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Abstract

Upon antigen encounter and activation, CD8+ T cells undergo several rounds of cell divisions
and differentiate into rapid-proliferating effector (EFF) cells and slow-dividing memory precursor
(MP) cells. EFF cells exhibit strong cytolytic functions and mediate pathogen killing, resulting
in the resolution of the infection.
Conversely, during chronic diseases, the immune system fails to clear the infection. The persist-
ing antigen has developmental consequences: It triggers the up-regulation of inhibitory molecules
and the loss of effector functions, which eventually renders the T cells in a dysfunctional state
termed exhaustion.
How the antigen persistence drives the formation of exhausted cell states, which role proliferation
plays during the process of exhaustion and which functional subsets deviate from the canonical
path of differentiation to become exhausted remain key open questions.
In this thesis, we utilised the mouse models of acute and chronic lymphocytic choriomeningitis
virus (LCMV) infection and the bacterial infection system with Listeria monocytogenes. We
complemented cell division speed measurements with in vivo fate-mapping as well as transcrip-
tomic data on a single cell level and performed stochastic mathematical modelling.
First, we performed single-cell RNA sequencing and analysed a time series of the CD8+ T
cell responses during the acute infections with both model pathogens. Trajectory inference
analyses outlined the scheme to construct the mathematical model. The topology of the model
resembled the progressive differentiation with a cell cycle drop out effect extension: Naïve T
cells differentiate into central MP T cells, then transition through an intermediate effector MP
state before they become terminally differentiated EFF cells. Exit out of the cell cycle is possible
from each differentiation stage and locks the cells in the preceding state-determining phenotype.
We show that the extended progressive model explains the cell variability in response to both
utilised models, the viral and bacterial infection.
Second, we investigated the time-resolved single-cell transcriptomes during the expansion phase
of the acute and persisting LCMV infection. We found that exhausted memory-like (MEX) and
early effector (EEX) T cells separated very early from their functional equivalents. Strikingly,
MEX and EEX subsets retained a high degree of plasticity, allowing the rescue of these two
subsets from the exhaustion imprinting upon transfer to more favourable conditions.
Third, we compared how the course of the expansion phase during the chronic LCMV infec-
tion deviated from the acute infection. We achieved this through the simultaneous fitting and
forward selection of the acute and chronic LCMV data, using the extended progressive model.
This enabled us to identify the parameters that are altered during the chronic response. We
have observed that the transition from EMP to EFF is forty times smaller in the chronic in-
fection setting compared to the acute one, preventing the formation of the latter population.
Furthermore, we found that premature division cessation, most presumably mediated through
the expression of inhibitory receptors, occurred earlier in the persisting infection. In our model



the differentiation program is proliferation-driven, and division drop-out locks the cells in the
quiescent state, which additionally prevents the acquisition of a functional effector phenotype.
Fourth, by means of single-cell driven mathematical modelling, we investigated how exhausted T
cells emerge from the canonical pathway of differentiation. We constructed the model based on
the developmental scheme of differentiation arrest. This model explains the heterogeneity of the
exhausted subsets such that functional cells exhausted at different stages of normal development.
Our results have supported the arrested exhaustion model and experimental validation revealed
that the dysfunctional states are driven by the independent exhaustion of the MP and EMP
subsets.
We demonstrate that T cell differentiation follows a conserved scheme, and exhaustion poses a
deviation from the canonical path that is reversible at early time points of the chronic infection.
Furthermore, we identified cell cycle arrest as an essential regulator of T cell exhaustion. This
suggests that combinatorial interventions that target the cell division activity could, in addition
to immune checkpoint blockade treatments, improve therapeutic outcomes.



Zusammenfassung

Nach Antigenkontakt und Aktivierung durchlaufen CD8+ T Zellen mehrere Zellteilungsrunden
und differenzieren in schnell proliferierende Effektorzellen (EFF) und in sich langsam teilende
Gedächtnisvorläuferzellen (MP). EFF-Zellen haben eine starke zytolytische Funktion und sorgen
für die Abtötung von Krankheitserregern, was zur Eindämmung einer Infektion führt.
Im Verlauf chronischer Krankheiten hingegen gelingt es dem Immunsystem nicht, die Infektion
zu beseitigen. Das Fortbestehen des Antigens hat Folgen für die Entwicklung der Zellen: Es führt
zur Hochregulierung hemmender Rezeptoren und zum Verlust von Effektorfunktionen, wodurch
die T Zellen schließlich in einen dysfunktionalen Zustand getrieben werden, der als Erschöpfung
bezeichnet wird.
In der vorliegenden Dissertation haben wir die Mausmodelle der akuten und chronischen In-
fektion mit dem lymphozytischen Choriomeningitis Virus (LCMV) sowie das bakterielle Infek-
tionssystem mit Listeria monocytogenes verwendet. Wir haben Messungen der Zellteilungs-
geschwindigkeit mit in vivo Einzelzellnachkommenschaften sowie Einzelzelltranksriptomdaten
kombiniert und eine stochastische mathematische Modellierung durchgeführt.
Als erstes führten wir Einzelzell-RNA-Sequenzierungen durch und analysierten eine Zeitreihe der
CD8+ T-Zellantworten während der akuten Infektionen mit beiden Modellpathogenen. Anhand
von Analysen zur Ableitung von Differenzierungsmustern skizzierten wir das Schema für die Kon-
struktion des mathematischen Modells. Die Topologie des Modells entsprach der progressiven
Differenzierung mit der Erweiterung eines Zellzyklus-Ausstiegseffektes: Naive T-Zellen differen-
zieren zu zentralen MP T-Zellen, durchlaufen dann einen intermediären Effektor MP-Zustand
bevor sie zu terminal differenzierten EFF-Zellen werden. Der Austritt aus dem Zellzyklus ist
von jedem Differenzierungsstadium aus möglich und hält die Zellen in dem vorhergehenden
zustandsbestimmenden Phänotyp fest. Wir zeigen, dass dieses erweiterte progressive Modell
die Zellvariabilität, welche als Antwort auf die Infektion hervorgerufen in beiden verwendeten
Mausmodellen, viral als auch bakteriell, erklärt.
Zweitens führten wir eine zeitaufgelöste Untersuchung der Einzelzelltranskriptome während der
Expansionsphase der akuten und chronischen LCMV Infektion durch. Wir zeigten, dass sich
erschöpfte gedächtnisähnliche (MEX) und frühe Effektor-T-Zellen (EEX) bereits sehr früh von
ihren funktionellen Varianten trennen. Auffallend ist, dass die MEX- und EEX-Populationen
ein hohes Maß an Plastizität bewahren, was die Rettung dieser beiden Populationen aus dem
Erschöpfungsprogramm bei Überführung in günstigere Bedingungen ermöglichte.
Drittens verglichen wir, wie der Verlauf der Expansionsphase während der chronischen LCMV
Infektion von der akuten Infektion abwich. Dies erreichten wir durch die gleichzeitige Anpas-
sung und Vorwärtsselektion der akuten und chronischen LCMV-Daten unter der Verwendung
des erweiterten progressiven Differenzierungsmodells. Dadurch konnten wir die Parameter iden-
tifizieren, die sich während der chronischen Immunantwort verändern. Wir haben festgestellt,
dass der Übergang von EMP zu EFF bei einer chronischen Infektion vierzigmal kleiner ist als bei



einer akuten Infektion, wodurch die Entstehung der EFF Population verhindert wird. Darüber
hinaus haben wir herausgefunden, dass die vorzeitige Beendigung der Zellteilung, die vermutlich
durch die Expression inhibitorischer Rezeptoren vermittelt wird, bei der persistierenden Infek-
tion früher erfolgt. In unserem Modell ist das Differenzierungsprogramm proliferationsgetrieben,
und der Teilungsstopp hält die Zellen im jeweiligem Differenzierungszustand fest, was zusätzlich
die Erlangung eines funktionellen Effektor-Phänotyps verhindert.
Viertens untersuchten wir mit Hilfe einer von Einzelzellen gestützten mathematischen Model-
lierung wie erschöpfte T-Zellen aus dem kanonischen Differenzierungspfad hervorgehen. Wir kon-
struierten das Modell auf der Grundlage des Entwicklungsschemas des Differenzierungsstopps.
Dieses Modell erklärt die Heterogenität der erschöpften Populationen, nämlich dass funktionelle
Zellen in verschiedenen Stadien der normalen Entwicklung erschöpfen. Diese Ergebnisse und ex-
perimentelle Validierungen stützen das Modell der arretierten Erschöpfung und zeigen, dass die
dysfunktionalen Zustände auf die unabhängige Erschöpfung der MP- und EMP-Untergruppen
zurückzuführen sind.
Wir zeigen, dass die T-Zell Differenzierung einem festen Schema folgt und die Erschöpfung
eine Abweichung von diesem klassischen Pfad darstellt, die zu frühen Zeitpunkten der chroni-
schen Infektion noch reversibel ist. Darüber hinaus identifizierten wir den Zellzyklus-Austritt
als einen wesentlichen Regulierungsmechanismus für die T-Zell Erschöpfung. Unsere Ergebnisse
deuten darauf hin, dass kombinatorische Interventionen, die auf die Zellteilungsaktivität abzie-
len, zusätzlich zu Behandlungen mit Immun-Checkpoint-Blockaden die Behandlungsergebnisse
solcher Infektionen verbessern können.
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1. Introduction

1.1. Immune system

The mammalian immune system comprises a complicated network of cellular and molecular
mediators that have evolved to protect its host from foreign agents and invading pathogens.
The immune system is compartmentalised, and immune responses are divided into two arms,
the innate and adaptive immunity (Chaplin 2010).

Two arms of the immune system

The innate immunity acts upon the recognition of conserved pathogenic patterns. It elicits an
immediate and unspecific inflammatory response, which allows to efficiently fight various differ-
ent types of pathogens (Iwasaki et al. 2015). In contrast, defence mechanisms mediated by the
adaptive immunity are attuned to specific targets and result in the formation of immunological
memory. This ability to learn from the first contact with an infectious agent (primary response)
and to store this information, promoting faster and stronger responses after the subsequent
encounter (secondary response) represents a unique feature of the adaptive immune response
(Farber et al. 2016). Immunological memory is maintained by specialised immune memory cells,
and protections conferred by these memory cells can last for long periods, even life-long in some
cases (Farber et al. 2016). The mechanism of vaccine-induced protection against infectious dis-
eases is based on efficiently triggering the development of immunological memory (Farber et al.
2016).

Mechanisms of the adaptive response

The adaptive arm of the immune system is further subdivided into B cell-mediated humoral and
T cell-driven cellular responses.
B cells secrete soluble antibodies that bind infectious targets and their products and act through
neutralisation, opsonisation and activation of the complement system. Neutralisation is driven
by the antibodies that bind to the pathogen and hinder it from entering cells and tissues.
Furthermore, antibody-coated pathogens can be recognised and taken in by phagocytes (opson-
isation). Antibodies bound to a pathogen can also activate proteins of the complement system
that directly attack the membrane of the pathogen (Punt et al. 2009).
T cells produce inflammatory cytokines or induce cell apoptosis of target cells through direct
interactions. There are two major groups of T cells, supporting or regulating CD4+ and cytotoxic
CD8+ T cells (Laidlaw et al. 2016). The CD4+ T cells regulate or support other immune cell
types in exerting their functions (Reiner 2007). They can directly interact with CD8+ T cells
and promote their proliferation and survival. Regulatory CD4+ T have opposing functions.
They can suppress the CD8+ T cell response by modulation of the chemokine and cytokine

11



milieu without direct cell-cell interactions (Laidlaw et al. 2016). CD8+ T cells are able to kill
infected target cells directly (Russell et al. 2002). Therefore, successful pathogen clearance relies
on the generation of efficient CD8+ T cell immunity.

1.2. The role of CD8+ T cell immunity

Naïve CD8+ T cells have the capacity to massively expand and differentiate into effector and
memory cells that migrate through the body to reach the site of infection.

T cell activation

After the completion of the primary thymic development, mature naïve T cells enter the blood-
stream and migrate through the lymphatics, where they continually recirculate between the
blood to the secondary lymphoid organs, such as the lymph nodes and spleen (Masopust et al.
2013).
The secondary lymphoid organs serve as a site where in the presence of an infection, CD8+ T cells
are primed by antigen-presenting cells (APCs) (Masopust et al. 2013). APCs, typically dendritic
cells (DCs), engulf pathogens and are able to process and present peptides of these pathogens
via their surface major histocompatibility complex (MHC) class I molecules (Masopust et al.
2013). Since each one of the CD8+ T cells expresses a unique T cell receptor (TCR), they
have to scan multiple DCs expressing peptide:MHC class I, while roving through the blood and
lymphatics (Masopust et al. 2013). Recognising the presented antigen through the interaction of
the TCR-peptide:MHC class I complex is the first of the three signals a CD8+ T cell must receive
for an efficient priming, leading to the induction of a protective response. The second signal
is the interaction of the T cell co-stimulatory receptor CD28 with CD80 and CD86, expressed
on APCs (Smith-Garvin et al. 2009). Lack of the follow-on signal 2 during the T cell priming
leads to the physical deletion or a non-responsive state of the cell, called anergy (Schwartz 2003).
While signals 1 and 2 are sufficient to induce several cell divisions, for extensive proliferation and
the development of effector functions, the third signal, stimulation with inflammatory cytokines
produced by the APCs, is required (Curtsinger et al. 2010). The cytokines driving the third
signal direct the developmental paths of a naïve CD8+ T cell.

