈Â〉u 〈B̂〉u = 1
NHc ∑τ∈S2

Tr(τÂ⊗ B̂), where Sn is the permutation group on n letters

and c = NH + 1. For n = 2, S2 = {1, SWAP}, where the SWAP operator acts as

SWAP(|a〉 ⊗ |b〉) = |b〉 ⊗ |a〉. By acting with τ to the left when writing out the trace

as a sum over basis states and using that Tr(Â⊗ B̂) = Tr(Â)Tr(B̂), it follows that

〈Â〉u 〈B̂〉u =
1
NHc

(
Tr(Â)Tr(B̂) + Tr(ÂB̂)

)
. (4.39)

Using that Â,B̂ are traceless and inserting Â → Â(t1), B̂ → B̂(t2) we arrive at

Eq. (4.38), where we assumed NH � 1.

proof of eq . (4 .37). Similarly, it was shown in Ref. [338] that 〈Â〉u 〈B̂〉u 〈Ĉ〉u =
1
c′ ∑τ∈S3

Tr(τÂ ⊗ B̂ ⊗ Ĉ), where c′ = NH(NH + 1)(NH + 2). Summing over all

possible permutations τ, inserting Ĉ = ρ0, Tr ρ0 = 1 and Â→ Â(t1), B̂→ B̂(t2) we

get

〈Â(t1)〉u 〈B̂(t2)〉u 〈ρ0〉u

=
1
c′

(
Tr Â Tr B̂ + Tr Â Tr (ρ0B̂(t2)) + Tr B̂ Tr (ρ0Â(t1))

+ Tr (Â(t1)B̂(t2)) + Tr ρ0Â(t1)B̂(t2) + Tr ρ0B̂(t1)Â(t2)

)
. (4.40)

Assuming that the terms in the first row vanish for traceless Â,B̂, we arrive at

Eq. (4.37), where we assumed NH � 1.

special case : thermal equilibrium . The above protocol can also be used

to measure the equilibrium structure factor F(t1 − t2) by inserting ρ0 = ρβ =

(1/Z)e−βĤ, which via the FDR then yields the equilibrium spectral function of the

operators Â and B̂. In cold atom experiments, this protocol may be used to obtain

the density-density (particle-hole) spectral function for Â = B̂ = n̂. For platforms

in which it is difficult to prepare thermal states, but moments of the many-body

Hamiltonian can be measured (such as trapped ions), finite temperature spectral

functions may still be measured in a high temperature expansion [338]. ‘
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4.5 measuring two-time correlations in bose- and fermi-hubbard

simulators

By generalizing the previously discussed protocols for spin systems we show how

to measure n-time correlation functions of the local density operator n̂i in quantum

simulators of bosonic or fermionic lattice models.

Ramsey protocol for spectral function ρ.

A pulse operator R̂i(θ) analogous to the spin model protocol can be introduced

by noting that the local density operator can be written as n̂i = (σz
i − 1)/2 if the

occupations are restricted to zero and one as the case for fermions and “hard-core”

bosons, i.e. bosons in the presence of large on-site interactions. An off-resonant

light field induces an AC Stark shift described by the Hamiltonian ĤL = −hin̂i,

which in a quantum gas microscope can be implemented by a “tweezer” laser

shone on a single lattice site i, for example through a spatial light modulator [154].

In a superconducting circuit, this Hamiltonian can be implemented by a change in

the frequency detuning of the superconducting oscillator representing lattice site

i [193, 194]. In any case, applying the field for a duration t implements the operator

R̂j(θ) =
(

cos(θ/2)1 + i sin(θ/2)σ̂z
j

)
exp(iθ/2), (4.41)

with θ = hjt and we assumed ĤL to be dominating the dynamics during the pulse.

Proceeding as in the spin system protocol, i.e. evolving until time t1, applying Ri(θ),

evolving for a time (t2 − t1) and measuring n̂j, we get

〈n̂j(t2)〉θ = 〈n̂j(t2)〉 − i sin(θ) 〈
[
n̂i(t1), n̂j(t2)

]
〉

+ 2 sin2(θ/2)
[
2 〈n̂i(t1)n̂j(t2)n̂i(t1)〉 − 〈

{
n̂i(t1), n̂j(t2)

}
〉
]

, (4.42)

from which the spectral function can be extracted by choosing θ = ±π/2,

〈
[
n̂k(t1), n̂j(t2)

]
〉 = i

2

(
〈n̂j(t2)〉π/2 − 〈n̂j(t2)〉−π/2

)
. (4.43)

Non-equilibrium linear response protocols for spectral function ρ.

In non-equilibrium linear response, the spectral function may be obtained without

restrictions on the occupation numbers. Here, we apply a small perturbation V̂

during the dynamics and compare the measurement of an observable Â at time t1 to
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an evolution without perturbation. In general, the outcome of such an experiment

is

〈Â(t1)〉V 6=0 − 〈Â(t1)〉V=0 = −i
∫ t1

t0

dt 〈
[
Â(t1), V̂(t)

]
〉 . (4.44)

We now specify this expression to a local (real-space) and non-local (momentum-

space) density perturbation.

local density perturbation. Applying a short pulse (compared to the

many-body dynamics) with an off-resonant light field on lattice site j such that

V̂(t) = hjn̂jδ(t − t2), where hj is the pulse area, we can measure the real space

density-density spectral function via

〈
[
n̂k(t1), n̂j(t2)

]
〉 = i

hj

(
〈n̂k(t1)〉h 6=0 − 〈n̂k(t1)〉h=0

)
, (4.45)

where t1 > t2 due to causality and contrary to the Ramsey protocol, hj needs to be

much smaller than the parameters of the many-body Hamiltonian.

In the above protocol, separate experimental runs for different sites j need to be

conducted. By contrast, we can evaluate all j simultaneously using a disordered

global perturbation V̂(t) = δ(t− t2)∑k hkn̂k [277], with hi = 0 and hihk = σ2
h δik,

where the overline denotes averaging over realizations of the random potentials with

variance σ2
h . The local spectral function can then be evaluated by post-processing as

〈
[
n̂k(t1), n̂j(t2)

]
〉 = i

σ2
h

hj

(
〈n̂k(t1)〉h 6=0 − 〈n̂k(t1)〉h=0

)
, (4.46)

where σ2
h needs to be small in order to be in the linear response regime.

stimulated bragg spectroscopy. In Bragg spectroscopy [326, 340–342],

two lasers are shone onto the lattice, with the atoms absorbing a photon from one

of the two and emitting into the other. The momentum transfer h̄q and the energy

h̄ω are defined by the angle between the two lasers and their frequency difference,

respectively. The coupling to the atoms is given by

V̂I(t) =
V0

2

(
n̂−q(t)e−iωt + n̂q(t)eiωt

)
s(t), (4.47)

where n̂q = ∑j eiqrj n̂j is the Fourier transform of the local occupation numbers (i.e.

the particle-hole excitation annihilation operator), V0 is proportional to the laser

intensity and s(t) is the pulse envelope function. We consider measuring n̂q by

using a quantum gas microscope to measure the local occupation numbers n̂j and

Fourier transforming afterwards. In the following, we specify this protocol to two

pulse shapes s(t).
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Assuming a delta-like pulse, s(t1 − tp) ∼ δ(t1 − tp), we get

〈n̂q(t)〉 − 〈n̂q(t)〉V=0 = − iV0

2
〈
[
n̂q(t), n̂−q(tp) + n̂q(tp)

]
〉 , (4.48)

i.e. the analogous expression to Eq. (4.45) in momentum space. The Bragg pulses

duration can be much slower than typical tunneling times in optical lattices, such

that the δ-form of the pulse is valid [341].

For a constant pulse, s(t1) = 1, a Laplace transform with respect to t evaluated at

the same frequency ω results in

〈n̂q(ω)〉 − 〈n̂q(ω)〉V=0 =

− iV0

2

∫ ∞

0
dt
∫ t

0
dt1
〈[

n̂q(t), n̂−q(t1)e−iω(t1−t)

+ n̂q(t1)eiω(t1+t)]〉, (4.49)

which is related to the spectral function Fourier transformed with respect to the

relative time.

Projective measurement protocol for F

The projective measurement protocol for spin systems crucially relies on the fact

that spin operators have exactly two eigenvalues. In simulators of Fermi-Hubbard

models, the spin system protocol can therefore be straightforwardly generalized to

the measurement of the local density n̂iσ of hyperfine/spin component σ on site i.

However, in Bose-Hubbard model simulators, this condition is only fulfilled when

the onsite-interaction is sufficiently large and occupations are low, such that the

parity of particle number, ∑n |2n〉 〈2n| is almost equal to the particle number.

Keeping these limitations in mind, the protocol proceeds as the one for spin

systems: After having evolved the initial state |Ψ(0)〉 under Hamiltonian Ĥ for time

t1 and subsequently having measured n̂i we get for the post-measurement state

|Ψ′(t1)〉 =
{ 1√

1−〈Ψ(t1)|n̂i |Ψ(t1)〉
(1− n̂i) |Ψ(t1)〉 for |0〉t1

1√
〈Ψ(t1)|n̂i |Ψ(t1)〉

n̂i |Ψ(t1)〉 for |1〉t1

, (4.50)

where |0〉/|1〉 denotes having measured occuption zero/one. Subsequently time

evolving for time t2 − t1, we find for the final measurement of n̂j that

〈n̂j(t2)〉
∣∣∣∣
|0〉,|1〉

=

{
1

1−〈n̂i(t1)〉 〈(1− n̂i(t1))n̂j(t2)(1− n̂i(t1))〉 for |0〉t1

1
〈n̂i(t1)〉 〈n̂i(t1)n̂j(t2)n̂i(t1)〉 for |1〉t1

,
(4.51)
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where we switched to the Heisenberg picture. Rearranging terms, we get

〈{n̂i(t1), n̂j(t2)}〉 =

〈n̂j(t2)〉|1〉 〈n̂i(t1)〉 − 〈n̂j(t2)〉|0〉 (1− 〈n̂i(t1)〉) + 〈n̂j(t2)〉 , (4.52)

where with 〈n̂j(t2)〉|1〉 we denoted the expectation value of n̂j at time t2 conditioned

on having measured occupation one at time t1. The last term is the expectation

value of n̂j at time t2 without having measured at time t1.

Non-destructive projective measurement in optical lattices using tweezers

The simplest scheme to implement non-destructive local projective measurements

may be executed in quantum gas microscopes might be using fluorescence imag-

ing [343, 344], which would however require a selective illumination of the lattice,

e.g. by a tweezer. We present several other schemes in the following.

bilayer microscopy. This recently developed technique [321, 345, 346] might

enable such measurements in a spinful Hubbard model. There, the dynamics can

be effectively stopped at time t1 by splitting the spin up/down components from

each other and simultaneously increasing the lattice depth. After a fluorescence

measurement of one of the components (without measuring the other, which can be

done by selecting the layer with the focus of the microscope [345]), the two layers are

reunited to resume the dynamics before splitting them again to measure at a second

time t2. This way, a measurement of ∑i,j〈{n̂iσ(t1), n̂jσ′(t2)}〉 with σ, σ′ ∈ {↑, ↓} can

be made.

Similarly to the spin protocol, the measurement at time t1 can be deferred until

time t2 by mapping the occupation of a site to a tweezer or a different layer of the

optical lattice and subsequently measuring whether or not an atom was present at

time t1 by measuring the tweezer’s occupation at time t2.

shining a tweezer on the lattice . Following Ref. [347], a tightly focussed

tweezer can be used to map the occupation of a site in the 2D optical lattice to

the one of the tweezer. Moving the tweezer away from the lattice then makes it

possible to measure the occupation without disturbing the rest of the system. For

this protocol to work, moving the tweezer should be faster than any time scale in

the many-body system, especially the tunneling. Tunneling times are on the order

of ms in optical lattices [125] which is longer than the typically 100µs it takes to

move an optical tweezer over the distance of one lattice site [169].
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bringing a tweezer next to the lattice . Alternatively to shining a

tweezer directly on the optical lattice, one may bring it close to a given lattice

site [348], which induces tunnelling of strength Jt between the tweezer and the site.

Writing the state of an atom being in the tweezer as |t〉, we can write the effective

Hamiltonian as Ĥ = Jt(|t〉 〈1|+ |1〉 〈t|), with |1〉 denoting the site being occupied.

Keeping the tweezer for a time t next to the site induces a “pulse”

U = exp(iHt) = cos(Jtt)1 + i sin(Jtt)(|t〉 〈1|+ |1〉 〈t|). (4.53)

Choosing t = π/Jt induces a “π-pulse”, mapping the occupation of the site to the

initially empty tweezer. Here, Jt needs to be much larger than the energy scales in

the Bose-Hubbard model, Jt � J, U, i.e. the distance of the tweezer from the lattice

must be smaller than the lattice spacing (although not much smaller due to the

exponential dependence of the tunneling amplitude on the distance [126]).

Randomized measurement protocol for F

The protocol employing randomized measurements presented for spin systems

can be applied to Hubbard simulators without any adapations, where the nec-

essary implementation of disorder has been demonstrated in both quantum gas

microscopes [153, 154, 159] and superconducting qubits [193, 194].

4.6 measuring higher order time ordered correlation functions

Here, we generalize the previously known protocols for two-time functions [323,

324] to multi-time correlation functions. A specific three-point correlation function

can be directly read off of Eq. (4.34):

〈σ̂β
j (t2)〉

π/2
+ 〈σ̂β

j (t2)〉−π/2
= 〈σ̂α

i (t1)σ̂
β
j (t2)σ̂

α
i (t1)〉 , (4.54)

with t2 > t1 as demanded by causality. In order to reconstruct the complete three

point time ordered correlation function, we need to additionally measure all possible

(anti-)commutator nestings [330]. These can be obtained by combining the projective

measurement and Ramsey protocols as we show below. For example, a measurement

of σ̂α
i at time t1 followed by a pulse Rβ

j (θ) at time t2 and a measurement of σ̂
γ
k at

time t3 can be combined to obtain

〈Ψ(t1)| P̂+α
i |Ψ(t1)〉 〈σ̂

β
j (t2)〉

+α,θ=π/4

+ 〈Ψ(t1)| P̂−α
i |Ψ(t1)〉 〈σ̂

β
j (t3)〉−α,θ=−π/4

=
1
4
〈{σ̂α

i (t1), [σ̂
γ
k (t2), σ̂

β
j (t3)]}〉 , (4.55)
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Figure 4.3: Closed time contour depiction of the subclass of (2n + 1) point correlation

functions accessible via protocols with n π-pulses. Starting from the initial

time t0, operators are inserted along the contour at times t1, t2, . . . , tn by local

pulses. At tn+1 the operator Ĉ gets measured and the evolution is stopped. The

operator measured by the protocol can then be obtained by starting from t0 on

the upper branch up to tn+1 and then backward on the lower branch back to

t0, i.e. 〈Â(t1)B̂(t2) · · · Ĉ(tn+1) · · · B̂(t2)Â(t1〉. Note that this is only a subclass of

the correlation functions obtainable by the protocols presented in this section

and all operators are given by Pauli matrices.

where P̂±α
i = 1

2 (1̂± σ̂±α
i ) is the projection operator corresponding to eigenvalue

+1/-1 of σ̂α 5. As we see above, a projective measurement/pulse results in the

appearance of an anticommutator/commutator. We hence argue that this procedure

generalizes to all n-point time ordered correlation functions by decomposing them

into nested anti-/commutators.

In the following we show in more detail how to generalize the projective measure-

ment/Ramsey protocols to measure higher order time-ordered correlation functions

by using more than one pulse/projection before the final measurement. Here we

present the case for two pulses and two projections. We show that from this sequence

all three point time ordered correlation functions can be obtained. These are given by

the nested (anti-) commutators 〈{A(t1), {B(t2), C(t3)}}〉, 〈{A(t1), [B(t2), C(t3)]}〉,
〈[A(t1), {B(t2), C(t3)}]〉 and 〈[A(t1), [B(t2), C(t3)]]〉. The appearance of a anticom-

mutator or commutator is obtained by a projection/pulse, respectively.

Apart from all three point correlators, also a subclass of four point and five point

functions can be obtained from the two pulse/projection protocol. Furthermore,

we show for arbitrary n that a particular (2n + 1)-point correlation function can be

obtained from an n pulse sequence.

5 While projections on σ̂z are directly implemented by measurements of the level population, projection

operators in the other directions of the Bloch sphere may be implemented by precluding the measure-

ment with appropriate pulses, P̂±y = R̂x(π/2)P̂±zR̂x(−π/2) and P̂±x = R̂y(π/2)P̂±zR̂y(−π/2).
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two pulses . By using a two-pulse generalization of the commutator protocol

discussed in the main text, i.e. evolve until time t1, apply local rotation R̂α
i (θ), evolve

until time (t2 − t1), apply a local rotation R̂γ
k (θ), evolve until time (t2 − t3) and

finally measure σ̂
β
j , one can show that

1
2

(
〈σ̂β

j 〉θ + 〈σ̂
β
j 〉−θ

)
= cos4

(
θ

2

)
〈σ̂β

j (t3)〉

− sin2
(

θ

2

)
cos2

(
θ

2

) (
〈[σ̂α

i (t1), [σ̂
γ
k (t2), σ̂

β
j (t3)]]〉

− 〈σ̂α
i (t1)σ̂

β
j (t3)σ̂

α
i (t1)〉 − 〈σ̂γ

k (t2)σ̂
β
j (t3)σ̂

γ
k (t2)〉

)

+ sin4
(

θ

2

)
〈σ̂α

i (t1)σ̂
γ
k (t2)σ̂

β
j (t3)σ̂

γ
k (t2)σ̂

α
i (t1)〉 , (4.56)

which can be used to extract a five-point function of the form depicted in Fig. 4.3

by using θ = π. The knowledge of this five-point-function as well as the one point

function and the part of the three point correlation function obtainable from the

one pulse commutator protocol can then be used to extract the nested commutator

in the second row. Similarly, a nested four-point commutator may be obtained by

noting that

1
2

(
〈σ̂β

j 〉θ − 〈σ̂
β
j 〉−θ

)

= i sin
(

θ

2

)
cos3

(
θ

2

) (
〈[σ̂α

i (t1), σ̂
β
j (t3)]〉

+ 〈[σ̂γ
k (t2), σ̂

β
j (t3)]〉

)

+ i sin3
(

θ

2

)
cos

(
θ

2

) (
〈[σ̂α

i (t1), σ̂
γ
k (t2)σ̂

β
j (t3)σ̂

γ
k (t2)]〉

+ 〈σ̂α
i (t1)[σ̂

γ
k (t2), σ̂

β
j (t3)]σ̂

α
i (t2)〉

)
, (4.57)

which is however only a subclass of all possible four-point nested commutators

(with others expected to appear with a higher number of pulses).

n pulses . While the exact structure of the obtained commutators for arbitrary

rotation angles θ is difficult to obtain for the general case of n pulses, it can be seen

that

1
2

(
〈σ̂β

j 〉θ=π
+ 〈σ̂β

j 〉θ=−π

)
= 〈σ̂β

j 〉θ=π

= 〈σ̂α
i (t1)σ̂

γ
k (t2) · · · σ̂β

j (tn+1) · · · σ̂γ
k (t2)σ̂

α
i (t1)〉 , (4.58)

where tn+1 is the time of the measurement after n pulses at times tn. This (2n + 1)-

point-correlation function can be visualized on the closed time contour, see Fig. 4.3.

two projections . The same argumentation can be repeated for the case when

pulses are replaced by projections, which in general leads to a replacement of com-
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mutators with anticommutators. More specifically, for the case of two projections,

we get with analogous notation to the two-pulse case

〈Ψ(t1)| P̂+α
i |Ψ(t1)〉 〈Ψ(t2)| P̂+α

k |Ψ(t2)〉 〈σ̂β
j (t2)〉

+α

− 〈Ψ(t1)| P̂−α
i |Ψ(t1)〉 〈Ψ(t2)| P̂−α

k |Ψ(t2)〉 〈σ̂β
j (t3)〉−α

=
1
8

(
〈{σ̂β

j (t3), σ̂
γ
k (t2) + σ̂α

i (t1)}〉

+ 〈σ̂α
i (t1){σ̂γ

k (t2), σ̂
β
j (t3)}σ̂α

i (t1)〉

+ 〈{σ̂α
i (t1), σ̂

γ
k (t2)σ̂

β
j (t3)σ̂

γ
k (t3)}〉

)
, (4.59)

and

〈Ψ(t1)| P̂+α
i |Ψ(t1)〉 〈Ψ(t2)| P̂+α

k |Ψ(t2)〉 〈σ̂β
j (t2)〉

+α

+ 〈Ψ(t1)| P̂−α
i |Ψ(t1)〉 〈Ψ(t2)| P̂−α

k |Ψ(t2)〉 〈σ̂β
j (t3)〉−α

=
1
8

(
〈σ̂j(t3)〉+ 〈{σ̂α

i (t1), {σ̂γ
k (t2), σ̂

β
j (t3)}}〉

+ 〈σ̂α
i (t1)σ̂

β
j (t3)σ̂

α
i (t1)〉

+ 〈σ̂γ
k (t2)σ̂

β
j (t3)σ̂

γ
k (t2)〉

+ 〈σ̂α
i (t1)σ̂

γ
k (t2)σ̂

β
j (t3)σ̂

γ
k (t2)σ̂

α
i (t1)〉

)
, (4.60)

which indeed are the analogous expressions to the two pulse case with commutators

replaced by anticommutators. In particular, the nested double anticommutator three

point function can be obtained from the last equation.

projection followed by pulse . A projection at time t1 can also be followed

by a pulse at time t2. Different linear combinations of the expectation value of σ̂
β
j (t3)

for ±α and ±θ give access to different correlation functions. Here we only note that

a nested anticommutator/commutator three point function can be obtained by

〈Ψ(t1)| P̂+α
i |Ψ(t1)〉 〈σ̂

β
j (t2)〉

+α,θ=π/4

+ 〈Ψ(t1)| P̂−α
i |Ψ(t1)〉 〈σ̂

β
j (t3)〉−α,θ=−π/4

=
1
4
〈{σ̂α

i (t1), [σ̂
γ
k (t2), σ̂

β
j (t3)]}〉 . (4.61)
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pulse followed by projection. Similarly, if a pulse at time t1 is followed

by a projection at time t2,we get

〈Ψ(t1)| P̂+α
i |Ψ(t1)〉 〈σ̂

β
j (t2)〉

+α,θ=π/4

+ 〈Ψ(t1)| P̂−α
i |Ψ(t1)〉 〈σ̂

β
j (t3)〉−α,θ=−π/4

=
1
4
〈[σ̂α

i (t1), {σ̂γ
k (t2), σ̂

β
j (t3)}]〉 , (4.62)

i.e. commutator and anticommutator are exchanged compared to projection and

pulse being in reverse order.

We hence showed that all possible combinations of (anti-)commutator nestings

are measurable on the level of three point functions, which means that the complete

time ordered three point function can be reconstruncted. Furthermore, we saw

that a projector/commutator always leads to an (anti-)commutator. We therefore

expect that the structure remains for higher order correlation functions such that all

possible (anti-)commutator nestings can be obtained by appropriate combinations

of pulses and projections and hence all time ordered n point correlation functions

can be accessed.

4.7 characterizing the emergence of fluctuation-dissipation re-

lations

After having introduced measurement protocols for F and ρ, we now show that

FDRs can be used to characterize thermalization in current quantum simulation

platforms. We test the emergence of the FDR in Eq. (4.4) by defining the function

FDR(T, ω) = log
(

1
F(T, ω)/ρ(T, ω)− 1/2

+ 1
)

, (4.63)

where ρ(T, ω) =
∫

dteiωtρ(T + t/2, T − t/2) is the two-time spectral function at

central time T = (t1 + t2)/2. The FDR demands that FDR(T, ω) = βω in equilibrium

with the inverse temperature β set by the energy of the initial state

〈ψ0|Ĥ|ψ0〉 = Tr
(

exp(−βĤ)

Z
Ĥ
)

. (4.64)

All numerical results have been obtained using exact diagonalization. We introduce

our efficient numerical calculation of two-time correlations in the following.

evaluating F and ρ in exact diagonalization. In order to calculate the

correlation functions F = 1
2

〈{
Â(t1), B̂(t2)

}〉
and ρ =

〈[
Â(t1), B̂(t2)

]〉
in general,

we first time evolve the initial state |Ψ〉 to |Ψ(t)〉 = U(t) |Ψ〉 ≡ exp(−iĤt) |Ψ〉 for

all times t at which the two-time correlation function should be evaluated. Then,
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we create a set of four states by acting with Â, B̂ and their Hermitian conjugates

onto |Ψ(t)〉 and evolve them back for every point in time t, such that we arrive

at |ΨA(t)〉 = Â(t) |Ψ〉,|ΨA′(t)〉 = Â†(t) |Ψ〉,|ΨB(t)〉 = B̂(t) |Ψ〉 and |ΨB′(t)〉 =

B̂†(t) |Ψ〉, where Â(t) = U†(t)ÂU(t).

From these states we can then calculate F and ρ by evaluating

F(t1, t2) =
1
2
(〈ΨA′(t1)|ΨB(t2)〉+ 〈ΨB′(t1)|ΨA(t2)〉) ,

ρ(t1, t2) = (〈ΨA′(t1)|ΨB(t2)〉 − 〈ΨB′(t1)|ΨA(t2)〉) . (4.65)

for all times t1 and t2.

Simplifications occur if B̂† = A such as for creation/annihilation or σ+, σ−

operators, and as then only two states have to be evolved. If additionally Â† = Â,

only a single state needs to be evolved and F and −(i/2)ρ correspond to the

real/imaginary parts of the correlation function 〈ΨA(t1)|ΨA(t2)〉.

efficient numerical evaluation. Eq. (4.65) can be evaluated efficiently

by writing the states |ΨA(t1))〉 into a matrix PA, where states for different times

are the rows of PA. Then, Eq. (4.65) can be evaluated by the matrix product as

〈ΨA(t1)|ΨB(t2)〉 = [P∗APT
B ]t1t2 .

When using full diagonalization, i.e. obtaining the vector of eigenenergies E and

the matrix U with the eigenvectors as its columns, the forward-backward evolution

described above can be efficiently obtained by writing the times t1 into a vector T.

By repeating the initial state dim(T) times in a matrix Pini, the time evolved states

follow as

PA = U exp(iE⊗ T)�U† AU exp(−iE⊗ T)�U†Pini, (4.66)

where � denotes the Hadamard product (element-wise multiplication) and the

exponential is understood element-wise.

4.8 thermalization in the bose hubbard model

One of the first demonstrations of the relaxation of equal-time observables towards

their equilibrium expectation values was given in an experiment simulating the

Bose-Hubbard model [127], hence effectively probing the diagonal part of ETH. Here

we study the fluctuation-dissipation relations and hence test the validity of the

off-diagonal part of ETH.

We study a two-dimensional Bose-Hubbard model with open boundary condi-

tions, given by Hamiltonian

Ĥ = −J ∑
<i,j>

(â†
i âj + â†

j âi) +
U
2 ∑

i
n̂i(ni − 1), (4.67)
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Figure 4.4: Emergence of FDRs in the 2D Bose Hubbard model. (a) Central-time averaged

equal-site density-density spectral function ρ as a function of central time JT

and frequency. (b) Late time spectral and statistical functions (JT = 40, dark)

compared to early times (JT = 2, bright). (c) Fluctuation dissipation relation

function defined in Eq. (4.63) at time JT = 40 compared to the equilibrium

expectation (dashed black line), with the inverse temperature β set by energy of

the initial state according to Eq. (4.64). While the dark red line shows the ideal

result, the bright dashed line is the result measured by the linear response and

non-destructive projective measurement schemes. The inset shows the location

of the initially occupied sites (black) and the probed lattice site (red) on the 4× 4

lattice. The on-site repulsion is given by U/J = 6. We used a Gaussian frequency

broadening with standard deviation σω = 0.05J for the Fourier transform.
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where [âi, â†
j ] = δij, n̂i = â†

i âi and we truncate the local Hilbert space dimension to

three states. In Fig. 4.4 we show the central time averaged statistical and spectral

function defined as ρ(T, ω) = 1
T

∫ T
0 dtρ(t, ω) for the local density, i.e. Â = B̂ = n̂i

with the probed lattice site i indicated in red in Fig. 4.4c). In Fig. 4.4a) we show

that ρ (and equally F, not shown) becomes approximately independent of central

time for JT & 20, indicating that a steady-state has been reached. In order to

test whether this steady-state displays the correct connection between F and ρ

expected in equilibrium, we plot the FDR function, Eq. (4.63), showing that indeed

FDR(T, ω) ∼ βω. The inverse temperature β extracted from the FDR matches the

expectation from the energy of the initial state (c.f. Eq. 4.64), indicating that the

correct equilibrium state has been reached. Moreover, in Fig. 4.4c) we display the

FDR function as obtained from an experiment employing non-equilibrium linear

response to measure the density-density spectral function ρ and the projective

measurement protocol to measure the parity-parity statistical function F, which

agrees reasonably well with the temperature obtained in the FDR from the ideal

case and we find better agreement as the on-site repulsion U is increased.

Here, we showed that full thermalization (i.e. both the diagonal and off-diagonal

parts of ETH) can be observed in Hubbard models by probing the emergence of

FDRs between the density-density fluctuations and dissipations. In the following,

we will discuss cases in which more intricate transient dynamics not contained in

the ETH can be observed and characterized via two-time correlation functions.

4.9 prethermalization in the long-range transverse field ising

model

While ETH provides a universal mechanism for how quantum systems reach a

thermal steady state at long times, long-lived transient non-thermal states not

described by ETH can arise in the dynamics due to a competition of different terms

in the Hamiltonian or the presence of non-thermal eigenstates. Here, we will discuss

how two-time functions and the FDR can be used to characterize several examples

of such prethermal steady-states in the long-range transverse field Ising chain (LTFI)

implemented in trapped ion quantum simulators

Ĥ = ∑
i<j

J
|i− j|α σ̂x

i σ̂x
j +

g
2 ∑

i
σ̂z

i (4.68)

with chain length L, long-range exponent α and transverse field strength g. We will

discuss how three generic examples of prethermalization can be observed in the

FDR, using the LTFI to demonstrate the principle. In the first case, a large transverse

field g leads to the classic version of prethermalization as introduced by Berges
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Figure 4.5: Prethermal FDRs in the long-range transverse field Ising model. (a) The equal-

site spectral and statistical functions ρ, F of the local spin raising operators σ̂+
i

with initial state |ψ0〉 = | ↑↓ · · · ↓↑〉x and i = 2. Central times JT increase from

bright to dark. (b) Fluctuation-dissipation relation for different lattice sites i

(increasing from bright to dark) along with the expected inverse temperatures β

in thermal equilibrium of the LTFI and the prethermal Hamiltonian (XY model).

We used a Gaussian broadening with standard deviation σω = 0.2J for the

Fourier transform. Parameters used are L = 13 (open boundary conditions),

long-range exponent α = 1.5, transverse field g = 12J.

et al. [46], where a single quasi-conserved quantity prevents full thermalization

up to exponentially long times in J/g [349] and prethermalization to an effective

Hamiltonian can be observed in the FDR. In the second example, we show that

the generalization of this phenomenon to an extensive number of approximately

conserved quantities in an integrable sector of the LTFI [327] can be used to

experimentally diagonalize the Hamiltonian. In the third case, we discuss quenches

from a polarized state at g = 0 to small g and show how emergent confined

excitations can be identified by genuine non-equilibrium features in the two-time

functions and by a violation of the FDR up to long times.

4.9.1 Prethermalization due to an approximate conservation law

Here we study the LTFI in the regime of large transverse field, g = 12J, and choose

the local spin raising/lowering operators Â = σ̂+
i = B̂† as operators in the two-time

functions, with σ̂± = 1
2 (σ̂

x ± iσ̂y). In Fig. 4.5a) we show F and ρ starting from the
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initial state |ψ0〉 = | ↑↓ · · · ↓↑〉x, showing that for central times as small as JT = 6 a

steady state has been reached. However, contrary to the case in the Bose-Hubbard

model, they are not centred around ω = 0. Moreover, the FDR function, shown

in Fig. 4.5b), approximately shows the linear-in-frequency behavior expected in

equilibrium, but with the inverse temperature β not matching the expectation

from inserting the LTFI into Eq. (4.64). Both of these features are explained by the

phenomenon of prethermalization [46]. Here, the large value of g energetically

disfavors all terms in the Hamiltonian changing the total transverse magnetization

Ŝz = 1
2 ∑i σ̂z

i , i.e. terms ∼ σ+σ+, σ−σ−. This leads to an almost conservation of the

transverse magnetization and the system effectively evolves under the Hamiltonian

Ĥeff = ĤXY + gŜz with ĤXY = ∑i<j
J

|i−j|α (σ̂
+
i σ̂−j + h.c.). The shift of the frequency-

space two-time functions follows from the fact that σ̂± are the raising/lowering

operators corresponding to the approximate conservation law, i.e. [Ŝz, σ̂±] = ±σ̂±.

Using that [ĤXY, Ŝz] = 0, we find that the term∼ Sz in Heff then leads to a precession

of the two time functions of σ±, i.e. σ̂+(t1)σ̂
−(t2) = eig(t1−t2)σ̂′+(t1)σ̂

′−(t2), with the
′ indicating the remaining non-trivial time evolution with ĤXY. After the Fourier

transform with respect to t1 − t2, this precession leads to the shift ω → ω + g in

the two-time functions and is a direct consequence of the approximate conservation

law 6. From this picture, we moreover expect the system to thermalize to a grand-

canonical equilibrium state e−β(ĤXY−µŜz) instead of e−βĤ on short timescales, where

µ = 0 for our initial state. This behavior is directly reflected in the temperature

found in the FDR: The temperature obtained from inserting ĤXY into Eq. (4.64)

agrees well with the time evolved quasi steady-state (grey dashed line in Fig. 4.5).

We note that at exponentially long times in J/g, prethermalization to e−βĤXY would

ultimately give way to full thermalization to the LTFI, however we did not find this

for our finite-size system on the studied timescales.

In this section, we have shown that the presence of a prethermal conserved quan-

tity can be observed by measuring the FDR corresponding to the raising/lowering

operators of the conserved quantity. In the following, we show that this scheme can

be generalized to the case of an extensive number of conserved quantities in an

integrable model.

4.9.2 Prethermalization in the vicinity of integrability: Generalized Gibbs ensemble FDR

Integrable models possess an extensive (and complete) set of local conserved

quantities Îq, which prevents them from thermalizing in the sense of the ETH [27].

6 In general, one would also expect such a shift if the (pre-)thermal steady state has non-zero chemical

potential. In our case, however, the chemical potential corresponding to the initial state vanishes such

that the shift is solely due to the precession induced by term Ŝz in the Hamiltonian.
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However, integrable models are still expected to fulfill Jayne’s maximum entropy

principle [350] and hence be described by a “generalized Gibbs ensemble”

ρ̂GGE ∼ exp

(
−∑

q
λqÎq

)
(4.69)

at late times with the Lagrange multipliers λq determined by the initial condition

according to 〈ψ0|Îq|ψ0〉
!
= Tr(ρ̂GGEÎq).

It was shown [327, 351] that the reasoning for deriving the FDR in App. 4.2 while

replacing the canonical density matrix 1
Z e−βĤ with ρGGE leads to a “generalized

Gibbs ensemble FDR”. We summarize the reasoning in the following.

generalized kms condition and fdrs . Thermalization to the GGE implies

that two-time correlation functions of operators Â and B̂ fulfill a generalized KMS

condition

Tr
(
ρ̂GGEÂ(t1)B̂(t2)

)
= Tr

(
ρ̂GGEB̂′(t2)Â(t1)

)
, (4.70)

with B̂′(t2) = e∑k λk Îk B̂(t2)e−∑k λk Îk . The resulting FDR then crucially depends on the

operator B̂. For example, for B̂ = Îk it follows that Î ′k(t2) = Îk(t2) and therefore

the commutator vanishes, ρ = 〈[Â(t1), Îk(t2)]〉GGE = 0, rendering the FDR meaning-

less as the anticommutator F̃ = 1
2 〈{Â(t1), Îk(t2)}〉GGE, i.e. F in Eq. (4.2) without

subtracting the disconnected part, is in general non-zero.

An FDR of the expected form is however obtained for B̂ = d̂k, defined by Îk = d̂†
k d̂k

as then d̂′k(t2) = e−λk d̂k(t2) and hence 〈Â(t1)d̂k(t2)〉 = e−λk 〈d̂k(t2)Â(t1)〉. Therefore

we find the FDR

F̃(t1, t2) =

(
1
2
+ nλk

)
ρ(t1, t2), with nλk =

1
e−λk − 1

. (4.71)

For a non-interacting model of the form

Ĥ = ∑
q

εqd̂†
q d̂q, (4.72)

the spectral and statistical functions for Â = d̂q = B̂† trivially fulfill the GGE FDR

for all times and initial states. We will show in the following that the GGE FDR is

observable in an integrable sector of the LTFI 7.

7 In Ref. [327, 352] a similar reasoning was followed, however focussing on density-density (two-particle)

correlations from which only linear combinations of the λq can be extracted. Here, we show instead

that the λq can be directly extracted from the single-particle two-time correlation functions while

additionally enabling the extraction of the Bogoliubov angles.
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Figure 4.6: Violation of the FDR due to confined excitations in the LTFI. (a) Two-domain

wall spectral function averaged over central time T starting from a completely

x-polarized state. Black dots and crosses indicate the difference En − E0 of the

eigenenergies En with the ground state energy E0, grey dots are En − E1. (b)

Time and frequency resolved spectral function. Black arrow and star indicate

oscillatory features, which are non-thermal as depend on central time. Inset:

The oscillation frequency of the peak at ω = 0.9J (black) matches the energy

difference between the first and second excited state (sinusoidal fit with fixed

frequency in dashed grey). (c) Test of the FDR by comparing Fq=0(T, ω) with the

corresponding right hand side of the FDR in Eq. (4.4) for a fixed time JT = 61.

The black arrow/star indicates the location of the two non-thermal features in

b). For all subplots, we used a Gaussian broadening with standard deviation

40/J in time and do not plot very small frequencies in c) due to artefacts from

the Fourier transform. Here, the transverse field is g = 0.53J and the long range

exponent α = 2.3.
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integrable limit of the ltfi . If the initial state has only a few n on

top of the fully polarized state in the direction of the field, |Ψ0〉 = |↑↑ · · · ↑〉 or

|Ψ0〉 = |↓↓ · · · ↓〉, the dynamics can be accurately described within linear spin-

wave theory [183, 187, 353, 354]. Employing a Holstein-Primakoff transformation

σ̂z
i → 2â†

i âi − 1, σ̂+
i → â†

i

√
1− â†

i âi ≈ â†
i , we can map the LTFI Hamiltonian of

length L to

Ĥ = ∑
i,j

Jij

(
â†

i âj +
1
2

(
â†

i â†
j + âi âj

))
+ g ∑

i
â†

i âi (4.73)

in the regime where max(Jij) � g at low filling such that the pairing terms are

suppressed and hence the spin-wave approximation stays valid in the dynamics.

For a single spin flip on top of the fully polarized state, this mapping becomes exact

as max(Jij)/g→ 0.

We diagonalize the spatial degree of freedom by employing an orthogonal trans-

formation UUT = 1, such that ∑i,j = Uik JijUjk′ = νkδkk′ , which introduces a con-

jugate coordinate k via âk = ∑i Uik âi and νk are the eigenvalues of the interaction

matrix Jij (Jii = 0) [183]. The Hamiltonian then reads

Ĥ = ∑
k
(νk + g)â†

k âk +
1
2

νk(â†
k â†

k + âk âk) (4.74)

and can be diagonalized via a Bogoliubov transformation âk = cosh(Θk)d̂k −
sinh(Θk)d̂†

k , Θk =
1
2 arctanh (νk/(νk + g)) such that

Ĥ = ∑
k

εkd̂†
k d̂k with εk =

√
g(g + 2νk). (4.75)

The explicitly diagonalized Hamiltonian in Eq. (4.75) shows that the LTFI has

extensively many conserved quantities Îk = n̂k ≡ d̂†
k d̂k in this regime, implying that

the equilibrium state is described by a GGE (c.f. Eq. (4.69)). The Lagrange multipliers

λk to which an initial state |Ψ0〉 is expected to thermalize to are determined by the

condition 〈Ψ0|n̂k|Ψ0〉 ≡ 〈n̂k〉0
!
= 1

Z Tr [ρ̂GGEn̂k]. Evaluating both sides then leads to

λk = − ln
(

1
〈n̂k〉0

+ 1
)

, (4.76)

with 〈n̂k〉0 = cosh(2Θk)∑i,j UikUjk 〈â†
i âj〉0 + sinh2(Θk).

fdrs in integrable real-time dynamics . Here we show explicitly that

the GGE-FDR in Eq. (4.71) emerges in the non-equilibrium dynamics under the

Hamiltonian in Eq. (4.75). In the Heisenberg picture, the rotated operators d̂k evolve
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according to d̂k(t) = eiĤtd̂ke−iĤt = e−iεktd̂k. Hence, it follows for the two-time

correlation functions

F̃ =
1
2
〈
{

d̂k(t1), d̂†
k(t2)

}
〉

0
= e−iεk(t1−t2)

(
1
2
+ 〈n̂k〉0

)
, (4.77)

ρ = 〈
[
d̂k(t1), d̂†

k(t2)
]
〉

0
= e−iεk(t1−t2), (4.78)

which explicitly shows that Eq. (4.71) is fulfilled for all times t1, t2 as 〈n̂k〉0 =

〈n̂k〉GGE = nλk by definition of the GGE. In the sense of the FDR, this integrable

model is therefore instantly thermalized to the GGE.