CD8+ T cell functions

Upon activation, CD8+ T cells proliferate extensively, leave the lymph nodes and migrate to
the site of infection in the peripheral tissues, where they kill the infected cells (Zhang et al.
2011). The killing of the target cell mediated by CD8+ T cells is dependent on the release of
the cytotoxic granules by specialised lysosomes containing perforin and granzymes (Stinchcombe
et al. 2007). Perforin forms pores in the membranes of target cells, which allows the delivery of
granzymes inside (Stinchcombe et al. 2007). Granzymes are serine esterases that contribute to
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the killing of the target cells by inducing apoptosis (Stinchcombe et al. 2007).
In addition, CD8+ T cells produce type I interferon cytokines and tumour necrosis factor (TNF).
The release of interferon-γ (IFN-γ) restricts virus replication, while both IFN-γ and TNF acti-
vate the expression of MHC class II on APCs (Boehm et al. 2013). TNF can also directly induce
apoptosis of the infected target cells through the interaction with TNF-receptors (Boehm et al.
2013; Russell et al. 2002).

1.3. Model systems to study CD8+ T cell immunity

Animal models have been widely used to study immunology, and experiments in mice have been
performed to model the human immune system. In the next subsection, two infections models
using mice are introduced to effectively investigate CD8+ T cell immunity.

The LCMV infection model

The strain of lymphocytic choriomeningitis virus (LCMV) infection was discovered in the 1930ies
by Charles Armstrong (Muckenfuss et al. 1933; Traub 1936). The LCMV is an enveloped and
negative-sense single-stranded RNA virus. Even though, it was primarily isolated from human
hosts, its natural reservoirs are rodents, such as the common house mice (Zhou et al. 2012).
LCMV is widely used as a model to study viral pathogenesis and immune responses. Due to its
non-cytolytic nature, the LCMV makes a great infection model to study the effector responses
in vivo since the observed tissue damage and pathology are solely attributed to the immune
response and not the virus itself (Zhou et al. 2012).
Using the LCMV Armstong infection in mice, Doherty and Zinkernagel performed seminal work.
They discovered that MHC class I restriction, the ability to recognise LCMV-peptide presented
via MHC class I molecules allowed the specific killing of LCMV-infected target cells by cytotoxic
T cells (Zinkernagel et al. 1973). For this finding, Doherty and Zinkernagel were awarded the
Nobel prize in medicine (Abdel-Hakeem 2019).
Depending on the strain, virus variant, dose and route of infection, LCMV can cause a wide range
of immune responses, spanning from a functional effector response during an acute infection
setting to an immune dysfunction during a persisting infection.
The application of the LCMV infection model has led to several important findings that enhanced
the understanding of biology.
For example, studies using the acute-resolving infection with LCMV Armstrong found that
the cells, recognising the H-2Db-restricted LCMV gp33 epitope, are rare with a frequency of
1 : 2 × 105 naïve T cells (Blattman et al. 2002). After infection with LCMV Armstrong, naïve
gp33-specific CD8+ T cells undergo more than 14 divisions in the first week of infection and
expand over 103−4 fold, before contracting where only approximately 5 % of the activated gp33-
specific CD8+ T cells survive and persist long-term within a pathogen-free host (Blattman et al.
2002; Murali-Krishna et al. 1999).
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Furthermore, it has been shown that CD8+ T cells from LCMV immune-mice protect from a
re-occurring infection with the same pathogen (immunological memory) and contributed sub-
stantially to the understanding of immune memory (Murali-Krishna et al. 1998, 1999).
In the 1980s, Ahmed and colleagues discovered several mutant strains isolated from different
tissues of LCMV Armstrong infected mice. One strain, isolated from the spleen (clone 13),
harboured a distinct kinetics of infection and displayed a unique infection pathology (Ahmed
et al. 1984). The LCMV clone 13 strain differed from the original strain only by three amino
acids in the viral polymerase and glycoprotein, and yet allowed the disease to spread to all inner
organs (Matloubian et al. 1990; Sullivan et al. 2011). While the infection with the primary
isolate, LCMV Armstrong, results in spontaneous clearance of the virus within a week (Wherry
et al. 2003a), the LCMV clone 13 strain persists for up to 90 days before it becomes undetectable
from the blood and many organs, with life-long viremia in the spleen.
In addition, in studies using the LCMV clone 13 infection, T cell exhaustion has been first
documented as an activated persisting T cell subset that lacks effector functions (Gallimore
et al. 1998; Zajac et al. 1998). The development of an exhaustion phenotype will be elaborated
in section 1.5.
The mutations found in the clone 13 strain do not affect regions of the T cell epitope (Wherry
et al. 2003a). This way, TCR transgenic mice were specifically engineered to generate gp33-
specific CD8+ T cells (P14 T cells) and have been widely used to study the comparison of CD8+

T cell development in an acute and chronic setting.

Listeria monocytogenes as a model pathogen

Another model system to study the mammalian immune response is the bacterial pathogen
Listeria monocytogenes (L.m.). L.m. is gram-positive that causes food-borne illness in hu-
mans, especially in the most vulnerable of us such as children, elderly, pregnant women and
immunocompromised individuals (Khan et al. 2015).
George Mackaness as first used this pathogen as an experimental model in laboratory mice when
he investigated protective immunity (Mackaness 1964).
L. m. is able to replicate in the cytosol, and, after the discovery of MHC class I restricted
immunity (Zinkernagel et al. 1973), it helped to characterise the T cell response directed to
specific bacterial peptides. The researchers found that the clearance of this bacterial pathogen
relies mainly on the immune response mediated by CD8+ T cells (McGregor et al. 1970). Since
then the L. m. infection model has been widely used to characterise the formation of the T cell
memory and to study the naïve-to-memory CD8+ T cell differentiation.
The course of infection with L. m. can easily be modulated, for example by the administration of
antibiotics. The bacterial susceptibility to antibiotic treatment has been exploited to understand
the impact of the inflammatory response on the T cell response (Mercado et al. 2000). The study
has demonstrated, that the T cell expansion requires only on a very short activation stimulus,
and that this activation does not rely on continuous TCR stimulation (Mercado et al. 2000).
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Using the recombinant L. m. genetically modified to express ovalbumin (OVA) in combination
with engineered OTI T cells, recognising the OVA-peptide, enabled a better comparison of the
primary and secondary CD8+ T cell responses.
To this end, the L. m. infection model provides an alternative experimental system to investigate
CD8+ T cell immunity.

1.4. Acute infection and CD8+ T cell differentiation

Following the activation of naïve CD8+ T cells, a cascade of events is initiated that triggers dra-
matic alterations in the cell cycle, metabolism and protein expression, resulting in the production
of a diverse array of cells.

The three phases of an acute infection

During the course of an acute infection, where the disease is resolved within a few days and the
pathogen is eliminated, activated T cells transition through three distinct phases: priming and
expansion, resolution and contraction, and memory maintenance.
In the first phase of the immune response, the expansion phase, massive proliferation of activated
CD8+ T cells results in the vast multiplication and the formation of a diverse pool of memory
precursor (MP) and effector (EFF) T cells, which reaches its peaks around day eight (Kaech
et al. 2012).
The large pool of EFF cells generated during this initial phase of the response is able to control
the pathogen and clear the infection.
Following the elimination of the pathogen, the expanded T cell population undergoes a contrac-
tion phase where the majority of cells (90-95 %) die of apoptosis. The remaining 5-10 % of cells
survive and populate a pool of long-lived memory T cells (Kaech et al. 2012).

Characterisation of CD8+ T cell subsets

Heterogeneous subsets are generated during the immune response to fight acute infections.
MP cells form the long-lived memory pool and persist long after the clearance of the infections.
MPs are already present early during the initiation phase of the response and can be identified
by the increased expression of the interleukin-7 receptor (IL7R) (Kaech et al. 2003). IL-7R
signalling in response to IL-7 stimulation ensures homeostatic maintenance by regulating the
expression of anti-apoptotic molecules (Schluns et al. 2000).
Also, sensitivity to IL-15 signalling promotes homeostatic proliferation in the absence of antigen
(Zhang et al. 1998). In addition, MP cells express co-stimulatory molecules of the TNF receptor
family, such as CD27 and OX40 (Croft 2003). CD27 was assigned to play a role during memory
development, while its lack leads to a reduced secondary expansion (Hendriks et al. 2000).
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Conversely, the absence of the co-stimulation with OX40 does not alter the primary response,
but rather compromises the secondary response instead (Hendriks et al. 2005).
MP and also memory subsets can be further distinguished from effector cells by the expression
of homing receptors. Central memory (CM) and CM precursors (CMP) are identified by high
levels of L-selectin (CD62L) and C-C Motif Chemokine Receptor 7 (CCR7). In contrast, effector
memory (EM) cells and their precursors (EMP) lack their expression (Sallusto et al. 1999).
Furthermore, in comparison to the EM subset, CM cells display an enhanced ability to persist
in vivo and are more efficient in mediating protective immunity due to their greater proliferative
potential (Wherry et al. 2003b).
Overall, therefore, both EM and CM cells provide an efficient protection against re-infection.
Early after priming, MP cells can be further distinguished from short-lived effector cell subsets
(EFF). EFF cells exhibit a unique signature related to their phenotype, proliferation and also
metabolic activities. Compared to MP cells, EFF cells lack the expression of IL7R, CD62L and
CD27. Conversely, they can be characterised by showing elevated levels of Killer cell lectin-
like receptor subfamily G member 1 (KLRG1) (Kaech et al. 2003), C-X3-C Motif Chemokine
Receptor 1 (CX3CR1) (Böttcher et al. 2015) and exhibit cytolytic functions, such as the capacity
to produce granzymes and perforins (Kaech et al. 2012).
Moreover, EFF cells display increased expansion capabilities (Kretschmer et al. 2020; Sarkar et
al. 2008). The functional disparity of EFF cells implies specific metabolic needs. In contrast to
MP cells, EFF subset cells have a reduced mitochondrial mass and depend mainly on glycolysis
as an energy source (Windt et al. 2012).
Overall, the MP and EFF subsets play in concert to eliminate the virus and produce long-lasting
protection from secondary infections.

Developmental relationships of CD8+ T cell subsets

Although many studies have contributed to the understanding of the developmental relationships
between memory and effector T cells and explored the role of transcription factors (Kaech et al.
2012), metabolic profiles (Buck et al. 2016; Sinclair et al. 2013; Windt et al. 2012) and epigenetic
modulations (Pace et al. 2018; Youngblood et al. 2017), the underlying process and the order of
differentiation are not entirely understood.
It is unlikely that a cells’ fate is pre-determined during thymic maturation because two adoptive
transfer studies using barcoded single naïve T cells have shown that they are multipotent and
produce both effector and memory T cells, including CMP and EMP cells (Buchholz et al. 2013b;
Gerlach et al. 2013).
The developmental order of these subsets is a highly debated topic and a number of lineage
relationship models describing CD8+ T cell differentiation states have been proposed to account
for the differential clonal expansion of effector and memory precursor pools that arise during
the immune response.
Some studies suggest that the initial cell division accounts for the clonal heterogeneity observed
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during clonal expansion through asymmetric segregation of critical transcription factors and
protein degradation machinery to the daughter cells (Chang et al. 2011). These studies propose
asymmetric cell division (ACD) as driver of early phenotypic dichotomy resulting in either
effector or memory cells formation (Arsenio et al. 2014; Kakaradov et al. 2017).
Other research has determined that terminally differentiated cells retain their effector functions
during the expansion phase but lose their memory cell properties. This progressive order of
differentiation is referred to as the decreasing-potential model (Ahmed et al. 1996). It provides
a mechanism for creating a broad spectrum of cells in disparate differentiation states depending
on the cumulative signals, such as the repetitive antigen stimulation and the receptions of other
signals, that they have experienced during the infection (Ahmed et al. 1996).
A similar developmental pathway is suggested in a study from Buchholz and colleagues (Buchholz
et al. 2013a). Although the signal strength or duration was not integrated into their mathemat-
ical modelling, they found that naïve CD8+ T cells follow a progressive developmental hierarchy
with EMP and EFF subsets emerging from multipotent CMP cells (Buchholz et al. 2013a).
Another alternative model implying the opposite order is termed the linear differentiation model
and suggests that CM T cells develop from a pool of EM cells that differentiated from effector
cells (Wherry et al. 2003b). While the studies that back the ACD or progressive differentiation
focused on the early time window between the T cell activation and the peak time point, the
latter development model is supported by adoptive transfer experiments in the contraction and
memory phase of the response. The absence of cognate antigen and the comparison of dissimilar
T cell subsets across different states of differentiation might be the reason for the discrepancies
among these three described developmental models.

1.5. Chronic infection and CD8+ T cell exhaustion

In contrast to an acute infection that resolves within a few days, a chronic infection lasts for
long time periods. It is a consequence of the adaptive immune response failing to contain the
infection. The presence of a persisting infection also shapes the CD8+ T cell response.

Chronic infection

The development of a chronic infection depends on two conditions: First, the immune evasion
of the virus must occur and lead to viral persistence. Second, the immune system must undergo
adaptations to adjust the response and limit viral replication, simultaneously avoiding immune-
mediated damage of the infected tissues (Virgin et al. 2009). T cell exhaustion is a compromise
between keeping the infection at bay and minimising tissue damage.
The effector CD8+ T cells with highly potent cytolytic properties could cause immunopathol-
ogy under the constant stimulation with antigen. Therefore, during chronic infections, the
differentiation program of CD8+ T cells, including the epigenetic landscape and metabolic and
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transcriptional profiles, to develop into classical memory and effector subsets have been modi-
fied, resulting in the generation of CD8+ T cells with a dysfunctional state, termed exhaustion
(Wherry et al. 2015).
Similarly, dysfunctional states have also been described in other experimental infection models,
and as well, in chronic human infections such as HIV or HCV and cancer (Gruener et al. 2001;
Schietinger et al. 2016; Shankar et al. 2000).

The exhaustion phenotype

T cell exhaustion is a finely controlled mechanism of the immune system to prevent overreaction
to the infection. T cell exhaustion does not represent an inactive state but rather a continuous
adaptation to the coexistence with the persisting virus.
A successive loss of function occurs during exhaustion, whereby exhausted CD8+ T cells tend
to lose some properties before losing others (Wherry et al. 2004, 2003a). Features such as IL-
2 production, the capacity to proliferate and the ex vivo killing abilities are lost first. Other
functions are often lost at the later and intermediate stages of exhaustion, including the ability
to produce TNF (Wherry et al. 2003a). During a more severe exhaustion state, virus-specific
cells ultimately lose the ability to produce IFN-γ or to degranulate (Wherry et al. 2004, 2007).
Finally, the terminal stage of exhaustion is the physical deletion of the virus-specific T cells
(Wherry et al. 2003a). The severity of exhaustion correlates with high antigen load, as well as
with the lack of IL-21 mediated CD4+ T cell help (Fröhlich et al. 2009; Wherry et al. 2003a;
Zander et al. 2019).

The role of inhibitory receptor expression

The exhausted T cells develop a high surface expression of co-inhibitory molecules (Wherry
et al. 2003a). Through the expression of inhibitory molecules, the effectiveness of the CD8+ T
cell response can be suppressed.
These inhibitory receptors include lymphocyte-activation gene 3 (Lag3) (Workman et al. 2005),
CD39 (Chen et al. 2019; Sade-Feldman et al. 2018), cytotoxic T-lymphocyte associated protein
4 (CTLA4) (Parry et al. 2004), T cell immunoglobulin and mucin domain-containing protein
3 (Tim3) (Jin et al. 2010; Jones et al. 2008), and, most importantly, programmed cell death
protein 1 (PD1) (Barber et al. 2006). The expression of most of these inhibitory molecules is
already induced upon T cell activation, and cumulative co-expression correlates with severity of
exhaustion (Blackburn et al. 2009; Verdon et al. 2020).
How the individual inhibitor receptors modulate the T cell response has not been fully elucidated.
However, it has been shown that synchronous targeting of two inhibitory receptors compared
to single blockade improves the T cell response rates and indicates that each receptor has a
specialised function (Blackburn et al. 2009).
Lag3. Lag3 is expressed after priming as a checkpoint to prevent excessive activation (Andrews
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et al. 2019). It can cross-link with CD3, part of the TCR complex, on EFF cells and thereby
block proliferation and cytokine production (Hannier et al. 1998).
CTLA4. CTLA4 is another checkpoint regulator that is also induced during the early stages of T
cell priming. CTLA4 exhibits structural similarity to CD28 and competes with CD80 and CD86
for binding. Blockade of CD28 via CTLA4 inhibits activation, proliferation, IL-2 production,
glucose metabolism, and induces cell cycle drop out (Waterhouse et al. 1995).
PD1. Probably the most prominent inhibitory receptor expressed during T cell exhaustion
is programmed cell-death 1 (PD1). The expression of PD1 is up-regulated during the later
stages of T cell activation and acts as an inhibitor of effector functions. PD1 interacts with
its ligands (programmed cell death 1 ligand 1 (PDL1) and PDL2), inhibiting both TCR- and
CD28-mediated signalling, and down-regulating the production of cytokines. It also enforces
a cell cycle arrest (Sharpe et al. 2018). The expression of PD1 is often associated with T cell
exhaustion, although it is also transiently expressed in functional subsets during the expansion
phase and therefore not entirely specific to exhaustion (Ahn et al. 2018; Wherry et al. 2007).
CD39. Recently, CD39 has been found to exhibit inhibitory activity. CD39 expression is
observed during the late stages of exhaustion, characterising severely exhausted T cells. It
inhibits proliferation and the generation of EFF cells (Bastid et al. 2015; Chen et al. 2019;
Sade-Feldman et al. 2018).
Tim3. Tim3 is another, relatively newly discovered inhibitory receptor, that interacts with
numerous ligands. It is expressed on a subset of exhausted T cells, and its expression is associated
with poor disease prognosis in a variety of cancers (Andrews et al. 2019).

Therapeutic targeting of the inhibitors

Pharmacological manipulations through targeting these checkpoint inhibitors can transiently
ameliorate the deficits accumulated during exhaustion. Nowadays, immune checkpoint treatment
is a proven therapy that demonstrated positive effects in the treatment of several indications. Its
development has earned James P. Allison and Tasuku Honjo the 2018 Nobel prize in Physiology
and Medicine (Verdon et al. 2020).
The blockade of the PD1 pathway with therapeutic antibodies has been first demonstrated in
mouse studies with LCMV clone 13 infection and resulted in the increased proliferation of the
exhausted T cells as well as a decreased viraemia in inner organs and blood (Barber et al. 2006).
However, the antibody-based PD1 pathway blockade does not target the overall exhausted T
cell population but rather a small subset of the exhausted cell pool (Blackburn et al. 2008; He
et al. 2016; Im et al. 2016; Utzschneider et al. 2016a).

Memory-like exhausted subset

Exhausted T cell populations are highly heterogeneous, entailing a continuum of phenotypes and
intermediate states. However, the pool of cells whose function can be leveraged by therapeutic
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interventions has been identified as the exhausted “memory-like” (MEX) subset. The MEX
subset is termed memory-like due to the enriched expression of memory signature genes.
For example, MEX cells express IL7R, CD62L, CCR7, T-Box Transcription Factor 21 (T-bet),
and T cell factor 1 (TCF1) in addition to their preserved exhausted phenotypic features, but
usually express a limited set of inhibitory receptors and lack expression of Tim3 (Blackburn
et al. 2008; Im et al. 2016; Pauken et al. 2015; Utzschneider et al. 2016a, 2020).
Moreover, MEX cells have the ability to self-renew and differentiate (He et al. 2016; Im et al.
2016; Utzschneider et al. 2016a). Notably, these cells are observed at an early stage of the
exhaustion response (Im et al. 2016; Utzschneider et al. 2020; Yao et al. 2019).
Even when isolating MEX cells from late time-points of chronic infection, the memory-like
features are sustained (Hudson et al. 2019; Im et al. 2016; Utzschneider et al. 2016a, 2020).
However, despite the possession of the memory-like traits, the exhausted phenotype of the MEX
subset is retained upon transfer into more favourable conditions such as naïve hosts or ongoing
and resolved acute infections (Hudson et al. 2019; Utzschneider et al. 2020, 2013).

TOX as key driver of exhaustion

Recently a collection of studies identified the expression of the transcription factor TOX, the
thymocyte selection-associated high mobility group box, as a critical regulator in the generation
of the MEX subset and the maintenance of the antigen-specific CD8+ T cell pool during chronic
infections and cancer(Alfei et al. 2019; Khan et al. 2019; Scott et al. 2019; Seo et al. 2021; Yao
et al. 2019).
Although TOX is also transiently present on marginal expression levels after the response with
self-limiting infections, it is redundant for the development of classical MP and EFF subsets.
In contrast, during a chronic infection, already in the expansion phase, TOX is highly expressed
in CD8+ T cells.
The MEX subset displays its increased expression as well, compared to the terminally exhausted
cells (TEX) (Alfei et al. 2019; Khan et al. 2019).
Deficiency in the TOX expression fails to generate MEX cells. Furthermore, the lack of the
MEX subset results in the loss of the virus-specific T cell pool throughout the course of infection.
Instead, TOX-deficient CD8+ T cells developed into a functional KLRG1+ subset that exhibited
increased cytotoxicity leading to increased weight loss and tissue damage in the infected mice
(Alfei et al. 2019).

Developmental order of T cell exhaustion

Single-cell RNA sequencing (scRNA-seq) technologies have massively advanced our understand-
ing in the fields of T cell differentiation and the development of exhaustion. Application of
scRNA-seq led to the identification of different CD8+ T cell states in the context of exhaustion
and shed light into the developmental relationship across these states.
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Several studies have collectively placed the MEX subset at the developmental origin of T cell
exhaustion. More severely exhausted T cell subsets (early exhausted cells (EEX) and TEX
cells) are propagated from the MEX subset (Alfei et al. 2019; Chen et al. 2019; Hudson et al.
2019; Pritykin et al. 2021; Utzschneider et al. 2016a, 2020). During the transition from MEX to
EEX, MEX cells acquire a phenotype that is related to classical EFF cells and up-regulate the
expression of B lymphocyte-induced maturation protein-1 (Blimp1), Eomesodermin (Eomes)
and develop cytolytic properties such as the ability to produce granzyme A and B, and perforin
1 (Chen et al. 2019; Hudson et al. 2019; Pritykin et al. 2021). TEX cells are irreversibly
differentiated, and their fate-decisions cannot be reverted upon adoptive transfer into antigen-
free hosts, nor can they be rejuvenated upon treatment with immune checkpoint blockades
(Andrews et al. 2019).
The effectiveness of reinvigoration ultimately relies on unique epigenetic and genetic changes.
For example, the binding of transcription factors as well as gene expression heavily depend on
the accessibility of chromatin and the state of DNA methylation (Ghoneim et al. 2017; Khan
et al. 2019; Pauken et al. 2016; Sen et al. 2016).

Origin of exhausted T cells

Although several studies have shed light on the process of exhaustion development, it remains
unclear when and how exactly exhausted T cells deviate from the classical path and become
incapable of generating functional effector and memory cells.
The picture that T cell differentiation in response to chronic infection is fed from the EFF
subset progressively that underwent additional transcriptional and epigenetic changes, eventually
leading to impaired T cell function (Blank et al. 2019) has been challenged by more recent studies.
These studies propose a different developmental order, placing MEX cells at the source of the
differentiation, and in addition, they suggest that MP cells develop an exhausted phenotype
upon transfer into persisting antigen conditions (Alfei et al. 2019; Chen et al. 2019; Hudson
et al. 2019; Utzschneider et al. 2020). Moreover, the new view on the differentiation hierarchy
is supported by the inability of KLRG1+ EFF cells to exhaust (Angelosanto et al. 2012; Khan
et al. 2019),
T cell exhaustion is regarded as a programme that runs parallel to normal T cell differentiation,
whereby T cell exhaustion can occur during any stage of differentiation. These cells subse-
quently give rise to progeny with features of exhaustion. Therefore, in the arrested model of
differentiation, it is proposed that the exhausted T cells are generated from memory and effector
T cells that have deviated from the normal trajectory of differentiation before developing into
a terminal EFF cell (TEF) state (Henning et al. 2018). Several branching points within the
canonical differentiation path can hence lead to the exhausted counterpart.
The great heterogeneity in the pool of exhausted T cell reflects the suggested transition to the
exhausted phenotype, dependent on the differentiation stage. For example, MEX cells that
phenotypically resemble MP cells would have diverted early during exhaustion. Concomitantly,
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the more severe exhausted subsets (EEX and TEX) emerge at later time points when further
progressed towards the terminal differentiation (Henning et al. 2018). However, so far, it remains
unclear if the intermediate functional phenotypes such as EMP can exhaust or if exhaustion is
solely MP → MEX-driven.

1.6. Mathematical models of T cell responses

The understanding of the kinetics of quantitative T cells remains very scarce because the tran-
sition rates, such as the rate of differentiation or apoptosis, are difficult if not impossible to be
assessed in vivo. These experimental limitations can be overcome by applying mathematical
models that can inform on underlying paths not accessible by experiments. However, the com-
plex nature of biological system requires that the mechanisms are simplified in order to develop
a mathematical framework.
Nevertheless, mathematical modelling in quantitative biology led to a paradigm shift in how
we understand the immune response and the course of a viral infection. They have provided
insights into host-virus interactions, population doubling times and cell death.