Similarly, one can also calculate the two-time correlation functions of the number

operator n̂k, which are commuting constants of motion and hence

rho = 〈[n̂k(t1), n̂k′(t2)]〉0 (4.79)

= 〈[n̂k, n̂k′ ]〉0 = 0. (4.80)

However,

F̃ = 〈{n̂k(t1), n̂k′(t2)}〉0 − 〈n̂k(t1)〉 〈n̂k′(t2)〉 (4.81)

= 〈n̂kn̂k′〉0 − 〈n̂k〉 〈n̂k′〉 6= 0 (4.82)

in general and hence there is only an FDR in the sense ρ/F̃ = 0.

gge fdr in experimentally observable operators . Here we show that

a GGE FDR is also obtained for the experimentally accessible operators âk. First of

all, we note that

âk(t) = cosh(Θk)eiεktd̂k − sinh(Θk)e−iεktd̂†
k , (4.83)

from which it follows that

F̃ =
1
2
〈
{

âk(t1), â†
k(t2)

}
〉 (4.84)

=
1
2

(
cosh2(Θk)e−iεk(t1−t2) + sinh2(Θk)eiεk(t1−t2)

)

×
(

1 + 2 〈d̂†
k d̂k〉0

)

− sinh(Θk) cosh(Θk)

×
(

e−iεk(t1+t2) 〈d̂kd̂k〉0 + eiεk(t1+t2) 〈d̂†
k d̂†

k〉0
)

, (4.85)

ρ = cosh2(Θk)e−iεk(t1−t2) − sinh2(Θk)eiεk(t1−t2), (4.86)

where one can show that 〈d̂kd̂k〉0 = 〈d̂†
k d̂†

k〉0 = cosh(Θk) sinh(Θk)(1 + 2 〈â†
k âk〉0).
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In the limit where the central time T = 1
2 (t1 + t2) is large, we can apply the

rotating wave approximation and neglect the fast rotating terms in F̃. Fourier

transforming with respect to the relative time t1 − t2, we find

ρ(ω) = 2π
(

cosh2(Θk)δ(ω− εk)− sinh2(Θk)δ(ω + εk)
)
, (4.87)

F̃(ω, T → ∞) = 2π

(
1
2
+ 〈d̂†

k d̂k〉0
)
×

(
cosh2(Θk)δ(ω− εk) + sinh2(Θk)δ(ω + εk)

)
. (4.88)

Therefore, we can read off the GGE parameter λk from the peak at ω = εk by

λk = ln


 1

F̃(ω=εk)
ρ(ω=εk)

− 1
2

+ 1


 . (4.89)

This procedure also works if observation or coherence times are finite and so the

δ-peaks are broadened as the peaks in both F̃ and ρ get broadened equally with the

area under the curves staying constant.

The dispersion of the diagonalized Hamiltonian εk can be read off from the

position of the peaks in ρ, whereas the ratio of the two peak heights yields the

Bogoliubov angle Θk. Hence, from a measurement of this two-time function the

Hamiltonian can be “experimentally diagonalized”. Moreover, the two-time func-

tions of the rotated degrees of freedom can now be obtained from the unrotated

two-time functions via

〈d̂k(t1)d̂†
k(t2)〉

= cosh2(Θk) 〈â†
k(t1)âk(t2)〉+ sinh2(Θk) 〈âk(t1)â†

k(t2)〉

− cosh(Θk) sinh(Θk)
(
〈â†

k(t1)â†
k(t2)〉+ 〈âk(t1)âk(t2)〉

)
. (4.90)

This leads to an alternative method to obtain the λk: the FDRs of the rotated degrees

of freedom can be obtained and the λk extracted from Eq. (4.71). This alternative

procedure has the advantage of only involving the relative time t1 − t2 even when

starting from non-equilibrium initial states, such that we can set t2 = 0, reducing

the experimental effort as only one-point functions have to be measured.

Note that “thermalization to a GGE” is in practice only a transient phenomenon

as there are always integrability-breaking terms present in experiment [47, 308],

leading to thermalization to a (grand-)canonical ensemble at late times. This is why

the case discussed here is a direct generalization of the prethermalization discussed

in the previous section, with the single additional conservation law replaced with

extensively many.
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4.9.3 Prethermalization due to confined excitations

So far, we showed that the nature of the (pre-)thermal steady state can be elucidated

from measuring FDRs, hence showing their potential to test the assumptions of the

ETH. In the following, we will show that information contained in F and ρ can also

be used to identify the relevant excitations for the thermalization dynamics in a

case in which violations of the FDR (and therefore the ETH) survive up to long times.

At small transverse fields, g < J, the LTFI shows confinement of domain wall

excitations [355], which leads to non-thermal eigenstates in the spectrum [356]

and and long thermalization times [357–359]. Here, we will show that this effect

reminiscent of the confinement between quarks in QCD [360] leads to non-thermal

features in two-time correlation functions, including a violation of the FDR (and

hence ETH) up to long times. The proposal discussed here for characterizing confined

excitations by two-time correlations may be used in the future to characterize

unknown non-thermal eigenstates directly in experiment.

We prepare the totally x-polarized initial state |ψ0〉 = |↑ · · · ↑〉x, which is close

to one of the two ground states due to g < J. We directly probe the confined

excitations by calculating the two-domain-wall spectral and statistical function in

momentum space by choosing Â ≡ σ̂+
2 = (σ̂z

q + iσ̂y
q )/2 = B̂†, which flips a spin and

hence creates two domain walls. In Fig. 4.6a) we show the central-time averaged

non-equilibrium spectral function for α = 2.3, g = 0.53J and periodic boundary

conditions (replacing the distance |i− j| in Eq. (4.68) with min(|i− j|, L− |i− j|)).
Three nearly dispersionless sharp excitations (linewidth limited by the numerical

broadening) between ω ≈ 1.9J and ω ≈ 2.3J are clearly visible along with a

continuum of excitations above them. These correspond to excitations within and

outside of the confining potential, respectively [358], as we show by plotting the

difference between the excited state eigenenergies and the ground state energy

En− E0 (black crosses for confined excitations, black dots for continuum). Moreover,

we find some spectral weight below the gap (ω ≈ 1.9J), at frequencies corresponding

to the energy difference of the eigenenergies with the first excited state En − E1.

Moreover, we find oscillations of the spectral weight as a function of central time in

Fig. 4.6b) (marked by an arrow and a star), indicating that an equilibrium state has

not yet been reached up to times as along as JT = 100 8. This is further substantiated

by a violation of the FDR at the location of some of these oscillatory features

(Fig. 4.6c)). In the following, we will show that these non-thermal features are a

direct consequence of the large overlap of the initial state with sharp excitations and

show that their properties can be read off from the two-domain-wall nonequilibrium

8 Oscillations for times JT<30 around the peak at ω/J = 1.9 are artifacts of the Fourier transform (Gibbs

phenomenon).
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spectral function. First, note that the Lehmann representation of the spectral function

can be split into a time dependent and time independent part [235], resulting in

ρ(T, ω) = ∑
n
|〈ψ0|n〉|2ρnn(ω)

+ ∑
n,m 6=n

〈ψ0|n〉〈m|ψ0〉ei(En−Em)Tρnm(ω) (4.91)

with the eigenstate spectral functions

ρnm(ω) = ∑
l
〈n|σ̂+

2 |l〉〈l|σ̂
−
2 |m〉δ(ω− (El −

Em + En

2
))

−〈n|σ̂−2 |l〉〈l|σ̂
+
2 |m〉δ(ω + (El −

Em + En

2
)). (4.92)

From the time independent/diagonal part we can directly explain the spectral

weight below the gap: Because of the large overlap of the initial state with the first

excited state |1〉, also ρ11(ω) contributes, which contains delta-peaks at frequen-

cies En − E1. Furthermore, the only central time-dependence is contained in an

oscillatory term with frequency En − Em, which appear at frequencies ω′ given by

a superposition of three eigenergies, ω′ = ±(El − (Em + En)/2). We can use this

observation to analyse the oscillatory features found in the non-equilibrium spectral

function. At ω′ ≈ 0.9 (marked by an arrow) and ω′ ≈ 1.4 (marked by a star) we

find that the central time oscillation frequency is in perfect agreement with E0 − E1,

indicating that m, n ∈ 0, 1. From the frequency location ω′, we can furthermore

identify that l = 0, 1 and l = 3 are the contributions in Eq. (4.92) leading to the

features at ω′ ≈ 0.9, ω′ ≈ 1.4, respectively. This shows that the central time oscil-

lations arise solely from the two lowest excited states corresponding to confined

excitations 9. In general, one would expect such central-time oscillations to dephase

rapidly. Here, however, the fact that the initial state has a strongly peaked overlap

with eigenstates well isolated in energy leads to a long lifetime of the central-time

oscillations.

While any such central-time dependent contribution leads to a deviation from

the diagonal ensemble (which is the first term in Eq. (4.91)) and hence a lack of

thermalization, the FDR is not necessarily violated if ρ and F are shifted equally

(assuming the individual eigenstates fulfill the FDR). Indeed, as visible in Fig. 4.6c),

the oscillatory feature at ω ≈ 0.9J violates the FDR while the one at ω ≈ 1.4J does

not, despite having the same oscillation amplitude and frequency. This is explained

9 Note that the two lowest eigenstates are doubly degenerate, leading to the non-zero matrix elements

between states of equal energy needed to give a non-zero contribution in Eq. (4.92). To illustrate

this, consider the two ground states |0〉 , |0′〉 (given by |↑ · · · ↑〉x, |↓ · · · ↓〉x for g = 0), 〈0|σ̂+
2 |0′〉 6= 0

because σ̂+
2 flips a spin, σ̂+

2 |↑〉 = |↓〉 and the resulting state has non-zero overlap with the other

ground-state because of g 6= 0.
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by comparing the expression in Eq. (4.92) with the corresponding one for F, given

by

F(T, ω) = ∑
n
|〈ψ0|n〉|2Fnn(ω)

+ ∑
n,m 6=n

〈ψ0|n〉〈m|ψ0〉ei(En−Em)T Fnm(ω) (4.93)

with the eigenstate statistical functions

Fnm(ω) =
1
2 ∑

l
〈n|σ̂+

2 |l〉〈l|σ̂
−
2 |m〉δ(ω− (El −

Em + En

2
))

+〈n|σ̂−2 |l〉〈l|σ̂
+
2 |m〉δ(ω + (El −

Em + En

2
)). (4.94)

The only difference to ρ is an overall factor 1/2 (which would get compensated on

the right-hand-side of the FDR by nβ(ω) ≈ 1/2 at low temperatures) and the two

terms in the first and second line in Eq. 4.94 get added instead of subtracted. By

explicitly analyzing the contributions in Eq. (4.92), we found that for the feature

at ω ≈ 1.4J the first term dominates, which has the same sign in the expressions

for F and ρ such that both get shifted equally compared to the diagonal ensemble

expectation and the FDR is fulfilled. Contrastingly, for the feature at ω ≈ 0.9J, the

second term dominates, which has a different sign in F and ρ such that the FDR is

violated. In Fig. 4.6c), we find a second FDR-violating feature around ω ≈ 1.1J, with

an oscillation frequency matching E2 − E0, corresponding to contributions from

the ground state and second confined state, n, m, l ∈ 0, 2. Note that the violation

of the FDR we observe here can not be explained by an effective, i.e. frequency

independent temperature differing from the one expected from the energy of the

initial state, which for example occurs in periodically driven systems [318]. Such an

effective non-thermal temperature would manifest its-self in a mismatch of F and

the right-hand-side of the FDR, nβ(ω)ρ, for all frequencies low enough to show the

β dependence of nβ(ω) (i.e. such that nβ(ω) differs significantly from 1/2). This is

however not the case here: in Fig. 4.6c) a peak at frequency ω ≈ 0.25J fulfilling the

FDR is clearly visible, showing that the violations of the FDR discussed here indeed

occur at isolated frequencies and cannot be explained by a non-thermal effective

temperature.

For most of the interpretations given above, no additional numerics apart from the

calculation of the two-time functions were needed and the same conclusions could

have been made only given an experimental measurement of the two-time functions.

Therefore, this provides a general procedure how to extract information about long

lived prethermal (or even non-thermal) excitations completely independently of

numerical calculations: Central time oscillations indicate their presence while the

central time oscillation frequency and frequency location ω′ can be used to extract
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their energy. The property that the FDR is violated or not at the location of the

peak can then be used to extract information about the matrix elements and hence

about the nature of the excitation itself, where the latter can be refined by probing

two-time correlations of different operators and initial states.

4.10 conclusions and outlook

We have shown how to probe the off-diagonal part of eigenstate thermalization with

two-time functions in quantum simulators, which is an open experimental challenge.

We discussed and introduced measurement protocols in quantum simulators of spin

and Hubbard models for the two-time spectral function ρ and statistical function

F, which are in general independent of each other out of equilibrium. We have

shown that probing the link between the statistical function F and the spectral

function ρ via the fluctuation-dissipation relations can be used to probe the off-

diagonal part of ETH independently of both microscopic details and theory input,

thus providing a general route to probing thermalization in quantum simulators.

Going beyond testing thermalization of the steady-state at long times, we showed

that the FDRs can also be used to characterize prethermal steady states, which can

lead to modifications of the FDR in the case of almost conserved quantities and can

even lead to a violation of the FDR in the presence of confined excitations.

Our scheme can be used to probe multiple aspects of thermalization. By preparing

initial states with energy densities covering the whole spectrum (for example spin

spirals [48, 161–163], thermalization of a many-body Hamiltonian across its whole

energy spectrum could be probed. Individual eigenstates could be prepared by a

recently proposed protocol employing weak measurements [322]), thus opening the

route to directly test the off-diagonal part of ETH in terms of individual eigenstates

with the FDR. In many-body localized systems, a uniform late-time temperature

is not expected, however, local temperatures can be defined [361] and could be

measured by using the FDRs as a local thermometer. Two-time functions show aging

in classical glasses [60, 362], their measurement could hence probe the analogy to

glasses made in quantum systems with slow relaxation [164, 363]. Furthermore,

the non-thermal oscillatory features we found for confined excitations could be

used to characterize other non-thermal states such as many-body scars [58, 59]. Our

measurement protocols could also be used to show violations of the FDR due to

transport processes near non-thermal fixed points [277]. Lastly, our protocols offer

a route to quantum simulate pump-probe experiments on solids such as optical

spectroscopy [364] (measuring ρ) and optical noise spectroscopy [317] (measuring

F) by using the analogy between the light-matter couplings and the resulting linear-
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Figure 4.7: Slow relaxation in the PXP model due to scars. (left) Anomalously slow decay

of the staggered magnetization. (right) Overlap of the staggered initial state

with the many-body eigenstates. System size L = 18.

response correlation functions. While in the solid state, the non-zero charge of

the electron leads to a coupling of the current density to the light field, in cold

(neutral) atom platforms, the dipolar coupling leads to a coupling of the atom

number density to the light. Hence, the measurement of density-density two-time

functions proposed here is analogous to the current-current functions of optical

measurements in the solid state.

4.11 outlook : many-body scar spectroscopy

In section 4.9 we showed that two-time correlation functions can be used to study

confined excitations in the long-range transverse field Ising model. These are low-

energy excitations which show anomalous non-thermal behaviour and are therefore

only visible when starting from an initial state sufficiently close to the ground state.

Recently, cases have been found in which non-thermal behaviour can also be found

when starting from initial states in the middle of the energy spectrum, implying

long relaxation times even at infinite temperature. One long-known example is

many-body localization, in which disorder leads to a localization of the whole

many-body spectrum even at finite interaction strength, at least in one spatial

dimension. Very recently, dynamics with slow relaxation have also been discovered

in the absence of disorder, caused by dynamical constraints which drastically reduce

the connectivity of the Hilbert space [59]. Here, we discuss the model in which

such dynamics have been seen first [59], a chain of Rydberg atoms in a regime in

which strong Van-der-Waals interactions lead to the blockade effect: despite the

continuous operation of a laser exciting the ground to the Rydberg state, not all

atoms can be excited at the same time as the interactions shift neighbours of an

already excited atom out of resonance. As the Van-der-Waals interaction decays as
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Figure 4.8: Scars in the two time correlations. Spectral and connected statistical functions

ρ and F starting from the Néel state. Operators probed are local magnetizations,

Â = σz
i , B̂j = σ̂z

j with i = 5, j = 8. System size L = 18. The energies marked

with a star and polygon refer to the correspondingly marked states in Fig. 4.7.

∼ 1/r6 with distance r, the blockade is strongest for nearest-neighbours, such that

an effective model for the dynamics can be written as

Ĥ = J ∑
i

P̂i−1σ̂x
i P̂i+1, with P̂i = |↑〉 〈↑|i , (4.95)

known as the “PXP” model. Here, |↑〉 is the Rydberg state and |↓〉 is the ground

state.

In Fig. 4.7 we show the decay of the staggered magnetization after starting from a

Néel initial state, |Ψ0〉 = |↑↓ · · · ↓↑〉, showing anomalously slow decay. This initial

state is has zero energy and hence corresponds to an infinite temperature state

due to the particle-hole symmetry of the Hamiltonian. For such states, very rapid

decay is usually expected. We also show the overlaps of the initial state with the

eigenstates of the system. Crucially, there is a band of states with high overlap,

which are also called scar states [58].

In Fig. 4.7 we show that these states are directly identifyable by measuring

two-time correlations. In the statistical function, time-independent peaks mark

the energy of the scar states, which we can directly trace back to the states with

the highest overlap in Fig. 4.7. Moreover, pure oscillating peaks inbetween the

time-independent peaks are visible. These correspond to similar beating terms

as observed in section 4.9.3 for confined states. Their central time oscillation fre-

quency corresponds to the difference in energy between the scar states. Their

non-equilibrium character can be seen from two signs. First of all, a central time

dependence indicates non-thermal behaviour. Secondly, the spectral function at

infinite temperature should strictly vanish due to the cyclicity of the trace. However,

we find similar oscillating peaks in the spectral function as in the statistical function,

albeit no time-independent ones.

Here we have given a first peek into how two-time correlations could be used to

identify mid-spectrum non-thermal states. Further questions remain. For example,
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measuring F and ρ for different operators could elucidate the structure of the

non-thermal states by getting an indication for their matrix element structure. By

comparison, we found by using a spin flip operator in section 4.9.3 that the confined

excitations are of two-domain-wall character.





5
T H E R M A L I Z AT I O N I N ( 1 + 1 ) D L AT T I C E G AU G E T H E O R I E S

We study thermalization dynamics in (1+1) dimensional SU(N) lattice gauge theories

interacting with matter fields 1. We employ non-equilibrium quantum field theory

techniques, which in previous attempts have failed to accurately describe gauge

theory dynamics due to violations of the gauge constraint [365]. Here, we use a

reformulation of the theory in entirely in terms of fermions, circumventing these

problems. In the Schwinger model, the U(1) symmetric version of the same model,

we study the emergence of fluctuation-dissipation relations (FDRs) within a weak

coupling expansion. Starting from an initial state with a string on top of the vacuum

of the strongly interacting theory, we demonstrate that the Hartree-Fock/Gaussian

state approximation is unsuitable to describe thermalization. Employing the next-

to-leading order in the weak-coupling approximation, the system thermalizes and

FDRs are quickly fulfilled for all ratios of mass m and interaction strength g. The

effective temperature T and chemical potential µ both depend on time, showing

an exponential relaxation towards equilibrium. We find that the spectral function

quickly thermalizes, indicating the emergence of a kinetic regime. At the same time,

site-dependent temperatures agree with each other while local chemical potentials

between antimatter and matter sites disagree. At the true thermalization time,

site dependent temperatures and chemical potentials finally agree and become

independent of time. We study the parameter dependence of the thermalization

time, finding that it increases with increasing final state temperature. Finally, we

present two approaches to extend the use of non-equilibrium quantum field theory.

We derive a method to directly study infinite-temperature dynamics, enabling

the evaluation of high-temperature spectral functions. We furthermore present a

systematic approximation for (1+1)D SU(N) gauge theories in 1/N, opening the

possibility to study thermalization in non-abelian lattice gauge theories with a

well-controlled expansion parameter.

1 This project was conceived with Pablo Sala who I also thank for many helpful discussions with

regards to the interpretation of the data.
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5.1 model and methods

We study a (1+1)D SU(N) symmetric lattice gauge theory [366] with staggered

fermions. Crucially, in one spatial dimension, the gauge fields can be integrated

out, leading to a Hamiltonian only in terms of the Fermions given by

H = ε ∑
n

(
c†

ncn+1 + h.c.
)
+ m ∑

n
(−1)nc†

ncn +
g2

2 ∑
a

∑
n,m
Qa

nVnmQa
m (5.1)

as shown in Ref. [367]. In above Hamiltonian, Q = Q + q is the total charge

consisting out of the static (external) charge q and the dynamical charge

Qa
n = c†

nTacn (5.2)

with the N2− 1 SU(N) generators Ta and the N-component spinor cn. For N = 1, the

dynamical charge is given by Qn = c†
ncn− 1

2 (1− (−1)n). Note that here, n = 1, . . . , L.

m and g are mass and coupling strength and we use ε = 1 as our unit of energy.

The form of the effective interactions between the fermions Vnm depends on the

boundary conditions. For open boundary conditions, the Coulomb interaction is

given by Vnm = −|n− m|/2, indicating the linearly confining potential between

charges. For periodic boundary conditions (for which also a term c†
Lc0 + h.c. is

added), the potential changes to [368]

Vnm = − g2

2

(
L− 3
L− 2

)
×





|n−m|, for |n−m| = 0, 1

|n−m|+ |n−m|2−3|n−m|+2
2−L , for 2 ≤ |n−m| ≤ L

2 − 1
L2−8

4(L−3) , for |n−m| = L
2





.

(5.3)

The electric field Ea
n can be obtained from the charges by

Ea
n =

n

∑
k

Qa
k (5.4)

in the absence of external sources (all ql = 0).

The above Hamiltonian only contains terms quadratic and quartic in fermion

operators. This means that we can directly use the 2PI effective action techniques

we introduced in chapter 2 without any immediate additional difficulty due to

the presence of gauge fields. This is opposed to previous attempts to using self-

consistent methods for gauge theories, were it has been shown that the gauge

constraint leads to difficulties in the interpretation of the 2PI correlators [365, 369–

372].
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effective weak coupling for open boundaries Inserting the staggered

charge for the case of N = 1 and reordering terms, we find for open boundary

conditions

HU(1) = ε ∑
n

(
c†

ncn+1 + h.c.
)
− g2

4 ∑
n,m

c†
ncn|n−m|c†

mcm

+ ∑
n

(
m(−1)n − g2

4 ∑
l
|l − n|

(
2ql − (1− (−1)l

))
c†

ncn (5.5)

This rewriting shows that the staggered formulation leads to a “renormalization”

of the mass. In particular, for open boundary conditions this means that even for

large g, the quadratic terms in the Hamiltonian are much larger than the quartic

ones, enabling a weak-coupling approximation. This may partially explain the

efficacy of the Gaussian state ansatz in Ref. [367], where it was shown to capture the

ground state properties remarkably well in comparison to exact MPS techniques.

Some qualitative features of the dynamics were shown to be captured by the

Gaussian state approximation as well. However, it is clear that due to the lack of

true scattering, thermalization can not be described within this approximation [373].

Contrarily, for periodic boundary conditions, the local fields do not show the

same behaviour, i.e. they stay of order m throughout the system. We note that the

Gaussian state method is equivalent to the the two-loop approximation on the

level of the effective action we showed in chapter 2, as can be seen by directly

comparing the resulting equations of motion. In the following, we will therefore use

“Gaussian state”, “two-loop approximation” and “Hartree-Fock” interchangeably as

they correspond to the same approximation.

While it is difficult to systematically improve the Gaussian state approximation,

here we use the 2PI formalism to do so. We will include the next order in the

weak-coupling approximation [239] as well as the GW approximation to study

thermalization in the Schwinger model. In the following, we will always consider

periodic boundary conditions, using the expression for the potential derived in

chapter 4B of Ref. [368] and stated above.

5.2 string dynamics in the schwinger model at weak coupling

In the limit of large couplings g� 1, the Schwinger model can be solved analytically

and the groundstate is given by

|ψ0〉 = |10101010...〉 , (5.6)

which we call “strong coupling vacuum” in the following. If we create a pair

of opposite charges onto the strong coupling vacuum, a “string” of electric field
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Figure 5.1: Breaking and relaxation of a string on top of the strong coupling vacuum. Mass

m = 0.1ε, coupling strength g = 1ε.

connects the two and the potential energy rises linearly with increasing distance. At

some threshold distance, the potential energy however stops to rise as the energy

becomes high enough to create electron-positron pairs out of the vacuum which

screen the two charges. Dynamically, it was shown that this “pair-creation” is visible

in the dynamics of the electric field if a pair of (either dynamical or static) charges

is placed at large enough distance [180, 367].

It was shown that some non-trivial dynamics are captured within the two-loop

approximation in Ref. [367], specifically the creation of particle-antiparticle pairs as

well as string-antistring configurations. In Fig. 5.1 we show the time evolution of

the electric field starting from a string on top of the strong coupling vacuum for

mass m = 0.1ε, coupling strength g = 1ε and compare the results obtained from 2

loops, 3 loops and the GW approximation with periodic boundary conditions. In all

methods, we find oscillations between the string configuration (leading to a positive

electric field connecting the charges) and the anti-string configuration (leading to

the opposite sign of the electric field). Moreover, at short times, pairs of particles and

antiparticles are created, visible by the oscillation of the electric field in-between the

two ends of the spatially spreading string. While in 2loop, the oscillations continue

and become more fractured due to interference, we find damping of the oscillations



5.3 thermalization 133

within the 3 loop and GW approximations. Within the two loop approximation,

there is an artificial extensive number of conserved quantities, which correspond

to the momentum space occupation numbers for periodic boundary condition.

As the initial state is a superposition of these conserved quantities, the late time

interference pattern corresponds to a dephasing process between these conserved

quantities. However, there is no scattering between momentum modes, hampering

the approach to true thermal equilibrium. Hence, late-time thermalization can not be

described within the 2 loop approximation [239]. The 3 loop and GW approximation

break this spurious conservation, enabling the approach to a thermal equilibrium

state. We note that there is no qualitative difference between the 3 loop and the GW

approximation in this regime. Merely the renormalization of the string-antistring

oscillation frequency as well as the decay constant are slightly different. As they can

directly be related to the real and imaginary part of the self-energy, respectively, we

conclude that the higher order bubble diagrams included in the GW approximation

are not very relevant for the dynamics in this regime.

In the following, we will investigate the thermalization dynamics in more detail

from the perspective of two-time correlation functions and the fulfillment of the

fluctuation-dissipation relations.

5.3 thermalization

We discussed in chapter 4 a possible mechanism for how quantum systems ther-

malize: the eigenstate thermalization hypothesis (ETH). ETH is an ansatz for the

matrix elements of observables, consisting of a diagonal and off-diagonal part. The

diagonal part dictates the thermalization of single-time observables: They decay to

the value expected from the microcanonical ensemble corresponding to the energy

density of the initial state. Contrarily, the off-diagonal part dictates the thermaliza-

tion of two-time correlation functions as we discussed in-depth in chapter 4. In the

following, we will probe the thermalization of the two-time correlation functions

Fij(t1, t2) =
1
2
〈
[
ĉi(t1), ĉ†

j (t2)
]
〉 , (5.7)

ρij(t1, t2) = i 〈
{

ĉi(t1), ĉ†
j (t2)

}
〉 , (5.8)

which signify the statistical and spectral function, respectively. Frequently, we will

transform to central time T = (t1 + t2)/2 and relative time τ = t1 − t2 and Fourier

transform with respect to relative time, ρij(T, ω) =
∫

dτeiωτρij(T, τ). ETH implies 2

2 See chapter 4 for a proof.
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Figure 5.2: Equal site statistical and spectral functions ρii and Fii as a function of central

and relative time. Middle site of the chain, mass m = 0.1ε, interaction strength

g = 1ε, system size L = 20.

that at late times T the spectral and statistical functions are not independent of each

other but connected via the fluctuation dissipation relations as

Fij(ω) = −i
(

1
2
− nβ,µ(ω)

)
ρij(ω), (5.9)

where nβ,µ = 1
eβ(ω−µ)+1

is the Fermi-Dirac distribution at inverse temperature β and

chemical potential µ. Note that one can transform this “fermionic” FDR into the

“bosonic” one introduced in chapter 4 by inserting the different definition of F and

ρ. In the following, we use 2PI methods to calculate F and ρ for the 1+1 dimensional

lattice gauge theory and probe the fulfillment of the fluctuation-dissipation relations

as a stringent test of the eigenstate thermalization hypothesis.

5.3.1 Spectral and statistical correlations

In Fig. 5.2 we show the equal-site spectral and statistical functions as a function

of relative and central time for the same parameters as in Fig. 5.1. We find that

both F and ρ decay rapidly as a function of relative time, indicating that there

are no long-lived single particle excitations present. Moreover, this means that we

can cut the memory integral in the 2PI formalism - in principle, the whole history

of the dynamics would have to be stored in order to solve the Kadanoff-Baym

equations in Eqs. (5.25), (5.26). Due to the rapid decay of the correlation functions,

the memory integrals can be cut to the recent history. Here, we use a memory time

of εtmem = 10 and checked convergence. A second interesting feature is that the
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Figure 5.3: Equal site spectral and statistical functions ρii and Fii as a function of central

time and frequency. Middle site of the chain i = 9, mass m = 0.1ε, interaction

strength g = 1ε, system size L = 20.

decay with relative time becomes quicker as a function of central time. In particular,

the spectral function ρ shows almost no central time dependence after about εT ≈ 2.

In frequency space, the fast relaxation of ρ becomes even more apparent, see

Fig. 5.3. While ρ relaxes on time scales of a few 1/ε, the statistical function still

shows oscillations of its zero crossing on time scales as large as εT ≈ 10. After

these oscillations have settled, the overall scale of F still evolves, as visible from

comparing the scale of ≈ 10−2 at εT = 40 with the scale of ≈ 10−4 at times εT = 175.

This is a first indication that there are at least three time scales involved in the

dynamics: First, the spectral function ρ thermalizes, then the statistical function

F obtains its final form and thirdly, the overall scale of F reaches the equilibrium

value. In the following, we will study how these time scales are reflected in the

fluctuation-dissipation relations.

5.3.2 Emergence of fluctuation-dissipation relations

We test the emergence of the fluctuation-dissipation relation by defining the

“fluctuation-dissipation relation function”

FDR(T, ω) = ln

[(
1
2
− iF(T, ω)

ρ(T, ω)

)−1

− 1

]
. (5.10)

In equilibrium, FDR(T, ω) becomes independent of T and is equal to βω. In Fig. 5.4

we show this function for the spectral and statistical functions displayed in the

previous subsection. At early times (bright colour), the FDR is clearly not fulfilled as
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Figure 5.4: Time evolution of the FDR function, Middle site of the chain i = 9, mass

m = 0.1ε, interaction strength g = 1ε, system size L = 20. Time increases from

bright to dark, the colour hue indicates the linearly spaced time, 2.5 ≤ εT < 75.

the FDR function is not a straight line. The FDR is first fulfilled for small frequencies

and then for larger frequencies. At very late times, a straight line is visible ranging

over all displayed frequencies, however with a slope which is gradually changing.

In Fig. 5.5, we study this time dependence in more detail. We extract the time

dependent inverse temperatures β(T) and chemical potentials µ(T) by fitting a

linear function to the FDR function to the central region −5 ≤ ω/ε ≤ 5 and

for different sites i, where the even sites represent particles and uneven sites

the antiparticles. At short times, both the temperature and chemical potential

show erratic behaviour, with the chemical potential showing some oscillations,

which reflect the oscillations of the zero-crossing of F. They have roughly the

same oscillation frequency as the particle-antiparticle oscillations in the electric

field in Fig. 5.1. At times εT ≈ 10, the site-dependent temperatures start to agree

between themselves while the site-dependent chemical potentials do not agree.

However, particle sites roughly agree between themselves while they disagree with

the antiparticle sites. After this initial behaviour, both temperature and chemical

potential relax exponentially to their final equilibrium value. At these late times,

the chemical potentials of particle and antiparticle sites also agree with each other.

In order to extract a decay time as well as the final values of chemical potential and

temperature, we fit a function

β(T) = β∞ − a exp(−ΓβT), (5.11)

to the time-dependent temperatures and similarly to the chemical potentials. For

this parameter set (m = 0.1, g = 1.0) we find β∞ε ≈ −0.019, µ∞ ≈ −0.06 and

Γβ/ε ≈ Γµ/ε = 0.07. Furthermore, we characterize the intermediary oscillations of

the chemical potential by subtracting the fit from the data, see inset in Fig. 5.5. We

find exponentially decaying oscillations which exactly correspond to the oscillations
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Figure 5.5: Time dependence of local temperatures and chemical potential, mass m = 0.1ε,

interaction strength g = 1ε, system size L = 20. Inset: Difference between µ/ε

at site 1 and the fit. The grey line is the electric field shown in Fig. 5.1 on bond

11 (bond 1 oscillates similarly, we chose bond 11 for a cleaner signal) multiplied

by a factor of 4 for better comparison.

of the electric field. A fit to a function a + b cos(ωT + φ) exp(−γT) results in

ω/ε ≈ 0.13 and γ/ε ≈ 0.5. Hence, these oscillations die out on a timescale almost

an order of magnitude faster than the approach to global equilibrium.

Hence, the three stages of thermalization mentioned previously can be char-

acterized as follows from the perspective of the FDR: First, the site dependent

temperatures thermalize between themselves. Then, the oscillations of the chem-

ical potentials of (anti-)particle sites damp out, which are related to string and

anti-string oscillations. Lastly, the now globally defined temperatures and (anti-)

particle chemical potentials relax to their final value, with particle and antiparticle

µ agreeing at late times.

Having characterized the thermalization process for a single parameter set of m

and g, we now analyze how final temperature, chemical potential and relaxation

rates depend on these parameters.

5.3.3 Thermalization rates

In Fig. 5.6 we display the final temperatures and thermalization rates as a function

of mass and interaction strength. We find that the final temperature increases as the

interaction strength increases, which may at first seem puzzling because we created

the string on top of the g→ ∞ vacuum and hence the temperature should decrease.

However, as g increases, the energy introduced by the string also increases due to
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the interaction term, which increases the final temperature. Our results imply that

in this competition, the latter effect dominates. However, at large g our perturbative

method is not very reliable any more such that we cannot exclude that at higher

orders a different behaviour might emerge. Contrastingly, the final temperature

decreases as the mass increases for fixed interaction strength, in particular crossing

the infinite temperature point β = ∞ at around m/ε ≈ 0.25.

In general, we find the thermalization rate to show analogous behaviour to

the final temperature: As β∞ decreases, the thermalization rate increases. This is

somewhat expected: As the temperature increases, more excitations are available

which can scatter to reach equilibrium faster. These excitations are however not

necessarily of single-particle nature as we discussed in subsection 5.3.1: the spectral

function has a very broad peak, indicating the absence of quasiparticles. It is

an interesting question how the thermalization rate scales as a function of final

temperature in this case. It has been conjectured [374, 375], that in general Γ ∝ 1
β∞

and has also been confirmed in the strongly interacting SYK model [376]. To test

this hypothesis in our model, we plot in Fig. 5.7 the thermalization rate as a

function of final temperature and fixed g = ε. We indeed find a behaviour roughly

compatible with a linear increase, however with a very small prefactor. Moreover,

the temperatures accessible in our quenches are very high. Lower temperatures

could be accessed in our method by preparing the true interacting vacuum of the

theory before introducing the charges, such that we could test the conjecture Γ ∝ 1
β∞

down to lower temperatures.

We note that we did not find signs of confinement in our non-equilibrium

results - in all cases, the string relaxed exponentially fast at long times. While this

might be a result of our method as confinement is in general interpreted as a non-

perturbative phenomenon, it might also be due to the high temperatures we probed

in our quenches: confinement is in principle a ground state or close-to-ground

state phenomenon. Here, we studied the dynamics of strings created on top of the

strong-coupling vacuum and not on top of the interacting vacuum of the theory as

for example done in Refs. [367, 377]. This means that we simultaneously quenched

the system in two ways: In a global way by quenching the breakground and in a

(more) local way by creating charges. To discern effects coming from one or the

other, the thermalization of the strong-coupling vacuum without creating charges

could be studied in the future.

This high-temperature perspective on the Schwinger model can be brought to

the extreme by studying the infinite temperature spectral function. In the following,

we develop a novel method to calculate infinite temperature dynamics from 2PI.
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5.4 infinite temperature spectral function

The infinite temperature correlation function in principle contains information

about excitations of the whole many-body spectrum as it averages over all many-

body eigenstates. However, it will be dominated by the states in the middle of the

spectrum as the density of states is largest there. We will use this fact in chapter 6

to measure this function in experiment more efficiently and within spin 2PI by

sampling product states. Here, we develop a more direct route to probing infinite

temperature dynamics in 2PI.

5.4.1 Infinite temperature fluctuation-dissipation relation

Consider the fluctuation dissipation relation

Fij(ω) = (−i)
(

1
2
± nβ,µ(ω)

)
ρij(ω) (5.12)

with the Bose-Einstein/Fermi-Dirac distribution given by

nβ,µ(ω) =
1

eβ(ω−µ) ∓ 1
, (5.13)

which is the generalization to both Bose and Fermi systems of the FDR we quoted

above. The statistical/spectral function in the grand canonical ensemble are defined

as

Fij(ω) =
1
2

∫
d(t1 − t2)eiω(t1−t2)

1
Z

Tr
{

e−β(Ĥ−µN̂)
(

ci(t1)c†
j (t2)± c†

j (t2)ci(t1)
)}

,

(5.14)

ρij(ω) =
∫

d(t1 − t2)eiω(t1−t2)
1
Z

Tr
{

e−β(Ĥ−µN̂)i
(

ci(t1)c†
j (t2)∓ c†

j (t2)ci(t1)
)}

,

(5.15)

where the time dependent functions do not depend on the central time (t1 + t2)/2

due to time-translational invariance in equilibrium.

The total particle number density in equilibrium is fixed by the relation

〈n̂〉 = 1
V ∑

j

1
Z

Tr
{

e−β(Ĥ−µN̂)c†
j cj

}
(5.16)

= ∓1
2
±
∫ dω

2π

1
V ∑

j
Fjj(ω) (5.17)

= ∓1
2
∓ i

∫ dω

2π

(
1
2
± nβ,µ(ω)

)
1
V ∑

j
ρjj(ω) (5.18)

= −i
∫ dω

2π
nβ,µ(ω)

1
V ∑

j
ρjj(ω), (5.19)
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where V is the system volume and in the last step we used the equal-time (anti-

)commutation relations
∫ dω

2π ρjj(ω) = i 〈cj(t)c†
j (t)∓ c†

j (t)cj(t)〉 = i.

In the infinite temperature limit β → 0, the chemical potential needs to be

determined self-consistently from Eq. (5.19) in order to keep the total particle

number fixed. This means that the product βµ needs to stay finite when taking the

limit β→ 0 in the Bose-Einstein/Fermi-Dirac distribution,

lim
β→0

βµ→const.

nβ,µ(ω) =
1

e−βµ ∓ 1
. (5.20)

As nβ,µ is now frequency independent, we can solve Eq. (5.19) for βµ, again using

the sum rule
∫ dω

2π ρjj(ω) = i,

〈n̂〉 = 1
e−βµ ∓ 1

(5.21)

↔ βµ = log

(
1

〈n̂〉−1 ± 1

)
. (5.22)

This relation fixes the chemical potential and the FDR reduces to

Fij(ω) = (−i)
(

1
2
± 〈n̂〉

)
ρij(ω) (5.23)

with total number density 〈n̂〉. Therefore, F and ρ are directly proportional to each

other both in time and frequency space, significantly reducing the complexity of

the problem.

5.4.2 2PI at infinite temperature

In field theory calculations, F and ρ usually appear as independent variables.

As we just showed, at infinite temperature, they are related by a simple time

and frequency independent prefactor and should hence be exchangeable. This

simplifications becomes most apparent for fermions at half filling, 〈n̂〉 = 1/2, for

which the FDR in Eq. (5.23) shows that the statistical function vanishes identically,

Fij(ω) = 0. (5.24)

.

More generally, we can show this simplifcation in the Kadanoff-Baym equations

for F and ρ

(
i∂t1 δik − J̃ik(t1)

)
Fkj(t1, t2) =

∫ t1

0
dtΣρ

ik(t1, t)Fkj(t, t2)−
∫ t2

0
dtΣF

ik(t1, t)ρkj(t, t2),

(5.25)
(
i∂t1 δik − J̃ik(t1)

)
ρkj(t1, t2) =

∫ t1

t2

dtΣρ
ik(t1, t)ρkj(t, t2) (5.26)



142 thermalization in (1+1)d lattice gauge theories

with (Hartree-Fock renormalized) single particle Hamiltonian J̃ij. Note that these

equations are a complete description of the problem as the imaginary part of

the equilibrium contour is shrunk to zero at infinite temperature and hence no

Matsubara/mixed Green’s functions appear. By using the (infinite T) FDR for the

statistical/spectral self energies ΣF, Σρ,

ΣF
ij(ω) = (−i)

(
1
2
± 〈n̂〉

)
Σρ

ij(ω). (5.27)

and replacing the statistical components in Eq. (5.25) by using Eqs. (5.27), (5.23),

we directly reproduce Eq. (5.26), showing that both equations yield a redundant

description of the problem.

We can simplify the solution of the problem further by using time-translational

invariance in equilibrium, yielding

(
i∂tδik − J̃ik

)
ρkj(t) =

∫ t

0
dt′Σρ

ik(t− t′)ρkj(t′) (5.28)

with the initial condition is fixed by the equal-time commutation relations by

ρij(0) = iδij. Note that the occupation of the system enters through the time-

independent Hartree-Fock-Hamiltonian J̃ij, which is given by

J̃ij = Jij −
(

∑
k

(
Fkk(0)−

1
2

)
Uikδij −UijFij

)
. (5.29)

Inserting the infinite T FDR as well as Fij(0) =
∫

dωFij(ω), we get Fij(0) =

δij
( 1

2 ± 〈n̂〉
)

and hence

J̃ij = Jij −
(
± 〈n̂〉∑

k
Uik −Uii

(
1
2
± 〈n̂〉

))
δij. (5.30)

frequency space formulation Introducing the retarded Green’s function

GR(t) = Θ(t)ρ(t) and self energy GR(t) = Θ(t)Σρ(t), we can rewrite this equation

in frequency space as

GR(ω) = −[ω− J̃ − ΣR(ω)]−1. (5.31)

The problem can then be solved by the following self-consistency loop (in analogy

to the one use in Ref. [376]), starting from a random guess for ρ(ω), fulfilling∫
dωρij(ω) = iδij.

5.4.3 Numerical solution of infinite temperature 2PI

In order to solve t use the algorithm proposed in [378], which transforms into the

“rotating frame” of the quadratic part of the Hamiltonian according to

ρ(t) = U(t)ρ̃(t), U(t) = e−i Jt, (5.32)
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where in the following all quantities are matrices in lattice site space. Inserting this

into Eq. 5.28, a timestep t→ t + ∆ can be exactly written as

ρ(t + ∆) = U(∆)
(

ρ(t)− i
∫ t+∆

t
U(t− t′)I(t′)dt′

)
, (5.33)

where I(t) =
∫ t

0 dt′Σρ(t− t′)ρ(t′) is the right hand side of Eq. 5.28. This expression

is amenable to a predictor-corrector scheme. In the predict step we set I(t′) = I(t),

such that

ρ(t + ∆) = U(∆)ρ(t)−V(∆)I(t), (5.34)

with V(∆) = J−1(1−U(∆)). In the correct step, we replace I(t) → 1
2 (I(t) + I(t +

∆)) to re-evaluate ρ(t + ∆), which can be iterated until convergence of some error

threshold. Note that U(∆), V(∆) only need to be calculated once for a fixed time

step ∆. The integral I(t) can be calculated with some quadrature rule such as the

trapezoidal rule.

5.5 su(n) lattice gauge theories : 2pi 1/n expansion

Most results discussed in the previous sections were based on a weak coupling

approximation or the non-perturbative, but somewhat poorly motivated GW ap-

proximation. In this section, we develop a systematic expansion for non-Abelian

SU(N) lattice gauge theories in the inverse number of “colours” N. In this section,

we denote the coupling g in the Hamiltonian (5.1) with g̃, i.e. g→ g̃ and introduce

the t’Hooft coupling g2 = g̃2N. This will enable us to perform a 1/N expansion

while keeping Ng̃2 fixed. We also use the identity

∑
a

Ta
αβTa

γδ =
1
2

(
δαδδβγ −

1
N

δαβδγδ

)
. (5.35)

Inserting this into the interaction part Ĥint ≡ g2

2N ∑a ∑nmQa
nVnmQa

m of the Hamilto-

nian we get

Ĥint =
g2

4N ∑
nm

Vnm ∑
α

c†
αncαn −

g2

4N ∑
nm

Vnm ∑
αβ

c†
αncαmc†

βmcβn

− g2

4N2 ∑
nm

Vnm ∑
αβ

c†
αncαnc†

βmcβm. (5.36)

We can now decouple the two interaction terms by introducing Hubbard Stratonovich

fields by adding the terms

Hψ =
1
2

2N
g2 ∑

nm
(Vnm)

−1ψ†
nmψnm, (5.37)

Hχ =
1
2

2N2

g2 ∑
nm

[V−1]nmχnχm (5.38)
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to the Hamiltonian. Also note that ψ†
nm = ψmn. (Vnm)−1 denotes the inverse of the

nm element of V whereas [V−1]nm denotes the nm element of the inverse matrix.

Shifting those fields by

ψnm → ψnm +
g2

2N
Vnm ∑

α

c†
αmcαn (5.39)

χn → χn +
g2

2N2 ∑
m

Vnm ∑
α

c†
αmcαm (5.40)

then cancels out the two four-point terms and we finally arrive at the interaction

Hamiltonian

Ĥint =
N
g2 ∑

nm
(Vnm)

−1ψ†
nmψnm +

N2

g2 ∑
nm

[V−1]nmχnχm +
g2

4N ∑
nm

Vnmc†
αncαn

+ ∑
n 6=m

∑
α

c†
αncαmψnm + ∑

n
∑
α

c†
αncαnχn. (5.41)

The full closed-time-path action is then given by

S[c, ψ, χ] =
∫

C
dt
{

∑
nm

c†
αn (i∂tδnm − hnm) cαm −

N
g2 V−1

nm ψ†
nmψnm

− N2

g2 ∑
nm

[V−1]nmχnχm − ∑
n 6=m

c†
αncαmψnm −∑

n
c†

αncαnχn

}

(5.42)

with single particle Hamiltonian

hij =

(
εδj,i+1 +

(
m(−1)i +

g2

4N ∑
k

Vik

)
δij

)
. (5.43)

The χ field in this action corresponds to the Hubbard Stratonovich field used

in the GW approximation, i.e. the above action reduces to Eq. 2.31 when setting

N = 1. In the 1/N expansion, a second auxiliary field ψ enters, which couples to

creation/annihilation operators at different sites. Hence, the ψ correlator will have

the form of an effective vertex with four lattice indices and it will turn out, that it

corresponds to the particle-particle T-matrix [211].

Equations of motion

The free propagators are defined from writing the free action as S0 =
∫

dtc†iD−1
0 c +

ψ̄†iG−1
0 ψ̄ + χ̄iK−1

0 χ̄, with ψ̄ = 〈ψ〉 resulting in

iD−1,αβ
0,ij (t1, t2) =

(
i∂t1 δij − hij − ψ̄ij − χ̄iδij

)
δC(t1 − t2)δ

αβ (5.44)

iG−1
0,(ij)(kl)(t1, t2) = −

N
g2 V−1

(ij)δ(ij),(kl)δC(t1 − t2), (5.45)

iK−1
0,ij(t1, t2) = −

2N2

g2 [V−1]ijδC(t1 − t2), (5.46)
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where for the G propagator we introduced a superindex (ij) to rewrite the four-leg

tensor as a matrix. Note that there are no free propagators mixing the fields.

The 2PI effective action is then given by

Γ[D, G, K, ψ̄, χ̄] = S[ψ̄, χ̄]− i Tr[D−1
0 [χ̄, ψ̄]D]− i Tr[ln D−1] + i Tr[G−1

0 G]

+ i Tr[ln G−1] +
i
2

Tr[K−1
0 K] +

i
2

Tr[ln K−1] + Γ2[D, G, K],

(5.47)

where the last term are all two-particle irreducible diagrams consisting out of the

propagators D,G and K.

The equations of motion for the mean fields follow from extremezing the 2PI

effective action, giving

δΓ
δψ̄(nm)(t)

= −N
g2 V−1

nm ψ̄(mn)(t) + Dαα
mn(t, t) = 0 (5.48)

⇒ ψ̄(mn)(t) =
g2

N
VnmDαα

mn (5.49)

δΓ
δχ̄n(t)

= −N2

g2 ∑
m
([V−1]mn + [V−1]nm)χ̄m(t) + Dαα

nn(t, t) = 0 (5.50)

⇒ χ̄n(t) =
g2

2N2 ∑
m

VnmDαα
mm (5.51)

Similarly, extremizing the effective action with respect to the propagators yields

Schwinger-Dyson equations

D−1 = D−1
0 − Σ (5.52)

G−1 = G−1
0 −Π (5.53)

K−1 = K−1
0 − Ξ, (5.54)

where the self energies are defined as

Σαβ
ij (t1, t2) = −i

δΓ2

δDβα
ji (t2, t1)

(5.55)

Π(ij)(kl)(t1, t2) = i
δΓ2

δG(kl)(ij)(t2, t1)
(5.56)

Ξij(t1, t2) = 2i
δΓ2

δKji(t2, t1)
. (5.57)
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Convoluting the Schwinger-Dyson equation from the right with D, we can derive

their integro-differential form (also known as Kadanoff-Baym equations), giving

∑
k
(i∂t1 δikδαγ − J̃αγ

ik )Dγβ
kj (t1, t2) = iδijδ

αβδC(t1 − t2)

+ i ∑
kl

∫

C
dtΣαγ

ik (t1, t)Dγβ
kj (t, t2), (5.58)

G(ij),(kl)(t1, t2) = −
g2

N
Vijiδ(ij),(kl)δC(t1 − t2)

− i
g2

N
V(ij) ∑

(mn)

∫

C
dtΠ(ij),(mn)(t1, t)G(mn),(kl)(t, t2),

(5.59)

Kij(t1, t2) = −
g2

2N2 VijiδijδC(t1 − t2)

− i
g2

2N2 ∑
kl

Vik

∫

C
dtΞkl(t1, t)Kl j(t, t2), (5.60)

where we defined the effective single-particle Hamiltonian J̃αβ
ik = hαβ

ik − ψ̄ikδαβ −
χ̄iδikδαβ + Σ0,αβ

ik , including a possible time-local part of the fermion self-energy.

Symmetries of correlators

The correlators used above are defined as

Dγβ
kj (t1, t2) = 〈TCcγk(t1)c†

βj(t2)〉 (5.61)

G(ij),(kl)(t1, t2) = 〈TCψ(ij)(t1)ψ
†
(kl)(t2)〉 (5.62)

Kij(t1, t2) = 〈TCχi(t1)χj(t2)〉 . (5.63)

From this we can follow the following identities:

(Dγβ
kj (t1, t2))

∗ = Dβγ
jk (t2, t1), (5.64)

G(ij),(kl)(t1, t2) = G(lk),(ji)(t2, t1), (5.65)

(G(ij),(kl)(t1, t2))
∗ = G(kl),(ij)(t2, t1) = G(ji),(lk)(t1, t2), (5.66)

Kij(t1, t2) = Kji(t2, t1). (5.67)

1/N expansion

The diagrams in Γ2 are all two-particle-irreducible vacuum diagrams built from

propagators G, D, K and vertices iSint = −i ∑n 6=m c†
αncαmψnm − i ∑n c†

αncαnχn. Hence,

all diagrams must be singlets in colour space. The possible SU(N) singlets are

given by

Tr(Dn), G, K, (5.68)
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Figure 5.8: The only NLO diagram contributing to Γ2. The fermion loop contributes a factor

of N whereas G ∼ 1/N, leading to an overall scaling of 1.

with n an arbitrary integer and Tr(Dn) ∼ N. From the equations 5.59 and 5.60 we

can furthermore see that G ∼ 1/N and K ∼ 1/N2. Moreover, ψ̄ ∼ 1 and χ̄ ∼ 1/N.

Therefore, the leading order term in 1/N in the full effective action is the term

where ψ̄ is contracted with D, leading to an overal scaling of N (second term in

Eq. 5.47). At next-to-leading order, the χ̄ contribution in the same term (giving

N × 1/N = 1) contributes as well as the diagram depicted in Fig. 5.8. Note that the

propagator K only contributes at NNLO, such that to NLO, Ξ = 0.

To NLO, Γ2 is therefore given by

ΓNLO
2 = (−i)

1
2!
(−i)2

∫

C
dt1

∫

C
dt2 ∑

n 6=m
∑
l 6=k

Dαβ
ml(t1, t2)Dβα

kn (t2, t1)G(nm),(kl)(t1, t2).

(5.69)

If initially, the propagator of the fermions is diagonal in spinor space i.e. Dαβ
nm =

〈c†
αncβm〉 = Dnmδαβ then both interactions will not mix different components and

the symmetry is conserved.

The self-energies follow as

Π(ij),(mn)(t1, t2) ≡ i
δΓ2

δG(mn),(ij)(t2, t1)
(5.70)

= −1
2

Dαβ
nj (t2, t1)Dβα

im(t1, t2), (5.71)

Σαβ
ij (t1, t2) ≡ −i

δΓ2

δDβα
ji (t2, t1)

(5.72)

= ∑
kn

Dαβ
kn (t1, t2)G(nj),(ki)(t1, t2). (5.73)
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Spectral and statistical components

We decompose

Dαβ
kj (t1, t2) = Fαβ

kj (t1, t2)−
i
2

sgnC(t1 − t2)ρ
αβ
kj (t1, t2) (5.74)

G(ij),(kl)(t1, t2) = −
g2

N
Vijiδ(ij),(kl)δC(t1 − t2)

+
g2

N
V(ij)

(
GF
(ij),(kl)(t1, t2)−

i
2

sgnC(t1 − t2)G
ρ

(ij),(kl)(t1, t2))

)
g2

N
V(kl),

(5.75)

leading to the equations of motion

∑
k

(
i∂t1 δikδαγ − J̃αγ

ik (t1)
)

Fγβ
kj (t1, t2) = ∑

k

∫ t1

0
dtΣρ,αγ

ik (t1, t)Fγβ
kj (t, t2) (5.76)

−∑
k

∫ t2

0
dtΣF,αγ

ik (t1, t)ργβ
kj (t, t2),

(5.77)

∑
k

(
i∂t1 δikδαγ − J̃αγ

ik (t1)
)

ρ
γβ
kj (t1, t2) = ∑

k

∫ t1

t2

dtΣρ,αγ
ik (t1, t)ργβ

kj (t, t2), (5.78)

for the fermion correlators and

GF
(ij),(kl) = −ΠF

(ij),(kl) −
g2

N ∑
mn

∫ t1

0
dtΠρ

(ij),(mn)V(mn)G
F
(mn),(kl)

+
g2

N ∑
mn

∫ t2

0
dtΠF

(ij),(mn)U(mn)G
ρ

(mn),(kl), (5.79)

Gρ

(ij),(kl) = −Πρ

(ij),(kl)

− g2

N

∫ t1

t2
∑
mn

dtΠρ

(ij),(mn)U(mn)G
ρ

(mn),(kl). (5.80)

for the auxiliary field correlators. The K propagator can be decomposed analogously,

it corresponds to the density correlator in the GW approximation discussed in

section 2.1.3 of the introduction. We refrain from discussing it in the following,

as it only appears at NNLO in 1/N. We also note that VGFrhoV correspond to

the spectral/statistical components of the particle-particle T-matrix, which can be

explicitly seen by comparing the expressions to the ones given in Ref. [211].

The auxiliary field self energies follow as

ΠF
(ij),(mn)(t1, t2) = −

1
2

(
Fβα

im (t1, t2)(Fβα
jn (t1, t2))

∗ − 1
4

ρ
βα
im(t1, t2)(ρ

βα
jn (t1, t2))

∗
)

,

(5.81)

Πρ

(ij),(mn)(t1, t2) = −
1
2

(
Fβα

im (t1, t2)(ρ
βα
jn (t1, t2))

∗ + ρ
βα
im(t1, t2)(Fβα

jn (t1, t2))
∗
)

,

(5.82)
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while the fermionic self energies are given as

Σ(0),αβ
ij (t1, t2) =

g2

N ∑
k

Vjk

(
Fαβ

kk −
1
2

)
δij, (5.83)

ΣF,αβ
ij (t1, t2) =

g4

N2 ∑
nk

VnjVki

(
Fαβ

kn (t1, t2)GF
(nj),(ki)(t1, t2)

− 1
4

ρ
αβ
kn (t1, t2)G

ρ

(nj),(ki)(t1, t2)

)
, (5.84)

Σρ,αβ
ij (t1, t2) =

g4

N2 ∑
nk

VnjVki

(
Fαβ

kn (t1, t2)G
ρ

(nj),(ki)(t1, t2)

+ ρ
αβ
kn (t1, t2)GF

(nj),(ki)(t1, t2)

)
. (5.85)

In this form, we can finally solve the equations of motion for the correlators as

discussed in the introduction. Note that in this form, the equations scale as N3
c with

the number of colours (where the equations for F, ρ are the bottleneck) and N6
s

with the number of lattice sites (bottleneck given by equations for GF and Gρ). The

former can be reduced to O(1) by starting in a colour-symmetric initial state with

Dαβ ∼ δαβ. Then, only a single component needs to be evolved in time. The scaling

with the number of sites can be reduced by considering translationally invariant

initial states.

5.6 conclusions and outlook

In this chapter we have studied thermalization dynamics in the lattice Schwinger

model, i.e. one-dimensional quantum electrodynamics, with non-equilibrium quan-

tum field theory. We studied the breaking of strings on top of the strong coupling

vacuum at weak coupling, showing that previously used Hartree-Fock/Gaussian

state methods are insufficient to describe the approach to equilibrium. At three

loop order, we found good agreement of the dynamics with the GW approximation,

which resums bubble diagrams to infinite order in the interaction strength. Strings

always relaxed on the relatively short time scales we studied, which we attributed to

the fact that we used a high-energy initial state. We studied the two-time correlation

functions to test the off-diagonal part of eigenstate thermalization as proposed in

chapter 4. We found at least three time scales in the dynamics, corresponding to

a fast relaxation of the spectral function, over the establishment of a global local

temperature to the global relaxation of the temperature to its final value. Finally,

we presented two new non-equilibrium quantum field theory methods which will

enable a further study of this problem. On the one hand, the evaluation of spectral

functions directly at infinite temperature could enable further insights into mid-

spectrum properties of the Schwinger model, especially about the (non-)existence of
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well-defined quasiparticles in this high temperature regime. On the other hand, we

derived a controlled 1/N expansion for SU(N) lattice gauge theories, which enables

the study of thermalization in non-abelian settings. In particular, an experimental

study of the latter model could be enabled by using the implementation of the

Schwinger model with Bose-Fermi mixtures [379–382] with alkaline-earth atoms,

which have SU(N) symmetric interactions [383] with N as large as 10. The early

establishment of a near-constant spectral function indicates that kinetic approaches

could be successful to describe the dynamics. They could be directly derived from

the methods we used here [210, 384] and offer novel insights into transport phenom-

ena in gauge theories. Last but not least, a study of the non-equilibrium dynamics

of confinement would be enabled by first preparing a low temperature state of the

interacting theory before creating a string, which could be done by the methods

we discussed in chapter 2. Doing so would also enable answering the question

whether a weak coupling expansion is enough to reproduce a near-stable string

at low temperatures or whether non-perturbative approximations such as the GW

approximation are necessary to capture this phenomenology.
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This chapter is based on the publications

• Alexander Schuckert, Izabella Lovas, Michael Knap: “Non-local emergent

hydrodynamics in a long-range quantum spin system” – Phys. Rev. B 101,

020416(R) (2020) [arXiv:1909.01351]

• M. K. Joshi, F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap, C. F.

Roos: “Observing emergent hydrodynamics in a long-range quantum magnet”

– [arXiv:2107.000331]

Structure, text and figures have been rearranged and adapted here. The discrete

truncated Wigner approximation (dTWA) results were obtained by Izabella Lovas.

The experimental results were obtained by M. K. Joshi, F. Kranzl, C. Maier, R. Blatt,

C. F. Roos.

Generic short-range interacting quantum systems with a conserved quantity

exhibit universal diffusive transport at late times. We employ non-equilibrium

quantum field theory and semi-classical phase-space simulations to show how

this universality is replaced by a more general transport process in a long-range

XY spin chain at infinite temperature with couplings decaying algebraically with

distance as r−α. While diffusion is recovered for α > 1.5, longer-ranged couplings

with 0.5 < α ≤ 1.5 give rise to effective classical Lévy flights; a random walk

with step sizes drawn from a distribution with algebraic tails. We find that the

space-time dependent spin density profiles are self-similar, with scaling functions

given by the stable symmetric distributions. As a consequence, for 0.5 < α ≤ 1.5

autocorrelations show hydrodynamic tails decaying in time as t−1/(2α−1) and linear-

response theory breaks down. We compare our theoretical results to a quantum

simulation experiment with 51 individually controlled ions, in which our Lévy flight

picture is confirmed by measuring the space-time resolved correlation functions in

an infinite temperature state.

151
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6.1 introduction

Universality in equilibrium asserts that microscopic details are irrelevant for the

emergent quantum phases of matter and their transitions. Rather, symmetries and

topology determine the essential macroscopic properties. By contrast, all scales, from

low to high energies, are relevant for quantum systems which are driven far from

their thermal equilibrium. Recent experimental progress in engineering coherent

and interacting quantum systems made it possible to create and explore exotic

non-equilibrium states, which can exhibit unconventional relaxation dynamics [47,

59, 150, 306, 385, 386], dynamical phases [51, 129, 146, 179, 307, 387], and transitions

between them [181, 182].

Despite this wealth of observed quantum phenomena, a common anticipation

is that classical hydrodynamics of a few conserved quantities emerges universally

for any complex quantum system, as strong interactions entangle and effectively

mix local degrees of freedom [40, 388]. This is because in quantum many-body

systems, macroscopic inhomogeneities in a conserved quantity must be transported

across the whole system to reach an equilibrium state. As this process constrained

by a continuity equation, it is in general slow in the absence of long-lived quasi-

particle excitations [40, 43, 44, 388–392]. The universality of this effective classical

description may be understood from the central limit theorem: in the regime of

incoherent transport, short range interactions lead to an effective random walk with

a finite variance of step sizes, leading to a Gaussian distribution at late times. This

universality is broken when quantum coherence is retained, such as in integrable

models [393–399] or in the vicinity of a many-body localized phase, where rare

region effects give rise to subdiffusive transport [54–56, 152, 233, 400].

However, verifying this assumption, and furthermore determining the non-

universal transport coefficients of the emergent hydrodynamic theory for specific

systems is challenging. Recently, enormous efforts have been devoted to detect

hydrodynamic transport in quantum gases [141, 401–403] and condensed matter sys-

tems [203, 404–406]. While transport is generally expected to be diffusive, a variety

of largely unexplored classes of hydrodynamics have been theoretically predicted

including anomalous subdiffusive [65, 407] and superdiffusive transport [408–410].

In this chapter, we show how this universal diffusive transport in short range

interacting systems is replaced by a more general, non-local effective hydrody-

namical description in systems with algebraically decaying long-range interactions.

We use semi-analytical non-equilibrium quantum field theory calculations (the

two-particle irreducible effective action method for spin systems (spin-2PI)) and

dTWA simulations to show that in a long-range interacting XY spin chain, spin
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transport at infinite temperature effectively obeys a classical master equation with

algebraically decaying transition amplitudes. This effective description can be re-

formulated as a classical random walk with infinite variance of step sizes, giving

rise to a generalized central limit theorem and to a late-time description in terms

of classical Lévy flights [411], an example for superdiffusive anomalous transport.

As a result, we demonstrate that the full spatio-temporal shape of the correlation

function C(j, t) = 〈Ŝz
j (t)Ŝ

z
0(0)〉, and in particular, the exponent of the hydrodynamic

tail in the autocorrelation function C(j = 0, t), depends strongly on the long-range

exponent α. While for α > 1.5 we recover classical diffusion, the autocorrelation

function shows hydrodynamic tails with an exponent 1/(2α− 1) for 0.5 < α ≤ 1.5.

Furthermore, C(j, t) possesses a self-similar behavior, with the scaling function

covering all stable symmetric distributions as a function of α, smoothly crossing

over from a Gaussian at α = 1.5 over a Lorentzian at α = 1 to an even more sharply

peaked function as α→ 0.5. We also extract the generalized diffusion coefficient Dα

from the scaling functions, and explain its α dependence by Lévy flights; quantum

effects are incorporated in a many-body time scale depending only weakly on α.

For α ≤ 0.5 no emergent hydrodynamic behavior is found as the system relaxes

instantaneously in the thermodynamic limit [412].

We compare our theoretical results to an experiment in a trapped ion quantum

simulator, confirming the Lévy flight transport process. Throughout this chapter, we

will show theoretical results alongside the experimental results, giving a complete

characterization of the transport process. This cross-method verification establishes

both the theoretical tools of nonequilibrium quantum field theory and discrete

truncated Wigner simulations as well as experimental quantum simulation as

efficient tools to study transport phenomena in the thermalization dynamics of

quantum many-body systems.

6.2 model

We study the long range interacting quantum XY chain with open boundary

conditions, given by the Hamiltonian

Ĥ = −1
2

L/2

∑
i 6=j=−L/2

J
NL,α|i− j|α

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)
. (6.1)

Here, Ŝα = 1
2 σ̂α denotes spin- 1

2 operators given in terms of Pauli matrices, L is the

(odd) length of the chain 1, and we set h̄ = 1. The interaction strength J is rescaled

with the factor NL,α =
√

∑j 6=0 |j|
−2α in order to remove the L and α dependence of

the time scale associated with the perturbative short time dynamics of the central

1 We always assume integer divisions when we write L
2 .
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Figure 6.1: Level statistics. (left) Mean of ratio of consecutive level spacings r and (right)

probability distribution of r for L = 15, showing convergence to the expectation

from the GOE as L→ ∞ for all values of α studied here. For the mean we used

a moving average over α values in a window of approx. 0.11 to smoothen the

curves, amounting to 41 values in our scanning resolution. No such averaging

was done for the probability distribution.

spin at i = 0. The above model and is an effective description of the long-range

transverse field Ising model for large fields [179, 187]. In the following, we show that

it shows chaotic (Wigner-Dyson) level statistics for the whole range of α considered

here (0.5 ≤ α ≤ 2) and is therefore expected to thermalize.

level statistics . We consider the subsector with total magnetization one

and even parity and plot in Fig. 6.1 the histogram of the ratio of consecutive

levelspacings

ri =
min(Ei+1 − Ei)

max(Ei+1 − Ei)
, ri ∈ [0, 1]. (6.2)

For exemplary values α = 0.5 and α = 2, the histogram follows the expectation

from the Gaussian orthogonal ensemble (GOE) PGOE(r) = ((27/4)(r + r2))/((1 +

r + r2)5/2) and is in particular far from the Poisson distribution(POI) PPOI(r) =

2/(1 + r)2 expected in integrable models. Moreover, we plot the mean of the

distribution 〈r〉 as a function of α, with random matrix expectations 〈rGOE〉 ≈ 0.54,

〈rPOI〉 ≈ 0.39. We find values in agreement with the GOE for 0.2 < α < 2.5, showing

that all values of α considered are non-integrable.

dynamics in different spin subsectors . The long-range XY model con-

serves the total Sz magnetization, with product states in the Sz basis evolving

radically differently depending on the complexity of the corresponding magnetiza-

tion sector. For just a few spin flips on top of the completely polarized state, the

dynamics can be exactly solved and are described in terms of ballistically propagat-

ing spin waves, with a diverging group velocity at α = 1 [176, 187, 413] related to

the algebraic leakage of the Lieb-Robinson bound [177, 414–416]. In contrast, here
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we show that the exponentially large Hilbert space sector for an extensive number

of spin flips gives rise to rich transport phenomena, driven by the long-range nature

of the interactions.

6.3 methods

In the following, we demonstrate the emergence of effective transport dynamics

in the quantum dynamics of the Hamiltonian (6.1) by studying the unequal time

correlation function

C(j, t) := Tr
[
Ŝz

j (t)Ŝ
z
0(0)

]
|j=0〉=|↑〉

. (6.3)

Here, we perform the trace over product states in the Sz basis, restricted to the

Hilbert space sector with ∑i Sz
i = 1

2 , such that 〈Sz
i (t = 0)〉 = 1

2 δ0,i for all spins i.

This way, we probe the transport of a single spin excitation moving in an infinite

temperature bath with vanishing total magnetization.

We employ two complementary, approximate methods to study the dynam-

ics at long times and for large system sizes, in a regime that is challenging to

access by numerically exact methods [417]. Schwinger boson spin-2PI [48, 215], a

non-equilibrium quantum field theory method, employs an expansion in the in-

verse coordination number 1/z to reduce the many-body problem to solving an

integro-differential equation that scales algebraically in system size. As the effective

coordination number is large in a long-range interacting system, we expect this

approximation to be valid for small α. The dTWA evolves the classical equations of

motion, while introducing quantum fluctuations by sampling initial states from

the Wigner distribution [418–421] and was shown to be particularly well suited for

studying long-range interacting systems [165, 420]. If not stated otherwise, all our

results have been converged with respect to system size in the theoretical methods,

for which we employed chains with 201− 601 sites.

In the trapped ion quantum simulator, (pseudo-)spins are realized with two

electronic states of the 40Ca+ ion: |S1/2, m = +1/2〉 as |↓〉 and |D5/2, m = +5/2〉
as |↑〉. The quantum state of individual ions is controlled by a tightly focused,

steerable laser beam capable of addressing any ion in the string, in conjunction with

a laser beam that collectively interacts with the ions. A two-tone laser field realizes

approximately power-law decaying Ising interactions between the (pseudo-)spins by

off-resonantly coupling motional and electronic degrees of freedom of the ion chain.

Application of a strong transverse field energetically penalizes spin non-conserving

contributions [187]. The effective dynamics is then described by the long-range

XY model in Eq. (6.1), where J and α can be tuned by varying the amplitude and
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frequency of the two-tone laser field. Experimentally, the Hamiltonian is often

written in a slightly different convention [175] to Eq. 6.1, given by

Ĥexp = ∑
i<j

Jexp

|i− j|α (σ̂
+
i σ̂−j + σ̂−i σ̂+

j ). (6.4)

This definition can be obtained from Eq. (6.1) by inserting Ŝα = 1
2 σ̂α and J = 2JexpNα.

Correspondingly, the correlation function differs by a prefactor of 1/4 when written

in terms of Pauli matrices. We will employ Ĥexp whenever we discuss experimental

data.

4

Figure 6.2: Initial state preparation in the trapped ion quantum simulator. Infinite-

temperature correlations are measured by averaging over initial product states

while preparing the central ion deterministically in the same state (blue box).

Picture of three exemplary initial states in a chain of 40Ca+ ions (|↑〉 dark spots,

|↓〉 bright spots). White squares (circles) indicate the intended preparation of

|↑〉 (|↓〉), achieved with 99% fidelity per ion.

6.3.1 Product state sampling of the trace

Preparing an infinite temperature state is difficult both in our theory methods and

in the quantum simulator. We overcome this challenge by expressing the infinite

temperature expectation value as an equally weighted trace over product states

|φ〉 in the σ̂z basis. To do so, we first express the infinite temperature correlation

function in Eq. (6.3) as

4Cj(t) = 〈σ̂z
j (t)σ̂

z
0(0)〉T=∞

(6.5)

=
1
Z

Tr
[
e−Ĥ/T σ̂z

j (t)σ̂
z
0(0)

] ∣∣∣∣
T=∞

(6.6)

=
1
Z

Tr
[
σ̂z

j (t)σ̂
z
0(0)

]
, (6.7)

with the partition sum Z = Tr[e−Ĥ/T]|T=∞ = 2L for systems of size L. We expand

the trace in the σ̂z basis to obtain

4Cj(t) =
1
Z ∑

σ− L
2

,...,σ L
2

〈σ− L
2

. . . σL
2
|σ̂z

j (t)σ̂
z
0(0)|σ− L

2
. . . σL

2
〉 (6.8)

=
1
Z ∑

σ− L
2

,··· ,σ L
2

σ0 〈σ− L
2
· · · σL

2
|σ̂z

j (t)|σ− L
2

. . . σL
2
〉 , (6.9)
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Figure 6.3: Comparison of full trace to product state sampling. Data obtained from exact

diagonalization on an L = 19 chain with α = 1. For product state sampling, we

used M = 240 initial states, for full trace we used 10 Haar-random states. The

saturation at late times is a finite size effect.

where σj = ±1. We have therefore reduced the evaluation of a two-time correlation

function to the weighted sum of single-time functions using product initial states,

which can be realized in the experiment, see Fig. 6.2. In order to evaluate Eq. (6.9)

exactly, all 2L product states in the z-basis would have to be prepared, time evolved

and measured to then obtain Cj(t) from the weighted sum. Moreover, when only

averaging over a small number of initial states, large statistical fluctuations are

expected in the measured correlations, such that a sampling of the sum with a

finite number of states seem challenging. We remove these fluctuations by sampling

pairs of conjugate product states, |φ〉 and |φ〉, where in the second configuration

all spins are flipped except for the central one. For each pair of product states,

initial correlations are unity in the center of the system while being zero elsewhere,

reproducing directly this property of the full trace; see first two initial states in Fig.

6.2. With this procedure, convergence is already achieved for a small number of

initial product states. In the experiment, for α = 0.9 and 1.1 (α = 1.5), 60 (120) initial

product state configurations were created, each of which was realized, evolved, and

measured for 50 to 200 times in the quantum simulation. In spin-2PI simulations

we used 4− 16 different initial states, while in dTWA the averaging over initial

states is performed in parallel with the Monte Carlo averaging over the Wigner

distribution; here we typically use ∼ 105 samples. We furthermore only consider

the largest sector with magnetization ∼ 0. In Fig. 6.3 we compare the sampling

of the largest sector to the exact results of the thermal expectation value. The full

trace is evaluated using the typicality approach [422], which involves evolving

Haar-random states |ψr〉 in the entire Hilbert space and then averaging over 5− 10

such states.
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6.4 effective stochastic description of long-range transport

Before evaluating the infinite temperature correlation function introduced above,

we first construct the expected classical transport process by evaluating the corre-

sponding Master equation and studying its properties in detail.

As the model in Eq. (6.1) is equivalent to long-range hopping hard core bosons,

we conjecture the effective classical equation of motion for the transported local

density f j(t), in our case
〈

Ŝz
j (t)

〉
+ 1

2 , to be of the form 2

∂t f j(t) = ∑
i 6=j

(
Wi→j fi(1− f j)−Wj→i f j(1− fi)

)
(6.10)

Here, the transition rate Wi→j is determined by the microscopic transport processes

present in the Hamiltonian, in our case the long-range hopping of spins. More specif-

ically, from Fermi’s golden rule the transition rate for a flip flop process between

spins i and j is proportional to |〈↑i↓j |Ĥ| ↓i↑j〉|2, and hence we phenomenologically

set

Wi→j = Wj→i =
λ

|i− j|2α
, (6.11)

where λ−1 is a characteristic time scale determined by the full many-body Hamilto-

nian.

Due to the symmetry of the transition matrix elements Wi→j = Wj→i ≡ Wij, the

Master equation is linear,

∂t f j = ∑
i 6=j

Wij( fi − f j) (6.12)

and can be solved by taking the Fourier transform. This gives

∂t f (k) = [W(k)−W(k = 0)] f (k), (6.13)

where

f (k) =
L/2

∑
j=−L/2

e−ikj f j, (6.14)

and

W(k)−W(k = 0) = λ

[
−1

∑
j=−L/2

+
L/2

∑
j=1

] (
e−ikj − 1

)
/|j|2α (6.15)

≈ 2 λ
∫ L/2

1
dx (cos kx− 1) /x2α, (6.16)

2 A Master equation in terms of a local probability density may be obtained by normalizing the local

density.
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with k = 2πn/L, n = −L/2, ..., L/2.

The long time behavior is dominated by large wavelengths k� 1. For 0.5 < α <

1.5 the integral remains convergent when we remove both the upper and lower

cutoffs, leading to the following approximation in the regime k� 1,

W(k)−W(k = 0) ≈ 2 λ
∫ L/2

0
dx (cos kx− 1) /x2α − 2 λ

∫ 1

0
dx (cos kx− 1) /x2α

≈ 2 λ
∫ ∞

0
dx (cos kx− 1) /x2α + λ k2

∫ 1

0
dx x2−2α

=

(
−cα |k|2α−1 +

k2

3− 2α

)
λ. (6.17)

Here

cα = −2
∫ ∞

0
dz (cos z− 1) /z2α = −2 Γ(1− 2α) sin(απ), (6.18)

with Γ denoting the gamma function. Note that cα > 0 for 0.5 < α < 1.5.

For 0.5 < α < 1.5, the first term in Eq. (6.17), ∼ |k|2α−1 , will dominate the long

time behavior, leading to

∂t f (k) ≈ −λcα |k|2α−1 ⇒ f (k, t) = f (k, 0) e−λcα |k|2α−1t. (6.19)

In particular, taking an initial state with a single localized excitation, f j(t = 0) =

δj,0/4 and hence f (k, 0) ≡ 1/4 with the factor 1/4 stemming from (Ŝz)2 = 1/4, we

arrive at the scaling ansatz

f j(t) ≈
1
4

∫ dk
2π

exp
(

ikj− λ t cα |k|2α−1
)
= (λcαt)−1/(2α−1) Fα

(
|j|

(λcαt)1/(2α−1)

)
,

(6.20)

with Fα(y) given by

Fα(y) =
1
4

∫ dk
2π

exp(−|k|1/βα) exp(iyk). (6.21)

diffusion for α > 1.5. While we used α < 1.5 in the derivation of Eq. (6.17),

the expression is in fact valid for all α > 0.5. This can be shown by evaluating the

following integral exactly,

W(k)−W(k = 0) ≈ 2 λ |k|2α−1
∫ ∞

|k|
dz (cos z− 1) /z2α,

and expanding the resulting expression around k = 0. Noting that for α > 1.5 the

|k|2α−1 term is subdominant, we arrive at

f α>1.5
j (t) ≈ 1

4

∫ dk
2π

exp
(

ikj− λ

2α− 3
k2t
)
= (Dαt)−1/2 G

(
|j|

(Dαt)1/2

)
, (6.22)

reproducing diffusive behaviour for α > 1.5 with diffusion coefficient Dα = λ/(2α−
3) and a Gaussian G(y) = exp(−y2/4)/8

√
π.
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exponential late time decay of the autocorrelation function.

For finite system sizes L, approximating the discrete Fourier sums by integrals

eventually breaks down at very long times. In this regime the time evolution will

be dominated by the two smallest non-zero wave-numbers, k = ±2π/L, leading to

an exponential decay

f j(t) ≈
1
L

[
f (k = 0, t) + ∑

k0=±2π/L
eik0 j f (k0, t)

]
(6.23)

=
1

4L

[
1 + 2 cos(2π j/L)e−λtcα(2π/L)2α−1

]
(6.24)

for the case of α ≤ 1.5. The exponent of this exponential decay is hence expected to

scale with the system size as ∼ (1/L)2α−1. This prediction is in agreement with our

spin-2PI numerical results. Moreover, this result can be used to extract the diffusion

coefficient Dα = λcα from finite size data.

In the following, we will discuss several physical consequences of the hydrody-

namic scaling functions derived from the classical Master equation, ranging from

the divergence of the spin conductivity to the breakdown of linear-response theory.

6.4.1 Spin conductivity

In this section we examine the spin conductivity σ(q, ω), as calculated from linear-

response theory, and show that the DC conductivity σDC = limω→0 limq→0 σ(q, ω)

diverges in the superdiffusive region α < 1.5.

First we deduce σ(q, ω) in frequency space from the spin correlation function

C(q, t) in real time. We assume that C(q, t) decays as

C(q, t) = C(q) exp(−Dα|q|2α−1t). (6.25)

For the initial state discussed there, C(q) ≡ C(q, t = 0) = 0.25, which coincides

with the spin susceptibility at infinite temperature.

Performing a Laplace transform C̃(q, z) =
∫ ∞

0 dteiztC(q, t), we arrive at

C̃(q, z) =
i

z + iDα|q|2α−1 C(q). (6.26)

The above equation makes the crossover from diffusive over ballistic to superballistic

transport explicit as the power of |q| in the pole of C̃(q, z) determines this property.

Also note that there is no damping of these hydrodynamic modes.

Moreover, one can show that C(q, ω) = 2Re(C̃(q, z + i0+) [423] from C̃(q, z) =∫ dω
2πi C(q, ω)/(ω− z) and the fact that C(q, t) is real and even (although not explicit
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in Eq. (6.25), which is only defined for t > 0, this may be seen from C(x, t) =

Tr(Sz(x, t)Sz(0, 0)) = 1
2 (Tr(Sz(x, t)Sz(0, 0)) + Tr(Sz(0, 0)Sz(x, t))).). Hence,

C(q, ω) = C(q)
2Dα|q|2α−1

ω2 − (Dα|q|2α−1)2 . (6.27)

Finally, we assume that a continuity equation of the form

∂tSz(x, t) + ∂x j(x, t) = 0 (6.28)

holds, where j(x, t) is the spin current density, which is in general non-local in the

case of long-range interactions [424]. In the limit of high temperatures T, the spin

conductivity is given by σ(q, ω) = 1
2T

∫
dt
∫

dx eiωt−iqx 〈j(x, t)j(0, 0)〉 (here we set

kB = 1). It follows that

Tσ(q, ω) =
ω2

2q2 C(q, ω) (6.29)

= C(q)
Dαω2|q|2α−3

ω2 − (Dα|q|2α−1)2 . (6.30)

For the DC conductivity we then get

TσDC =

{
∞ for α < 1.5

DαC(q) for α = 1.5
, (6.31)

showing that σDC diverges in the superdiffusive regime while it follows the Einstein

relation in the diffusive regime. Note that this divergence is qualitatively different

to the one observed in a metal: There, the AC conductivity diverges only at ω = 0

due to the Drude term, but is finite for any finite ω. Here, however, the conductivity

diverges for any frequency ω as q→ 0, i.e. σ(ω, q→ 0) = ∞. This is a result of the

non-local character of spin transport in this model.

6.4.2 Breakdown of linear-response for Lévy flights

In this section we argue that linear-response theory breaks down for long-range

interacting models displaying Lévy flight behavior, in agreement with the discussion

of the previous section. Instead, we find a non-linear relation between the (spin)

current J , and the field E [424],

J ∼ E 2α−2. (6.32)

To arrive at Eq. (6.32), we add a small static homogeneous magnetic field gradient

to the Hamiltonian,

Ĥ(E) = −1
2

L/2

∑
i 6=j=−L/2

J
NL,α|i− j|α

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)
− E

L/2

∑
j=−L/2

j Ŝz
j , (6.33)
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and we proceed by writing down a classical master equation, expected to capture

the behavior of Ĥ(E),

∂t f j = ∑
i 6=j

[
Wi→j(E) fi (1− f j)−Wj→i(E) f j (1− fi)

]
. (6.34)

According to Fermi’s golden rule, Wi→j(E) is proportional to |i− j|−2α based on the

matrix element connecting the initial and final states. Moreover, in the presence of

field E and at finite temperatures T, the transition rates for hops to the left and right

directions differ in such a way that the right hand side of Eq. (6.34) vanishes for

the new equilibrium state of Hamiltonian Eq. (6.33), f eq
i (E). These considerations

lead to a ratio determined by the different Boltzmann weights associated with these

processes,

Wi→j(E)
Wj→i(E)

=
f eq
j (E)(1− f eq

i (E))

f eq
i (E)(1− f eq

j (E))
= exp [(j− i)E/T]

resulting in a modified ansatz. In principle λ → λ(E) could still weakly depend

on (i− j)2 E2, but this would result in a subleading renormalization of the current

compared to the leading order behavior discussed below.