Lessons learned from mathematical modelling

Most mathematical models to date that describe the population dynamics of T cells have been
constructed based on ordinary differential equations (ODEs). They are employed to deduce
population turnover rates over time as well as the subset diversification rates of a subset of cells.
Mathematical modelling has provided the estimates about the cell proliferation and death, ex-
plaining how a population of CD8+ T cells grows rapidly after an infection and shrinks as soon
as the disease has subsided (Althaus et al. 2007; Homann et al. 2001; Murali-Krishna et al.
1998). Whereby, these models were informed from proliferation measurements data, such as la-
belling with thymidine analogues l5-bromo-2’-deoxyuridine (BrdU), deuterium, or dye-dilutions
methods such as carboxy-fluorescein diacetate succinimidyl ester (CFSE) or CellTrace Violet
(De Boer et al. 2003, 2001).
Using elaborate dye-dilution protocols and long-term imaging methods, the group of Philip
Hodgkin has performed seminal computational work that contributed to the better understand-
ing of T cell activation and proliferation (Marchingo et al. 2014, 2016; Subramanian et al. 2008).
However, their studies rely on direct measurements of the inter-division time distributions and
in vivo such information is not directly accessible. Therefore, in this section, we focus on the
mathematical frameworks applied to real infection situations.
On the example of the LCMV infection, several key biological findings could be uncovered
through mathematical modelling. Firstly, thanks to mathematical modelling, it was possible
to estimate the initial number of the virus-specific CD8+ T cells per mice (Bocharov 1998;
Bocharov et al. 2003). The result has been confirmed by experimental measurements (Blattman
et al. 2002). Furthermore, data-driven mathematical modelling has made it possible to asses the
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threshold number of DCs required to induce an effective anti-viral CD8+ T response (Ludewig
et al. 2004).

Limitations of mathematical modelling

So far, the understanding of the CD8+ T cell kinetics towards LCMV relied predominantly on
population-based studies. These studies were limited by the lack of knowledge of the exact
initial number of the precursor cells, specific for a particular antigen (antigen-specific naïve T
cell pool) (De Boer et al. 2003).
In the applied mathematical models, the initial size of the precursors pool either relied on the
estimations from the model fits or the lack thereof was mitigated by collapsing the rate of
activation with the precursors’ size into one single parameter (Althaus et al. 2007; Blattman et
al. 2002). There were further limitations to the studies, resulting from a few additional factors.
The lack of information about the initial precursor size hindered the dissections of the response
magnitude that is mainly dependent on the degree of the clonal expansion (Heijst et al. 2013).
The models also lacked the number of proliferation events undergone by each primed cell. More-
over, the way how cell division depends on the presence of antigen was not sufficiently described
These limitations were overcome by further simplifying the underlying model or using heuristic
approaches. For instance, a study by DeBoer and colleagues assumed that cells could undergo
an infinite number of divisions (De Boer et al. 2013). This assumption was later disproved by a
study which uncovered an upper bound for the number of such events a primed cell experiences
(Heinzel et al. 2017).
Misassumptions while constructing the model can lead to deceptive conclusions, such as the
reliance on antigen concentration during the whole phase of CD8+ T cell expansion (for so-
called predator-prey-like models) (De Boer et al. 1995). In fact, this particular assumption has
been experimentally disproved, where it has been shown that a short stimulus of only 2 h suffices
to induce several rounds of cell division (Kaech et al. 2001; Mercado et al. 2000). Further proof
is provided by the studies that show that proliferation continues after antigen clearance and also
occurs during homoeostasis (Surh et al. 2008). During antigen persistence, CD8+ T cells do not
continue proliferating infinitely (or until reaching the carrying capacity) but also experience a
phase of T cell contraction (Althaus et al. 2007).
The use of mathematical modelling simplified the basis to study the lymphocyte turnover rates
and subtype diversification. However, what remained unclear after these studies performed in
the late 1990ies and early 2000 in the LCMV infection setting was the developmental order in
which memory and effector memory T cells emerge from naïve T cells (Kohler 2007).

Overcoming previous limitations through new experimental designs

Following barcoded or congenically labelled single cells in vivo has opened new possibilities to
investigate developmental relationships. Mapping of the single-cell fates revealed the hetero-
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geneity of the responses emerging from one single naïve CD8+ T cell. Another learning was
that, both MP and EFF cells can be generated from the same progenitor cells (Gerlach et al.
2010; Stemberger et al. 2007). Single-cell derived responses vary not only in relation to their
phenotypic output but also to their clonal size. It has been shown that family sizes originating
from a single CD8+ T cell clone span up to five orders of magnitude at the peak of the immune
response during infection with L.m.-OVA. The greater proliferation was positively associated
with an increasing frequency of EFF versus MP cells (Buchholz et al. 2013b; Gerlach et al.
2013).

Single-cell derived responses provide information about further statistical quantities, such as
the variance and the co-variance. While, population-based responses average over the responses
that are elicited from each single cell, masking further statistical information. Therefore, single-
cell responses provide additional information to drive the mathematical modelling to describe
developmental trajectories.

The lineage relationship of a naïve CD8+ T cell could be reconstructed through the application
of stochastic mathematical modelling driven by single-cell fate-mapping (Buchholz et al. 2013b).
Buchholz and colleagues found that a naïve CD8+ T cell diversifies early after activation and
it is able to generate slow-proliferating MP progeny that differentiate into fast-dividing effector
memory precursors (EMP) and EFF cells (Buchholz et al. 2013b).

The hierarchical order of CD8+ T cell differentiation proposed by Buchholz et al. 2013b is
also known as the progressive model of differentiation. For the first time in the history of
mathematical modelling of CD8+ T cell responses, the starting precursor number was known to
be a single CD8+ T cell. That has allowed obtaining crucial information about the recruitment
of cells from in vivo studies (Buchholz et al. 2013b).

Moreover, according to the progressive differentiation model, relevant differences in cell cycle
speed act as a key driver in the generation of MP and EFF subsets at the peak of the expansion
phase (Buchholz et al. 2013b). The developmental relationship proposed by the progressive
model of differentiation was later supported by epigenetic studies (Pace et al. 2018) and through
the time-resolved tracking of fluorescence-labelled reporter MP cells (Pais Ferreira et al. 2020).

Open questions

The role of cell division, division cessation and their link to the differentiation during the expan-
sion phase of the CD8+ T cell response remains incompletely understood. At the same time,
only a few studies have applied mathematical modelling to the proliferation and differentiation
program during the T cell exhaustion. So far, they were able to uncover only the overall popu-
lation kinetics (Althaus et al. 2007). The underlying mechanisms of differentiation mechanisms
that propagate the different exhausted T cell subsets still remain to be described.
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1.7. Regulation of clonal expansion by cell division speed

It was postulated that the cell cycle activity indirectly regulates T cell activity by generating
stronger secondary effector cytokine responses when T cells have undergone more cell divisions
during primary stimulation (Bird et al. 1998; Gett et al. 1998).
Indeed, proliferation regulates the nature of the immune response by affecting the number of
MP and EFF T cells that are generated. Upon priming, the naïve CD8+ T cells undergo 14-16
divisions within the first week of infection and expand their population size by several orders of
magnitude (Zhou et al. 2012). The expanded CD8+ T cell populations consist of a large fraction
of EFF cells, mediating the clearance of the pathogen and a minor population of MP cells that
provides long-lasting protection to re-infection (Badovinac et al. 2006; Kaech et al. 2012).
Using barcoded or congenically labelled single-cell transfer protocols suggested subset-specific
differences in proliferation activity between MP and EFF subsets during the expansion phase
(Buchholz et al. 2013b; Gerlach et al. 2013). This finding was further corroborated by the
mathematical modelling of such single CD8+ T cell-derived responses (Buchholz et al. 2013b).
There is evidence that during the acute infection with LCMV, MP cells proliferate less compared
to EFF cells (Sarkar et al. 2008).
However, in these studies, it remains unclear whether the difference in the proliferative activity
is due to premature cessation of the cell division and/or to the distinct subset-specific speeds of
division.
Several in vitro studies suggest that the number of divisions a cell can undergo before returning
to quiescence (division destiny) strongly depends on the initial stimulation and the cytokine
milieu (Hawkins et al. 2009; Marchingo et al. 2014, 2016). In fact, co-stimulation with anti-
CD28 (signal 2) as well as triggering IL-2 signalling with exogenous IL-2 stimulation (signal 3)
increased the number of divisions a cell undertakes (Marchingo et al. 2014).
Furthermore, additional evidence exists that the time a cell exits the cell cycle is governed by
the cell cycle-regulating transcription factor c-Myc (Heinzel et al. 2017). When c-Myc levels fall
below a certain threshold, division cessation is enforced (Heinzel et al. 2017). This is in line
with previous studies, showing that c-Myc on both protein and mRNA levels is highly induced
upon activation and directly regulated by TCR and IL-2 signalling (Guy et al. 2013; Marchingo
et al. 2020; Preston et al. 2015). Also, c-Myc plays a role in the metabolic reprogramming of T
cells by promoting glycolysis, a bioenergy source that is required in the EFF cells (Windt et al.
2012). However, the role of c-Myc expression during the development of the MP and EFF fates
remains an open question.

New outlook on cell division

Most of the studies described in the previous section relied on a in vitro experimental settings
and whether these findings hold for expanding T cell populations in vivo where antigen levels
remain high for a minimum of a few days as well as in conditions of persisting infections, remains

25



unresolved.
Using a cell division reporter system and ex vivo continuous imaging, Kinjyo and colleagues
discovered that the first few initial divisions are relatively fast with a duration of 6-8 hours (h)
and the division times between the sub-populations are comparable (Kinjyo et al. 2015; Yoon
et al. 2010). Only after approximately eight divisions do they observe the segregation of a
slow-dividing MP subset and fast-cycling EFF cells (Kinjyo et al. 2015).
Contravening these findings, we have recently developed a mathematical framework to directly
infer the cell cycle speed in vivo from BrdU labelling with subsequent measurements of the total
DNA-content. We have demonstrated that even at the early time points after vaccination, the
clonal expansion is regulated by the speed of the differential subset-specific division (Kretschmer
et al. 2020).
In line with the previous measurements of proliferation in vivo (Sarkar et al. 2008) as well as the
predictions of the mathematical model (Buchholz et al. 2013b), MP cells display prolonged pro-
gression through G1-phase and slower cell cycle speed compared to the EFF subsets (Kretschmer
et al. 2020).
In our study using a vaccination method with antigen-pulsed DCs and infection with L.m.,
division cessation was not observed until the time points close to the peak of the response
(Kretschmer et al. 2020).

Open questions

It is certain that after contraction, cell cycle quiescence sets in. However, whether cell cycle arrest
plays a role during the initial expansion phase after infections with other pathogens than L.m.
still needs to be determined. Furthermore, during a persisting infection with the accompanying
expression of an exhausted phenotype, the loss of the proliferative capacity is a characteristic
attribute. The role of the cell cycle exit as well as the cell cycle activity have not yet been
investigated during the expansion phase of the T cell response.

26



2. Aim of this thesis

CD8+ T cells emerging from chronic infections develop an exhausted phenotype that is transcrip-
tionally distinct from that of functional MP and EFF cells. Although many studies extensively
investigated the role of transcription factors, epigenetic landscapes, proliferation capacities, and
metabolic profiles, the developmental order in which exhausted CD8+ T cells emerge still re-
mains incompletely understood. Moreover, the understanding of T cell exhaustion is tied to
simultaneous analyses of the functional subsets.
Therefore, the first aim of this study is to understand the diversification order and the underlying
processes of the CD8+ T cells during the expansion phase of acute viral and bacterial infections.
In order to achieve this, we performed scRNA-seq experiments and analysed them together with
public data (Chen et al. 2019; Kurd et al. 2020; Yao et al. 2019). We used trajectory inference
methods to construct a mathematical model. Furthermore, we worked in close collaboration
with the laboratory of Veit Buchholz (Technical University Munich), who conducted the adoptive
transfer experiments of single CD8+ T cells that were used to constrain the mathematical model.
In addition, we developed a mathematical framework to assess division speed in vivo and used
the output to define the proliferation rates of the mathematical model.
Our second aim was to dissect how exhaustion fits into the proliferation and differentiation
program during the expansion phase of infection. To attain this we first compared the single-cell
transcriptome at early time points after the acute or chronic LCMV infection and characterised
the CD8+ T cell subsets emerging over the responses. We then applied the mathematical model
that best described the course of the two acute infections to single-cell fate-mapping data from
LCMV clone 13 infection. This way, we identified the parameters that needed to be altered to
characterise the development of T cell subsets during chronic disease.
Furthermore, we investigated the time-point at which cells from chronic infection remain suffi-
ciently plastic to be deflected towards the functional developmental path.
The third aim was to elucidate how the exhausted T cells deviate from the canonical devel-
opmental pathway. To address this, we re-analysed the published scRNA-seq data (Yao et al.
2019) and investigated the role of TOX expression in the development of exhausted subsets by
means of mathematical modelling.
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3.The CD8+ T cell response during the early
phase of an acute infection

This chapter establishes a mathematical model to describe the early T cell wave during an acute
infection. By combining different data types and interdisciplinary methodological approaches,
we aimed at identifying the lineage relationships of CD8+ T cell subsets during the acute infec-
tion. We are particularly interested in fate decisions and lineage relationships in the transitions
between memory and effector T cell formation.

To interrogate the early population dynamics during acute infection and the associated emer-
gence of the memory and effector T cell subsets, we used the infection models of ovalbumin
(OVA)- expressing Listeria monocytogenes (L.m.-OVA) and LCMV Armstrong. These mouse
models were already used in numerous studies that have significantly contributed to our under-
standing of CD8+ T cell-mediated immunity.

For both of these infection models, transgenic CD8+ T cells with antigen-specific TCR have
been engineered. P14 T cells recognise the gp33-peptide expressed on the LCMV, and OTI T
cells harbour a TCR designed to detect the SIINFEKL-peptide on the OVA residue.

Upon adoptive T cell transfer of naïve OTI or P14 T cells, following infection with the matching
pathogen, the T cell responses were analysed at the early days after infection by flow cytometry
and scRNA-seq.

In addition, we discuss in this chapter how a cells’ division speed forms a characteristic trait of a
T cell subtype. For this purpose we developed a mathematical framework to quantify cell cycle
speed in vivo. We published the mathematical approach for division length quantification in
Kretschmer et al. 2020. Using a unique approach, where we combined experimental data from
flow cytometry with bioinformatical analyses and also proliferation measurements, we drove the
development of a mathematical model. Furthermore, we re-analysed public scRNA-seq data,
combined it with our own and used it to inform and constrain the mathematical model. To this
end, we were able to develop a mathematical framework that can disentangle the differentiation
hierarchy of CD8+ T cells during two types of acute infections.

The experimental data shown in this chapter came either from Lorenz Kretschmer from Veit
Buchholz’s laboratory or stem from experiments that were performed by myself. Part of the
mathematical modelling and bioinformatics analysis was performed by my colleague Jonas Mir,
if not indicated differently the results obtained by mathematical modelling and bioinformatics
analyses stem from my own investigations.

Dr. med. Veit Buchholz, Lorenz Kretschmer and Jonas Mir are affiliated to the Institute of Med-
ical Microbiology, Immunology and Hygiene at the Technical University of Munich in Munich,
Germany.
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3.1. Distinct division speed of memory precursors and effector T cell
subsets

Testing the prediction of the progressive model of differentiation

Buchholz and colleagues combined single-cell fate-mapping and mathematical modelling to char-
acterise the lineage relationships of CMP, EMP and EFF subsets during the expansion phase
of an acute infection (Buchholz et al. 2013b). In their study, Buchholz and colleagues de-
fined the subsets based on the expression of CD62L and CD27: (CMP: CD62L+CD27+, EMP:
CD62L−CD27+, EFF: CD62L−CD27−) (Figure 3.1 A). They showed that at the peak of the
infection, the differential expansion of memory and effector subsets, comprising of large EFF
progenies and a small population of CMP cells is attributed to the distinct division speeds of
these subsets. Thus, they propose a hierarchical developmental order where naïve CD8+ T cells
diversify into slow-cycling CMP cells, that differentiate into a faster-proliferating EMP subset,
which then generate fast-dividing EFF cells (Figure 3.1 B). Their model predicted, that in com-
parison to the CMP cells, the EMP and EFF subsets undergo 1.5 more divisions on average per
day (Figure 3.1 B) (Buchholz et al. 2013a).
As first we aimed to test the slow- versus fast-proliferation subset prediction of the model.
Therefore, naïve OTI T cells were transferred into congenic wild-type recipients and then infected
one day later with L.m.-OVA. The OTI T cell response was analysed on day 4.5 p.i. Exactly 3
h before reaching the time of analysis, a dose of BrdU was administered i.p. After that, BrdU
incorporation was analysed by flow cytometry in splenic OTI T cells (Figure 3.1 C).
The in vivo proliferation measurements were consistent with the model prediction. Namely,
the CMP cells incorporated the least amount of BrdU and the EMP, and EFF T cell subsets
incorporated significantly more BrdU in 3 h of measurement (Figure 3.1 D, top row and E, left
panel).

Slower proliferation of the MP subset is conserved across different infections

We also demonstrated similar results in other animal models, such as after infection with
replication-deficient OVA-expressing Modified Vaccinia Ankara Virus (MVA-OVA) or after pre-
vious vaccination with chicken ovalbumin (SIINFEKL) peptide-pulsed DCs, subsequent adoptive
transfer of OTI T cells and infection with wild-type L.m. (Figure 3.1 D-E) (Kretschmer et al.
2020).
The slower division of the CMP compartment was not a characteristic of antigen-specific T cells
with high-affinity TCR. We also observed this feature in the polyclonal T cell responses, such as
when we examined BrdU incorporation in endogenous H2-kb:SIINFEKL+CD8+ T cells at day
6 after L.m.-OVA infection (data not shown).
Based on these findings we expected that during acute infection with LCMV Armstrong MP
would incorporate less BrdU than non-MP cells. Therefore, we adoptively transferred naïve
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Figure 3.1.: Subset-defining proliferation speed predicted by progressive model of differenti-
ation. A Schematic representation of the gating strategy based on expression of CD62L and
CD27. B Proliferation rates with 95% confidence bounds from the progressive model of dif-
ferentiations that was fitted to day 8 single-cell fate mapping data (Buchholz et al. 2013a). C
Experimental setup of single T cell adoptive transfer. 5× 104 naïve OTI T cells were adoptively
transferred into congenic wild-type recipients. The next day, recipients were infected with 5×103

cfu L.m.-OVA. Minus 3 h before the time point of analysis on day 4, BrdU was administered i.p.
to each mouse. D Representative contour plot is showing the expression of CD62L and CD27
of transferred OTI T cells, with the corresponding BrdU-profiles for the indicated subsets (top
row). Experimental set-up similar to (C), but with SIINFEKL-pulsed DCs and infection with
wild-type 2 × 103 L.m. (middle row) or after infection with 2 × 108 MVA-OVA (bottom row).
E Bar graphs depict the percentage of BrdU+ OTI T cells at day 4 p.i. after infection with
L.m.-OVA, DC vaccination and infection with wild-type L.m. or MVA-OVA. Mean and std,
ns=not significant, **p < 0.01,***p < 0.001, one-way ANOVA. n = 8− 10, and data are pooled
from two independent experiments. Data shown in (D-E) has been published in Kretschmer
et al. 2020.

P14 T cells into C57BL/6 mice. On the following day, the mice were infected with LCMV
Armstrong and 3 h before the endpoint on day 4.5, the mice were given a dose of BrdU i.p.
(Figure 3.2 A). Differential expression of TCF1 marked the MP (TCF1+) and non-MP (TCF1−)
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Figure 3.2.: Memory precursor (MP) cells incorporate less BrdU compared to non-memory
precursor (non-MP) cells at day 4.5 p.i. A Experimental set up for assessing proliferation in
vivo. C57BL/6 mice were infected with 2 × 105 pfu LCMV Armstrong one day after receiving
5 × 104 naïve P14 T cells i.p. At 3 h before endpoint analysis at day 4.5 p.i., 1 mg/g BrdU
was administered i.p. Its incorporation into the DNA was analysed by flow cytometry. B
Representative histogram depicting the BrdU levels of MP (TCF1+) and non-MP (TCF1−) P14
T cells. C Quantification of BrdU-positive P14 T cells after 3 h of labelling with BrdU. Mean
and s.e.m.*p < 0.05 Mann-Whitney U test, n = 4, data from one out of two similar experiments.

subset. As expected, the distinct proliferation was also observed during the LCMV Armstrong
infection. Again, the cells of the MP subset divided less than those of the non-MPs (Figure 3.2
A), suggesting a conserved mechanism resulting in slower (C)MP proliferation.

Investigation of the cell cycle phases

BrdU is a thymidine analogue that is integrated during DNA replication in the S-phase. To
understand whether merely a shorter S-phase is responsible for the different BrdU incorporation
between the MP and non-MP T cell subsets, we measured the total DNA content using the DNA
intercalating agent 7-aminoactinomycin D (7AAD) in addition to BrdU. With the simultaneous
measurement of total DNA content and BrdU, we gain the information whether a cells’ DNA
content is in diploid (2N ) or tetraploid (4N ) status and can thereby deduce the distribution of
the cells in the cell cycle phases (Figure 3.3 A).
For this purpose, we chose a short BrdU staining window of 0.5 h. Such a short labelling time
has previously been used in other in vitro and in vivo studies to determine the cell cycle state
of a cell (G0/G1-(BrdU−2N ), G2/M-(BrdU−4N ) and S-phase (BrdU+).
Over this measurement, G0 cells are not discriminated from G1 cells. The cells from these
two phases are both found in the (BrdU−2N )-gate. Therefore, to discern between actively
cycling and quiescent cells, we measured the expression of retinoblastoma protein (Rb) with
phosphorylation at serine residues Y807/811 (Gookin et al. 2017). During active cell division
Rb is present in its phorphorylated form (p-Rb). At day 4.5 p.i. LCMV Armstrong we found
that > 80% of the P14 T cells underwent active cell division, whereas at the same day after
infection with L.m.-OVA > 99% of cells were positive for p-Rb (Y807/811) (Figure A.6 A).
The vast majority of the cells were actively proliferating i.e. all cells were dividing, and the
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labelling with short BrdU pulses A Schematic representation of the cell cycle phase distribution
based on BrdU incorporation and DNA content. B-C Experimental set-up as in Figure 3.2 A,
but with BrdU administration 0.5 h before analysis time point. B Representative pseudo-colour
plots and C pie charts display the phase distribution of the P14 T cells at day 4.5 LCMV
Armstrong infection for the MP (TCF1+) and non-MP (TCF1−) subset. Mean n = 3, data
from one out of two similar experiments.

(BrdU−2N )-gate containing mainly G1 and not G0 cells (Figure A.6 A). On day 4.5, after
infection with L.m.-OVA or LCMV Armstrong, we detected differences in the cell cycle phase
distribution between the CMP and the non-CMP subset (Figure 3.3 B-C, Figure A.6 B).
In both infections, a more significant proportion of MP cells were present in the G1-phase than
the non-MP subset (1.5 times in the infection with L.m.-OVA and 1.2 times in the infection with
LCMV Armstrong) (Figure 3.3 B-C, Figure A.6 B). Approximately 0.8 times fewer MP cells
were found in the S-phase compared to the non-MP. Similarly, we observed that approximately
1.5 − 2 times more cells from the MP subset were in the G2M phase (Figure 3.3 B-C, Figure
A.6 B). We published similar findings (Kretschmer et al. 2020) for OTI T cells after vaccination
with SIINFEKL-pulsed DCs following wild-type L.m. infection.

Assessment of cell cycle speed of fast dividing cells in vivo

Many approaches exist to distinguish the different cell cycle phases (BrdU/7AAD, FUCCI (Kin-
jyo et al. 2015)). However, a way to infer cell division speed did not exist. We aimed at inferring
the actual cell cycle phase durations and, therefore, required the information about the overall
cell cycle length. For the aforementioned reason, we have developed a mathematical framework
to quantify the inter-division times of fast-cycling cells in vivo (Kretschmer et al. 2020).
In our approach to quantifying cell cycle speed, we made the following assumptions: First, a
proportion of cells in the S-phase during the BrdU labelling period divides before the total DNA
content is measured. These cells should then appear in the (BrdU+2N )-gate and will from
here on be referred to as divided cells. The divided gate contains the progeny of cells, whose
mother cells were in the S-phase when BrdU was given and divided within the time of BrdU
administration and the time point of measurement. The differentiation of these recently divided
cells from the entire BrdU+ cells is determined by the DNA content of the cells.
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The double BrdU and 7AAD labelling approach, therefore, allows us to gain information about
the speed of division during the measured time.
We discovered that if we measure the total DNA content after a BrdU labelling window of 3 h,
a separation of the divided cells from the overall BrdU-positive cells can be realised. This way,
we can easily differentiate the cells that had passed the S-phase when BrdU was available and
divided once (Figure 3.4 A, green cells).
Moreover, the half-life of BrdU is relatively short and has a degradation time of about 0.5 h
(Matiašová et al. 2014). Thus, the fraction of BrdU+ cells remains the same when the time
window between BrdU administration and analysis was increased from 0.5 h to 3 h (data not
shown).
Therefore, we assumed that the extension of the time window between analysis and BrdU ad-
ministration from 0.5 h to 3 h, captures only the cells that were in the S-phase in the first 0.5
h after BrdU injection.
Thus, cells with an initial G1-phase status at the time of BrdU administration will not be able
to integrate BrdU and remain BrdU-negative (Figure 3.4 A, purple cells).
Second, we slightly underestimate the proportion of dividing cells, as a relatively small percent-
age of cells that are initially in the G2M-phase (BrdU−4N ) do not end up in the divided-gate
after division, but instead in the (BrdU−2N )-gate (Figure 3.4 A, blue cells). Using our mea-
surements after 0.5 h BrdU administration, we obtained the percentage of those initial G2/M
cells (0.9− 7.5%) (Figure 3.3 B-C, Figure A.6 B).
For our mathematical formalism that quantifies the division speed, we used the percentage of
cells in the divided gate and subtracted the fraction of cells that are found in the G2M-gate.
This subtraction is done to account for the cells that divided between the BrdU administration
and measurement but were BrdU-negative.
As next, we performed combinatory BrdU/DNA measurements at day 4.5 after infection with
LCMV Armstrong and determined the proportion of P14 T cells that divided within 3 h. As
already indicated from the results in Figure 3.2, the percentage of divided cells was different
between the MP and non-MP subsets, with a lower fraction of MP cells dividing within the time
frame of 3 h.
The mathematical quantification of the cell cycle length durations was performed by my col-
league, Jonas Mir. For the quantification, the measurements for the G1- and G2M-phases
(Figure 3.2 B-C) and our analyses on the T cells that divided within 3h were used (Figure 3.4
B-C). The detailed calculations used to quantify the division durations as described in chapter
6, subsection 6.4.2.
The T cells from the MP compartment divided on average every 10.6 h and the non-MP subset
cell every 6.2 h, respectively, i.e. the MP cells divided approximately twice per day, whereas the
non-MP subset underwent on average four cell divisions per day (Figure 3.4 D). A prolonged G1-
phase explained a large part of the longer inter-division time of the MP subset (Figure 3.4 D-E).
We obtained similar results analysing OTI T cells at day 4.5 after L.m.-OVA infection (FIgure
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G2/M-phase at the time when BrdU was administered. Figure adapted from Kretschmer et al.
2020. B Experimental set up as in Figure 3.2 A. Representative pseudo-colour plots with the
gating strategy to estimate the percentage of cells in the divided−gate for the MP (TCF1+) and
non-MP (TCF1−) subset at day 4.5 after LCMV Armstrong infection. C Histograms show the
percentage of P14 T cells in the divided gate after 3 h. Mean and std, *p < 0.05, Man-Whitney
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model as described in Kretschmer et al. 2020. E The pie charts display the percentage each cell
cycle phase amounts to the total length. mean and s.e.m. n = 4.