Wi→j(E) =
e(j−i)E/(2T)

cosh[(j− i)E/(2T)]
λ

|i− j|2α
.

We evaluate the current response by linearizing the Fourier transform of the master

equation in occupation numbers f (k), resulting in

∂t f (k) = [W(k; E)W(k = 0; E)] f (k) ≡ r(k; E) f (k),

with a field dependent decay rate

r(k; E) = λ
∫ L/2

1
dx

[
exE/(2T)

cosh(xE/(2T))
e−ikx − 1

x2α
+

e−xE/(2T)

cosh(xE/(2T))
eikx − 1

x2α

]
.

The broken left / right symmetry gives rise to a non-zero drift velocity, evaluated

as

vdri f t = i
dr(k; E)

dk

∣∣∣∣
k=0

= 2λ
∫ L/2

1
dx x1−2α tanh(xE/(2T)). (6.35)

We can distinguish three different regimes based on the behavior of vdri f t. For very

long-ranged interactions α < 1, vdri f t diverges in the thermodynamic limit, resulting

in a diverging current response J for arbitrarily small fields E. On the other hand,

in the regime of standard diffusion, α > 3/2, Eq. (6.35) is dominated by small

distances x = O(1), where we can use the expansion tanh(xE/(2T)) ≈ xE/(2T),

yielding

vdi f f
dri f t ≈ λE/T

∫ ∞

1
dx x2−2α =

λ

3− 2α
E/T = DαE/T.
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We thus recover the standard linear-response

J = vdri f t f (k = 0, 0) ≈ DαE/(4T),

yielding a DC conductivity σDC ≈ Dα/(4T) in agreement with (6.31) obtained from

linear-response theory in the previous section.

The two regions discussed above are separated by a regime displaying an anoma-

lous non-linear-response, 1 < α < 3/2. Here we can remove both the lower and

upper cutoffs from Eq. (6.35), resulting in

vdri f t ≈ 2λ
∫ ∞

0
dx x1−2α tanh(xE/(2T))

= 2λ (E/(2T))2α−2
∫ ∞

0
dy y1−2α tanh(y),

indeed giving rise to anomalous scaling J ∼ (E/T) 2α−2 for 1 < α < 3
2 .

6.4.3 Classical master equation in dimension d > 1

In the following, we extend the results of the classical Master equation to spins at

locations ri in d dimensions. The Master equation (6.12) then reads

∂t frj = ∑
i 6=j

W|ri−rj|( fri − frj), with W|ri−rj| =
λ

|ri − rj|2α
. (6.36)

Fourier transforming again diagonalizes the differential equation, yielding

f (|k|, t) = f (|k|, 0) exp {(W(|k|)−W(|k| = 0)t)}. (6.37)

two spatial dimensions d=2 . Denoting k ≡ |k| in the following, we eval-

uate the Fourier transform of the transition amplitudes in continuous space with

both an IR (system size L) and UV (lattice spacing a = 1) cutoff, yielding

W(k)−W(k = 0) = λ
∫ L

1
dr r

∫ 2π

0
dθ
(

e−ikr cos(θ) − 1
) 1

r2α
(6.38)

= λ 2π
∫ L

1
dr r1−2α (J0(kr)− 1) , (6.39)

with J0(kr) denoting the zeroth order Bessel function of the first kind. For α < 1

we get a divergence in the thermodynamic limit L → ∞, hence we expect the

dynamics to be described by the infinite ranged mean field model in that regime.

Concentrating on α ≥ 1, we can remove the IR cutoff and arrive at

W(k)−W(k = 0) ≈ 2πλ
∫ ∞

1
dr r1−2α [J0(kr)− 1] (6.40)

≈ 2πλ

[
k2α−2

∫ ∞

0
dx x1−2α (J0(x)− 1) +

k2

4

∫ 1

0
r3−2αdr

]
,

(6.41)
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W(k)−W(k = 0) ≈ λ

[
−cαk2α−2 +

k2 π

2(4− 2α)

]
, (6.42)

with

cα = 2π
∫ ∞

0
dx x1−2α (1−J0(x)) = −22−2α πΓ(1− α)

Γ(α)
for 1 < α < 2.

(6.43)

We see that a superdiffusive solution is obtained for 1 < α ≤ 2, where the first term

∼ k2α−2 dominates. Neglecting all other terms, we hence arrive at the scaling ansatz

for a localized excitation f (k, t = 0) = 1
4

fr(t) = (λcα t)−
2

2α−2 F2D
α

(
|r|

(λcα t)
1

2α−2

)
, (6.44)

with

F2D
α (y) =

1
8π

∫ ∞

0
dk kJ0(ky) e−k2α−2

. (6.45)

three spatial dimensions d=3 . We similarly get

W(k)−W(k = 0) = 2πλ
∫ L

1
dr r2

∫ π

0
dθ sin θ

(
e−ikr cos(θ) − 1

) 1
r2α

(6.46)

= 4πλ
∫ L

1
dr r2−2α

(
sin (kr)

kr
− 1
)

, (6.47)

where we get an IR divergence and hence expect mean-field behavior for α < 3/2.

Considering only α ≥ 3/2, we set L→ ∞ and get for small k

W(k)−W(k = 0) ≈ λ

[
−cαk2α−3 +

k2 2π

3(5− 2α)

]
, (6.48)

with

cα = −4π sin(πα)Γ(2− 2α) for 1.5 < α < 2.5. (6.49)

Now superdiffusive behavior is seen for 1.5 < α < 2.5 with a scaling ansatz in real

space for a localized excitation

fr(t) = (λcα t)−
3

2α−3 F3D
α

(
|r|

(λcα t)
1

2α−3

)
, (6.50)

with

F3D
α (y) =

1
8π2y

∫ ∞

0
dk k sin(ky) e−k2α−3

. (6.51)
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6.4.4 Summary and discussion of results for the classical Master equation.

Starting from an initial state with a single excitation in the center of the chain, we

found the solution of the Master equation in Eq. (6.12) by

f j(t) ≈
{

(Dαt)−1/2 G
(

|j|
(Dαt)1/2

)
for α > 1.5

(Dαt)−βα Fα

(
|j|

(Dαt)βα

)
for 0.5 < α ≤ 1.5

(6.52)

in the limit of long times and large system sizes. Here, G(y) = exp(−y2/4)/8
√

π

denotes the Gaussian distribution, indicating normal diffusion for α > 1.5 with

diffusion constant Dα ∝ λ. For 0.5 < α ≤ 1.5, G(y) is replaced by the family of

stable, symmetric distributions Fα(y), given by

Fα(y) =
1
4

∫ dk
2π

exp(−|k|1/βα) exp(iyk), (6.53)

with the constant prefactor Dα = λcα constituting a generalized diffusion coefficient
3. We found cα = −2Γ(1− 2α) sin(πα) from the classical Master equation, with Γ

denoting the gamma function. Furthermore, the exponent of the hydrodynamic tail

βα is given by

βα =
1

2α− 1
. (6.54)

The Fourier transform in Eq. (6.21) only leads to elementary functions for α = 3/2

and α = 1, resulting in a Gaussian and a Lorentzian distribution, respectively 4.

The scaling functions Fα(y) are the fixed point distributions in the generalized

central limit theorem [426] of i.i.d. random variables with heavy tailed distributions.

Importantly, Fα(y) has diverging variance for α < 1.5, undefined mean for α ≤ 1,

and displays heavy tails ∼ |y|−2α. The classical Master equation hence predicts a

cross-over from diffusive (α ≥ 1.5) over ballistic (α = 1) to super-ballistic (0.5 < α <

1) transport.

When adding a linear magnetic field gradient ∼ E ∑i iŜz
i to the Hamiltonian, the

resulting classical Master equation predicts the spin current to depend non-linearly

on the arbitrarily weak E for α < 1.5, indicating a breakdown of linear-response

theory [424], as we show in section 6.4.2. Calculating the current response function

from Eq. (6.52), we found a diverging response for vanishing momentum q→ 0 for

every value of the frequency ω [423].

3 The prefactor 1/4 accounts for the normalization of the correlation function, C(j, t = 0) = δ0,j/4.

Furthermore, reinstating a lattice spacing a, the units of Dα depend on α, in particular it is a velocity

for α = 1.
4 Other closed form solutions exist [425], for example for α = 1.25 in terms of hypergeometric functions.
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Figure 6.4: Short time dynamics. We compare spin-2PI results with second order pertur-

bation theory, Eq. (6.61). (a) The collapse of the autocorrelator for different

exponents α shows that the short time evolution is independent of α and L

when the Hamiltonian is rescaled with Nα,L. (b) The un-equal-time correlation

function for α ∈ {0.75, 1, 1.5, 2} (from top to bottom), shows algebraic tails that

are entirely captured by second order perturbation theory. We used a moving

average over 5− 10 lattice sites to smoothen the results.

6.5 perturbative short time dynamics

Before the emergent classical transport process kicks in, the many-body system first

has to dephase coherence contained in the initial state. As we discussed in chapter

3, this proceeds very quickly due to the presence of many-body chaos. Here, we

only discuss the very initial stages of the dephasing process within the perturbative

short time regime, which holds as long as Jt � 1. We will see that even in this

seemingly trivial regime, the long-range nature of the interactions has important

consequences for the spin correlations.

Here we calculate the short time dynamics of

Tr{Ŝz
i (t)S

z
m(0)} (6.55)

while not rescaling the Hamiltonian, i.e. N = 1 in the notation in Eq. (6.1).

We start by calculating the dynamics of Ŝz
i (t) in the Heisenberg picture,

Ŝz
i (t) = eiĤtŜz

i e−iĤt

≈ Ŝz
i + i Jt

[
Ĥ
J

, Ŝz
i

]
+

(i Jt)2

2!

[
Ĥ
J

,
[

Ĥ
J

, Ŝz
i

]]
+O((Jt)3).
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The (nested) commutators turn out to be

[
Ĥ, Ŝz

i
]
= i ∑

k 6=i
Jik
(
Ŝx

i Ŝy
k − Ŝx

k Ŝy
i

)
, (6.56)

[
Ĥ,
[
Ĥ, Ŝz

i
]]

= −1
2 ∑

j 6=k,k 6=i
Jik Jkj

(
Ŝx

j Ŝx
i Ŝz

k + Ŝx
i Ŝx

j Ŝz
k + Ŝy

j Ŝy
i Ŝz

k + Ŝy
i Ŝy

j Ŝz
k

)

+
1
2 ∑

k 6=i,j 6=i
Jik Jij

(
Ŝx

j Ŝx
k Ŝz

i + Ŝx
k Ŝx

j Ŝz
i + Ŝy

j Ŝy
k Ŝz

i + Ŝy
k Ŝy

j Ŝz
i

)
. (6.57)

When evaluating the trace as a sum over product states in the z-basis, one directly

sees that only terms survive with Ŝx/y
j Ŝx/y

i ∼ δij. Hence the first order contribution

vanishes and we get

Tr{Ŝz
i (t)S

z
m(0)} =

t2

4 ∑
k 6=i

J2
ik
(
Tr{Ŝz

kŜz
m} − Tr{Ŝz

i Ŝz
m}
)
+ Tr{Ŝz

i Ŝz
m}. (6.58)

Furthermore, Tr{Ŝz
kŜz

m} = 1
4 δkm and hence

Tr{Ŝz
i (t)Ŝ

z
m(0)} =

{ 1
4 (1−

t2

4 ∑i 6=k J2
ik) for i = m

t2

16 J2
im for i 6= m

. (6.59)

perturbative time scale . The above expression for the autocorrelator i = m

provokes the definition of a perturbative inverse time scale

NL,α =

√√√√∑
j

∣∣∣∣
L
2
− j
∣∣∣∣
−2α

, (6.60)

which we used to rescale the Hamiltonian in Eq. (6.1) to render the short time

evolution of the autocorrelator of the spin in the middle of the chain independent

of α and L. Notably, in the thermodynamic limit L→ ∞, this time scale approaches

a constant for α > 0.5 while it goes to zero as Lα−0.5 for α < 0.5. For α = 0.5, we

find asymptotically NL→∞,α=0.5 ∼
√

log(L2).

Furthermore, the more general perturbative time scale
√

∑i 6=k Jik is dependent

on the reference spin i, showing that the spins away from the center evolve slower

than the middle spin. As L → ∞, this effect goes away for α > 0.5 (however very

slowly as a function of L for small α), but remains for α < 0.5.

Inserting this perturbative time scale, we find

Tr
[
Ŝz

j (t)Ŝ
z
0(0)

]
≈
{ 1

4 (1−
J2t2

4 ) for j = 0
(

Jt
4NL,α

)2
1
|j|2α for j 6= 0

. (6.61)

Physically, in this regime each spin is precessing in the effective magnetic field

created by all other spins. The autocorrelation function is independent of α and

L due to our choice of the normalization factor NL,α, ensuring that the typical
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Figure 6.5: Hydrodynamic tails in the spin autocorrelator. (a) For long-range coupling

exponents α > 0.5, autocorrelations decay algebraically at late times with an

exponent that depends on α. By contrast for α ≤ 0.5 hydrodynamic tails are

absent. (b) The exponents βα of the hydrodynamic tail obtained from two

different approaches (symbols) agree with the predictions from classical Lévy

flights in the thermodynamic limit (dashed curve). Deviations at large α are due

to finite time corrections to scaling which can also be understood from Lévy

flights.

magnetic field at the center of the chain remains of the order of J. The spatial

correlation function at a fixed time inherits the algebraic behavior of the interaction

strength, falling off as |j|−2α between spins of distance j, which is reproduced by

both dTWA (not shown) and spin-2PI, see Fig. 6.4.

6.6 emergent hydrodynamic transport from quantum dynamics

In this section we will show that the superdiffusive transport expected from the

classical master equation does indeed occur in the long-range XY model. We will

do so by employing both spin 2PI simulations and the discrete truncated Wigner

approximation and comparing our theoretical results to experimental ones obtained

in the trapped ion quantum simulator.
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Jexpt

4

Figure 6.6: Measured auto-correlations (green squares) for 51 ions and α = 1.1 (gray line:

guide to the eye). Error bars, denoting the standard error of the mean are

smaller than the symbols. At short times (red shading), the spin excitation

quickly relaxes to a local equilibrium state. At late times (blue shading) global

conservation laws constrain the relaxation of spin excitations, leading to a slow

power-law decay of the auto-correlations. Insets: Auto-correlations on a double

logarithmic scale for different values of α highlighting the tunable transport.

Gray dashed lines are power laws with the predicted exponent from Lévy flights.

Here, Jexp = 248 rad/s, 129 rad/s, and 116 rad/s for α = 0.9 (51 ions), α = 1.1

(51 ions), and α = 1.5 (25 ions).

6.6.1 Hydrodynamic tails

The scaling form from classical Lévy flights in Eq. (6.52) implies the presence of

a hydrodynamic tail in the autocorrelation function C(j = 0, t) with exponent

βα = 1/(2α− 1), which replaces the universal exponent 1/2 for diffusion in 1D,

see Fig. 6.5 for our field theory results. For α→ 1.5 we find slight deviations from

βα, these can however be explained by a subtle finite-time effect also present in

classical Lévy flights, see Sct. 6.7. For α < 0.5 we find no hydrodynamic tail for

the numerically accessible system sizes L < 601. This matches the expectation that

the system relaxes instantaneously in the thermodynamic limit [412], which is also

indicated by the fact that the perturbative short time scale diverges,NL→∞,α = ∞, for

α ≤ 0.5. On even longer time scales, the discretized Fourier transform underlying

the derivation of Eq. (6.52) is dominated by the smallest wavenumber in finite chains,

and the hydrodynamic tail is replaced by an exponential convergence towards the

equilibrium value 0.25/L with a rate ∼ (1/L)2α−1. The trapped ion experimental

data, Fig. 6.6, is also consistent with the hydrodynamic theory of Eq. (6.52). We

show the coherence of the simulator by comparing its results with exact simulations

in Fig. 6.7.

6.6.2 Spreading of correlations

A more stringent test of the emergent hydrodynamics is obtained from the full

spatial correlation profile. In Fig. 6.8 we show the spreading of tβα C(j, t) for two
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4

Figure 6.7: Auto-correlation function from experiment and exact diagonalization (ED).

In ED we used the experimental Jij matrix for α = 1.5 and L = 25 as well as the

240 initial states used in the experiment.

Figure 6.8: Emergent self-similar time evolution. The correlation function C(j, t) obtained

from spin-2PI for chains of lengths L = 201 (α = 2, subfigures (e-h)), L = 301

(α = 1, subfigures (a-d)). (a,e) C(j, t) multiplied by t1/(2α−1) to account for the

overall decay expected from Lévy flights shows a diffusive cone for α = 2,

whereas for α = 1 a ballistic light-cone emerges. The contour lines for α = 1, 2

correspond to values t1/(2α−1)C(j, t) = 0.03, 10−4, respectively. (b,f) Rescaling of

linearly spaced time slices for 23 ≤ Jt ≤ 84 (α = 1) and 42 ≤ Jt ≤ 226 (α = 2)

(lines become darker as time increases) for the same data as in (a,e) agrees well

with the scaling function expected from classical Lévy flights, Eq. (6.52). The

only fitting parameter is the generalized diffusion coefficient. (d,h) Rescaled

time slices (2 ≤ Jt ≤ 28) on a double-logarithmic scale reveal for α = 1 the heavy

tail ∼ y−2 expected from Lévy flights (Eq. (6.52)), where the dashed-dotted line

is the same fit as in (b). The tail ∼ y−4 (thick black line) for α = 2 (8 ≤ Jt ≤ 85)

is a finite time effect also present in classical Lévy flights. (c,g) Unscaled data.

values of α obtained from spin 2PI. While for α = 2 a diffusive cone is visible,

the spreading for α = 1 is ballistic as expected from the Master equation. In
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Figure 6.9: Spatial correlation profiles measured in the trapped ion simulator. Spatially

resolved correlations for column A) α = 1.5 and column B) α = 1.1. The spatial

correlations are measured at short times (left), intermediate times (middle),

and in the hydrodynamic late-time regime (right). STE: analytic short-time

expansion, ED: exact diagonalization accessible only for the shorter chain of 25

ions. In the hydrodynamic regime (right) the measured profiles are compared

to predictions from Lévy flights. The spatial profile in A) is compatible with

a Gaussian (dashed) and in B) with a Lorentzian (solid), as supported by the

reduced χ2 values of the fit: A) χ2
L = 3.9, χ2

G = 1.3; B) χ2
L = 1.1, χ2

G = 3.6

(obtained by fitting over the central 27 sites).
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Figure 6.10: Contrasting the infinite temperature background with the spin polarized

background in the trapped ion simulator. A) The deterministically prepared

excitation of the central ion strongly interacts with all the other excitations

of the infinite temperature background and slowly spreads through the sys-

tem following the laws of classical hydrodynamics. B) By contrast, a single

excitation on top of the fully down-polarized state |↓ · · · ↓↑↓ · · · ↓〉 has no

other excitations to scatter off and therefore spreads freely, exhibiting quantum

interference patterns. Data is measured for 25 ions with power-law exponent

α = 1.5.

the experiment, two values of the long-range exponent, α = 1.5 with 25 ions

and, α = 1.1 with 51 ions, were realized to test the diffusive and superdiffusive

regimes, respectively. In Fig 6.9 we show the corresponding results. At early times

(3.1ms) the quantum dynamics is well-described by an analytic short-time expansion

of the equations of motion, see section 6.5. At intermediate times (14.1ms), the

excitation starts spreading through the system, but some quantum coherence

remains, indicated by the spatial oscillations. For 25 ions, the measured dynamics

compares well with results obtained from exact diagonalization, demonstrating the

coherence of the simulator.

At the latest times shown, interactions have entangled local degrees of freedom

with the rest of the system. Quantum interference patterns are averaged out and

the hydrodynamic regime is entered. This becomes even more apparent in the

space-time correlations; Fig. 6.10A. By contrast, a single excitation on top of a

spin-polarized state cannot scatter, and the associated correlations exhibit coherent

space-time oscillation patterns instead [187]; Fig. 6.10B.

The measured hydrodynamic profiles are compatible with a Lorentzian for

α = 1.1 ( fα=1.1 is still very close to a Lorentzian) and with a Gaussian for α = 1.5,

see χ2 analysis in Fig. 6.9 (right panels), in agreement with Eq. (6.52).
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Figure 6.11: Self-similar scaling and exctraction of transport coefficients. At late times

the correlations exhibit a self-similar scaling, relating space and time with a

microscopic transport coefficient Dα. Rescaled correlations τxCj(t) as a function

of rescaled space j/τx, where τx = (Jexpt)1/(2α−1). A) α = 0.9, 51 ions, B)

α = 1.1, 51 ions, and C) α = 1.5, 25 ions. Correlations are shown for times

Jexpt > 5 (darker colors correspond to later times).

6.6.3 Self-similarity

One of the most striking predictions of hydrodynamics is the self-similar scaling of

the correlations, relating time and space by a universal dynamical scaling exponent,

given by 1/(2α− 1), and a non-universal constant, the transport coefficient Dα. In

analogy with the universal scaling of correlation functions near a second-order

equilibrium phase transition, the hydrodynamic scaling indicates the proximity

of the dynamics to a thermal fixed point. The scaling collapse of the 2PI data in

Fig. 6.8 b), f) shows good agreement with classical Lévy flights, Eq. (6.52), at late

times. This is also true for the experimental data, Fig. 6.11.

Interestingly, we find heavy tails even for α ≥ 1.5 in spin 2PI. We explain these

by sub-leading corrections to the scaling ansatz Eq. (6.52) present in the Master

equation, see section 6.7. They survive up to algebraically long times for α > 1.5,

turning to a logarithmic correction at α = 1.5 [427].

For α & 2 we furthermore find signs of peaks propagating ballistically for

intermediate times in the dTWA scaling functions, which survive longer as α

increases. These peaks are remnants of the integrable point at α = ∞, see section 6.8.

Such behaviour is not present in the spin-2PI data as this method is not able to

capture integrable behaviour [215].

6.6.4 Generalized diffusion constant

While the scaling form of the data is universal and can be predicted from purely

hydrodynamic reasoning, the transport coefficient Dα depends on the full quantum

many-body spectrum and is therefore challenging to predict from analytical or
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Figure 6.12: Generalized diffusion constant. The α dependence of the diffusion constant

obtained from fits with the scaling function of Lévy flights, Eq. (6.52). The

qualitative behavior follows the Lévy flight prediction Dα ∼ cα for α < 1.5.

numerical methods. We obtain Dα from the fits to the scaling function. In Fig. 6.12 we

show the thus obtained approximate theoretical data. The leading α dependence of

Dα can be explained by Dα ∼ cα for α < 1.5 5, hence the prefactor λ−1, constituting

the quantum many-body time scale, depends only weakly on α. As expected from

their differing approximate treatment of the quantum fluctuations in the system, we

find slight differences between the values of λ determined by spin-2PI and dTWA,

λ2PI ≈ 0.25 and λdTWA ≈ 0.15. For α > 1.5 we find considerable differences between

the dTWA and spin-2PI results, because the emergent ballistic peaks, stemming

from the nearby integrable point, accelerate the spreading in the dTWA simulations.

In contrast to the regime α < 1.5, the dTWA results for the quantum many-body

time scale λ show a strong α dependence, with Dα increasing as a function of α due

to the approach to the integrable point at α→ ∞.

From similar fits to the scaling functions in the experiment, Fig. 6.11, Dα/Jexp =

0.5+0.2
−0.1, 0.8+0.3

−0.2, 2.6+0.9
−0.7 for α = 0.9, 1.1, 1.5 were found. Note that a direct comparison

to the theoretical values is not possible because the Dα are very sensitive to differ-

ences in the microscopic model, which in the trapped ion experiment result from

deviations from the pure algebraic form of the interactions.

6.7 corrections to hydrodynamic scaling

For finite times, the two terms in Eq. (6.17) compete, leading to corrections to the

leading-order scaling ansatz. As we show below, these corrections survive until

algebraically long times for α > 1.5, and they add a logarithmic correction to the

5 The spurious divergence of cα in the limit α = 1.5 is cured by logarithmic corrections to scaling, see

section 6.7. Furthermore, without the normalisation NL,α, D(α) ∼ NL,α → ∞ for α→ 0.5.
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scaling ansatz at the threshold value α = 1.5, explaining all major deviations from

leading-order scaling we observe in our numerical data.

diffusive regime , α > 1.5 Taking into account both terms in Eq. (6.17), then

rescaling as k→ k
√

Dαt and j→ y = j/
√

Dαt where Dα = λ/(2α− 3), and finally

expanding the remaining time dependent term for t→ ∞, we arrive at

√
Dαt f j(t) ≈

1
4

∫ dk
2π

exp
(
iky− k2) (1− (Dαt)−α+3/2 cα(2α− 3)|k|2α−1

)

= G(y)− (Dαt)−α+3/2 cα(2α− 3)Γ(α)
16 π

1F1

[
α,

1
2

,−y2

4

]
, (6.62)

with 1F1 [·, ·, ·] denoting the Kummer confluent hypergeometric function. Most

importantly, the latter exhibits heavy tails ∼ y−2α for y→ ∞, reproducing the finite

time data for α = 2 in Fig. 6.13.

We show this behaviour more explicitly in Fig. 6.13, where we compare our

numerical results to a scaling function involving a single fit parameter D2,

√
D2t f j(t) ≈ G(y)− 1

96
√

D2t 1F1

[
α,

1
2

,−y2

4

]
, (6.63)

following from Eq. (6.62) using limα→2 sin(απ)Γ(1− 2α) = π/12. Furthermore,

according to Eq. (6.62) the approach to Gaussian scaling is algebraically slow with

exponent 1.5− α→ 0 for α→ 1.5. As we show in the following, at this special value

α = 1.5 this algebraic convergence to scaling is replaced by a persistent logarithmic

correction to the scaling ansatz.

crossover point α = 1.5 In the limit α → 1.5, both prefactors in Eq. (6.17),

cα and 1/(3− 2α), diverge with their difference remaining finite, −cα + 1/(3−
2α)→ γ− 3/2 ≈ −0.92, with γ denoting the Euler-Mascheroni constant, resulting

in a Gaussian leading order term, ∂t f (k) ≈ −0.92 λ k2. However, an additional

logarithmic correction from limα→1.5 cα(|k|2α−1 − k2) = 0.5k2 log k2 also contributes.

Following the derivation in Ref. [427], we rescale k as k → k
√

λt Ω(λt)/2, with

Ω(λt) a function to be determined, and get
√

λt Ω(λt)/2 f j(t)

≈ 1
4

∫ dk
2π

exp(ikỹ) exp
(

k2

Ω(λt)
ln
(

2
exp(2γ− 3)

λt Ω(λt)

)
+

k2

Ω(λt)
ln(k2)

)
(6.64)

with scaling variable ỹ = j/
√

λt Ω(λt)/2. The function Ω(λt) is chosen in such a

way that the first term in the exponent is equal to −k2, reproducing the leading

order Gaussian behavior [427]. This leads to

Ω(λt) =
∣∣∣∣W−1

(
−2 exp (2γ− 3)

λt

)∣∣∣∣ , (6.65)
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with W−1 the secondary branch of the Lambert W-function. As discussed in

Ref. [427], this gives Ω(λt) ≈ ln(λt) ∼ ln t, for t → ∞, yielding a logarithmic

correction to the scaling ansatz. Finally, we expand the resulting expression for

large time Ω(λt) ∼ ln(λt)� 1 and arrive at

√
λt Ω(λt)/2 f j(t) ≈

1
4

∫ dk
2π

exp(ikỹ) exp(−k2)

(
1 +

k2

Ω(λt)
ln(k2)

)
(6.66)

= G(ỹ)
(

1 +
1

4 Ω(λt)
((
−2 + ỹ2) (− 2 + γ + ln(4)

)

+ 2 exp
(
ỹ2/4

)
1F(1,0,0)

1

[
3
2

,
1
2

,− ỹ2

4

] ))
, (6.67)

with the superscript (1, 0, 0) denoting the derivative with respect to the first argu-

ment. This expression shows the logarithmically slow convergence towards the

Gaussian scaling function for α = 1.5, as well as a persistent logarithmic correction

to the scaling form, with scaling variable ỹ = j/
√

λt Ω(λt). Furthermore, for finite

t, the above function exhibits a heavy tail
√

λt Ω(λt) f j,α=1.5(t) ∼ y−3 and matches

our 2PI results as shown in Fig. 6.13, using the single fitting parameter λ. As times

were note large enough in the simulations to be in the regime where Ω(λt) ≈ ln(t),

we used the full expression in Eq. (6.65) for Ω(λt) to fit the unrescaled f j(t) at a

fixed time t.
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Figure 6.13: Corrections to scaling. The heavy tails found in the scaling functions for

α ≥ 1.5 are completely captured by the finite time corrections to scaling in the

classical Master equation, with fit functions given in Eqs. (6.63) and (6.67). Note

that there is only a single fit parameter (given by the quantum many body time

scale 1/λ), with its numerical value being approximately equal in the fit to the

(scaling) functions obtained from the leading order (LO) and next-to-leading

order (LO+NLO) in a simultaneous k→ 0, t→ ∞ expansion.

superdiffusive regime , α < 1.5 While there are no qualitative corrections to

the scaling function in this regime, the term ∼ k2 in Eq. (6.17) leads to a correction
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to the exponent of the hydrodynamic tail as α↗ 1.5. When evaluating the Fourier

transform numerically with the full expression in Eq. (6.17) for α . 1.5, we still

find an approximate hydrodynamic tail with a modified exponent reproducing the

finite-time dTWA and spin-2PI results more closely than the ’bare’ expression βα

and hence accounting for the slight deviations between the numerical results and

βα. For example, we get βα=1.5 ≈ 0.57 from this procedure, in agreement with 2PI

(β2PI
α=1.5 ≈ 0.58± 0.02) and dTWA (βdTWA

α=1.5 ≈ 0.59± 0.02).

6.8 integrable limit α → ∞

The long-range XY model converges to an integrable point with increasing exponent

α→ ∞, where the diffusive hydrodynamic description is expected to break down.

Here we discuss the influence of the vicinity of this integrable point on the spin

transport.

The integrable point at α→ ∞ corresponds to the nearest-neighbor interacting

XY model with Hamiltonian

Ĥ = − J
2

1
Nα→∞

∑
〈i,j〉

(
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)
. (6.68)

Using Nα→∞ =
√

2 and applying a Jordan-Wigner transformation Ŝx
i = 1

2 (ĉ
†
i + ĉi),

{ĉi, ĉ†
i } = 1, we arrive after a Fourier transformation ĉj = ∑k eikj ĉk/

√
L at

Ĥ = − J√
2

∑
k

cos(k)ĉ†
k ĉk. (6.69)

This means that for α→ ∞ we expect ballistic spin transport with a velocity given

by the group velocity vg = maxk(∂k(J cos(k)/
√

2)) = J/
√

2.Note that while we

employed periodic boundary conditions here, the same result could have been

obtained with open boundary conditions where the eigenfunctions are not plain

waves of the form eikj but standing waves ∼ sin(kj) with k = nπ/(L + 1), n ∈
{1, .., L} [187].

In Fig. 6.14 we show the spin correlation function C(j, t) obtained from dTWA

for α = 3. For short times, we find ballistically propagating peaks that get gradually

damped as they move towards the edges of the chain. From the time evolution of the

position of the peaks we can deduce the propagation velocity and find vα=3 ≈ 0.5J,

which is not too far from the nearest-neighbour result of
√

2J ≈ 0.7J. As we found

this discrepancy not to change as α is increased, we interpret it as a short-coming of

this method, which is expected to work less well as the interactions become shorter

ranged [420].

At later times, the center of the correlation function again indicates diffusive

scaling, showing that interactions between particles are still strong enough to
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Figure 6.14: Ballistic spreading at short times for α = 3 from dTWA.– At short times

(Jt ∈ {6, 12, 18, 24, 36}) the spin correlation function shows ballistic peaks

propagating towards the boundaries of the chain. (a) The scaling collapse of

C(j, t) when rescaling with Jt as well as a linear growth of the peak position

(inset) indicates ballistic transport. The black line indicates the velocity v ≈ 0.5J

extracted from the growth of the peak position (dashed line in the inset). (b)

Unrescaled plot showing the propagation of the peaks. (c) Diffusive rescaling

showing the late time crossover to diffusive behavior at the center of the chain.

effectively dephase the system, leading to classical hydrodynamical transport at

late times. We expect the time at which diffusive transport is restored to diverge

as α→ ∞. Whether the crossover to undamped ballistic transport happens at any

finite α, i.e. whether the long-range interacting XY model becomes integrable at

α < ∞ is an open question.

We do not find any such peaks revealing the nearby integrable point in spin-2PI

simulations, in line with the previous finding that this method is not able to capture

integrable dynamics in the XXZ spin chain [215].

6.9 conclusions

In this chapter, we have shown that spin transport at high temperatures in long-

range interacting XY-chains is well described by Lévy flights for long-range inter-

action exponents 0.5 < α ≤ 1.5, effectively realizing a random walk with infinite

variance of step sizes. In particular, we have shown that the scaling function of the

unequal time spin correlation function covers the stable symmetric distributions, in

accordance with the generalized central limit theorem. While the system relaxes

instantly for α < 0.5, standard diffusion was recovered for α > 1.5, with heavy tails

from finite time corrections surviving until extremely long times. We demonstrated

the non-trivial dependence of the generalized diffusion coefficient Dα on α, and

found that it is captured by classical Lévy flights, with the quantum many body

time scale being approximately independent of α.
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We have tested our theoretical predictions by comparison to results obtained

in a trapped ion quantum simulator by the Innsbruck trapped ions group. The

measurement of the full spatio-temporal profile of the hydrodynamic scaling func-

tions experimentally established the tunable family of transport ranging from

conventional diffusion to anomalous superdiffusion predicted by our analytical and

numerical methods.

While we only studied one-dimensional systems, we expect this phenomenon to

generalize straightforwardly to d > 1 dimensions. Assuming the effective classical

Lévy flight picture persists, superdiffusive behaviour would be found for d/2 <

α < 1 + d/2 with the exponent of the hydrodynamic tails given by d/(2α − d).

Furthermore, we indicated that Lévy flights also imply a non-linear-response of the

spin current to magnetic field gradients.

An exciting prospect is to investigate transport in models with enhanced sym-

metries, which can be realized in trapped ions by suitably designed Floquet proto-

cols [428]. Moreover, our tools for measuring high-temperature correlations can be

readily applied to other quantum devices with local control, including quantum

gas microscopes, Rydberg atom arrays, and superconducting qubits. New classes of

hydrodynamics can be realized and probed in that way.

6.10 outlook : kinetic equations from spin 2pi

Here we seek to derive kinetic equations for the spin one-point function from the

Schwinger boson Spin 2PI approach developed in Ref. [215]. The derivation is in

analogy to the usual derivation of self-consistent kinetic equations from 2PI and

might ultimately lead to an analytic derivation of the effective hydrodynamics

from first principles. In the short term, kinetic equations could be solved for more

elaborate approximations then the one employed here, for example probing the

convergence of the diffusion coefficient in a perturbative expansion.

In our case, there is no contribution from the LO term and no magnetic field,

hence the evolution equations for the Schwinger boson (SB) (anti-)commutator F/ρ

with self-energies ΣF/ρ become

∂t1 Fi(t1, t2) =
∫ t1

t0

dt A ◦ Σρ
i (t1, t) ◦ Fi(t, t2)−

∫ t2

t0

dt A ◦ ΣF
i (t1, t) ◦ ρi(t, t2),

(6.70)

∂t1 ρi(t1, t2) =
∫ t1

t2

dt A ◦ Σρ
i (t1, t) ◦ ρi(t, t2), (6.71)

where we defined A ≡
[
1⊗ iσy

]
and made the SB indices explicit by denoting the

matrix product in SB space by ◦.
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The evolution equations for the second time index t2 can be obtained by renaming

t1 ↔ t2 in above equations and using that F, ΣF are symmetric and ρ, Σρ, A are

antisymmetric, resulting in

∂t2 Fi(t1, t2) =
∫ t2

t0

dt Fi(t1, t) ◦ Σρ
i (t, t2) ◦ A−

∫ t1

t0

dt ρi(t1, t) ◦ ΣF
i (t, t2) ◦ A,

(6.72)

∂t2 ρi(t1, t2) = −
∫ t1

t2

dt ρi(t1, t) ◦ Σρ
i (t, t2) ◦ A. (6.73)

By introducing retarded and advanced components as

GR
i (t1, t2) = Θ(t1 − t2)ρ(t1, t2)i, GA

i (t1, t2) = −Θ(t2 − t1)ρ(t1, t2)i, (6.74)

we can furthermore write the sum of Eqs. (6.70), (6.72) and Eqs. (6.71), (6.73) as

(∂t1 + ∂t2)Fi(t1, t2) =
∫ ∞

−∞
dt Θ(t− t0)

{
A ◦

(
ΣR

i (t1, t) ◦ Fi(t, t2)

− ΣF
i (t1, t) ◦ GA

i (t, t2)

)

−
(

Fi(t1, t) ◦ ΣA
i (t, t2)− GR

i (t1, t) ◦ ΣF
i (t, t2)

)
◦ A
}

,

(6.75)

(∂t1 + ∂t2)ρi(t1, t2) =
∫ ∞

−∞
dt
{

A ◦
(

ΣR
i (t1, t) ◦ ρi(t, t2) + Σρ

i (t1, t) ◦ GA
i (t, t2)

)

−
(

GR
i (t1, t) ◦ Σρ

i (t, t2) + ρi(t1, t) ◦ ΣA
i (t, t2)

)
◦ A
}

.

(6.76)

In the equation for ρ we have used the identity
∫ t1

t2
dt =

∫ ∞
−∞ dt(Θ(t1 − t)−Θ(t2 −

t)). Note that in order to derive Eqs. (6.76), (6.75) we have not employed any

approximations yet.

In order to derive kinetic equations for the late time dynamics, we assume the

initial time to be in the distant past, i.e. t0 → −∞, transform to Wigner coordinates

(T, τ) = ( 1
2 (t1 + t2), t1 − t2) and employ both a Fourier transform with respect to

the relative time τ and a gradient expansion with respect to the central time T. The

latter two can be done simultaneously by using the identity [210]
∫

dτ exp(iωτ)
∫

dt f (t1, t)g(t, t2) ≈ f (T, ω)g(T, ω) (6.77)

to lowest order in the gradient expansion. We hence get

∂T Fi(T, ω) = A ◦
(

ΣR
i ◦ Fi − ΣF

i ◦ GA
i

)
−
(

Fi ◦ ΣA
i − GR

i ◦ ΣF
i

)
◦ A (6.78)

∂Tρi(T, ω) = A ◦
(

ΣR
i ◦ ρi + Σρ

i ◦ GA
i

)
−
(

GR
i ◦ Σρ

i + ρi ◦ ΣA
i

)
◦ A, (6.79)
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where we have suppressed the (T, ω) dependence of all two point functions on the

RHS. Note that contrary to O(N) symmetric relativistic scalar field theories [210],

the spectral function does not appear to be trivially constant to lowest order in the

gradient expansion due to the matrix structure in this theory, although we can’t

exclude that there is some non-obvious identity leading to the vanishing of the

right hand side.

From Eq. (6.78) we can now deduce the kinetic equation for the local mag-

netizations by using that they are related to the equal-time SB anticommuta-

tor by 〈Ŝα
i (t)〉 = 1

4 Tr {KαFi(t, t)}, where Kα
ab = [σx ⊗ 1]ab δαx −

[
σy ⊗ σy

]ab
δαy +

[σz ⊗ 1]ab δαz and α ∈ {x, y, z} is the spin component. Hence,

∂T〈Ŝα
i (T)〉 =

∫ dω

8π
Tr
{
Kα ◦ A ◦ (ΣR

i ◦ Fi − ΣF
i ◦ GA

i − Fi ◦ ΣA
i + GR

i ◦ ΣF
i )
}

, (6.80)

where we have used the cyclicity of the trace and that Kα A = AKα. By comparing

the above result to the corresponding result in the O(N) model (c.f. Eq.(3.95) in [210]),

one may identify the local magnetization as the ’occupation number’ appearing in

the Boltzmann equation by analogy.

So far the only approximation we made is the gradient expansion. In the following,

we will now make approximations for the self-energy Σ, employing the 1/N

expansion presented in [215].

Self-energies to NLO in 1/N

For our later purposes it will be advantageous to define the auxiliary field corre-

lator slightly differently to how it’s done in Ref. [215]. This will also lead to an

improvement on the numerical evaluation of the full Kadanoff-Baym equations,

improving the scaling with system size from quadratic to linear. We thank Asier

Piñeiro-Orioli for pointing this trick out to us.

We start by replacing Eq. (64) in Ref. [215] with

Dαβ
ij (t1, t2) = i Jα

ijδ
αβδC(t1 − t2) + D̂αβ

ij (t1, t2). (6.81)

Inserting this into Eq. (45) and decomposing D̂(t1, t2) = DF(t1, t2)− i
2 sgnC(t1 −

t2)Dρ(t1, t2), we obtain

DF,αβ
ij (t1, t2) = ∑

k
Jα
ik

{
−ΠF,αβ

k (t1, t2)Jβ
kj +

∫ t1

0
dt ∑

δ

Πρ,αδ
k (t1, t)DF,δβ

kj (t, t2)

−
∫ t2

0
dt ∑

δ

ΠF,αδ
k (t1, t)Dρ,δβ

kj (t, t2)

}
, (6.82)

Dρ,αβ
ij (t1, t2) = ∑

k
Jα
ik

{
−Πρ,αβ

k (t1, t2)Jβ
kj +

∫ t1

t2

dt ∑
δ

Πρ,αδ
k (t1, t)Dρ,δβ

kj (t, t2)

}
.