A.6 D-E). During L.m.-OVA infection, CMP cells in comparison to non-CMP cells divided every
8.8 h and 5.8 h, respectively. Furthermore, we demonstrated similar outcomes in OTI T cells
after DC immunisation (Kretschmer et al. 2020).

The progressive model of differentiation reflected the proliferation dynamic accurately for the
OTI T cells during the acute phase of L.m.-OVA infection. As next, we will investigate single-
cell responses following the infection with LCMV Armstrong and test if the progressive model
of differentiation explains the data.
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3.2. High variability of single CD8+ T cell responses during LCMV
Armstrong infection

Establishment of a murine model to investigate gp33-specific CD8+ T cell
responses

The laboratory of Dirk Busch came up with an experimental setting that allows the tracking
of single T cells in vivo (Stemberger et al. 2007). In their protocol, one naïve T cell expressing
a distinct congenic marker was adoptively transferred into host mice and followed during the
infection. Thus, the descendants that were found after a resolved infection originated from a
single progenitor cell. Buchholz and colleagues improved this method and successfully generated
CD8+ T cells that differ exclusively in their expression of congenic surface markers (Buchholz
et al. 2013a). To this end, several naïve CD8+ T cells could be transferred into the same host
and simultaneously analysed. In this multiplex application, the responses of up to eight single
cell progenies can be followed.
To specifically study the fate decisions of individual CD8+ T cell progenies, Buchholz and co-
workers bred C57BL/6 mice expressing the identical transgenic LCMV-gp33 peptide-specific
TCR (P14 T cells) with different congenic backgrounds. The P14 T cell matrix mouse model
was established by breeding P14 transgenic C57BL/6 mice expressing CD45.1 and Thy1.1 with
CD45.2 and Thy1.2 pairs.
From this crossbreeding, progeny with six different congenic phenotypes were obtained, which
are: CD45.1/.1, CD45.1/.2, CD45.2/.2 or Thy1.1/.1, Thy1.1/.2, Thy1.2/.2. These mouse strains
were interbred until eight different combinations of those markers were obtained. The eight P14
T cells with unique congenic label are termed the P14 matrix (Figure 3.5 A). This protocol allows
the transfer of eight discernible P14 matrix components A-H into CD45.2/.2+/+Thy1.2/.2+/+

C57BL/6 recipients.

Investigation of CD8+ T cell subset diversification

In the experimental setting, 8 × 1 P14 matrix component A-H were transferred into recipient
hosts. One day after P14 matrix transfer, the host mice were infected with LCMV Armstrong,
and the recovered progenies from the spleen were analysed at day 8 p.i. by flow cytometry
(Figure 3.5 B). To investigate T cell subsets with memory or effector signatures, the differential
expression of the following markers was examined: TCF1, Tim3 and CX3CR1.
The expression of transcription factor TCF1 has been found to play a critical role in the for-
mation of CD8+ T cell memory during an acute infection (Jeannet et al. 2010; Lin et al. 2016;
Pais Ferreira et al. 2020; Zhao et al. 2010).
Further sub-division of the CD8+ T cell subsets into a memory and effector compartment, was
obtained through the expression of CX3CR1. Depending on the level of CX3CR1 expression, a
distinction between effector-memory and terminal effector cells could be made.
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Figure 3.5.: P14 T cells follow diverse fates after LCMV Armstrong infection. A Schematic
representation of the congenic P14 T cell matrix. B Set-up of the single T cell adoptive transfer
experiment. 8 × 1 naïve P14 T cells were adoptively transferred into C57BL/6 mice that were
infected with 2× 105 pfu LCMV Armstrong the next day. On day 8 p.i., the P14 T cell popu-
lations in the spleen were analysed. C Representative gating strategy based on the expression
of TCF1, Tim3 and CX3CR1. D Representative pseudo-colour plot of the 5 × 102−cell de-
rived response on their expression of TCF1, Tim-3 and CX3CR1 at day 8 p.i. D Representative
pseudo-colour plots of single-cell progenies ordered from large (top) to small (bottom) showing
the expression of TCF1, Tim3 and CX3CR1 at day 8 p.i. E Experiments were performed as
in B, but 5 × 102 − 5 × 104 were adoptively transferred into naïve hosts, and analysed at day
4.5, 6, 7 and 8 p.i. with LCMV Armstrong. The relative population size (mean and s.e.m.) on
the markers TCF1, Tim-3 and CX3CR1 was analysed by flow cytometry. Experimental data
shown in C and D was performed by Lorenz Kretschmer and Dr. med. Veit Buchholz, data in
E stem from own experiments. n = 6 − 26 and data are pooled from two to four independent
experiments.
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Figure 3.6.: The progeny sizes at day 8 p.i. with LCMV Armstrong range from many small
clones to a few dominating giants. Experiments were performed as in Figure 3.5 B. Statistical
quantification of the data shown in Figure 3.5 D and F. A Absolute population size of the P14
T cell-derived response at 8 p.i. with LCMV Armstrong in the spleen after transfer of 1 or
5× 102 cells. Pie chart represents the population distribution. B Pair-wise Pearson correlations
between the absolute population size of a 1− or 5 × 102 cells derived progeny. ρ1 notes the
Pearson correlation coefficient of a 1−cell derived progeny and ρ500 of 5×102-cell derived progeny,
respectively. Data are pooled from four independent experiments. ****p < 0.0001, **p < 0.005.
Experiments were performed by Lorenz Kretschmer and Dr. med. Veit Buchholz.

While the CX3CR1high subset exhibits great cytotoxicity (Böttcher et al. 2015), CX3CR1int/-

cells show high self-renewal capacity (Gerlach et al. 2016). Therefore, TCF1+Tim3− T cells
were gated to identify memory progenitor T cells (MP).
Further examination of the TCF1− compartment for the expression of CX3CR1, allowed the
assignment of TCF1− cells as EMP and EFF cells, exhibiting high CX3CR1 expression levels.
A schematic representation of the gating strategy is shown in Figure 3.5 C. First, the P14
T cell response based on these three markers was investigated on a population level. For this
purpose, 5×102−5×104 naïve P14 T cells were adaptively transferred into C57BL/6 recipients.
The spleens were analysed between day 4.5 and 8 after LCMV Armstrong infection for their
phenotypic composition with respect to the markers TCF1, Tim3 and CX3CR1. A representative
pseudo-colour plot of the day 8 population-cell derived response is shown (Figure 3.5 D). We
analysed the mean population response for the three T cell subsets (MP, EMP and EFF) in a
time-resolved manner. As early as day 4.5 p.i., a small fraction of the EFF subset emerged that
grew in size over time, peaking at day 8 p.i. (Figure 3.5 E).
Similar results on the CX3CR1-expression were observed by Böttcher et al. 2015 in an artificial
Adenovirus-OVA infection model. Relative size-wise, the MP compartment shrunk over time,
while the EMP pool remained comparatively constant in relative size (Figure 3.5 E).

Multiple fates of single CD8+ T cells

From previous studies by Buchholz and colleagues, we observed that single CD8+ T cell responses
towards acute infections were very heterogeneous (Buchholz et al. 2013a, Kretschmer et al. 2020).
This poses a feature that was all well observed in the P14 T cell response upon infection with
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LCMV Armstrong. The single-cell progenies differed not only in their phenotypic composition
but also in their total population size (Figure 3.5 F and 3.6 A).
The population size of the single cell-derived progeny spans four orders of magnitude. In com-
parison, five hundred cell-derived responses following LCMV Armstrong infection do not show
such a large spread (Figure 3.6 A).
The diversity of a population can be quantified in different ways. Here, we chose two ways to
describe differences and variation in the P14 T cell population distribution. The first of these
two measures is the coefficient of variation (CV). The CV determines the standard deviation of
the progenies in relation to the mean of the population. The absolute cell size in the spleen at
day 8 p.i. LCMV Armstrong has a CV of 351 %.
Interestingly, three giant clones dominated the entire LCMV Armstrong immune response (Fig-
ure 3.6 A). However, the CV does not quantify how much each individual clone contributes to
the total response. Instead, the Gini index (iGini) (Gini 1921), can quantify the evenness of a
population. The Gini index is widely used in socio-economic studies to represent inequality in
the distribution of goods or wealth. A iGini of zero expresses a total equality, where goods are
evenly distributed within a population. In contrast, a iGini of one represents complete inequality,
meaning that one individual owns everything, while the rest of the population owns nothing.
The evenness of the P14 T cell population at day 8 after LCMV Armstrong infection exhibited
a iGini of 0.914. Hence, the Gini coefficient reflected the three dominating clone that account
for the majority of the response and depicted the unevenness of the single P14 responses in the
population distribution (Pie Chart, Figure 3.6 A).
Determining the Pearson correlation coefficient ρ, we also assessed the linear correlations between
the absolute cell number between each subset pair. We observed a strong positive relationship
between the absolute size of the MP and EMP subset and the total sizes of the EMP and EFF
subset. A weak correlation was present between the absolute sizes of the MP and EMP subsets.
A similar relationship between the subsets was observed when quantifying the correlation coef-
ficients for the five hundred-cell derived responses (Figure 3.6 B). All summary statistics can be
found in Table A.1.
In the following section, we discuss whether an existing model of T cell differentiation can explain
the single-cell fate-mapping responses after the LCMV Armstrong infection.

3.3. Variable recruitment to account for diverse single-cell responses

We were contemplating that the general course of an acute systemic infection, i.e. pathogen
elimination and the quality of the associated effector CD8+ T cell response, should not differ
substantially between different infectious diseases. Therefore, we aimed to explore whether the
model of progressive differentiation can also be applied to describe the T cell response during
the LCMV Armstrong infection.
As in the original study from Buchholz et al. 2013a we performed least-squares approximation for
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parameter estimation and used the mean values, CVs and correlation coefficients to constrain
the mathematical model. The best fits to the mean values, the CV of each subset and the
correlation coefficients ρ is shown in Figure A.1 B-C. In terms of the means, the variation and
the linear relationships between the subsets, as represented by the pairwise Pearson correlation
coefficients, the mathematical model supports the data.
However, when we examined the best-fit parameters, we observed that the recruitment rate
from the naïve T cell compartment to the MP subset was unrealistically low (r0 = 0.11d−1).
We also computed the confidence intervals for the parameters with the profile likelihood method
( 95 %CI [0.07, 0.18]), meaning that the recruitment parameter can vary between these bounds
and still result in a good fit.
A better way to interpret the meaning of this rate is by looking at the inverse value (1/r0): On
average, the recruitment of a naïve T cell takes about 9 days (95 %CI [5.6, 14.3]).
Although many naïve T cells differentiated into the MP compartment shortly after activation,
a considerable proportion remained in the naïve state even after day 9 p.i. (data not shown).
Such a significant fraction of cells being kept in the naïve state after the peak response, which is
thought to be around day 7-8 after the infection with LCMV Armstrong (Murali-Krishna et al.
1998), is highly unrealistic. Short differentiation times are backed by a study, showing that even
after adoptive transfer of rather high numbers of naïve T cells, the recruitment at the peak of
the response was almost complete (Heijst et al. 2013).
Furthermore, even a recruitment time of 5.6 days, which is the lower bound of the inverse
parameter value seems rather long. In a previous study, from De Boer et al. 2001 and colleagues,
where they modelled endogenous LCMV-specific CD8+ T cell respones, they found recruitment
times of 1.2-1.4 d−1.
We found that the high variability in the data particularly represented by the CV, demanded
a large mean recruitment time. Owing to its unrealistically low magnitude and lack of support
by published observation (De Boer et al. 2001; Heijst et al. 2013), this model is neglected and
further analyses based on the progressive differentiation model were not conducted.
As next, we will analyse the single-cell transcriptomes of CD8+ T cells during the acute LCMV
infection to gain insight into the developmental pathways of the different T cell subsets. Further,
we aim to develop a computational framework to describe the fate-decisions of single CD8+ T
cells.

3.4. Time-resolved transcriptional analysis of P14 T cells after acute
infection

Investigation of CD8+ T immunity using scRNA-seq

We used the scRNA-seq approach to interrogate the early population dynamics of antiviral
CD8+ T cells during the acute infection. Therefore, we adoptively transferred naïve P14 T cells
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Figure 3.7.: Time-resolved transcriptional analysis of P14 T cells during LCMV Armstrong
infection. A Schematic representation of the experimental set-up for scRNA-seq. Naïve P14
T cells were adoptively transferred into C57BL/6 hosts one day before infection with 2 × 105

pfu LCMV Armstrong. At days 4.5, 6, 7, 8 and 21 p.i., P14 T cells were re-isolated from the
spleens and purified by flow cytometry before performing scRNA-seq using the 10x Chromium
technology. The data sets from day 4.5 and 7 p.i. stem from Yao et al. 2019, the day 8 data from
Chen et al. 2019 and the data at day 21 p.i. from Kurd et al. 2020, the scRNA-seq data from
day 6 stems from own experiments. B We analysed the day 6 P14 T cell transcriptome together
with the aforementioned published data sets. UMAP representation of the P14 T cell response
as at the time points p.i. as in A, coloured by the first author of the originating publication. C
UMAP representation after application of the bbkNN−correction method using the publication
as batch key. UMAP coloured by the author of the publication (left) and coloured by the time
point p.i. (right).

into wild-type recipients. The mice were then infected with the LCMV Armstrong strain one
day later. At 6 day p.i., we isolated splenic CD8+ T cells, FACS-enriched CD44high P14 T cells
and performed scRNA-seq using the 10× Genomics Chromium platform (Figure A.2).
To understand the CD8+ T cell population dynamics over time, we analysed our own dataset
together with publicly available datasets (Chen et al. 2019; Kurd et al. 2020; Yao et al. 2019).
In the original publications, naïve P14 T cells were transferred into congenic wild-type hosts,
that were infected with LCMV Armstrong the next day. At the time points 4.5 and 7 (Yao et al.
2019), 8 (Chen et al. 2019) and 21 (Kurd et al. 2020), CD44high P14 T cells were isolated from
the spleen, sorted by flow cytometry and analysed by scRNA-seq (10× Genomics) (Figure 3.7
A).
To relate to changes in the P14 T cell response over time, we merged our own with the public
datasets and performed a uniform manifold approximation and projection (UMAP) analysis.
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Figure 3.8.: P14 T cells after LCMV Armstrong infection, exhibiting memory signature genes
occupy distinct regions in the UMAP compared to P14 T cells expressing effector signature
genes. A UMAP representation as in Figure 3.7 B showing the expression levels of memory
signature, B effector signature and C T cell activation signature genes at the days 4.5, 6, 7, 8
and 21 p.i. with LCMV Armstrong.

We observed strong batch effects between the different data sets. The data separated based on
the laboratory that performed the experiment (Figure 3.7 B), whereas the data from Yao and
colleagues that consisted of two different time-points remained together.

We, therefore, assumed that the distinct localisation in the UMAP stem from technical effects
caused by the generation in various laboratories, rather than representing actual biological dif-
ference.

We addressed these technical effects in the data by applying a batch correction method, the
batch-balanced k nearest neighbour correction (bbknn) (Polański et al. 2020), where we consid-
ered the original publication as a batch. For the batch corrections analysis the datasets on day
4.5 and 7 p.i. were assigned to the same batch.

Following batch correction, we re-computed the UMAP embedding and reconstructed the time
series of LCMV Armstrong infection (Figure 3.7 C).
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Figure 3.9.: Identification of T cell subsets based on unsupervised clustering. A UMAP repre-
sentation as in Figure 3.7 B is showing Leiden clustering of P14 T cell responses after infection
with LCMV Armstrong. B Bar plot depicts the percentage of clusters on each time-point. C
Heatmap showing the expression level of the top 3 differentially expressed genes for each Leiden
cluster. D Heatmap of gene ontology performed with Metascore 3.0. using only genes with a
log2FC > 1.1 and padj < 0.05. E Violin plots with selected marker genes in each cluster. Colour
bar indicated the median expression in the cluster.
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Identification of T cell subsets in the scRNA-seq data

As next, we examined the gene expression profiles between the splenic P14 T cells at the different
time points. Genes that have been previously associated to memory signatures such as Il7r
(Kaech et al. 2003), Tcf7 (encoding TCF1) (Jeannet et al. 2010; Zhao et al. 2010), Sell (encoding
CD62L) (Buchholz et al. 2013a; Graef et al. 2014) and Slamf6 (encoding Ly108) (Johnnidis et al.
2021) were enriched in the bottom part of the UMAP and were present as early as day 4.5 after
infection (Figure 3.8 A).
Whereas, the T cells expressing effector signatures (Klrg1, Cx3cr1, Gzma (Böttcher et al. 2015;
Gerlach et al. 2016; Kaech et al. 2003) and Id2 (Best et al. 2013)) resided in the upper area of
the UMAP (Figure 3.8 B).
Nr4a1 (encoding for Nur77) (Best et al. 2013) and other T cell activation markers, such as Cd69
(Ziegler et al. 1994), Il2ra (encodig CD25) (Malek et al. 2010) or Irf4 (Man et al. 2013) were
mainly expressed before the peak of the infection at the days 4.5 and 6 (Figure 3.8 C).
We then used an unsupervised approach to cluster cells based on their transcriptional profiles
(Traag et al. 2019) and identified 12 clusters (Figure 3.9 A).
All 12 clusters were already present on day 4.5 p.i. Clusters 1, 2 and 7 were predominantly
represented, and clusters 3, 4, 6 and 9 accounted for less than 1% of the day 4.5 data (Figure 3.9
B). Similar to day 4.5 p.i., on day 6 p.i. cluster 3, 6 and 9 were percentage-wise rarely observed,
while cluster 5 emerged.
The cells found on day 7 and the later time points contributed substantially to clusters 3, 6,
9, whereas the cells that originated at the time points before the infection peak were no longer
found (clusters 1, 5 and 7) (Figure 3.9 B).
Based on the gene signature and gene ontology (GO) analysis, cluster 3 and 7 cells could be
identified as CM(P) cells (Il7r, Tcf7 and Sell).
Cluster 3 up-regulated genes involved T cell activation (Rack1, that is recruited into the im-
munological synapse after TCR triggering (Ballek et al. 2016)) and cytokine production and
cluster 7 expressed cell cycle-related genes and genes involved in response to interleukin-7 (IL-7)
(Figure 3.9 C-E). Cluster 0, 1, 5, 9 and 11 were identified as EM(P) subset, expressing high levels
of Il7r, intermediate levels of Klrg1 and Cx3cr1 with differential expression of effector molecules
(Gzma and/or Gzmb) and effector-associated chemokines (Ccl5 ) as well as transcription factors
(Irf8, Miyagawa et al. 2012) (Figure 3.9 C-D).
Following GO term enrichment analysis, we found elevated expression of cell cycle-related signa-
tures and responses to IL-7 in Leiden cluster 1 and genes involved in regulating defence responses,
lymphocyte activation, T cell activation in the clusters 9 and 11.
The clusters 4 and 6 exhibited an EFF phenotype (Klrd1, Klrg1 and Cx3cr1 ) with increased
cytolytic potential (Gzma for cluster 4 (Figure 3.9 C, E). Furthermore, these two clusters dif-
ferentially expressed genes that were enriched in leukocyte cell-cell adhesion, T cell activation
and in the regulation of effector processes (Figure 3.9 D-E).
We observed that during the early time points in particular, i.e. the time points before the peak
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of the T cell expansion (clusters 1, 2, 5, 7 and 8) a variety of cell cycle genes (Mki67, Top2a and
Mcm2 ) were expressed (Figure 3.9 D-E).

Inference of quiescent cells from transcriptional analysis

As proliferation and differentiation are interlinked mechanisms and we have shown that the T
cell subsets exhibit disparate cell cycle speed, we tried to determine what influence the cell cycle
and a cell’s cell cycle phase have on our analyses.
We inferred a cell’s cell cycle status by computing a cell cycle phase score (Satija et al. 2015)
based on its transcriptional profile, while using a gene list containing cell cycle phase related
genes (Tirosh et al. 2016) (Figure 3.10 A).
Cells with a score greater than 0 were either labelled as S- or G2/M- cell cycle phase. All cells
with a S or G2/M score below 0 were assigned to being in G1-phase. With the aim to better
understand the role of the cell cycle in our data, we exclusively calculated the UMAP based on
the aforementioned cell cycle genes (Tirosh et al. 2016) (Figure 3.10 B, Figure A.3 A).
Additionally, we performed RNA velocity analyses (La Manno et al. 2018) of the data from the
different time points in cell cycle gene space (Tirosh et al. 2016), meaning that for the RNA
velocity analysis only the cell cycle genes were considered. By taking into account the ratio
of spliced to unspliced RNA and projecting the RNA velocities onto the UMAP as well solely
computed on the cell cycle genes (Tirosh et al. 2016), this method allowed us in this particular
setting to extract the activity and directionality of single-cell division.
The RNA velocities showed a circular flow alongside the cells assigned as S- and G2/M-phase,
reflecting the correct order of the cell cycle phases. These streams flew out of the cells assigned
to G2/M and found an endpoint in the non-assigned cell subset.
Interestingly, the velocity arrows of the G1-phase assigned cell cluster did not exhibit specific
directionality. We, therefore, interpreted this outflow of RNA velocity streams as an exit from
the cell cycle, and contemplated that these cells rather represented cells from the G0-phase than
from the G1-phase (Figure 3.10 B, Figure A.3 A).
Our results implied that the Seurat classification method (Satija et al. 2015) misclassified G1
and G0-phase cells. In addition, the original list from Tirosh et al. 2016 used for phase scoring
in the Seurat method (Satija et al. 2015) contains not only S-phase but G1- and S-phase genes,
supporting the G0-phase signature of the G1-assigned cells. Thus, based on these cell cycle
genes (Tirosh et al. 2016), we were able to discriminate dividing from cell cycle arrested cells.
In line with a previous publication (Bastidas-Ponce et al. 2019), where it was also referred to
proliferating and non-proliferating cells instead of distinguishing between the different cell cycle
stages following cell cycle phase scoring with the Seurat method. However, Bastidas-Ponce
and colleagues did not further comment on why the G1-phase classification on their study was
assigned to a non-proliferating subset.
Dividing cells exhibited an enriched signature for the cell cycle genes from Tirosh et al. 2016
(Figure 3.10 C, Figure A.3 B-C).
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Figure 3.10.: Subset-specific cell cycle drop out with the MP compartment arresting from cell
cycle earlier compared to the EMP and EFF subsets. A Scatter plot depicting the S and G2/M
score for the P14 T cells at day 7 after LCMV Armstrong infection from the scRNA-seq data
from Yao et al. 2019. For each cell, a S- or G2/M-phase score was computed based on the gene
list from Tirosh et al. 2016 using the Seurat scoring method (Satija et al. 2015). Cells with a
score greater than zero for S or G2/M were classified as being in S- or G2/M-phase, respectively.
Cells with scores smaller than zero were assigned to the G1-phase. B UMAP representation of
the scRNA-seq data from P14 T cells at day 7 p.i. with LCMV Armstrong. Computation of
the UMAP and assessment of the RNA velocities relied on the cell cycle-related genes from
Tirosh et al. 2016. The direction of RNA velocities in the cell cycle gene space indicates cell
cycle phase progression. S- or G2/M-phase assigned cells to represent cycling cells, whereas the
cells assigned to G1-phase describe the cell cycle arrested cells. C Scatter plot as in Figure A,
proliferation signatures were computed with Vision using the gene list from Tirosh et al. 2016.
A high score defines cycling cells, and a low score non-cycling cells.
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Next, we inferred the percentage of actively cycling cells from the transcriptional analyses from
day 3 till day 8 p.i. with LCMV Armstrong. Therefore, we included additional public available
data from an infection with LCMV Armstrong. In addition, to our day 6 data, we also analysed
the single-cells in the cell cycle gene space from Yao et al. 2019 (day 4.5 and 7) and Chen et al.
2019 (day 8), as well as from Kurd et al. 2020 (day 3, 4, 5, 7).
Until day 6 p.i. the majority (> 90% ) of the cells were actively dividing only then, they stopped
and became quiescent (Figure 3.10 D). Of note, the day 21 sample (Kurd et al. 2020) contained
only quiescent cells (data not shown).
We then verified the transcriptional cell cycle analyses by comparing the results to the p-Rb
expression at the serine residues 807/811. p-Rb expression levels at day 4.5, 6 and 7 p.i. roughly
matched the fractions of cycling cells that were assessed from the scRNA-seq datasets (Figure
3.10 E). We probably underestimated the fraction of cycling cells in the transcriptional analyses,
as the cells adjacent to the cycling cells in the cell cycle space UMAP still displayed RNA velocity
activity in terms of large arrows and distinct directionality.
To better understand the consequence of cell cycle arrest on differentiation, we also examined
the expression of p-Rb in our MP, EMP and EFF T cell subsets. For this purpose, naïve P14
T cells were transferred into wild-type recipients, infected with LCMV Armstrong the next day
and measured the expression of p-Rb on day 6 after the infection.
We observed that there were already significant differences in the cell cycle activity between the
T cell subsets at this time point after infection. Along the progressive differentiation axis, the
majority of the MP cell subtype terminated the cell cycle, ahead of the EMP and EFF subtypes
(Figure 3.10 F, G).