(6.83)
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The SB self energies become,

ΣF
i (t1, t2) = −

1
4 ∑

αβ

Kα ◦
(

Fi(t1, t2)DF,αβ
ii (t1, t2)−

1
4

ρi(t1, t2)Dρ,αβ
ii (t1, t2)

)
◦ Kβ,

(6.84)

Σρ
i (t1, t2) = −

1
4 ∑

αβ

Kα ◦
(

ρi(t1, t2)DF,αβ
ii (t1, t2) + Fi(t1, t2)Dρ,αβ

ii (t1, t2)

)
◦ Kβ,

(6.85)

i.e. contrary to the expressions in Ref. [215], no sums over lattice indices are involved

here and the only expression in which the interaction matrix J appears is in the

auxiliary field one- and two-point functions. The auxiliary field self energies stay

the same, but we note them here for completeness:

ΠF,αβ
i (t1, t2) = −

1
8

Tr
{
Kα ◦

(
Fi(t1, t2) ◦ Kβ ◦ Fi(t1, t2)

+
1
4

ρi(t1, t2) ◦ Kβ ◦ ρi(t1, t2)

)}
, (6.86)

Πρ,αβ
i (t1, t2) =

1
4

Tr
{
Kα ◦ Fi(t1, t2) ◦ Kβ ◦ ρi(t1, t2)

}
, (6.87)

where the trace is over the SB indices.

Furthermore, the connected spin two point functions

FS,αβ
ij (t1, t2) ≡

1
2
〈
{

Ŝα
i (t1), Ŝβ

j (t2)
}
〉

c
, (6.88)

ρ
S,αβ
ij (t1, t2) ≡ i 〈

[
Ŝα

i (t1), Ŝβ
j (t2)

]
〉 . (6.89)

can be expressed in terms of the connected auxiliary field correlators as

FS,αβ
ij (t1, t2) = ∑

k,l
[J−1]αikDF,αβ

kl (t1, t2)[J−1]
β
l j, (6.90)

ρ
S,αβ
ij (t1, t2) = ∑

k,l
[J−1]αikDρ,αβ

kl (t1, t2)[J−1]
β
l j. (6.91)

This is directly obvious from following the derivation in appendix D of Ref. [215]

with the modified expression for D.

Gradient expansion of the self-energies to NLO in 1/N

In order to perform a gradient expansion of the memory integrals in Eq. (6.83), we

note that

Θ(t1 − t2)
∫ t1

t2

dt =
∫ ∞

−∞
dtΘ(t1 − t)Θ(t− t2), (6.92)

Θ(t2 − t1)
∫ t1

t2

dt = −
∫ ∞

−∞
dtΘ(t2 − t)Θ(t− t1). (6.93)
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It follows to first order in the gradient expansion that

DR,αβ = ∑
δ

[
1− JΠR

]−1,αδ
×
(
−JδΠR,δβ × Jβ

)
, (6.94)

DA,αβ = ∑
δ

[
1− JΠA

]−1,αδ
×
(
−JδΠA,δβ × Jβ

)
, (6.95)

where × denotes the matrix product with respect to spatial indices. There is no

matrix product between matrices without ×, e.g. [JδΠA,δβ]ij = Jδ
ijΠ

A,δβ
jj (no sum

convention).

Proceeding similarly for DF, we find

DF,αβ = ∑
δ

[1− JΠR]−1,αδ ×
(
−JδΠF,δβ × Jβ + ∑

γ

JδΠF,δγ × DA,γβ

)
(6.96)

While analytical results were difficult to derive from this derivation, it might

be instructive to solve these kinetic equations numerically, as they might give

access to diffusion coefficients in a larger variety of models. Furthermore, the 2PI

approximation could be made more elaborate, up to the point where a full solution

of the Kadanoff-Baym equations are difficult. Then, the simpler structure of the

kinetic equations might be advantageous.





Part II

N O N E Q U I L I B R I U M P R O B E S O F Q UA N T U M M AT T E R

While the previous part was focussed on far-from-equilibrium settings,

we will study situations closer to, but still out of equilibrium in this part.

In particular, we will use some of the intuitions and methods developed

while studying thermalization dynamics to learn about equilibrium

phases of matter and their stability.





7
S C R E E N E D H A RT R E E - F O C K T H E O RY O F T H E D I S O R D E R E D

E L E C T R O N G A S

7.1 introduction

The interplay of disorder, interactions and Fermionic statistics is at the heart

of condensed matter physics. For instance, the scattering rates of electrons on

impurities (as well as phonons) determines the resistivity of metals in a semi-

classical model. More extremely, Anderson [429] showed that strong disorder

can even lead to a full localization of electronic wavefunctions due to quantum-

mechanical interference. Doped semiconductors exhibit a quantum phase transition

from a metal to an insulator as a function of the doping density, i.e. the density

of (disordered) charge carriers. While frequently, Anderson’s model is invoked in

these materials, the presence of strong, long-range Coulomb interactions challenges

this interpretation [430, 431]. In particular, it remains unclear whether well-defined

quasiparticles exist on the insulating side of the transition [432] and whether

screening of the Coulomb interactions plays an important role. Recently, non-linear

spectroscopy techniques have been employed to study phosphorous-doped silicon

in more detail [433] which found that such well-defined electronic excitations do

indeed not exist. Due to linear-in-frequency scaling of the found optical excitations

they dubbed this phase an “marginal Fermi glass”. The authors argued that dipoles

corresponding to particle-hole excitations are the dominant excitations at very

large disorder and interaction strength. However, numerical evidence based on a

microscopic theory which can also describe the transition into the metallic side has

so far not been obtained.

Here, we 1 make steps towards describing this state of matter by developing a

screened Hartree Fock theory of the disordered three-dimensional electron gas, with

which the ground state can be obtained self-consistently. We furthermore construct

an effective Hamiltonian for the one-particle-hole sector above the HF ground state

as a first step towards a microscopic theory of the marginal Fermi glass.

1 This project was conducted in collaboration with Sarang Gopalakrishnan and Michael Knap.
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7.2 model

Phosphorous dopants have five electrons in their outermost shells. When doping,

tetrahedrally bonded silicon atoms are replaced by phosphorous atoms. Four of the

phosphorous valence electrons are used for the bonds to the surrounding silicon

atoms. The dynamics of the remaining “surplus” electrons of many phosphorous

dopants can then be modelled by a Hubbard-type model [434], where the sites

represent the locations of the phosphorous atoms,

Ĥrandom = ∑
i 6=j

Jij ĉ†
i ĉj + ∑

i
µi ĉ†

i ĉi +
1
2 ∑

i 6=j
Uij ĉ†

i ĉi ĉ†
j ĉj, (7.1)

with Uij ∼ 1/|ri − rj| are the Coulomb interactions between the sites at locations ri

and the Jij ∼ exp(−const.|ri − rj|) are exponentially decaying hopping strengths.

The on-site potential µi = −µ + hion
i consists out of a global chemical potential

µ and a potential resulting from the interactions with the positive charges of the

phosphorous ions [435], hion
i = −∑j 6=i UijK with K = Ne/N the filling. As the

dopants are randomly positioned, the hopping strengths and interactions strengths

between neighbouring sites are in principle random. However, one can replace this

substitutionally disordered model with a model on the square lattice and on-site

disorder by perturbatively considering the effects of the random couplings, see e.g.

section III.B.1. in Ref. [433]. This way, we consider

Ĥ = ∑
i 6=j

Jij ĉ†
i ĉj + ∑

i
µi ĉ†

i ĉi +
1
2 ∑

i 6=j
Uij ĉ†

i ĉi ĉ†
j ĉj, (7.2)

where Jij = −tδ〈i,j〉 is a nearest-neighbour hopping on the square lattices and

Uij = U/|~ri −~rj| is the Coulomb interaction. The chemical potential is modified

µi → µi + hi with random fields hi phenomenologically replacing the substitutional

disorder. It is sampled from a uniform distribution with width ∆ and mean 0, i.e.

hi ∈ [−∆/2, ∆/2].

7.3 screened hartree-fock approach

We combine a Hartree-Fock approximation with screened interactions. The self-

consistency loop proceeds as follows:

1. Initialize the screened interaction with the bare interaction W = U.

2. Solve the Hartree-Fock problem self-consistently (see section 7.3.1), obtaining

the eigenvalues εp and matrix of eigenvectors V.
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3. Determine the static retarded susceptibility (see section 7.3.2 for a derivation)

χR
ij = ∑

k,k′
(V∗jkVikV∗ik′Vjk′)

nk′ − nk

εk′ − εk + iη
. (7.3)

with number of electrons Ne and from that the screened interaction by

W = [1−UχR]−1U. (7.4)

4. Iterate steps 2-3 until convergence.

7.3.1 Self-consistent solution of Hartree-Fock problem

After having initialized the single particle density matrix Dij = 〈ĉ†
j ĉi〉 with some

initial guess fulfilling ∑i Dii = N, the self-consistency loop proceeds as follows

1. Construct Hartree-Fock Hamiltonian. The approximate Hamiltonian within

HF is given by Ĥ = ∑ij Heff
ij ĉ†

i ĉj with

Heff
ij = Jij + (µi + ∑

k
UikDkk)δij −WijDij, (7.5)

where we replaced the bare interactions with screened interactions Uij → Wij

in the Fock term, but not in the Hartree term. This is because this would lead

to double counting (polarization insertions in Hartree diagram are generated

by the self-consistency loop as they are equivalent to self-energy insertions).

2. Diagonalize HF Hamiltonian By diagonalizing Heff = VHdiagV† with eigen-

values εp, the diagonal many-body Hamiltonian is given by Ĥdiag = ∑p εp c̃†
p c̃p

with the new creation/annihilation operators following as c̃†
p = ∑i Vipc†

i , c†
i =

∑p V∗ip c̃†
p

3. Thermal single particle density matrix. We can now calculate Dij in a thermal

ensemble ρ̂ by

Dij = ∑
k,k′

V∗jkVik′ Tr
(

ρ̂c̃†
k c̃k′
)

(7.6)

= ∑
k

V∗jkViknβ,µ(εk) (7.7)

β→∞
= ∑

k≤Ne

V∗jkVik, (7.8)

with the Fermi-Dirac distribution nβ,µ(ω) = 1/(eβ(ω−µ) + 1) and the number

of electrons Ne.
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4. Determine chemical potential By solving

Ne = ∑
k

nβ,µ(εk) (7.9)

for µ. For β = ∞, this reduces to setting µ to the Fermi energy, i.e. the Nth

eigenvalue.In fact, there is an ambiguity, as any choice between the Nth and

N + 1th eigenvalue leads to this normalization, as noted in Ref. [436]. We set

it to a random value between the two.

5. Convergence Iterate steps 2-4 until convergence has reached for D within

∼ 10−4 relative error.

7.3.2 Screening from Lindhard function

We construct the Lindhard function corresponding to the effective (Hartree-Fock

renormalized) free Fermion Hamiltonian to calculate a screened interaction. The

HF-Hamiltonian is diagonalized by Ĥdiag = ∑p εp c̃†
p c̃p with the diagonalized cre-

ation/annihilation operators being connected to the real space ones by c̃†
p =

∑i Vipc†
i , c†

i = ∑p V∗ip c̃†
p. One can then show that the lesser/greater Green’s functions

are given by

G<
ij (t, t′) ≡ i Tr(ρc†

j (t
′)ci(t)) (7.10)

= i ∑
k

V∗jkVike−iεk(t−t′)nk, (7.11)

G>
ij (t, t′) ≡ −i Tr(ρci(t)c†

j (t
′)) (7.12)

= −i ∑
k

V∗jkVike−iεk(t−t′)(1− nk), (7.13)

with the occupation numbers nk = 1/(eβ(εk−µ) + 1) at inverse temperature β and

chemical potential µ and ρ is the density matrix of the system. The greater/lesser

components of the density susceptibility are given by χ≷
ij (t, t′) = −iG≷

ij (t, t′)G≶
ji (t
′, t),

from which in turn the retarded susceptibility χR = Θ(t)(χ> − χ<) can be deter-

mined to

χR
ij(t− t′) = −iΘ(t− t′)∑

k,k′
V∗jkVikV∗ik′Vjk′e−i(εk−εk′ )(t−t′) ((1− nk)nk′ − (1− nk′)nk) .

(7.14)

Finally, using Θ(t) = i
∫ dω

2π
exp(−iωt)

ω+iη , we find the frequency dependent retarded

susceptibility χR(ω) =
∫

dteiωtχR(t) to be given by

χR
ij(ω) = ∑

k,k′
V∗jkVikV∗ik′Vjk′

(1− nk)nk′ − (1− nk′)nk

ω− (εk − εk′) + iη
. (7.15)
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We take the static limit ω → 0, such that

χR
ij = ∑

k,k′
(V∗jkVikV∗ik′Vjk′)

nk′ − nk

εk′ − εk + iη
. (7.16)

The screened interaction then follows as

W = [1−UχR]−1U. (7.17)

Continuum limit

In the limit of no disorder ∆ → 0, the system is translationally invariant and the

screening procedure is expected to yield the familiar Thomas-Fermi result. In the

following, we review how to recover this limit.

Ignoring interaction effects, the wavefunctions are given by the Fourier factors

Vjk = exp(−i(2π/L)kj)/N, with total volume N = L3 and the retarded susceptibil-

ity in Fourier space becomes the familiar Lindhard function

χR
q =

1
N ∑

k

nk+q − nk

εk+q − εk + iη
. (7.18)

The Lindhard function can be evaluated by expanding for small q� kF around the

Fermi energy, yielding

χR
q ≈ −

1
N ∑

k
δ(εk − εF) ≡ −DOS(εF). (7.19)

This yields the effective interaction by using that in an infinite continuum system,

the Fourier transform of the Coulomb interaction U(r) = U/r is given by U(q) =

4πU/q2,

Wq =
Uq

1−UqχR
q
=

4πU
q2 + 4πU DOS(εF)

, (7.20)

or equivalently in real space

W(r) =
U
r

exp(−r/lTF) (7.21)

with the Thomas-Fermi screening length lTF = 1/
√

4πU DOS(εF).

7.4 screening in the presence of disorder

While screening in the three-dimensional electron gas is by now textbook knowledge,

less is known when disorder is present. In the following, we will study properties of

the screened electron gas with the self-consistent Hartree-Fock scheme we developed

in the previous section. We fix the linear system size to L = 6 and consider periodic
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Figure 7.1: Self-consistent screened interactions as a function of real-space distance (top)

and pseudo-momentum (bottom), see text for definition of the latter. Interaction

strength U = t. All quantities averaged over radii before taking the absolute

value.

boundary conditions. In Fig. 7.1 we show the screened interactions W as a function

of disorder strength. As expected, the effect of screening is stronger for smaller

disorder as wavefunctions become more extended. In particular, we recover the

unscreened interactions for ∆ ≈ 28t. Strong finite size effects are present in the

small systems we consider. For instance, the expected exponential decay of the

interactions at large distances is not directly visible. To define some notion of

screening in keeping with the translationally invariant case, we define a pseudo-

Fouriertransform by fixing a site i = 0, calculating

Wq = ∑
j

e−irjqWj0 (7.22)

and averaging over the angular components of the momentum q. The resulting

“momentum space” screened interaction is displayed in the bottom of Fig. 7.1. We

find that the screened interactions are diminished at smaller momentum, which is

the expected behaviour from screening in the continuum limit, c.f. Eq. (7.20). At

larger momenta, there is an oscillation due to the fact that we sharply cut-off the

1/r potential at the system’s boundaries, i.e. this oscillations is the well known

Gibbs phenomena in Fourier transforms.

In Fig. 7.2 we study the dependence of the screening effect on the relative

strength of the Coulomb interactions. We find that it increases as the interactions

are increased, even when renormalizing the interactions by the overall prefactor U.
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Figure 7.2: Self-consistent screened interactions as a function of real-space distance (top)

and pseudo-momentum (bottom), see text for definition of the latter. Note that

all interactions are normalized by the interaction prefactor U. Disorder strength

W = 14t. All quantities averaged over radii before taking the absolute value.

7.5 single electron properties in presence of screening

Having studied how the interactions are modified by screening, we will now discuss

how single-electron properties are altered. First, we discuss the density of states

before moving over to localization properties of the Hartree-Fock wavefunctions.

7.5.1 Density of states

The density of states is given by

DOS(ε) =
1
L3 ∑

i
δ(εi − ε), (7.23)

where εi are the HF eigenenergies. Most importantly, the DOS signals the Efros-

Shklovskii [430] pseudogap DOS(ε) ∼ ε2 created by Coulomb interactions between

localized orbitals in the interacting insulator. Importantly, this is a purely classical

effect. Contrarily, the DOS shows a behaviour DOS(ε) ∼ |ε|1/2 in the metal induced

by quantum corrections discussed by Altshuler et al. [437] Beyond the localization

transition, the DOS at the Fermi energy (ε = 0 in our case) becomes finite2. We

show in Fig. 7.3 the DOS for a fixed interaction strength as a function of disorder,

showing that screening does not make a big difference for U = t. Note that the

finite value of the DOS at the Fermi energy is due to the large finite size gap at

2 See Ref. [436] for a more complete discussion of the expected behaviour of the DOS.
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Figure 7.3: Density of states for fixed interaction strength U = t, comparing screened and

unscreened results.

Figure 7.4: Density of states for fixed disorder strength ∆ = 14t, comparing screened and

unscreened results.

our small system sizes. In this regime, we find the gap to behave according to the

discontinuous quantum behaviour, in accordance with Ref. [436]. When fixing the

disorder strength, see Fig. 7.4 we again find little effect of screening for small values

of the interaction strength. For U > 2 we find the gap to gradually move over to

the classical ε2 behaviour as expected. For large U we find a larger effect of the

interactions, in particular we find an asymmetry of the density of states around

ε = 0.

7.5.2 Localization

Moving on to study the localization of wavefunctions, we use the spatial correlations

of the wavefunctions as in Ref. [436],

K(Rj, εn) =
〈∑r |Vn(r)|2|Vn(r + R)|2〉

〈∑r |Vn(r)|2〉
. (7.24)
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Figure 7.5: Wavefunction correlations for fixed interaction strength U = t, comparing

screened and unscreened results.

Figure 7.6: Wavefunction correlations for fixed disorder strength ∆ = 14t, comparing

screened and unscreened results.

In the metallic phase, K saturates to a constant at long distances while it decays

exponentially for all distances in the insulating phase. We study K for fixed interac-

tion strength for εn = 0, see Fig. 7.5, again finding little difference between screened

and unscreened interactions. We find as expected that for the lower two disorder

strengths the system is a metal. Note that ∆ ≈ 16.5t corresponds to the localization

transition for U = 0 [438]. Contrarily, we find by fixing ∆ = 14t the interaction

induced metal to insulator transition, c.f. Fig. 7.6, which is expected to appear at

around U ≈ 0.9 [436]. Again, for U = 2.5, 5 we find differences between screened

and unscreened interactions, indicating a delocalizing effect of the screening.

7.6 particle-hole hamiltonian

In order to enable the role of particle-hole excitations in this system, we construct

the effective Hamiltonian within the one particle-hole subsector in the following.
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To do so, we first rewrite the Hamiltonian in terms of the creation and annihilation

operators of Hartee-Fock states d̂/d̂†, which are obtained from the bare ones through

ĉi = ∑
k

Vikd̂k, ĉ†
i = ∑

k
V∗ikd̂†

k . (7.25)

The Hamiltonian (with screened interactions) can then be rewritten as

Ĥ = ∑
k1 6=k2

J̃k1k2 d̂†
k1

d̂k2 +
1
2 ∑

k1k2k3k4

W̃k1k2k3k4 d̂†
k1

d̂†
k2

d̂k3 d̂k4 (7.26)

with J̃ = V†(J + diag(µ))V and W̃k1k2k3k4 = ∑ij V∗ik1
V∗jk2

WijVjk3Vik4 .

The Hartree-Fock ground state with Ne electrons is given by the Fermi sea

|Ψ0〉 = Πk≤Ne d
†
k |0〉. Creating an electron at site i while destroying one at site m

leads to a superposition of Hartree-Fock particle hole states as

ĉ†
l ĉm |Ψ0〉 (7.27)

= ∑
a>Ne

∑
i≤Ne

V∗laVmid̂†
a d̂i |Ψ0〉 (7.28)

≡ |Ψa
i 〉 , (7.29)

where we used the properties of the Fermi sea. From now on we use i, j, l, . . . for

hole indices (fulfilling i ≤ Ne) and a, b, c, . . . for particle indices (a > Ne). In order to

subtract the interaction effects taken into account within Hartree-Fock, we calculate

the effective Hamiltonian within the particle-hole sector with respect to Ĥ − F̂.

Particle-hole states are eigenstate of the Hartree-Fock Hamiltonian F̂ = ∑k εkd̂†
k d̂k

with eigenenergies Ea
i = ∑k≤Ne

εk − εi + εa.

It is convenient to define new particle-hole operators b̂ by

b̂†
i = d̂i, b̂†

a = d̂†
a , (7.30)

such that the Fermi-sea is the vacuum of these new operators, i.e. b̂ |Ψ0〉 = 0

and |Ψa
i 〉 = b̂†

a b̂†
i |Ψ0〉. This enables the straightforward use of Wick’s theorem to

evaluate multi-point correlation functions. As a last step before constructing the

one-particle-hole Hamiltonian, we need to rewrite the Hamiltonian in Eq. 7.26 in

terms of the new operators b̂ while only keeping terms with an even number of

both particles and holes, giving

Ĥ = ∑
i

J̃ii −∑
ij

J̃ijb̂†
j b̂i + ∑

ab

(
J̃ab − 2 ∑

i
W̃aibi

)
b̂†

a b̂b +
1
2 ∑

abcd
W̃abcdb̂†

a b̂†
b b̂cb̂d

+
1
2 ∑

ijlm
W̃ijlmb̂i b̂jb̂†

l b̂†
m + ∑

aibj

1
2

W̃ajbi b̂†
a b̂bb̂†

i b̂j. (7.31)
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Finally, we evaluate the matrix elements by using Wick’s theorem, for example

〈Ψ f
p|b̂†

a b̂bb̂†
i b̂j|Ψ

g
q〉 = 〈Ψ0|b̂pb̂ f b̂†

a b̂bb̂†
i b̂jb̂†

gb̂†
q |Ψ0〉 (7.32)

= δa f δbgδpiδjq, (7.33)

where we used that 〈Ψ0|b̂ab̂†
b |Ψ0〉 = δab, 〈Ψ0|b̂i b̂†

j |Ψ0〉 = δij and 〈Ψ0|b̂ab̂†
i |Ψ0〉 = 0.

This way, we obtain the matrix elements of the one particle-hole Hamiltonian as

〈Ψ f
p|Ĥ|Ψ

g
q〉 =

(
J̃ f g − 2 ∑

i
W̃ f igi

)
δpq −

(
J̃pq − 2 ∑

j
W̃qjpj

)
δ f g

+

(
∑

i
J̃ii + ∑

ij
W̃ijji

)
δ f gδpq + 2W̃ f qgp. (7.34)

We introduce new two-particle operators Ĉα = Ĉ(ij) ≡ d̂†
a d̂i and write the one-

particle-hole Hamiltonian as

Ĥ1p.h. = ∑
αβ

Ĉ†
α HαβĈβ, (7.35)

with Ĥαβ = Ĥ(ai)(bj) = 〈Ψ0|d̂†
i d̂aĤd̂†

b d̂j|Ψ0〉. We can again diagonalize this matrix by

introducing

Ĉα = ∑
β

Vph
αβ D̂β, Ĉ†

α = ∑
β

Vph,∗
αβ D̂†

β, (7.36)

with which the Hamiltonian is diagonal with Ĥ = ∑α ξαD̂†
αD̂α.

real space particle-hole eigenfunctions . We transform the particle

hole eigenstates back to real space by using Eq. 7.28,

Vph
ij (γ) =

Ns

∑
a=0

Ns

∑
k=0

V∗i,a+Ne
Vj,Ne−kVph

aNs+j,γ, (7.37)

where we restricted to Ns states above and below the Fermi level Ne and redefined

the indices relative to Ne.

7.7 conclusions and outlook

In this chapter, we have introduced an extended Hartree Fock theory for the disor-

dered three-dimensional electron gas, by incorporating a self-consistent screening

procedure. We have numerically demonstrated its use by determining the screened

interactions in small systems. We found that screening is largest for smaller disorder.

For strong disorder, the unscreened interactions are recovered. When fixing the dis-

order strength, the screening effect is larger when the interactions are increased. We
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did not find a strong effect of screening on physical quantities such as the density

of states and the localization of the Hartree Fock wavefunctions except for large

interaction strengths, where we found a delocalizing effect on the wavefunctions.

We have furthermore constructed an effective description of particle hole exci-

tations in the Coulomb gas, which enables a study of their role in recent optical

spectroscopy experiments on doped silicon [433].
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U N I V E R S A L D E C AY O F S P I N S P I R A L O R D E R I N T H E

H E I S E N B E R G M O D E L

This chapter is based on the preprint

• Joaquin F. Rodriguez-Nieva, Alexander Schuckert, Dries Sels, Michael Knap,

Eugene Demler: “Transverse instability and universal decay of spin spiral

order in the Heisenberg model” – [arXiv:2011.07058]

Text and figures have been adapted and expanded here. Discrete truncated Wigner

approximation (dTWA) results were obtained by Joaquin F. Rodriguez-Nieva. Sec-

tions 1.1.1, 1.2.3, 1.3.1, 1.3.2, 1.4, 1.6.2 and 1.6.3 including the data presented in the

figures contained in these sections have not been previously published.

We analyze the stability of spin spiral states in the two-dimensional Heisen-

berg model. Our analysis reveals that the SU(2) symmetric point hosts a dynamic

instability that is enabled by the existence of energetically favorable transverse

deformations - both in real and spin space - of the spiral order. The instability

is universal in the sense that it applies to systems with any spin number, spiral

wavevector, and spiral amplitude. Unlike the Landau or modulational instabilities

which require impurities or periodic potential modulation of an optical lattice,

quantum fluctuations alone are sufficient to trigger the transverse instability. We

analytically find the most unstable mode and its growth rate, and compare our

analysis with phase space methods. We show that the same instability also exists in

1D using exact matrix product state methods, giving credibility to our approximate

treatments in two spatial dimensions. Using an exact short time expansion, we

show that the instability is not present from the shortest possible time scales but

is only built up at non-perturbatively long times. We study this crossover from

short-time to instability regime with two-particle irreducible effective action method

for spin systems (spin-2PI) methods. By adding an easy plane exchange coupling

that reduces the Hamiltonian symmetry from SU(2) to U(1), the stability boundary

is shown to continuously interpolate between the modulational instability and

the transverse instability. This suggests that the transverse instability is also an

important mechanism that hinders long-range phase coherence even in the presence

of exchange anisotropy.

199



200 universal decay of spin spiral order in the heisenberg model

8.1 introduction

Characterizing the mechanisms responsible for the breakdown of phase coherence

in quantum systems is a fundamental problem with broad implications in quantum

science and technology. The interplay between kinetic effects, interactions, and

disorder gives rise to a wide range of phase relaxation mechanisms. In the simplest

scenario, the phase coherence in a superfluid is subject to the Landau criterion [439]

which defines an upper limit for the superfluid velocity: when the superfluid moves

faster than the sound velocity, a spatially localized defect can trigger a superfluid

instability that globally destroys phase coherence [440]. In the case of a Bose-

Einstein condensate (BEC) in an optical lattice with spacing a, the characteristic

lattice modulation ql = π/2a sets another limit for the superfluid wavevector

above which a modulational instability occurs [441, 442]. Such instability can be

enhanced in the presence of strong interactions [443, 444]. Rich physics and diverse

mechanisms that destroy—and sometimes stabilize—the phase coherence have been

discussed in the context of counterflowing superfluids [445], multicomponent [446]

and spinor BECs [447–449], superconductors [450–453], in the presence of extended

disorder [454–457], dipolar interactions [458–460], and driving [461–465].

Figure 8.1: (a) Schematics of a spin spiral parametrized by a wavevector q and angular

amplitude θ. (b) Imaginary part of the frequency of Bogoliubov modes. The

wavevectors kx,y are relative to q, which is assumed to be pointing in the x-

direction (k∗ = q sin θ). The fastest growing modes are transverse to q, with

ky ≈ k∗/
√

2. (c) Slice of panel (b) plotted at the linecuts kx/k∗ = 0 (dotted-

dashed line) and kx/k∗ = 0.75 (dotted line) and normalized with 1/τ∗ in

Eq.(8.1). Parameters used: θ = π/4, qxa = 0.5, qy = 0.

Here we inquire about the fate of a spin spiral state in the two-dimensional

Heisenberg model, see Fig. 8.1(a). Understanding the stability and dynamics of

such states is of relevance in many important scenarios. The non-equilibrium

dynamics of spin spirals has recently been in the spotlight of several cold atom

experiments [161, 162, 466]. By tuning the wavevector q and angular amplitude θ of



8.1 introduction 201

the spin spiral, we can tune the energy and magnetization of the system and trigger

interesting far-from-equilibrium phenomena, such as quantum turbulence [467, 468],

prethermalization [48], universal self-similar relaxation [50, 210], and anomalous

transport [163]. In addition, the stability of spin superfluids in ferromagnetic

materials, promising for dissipationless spintronic applications [469–474], hinges

on the stability of long-range coherence of a spin spiral. As such, our results are

useful to understand the relevant modes that lead to spin superfluid decay.

Our analysis reveals that the SU(2) symmetry of the Hamiltonian gives rise

to a dynamic instability with different characteristics from previously-studied

instabilities. In particular, the instability (i) is enabled by gapless symmetry-allowed

deformations of the order parameter rather than kinematic effects, (ii) is triggered

by quantum fluctuations without the need for defects, disorder or a lattice, and

(iii) is universal in the sense that it affects systems with arbitrary spin number S,

spiral wavevector, and spiral amplitude. The main physics can be understood by

noticing that the SU(2) symmetry relaxes the topological constraint that protects the

U(1) phase in superfluids [469]: while in usual superfluids the thermally-activated

creation of vortex-antivortex pairs or large kinematic fluctuations destroy coherence,

the SU(2) symmetry alone furnishes additional ‘directions’ (or rotation generators)

in which the phase coherence can be destroyed. As indicated in Fig. 8.1(b), the

instability evolves by unwinding the spiral via growth of modes in a ring around

the wavevector q. Assuming q = (qx, 0), the fastest growing mode has transverse

wavevector k⊥ ≈ k∗/
√

2, and grows with a rate 1/τ∗, with

k∗ = |q| sin θ,
1
τ∗

= JS sin2 θ[1− cos(qxa)], (8.1)

and J the exchange coupling. In addition, numerical simulations show that the

constraint Ŝ2
j = S(S + 1) of each spin regulates the instability growth, which peaks

in a time t ≈ 4τ∗ (largely independent of q, θ, and S).

We analytically discuss dynamics in the SU(2) symmetric Heisenberg model for

large S, but our conclusion are far more general. In particular, below we numerically

show that the imprint of the ring of unstable modes survives even in the S = 1/2

limit for sufficiently small wavevectors. In addition, we show that the effect of

the instability pervades away from the SU(2) symmetric point. Indeed, in the

presence of anisotropic exchange that reduces the Hamiltonian symmetry to U(1),

we observe a strong reduction of the critical wavevector for modulation instabilities

(i.e., |qc| = π/2a) for a wide range of values of the exchange anisotropy. As such,

manifestations of the transverse instability still exist in the presence of exchange

anisotropy.
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model We consider the two-dimensional Heisenberg model on a square lattice

with exchange anisotropy:

Ĥ = − ∑
〈j,j′〉

J
(

Ŝx
j Ŝx

j′ + Ŝy
j Ŝy

j′

)
+ JzŜz

j Ŝz
j′ , (8.2)

where 〈j, j′〉 denotes summation over nearest neighbours. Each site contains a spin

S degree of freedom and periodic boundary conditions in each spatial direction are

assumed. Our analysis is not affected by a Zeeman field, which is present in many

relevant experiments: although a Zeeman field breaks the SU(2) symmetry of the

Hamiltonian, its effect on dynamics can be removed by using a rotating frame. The

initial condition is a spin spiral

〈Ŝ±j 〉 = S sin θe±iq·rj , 〈Ŝz
j 〉 = S cos θ, (8.3)

with Ŝ±j = Ŝx
j ± iŜy

j .

8.1.1 Hamiltonian in rotating frame

In the following, we will sometimes employ a description of the problem in the

rotating frame of the spiral. To do so, we write the spiral as

|Ψ0〉 = exp

(
i ∑

j
QjRjŜz

j

)
exp

(
iΘ ∑

j
Ŝy

j

)
|↑ · · · ↑〉x (8.4)

≡ Û†
1 Û†

2 |↑ · · · ↑〉x . (8.5)

We distinguish “diagonal” spirals with wavevector Q = (Q, Q) and “x-spirals” with

wavevector Q = (Q, 0). Θ ∈ [−π/2, π/2] is the tilt angle of the spiral, with Θ =

±π/2 corresponding to fully polarized states in the z-direction as exp
(
i π

2 Ŝy) |↑〉x =

|↑〉. Θ = 0 corresponds to the spirals studied theoretically in 3D in Ref. [48] and

experimentally in 1D in Ref. [162]. Note that we have changed the reference point

of the tilt angle to the previous sections, with Θ = θ + π
2 .

We can unwind the spiral by the unitary transformation

|Ψ0〉 → Û2Û1 |Ψ0〉 = |↑ · · · ↑〉x , (8.6)

Ĥ → Û2Û1ĤÛ†
1 Û†

2 . (8.7)

Assuming Jz = 1, we can use the result from Ref. [48],

Û1ĤÛ†
1 = −J ∑

〈i,j〉

[
Ŝz

i Ŝz
j + cos

(
Q ·
(
Ri − Rj

)) (
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

)
(8.8)

− sin
(
Q ·
(
Ri − Rj

)) (
Ŝx

i Ŝy
j − Ŝy

i Ŝx
j

) ]
.
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Furthermore, from the BCH formula eXYe−X = Y + [X, Y] + 1
2 [X, [X, Y]] + . . . we

can derive the following identities:

Û2Ŝz
j Û†

2 = cos ΘŜz
j + sin ΘŜx

j , (8.9)

Û2Ŝx
j Û†

2 = cos ΘŜx
j − sin ΘŜz

j , (8.10)

Û2Ŝy
j Û†

2 = Ŝy
j . (8.11)

Combining the above with Eq. (8.9) we arrive at

U2Û1ĤÛ†
1 Û†

2 = −J ∑
〈i,j〉

[
cos2 ΘŜz

i Ŝz
j + sin2 ΘŜx

i Ŝx
j + cos Θ sin Θ

(
Ŝx

i Ŝz
j + Ŝx

j Ŝz
i

)

+ cos
(
Q ·
(
Ri − Rj

)) (
cos2 ΘŜx

i Ŝx
j + sin2 ΘŜz

i Ŝz
j

− cos Θ sin Θ
(

Ŝx
i Ŝz

j + Ŝx
j Ŝz

i

)
+ Ŝy

i Ŝy
j

)

− sin
(
Q ·
(
Ri − Rj

)) (
cos Θ

(
Ŝx

i Ŝy
j − Ŝy

i Ŝx
j

)
− sin Θ

(
Ŝz

i Ŝy
j − Ŝy

i Ŝz
j

)) ]
(8.12)

In Fourier space, we finally arrive at

Û2Û1ĤÛ†
1 Û†

2 = ∑
k

∑
αβ

Jαβ
k Sα

kŜβ
−k, (8.13)

with

Jxx
k = −2J ∑

d

(
sin2 Θ + cos Qd cos2 Θ

)
cos kd, (8.14)

Jxy
k = −Jyx

k = −2Ji ∑
d

sin Qd sin kd cos Θ, (8.15)

Jxz
k = Jzx

k = −2J ∑
d
(cos Θ sin Θ(1− cos Qd)) cos kd, (8.16)

Jyy
k = −2J ∑

d
cos Qd cos kd, (8.17)

Jyz
k = −Jzy

k = −2Ji ∑
d

sin Qd sin kd sin Θ, (8.18)

Jzz
k = −2J ∑

d

(
cos2 Θ + cos Qd sin2 Θ

)
cos kd, (8.19)

where Qd = Qed is the projection of Q on the lattice unit vector ed.

Observables

Here, we show how to construct expectation values with respect to the wavefunction

|Ψ〉 in the unrotated frame from the expectation values in the rotated frame.
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spiral magnetization The spiral magnetization is given by

S⊥(Q) =
1
N ∑

j
eiQRj 〈Ψ|Ŝ+

j |Ψ〉 (8.20)

=
1
N ∑

j
eiQRj 〈Ψ̃|Û2Û1Ŝ+

j Û†
1 Û†

2 |Ψ̃〉 (8.21)

= cos(Θ) 〈Ψ̃|Ŝx|Ψ̃〉 − sin(Θ) 〈Ψ̃|Ŝz|Ψ̃〉+ i 〈Ψ̃|Ŝy|Ψ̃〉 (8.22)

z magnetization Similarly, we get for the total z magnetization

〈Ψ|Ŝz|Ψ〉 = cos Θ 〈Ψ̃|Ŝz|Ψ̃〉+ sin Θ 〈Ψ̃|Ŝx|Ψ̃〉 , (8.23)

which is constant under the Heisenberg Hamiltonian.

correlations Denoting Cαβ
k the correlations between spin component α and

β at wavevector k in the unrotated frame, and C̃ the ones in the rotated frame, we

find

Czz
k = cos2 Θ C̃zz

k + sin Θ cos Θ(C̃xz
k + C̃zx

k ) + sin2 Θ C̃xx
k (8.24)

C+−
k = cos2 Θ C̃xx

k−Q + sin2 Θ C̃zz
k−Q + C̃yy

k−Q − cos Θ sin Θ
(
C̃xz

k−Q + C̃zx
k−Q

)

+ i cos Θ
(

C̃yx
k−Q − C̃xy

k−Q

)
+ i sin Θ

(
C̃zy

k−Q − C̃yz
k−Q

)
(8.25)

These relations hold for both equal and unequal time correlation functions.

energy The energy density of the tilted spiral is given by

E =
〈Ĥ〉
N

= − J
2

d

∑
i=1

(
sin2 Θ + cos (Qei) cos2 Θ

)
, (8.26)

where ei denotes unit vector i.

8.2 stability analysis

We study the stability of the spiral state by expanding the equations of motion

around the classical steady state value. Moreover, we will use two complentary

approaches: an analysis of the continuum theory and a Holstein-Primakoff analysis

in the rotating frame of the spiral. As it turns out that all those methods will
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yield the same result for the unstable modes, we will use “Bogoliubov disper-

sion”, “Holstein-Primakoff analysis” and “stability analysis” interchangeably in the

following sections.

8.2.1 Equations of motion

Here we inquire about the stability of the spin spiral state by expanding the

equations of motion around the spiral steady state.

The equations of motion of the spin operators are given by ∂tŜj = J ∑j′∈Nj
Ŝj ×

(Ŝj′ + εŜz
j′z), with ε = (Jz − J)/J, Nj the nearest neighbors of site j, and z a

unit vector. We first analyze the linearized dynamics at short times using the

approximation 〈Ŝα
j Ŝβ

j′〉 ≈ 〈Ŝα
j 〉〈Ŝ

β
j′〉, which gives rise to the equations of motion

Ṡ±j = ∓i J ∑
j′∈Nj

[
(1 + ε)S±j Sz

j′ − S±j′ S
z
j

]
,

Ṡz
j =

i J
2 ∑

j′∈Nj

[
S+

j S−j′ − S−j S+
j′

]
,

(8.27)

with 〈Ŝα
j 〉 = Sα

j . Hereafter, energy and inverse time are expressed in units of JS and

wavevectors in units of 1/a. Using the initial conditions in Eq. (8.3), it can be shown

that the solution S̄±j (t) = S sin θe±i(q·rj+µt), S̄z
j = S cos θ, is a steady-state solution of

Eq.(8.27), with oscillation frequency µ = 2 cos θ[(1+ ε)2− cos qx− cos qy]. Therefore,

one needs to incorporate quantum fluctuations to obtain non-trivial dynamics.

We proceed to analyze the stability of the spiral in the isotropic exchange case,

ε = 0. We parametrize fluctuations on top of the steady-state solution using the xy

components of magnetization, S±j = S̄±j + δS±j ; this implies that our parametrization

is singular at θ = π/2, but taking the limit θ → π/2 at the end still yields the

correct result (a parametrization in polar coordinates that is non-singular at θ = π/2,

but more cumbersome, is discussed in subsection 8.2.1 ). Going into momentum

space and expressing modes relative to the wavevector and frequency of the spiral,

δS±j = e±i(q·rj+µt) ∑k ei(k·rj+ωkt)δS±k±q.

We begin our analysis by parametrizing the spin degrees of freedom on the

upper hemisphere of the Bloch sphere, Sz
j =

√
S2 − |Sj|2. The resulting equations

of motion are

Ṡ±j = ±i ∑
j′∈Nj

[
S±j
√

S2 − |Sj′ |2 − S±j′
√

S2 − |Sj|2
]

, (8.28)

with energy and inverse time in units of JS. Taking small deviation over the steady-

state solution S̄j, S±j = S̄±j + δS±j , Eq. (8.28) reads

iδṠ±j = ± ∑
j′∈Nj

cos θ


 δS±j′ +

S̄±j′
(

S̄+
j δS−j + S̄−j δS+

j

)

2 cos2 θ
− (j↔ j′)


 . (8.29)
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Because S̄j
± is both time and position-dependent, it is convenient to write fluctua-

tions relative to the wavevector and frequency of S̄j, i.e.

δS±j = e±i(q·rj+µt) ∑
k

ei(k·rj+ωkt)δS±q±k (8.30)

. The linearized equations of motion can thus be written as

(ωk ± µ)δS±q±k = ∓ cos θ

[(
γ0−γq±k −

tan2 θ(γk − γq)

2

)
δS±q±k

−
tan2 θ(γk − γq)

2
δS∓q∓k

]
, (8.31)

with γq = ∑a eiq·a (a: unit vectors of the lattice). Defining εp = cos θ(γ0 − γp) and

∆k = − sin θ tan θ(γk − γq) leads to


 ωk + εq+k + ∆k

2 − µ ∆k
2

−∆k
2 ωk − εq−k − ∆k

2 + µ


 δS = 0. (8.32)

Adding an anisotropic term to the Heisenberg Hamiltonian, δĤ = −ε ∑〈jj′〉 Ŝz
j Ŝz

j′ ,

and repeating the same procedure above leads to the same form of Eq. (8.32) with

modified energy and pairing

εp = cos θ
[
(1 + ε)γ0 − γp

]
, ∆k = − sin θ tan θ

[
(1 + ε)γk − γq

]
. (8.33)

Note that, in the long-wavelength, limit, the pairing becomes hard-core and re-

pulsive if ε < 0, i.e., ∆k ≈ |ε| sin θ tan θ. Note that the Bogoliubov analysis can be

easily generalized to next nearest neighbor interactions by modifying the definition

of γk accordingly. We note that the value of µ is µ = εq. The frequencies of the

Bogoliubov modes are

ωk =
εq+k − εq−k

2
± 1

2

√
∆ε(∆ε + 2∆k), (8.34)

where ∆ε = εq+k + εq−k − 2εq can be interpreted as the kinetic energy cost of

unbinding two quasiparticles from mode q. For large spiral wavevectors, qx, qy >

π/2, ∆ε can be negative because of the negative mass of bare particles and gives rise

to the previously studied modulational instability [441]. For qx, qy < π/2, however,

∆ε is strictly positive and the condition for the mode S+
q+k to be unstable (i.e.,

ω′′k = Im[ωk] 6= 0) is given by

εq+k + εq−k − 2εq + 2∆k < 0. (8.35)

It is instructive to analyze the condition (8.35) in the limit of small q and θ, and

contrast it with the usual Landau instability. In this case, Eq.(8.35) is an energy

balance equation resulting from unbinding two magnons of energy εq±k ≈ JSa2(p±
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q)2 and with a momentum-dependent pairing energy ∆k ≈ −JSa2 sin2 θ(q2 − k2).

Importantly, ∆k is attractive in a ring of radius |k| . |q|. Attractive magnon-

magnon interactions are known to give rise to magnon bound states in 1D [475]

and its momentum dependence has been shown to result in unusual quasiparticle

relaxation [476] and hydrodynamic behavior [477, 478]. Equation (8.35) dictates

that, independently of S, the growth of modes with small wavevectors k relative to

q is energetically favorable (a large value of k, on the other hand, is penalized by

a large kinetic energy cost, εq+k + εq−k − 2εq ∝ k2). Condition (8.35) needs to be

contrasted with the superfluid stability condition where ∆k = gn > 0 is momentum

independent and repulsive, thus ensuring stability of the superfluid in the long

wavelength limit (g: local interaction, n: density).

More generally, Eq.(8.35) gives rise to unstable modes for any value of q and θ.

To analytically find the most unstable mode when q = (qx, 0), we maximize ω′′k
under the constraint kx = 0 [note that the fastest growing mode in Fig. 8.1(a) is

transverse to q]. In this case, we obtain

ω′′k = 2
√
(1− cos ky)

[
(1− cos ky)− sin2 θ (1− cos qx)

]
. (8.36)

From this, we see that the maximum of ω′′k occurs at ky = k̃y, with k̃y satisfying

1− cos k̃y = sin2 θ(1− cos qx)/2, and such mode grows with a rate max (ω′′k) =
1
τ∗

in Eq.(8.1). Equation (8.36) also defines the volume in phase space of unstable

modes, which is bounded by the wavevector k∗ satisfying the condition 1− cos k∗ =

sin2 θ[1− cos qx]. In the limit of small qx, we obtain k̃y ≈ k∗/
√

2, with k∗ defined in

Eq.(8.1).

Spherical coordinates

The previous derivation has the disadvantage that the parametrization is singular

at θ = π/2. In order to avoid the singular behaviour in the physically interesting

case θ = π/2, we can use polar coordinates, Ωj = (sin θj cos φj, sin θj sin φj, cos θj),

to parametrize the spin orientation. As we will see, this does not change the end

result when we take the limit θ → π/2. The equation of motion are

iΩ̇±j = ± ∑
j′∈Nj

[Ω±j Ωz
j′ −Ω±j′ Ω

z
j ], (8.37)

with mean field solution

Ω̄±j = sin θe±i(q·rj−µt), Ω̄z
j = cos θ, (8.38)

and µ = cos θ(γ0 − γq). Fluctuations on top of the mean-field equations are

parametrized by

δΩ±j = e±i(q·rj−µt) (±iδφj + cos θjδθj
)

, δΩz
j = − sin θjδθj. (8.39)
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Figure 8.2: (a) Schematics of the most favorable deformation of the spin spiral order and

(b) the corresponding energy shift with respect to the spiral state. Shown in (a)

is the trajectory of the magnetization vector by moving on the lattice in the x

(dotted line) and y (solid line) directions, and δθ is the amplitude of deformation,

see definition in text. (c) Contour plot showing the connected component of

〈Ŝx
−KŜx

K〉 for S = 1/2, qxa = 0.12, and θ = π/2. (d) Stability boundary showing

the critical momentum qc as a function of exchange anisotropy for a spiral

amplitude of θ = π/4 (black circles), θ = 0.1 (gray diamonds), and S→ ∞. The

shaded area indicates the parameter space region of the modulational instability.

By replacing Eq.(8.39) into Eq.(8.37), we find

±µ cos θδθj ∓ δφ̇j + i(µδφj + cos θδθ̇j) = ±∑j′∈Nj

[
− sin2 θ(δθj′ − e±iq·rjj′ δθj)

±i cos θ(δφj − e±iq·rjj′ ) + cos2 θ(δθj − e±iq·rjj′ δθj′)
]

,

(8.40)

where rjj′ = rj′ − rj and Nj denotes the nearesest neighbor of j. The real and

imaginary parts of this equation are given by

δφ̇j = ∑
j′∈Nj

[
sin2 θ(δθj′ − cos(q · rjj′)δθj)− cos2 θ(δθj − cos(q · rjj′)δθj′)

− cos θ sin(q · rjj′)δφj′ + µ cos θδθj
]
,

δθ̇j = ∑
j′∈Nj

[
(δφj − cos(q · rjj′)δφj′)−

µ

cos θ
δφj − cos θ sin(q · rjj′)δθj′

]
.

(8.41)
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Going into Fourier space and using the relations ∑a cos(q · a)eik·a =
γq+k+γq−k

2 and

∑a sin(q · a)eik·a =
γq+k−γq−k

2i , results in

δφ̇k =

[
cos2 θ

(
γq+k + γq−k

2
− γq

)
+ sin2 θ(γk − γq)

]
δθk

− cos θ
(

γq+k−γq−k
2i

)
δφk,

δθ̇k = −
(

γq+k + γq−k

2
− γq

)
δφk

− cos θ
(

γq+k−γq−k
2i

)
δθk.

(8.42)

If we define ∆ε′ = γq+k + γq−k − 2γq and ∆′k = γk − γq. The imaginary part of

the eigenvalue equation is given by

Im[ωk] =
1
2

√
∆ε′[∆ε′ cos2 θ + sin2 θ∆′k] (8.43)

which coincides with the expression in Eq. 8.32 after identifying ∆ε = ∆ε′ cos θ and

∆k = − sin θ cos θ∆′k.

8.2.2 Long-wavelength theory

To make the connection with the usual BEC theory more crisp, we make a one-to-

one comparison between the long wavelength effective theory of the Heisenberg

model and a weakly interacting Bose gas in the limit q→ 0 and θ → 0. This analysis

also shows that the results above are a generic feature of SU(2) symmetry rather

than a peculiarity of the nearest-neighbour Heisenberg model in Eq.(2), and that the

underlying lattice is not essential as in the modulational instability. Assuming small

deviations from the ferromagnetic ground state |F〉 and performing a Holstein-

Primakoff transformation Ŝ+
j =

√
2S− ψ̂†

j ψ̂jψ̂j and Ŝz
j = S− ψ̂†

j ψ̂j, to quartic order

in the bosonic operators ψ̂j leads to the long-wavelength Hamiltonian

Ĥ = JSa2
∫

x

(
∇ψ̂†

x∇ψ̂x +
1

4S
ψ̂†

xψ̂†
x∇ψ̂x∇ψ̂x + h.c.

)
. (8.44)

Unlike the usual Bose gas with hard core collisions, here the collision amplitude

of two quasiparticles with momentum k and p is ∝ −(k · p). This reflects the

SU(2) symmetry of the Hamiltonian: collisions become negligible at small momenta

because a k → 0 magnon state, ψ̂†
k|F〉 ≈

Ŝ+
k√
2S
|F〉, is effectively a global rotation of

|F〉 that would not affect the dynamics of a second incoming magnon. Furthermore,

unlike the BEC theory that contains a characteristic velocity v∗ =
√

gn/m that

quantifies the sound velocity of linearly-dispersing quasiparticles and the resulting

Landau criterion (n: condensate density, m: mass), there is no emergent velocity
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in Eq.(8.44)—this results in the well-known fact that the Goldstone modes of the

ferromagnet do not have sound-like dispersion.

In the presence of a condensate 〈ψ̂±x 〉 = ψ0e±i(q·x+µt), linearization of the equation

of motion leads to

i∂tδψ =


 ε0

q+k − 2Ja2q · (q + k)|ψ0|2 − µ −Ja2ψ2
0(q + k) · (q− k)

Ja2ψ2
0(q + k) · (q− k) −ε0

q−k + 2Ja2ψ2
0q · (q− k)


 δψ,

(8.45)

where δψt = (δψq+k, δψ̄k−q), µ is the chemical potential µ = JSa2q2 − Ja2ψ2
0q2,

and ε0
p is the bare magnon energy defined as ε0

p = JSa2p2. First, we re-arrange the

terms in the diagonal of the matrix:

ε0
q±k− 2Ja2ψ2

0q · (q±k)− µ = ε0
q±k− Ja2ψ2

0(q±k)2− Ja2ψ2
0(q

2−k2)− µ. (8.46)

Second, we define the renormalized energy εq±k = ε0
q±k − Ja2ψ2

0(q± k)2 and

the binding energy ∆k/2 = −Ja2ψ2
0(q

2 − k2). The value of ψ0 is related to θ

through
√

2S− ψ2
0ψ0 = S sin θ, or ψ0 ≈

√
S
2 sin θ. This results in the pairing energy

∆k = −JSa2 sin2 θ(q2 − k2), consistent with the long-wavelength expansion of

Eq. (8.32).

Terms that reduce the symmetry from SU(2) to U(1), such as the exchange

anisotropy ε < 0 in Eq.(2), give rise to hard-core collisions in Eq.(8.44) with strength

g = −εJ, leading to a repulsive and hard-core pairing ∆k = |ε|J sin2 θ in the

easy-plane case.

8.2.3 Holstein-Primakoff analysis in rotating frame of spiral

So far, we have investigated the stability of the spiral from the perspective of the

classical equations of motion by linearizing them around the steady-state solution

given by the mean-field precession of the spiral. In the following, we will show that

the same results can be obtained from a Holstein-Primakoff analysis.

For a well-defined Holstein-Primakoff stability analysis, we need to expand

around a fully polarized state. However, for Θ 6= 0, there is a mean-field precession

of the spiral given by 〈Ŝ±Q(t)〉 = 〈Ŝ
±
Q(0)〉 e∓iBt with B = 2J sin Θ ∑d (1− cos Qd),

i.e. an effective magnetic field in z-direction. Ignoring this precession would lead

to a rapid break-down of the Holstein-Primakoff expansion as the mean field

rotates the state away from the completely polarized state. Therefore, we need to

go into the time-dependent rotating frame of this precession before applying U1,

U2 by applying the unitary transformation Ĥ → Û0(t)ĤÛ†
0 (t) + i dÛ0

dt Û†
0 (t) with
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Û0 = exp
(
−iBt ∑i Ŝz

i
)

and B = 2J sin Θ ∑d(1− cos Qd). As Û0(t)ĤÛ†
0 (t) = Ĥ we

get after all three transformations

Ĥ → Û2Û1ĤÛ†
1 Û†

2 + 2J sin Θ ∑
d
(1− cos Qd)

(
cos Θ ∑

i
Ŝz

i + sin Θ ∑
i

Ŝx
i

)
(8.47)

The spiral initial state is then transformed into the x-polarized state rotating accord-

ing to the mean field evolution.

We introduce Holstein Primakoff Bosons â around the completely polarized state

by

Ŝx
i =

1
2
− â†

i âi, Ŝz
i =

1
2

(
â†

i + âi

)
, Ŝy

i =
i
2

(
âi − â†

i

)
, (8.48)

or equivalently in Fourier space (N is number of spins)

Ŝx
k =

√
N

2
δ(k)− 1√

N
∑
q

â†
q−k âq, Ŝz

k =
1
2

(
â†
−k + âk

)
, Ŝy

k =
i
2

(
âk − â†

−k

)
.

(8.49)

Keeping only up to quadratic terms and dropping constants, we arrive at

ĤHP = ∑
k

∆k(â†
k â†
−k + âk â−k) + (εk + µ)â†

k âk + (ε−k + µ)â−k â†
−k, (8.50)

with

∆k = − J
2 ∑

d

(
cos2 Θ(1− cos Qd)

)
cos kd, (8.51)

εk = − J
2 ∑

d

((
cos2 Θ + cos Qd

(
sin2 Θ + 1

))
cos kd − 2 sin Qd sin kd sin Θ

)
,

(8.52)

µ = J ∑
d

cos Qd. (8.53)

Note in particular that εk 6= ε−k which is due to complex hopping terms arising

from the Jzy components for nonzero Θ.

bogoliubov transformation Due to εk 6= ε−k, the required Bogoliubov

transformation is somewhat non-standard, so we go in some detail here. Setting for

the moment h = 0, the Hamiltonian can be rewritten as

ĤHP = ∑
k

ĀkH(k)Ak, (8.54)

with

Ak =


 ak

−a†
−k


 , Āk = A†

kσz, H(k) =


 Jk −∆k

∆k −J−k


 . (8.55)
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By defining a Bogoliubov rotation with

U±(k) =


 u∗k ±vk

±v∗k uk


 , U+(k)U†

−(k) = 1, (8.56)

we can diagonalize the Hamiltonian by defining new operators B̄k = (b†
k b−k)

such that

Ak = U+(k)Bk, Āk = B̄kU†
−(k). (8.57)

Inserting Eq. 8.57 into the Hamiltonian in Eq. 8.54 and demanding that the result

should be equal to

Ĥ = ∑
k

Ekb†
kbk + E−kb−kb†

−k (8.58)

results in the Bogoliubov-de-Gennes equations

H(k)U+(k) = U+(k)


Ek 0

0 −E−k


 (8.59)

which may be rewritten as two equivalent eigenvalue problems

(H(k)− Ek1)


u∗k

v∗k


 = 0, (H(k) + E−k1)


vk

uk


 = 0. (8.60)

Solving these finally gives

Ek =
1
2

(
εk − ε−k ±

√
(εk + ε−k + 2µ)2 − 4∆2

k

)
. (8.61)

For Θ = 0, this expression reduces to the one found in Refs. [48, 162] for the untilted

spiral.

After some algebra, one can show that this expression is indeed equivalent to the

result obtained from the stability of the equations of motion, Eq. (8.34).

8.3 exact short time dynamics

In order to get a first feeling for the quantum dynamics of the spiral, we here derive

exact results for the first stage of the dynamics: the perturbative short time regime.

We will first discuss the decay of the spiral magnetization for the tilted spiral

discussed in this chapter. Then, we will move to the case of finite Jz anisotropy,

where we discuss the short time dynamics of a recently realized xz-spiral (for

finite anisotropy, the plane of the spiral winding matters). Finally, we will discuss

the short time dynamics of the spiral fluctuations, which is most relevant for the

discussion in the remainder of the chapter.
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Figure 8.3: Short time decay constants of the spiral magnetization as a function of spiral

wavenumber Q and tilt angle Θ.

8.3.1 Spiral magnetization for tilted spiral

We calculate the short time dynamics of the spiral magnetization Ŝ⊥ = Ŝx
Q + iŜy

Q by

expanding eiHtŜ⊥e−iHt ≈ Ŝ⊥ − t2

2 [Ĥ, [Ĥ, Ŝ⊥]]. This expression is most conveniently

evaluated in the rotating frame of the spiral. This gives

Ŝ⊥(t) ≈
1
2

sin(θ)−
(

t
τ(Q, Θ)

)2

. (8.62)

diagonal spirals For diagonal spirals Q = (Q, Q) we find

1
τ(Q, Θ)2 =

1
4

[
cos(Q)2 − 2 cos(Q) cos(Θ)2 + cos(Θ)4 − 2 cos(Q)2 sin(Θ)2

+ 2 cos(Θ)2 sin(Θ)2 − 2 cos(Q) cos(Θ)2 sin(Θ)2

+ 2 cos(Q)2 cos(Θ)2 sin(Θ)2 + cos(Q)2 sin(Θ)4
]

. (8.63)

For Θ→ 0 this expression reduces to

1
τ(Q, Θ)2 =

1
4
(1− cos(Q))2, (8.64)

which is the expression found in Ref. [48].

x-spirals For x spirals we find

1
τ(Q, Θ)2 =

1
8

[
cos(Q)2 − 2 cos(Q) cos(Θ)2 + cos(Θ)4 − 2 cos(Q)2 sin(Θ)2

+ 2 cos(Θ)2 sin(Θ)2 − 2 cos(Q) cos(Θ)2 sin(Θ)2

+ 2 cos(Q)2 cos(Θ)2 sin(Θ)2 + cos(Q)2 sin(Θ)4 + 1− 2 cos(Θ)2

+ cos(Θ)4 − 2 sin(Θ)2 + 2 cos(Θ)2 sin(Θ)2 + sin(Θ)4
]

. (8.65)

In Fig. 8.3 we show 1(τ(Q, Θ) for both the diagonal and x-spiral. Both spirals

show a qualitatively similar behaviour, with Q = 0 and the Θ = π/2 indicating
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cases in which the spiral is an exact eigenstate of the Hamiltonian while the decay

rate increases when going away from these limits. The x-spiral decays slower overall.

8.3.2 Spiral magnetization for xz spirals in XXZ model

Here we discuss the short time dynamics of the xz-spiral in the XXZ model, i.e.

with a finite anisotropy ∆, defined via the Hamiltonian

Ĥ = J ∑
i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + ∆Sz

i Sz
i+1
)

(8.66)

with periodic boundary conditions. In this case, the plane in which the spiral

winds matters. Here we discuss the x-z spiral recently realized in a cold-atom

experiment [163],

|ψ0〉 = Πi (cos(πQi/L) |↑〉i + sin(πQi/L) |↓〉i) . (8.67)

As before, we calculate the short time dynamics of the spiral magnetization Ŝ⊥ =

Ŝz
Q + iŜx

Q giving the perturbative time scale

1
τ(Q, ∆)2 =

1
256

1
L

L−1

∑
k=0

[
32− 32 cos(Q)− 32∆ cos(Q)

+ 8 cos2(Q) + 16∆ cos2(Q)

+ 8∆2 cos2(Q)− 16 cos(Q− 2kQ) + 16∆ cos(Q− 2kQ)

+ 8 cos(Q) cos(Q− 2kQ)− 8∆2 cos(Q) cos(Q− 2kQ)

+ 4 cos2(Q− 2kQ)− 8∆ cos2(Q− 2kQ)

+ 4∆2 cos2(Q− 2kQ)− 16 cos(Q + 2kQ)

+ 16∆ cos(Q + 2kQ)

+ 8 cos(Q) cos(Q + 2kQ)− 8∆2 cos(Q) cos(Q + 2kQ)

+ 4 cos2(Q + 2kQ)− 8∆ cos2(Q + 2kQ)

+ 4∆2 cos2(Q + 2kQ) + 4 sin2((−1 + 2k)Q)

− 8∆ sin2((−1 + 2k)Q) + 4∆2 sin2((−1 + 2k)Q)

+ 8 sin((−1 + 2k)Q) sin(Q + 2kQ)

− 16∆ sin((−1 + 2k)Q) sin(Q + 2kQ)

+ 8∆2 sin((−1 + 2k)Q) sin(Q + 2kQ) + 4 sin2(Q + 2kQ)

− 8∆ sin2(Q + 2kQ) + 4∆2 sin2(Q + 2kQ)

]
(8.68)

For ∆ → 1 this again reduces to the expression found in Ref. [48]. In Fig. 8.4 we

show that time evolving block decimation (TEBD) data, exactly simulating the open
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chain, collapses when we rescale time with our perturbative time scale, showing

that the short-time universality indeed holds. Moreover, in Fig. 8.5 we show the

perturbative timescale for several spiral wavenumbers as a function of anisotropy

∆. It is clearly visible that as the wavenumber vanishes (Q → 0 or wavenumber

λ → ∞), the perturbative time scale diverges at ∆ = 0 due to the fact that the

totally polarized state is an eigenstate of the Hamiltonian. However, even away

from this limit the timescale can reach 10− 100 (1/J). This renders it difficult to

reach timescales beyond this perturbative limit in current experiments.

a)

b)

Figure 8.4: Short time scaling collapse of xz spiral dynamics. Obtained with TEBD-MPS,

open boundary conditions, system size L = 30 and spiral wavevector given by

Q = π/λ. All curves have been evolved to 5Jt. Deviations from the collapse

are due to the differing boundary conditions, are more strongly pronounced as

Q→ 0, ∆→ 1 and less pronounced as L is increased. b) Unrescaled data

8.3.3 Fluctuations

We consider the general Heisenberg model

Ĥ = ∑
i 6=j

Jij

(
Ŝ+

i Ŝ−j + Ŝz
i Ŝz

j

)
, (8.69)
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Figure 8.5: Perturbative time scale as a function of anisotropy for several spiral wavevectors

given by Q = π/λ. System size L = 35.

where Ŝ+
i = Ŝx

i + iŜy
i and we assume real couplings Jij = Jji. We calculate the

short time dynamics of the zz-fluctuations Czz
k = 1

N ∑i,j eik(ri−rj) 〈Ψ(t)|Ŝz
i Ŝz

j |Ψ(t)〉 by

expanding

Czz
k (t) ≈ Czz

k (0)− t2

2
1
N ∑

i,j
eik(ri−rj) 〈Ψ(0)|[Ĥ, [Ĥ, Ŝz

i Ŝz
j ]]|Ψ(0)〉 . (8.70)

The expression can be easiest evaluated for the spiral initial state by introduc-

ing the unwinding transformation U as 〈Ψ(0)|U†U[Ĥ, [Ĥ, Ŝz
i Ŝz

j ]]U
†U|Ψ(0)〉 with

U |Ψ(0)〉 = |↑ · · · ↑〉x and US±i U† = e∓iQri S±i , USz
i U† = Sz

i after calculating the

double commutator. The general result is

〈Ψ(0)|[Ĥ, [Ĥ, Ŝz
kŜz

l ]]|Ψ(0)〉 = −1
4

Jkl ∑
j
(Jkj + Jjl)(cos(Qrjk) + cos(Qrjl)

+
1
2

J2
kl
(
cos(Qrkl)− cos2(Qrkl)

)

+
1
4 ∑

j
Jl j Jjk

(
cos(Qrjl) + cos(Qrjk)− 2 cos(Qrjk) cos(Qrjl)

)

+
1
2

Jkl cos(Qrkl)

(
∑

j
Jl j cos(Qrjl) + ∑

j
Jjk cos(Qrjk)

)
, (8.71)

where rjk = rj − rk.

nearest neighbour 1d Evaluating this expression for 1D nearest neighbour

interactions Jij = δj,i+1 + δj,i−1, we find

Czz
k (t) ≈ 1

4
− t2

2

{
(cos(k)− cos(2k))

(
cos2 Q− cos Q

) }
. (8.72)

The short time scale in angle brackets vanishes for both k = 0 and Q = 0 as expected

and agrees with an exact MPS simulation at short times, see Fig. 8.6. Importantly,

the location of the maximum of the short time scale is independent of Q and located

at k = ±atan(
√

15) ≈ ±0.42π.
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Figure 8.6: Comparison between Eq. 8.72 and an iTEBD simulation for Q = 0.13π.
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Figure 8.7: Comparison of inverse short time scale for fluctuations and the imaginary part

of the Holstein-Primakoff dispersion Im(E(k)). Q = (0.2π, 0), Θ = 0.

nearest neighbour 2d For nearest neighbour interactions in 2D we find for

a general spiral with wavevector Q = (Qx, Qy)

1
4
−Czz

k (t)

≈ t2

2

{
cos(kx)

(
− cos(Qx)− 2 cos(Qy) + cos2(Qx) + 2 cos(Qx) cos(Qy)

)

+ cos(ky)
(
− cos(Qy)− 2 cos(Qx) + cos2(Qy) + 2 cos(Qx) cos(Qy)

)

+ cos(2kx)
(
cos(Qx)− cos2(Qx)

)

+ cos(2ky)
(
cos(Qy)− cos2(Qy)

)

+2 cos(kx) cos(ky)
(
cos(Qx) + cos(Qy)− 2 cos(Qy) cos(Qx)

) }
. (8.73)

In Fig. 8.7 we compare the short time scale of the fluctuations to the imaginary

part of the Holstein Primakoff dispersion, showing that they are different. This

shows that the instability predicted by the Holstein Primakoff analysis is indeed

a non-perturbative phenomenon. As the short time expansion is exact, this also

means that there will be a crossover at intermediate times between the domination

of the (0,±π) mode at short times and the small momentum modes at longer times,

when the Holstein Primakoff instability becomes important. In the following, we
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will study this intermediate time regime within 2PI before studying the instability

for small spiral wavevector Q in more detail with semi-classical methods.

8.4 crossover from short time to instability dynamics from spin

2pi

We solve the full quantum dynamics of the spiral within the GW expansion em-

ployed in spin 2PI [48], which we introduced in section 2.2. We will elucidate to

which extent the decay of the spiral contrast and the growth of spin fluctuations

reflect the instabilities predicted by the Holstein-Primakoff analysis. We note that

the mean field equations only show a precession of the magnetization for Θ 6= 0,

equivalent to an effective magnetic field term 2J ∑d(cos Qd − 1) sin Θ ∑i Ŝz
i in the

Hamiltonian. All observables considered below show no dynamics in the mean

field approximation, i.e. all results shown here exclusively result from the treatment

of quantum fluctuations by including the GW diagram.

8.4.1 Decay of the spiral contrast

Due to translational invariance and conservation of the total magnetization 〈Ŝz〉 =
1
2 sin(Θ), the spiral contrast, defined as

S⊥(Q) =
1
N

∣∣∣∣∑
j

eiQRj 〈Ψ|Ŝ+
j |Ψ〉

∣∣∣∣ (8.74)

with Ŝ+
j = Ŝx

j + iŜy
j is the only single-spin observable [48] for Θ = 0. Oscillations

around the z axis due to the mean-field precession for Θ 6= 0 are not visible in this

observable as they would only show up in 〈Ŝx/y〉. Here, we are however mainly

interested in the decay of the contrast rather than the oscillation.

Within spin-2PI, we find an exponential decay of the spiral contrast for most

values of Q and Θ. Only for diagonal spirals with Q . 0.9π and Θ . 0.2π we find

a pronounced linear decay for intermediate times Jt . 20 as we show in Fig. 8.8,

reminiscent of the prethermal plateau found in 3D [48]. We do not find such a

plateau for x-spirals.

In Fig. 8.9 we show the decay rate of the spiral scanned across the Q,Θ plane for

both diagonal and x-spirals, obtained by a fit S⊥(t) ∼ exp(−γt) at times 10 > Jt > 5.

Comparing with the imaginary part of the Holstein Primakoff dispersion in Fig. 8.3

we find good agreement of the qualitative features for the x-spiral. However, while

the Holstein-Primakoff analysis predicts similar behaviour for diagonal and x-

spirals, we find a dip of the decay rate around Q = π, Θ = 0 due to the emergence

of the plateau-like structure discussed previously. For small Q� π/2, the decay
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Figure 8.8: Slow decay of spiral contrast for diagonal spirals with Q = (π, π).– The spiral

contrast shows a two-stage decay process, where the first, slow stage becomes

less pronounced as the tilt increases. We only find this slow stage for Q & 0.9π.

The late time behaviour is given by an exponential decay.

Figure 8.9: Decay rate γ of the spiral magnetization from spin 2PI.– Obtained by fitting

the spiral magetization with an exponential decay S⊥(t) ∼ exp(−γt) for times

5 < Jt < 10. The Q, Θ dependence of the decay rate resembles the stability

phase diagrams of the Holstein Primakoff Bosons.

rate however does decrease monotonically for Q decreasing and Θ increasing for

both spiral types, as predicted from the Holstein-Primakoff analysis.

In order to elucidate whether the instabilities predicted in the Holstein-Primakoff

analysis are really the underlying mechanisms of the spiral decay and whether

and how they are regulated by interactions, we will look at the growth of spin

fluctuations in the following.
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Figure 8.10: Comparison between Eq. 8.73 and a 2PI simulation for Qx = 0.159π, Qy = 0.

Note the different color scales.

8.4.2 Fluctuations

Here we study the “out-of-plane” and “in-plane” connected spin correlation func-

tions defined by

Czz
k (t) =

1
N ∑

i,j
eik(Ri−Rj)

(
〈Ŝz

i (t)Ŝ
z
j (t)〉 − 〈Ŝz

i (t)〉 〈Ŝz
j (t)〉

)
, (8.75)

C+−
k (t) =

1
N ∑

i,j
eik(Ri−Rj)

(
〈Ŝ+

i (t)Ŝ
−
j (t)〉 − 〈Ŝ

+
i (t)〉 〈Ŝ

−
j (t)〉

)
. (8.76)

Due to the operator identity (Ŝα
j )

2 = 1/4 for α ∈ {x, y, z}, both Czz
k (0) = 1

4 cos2(Θ)

and C+−
k (0) = 1

4 (1 + sin2(Θ)) are nonzero initially even for this product state, but

homogeneous in k space. Moreover, Czz fulfills the non-equilibrium sum rule

1
N ∑

k
Czz

k (t) =
1
4

cos2(Θ), (8.77)

with C+−
k (t) left unconstrained 1.

short-time dynamics In order to benchmark our 2PI simulation, we first

compare the short time dynamics to the exact result. We find qualitative agreemeent

of the main structures, see Fig. 8.10, i.e. a growth of modes around kx = 0, ky = ±π

and a decay around kx = ±π, ky = ±π. However, there are quantitative differences,

for example in the ring-like structure around kx = 0, ky = 0.

Within spin 2PI, we extract the connected spin correlation functions from the

auxiliary field correlator introduced by the GW approximation, see section 2.1.4.

It can be shown that this is equivalent to solving the Bethe-Salpeter equation for

the Majorana vertex up to leading order in 1/N, i.e. up to the RPA diagram for the

vertex [48]. We checked for some cases that there are no qualitative differences when

1 While the sum rule is exactly fulfilled for the Majorana Green’s function in spin 2PI for all times and

for the spin correlators extracted from the auxiliary field correlator at the initial time by construction,

we found some deviations for the latter at finite times.
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Figure 8.11: Crossover from short time dynamics to instability from spin 2PI as measured

by the Czz flucutations. Leftmost plot is the imaginary part of the Holstein

Primakoff dispersion, Eq. 8.43. x-spiral with wavenumber Qx = 0.323π.Θ = 0.

also including part of the NLO contribution to the vertex, i.e. the Maki-Thompson

diagram.

build-up of the instability In the short time analysis we saw that spin fluc-

tations do not reflect the instabilities predicted by the Holstein-Primakoff analysis

from the shortest possible times. In Fig. 8.11 we show that instead, the fluctuations

only slowly get dominated slowly by the modes predicted to be most unstable.

The largest wavenumber moves continuously from (0,±π) to smaller momenta

as time evolves. Due to the sum rule in Eq. 8.77, some modes have to become

negative as the unstable modes grow. These are at the corners of the Brillouin zone.

Although it is to be expected that the largest mode moves up to the mode predicted

by the Holstein-Primakoff analysis and then stops there, we see a contuous move

up until (0, 0) within spin 2PI. Contrastingly, within TWA and MPS we will see this

behaviour in the coming sections.

The spurious behaviour within 2PI is hence an artefact of the method as the

(0, 0) mode needs to vanish for all times due to spin conservation. As we discussed

in the introductory chapters about spin 2PI, this violation of a sum rule is most

likely due to the fact that the correspondence between the auxiliary field correlators

and the spin correlation function does not hold exactly any more when employing

approximations.

In Fig. 8.12 we show the time evolution of a momentum space cut at kx = 0 for

various spiral parameters alongside the imaginary part of the Holstein-Primaoff

dispersion. While qualitatively, the latter gives similar results, the spin 2PI analysis
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Figure 8.12: Time evolution of the fluctuations for different spiral wavenumbers and tilts Θ.

predicts that the spiral is more stable than expected from the imaginary part of the

dispersion - the modes initially start growing around ky = 0 but then start decaying

again. However, these results are to be taken with care due to the challenges for

interpreting fluctuation data from spin 2PI discussed above.

8.5 instability dynamics from semiclassical methods

To complement the Bogoliubov analysis, we compute real time dynamics of the

spiral decay by incorporating quantum fluctuations using the Truncated Wigner

Approximation[419]. Defining 〈Ŝ⊥j 〉 as the transverse magnetization of the initial

condition (8.3), we assume Gaussian fluctuations of Ŝ⊥j given by 〈Ŝ⊥j 〉 = 0 and

〈Ŝ⊥j · Ŝ⊥j 〉 = S.

Figure 8.13(a) shows a single realization of TWA noise for a spin spiral with

parameters θ = π/4 and qx = 0.5 (same parameters as in Fig.8.1). Independently of

the spin number S, we consistently observe growth of unstable modes that lead to

a disordered state. Analysis of the connected correlation 〈Ŝx
−KŜx

K〉c = 〈Ŝx
−KŜx

K〉 −
〈Ŝx
−K〉〈Ŝx

K〉 [shown in Fig.8.13(b), with K the absolute wavevector] reveals that the

spiral state is primarily decaying into modes located in a ring around the wavevector
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Figure 8.13: Real space snapshot of a single TWA realization at t/τ∗ = 3.5, see Eq.(8.1).

Shown are snapshots of the spins Ŝj projected on the xy plane. Indicated with a

bar is the wavelength in the y direction of the fastest growing mode. (b) Contour

plot showing the connected correlation 〈Ŝx
−KŜx

K〉c corresponding to panel (a).

Consistent with the Bogoliubov analysis, the plot exhibits a ring of unstable

modes around q with size k∗ ≈ qx sin θ and a maximal amplitude transverse to

q. Parameters used in panel (a,b): θ = π/4, qx = 0.25, qy = 0, S = 10 averaged

over 50 realizations. (c) Spatial-temporal scaling of 〈Ŝx
−KŜx

K〉c. Shown is the log

of 〈Ŝx
−KŜx

K〉c for K = (qx, ky) and t/τ∗ = 3.5, and for different initial conditions:

(qx, θ) = (0.25, π/2) (circles), (0.5, π/2) (squares) and (0.25, π/4) (triangles)

and S = 10. The dotted-dashed line is the Bogoliubov Im[ω] in Eq.(8.36) as a

guide to the eye. (d) Growth of the most unstable mode, Kf = (qx, k̃y), showing

saturation and subsequent oscillations for S = 10 (solid line) and S = 1/2

(dotted lines). Also shown is the depletion of the spin spiral (dashed-dotted

line).

q, preferentially in the direction perpendicular to q, thus confirming the Bogoliubov

analysis above.

In addition, Fig.8.13(c) shows the scaling of fluctuations for wavectors K = (qx, ky)

and various initial conditions at the rescaled time t/τ∗ = 3.5. Given that we expect

unstable modes to grow as S+
K(t) ≈ S+

K(0)e
t/τK , the y axis is plotted in log scale and

the correlation 〈Ŝx
−KŜx

K〉c is normalized with the maximum value as a function of

ky for each initial condition. We observe excellent agreement with the Bogoliubov

analysis for all q and θ.
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Figure 8.14: Growth of the most unstable mode showing saturation and subsequent oscilla-

tions plotted for different initial conditions and spin number S. The colorcode

indicates simulations with different q: qxa = 0.25 (blue), qxa = 0.37 (green),

and qxa = 0.5 (red). The linestyle indicates models with different value of S.

All figures use θ = π/2.

instability growth and self-regularization Going beyond the lin-

ear stability analysis, we inquire about the intermediate timescale dynamics of

instability growth. Figure 8.13(d) shows the decay of the spin spiral and multiple

stages in the evolution of the most unstable mode: (i) initial growth compatible

with the Bogoliubov analysis above, (ii) saturation, (iii) coherent oscillations prior

to equilibration. Unlike usual instabilities in BEC where unstable modes grow ex-

ponentially for long times, the local constraint Ŝ2
j = S(S + 1) and the conservation

of total magnetization regulates the growth of the transverse spin modulation at

relatively short times, analogously to Refs. [48, 49, 479]. We observe that saturation

occurs at t ≈ 4τ∗, irrespective of the value of S, q and θ. In Figure 8.14, we show

this behavior for various initial conditions and values of the spin number S.

The existence of unstable modes in the linearized analysis and the small os-

cillations in Fig.8.13(d) are linked to the existence of smooth, symmetry-allowed

deformations of the spin spiral order with a valley-shaped potential. Using the

insights gained from the Bogoliubov analysis, we propose a simple Ansatz for

a transverse spin texture given by S±j = S sin θie±iq·rj and Sz
j = S cos θj, with

θj = θ̄ + 2δθ cos(k̃yyi) and k̃y defined below Eq.(8.36) [see Fig.8.2(a)]. The value of

δθ controls the amplitude of transverse spin deformations around θ̄ and is modu-

lated by the transverse wavevector k̃y. This ansatz trivially satisfies ∑j S±j = 0 for

all values of θ̄ and δθ, and the condition 1
N ∑j Sz

j = S cos θ defines a constraint that

links θ̄ and δθ. Because we recover Eq.(8.3) when θ̄ = θ and δθ = 0, our Ansatz

is smoothly connected to the original spiral and preserves its total magnetization.

Figure 8.2(b) shows that increasing the transverse modulation δθ reduces the energy

of the spin spiral. In addition, the observed oscillations in Fig.8.13(d) can be inter-

preted as amplitude oscillations on a valley-shaped potential. The same argument
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can be applied to any value of k that satisfies the instability condition (8.35), but

the valley is deepest for K = (qx, k̃y).

crossover to the quantum regime The stability analysis above relies on a

1/S expansion of the equations of motion, opening the question on its validity in

the experimentally relevant S = 1/2 case. The competition between quantumness

in the S → 1/2 limit and classicality in the q → 0 limit suggests that a smeared,

but still observable, ring of unstable modes is obtained for finite but small q and

S = 1/2. Indeed, our numerics reveal that strong quantum fluctuations supress

the exponential growth of unstable modes and smear out coherent oscillations in

the two-point correlation function [see Fig.8.13(d)], but the latter still exhibits an

imprint of the ring of unstable modes, see Fig.8.2(c). Remarkably, we also find

that our simple semiclassical picture essentially survives in the one-dimensional

Heisenberg model despite integrability and reduced dimensionality, as shown with

Matrix Product States and TWA in the Supplement (in this case, the most unstable

modes are necessarily collinear with qx).

crossover to modulational instability To study the crossover between

the transverse instability in the Heisenberg model (Jz = J) to the modulational

instability that characterizes a superfluid on a lattice, we extend the Bogoliubov

analysis for values of Jz < J (see details in the Supplement). Tuning Jz can be

realized experimentally using Feshbach resonances, dipolar interactions or lattice

shacking [160, 206, 480–482]. The anisotropic exchange energetically penalizes the

transverse deformation of the spin spiral order. In the language of the stability

condition in Eq.(8.35), the pairing ∆k becomes repulsive, ∆k ≈ (J − Jz). While

breaking the SU(2) symmetry has a stabilizing effect on the spin spiral state, there

is still a strong reduction of the critical wavevector far from the SU(2) symmetric

point, as shown in Fig.8.2(d). This suggests that the instability mechanism that we

describe is also relevant for materials with anisotropic exchange.

8.6 spin spirals in 1d using matrix product state methods

8.6.1 Transverse instability

Here we show that the dynamics described previously for two-dimensional spin

spirals in the large S limit are also relevant for S = 1/2 in 1D. We focus on
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full spirals with θ = π/2. In Fig. 8.15 we display the connected spin correlation

functions

Czz
k (t) ≡ 〈Ŝz

k(t)Ŝ
z
−k(t)〉,

C+−
k (t) ≡ 〈Ŝ+

k (t)Ŝ
−
−k(t)〉 − 〈Ŝ

+
k (t)〉〈Ŝ

−
−k(t)〉,

(8.78)

for a spiral wavelength Q = 0.13π obtained from MPS-iTEBD simulations employ-

ing the TeNPy package [89], with a unit cell chosen large enough to fit the spiral

(here: L = 90). For very short times, pertubartive short time dynamics dominate,

see derivation below. At around Jt = 5, the dynamic instability takes over, leading

to a growth of fluctuations with momenta around the spiral wavelength, k = ±Q.

The distribution of fluctuations in momentum space approximately agree with

the imaginary part of the Bogoliobov dispersion. We find similar signatures of the

instability in the C+− correlations. However, we find the that low-momentum part

(k ≤ Q) of the “double lobe” structure of the Bogoliubov dispersion dominates over

the large-momentum part (k > Q).
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Figure 8.15: Growth of spiral fluctations in 1D. Shown are the Czz
k and C+−

k correlations for

a spiral wavelength Q = 0.13π, obtained from iTEBD-MPS simulations. The

upper panels show the results of the Bogoliubov analysis, and TWA calculations

for tJ = 15.
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Figure 8.16: Spatial-temporal scaling of spin fluctuations. Shown is the C+− and Czz

correlations as defined in Eq. (8.78) rescaled according to the scaling function

in Eq. (8.79), with the rescaled time Jt/(1− cos(Q)) fixed. Insets: Unrescaled

correlation functions.

In analogy with the scaling of fluctuations shown in in Fig. 8.13(c), we also find

scaling in the growth of fluctuations. As shown in Fig. 8.16, the scaling relation is

given by

Cab
k

(
Jt

1− cos(Q)

)
− Cab

k (0) = Q−α f
(

k
Qβ

)
. (8.79)

While the time and momentum rescaling factors β = 1 are obtained analytically

from the Bogoliubov treatment, we find α ≈ 0.25 for ab = +− and α ≈ 1 for

ab = zz numerically from our MPS simulations. Note that our results can not be

explained by a simple perturbative short time scaling. Indeed, we analytically show

next that the perturbative short time scale is Q-independent, in contrast to the k/Q

dependence we find here.

8.6.2 Benchmark for spin 2PI

We can also use the one-dimensional case to benchmark our 2PI simulations. In

Fig. 8.17 we show the comparison between exact TEBD simulations and Majorna
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Figure 8.17: Comparison of TEBD and 2PI for a spiral of wavevector Q = Qnum × 2π/30,

i.e. a system with L = 30 sites. The spiral is winding around the z-axis, i.e. in

the xy plane.

spin 2PI for the decay of the spiral magnetization in the anisotropic Heisenberg

model

Ĥ = J ∑
i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + ∆Sz

i Sz
i+1
)

. (8.80)

While quantitative differences are clearly visible, the qualitative trends, i.e. pa-

rameter dependencies on Q and ∆ seem to be reproduced. Note that 1D nearest

neighbour interactions are in a sense the hardest case for 2PI: The approach de-

velops onto the mean-field limit, which becomes more valid as the dimensionality

and/or range of the interactions is increased. Hence, we expect 2PI to work better

in the two-dimensional case we discussed previously.

8.6.3 Imperfections in quantum simulators of spiral dynamics

The decay of spiral states has been recently studied [162, 163] in cold atom quantum

simulators, where the two spin 1/2 spin states are encoded in the two hyperfine

states of the Bosonic atoms. In the Mott insulating regime at large on-site interactions

and unit filling, the charge dynamics are frozen and the spin dynamics are effectively

described by a Heisenberg model [483–485]. The anisotropy ∆ can be tuned by the

ratio between interstate and intrastate on-site interactions. In the following, we will
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Figure 8.18: Comparison of spiral magnetization dynamics with and without holes. Ob-

tained from MPS simulations of the two-component Bose Hubbard model

truncated to three states per site. Spiral wavenumber Q = 2π/40, on-site inter-

action U = 10, system size L = 40, averaging over 10 ralizations of randomly

sprinkling four holes over the system.

study two imperfection in this simulation scheme which can lead to a deviation of

the experimental measurement from the expected results in the spin model.

holes The Mott insulating state can have defects in the form of holes propagat-

ing through the system. In this case, the spiral dynamics can be altered due to the

charge dynamics. In Fig. 8.18 we simulate the full two-component Bose Hubbard

model taking into account three states per site to study the spiral dynamics in the

presence of holes in 1D. While we find some deviations, the influence is only very

slight is most directly expressed in the initial spiral magnetization. The fact that

holes only influence the spin dynamics in a negligible way may be interpreted as

an effect of spin-charge separation in this one-dimensional system [147, 486, 487].

In chapter 9 we will study this effect in more detail.

chain length averaging Cold atom experiments use three-dimensional

optical lattices which can be reduced to one-dimensional tubes by making the

intensity pattern anisotropic. However, it is challenging to only measure a single

tube, and therefore, many tubes are averaged over [163]. Due to the Gaussian

envelope of the trapping lasers, not all tubes will have the same length. As the spiral

wavelength is however the same in all tubes, this leads to differing magnetizations
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Figure 8.19: Simulation of the effect of randomly averaging over many tubes of different

lengths. We assume a circular geometry of the tubes, see inset in top plot.

The longest chain has length L = 40, wavenumber is Q = 2π/L, ∆ = 0.5. We

measure the spiral magnetization projected onto the z-axis as in the Experiment

in Ref. [163].

in each tube and a deviation from the exact dynamics. In Fig. 8.19 we simulate the

tube averaging while approximating the envelope by a spherical geometry. We only

find a rather small effect on the spiral magnetization while the profile at the longest

times does deviate substantially. In Ref. [163] it has also been noted that this effect

does indeed have a substantial impact on the measured data.

8.7 conclusions

We analyzed the dynamics of spin spiral states in the two-dimensional Heisen-

berg model using several complementary analytical and numerical methods. By

employing a Holstein-Primakoff stability analysis, we discovered a new class of dy-

namic instability which is enabled by the topology of the order parameter manifold

rather than kinematic effects. From an exact short-time analysis, we showed that

the instability does not govern the dynamics from the shortest possible timescales.

Instead, it is built up non-perturbatively, which we showed by employing spin 2PI

and truncated Wigner simulations. At late times, the instability is regularized by

the spin length constraint. We also show using the numerically exact MPS-TEBD

algorithm, that the same mechanism is happening in one-dimensional spin 1/2
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chain. We conjecture that this instability is an important mechanism that governs

the decay of spin superfluids.

While the mechanism that we discuss is intrinsic to the Heisenberg model, open

problems include understanding the enhancement of the instability in the presence

of disorder and long-range interactions, and understanding the mechanisms of de-

cay in systems with different lattice types. In addition, extending our simulations to

longer timescales in order to obtain a wholistic perspective of thermalization, which

captures the growth of unstable modes and subsequent quasiparticle relaxation,

remains an important challenge. While 2PI would be a contender for such a method,

we showed that there are some problems in the interpretation of higher order

correlation functions when employing approximations. A possible solution could be

to employ a multi-channel GW approximation as done in Ref. [488]. Alternatively,

using MPS methods on cylinders might lead to numerically exact results. However,

the expected drastic entanglement growth due to the global quench might render

this challenging.





9
V I S UA L I Z I N G S P I N O N F E R M I S U R FA C E S W I T H

T I M E - D E P E N D E N T S P E C T R O S C O P Y

This chapter is based on the preprint

• Alexander Schuckert*, Annabelle Bohrdt*, Eleanor Crane, Fabian Grusdt:

“Visualizing spinon Fermi surfaces with time-dependent spectroscopy” –

[arXiv:2105.13366]

The text has been adapted here. * indicates equal contribution.

Quantum simulation experiments have started to explore regimes that are not

accessible with exact numerical methods. In order to probe these systems and

enable new physical insights, the need for measurement protocols arises that can

bridge the gap to solid state experiments, and at the same time make optimal use

of the capabilities of quantum simulation experiments. Here we propose applying

time-dependent photo-emission spectroscopy, an established tool in solid state

systems, in cold atom quantum simulators. Concretely, we suggest combining

the method with large magnetic field gradients, unattainable in eeriments on real

materials, to drive Bloch oscillations of spinons, the emergent quasiparticles of

spin liquids. We show in exact diagonalization simulations of the one-dimensional

t− J model that the spinons start to populate previously unoccupied states in an

effective band structure, thus allowing to visualize states invisible in the equilibrium

spectrum. The dependence of the spectral function on the time after the pump

pulse reveals collective interactions among spinons. In numerical simulations of

small two-dimensional systems, spectral weight appears at the ground state energy

at momentum q = (π, π), where the equilibrium spectral response is strongly

suppressed up to higher energies, indicating a possible route towards solving the

mystery of the Fermi arcs in the cuprate materials.

9.1 introduction

Just like the back side of the moon is invisible from the earth, certain quantum states

may be hidden from standard measurement tools in condensed matter physics. For

example, states may be unoccupied at low temperatures or associated with strongly

suppressed matrix elements. Akin to the fascination induced by the back side of the

233
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Figure 9.1: Time-dependent photoemission-spectroscopy in quantum gases. a) A half-

filled 1D Fermi-Hubbard chain in the ground state, corresponding to a spinon

Fermi sea, is prepared in the system layer while the detection layer is empty.

b) A strong magnetic field gradient is applied, leading to Bloch oscillations in

opposite directions of the two spinon species. c) After the field is switched off, a

weak lattice modulation is applied, exciting an atom to the detection layer. d)

Finally, the momentum of the excited atom in the detection layer is measured,

e.g. in a harmonic potential by a quarter-period oscillation, using time-of-flight

or another adiabatic band mapping scheme.

moon in popular culture, the back side of the Fermi arcs in the elusive pseudogap

phase of the cuprate materials has excited condensed matter physicists for decades.

The cuprates exhibit superconductivity [115] at high temperatures, and fully

understanding their phase diagram has become something like a holy grail in the

community. One particularly intriguing part of this phase diagram is the pseudogap

phase. One of its many fascinating properties is the observation of Fermi arcs in

angle-resolved photoemission spectroscopy (ARPES) [489]: around the nodal points

k = (±π/2,±π/2), arcs of high spectral weight appear in the spectral function,

and in principle could be part of a small Fermi surface [490, 491]. However, these

arcs appear to have two endpoints, and the backside of the putative Fermi surface is

invisible. An important question is thus whether there exist states on the backside

of the Fermi arcs, which are invisible in ARPES measurements. If this is the case,

Luttinger’s theorem [492] would be violated, as the area enclosed by the putative

Fermi surface would be too small, indicating either a thus far unknown broken

translational symmetry or topological excitations [493].

Here we propose a scheme to probe unoccupied states [494, 495] in the spec-

tral function of strongly correlated many-body systems, realizable in quantum

simulators. It is based on pump-probe spectroscopy, which has recently emerged

as a valuable tool in solid state experiments to study non-equilibrium properties

of materials [496–501]. Quantum simulators such as ultracold atoms have several

advantages: for example, the absence of phonons leads to long coherence times and

the Hamiltonian parameters are well known and tunable. In particular, a different

toolbox for possible probe pulses is available, such as magnetic field gradients with
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strengths unattainable in solid state experiments. For these reasons, our scheme is

an important complement to existing pump-probe experiments. Our proposal to

implement time-dependent ARPES (td-ARPES) to visualize spinon states in cold

atoms is within reach of current quantum gas microscopy experiments, which have

recently realized all the required building blocks: a magnetic field gradient [502],

angle-resolved photoemission spectroscopy [503] and Bloch oscillations [504–506].

Applying our td-ARPES scheme to the Fermi-Hubbard model, which has been

realized with cold atoms in several quantum gas microscopes [148, 502, 507, 508],

directly enables the study of fractionalized excitations: In the one-dimensional

(1D) Fermi-Hubbard model, the electron is effectively split into independent charge

and spin excitations, called chargon and spinon, respectively [147, 486, 509]. The

single-particle spectra of the 1D Fermi-Hubbard and t− J models exhibit a strong

asymmetry [510], which can be associated with the fermionic statistics of spinons

and their Fermi sea [95].

In this chapter, we demonstrate by numerical simulations that td-ARPES com-

bined with strong external field gradient pulses can shed light on spinon states not

occupied in the ground state of the 1D t− J model, up to the highest momentum

k = π, see Fig. 9.1. In two dimensions, we show that a magnetic field gradient pulse

along the diagonal direction yields spectral weight at low energies at k = (π, π).

This provides a hint that the missing weight on the back side of the Fermi arcs may

be related to a spinon Fermi sea picture [86].

9.2 time dependent spectroscopy in quantum simulators

Our protocol combines the equilibrium ARPES protocol [95, 503] for quantum sim-

ulators with the solid state td-ARPES protocol [511]. First, a system in equilibrium

is prepared in one layer of an optical lattice. A neighboring layer (“detection layer”)

is left empty with a gradient along the transverse direction inhibiting tunneling

between the layers due to the energy difference ∆ induced by the gradient, Fig. 9.1a).

Subsequently, a non-equilibrium state |ψ0〉 is prepared by a quench, such as the

application of an external field. Here, we propose to apply a strong magnetic field

gradient for a time tB, Fig. 9.1b). Magnetic field gradients have been realized in

quantum gas microscopy experiments for example to study spin transport [502].

To measure the time-dependent ARPES spectrum Aq(T, ω), we suggest to apply

a weak lattice modulation between system and detection layers with frequency ω̃

and a Gaussian envelope centered around time T with variance Σ2, Fig. 9.1c). In the

weak modulation limit, this allows a single atom of energy εq and spin σ to tunnel

resonantly into the detection layer if ω̃ = εq +∆. Alternatively to the detection layer,
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a non-interacting third hyperfine state can be used, with the lattice modulation

replaced by a radio-frequency (RF) pulse [503]. This enables the application of our

protocol in continuum quantum gases, where RF spectroscopy in equilibrium is

routinely performed [512–514].

Finally, one of the band mapping schemes described in [95] can be used to mea-

sure the momentum of the atom in the detection layer at long times after the pulse

has subsided, i.e. t� T + Σ, Fig. 9.1d). We show below that the momentum space

occupation number in the detection layer is proportional to the time-dependent

hole spectral function Aqσ(T, ω)

Aqσ(T, ω) =
∫

dτeiωτ
〈

ψ0

∣∣∣ ĉ†
q,σ(T + τ/2)ĉq,σ(T − τ/2)

∣∣∣ψ0

〉
(9.1)

at frequency ω = ω̃− (εq + ∆) and central time T. Here, ĉ(†)q,σ annihilates (creates)

a fermion or boson of spin σ and momentum q. The particle spectral function∫
dτeiωτ Tr(ρĉqσ(T + τ/2)ĉ†

qσ(T − τ/2)) can be measured by the same protocol by

initially preparing the detection layer in a band-insulator. The modulation leads

in this case to an assisted tunneling of an atom from the detection layer into the

system, whose momentum can be obtained by band-mapping of the resulting hole

in the detection layer. In the solid state, this protocol is known as angle-resolved-

inverse-photoemission-spectroscopy.

In the following, we will derive the above results in more detail, combining the

ARPES protocol presented in Bohrdt et al. [95] to arbitrary initial states, closely

following the theoretical description of time resolved ARPES in the solid state by

Freericks et al. [515]. We then generalize the protocols to ARIPES. Our protocol is

applicable for fermionic and bosonic systems.

9.2.1 Linear and quadratic response

Consider a system with many-body Hamiltonian Ĥ0 and probe Hamiltonian V̂

(e.g. containing a lattice modulation or RF pulse), such that the total Hamiltonian

is given by Ĥ = Ĥ0 + V̂. We work in an interaction picture with respect to Ĥ0

such that operators are evolved according to ÂI(t) = Û†
0 (t)ÂÛ0(t), with Û0(t) =

T exp(−i
∫

dt′Ĥ0(t′)). The initial density matrix ρ̂0 is evolved according to ρ̂(t) =

Û(t)ρ̂0Û†(t) with Û(t) = T exp(−i
∫ t

0 V̂I(t′)dt′) . Up to second order in V̂, the time

evolution operator is given by

Û(t) = 1− i
∫ t

0
dt1V̂I(t1)−

∫ t

0
dt1

∫ t1

0
dt2V̂I(t1)V̂I(t2) +O(V3). (9.2)



9.2 time dependent spectroscopy in quantum simulators 237

The expectation value of an observable Â at time t, 〈Â(t)〉 ≡ Tr
(
ρ̂(t)ÂI(t)

)
, is then

given by

〈Â(t)〉 − 〈Â(t)〉V=0 = −i
∫ t

0
dt1 〈

[
ÂI(t), V̂I(t1)

]
〉

+
∫ t

0
dt1

∫ t

0
dt2 〈V̂I(t1)ÂI(t)V̂I(t2)〉

−
∫ t

0
dt1

∫ t1

0
dt2 〈V̂I(t2)V̂I(t1)ÂI(t) + ÂI(t)V̂I(t1)V̂I(t2)〉+O(V3),

(9.3)

where 〈Â(t)〉V=0 is the expectation value in the absence of a probe pulse.

The above expression is valid for any density matrix ρ̂0, in particular also for

thermal equilibrium ρ̂0 = 1
Z e−βĤ0 with Z = Tr(e−βĤ0). Moreover, it offers a unified

perspective on non-equilibrium dynamics between cold atom experiments, where

usually ρ̂0 is thought off as some (product) initial state, given by the ground state of

some Hamiltonian different to Ĥ0, i.e. a “ quantum quench”, and condensed matter

pump-probe experiments, where ρ̂0 = 1
Z e−βĤ0 , but there is an additional strong,

time dependent pump term during the time evolution Ĥ0 → Ĥ0 + Ĥpump(t). In

fact, these two perspectives are equivalent if the pump pulse only acts up to some

time t∗ before the probe is turned on, as then the action of the pump pulse can be

absorbed into the initial density matrix by ρ̂0 = Û0(t∗) 1
Z e−βĤ0Û†

0 (t
∗).

In the following, we will specify this expression to the cases of the probe pulse

coupling the atom creation/annihilation operator c/c†, which yields the cold-atom

analogues of time-resolved ARPES and ARIPES, probing the two-time correlation

functions 〈ĉ†
q(t1)ĉq(t2)〉, 〈ĉq(t1)ĉ†

q(t2)〉 respectively, with momentum q and lattice

site j.

9.2.2 Time dependent ARPES

The protocol consists in coupling the “system” optical lattice to another tube/layer

representing a “detection” lattice, which is initially empty. The detection lattice is

offset by an energy ∆, which is the analogue of the work function in condensed

matter ARPES. An analogue of a photopulse is created by modulating the lattice

depth between system and detection layer, resulting in a coupling Hamiltonian

V̂I(t) = −tys(t)e−iωt ∑
k

d̂†
kσ ĉkσ + h.c., (9.4)

where d†
kσ, ĉkσ creates/annihilates an atom with spin σ in the detection/system

layer; ty is the amplitude of the modulation, which needs to be small compared

to the tunneling within the system; ω is the modulation frequency. The detection

system is assumed to be non-interacting, such that Ĥd = ∑q(εq + ∆)d̂†
qσd̂qσ with εq
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the non-interacting dispersion of the detection lattice. The operator measured in

this scheme is the momentum space occupation number in the detection system

Â = n̂qσ ≡ d̂†
qσd̂qσ, which may be obtained from the band-mapping schemes in

Ref. [95]. The total initial density matrix ρ̂0 is a product state of the empty detection

system and the system density matrix ρ̂0 = |0〉 〈0|d ⊗ ρ̂s.

Inserting Â and V̂I into Eq. 9.3, we directly see that the linear term in V̂I vanishes

as it contains a vacuum expectation value of an odd number of detection system

creation/annihilation operators. Furthermore, the terms in the second line of Eq. 9.3

also vanish as ÂI(t) = n̂qσ(t) acting on the empty detection initial state gives

zero. Moreover, in the absence of system-detection layer tunneling, the occupation

number in the detection system stays zero, such that 〈n̂qσ(t)〉ty=0 = 0 at all times.

The last remaining term then finally gives

〈n̂qσ(t)〉 = t2
y

∫ t

0
dt1

∫ t

0
dt2 s(t1)s(t2)×

∑
k′k′′,σ′σ′′

〈0|d̂k′σ′(t1)n̂qσ(t)d̂†
k′′σ′′(t2)|0〉Tr(ρ̂s ĉ†

k′σ′(t1)ĉk′′σ′′(t2))eiω(t1−t2)

= t2
y

∫ t

0
dt1

∫ t

0
dt2s(t1)s(t2)ei(ω−εq−∆)(t1−t2) Tr(ρ̂s ĉ†

qσ(t1)ĉqσ(t2)) (9.5)

= t2
y

∫ t

0
dT
∫ τmax(T)

−τmax(T)
dτs

(
T − τ

2

)
s
(

T +
τ

2

)
ei(ω−εq−∆)τ A(T, τ), (9.6)

where we defined center of mass time T = 1
2 (t1 + t2), and relative time τ as well

as the “lesser” Green’s function A(T, τ) = Tr(ρ̂s ĉ†
qσ(T + τ/2)ĉqσ(T − τ/2)). The

maximum relative time is τmax = 2T for T ≤ t/2 and τmax = 2t for T > t/2. In

most situations however, we can send τmax → ∞ due to the rapid decay of A(T, τ).

We note that this expression is valid for both Fermionic and Bosonic species because

we assumed the detection system to be initially empty.

In the following, we will discuss a few instructive limits of the above general

expression.

equilibrium limit We can recover the equilibrium result of Ref. [95] by

inserting s(t) = 1 as well as using that in equilibrium, ρ̂s =
1
Z e−βĤ0 , A(T, τ) only

depends on τ. The rate of tunneling to the detection system is then given by

Γqσ(ω) =
1
t
〈n̂qσ(t)〉 (9.7)

= t2
y

∫ ∞

−∞
dtei(ω−εq−∆)t 1

Z
Tr(e−βĤ0 ĉ†

qσ(t)ĉqσ) (9.8)

= t2
y Aqσ(ω− εq − ∆). (9.9)

Aqσ(ω) is the hole spectral function

Aqσ(ω) =
1
Z ∑

nm
e−βEn | 〈m|ĉkσ|n〉 |2δ(ω− (Em − En)). (9.10)
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gaussian pulse A (normalized) Gaussian pulse centred around t = tp as

s(t) = 1√
2πσ2 exp(−(t− tp)2/2σ2), leads to

2πσ2 〈n̂qσ(t)〉

=
∫ t

0
dT
∫ tmax

−tmax

dτ exp

(
−
(T − tp)2

σ2/2

)
exp

(
− τ2

8σ2

)
ei(ω−εq−∆)τ A(T, τ), (9.11)

Typically, A(T, τ) decays rapidly as a function of τ (with the decay rate correspond-

ing to the lifetime of excitations in the system), such that we can extend the integral

boundaries for the τ integral to ±∞. Then we can interpret the τ integral as a

Fourier transform, with a broadening introduced by the finite pulse length, leading

to

〈n̂qσ(t)〉 =
√

2
πσ2

∫ t

0
dT exp

(
−
(T − tp)2

σ2/2

)
×

∫ dω̃

2π
exp

(
−2σ2ω̃2) A(T, ω− εq − ∆− ω̃). (9.12)

Hence, a Gaussian pulse centred around tp measures the time dependent lesser

Green’s function averaged over a time and frequency window fulfilling the “uncer-

tainty relation” σ2
Tσ2

ω = 1
16 .

9.2.3 Time dependent ARIPES

Here we show how to measure the time dependent particle spectral function in

angle-resolve inverse photo-emission spectroscopy, in which atoms are injected

rather than ejected from the system layer.

To measure the ARIPES spectrum, we propose to prepare the detection layer in a

bandinsulator, i.e. all momenta are initially filled. Then, the same coupling term as

in the ARPES protocol is turned on. In this case, the second line in Eq. 9.3 is not

zero, however for Fermions it cancels with another contribution from the second

term in the first line. In total, we get for Fermions

1− 〈n̂qσ(t)〉

= t2
y

∫ t

0
dT
∫ τmax(T)

−τmax(T)
dτs

(
T − τ

2

)
s
(

T +
τ

2

)
e−i(ω−εq−∆)τ A>

qσ(T, τ), (9.13)

i.e. in this case the hole propagation in the detection layer needs to be measured.

The result involves the particle spectral function

A>
qσ(t1, t2) = Tr(ρ̂s ĉqσ(t1)ĉ†

qσ(t2)), (9.14)

which measures the unoccupied states in the system. The same manipulations as

above go through analogously to obtain the equilibrium limits and the case of a

Gaussian pulse.
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9.2.4 Extracting |A| from two copies of the same state

Here we give an alternative protocol based on Ref. [40]. It consists in evolving two

copies of the system, acting with some operators on them and interfering them in

the end.

First, prepare two copies of the same initial state |Ψ〉 ⊗ |Ψ〉 and let them evolve

under the same Hamiltonian Ĥ for time t1, such that we get exp (−iĤt1) |Ψ〉 ⊗
exp (−iĤt1) |Ψ〉. Then, remove a particle in the first copy at site i, evolve for time

(t2 − t1) with t2 > t1 and remove a particle in the second copy at site j. Thus, we

end up in the state exp (−iĤ(t2 − t1))ĉi exp (−iĤt1) |Ψ〉 ⊗ ĉj exp (iĤt2) |Ψ〉. Finally,

measure the swap operator SWAP by tunnel-coupling the two copies and measuring

the parity-projected particle number, leading to

〈SWAP〉t1<t2
= | 〈ĉ†

j (t2)ĉi(t1)〉 |2, (9.15)

9.3 occupying higher momentum spinon states by bloch oscilla-

tions

Here, we use our tdARPES protocol it to probe unoccupied spinon states in the

t− J model,

Ĥt−J = −t ∑
〈i,j〉,σ
P
(

ĉ†
i,σ ĉj,σ + h.c.

)
P + J ∑

〈i,j〉
Ŝi · Ŝj, (9.16)

where P denotes projection on the Hilbert space without double occupancies, 〈i, j〉
denotes neighboring sites, and Ŝj are spin-1/2 operators.

The 1D t − J model exhibits spin-charge separation [486]. This can be made

explicit by writing the original fermionic operators as ĉi,σ = ĥ†
i f̂i,σ, where the spin

operators Ŝi are related to the fermionic spinon operators as Ŝi =
1
2 ∑α,β f̂ †

i,ασα,β f̂i,β

and ĥi denotes the bosonic chargon operator [516, 517]. On a mean-field level, the

time dependent spectral function can be approximated as a convolution of spinon

and chargon contribution,

Aqσ(T, ω) = ∑
kh

∫
dνAs

q−khσ(T, ω− ν)Ac
kh
(T, ν). (9.17)

This representation serves in particular to determine the positions at which spectral

weight should appear as it explicitly satisfies momentum and energy conservation.

Note that due to spin-charge separation, the chargon can be approximated as a free

particle with dispersion εh(k) = −2t cos(k) when t� J [518].
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To gain a better understanding of the spinon contribution to the spectrum, we

express the spin part of the Hamiltonian in Eq. (9.16) in terms of the spinons [519]:

ĤJ = −
1
2 ∑
〈i,j〉,α

f̂ †
i,α f̂ j,α

[
J⊥ f̂ †

j,ᾱ f̂i,ᾱ + Jz f̂ †
j,α f̂i,α

]
(9.18)

where, ↑̄ = ↓ and ↓̄ = ↑. This expression is exact within the subspace satisfying

∑α f̂ †
i,α f̂i,α = 1 [95, 519].

In a mean-field description of the SU(2) invariant model with J⊥ = Jz, we replace

the operator f̂ †
i,α f̂ j,α by its ground state expectation value, leading to the formation

of a Fermi sea of the spinons f̂i,σ [95]. In standard ARPES, fermions can only be

removed from formerly occupied states, and thus spectral weight only appears for

spinon momenta within the Fermi sea. For an undoped spin chain this corresponds

to kF = ±π/2. At momenta |k| > π/2, states of the many body system exist, but

are not occupied and therefore do not yield any weight in the spectral function.

Here, we want to probe these unoccupied spinon states of the 1D t− J model

at zero temperature by driving the system out of equilibrium before measuring

the time dependent one-hole ARPES spectrum, akin to solid state pump-probe

experiments. We do so by applying a magnetic field gradient, described by the

Hamiltonian

ĤB = −B ∑
j

jŜz
j , (9.19)

for a time tB, starting from the B = 0 ground state. Numerically, we consider

periodic boundary conditions for a cleaner signal and apply a time-dependent

unitary transformation in order to restore translational invariance. After time tB, we

switch the gradient field off and calculate the td-ARPES spectrum of the resulting

non-equilibrium state with exact diagonalization.

In the following, we show how to obtain a translationally invariant rotating

frame.

9.3.1 Restoring translational invariance

Leaving initial state invariant

In order to restore translational invariance for our numerics, we apply a time-

dependent unitary transformation

Û(t) = exp

(
−iBt ∑

j
jŜz

j

)
, (9.20)
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such that the transformed Hamiltonian ĤJ + ĤB → Ĥ′ is given by

Ĥ′ = ÛĤÛ† + i
∂Û
∂t

Û† (9.21)

= J ∑
j

1
2

(
e−iBtŜ+

j+1Ŝ−j + eiBtŜ−j+1Ŝ+
j

)
+ Ŝz

j+1Ŝz
j . (9.22)

In this interaction picture, time evolution is governed by the Schrödinger equation

i
d
dt
|ψ′(t)〉 = H′(t) |ψ′(t)〉 , (9.23)

with initial state |ψ′(0)〉 = Û(0) |0〉 = |0〉. Therefore, the time evolved state in the

unrotated frame is given by

|ψ0〉 = Û†(tB)T e−i
∫ tB

0 H′(t)dt |0〉 (9.24)

After preparation of the state |ψ0〉 we calculate the td-ARPES function Akσ(t1, t2) =

〈ψ0|ĉ†
kσt1)ĉkσ(t2)|ψ0〉, which contains time evolution under the tJ model. The tJ

Hamiltonian is transformed with U(tB), such that time evolution is generated by

Ĥ′tJ = P
[
− t ∑

〈j,l〉,σ
e−i BtB

2 (j−l)σ ĉ†
j,σ ĉl,σ

+ J ∑
j

1
2

(
e−iBtB Ŝ+

j+1Ŝ−j + eiBtB Ŝ−j+1Ŝ+
j

)
+ Ŝz

j+1Ŝz
j

]
P . (9.25)

Moreover, we need to transform the operators ĉ†
kσ via Û(tB)ĉ†

k,σÛ†(tB) = ĉ†
k−σθ/2,σ,

such that the td-ARPES function in the lab frame can be written as

Akσ(t1, t2) = 〈ψ0|Û†(tB)ĉ†
k−σθ/2,σ(t

′
1)ĉk−σθ/2,σ(t′2)Û(tB)|ψ0〉 , (9.26)

where we marked the times with a prime to make explicit that time evolution is

done under Ĥ′tJ . Finally, inserting the time evolved state in Eq. (9.24), we can rewrite

this as

Akσ(t1, t2) = 〈ψ0|ĉ†
k−σθ/2,σ(t

′
1)ĉk−σθ/2,σ(t′2)|ψ0〉 (9.27)

where |ψ0〉 = T e−i
∫ tB

0 H′(t)dt |0〉 is the ground state evolved under the rotated

Hamiltonian. Using this expression, we never need to explicitly act with the unitary

Û on the state.

Eliminating the phase in the hopping term

For numerical reasons, we want to additionally eliminate the phase in front of the

hopping term in Eq. (9.25). We can do so by shifting the unitary transformation by

the corresponding constant phase, such that

Û(t) = exp

(
iB(tB − t)∑

j
jŜz

j

)
, (9.28)
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and

Ĥ′′(t) = J ∑
j

1
2

(
eiB(tB−t)Ŝ+

j+1Ŝ−j + e−iB(tB−t)Ŝ−j+1Ŝ+
j

)
+ Ŝz

j+1Ŝz
j . (9.29)

Now, the initial state in the rotated frame is given by |ψ′(0)〉 = Û(0) |0〉, with

Û(0) = exp
(

iBtB ∑j jŜz
j

)
6= 1 such that contrary to before we need to act with

a unitary on the initial state. We do this by preparing the ground state of the

Hamiltonian Ĥ′′(t = 0) at time 0.

The other steps performed above go through as before. Notably, U(tB) = 1, such

that both the tJ Hamiltonian and the operators ĉk for the time evolution in Akσ(t1, t2)

are unchanged. Hence, the full expression can be written as

Akσ(t1, t2) = 〈ψ0|ĉ†
k,σ(t1)ĉk,σ(t2)|ψ0〉 (9.30)

where |ψ0〉 = T e−i
∫ tB

0 H′′(t)dt |0′′〉 is the ground state of H′′(t = 0) evolved under

H′′(t) in Eq. (9.29).

To summarize, we prepare the ground state of Hamiltonian Ĥ′′(t = 0), evolve it

under the time dependent Hamiltonian Ĥ′′(t) until time t = tB and then calculate

the spectrum according to Eq. (9.30), where the time evolution is performed under

the (unrotated) t-J model.

Before showing the numerical results, we discuss the expectation from the mean

field picture.

9.3.2 Shift of spinon occupation by a magnetic field gradient within mean field theory

Here we want to show that the magnetic field gradient protocol leads to a shift of

the occupation of the spinon dispersion in the Heisenberg chain. We first start with

a simple example where a similar effect happens: spinless non-interacting Fermions

in an electric field. We then go on to discuss the spinon mean field theory.

Warmup: Noninteracting Fermions in an electric field

We consider a single fermionic band in 1D in an electric field, described by Hamil-

tonian

Ĥ = −J ∑
i
(ĉ†

i ĉi+1 + h.c.) + ∆ ∑
j

jn̂j. (9.31)

By using the same rotating frame as in the previous section, here created by unitary

Û(t) = exp(−i∆(tB − t)∑j jn̂j), the Hamiltonian in momentum space becomes

Ĥ′(t) = −2J ∑
k

cos(k− ∆(tB − t))ĉ†
k ĉk. (9.32)
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We then follow the same procedure as in the t-J model: We prepare the ground state

of Ĥ′(t) at time t = 0, given by

|0〉 = ∏
|k−∆tB|≤kF

ĉ†
k |0〉 , (9.33)

where kF is the Fermi momentum in the absence of a tilt. The time evolution of this

state under the time dependent Hamiltonian Ĥ′ until time tB can be calculated by

noting that ĉ†
k(tB) = exp(−2Ji

∫ tB
0 cos(k− ∆(tB − t′))dt′)ĉ†

k and hence

|ψ0〉 ≡ T exp
(
−i
∫ tB

0
Ĥ′(t′)dt′

)
|0〉 (9.34)

= ∏
|k−∆tB|≤kF

exp
(
−2Ji

∆
(sin(k)− sin(k− ∆tB))

)
c†

k |0〉 . (9.35)

The ARPES spectrum then follows as

Ak(ω) ≡
∫

d(t1 − t2)eiω(t1−t2))〈ψ0|ĉ†
k(t1)ĉk(t2)|ψ0〉 (9.36)

= 2πδ(ω− 2J cos(k))〈ψ0|ĉ†
k ĉk|ψ0〉 (9.37)

= 2πδ(ω− 2J cos(k))Θ(|k− ∆tB| − kF). (9.38)

This result shows some of the main features of the numerical results for the tJ model

in a gradient magnetic field: One can scan along the whole dispersion by changing

∆tB, occupying states which are not occupied in the ground state without the field.

However, in contrast to the tJ model, the result is both independent of central time

t1 + t2 and of the strength of the tilt field ∆. Furthermore, the above result can be

easily generalized to spinful Fermions in a magnetic field gradient: they just get

shifted in opposite directions by ±∆tB/2, where the factor of one-half comes from

the fact that Ŝz = 1
2 (n̂↑ − n̂↓). In the following, we show how essentially the same

result emerges in the Heisenberg model

9.3.3 Constrained Fermion mean field theory with a gradient

We start from the Heisenberg model in a magnetic field gradient

H = J ∑
i

1
2
(
S+

i S−i+1 + S−i S+
i+1

)
+ Ŝz

i Ŝz
i+1 − B ∑

j
jŜz

j (9.39)

Introducing constrained Fermion operators by Ŝ+
i = f̂ †

i↑ f̂i↓, Ŝz
i =

1
2

(
f̂ †
i↑ f̂i↑ − f̂ †

i↓ f̂i↓
)

with constraint ∑α f̂ †
i,α f̂i,α = 1, we get

Ĥ = − J
2 ∑

i,α
f̂ †
i,α f̂i+1,α

(
f †
i+1,ᾱ f̂i,ᾱ + f †

i+1,α f̂i,α

)
− B

2 ∑
α

α ∑
j

j f̂ †
jα f̂ jα. (9.40)



9.3 occupying higher momentum spinon states by bloch oscillations 245

Here, we defined α = +/− for ↑ / ↓ and ↑̄ =↓, ↓̄ =↑. Moreover, we neglected all

constant terms.

In order to decouple the interactions, we introduce a spin-dependent mean field

χα = 〈 f̂ †
i,α f̂i+1,α〉 (9.41)

and neglect all terms quadratic in the fluctuations around this mean field, arriving

at

Ĥ = − JL
2 ∑

α

χα(χ
†
ᾱ + χ†

α)−
J
2 ∑

i,α

(
(χα + χᾱ) f̂ †

i+1,α f̂i,α + h.c.
)
− B

2 ∑
α

α ∑
j

j f̂ †
jα f̂ jα.

(9.42)

In order to follow the protocol, we move into the rotating frame of the magnetic

field gradient with the unitary

Û = exp

(
i
B
2
(tB − t)∑

α

α ∑
j

j f̂ †
j,α f̂ j,α

)
, (9.43)

such that

f̂ jα → U f jαU† = exp
(
−i

αBj
2

(tB − t)
)

f̂ j,α. (9.44)

Defining f j =
1√
L ∑k e−ikj fk, and taking the infinite system size limit (1/L)∑k =

(1/2π)
∫

dk the Hamiltonian density becomes

Ĥ(t) = − JL
2 ∑

α

χα(t)(χ†
ᾱ(t) + χ†

α(t)) +
∫ π

−π
dk ∑

α

εα(k, t) f̂ †
kα f̂kα (9.45)

with dispersion

εα(k, t) = − J
2

(
(χα + χᾱ) ei(k+ αB

2 (tB−t)) + c.c.
)

. (9.46)

Moreover, using that in the ground state 〈 f̂ †
k f̂k′〉 ∼ δkk′ , the mean field transforms to

χα(t) =
1

2π

∫ π

−π
dke−i(k+ αB

2 (tB−t)) 〈 f̂ †
k,α f̂k,α〉 . (9.47)

In order to find the ground state solution for t = 0, we need to minimize 〈Ĥ〉
self-consistently under the constraint (9.47). To do so, we set the phase of χα + χᾱ

to zero (without loss of generality as the ground state is degenerate with respect to

this phase) such that

εα(k, t = 0) = −J
(
|χα + χᾱ| cos

(
k +

αB
2

tB

))
. (9.48)
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The ground state is hence given by a Fermi sea with the Fermi momenta given by

|kF + α B
2 tB| = π

2 . Inserting this into (9.47), we find

χα(t = 0) =
1

2π

∫ (π−αBtB)/2

(−π−αBtB)/2
dk e−i(k+ αB

2 tB) (9.49)

=
1
π

(9.50)

independent of α and we get our final result for the spinon dispersion

εα(k, t = 0) = −2J
π

cos
(

k +
αB
2

tB

)
. (9.51)

Having found the ground state at t = 0, we can now proceed with time evolving

the state until t = tB to then calculate the spinon spectral function as in the previous

example for free Fermions, yielding

As
k,α(ω) ≡

∫
d(t1 − t2)eiω(t1−t2))〈ψ0| f̂ †

k (t1) f̂k(t2)|ψ0〉 (9.52)

= 2πδ

(
ω +

2J
π

cos(k)
)

Θ(|k + αBtB/2| − π

2
). (9.53)

In the slave-particle mean-field picture introduced above, the magnetic field

gradient hence exerts an equal but opposite force on the two spinon species,

shifting their occupation along the mean-field spinon dispersion. The duration tB

is chosen such that these Bloch oscillations lead to a total shift θ = BtB, such that

after the application of the magnetic field, states with momentum −π/2∓ θ/2 ≤
k ≤ π/2∓ θ/2 are occupied by up and down spinons, respectively. The spinons

only experience half the total shift since Eq. (9.19) introduces a coupling of ∓B/2

to the density of up/down spinons.

The resulting spinon spectrum then reveals the shifted Fermi seas: spectral weight

is obtained for momenta q which are now occupied and were previously empty in

the ground state. Within mean-field theory, the positions of spectral lines can be

obtained by inserting the known spinon and chargon dispersions [486, 520, 521]

into Eq. (9.17).

In Fig. 9.2, we show the numerically obtained spectral function after applying a

magnetic field gradient pulse of different strengths, yielding different shifts θ/2. We

always remove a spin down particle, thus probing only one of the two spinon Fermi

seas. Comparing the numerical results to the spectral building principle [520, 521] –

where shifts due to the magnetic field gradient are explicitly taken into account –

yields perfect agreement, providing strong evidence that the slave-particle mean-

field theory remains an accurate description beyond the ground state. However,

while the mean-field picture predicts a shift of spectral weight in only one direction

along the dispersion by +θ/2, we find weight appearing on both sides at ±θ/2.

In the following, we show that this is due to a time dependence of the spectrum
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Figure 9.2: Occupying spinon states by magnetic field gradient pulses. The non-

equilibrium one-hole spectral function for a system with L = 12 sites at t/J = 8

is shown after a magnetic field gradient was applied. The shift in momentum

space is given by the product of magnetic field strength and duration of the

gradient, θ = BtB, with tB = 10/J. Gray dots denote the points where spectral

weight is expected from our out-of-equilibrium extension of the spectral build-

ing principle. The momentum shift due to the magnetic field gradient has been

explicitly taken into account in the spinon properties while the chargon stays

unaffected. Central times shown are JT = 12.5, 15, 15 for shift θ = π/3, 2π/3, π.

induced by interactions among spinons.

9.4 coherent oscillations of the spectrum

In the slave-particle mean-field theory, the shifted Fermi sea is still an eigenstate

of the Hamiltonian and we thus do not expect to find any dependence on the

central time T. For sufficiently small magnetic field gradients, the spectral function

Aqσ(T, ω) indeed does not exhibit a dependence on T. However, if the magnetic

field gradient is strong, with B ∼ J, coherent oscillations of the spectral weight

emerge, Fig. 9.3.

In particular, the spectral weight in momentum space oscillates between the

occupied momenta for up and down spinons, with the spectra for up and down

fermions oscillating exactly out of phase, see Fig. 9.4. However, the position of the

spectral lines does not change.

We can further analyze the spectrum by using the Lehmann representation of the

spectral function

Aqσ(T, ω) =
∫

dτeiωτ
〈

ψ0

∣∣∣ ĉ†
q,σ(T + τ/2)ĉq,σ(T − τ/2)

∣∣∣ψ0

〉
, (9.54)

where τ is the relative time between creation and annihilation of a Fermion and

|ψ0〉 is the non-equilibrium initial state. It can be decomposed into time dependent

and thermal parts according to

Aqσ(T, ω) = Ath
qσ(ω) + Atd

qσ(T, ω) (9.55)
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a)

d) e) f)

b) c)

Figure 9.3: Coherent oscillations of the spectral weight. a) Resonant scattering processes

leading to a redistribution of spectral weight between the shifted Fermi surfaces.

b-d) The spectral function Aq↓(T, ω) is shown as a function of momentum and

frequency for three central times T in a system with L = 12 sites for the case

of shift 2π/3 shown in Fig. 9.2. Comparing the spectral function at different

central times shows the oscillations of the spectral weight from one side of the

visible arcs to the other, corresponding to the Fermi surfaces of the up and down

spinon Fermi seas.
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Figure 9.4: Oscillations of ↑ spectrum. Here, we use the same parameters as in Fig.1.3.

with

Ath
qσ(ω) = ∑

n
| 〈ψ0|nN〉 |2 ∑

l
| 〈lN−1|cqσ|nN〉 |2δ(ω− (EN−1

l − EN
n )), (9.56)

Atd
qσ(T, ω) = ∑

n,m 6=n
〈ψ0|nN〉 〈mN |ψ0〉 ei(EN

n −EN
m )T×

∑
l
〈nN |c†

qσ|lN−1〉 〈lN−1|cqσ|mN〉 δ

(
ω− 1

2

(
EN−1

l − EN
m

)
− 1

2

(
EN−1

l − EN
n

))
.

(9.57)

Ath is the expected steady state spectral function from the diagonal ensemble. The

only time dependence is contained in the phase factors in Atd. Remarkably, they

only depend on eigenstates with occupation N, i.e. the system before inserting a

hole. In our case, this corresponds to the ground state of the half-filled t-J model,
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i.e. the Heisenberg spin system. This shows that the only dependence on the time

T enters through the eigenstates of the half-filled system without a hole. Therefore,

the time-dependence of the spectral function further probes the properties of the

spinons in the Heisenberg model.

9.4.1 Gaussian states fail to reproduce time dependence

While our mean-field picture reproduces the numerical observation that the spin

up/down components are shifted in opposite directions by BtB/2, it does not

contain any time dependence. Hence, we can attribute these effects to beyond-mean

field interaction effects of the spinons. In the following, we show that even a more

general Gaussian state ansatz can not explain the time dependence.

Spinon Hamiltonian in momentum space

We transform the spinon Hamiltonian

Ĥ = − J⊥
2 ∑

iσ
f̂ †
iσ f̂ †

i+1σ̄ f̂iσ̄ f̂i+1σ −
Jz

2 ∑
iσ

f̂ †
iσ f̂ †

i+1σ f̂iσ f̂i+1σ (9.58)

into momentum space by defining

f̂kσ =
1√
L

∑
j

eikj f̂ jσ, (9.59)

arriving at

Ĥ = − 1
2L ∑

kk′q,σ
cos(q)

[
J⊥ f̂ †

k+qσ f̂ †
k′−qσ̄ f̂kσ̄ f̂k′σ + Jz f̂ †

k+qσ f̂ †
k′−qσ f̂kσ f̂k′σ

]
. (9.60)

Gaussian variational ansatz

In an attempt to explain the oscillations observed, we introduce a variational state

|Ψ(t)〉 = ∏
k−≤k≤k+

(αk |k, ↑〉+ βk |−k, ↑〉)×

∏
k−≤k≤k+

(βk |k, ↓〉+ αk |−k, ↓〉) ∏
0<k<k−

|k,−k, ↑〉 |k,−k, ↓〉 , (9.61)

where in this definition π > k ≥ 0 (in the following π > k ≥ −π) and |k, σ〉 =
f̂ †
kσ |0〉, |k,−k, σ〉 = f̂ †

kσ f̂ †
−kσ |0〉. From the normalisation of the state it follows that

|αk|2 + |βk|2 = 1. All parameters are time dependent, i.e. αk = αk(t), βk = βk(t).

Due to the product nature of the state, a generalized Wick’s theorem holds

in which all higher order correlation functions can be decomposed in two-point

correlation functions, which we calculate in the following.
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Two point correlation functions

The pairing and cross-spin correlation functions vanish,

〈 f̂ †
kσ f̂ †

k′σ〉 = 〈 f̂kσ f̂k′σ〉 = 〈 f̂ †
kσ f̂k′ σ̄〉 = 0. (9.62)

Moreover, the only remaining combination is nonzero only if k = k′ or k = −k′, i.e.

〈 f̂ †
kσ f̂k′σ〉 = δk,k′ 〈 f̂ †

kσ f̂kσ〉+ δk,−k′ 〈 f̂ †
kσ f̂−kσ〉 . (9.63)

Finally, the two terms on the right hand side can be evaluated in the variational

state, yielding

〈 f̂ †
k↑ f̂k↑〉 =





1 for |k| < k−

|βk|2 for − k+ ≤ k ≤ −k−

|αk|2 for k− ≤ k ≤ k+

0 for |k| > k+

, (9.64)

〈 f̂ †
k↓ f̂k↓〉 =





1 for |k| < k−

|αk|2 for − k+ ≤ k ≤ −k−

|βk|2 for k− ≤ k ≤ k+

0 for |k| > k+

, (9.65)

〈 f̂ †
k↑ f̂−k↑〉 =





0 for |k| < k−

αkβ∗k for − k+ ≤ k ≤ −k−

α∗k βk for k− ≤ k ≤ k+

0 for |k| > k+

, (9.66)

〈 f̂ †
k↓ f̂−k↓〉 =





0 for |k| < k−

α∗k βk for − k+ ≤ k ≤ −k−

αkβ∗k for k− ≤ k ≤ k+

0 for |k| > k+

. (9.67)

From the above, we note the following symmetries between the spin correlation

functions:

〈 f̂ †
k↑ f̂k↑〉 = 〈 f̂ †

−k↓ f̂−k↓〉 , (9.68)

〈 f̂ †
k↑ f̂−k↑〉 = 〈 f̂ †

−k↓ f̂k↓〉 = 〈 f̂ †
k↓ f̂−k↓〉

∗
, (9.69)
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such that we can follow that there are in fact only two independent correlation

functions,

nk = 〈n̂k〉 ≡ 〈 f̂ †
k↑ f̂k↑〉 (9.70)

mk = 〈m̂k〉 ≡ 〈 f̂ †
k↑ f̂−k↑〉 (9.71)

Equations of motion

We can now derive the equations of motion for the correlators nk and mk from

Heisenberg equations of motion for n̂k, m̂k,

−i∂tn̂k = [Ĥ, n̂k] (9.72)

= − 1
L ∑

k′,q
cos(q)

(
J⊥ f̂ †

k′+q↑ f̂ †
k−q↓ f̂k′↓ f̂k↑ − J⊥ f̂ †

k′+q↓ f̂ †
k↑ f̂k′↑ f̂k+q↓

+ Jz f̂ †
k′+q↑ f̂ †

k−q↑ f̂k′↑ f̂k↑ − Jz f̂ †
k′+q↑ f̂ †

k↑ f̂k′↑ f̂k+q↑
)
, (9.73)

−i∂tm̂k = [Ĥ, m̂k] (9.74)

= − 1
L ∑

k′,q
cos(q)

(
J⊥ f̂ †

k′+q↑ f̂ †
k−q↓ f̂k′↓ f̂−k↑ − J⊥ f̂ †

k′+q↓ f̂ †
k↑ f̂k′↑ f̂−k+q↓

+ Jz f̂ †
k′+q↑ f̂ †

k−q↑ f̂k′↑ f̂−k↑ − Jz f̂ †
k′+q↑ f̂ †

k↑ f̂k′↑ f̂−k+q↑
)
. (9.75)

Evaluating these equations of motion with respect to the variational state while

employing Wicks theorem, i.e.

〈 f †
k1σ1

f †
k2σ2

fk3σ3 fk4σ4〉 ≈ 〈 f
†
k1σ1

fk4σ4〉 〈 f
†
k2σ2

fk3σ3〉 − 〈 f
†
k1σ1

fk3σ3〉 〈 f
†
k2σ2

fk4σ4〉 , (9.76)

we get

∂t 〈n̂k〉 = 0, (9.77)

showing that this variational state does not suffice to explain the time dependence

seen.

9.4.2 Non-Gaussian state ansatz

In the previous sections we have demonstrated that a Gaussian ansatz does not

suffice to explain time dependent spinon occupation numbers. Here, we construct

a new variational state taking into account some non-Gaussian correlations while

stile retaining both energy and momentum conservation with the shifted Fermi sea

as a reference state.
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The state is defined by

|ψ〉 = ∏
0≤k<k−

|−k↑ k ↑−k↓ k↓〉

∏
π
2 ≤k≤k+

[
α
(1)
k |k↑ k̃↑−k↓−k̃↓〉+ α

(2)
k |−k↑−k̃↑ k↓ k̃↓〉

+ β
(1)
k |−k↑ k̃↑ k↓−k̃↓〉+ β

(2)
k |k↑−k̃↑−k↓ k̃↓〉

+ γ
(1)
k |−k↑−k̃↑−k↓−k̃↓〉+ γ

(2)
k |k↑ k̃↑ k↓ k̃↓〉

+ δ
(1)
k |k̃↑−k̃↑ k↓−k↓〉+ δ

(2)
k |k↑−k↑ k̃↓−k̃↓〉

]
, (9.78)

where k̃ = π − k and k± = π/2± θ.

Hamiltonian 〈Ĥ〉

In the following, we will evaluate 〈ψ|Ĥ|ψ〉. As the state conserves energy explicitly,

with the non-interacting dispersion satisfying ε(k) ∼ cos(k), we obtain a constraint

for the three momenta k, q, k′ in Eq. 9.60, given by the three options

q = 0 or k′ = π − k = k̃ or k′ = q + k. (9.79)

We calculate 〈Ĥ〉 for all three combinations separately, with the overall Hamiltonian

given by

〈Ĥ〉 = 〈Ĥ〉q=0 + 〈H⊥〉k′=k+qk,q 6=0 + 〈Hz〉k′=k+q,q 6=0 + 〈H⊥〉k′=k̃,q 6=0 + 〈Hz〉k′=k̃,q 6=0

(9.80)

q=0 In this case,

Ĥq=0 = − Jz

2
+

JzL
4
− J⊥

L ∑
k,k′

f̂ †
k↑ f̂ †

k′↓ f̂k↓ f̂k′↑, (9.81)

where we used that ∑k f̂ †
kσ f̂kσ = L

2 . Evaluating with respect to the variational state,

we obtain

〈Ĥ〉q=0 = − Jz

2
+

JzL
4
− J⊥

L ∑
|k|<k−

− J⊥
L ∑

π
2 ≤k≤k+

[
2|γ(1)

k |
2 + 2|γ(2)

k |
2

+
(

α
(1)
k + α

(2)
k

) (
β
(1),∗
k + β

(2),∗
k + γ

(1),∗
k + γ

(2),∗
k

)
+ c.c.

−
(

β
(1)
k + β

(2)
k

) (
δ
(1),∗
k + δ

(2),∗
k

)
+ c.c.

]
(9.82)
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q 6= 0, k′ = k + q The J⊥ term corresponds to a pure interspecies density-density

interaction,

〈H⊥〉k′=k+q,q 6=0 = − J⊥
L ∑

k,q 6=0
〈n̂k+q↓n̂k↑〉 (9.83)

= −2J⊥
L ∑

0≤k<k−

cos(2k)

− 2J⊥
L ∑

π
2 ≤k≤k+

(
|α(1)

k |
2 + |α(2)

k |
2
)
(cos(2k)− 1)

+
2J⊥

L ∑
π
2 ≤k≤k+

(
|γ(1)

k |
2 + |γ(2)

k |
2
)

cos(2k)

+
2J⊥

L ∑
π
2 ≤k≤k+

(
|δ(1)k |

2 + |δ(2)k |
2
)
(cos(2k) + 1) (9.84)

The Jz term corresponds to the intraspecies interaction,

〈Hz〉k′=k+q,q 6=0 = − Jz

2L ∑
k,q 6=0,σ

〈n̂k+q,σn̂k,σ〉 (9.85)

= −2Jz

L ∑
0≤k<k−

cos(2k)

+
2Jz

L ∑
π
2 ≤k≤k+

(
|α(1)

k |
2 + |α(2)

k |
2
)

cos(2k)

+
2Jz

L ∑
π
2 ≤k≤k+

(
|β(1)

k |
2 + |β(2)

k |
2
)

+
2Jz

L ∑
π
2 ≤k≤k+

(
|γ(1)

k |
2 + |γ(2)

k |
2
)

cos(2k)

− 2Jz

L ∑
π
2 ≤k≤k+

(
|δ(1)k |

2 + |δ(2)k |
2
)

cos(2k) (9.86)

q 6= 0, k′ = π − k = k̃ Inserting k′ = π − k = k̃, we get

〈H⊥〉k′=k̃,q 6=0 = − J⊥
L ∑

q 6=0,k
〈 f̂ †

k+q↓ f̂ †
k̃−q↑ f̂k↑ f̂k̃↓〉 (9.87)

=
J⊥
L ∑

π
2 ≤k≤k+

[
2

∑
a,b=1

β
(a)
k γ

(b),∗
k + cos(2k)

(
2

∑
a,b=1

γ
(a)
k δ

(b),∗
k + c.c.

)]

(9.88)

for the J⊥ term.

Correspondingly, we get

〈Hz〉k′=k̃,q 6=0 = − Jz

2L ∑
q 6=0,k,σ

〈 f̂ †
k+q,σ f̂ †

k̃−q,σ f̂kσ f̂k̃σ〉 (9.89)

=
Jz

L ∑
π
2 ≤k≤k+

(cos(2k) + 1)

(
2

∑
a,b=1

α
(a)
k γ

(b),∗
k + c.c.

)
(9.90)

for the Jz term.
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Equations of motion

The equations of motion for the state can be derived from Dirac’s time dependent

variational principle, which uses the extremization of the action, δS = δ
∫

dtL(t) = 0,

with the Lagrangian given by

L(t) = 〈ψ(t)|i∂t − Ĥ|ψ(t)〉 . (9.91)

This leads to the Euler-Lagrange equations

d
dt

∂L

∂(∂tα
(1)
k )
− ∂L

∂α
(1)
k

= 0, (9.92)

and

i∂tα
(1)
k =

∂ 〈Ĥ〉
∂α

(1),∗
k

(9.93)

for π/2 ≤ k ≤ k+ and equivalently for all other parameters. Evaluating the right

hand side, we get the effective Schrödinger equation

i∂t |ψk〉 = Ĥk |ψk〉 for π/2 ≤ k ≤ k+ (9.94)
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with |ψk〉 = (α
(1)
k , α

(2)
k , β

(1)
k , β

(2)
k , γ

(1)
k , γ

(2)
k , δ

(1)
k , δ

(2)
k )T and

Ĥk =
1
L




(−2J⊥ + 2Jz) cos(2k) + 2J⊥ 0 −J⊥

0 (−2J⊥ + 2Jz) cos(2k) + 2J⊥ −J⊥

−J⊥ −J⊥ 2Jz

−J⊥ −J⊥ 0

−J⊥ + Jz(cos(2k) + 1) −J⊥ + Jz(cos(2k) + 1) J⊥

−J⊥ + Jz(cos(2k) + 1) −J⊥ + Jz(cos(2k) + 1) J⊥

0 0 J⊥

0 0 J⊥

−J⊥ Jz(cos(2k) + 1)− J⊥ Jz(cos(2k) + 1)− J⊥

−J⊥ Jz(cos(2k) + 1)− J⊥ z(cos(2k) + 1)− J⊥

0 J⊥ J⊥

2Jz J⊥ J⊥

J⊥ (2J⊥ + 2Jz) cos(2k)− 2J⊥ 0

J⊥ 0 (2J⊥ + 2Jz) cos(2k)− 2J⊥

J⊥ J⊥ cos(2k) J⊥ cos(2k)

J⊥ J⊥ cos(2k) J⊥ cos(2k)

0 0

J0 0

J⊥ J⊥

J⊥ J⊥

J⊥ cos(2k) J⊥ cos(2k)

J⊥ cos(2k) J⊥ cos(2k)

(2J⊥ − 2Jz) cos(2k) + 2J⊥ 0

0 (2J⊥ − 2Jz) cos(2k) + 2J⊥




. (9.95)

The initial conditions are given by |ψk〉 = (1, 0, 0, 0, 0, 0, 0, 0)T.

observables The most relevant observable for us are the momentum occupa-

tions given by

〈 f̂ †
k↑ f̂k↑〉 =




|α(1)

k |2 + |β
(2)
k |2 + |γ

(2)
k |2 + |δ

(2)
k |2 for π/2 ≤ k ≤ k+

|α(1)
k |2 + |β

(1)
k |2 + |γ

(2)
k |2 + |δ

1)
k |2 for k− ≤ k < π/2

(9.96)
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Despite the considerably higher complexity of the ansatz, the oscillations we have

seen in our numerics can still not be explained by the ansatz due to the absence of

cross-momentum scattering. However, we can use the intuition gained from these

trials to come up with a more heuristic picture for the processes leading to the

oscillations, which we will do in the following.

9.4.3 Beyond mean-field interactions lead to oscillations

Since the time-dependence observed in the spectrum goes beyond a mean-field

description, we conclude that interactions between the spinons are relevant, see

also [522]. To understand this effect in more detail we examine the quartic slave-

particle Hamiltonian in Eq. (9.18). First, we consider the Jz term in the Hamiltonian,

reading −Jz/(2L)∑σ,qkk′ cos(q) f̂ †
k+qσ f̂ †

k′−qσ f̂k′σ f̂kσ in momentum space. Enforcing

energy conservation on the level of the mean-field dispersion, only processes

involving q = 0, k′ = π − k or k′ = q + k are allowed, examples of which are

sketched in Fig. 9.3a),c). This picture is confirmed by switching J⊥ = 0 after the

application of the magnetic field gradient and shifting by θ/2 = 2π/L, which yields

perfect sinusoidal oscillations of the up/down Fermi seas. For J⊥ = Jz, we find

two frequency components of the oscillations, which we attribute to the additional

resonant coupling of the two Fermi seas by J⊥ processes as sketched in Fig. 9.3b).

In the following, we discuss this picture in more detail.

For a shift by a single momentum point, ∆k = 2π/L, there are only very few

processes allowed by the spinon Hamiltonian when imposing both momentum

and energy conservation. This becomes particularly extreme in the case when

J⊥ = 0. Then, only one state has the same energy as the shifted Fermi sea and is

also connected to the shifted Fermi sea by a momentum-conserving process: its

“conjugate” partner, i.e. the Fermi sea shifted in the opposite direction in momentum

space. Within this picture, the spectrum is expected to perform Rabi oscillations

between the shifted Fermi sea and its conjugate partner. In Fig. 9.5 we show the

time evolution of the spectrum when switching J⊥ = 0 after tB. The Fermi sea then

performs perfect sinusoidal oscillations with frequency Jz, as we show by looking

at the spectral weight of a single line (all others perform the same oscillations).

This supports the picture discussed above. However, when looking at snapshots of

the whole spectrum, we see that the conjugate state is never fully reached, which

may be attributed to a detuning between the shifted Fermi sea and its conjugate

introduced by non-energy-conserving processes not included in this picture.
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Figure 9.5: Comparing coherent oscillations of spectrum with and without J⊥. a) Central

time dependence of the spectral line with lowest frequency for a single momen-

tum. Grey dashed lines indicate a fit with a single sine function with frequency

≈ 1Jz for J⊥ = 0 and a sum of two sine functions with frequencies 0.25J and

0.64J b) Snapshots of the spectrum at the maxima and minima of the oscillations

for J⊥ = 0. L = 10, t = 8J. Total shift Θ = 2 · 2π/L.

Contrarily, when keeping J⊥ = Jz, we find an oscillation with a superposition of

two sine functions, which we attribute to the coupling of the two oscillating Fermi

seas by J⊥.

9.5 two-dimensional t − J model

The same protocol can also be applied in a 2D system. In Fig. 9.6, we show numerical

results for the spectral function Aq↓(T, ω) in the t− J model on a 4× 4 torus at

momentum q = (π, π). In equilibrium, the spectral weight is strongly suppressed

at this momentum at low energies. A possible explanation involves binding of a

light chargon to a heavy fermionic spinon from a Fermi sea [86]. This suggests that
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Figure 9.6: Time-dependent ARPES in two dimensions. The spectral function Aq↓(T, ω)

in the t− J model on a 4× 4 torus at t/J = 2 evaluated at momentum q = (π, π)

calculated for a magnetic field gradient along the diagonal of strength BtB = π/2

for different quench times tB. We average over central times 10 ≤ JT ≤ 20,

indicated by the overline. The magnetic polaron ground state (gs) energy at

momentum q = (π, π)[q = (π/2, π/2)], ω ≈ −2.93J [ω ≈ −1.28J] is indicated

by a red(blue) arrow.

additional spectral weight should appear at low energies when the magnetic field

gradient is switched on and the putative spinon Fermi surface is displaced.

When employing a very strong magnetic field gradient with pulse duration

tB < 1/J and total shift is Θ = (π, π) , we find the spectrum to be identical to the

one of a free particle hopping with dispersion −2t(cos(qx) + cos(qy)), see Fig. 9.7.

We can explain this by considering the strong magnetic field gradient limit, in which

we can neglect the Heisenberg Hamiltonian during the dynamics and the system

only evolves due to the gradient field. The initial state of the dynamics is given by

the ground state of the Heisenberg model in 2D, which shows antiferromagnetic

correlations. Now, when a (π, π) pulse is applied, these correlations get rotated

around the z-axis such that in the xy plane there are now ferromagnetic correlations.

In a ferromagnet, an injected hole can move freely as there is no energy cost related

to the reshuffling of spins associated to the movement of the hole. Hence, the

spectrum becomes identical to the one of a free particle.

More interestingly, a quench with θ = π/2 at moderate speeds leads to the

appearance of spectral weight around the ground state energy of a single hole in the

t− J model, indicated by arrows in Fig. 9.6. We interpret this feature as a signature

of a spinon Fermi sea in two dimensions. Finally, for very slow quenches, finite-size

gaps prevent any interesting dynamics and the obtained spectrum resembles the

ground state result.

In Fig. 9.6 we only showed part of the frequency range in order to emphasize

the low-energy feature we attribute to the magnetic polaron ground state energy.

In Fig. 9.8 we show the full frequency range, in particular showing a high energy
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Figure 9.7: Emergence of free particle spectrum for (π, π) shift in 2D. Here, we use t = 3J

as well as tB = 1/J.
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Figure 9.8: Full frequency range of Fig.1.6.

feature around ω ≈ 5 appearing for the same values of tB at which the above

mentioned low-energy feature appears.

9.6 conclusions

We propose a measurement scheme to reveal unoccupied spinon states in the

one-hole spectral function. Our numerical results for the 1D t − J model show

that a strong magnetic field gradient leads to spinon Bloch oscillations, where the

spinons occupy previously empty momentum states. These can then be probed

by time-dependent spectroscopy, revealing beyond mean-field interactions among

spinons. Extending our results to small 2D systems, we are able to visualize the

ground state of the magnetic polaron at momentum q = (π, π) in the spectral

function, which has no spectral weight in the equilibrium spectrum [86].

A promising future direction is to perform similar numerical simulations of

the time-dependent spectral function for extended 2D systems. The perhaps most

interesting candidates are the 2D Fermi-Hubbard or t− J models at finite doping,

where our protocol can help to resolve the long-standing question concerning the

existence of (unoccupied) states on the back side of the Fermi arcs. As numerical
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calculations in this regime are challenging, experimental realizations become essen-

tial. Measuring the particle spectral function, which is challenging in solids, could

lead to an alternative route to probing unoccupied states. Apart from the square

lattice t− J model discussed here, pump-probe spectroscopy with strong magnetic

fields also enables new insights into the properties of spinons in other models

and geometries, such as triangular and Kagomé lattices or the J1 − J2 model [523].

Graphene, simulable in hexagonal lattice quantum simulators, exhibits a d-wave

superconducting state due to a Van-Hove singularity, which could be probed by

shifting the band structure occupation akin to our protocol [524].

9.7 outlook : theory-independent thermometry in fermi gases

Most schemes to measure temperature rely on comparison with a model, for ex-

ample by fitting the density distribution in a harmonic trap to a Thomas Fermi

profile [525] or a virial expansion [526] or the mean energy per particle to Nozière-

Schmitt-Rink theory [525]. However, for strong interactions, the theories compared

with are not exact and hence introduce systematic uncertainties in the tempera-

ture measurement. Recently, a theory-independent scheme using the fluctuation-

dissipation-relation has been presented [320] and recently demonstrated in a quan-

tum gas microscope [321]. It is based on a relation between the compressibility and

density correlations. While it only requires a measurement of the spatially resolved

density, a non-uniform trap (e.g. linear or harmonic) is needed such that a homoge-

neous gas would first have to be adiabatically transferred into an inhomogeneous

trap. Here, we present a scheme that enables a direct measurement based on ARPES

and ARIPES spectra, which removes the necessity to take into account details of the

trap.

9.7.1 Compressibility scheme

It can be shown [320] that the iso-thermal compressibility at density n, κ =
1
n2

∂〈n̂(r)〉
∂µ

∣∣
T, is related to the density fluctuations by

kBT
∂ 〈n(r)〉

∂µ

∣∣∣∣
T
= 〈n(r)n〉 − 〈n(r)〉 〈n〉 , (9.97)

where n on the right hand side is still operator valued, i.e. n(r) needs to be

multiplied with the total density in the same shot before averaging to get 〈n(r)n〉. In

an inhomogenous trap with potential V(r), the chemical potential µ is dependent

on r, such that µ = µhom − V(r). Using the known V(r), we can bring Eq. (9.97)
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into a more useful form. In particular, by applying a linear gradient V(x) = δx

along the x-direction additionally to the homogeneous box trap, we get

− kBT
δ

∂ 〈n(r)〉
∂x

= 〈n(r)n〉 − 〈n(r)〉 〈n〉 . (9.98)

The homogeneous gas needs to be adiabatically transferred into the new trap.

After that, the spatial dependence of the density is measured and the temperature

extracted from the above formulas.

9.7.2 RF scheme

Here we use the fluctuation-dissipation relation between the ejection spectrum

A(ω) and the injection spectrum A>(ω), given by

A(ω) = e−ω/kBT A>(ω), (9.99)

which again can be used as a thermometer without theory input. We have dis-

cussed this possibility at length in chapter 4 for Hermitian operators, for which

the fluctuation-dissipation relation takes a slightly different form. Here, we shortly

recapitulate its derivation from the properties of the thermal density matrix and

the cyclicity of the trace,

A(k, t) =
1
Z

Tr(e−βHc†
k(t)ck) =

1
Z

Tr(e−βHckc†
k(t + iβ)) = A>(k, t + iβ). (9.100)

Fourier transforming both sides we get

A(k, ω) = eβω A>(k, ω). (9.101)

Ejection and injection RF spectroscopy

The following derivations follow Refs. [489, 515, 527–530] employing Fermi’s golden

rule. This corresponds to an alternative derivation of the equilibrium limit of the

time-dependent protocols discussed in section 9.2, leading to equivalent results.

The measurement of the spectrum uses a third, initially unoccupied state, which

is coupled to one of the two science states with an RF pulse with a small Rabi

frequency Ω� EF and frequency ω. This pulse induces a coupling Hamiltonian

V =
h̄Ω
2

cos(ωt)∑
k

d†
k ck + c†

k dk, (9.102)

where dk destroys an atom with momentum k in the third state and ck destroys an

atom in one of the two science states.
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Within Fermi’s golden rule, the transition rate from an initial state i to a final

state f within the subsector of N atoms is given by

Γ(ω)i→ f = 2π| 〈 f N |V|iN〉 |2δ(h̄ω− (EN
f − EN

i )) (9.103)

As the third state is assumed not to interact with the science states, both initial

and final states are tensor product states of the form |nN〉 = |nN−M
d 〉 ⊗ |nM

c 〉 and

the eigenstates are given by EN
n = EN−M

d,n + EM
c,n where we indicated the number of

Fermions in the superscript. A single particle state in the third state has energy

εk + ∆, where ∆ is the Zeeman splitting between the third state and the system and

εk = k2/2m. The measurement of injection and ejection spectra then correspond to

situations in which the third state is either fully occupied (in the sense of having

a Fermi Energy much larger than the energy scales in the system) or unoccupied,

respectively. This means that the first/second term in Eq. 9.102 do not contribute in

Eq. 9.103.

ejection spectrum Assuming that initially the system is in its ground state

with N atoms and the third state is empty, the initial energy is given by EN
i = EN

c,0.

The final states then have energy EN
f = εk + ∆ + EN−1

c, f . Summing over all possible

final states, we get that the ARPES spectrum (i.e. the momentum resolved transition

rate of an atom of momentum k to the third state) is given by

Γ−(k, ω) = 2π

∣∣∣∣
h̄Ω
2

∣∣∣∣
2

∑
f
| 〈 f N−1

c |ck|0N
c 〉 |2δ(h̄ω− (εk + ∆ + EN−1

c, f − EN
c,0))

(9.104)

=

∣∣∣∣
h̄Ω
2

∣∣∣∣
2

A(k, ω− (εk + ∆)/h̄), (9.105)

where in the last step we defined the ejection/hole spectral function by

A(k, ω) = 2π ∑
f
| 〈 f N−1

c |ck|0N
c 〉 |2δ(h̄ω− (EN−1

c, f − EN
c,0)). (9.106)

injection spectrum Contrastingly, in injection spectroscopy the third state

is assumed to be completely filled such that the initial energy is EN
i = EN

c,0 +

∑kF
k=0(εk + ∆), with kF the Fermi momentum of the third state and in slight abuse

of notation we only indicate the occupation of the system state. After injecting an
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atom with momentum k from the detection to the third state, the energy is given by

EN
f = ∑kF

k=0(εk + ∆) + EN+1
c, f − (εk + ∆). Hence we get for the transition rate

Γ+(k, ω) = 2π

∣∣∣∣
h̄Ω
2

∣∣∣∣
2

∑
f
| 〈 f N+1

c |c†
k |0N

c 〉 |2δ(h̄ω− (εk + ∆− (EN+1
c, f − EN

c,0)))

(9.107)

=

∣∣∣∣
h̄Ω
2

∣∣∣∣
2

A>(k, ω− (εk + ∆)/h̄), (9.108)

and we defined the injection/particle spectral function

A>(k, ω) = 2π ∑
f
| 〈 f N+1

c |c†
k |0N

c 〉 |2δ(h̄ω + (EN+1
c, f − EN

c,n)). (9.109)

Above, we calculated all expressions in a momentum-resolved way. The RF spectra

without momentum resolution are obtained by summming over all momenta.

9.7.3 Thermometry in presence of particle-hole symmetry

The schemes discussed above can of course equally be used in lattice models. Here,

we show that in the presence of a particle-hole symmetry, only the ARPES spectrum

needs to be measured for thermometry, as the ARIPES spectrum can be obtained

from it.

The Hubbard model

Ĥ = −t ∑
〈ij〉,σ

(
ĉ†

iσ ĉjσ + ĉ†
jσ ĉiσ

)
+ U ∑

i

(
n̂i↑ −

1
2

)(
n̂i↓ −

1
2

)
+ µ ∑

i,σ

(
n̂iσ −

1
2

)

(9.110)

on bipartite lattices is invariant under a particle hole transformation up to a flip of

the chemical potential µ→ −µ. It is given by

ĉ†
↑ → ±ĉ↓, ĉ†

↓ → ∓ĉ↑, (9.111)

ĉ↑ → ±ĉ†
↓, ĉ↓ → ∓ĉ†

↓, (9.112)

where the top/bottom sign is for the A/B sublattice respectively. Under this trans-

formation, composite operators transform as

n̂iσ → 1− n̂iσ̄, Ŝα → Ŝα (9.113)

with the spin operators (α ∈ x, y, z) defined as usual and σ̄ indicating the opposite

spin.

The lesser and greater Green’s functions

G<
ij,σ(t1, t2) = Tr

(
ρ0ĉ†

iσ(t1)ĉjσ(t2)
)

, G>
ij,σ(t1, t2) = Tr

(
ρ0ĉjσ(t2)ĉ†

iσ(t1)
)

, (9.114)
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which determine what is measured in ARPES, and ARIPES, respectively, transform

as

G<
ij,σ(t1, t2)→ ±G̃>

ji,σ̄(t2, t1), (9.115)

where the tilde indicates evaluation with the particle-hole transformed initial

state ρ0 → Γρ0Γ† and the top/bottom sign holds if i, j are on the same/different

sublattice.

Transforming to central and relative times, and Fourier transforming with respect

to the latter we can follow

G<
ij,σ(T, ω)→ ±G̃>

ji,σ̄(T,−ω). (9.116)

If the initial state is particle-hole symmetric, for example a thermal equilibrium

state or the ground state at half filling perturbed by a unitary ∼ exp(iαSα) then G>

can be directly obtained from G<.

Here, we assumed that µ = 0, µ 6= 0 only leads to a shift of the frequency

zero (LHS and RHS shifted oppositely due to µ → −µ after the particle-hole

transformation).

In equilibrium, we can drop the central time (T) dependence. The fluctuation

dissipation relation then dictates that

∑
σ

G<
ii,σ(−ω) = e−βω ∑

σ

G<
ii,σ(ω), (9.117)

i.e. the sought-after relation from which the temperature β can be extracted. The

equal-site Green’s function can be obtained from the sum over all momenta of the

ARPES spectrum.
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In the first part of the thesis, we studied several aspects of the thermalization

dynamics of quantum many-body systems, ranging from the spreading of many-

body chaos close to a thermal phase transition over the theory-independent probing

of eigenstate thermalization in quantum simulators and gauge theories to the

emergence of hydrodynamics in long-range systems, which all necessitated the

study of two-time correlation functions.

We showed that the out-of-time-ordered correlation function (OTOC) increases

exponentially with time in a relativistic scalar field theory. In particular, this quali-

tative behaviour persisted near the thermal phase transition, which was surprising

given the fact that single particle relaxation slows down drastically at this point.

Moreover, the OTOC spreads ballistically in space, showing a maximum of the

velocity near the phase transition. An interesting future direction would be to study

how the OTOC behaves in a true non-equilibrium setting, in which it is likely to

become dependent on the central time. We have made a first step in this direction

by generalizing our semi-classical method to non-equilibrium settings. In particular,

it would be intriguing to see whether the OTOC shows unusual behaviour near

non-thermal fixed points [50].

In chapter 4 we developed a protocol to probe thermalization without theory

input in quantum simulation experiments: by using two-time correlation functions

and a test of the fluctuation dissipation relations (FDRs). In particular, we stressed

that this probes the off-diagonal part of eigenstate thermalization hypothesis (ETH),

which is challenging to do by other means. We showed that not only the emergence

of equilibrium can be tested in that way, but also the approach to equilibrium in

settings in which the system takes a “detour”. In particular, prethermalization can

be characterized by the emergence of FDRs with an effective temperature corre-

sponding to the prethermal Hamiltonian. Moreover, we showed that non-thermal

excitations can be directly characterized using two-time correlation functions, which

we examined in the context of confined excitations. Naturally, it would be inter-

esting to see whether this protocol also works for other settings with non-thermal

excitations. We have for instance made first steps towards characterizing many-body

scars in this way. Moreover, the spectroscopic nature of our protocols may enable

an energy-resolved study of Hilbert space fragmentation [61] by also varying the

energy of the initial state and hence the overlap with different fragmented sectors.

265
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In chapter 9 of the second part, we developed a further protocol for studying

two-time correlation functions in experiment, building on the ideas we developed

in this part.

In chapter 5 we extended our study of two-time correlation functions to the

lattice Schwinger model by employing two-particle irreducible effective action

methods (2PIs). This constitutes an important technical progress as this technique

has so far not been successfully applied to studying gauge theories. While we made

first steps towards characterizing the thermalization of strings in a high-temperature

regime at weak coupling, further study is warranted to study thermalization in

different settings. Most importantly, the thermalization of strings created on top

of the interacting vacuum would be most interesting. Moreover, strong electric

fields can create pairs out of the vacuum, a phenomenon called the Schwinger

effect [531–533]. It would be interesting how these pairs scatter and finally ther-

malize. Moreover, the thermalization of non-abelian gauge fields is of importance

to gain intuition for collider experiments. We made first steps in this direction by

developing a systematic 1/N expansion for SU(N) gauge theories in one dimension.

We furthermore developed a technique to directly calculate infinite temperature

spectral functions within 2PI. These could also be applied to studying the stability

of strong zero modes [534–537].

In chapter 6 we showed the emergence of hydrodynamic transport in the late

time regime of quantum systems, which had so far been elusive. In particular, we

showed that spin transport in long-range interacting spin systems is superdiffusive,

behaving according to the theory of Lévy flights. We employed the Schwinger Boson

two-particle irreducible effective action method for spin systems (spin-2PI), which

we further developed in the context of this thesis, as well as the discrete truncated

Wigner approximation (dTWA) method. Several interesting aspects emerge from the

Lévy flight picture. For instance, we showed that linear response theory breaks

down, which makes the usual way of probing transport in condensed matter systems

challenging. In a collaboration with a trapped ion quantum simulation experiment,

a different route was taken by directly measuring the infinite temperature spin

correlation function. We were able to confirm the Lévy flight picture by comparison

to the experiment and extract the diffusion coefficients. Several future research

directions are openend up by these results. For instance, the long-range exponents

at which superdiffusive behaviour is found are different to the exponents at which

Lieb-Robinson bounds do not behave according to the short-range expectation [178].

It would therefore be interesting to study the recently found connection between

transport and Rény entropy growth [538], as well as their connection to operator

spreading in this long-range model. Moreover, the dynamics of non-thermal fixed

points crucially depends on dimensionality [539]. Hence, long-range interactions
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should lead to a novel class of far-from-equilibrium universality with tunable scaling

exponents. Our protocol to study transport in quantum simulation experiments can

be readily applied to other experimental setups, enabling the routine extraction of

diffusion coefficients from experiment.

In the second part we have applied non-equilibrium methods to study phases

of matter, showing that some of the intuitions gained while asking fundamental

questions around the thermalization of quantum systems can be applied to studying

equilibrium properties in condensed-matter systems and quantum simulators.

We made first steps towards describing the disordered electron gas in the presence

of screening in the metallic phase on a microscopic level. We extended Hartree Fock

theory with a screening procedure and showed that in most regimes, screening does

not play a large role. We developed an effective theory of particle hole excitations

building on the screened Hartree Fock theory and showed how to extract the non-

linear spectrum in this theory. In the future, the numerical evaluation of the particle

hole Hamiltonian could enable a characterization of the nature of the particle hole

excitations. In particular, the most pressing question is whether their properties

could already give a hint at the signals seen in the experiment in Ref. [433].

In chapter 8 we showed that spin spiral states are unstable in the one- and

two-dimensional Heisenberg model. The instability was characterized from several

perspectives: With a short time expansion, we analyzed the initial decay due to

perturbative quantum effects. Intermediate time scales were analyzed using the

spin-2PI method, in which we showed the crossover to the instability dynamics.

The latter were derived from a Holstein-Primakoff expansion and numerically

verified with both matrix product state and dTWA methods. The instability was

identified as a “transverse” one, i.e. fluctuations in the spin components transverse

to the spiral grow quickly and destabilize it. We connected our results to usual

instabilities in bosonic superfluids by varying the anisotropy of the spin interactions,

showing that they are smoothly connected. Our results give some indications for

the stability of spin superfluids: Despite the spiral being a classical steady state,

we showed that quantum fluctuations render this state unstable. Recently, it has

been shown that the large fluctuations built up during the instability dynamics

can lead to the emergence of a non-thermal fixed point of the dynamics [476,

540]. It would be interesting to see whether such behaviour also emerges in long-

range interacting systems, which would also enable immediate study in trapped

ion quantum simulators. In particular, as non-thermal fixed point behaviour is

connected to turbulent transport [50, 468], it would be interesting how the Lévy

flight behaviour we found in chapter 6 modifies this picture.

In the last chapter, we developed a protocol to measure time-dependent angle-

resolved photoemission spectra in cold atom quantum simulators. We showed
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that combining this technique with strong magnetic field gradients enables the

study of spinon excitations in one-dimensional quantum magnets which are not

occupied in the ground state. Moreover, we showed that oscillations in the spectral

weight indicate beyond mean-field interactions between spinons. Lastly, we obtained

first indications that in two spatial dimensions, spinon excitations get occupied

at momentum (π, π), indicating that the missing ground state spectral weight is

indeed due to the formation of a spinon Fermi sea. Further study is implied by

these results. Firstly, using matrix product state methods on cylinders would enable

a confirmation of the 2D results in larger systems. Repeating the same study with

finite doping, a rather challenging numerical setting, could enable a resolution of

the riddle behind Fermi arcs - spectral weight appearing after the application of a

magnetic field gradient would give strong indications that the missing weight on

the backside of Fermi arcs is indeed due to the presence of a spinon Fermi sea and

hence a quantum spin liquid. Using an electric field gradient instead of a magnetic

one could help to discern effects due to charge and spin excitations. Repeating

our protocol in a triangular lattice could furthermore lead to insights into the

unoccupied spinon states in two-dimensional quantum spin liquids. Our protocols

are not limited to lattice systems. In continuum Fermi gases, time dependent angle-

resolved photoemission spectroscopy (ARPES) enables the study of non-equilibrium

dynamics in the unitary regime, including the emergence of fluctuation-dissipation

relations as discussed in chapter 4 in the first part.
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