Figure 3.10 : D Fraction of cycling cells inferred from the scRNA-seq analyses as in B taking
into account only the cells assigned to be in the orange and blue bluster (S- and G2/M-phase
according to the Seurat classification). n = 1 − 4 data sets per time point, day 4.5 and 7
from Yao et al. 2019, day 3, 4, 5, 6, 7 from Kurd et al. 2020, day 8 from Chen et al. 2019
and day 6 (this study). Depicted is the mean and the pooled variance. Experimental set up
as in Figure 3.2 A. In brief, at the days 4.5, 6 and 7 p.i. LCMV Armstrong, P14 T cells were
re-isolated from the spleen, and the phosphorylation of the retinoblastoma (p-Rb) protein on
the Y807/811 residues was assessed by flow cytometry. E Bar graph represents the fraction of
cycling P14 T cells measured by the expression of p-Rb and the fraction of cycling P14 T cells
inferred from the scRNA-seq data using the approach as in D. n = 2 − 6, data pooled from
two independent experiments. Mean and s.e.m., ns = not significant, *p > 0.05 Mann-Whitney
U test. F Histograms depicting subset-specific phosphorylation of the retinoblastoma protein
on the Y807/811 residues and G its quantification. The experiment was performed as in E
with analysis at day 6 p.i. n = 7, data pooled from two independent experiments, mean and
s.e.m. **p < 0.005, ns = not significant, one-way ANOVA with multiple comparisons. H UMAP
representation of the P14 T cells from day 4.5, 6, 7, 8 and 21 after LCMV Armstrong infection
(as in Figure 3.7), displaying proliferation signatures computed using the gene lists from Tirosh
et al. 2016.
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Division cessation and the concomitant quiescence thus play a significant role in the changes of
the CD8+ T cell response over time. The proliferation signatures were found to be particularly
enriched at the early time points of LCMV Armstrong infection (Figure 3.10 D, H).

Identification of distinct T cell subpopulations based on their gene expression
profile

During the acute phase of the LCMV Armstrong infection, the cells demonstrate great hetero-
geneity, not only based on their gene expression but also concerning their proliferation.
By performing Leiden clustering, we have already been able to identify T cell subgroups and
investigated the subtle differences between them (Figure 3.9). In further analyses, we want
to focus on the MP, EMP and EFF subgroups as previously identified by flow cytometry (see
section 3.2).
Therefore, we have pooled the Leiden clusters based on the differential gene expression analyses
(Figure 3.9), the division status (Figure 3.10) and the expression of the memory signature
markers such as Il7r, Tcf7, Sell and effector signature genes, exemplified by Klrg1, Cx3cr1,
Gzma in addition to the signatures, marking cycling cells (Mki67, Top2a, Mcm2 ) (Figure 3.11
A-C, Figure A.4 A-B).
From the time point of the peak of the infection and onwards, most of the cells were quiescent,
and more mature cells with distinct signature of terminal differentiated cells were detected.
We, therefore, defined the non-cycling (nc) cells based on their transcriptional profile as memory
T cells (ncM), effector memory T cells (ncEM) and terminal effector T cells (ncEFF), respectively
cycling (c) cells were correspondingly classified as cMP, cEMP and cEFF (Figure 3.11 C).

Figure 3.11.: Identification of subsets in the P14 T cell responses after LCMV Armstrong
infection based on the expression of maker genes and cell cycle stage. A Own grouping based
on the combination of the Leiden clusters according to the expression of Tcf7 and Cx3cr1 into
following subsets: cycling memory precursor (cMP), effector memory precursor (cEMP) and
effector (cEFF) cells, or non-cycling memory cells (ncM), effector memory cells (ncEM) and
terminal effector cells (ncEFF). B Dot plots representing the expression of Il7r, Tcf7, Sell and
Klrg1, Cx3cr1, Gzma and Mk67, Top2a, Mcm2 in each self-defined T cell subset. Dots are
coloured by the mean expression and dot size represents the fraction of cells per group. C Stack
plot displays the cell proportions in each subset per time point.
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The cells from cluster 7 were assigned to the cMP subset, the cEMP subset contained the cells
from cluster 1, 5 and 11 and the cEFF subset constituted of a combination from cluster 2, 6 and
8. Cluster 3 and 10 formed the ncM compartment, cluster 0 and 9 the ncEM subset and ncEFF
cells contained cells from cluster 4 (Figure A.4 A-B).

Trajectory analysis to delineate the developmental relationship between the subsets

We performed different kinds of trajectory inference analyses to investigate the state transitions
of the aforementioned T cell subsets during LCMV Armstrong infection.
We first computed the CytoTRACE score. CytoTRACE is a computational framework that pro-
vides an unbiased method to localise the developmental origin based on single-cell transcriptional
diversity (Gulati et al. 2019). CytoTRACE pinpointed the cells from the cMP subset as those
with the highest developmental potential (Figure 3.12 A). RNA velocity analysis corroborated
this finding, when the directionalities were projected onto a 2-D embedding.
The directionality of differentiation originates as well in the cMP subset that diversifies along
the progressive axis. The cMP cells fuelled all other subsets. At late time points, the ncM fed
the ncEM and ncEFF compartments (Figure 3.12 B). This differentiation pattern is in line with
published work from Pais Ferreira et al. 2020 and the Busch laboratory (Buchholz et al. 2013a
and Graef et al. 2014). In addition, we have computed the diffusion maps (Figure A.5 A-B) and
carried out a diffusion pseudo-time analysis (Haghverdi et al. 2016), designating a cell from the
cMP subset with a CytoTRACE value of 1 as the root cell (Figure 3.12 C, Figure A.5 B-C).
Ordering the expression of signature-defining genes in pseudo-time, confirmed the gradual loss
of Myb, Slamf6 and Tcf7 and the later enhancing expression of effector memory and effector
gene expression such as Cd27, Il7r and Klrg1 as pointers of increasing terminal differentiation
(Figure 3.12 D).

Construction of a model structure

With the aid of these trajectory inference analyses, we derived a model topology to describe T
cell diversification mechanisms. One approach would be to read the RNA velocity directions, as
shown in reduced form in Figure 3.12 E. As in the original UMAP representation, the origin of
diversification was the cMP compartment (Figure 3.12 B). The cMP give rise to cEMP and cEFF
(perpendicular arrows). When exiting the cell cycle, the cells retain their identity (horizontal
arrows). A similar progressive differentiation pathway can be observed after a cell became
quiescent (Figure 3.12 B). Further methods have been developed to derive model topologies from
transcriptional analyses. One of these methods is the partition-based graph abstraction (PAGA)
analysis (Wolf et al. 2019). PAGA extracts interpretable graph-like maps from scRNA-seq data.
Through the estimation of the connectivity of manifold partitions a topology-preserving map of
the single cells is generated (Wolf et al. 2019) (Figure 3.12 E). PAGA finds up to four connections
between two subsets.
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Figure 3.12.: Inference of a descriptive mathematical model for CD8+ T cell responses after
LCMV Armstrong infection using scRNA-seq trajectory analysis. A UMAP representation is
displaying the CytoTRACE score. CytoTRACE scoring labels cells according to their degree
of differentiation. A score of one represents the most undifferentiated cell state, and a score of
zero represents the cell with the highest degree of differentiation. B RNA velocities displayed
on the 2-D UMAP representation. Directionality originates from the MP subset. C UMAP
embedding with diffusion pseudo-time. A cell within the cMP subset with a CytoTRACE score
of 1 was randomly chosen as root cell for diffusion pseudo-time computation. A low diffusion
pseudo-time score identifies undifferentiated cell states, whereas a high score is assigned to cells
that have reached a terminal differentiation state. D Heat map with selected memory and
effector signature genes ordered by diffusion pseudo-time. Normalised marker gene expression
of CytoTRACE ordered cells. E Reduced visualisation of RNA velocities in a 2-D UMAP
embedding with implicated differentiation trajectories based on the subsets defined in B. F
PAGA connectivity graph; Line thickness indicates connectivity strength. G PAGA velocity
graph. Black arrows represent significantly identified transitions between the subsets. Grey
dotted lines indicate non-significant transitions.
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Additionally, to gain insight on the directionality of subset transition we included the RNA
velocity information in the PAGA analysis (Figure 3.12 F). Many connections found by the
connectivity graph computation did not represent significant transitions in the PAGA velocity
graph (Figure 3.12 F, grey dashed lines). We observed a significant transition between the cMP
and the EMP subsets (cMP → cEMP), the cEMP and ncEFF subset (cEMP → ncEFF) and
the cEFF into the ncM and ncEM subset (cEFF → ncM, cEFF → ncEM).
This is in contrast to the RNA velocity analysis where the arrows did not indicate the subset
conversion from cEFF to ncM. In addition, the PAGA velocity analysis infers a ncEFF to ncEM
transformation. The ncEFF → ncEM-conversion in the combined PAGA velocity analysis is
not only in contradiction to our analyses, in which we evaluated the RNA velocities separately
(Figure 3.12 B), but this transition also has been experimentally ruled out (Milner et al. 2020).
Furthermore, during the PAGA differentiation scheme predictions, neither connectivity nor a
transition between the cMP to the ncM subset was identified, even though this transition has
been described in previous studies using TCF1 as phenotypic marker (Johnnidis et al. 2021; Pais
Ferreira et al. 2020).
Application of lineage relations methods such as PAGA could be hampered by the analysis of
multiple batches. To avoid batch-related misinterpretation and with the aim to deduce the
differentiation patterns of CD8+ T cells after an acute infection in general, we produced a series
of scRNA-seq datasets covering time-points before, at and after the peak response of L.m.-OVA
infection. We will discuss the transcriptional analysis and derive a mathematical model from
the cells after L.m.-OVA infection in the following section.

3.5. Towards a uniform model of T cell differentiation during
self-limiting infections

CD8+ T cell responses mounted after acute infections are alike

Similar to the analyses in the previous section, where we investigated the the CD8+ T cell re-
sponse after the LCMV Armstrong infection, we conducted a time-series scRNA-seq experiment
using the L.m.-OVA infection model. The bioinformatics analysis shown in this section was
performed by my colleague, Jonas Mir, while the experiments was conducted by myself.
To this end, naïve OTI T cells were adoptively transferred into C57BL/6 mice and subsequently
analysed at days 4.5, 8 and 12 p.i. OTI T cells were isolated from the spleen and the lymph
nodes, CD44high OTI T cells were sorted by flow cytometry and their single-cell transcriptome
analysed (10 × Genomics) (Figure 3.13 A).
Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) (Stoeckius et
al. 2017), we performed immunophenotyping of these cells in combination with the transcriptome
analysis.
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Figure 3.13.: Single-cell transcriptomics analysis of OTI T cells after the infection with L.m.-
OVA. A Schematic overview of the experimental set-up for scRNA-seq. Naïve OTI T cells were
adoptively transferred into C57BL/6 mice one day prior to infection with 2×103 cfu L.m.-OVA.
At the days 4.5, 8 and 12 p.i., OTI T cells were re-isolated from the spleen and the lymph nodes,
purified by flow cyotmetry and scRNA-seq was performed using the 10x Chromium technology.
B UMAP representation of the data sets coloured by the time point p.i. and C Leiden clusters.D
Dot plot depicts the expression of memory and effector signature genes in each Leiden cluster.
Colour represents the mean expression and dot size the fraction of cells in each group. E-F Gene
expression profiles on UMAP depicting E the memory signature genes Sell, Tcf7, Il7r and Cd27,
as well as D the effector gene signatures Klrg1 and Cx3cr1. Own experiments, bioinformatical
data analysis was performed by Jonas Mir.
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Figure 3.14.: Gene expression in scRNA-seq data coincides with protein expression. A-B
UMAP representation of the OTI T cell transcriptome at day 12 p.i. with L.m.-OVA displaying
A the gene and B protein expression profiles for selected phenotypic markers. Own experiments,
bioinformatical data analysis was performed by Jonas Mir.

Transcriptional analysis was performed on the splenic and lymphatic OTI T cells from the three-
time points collectively (Figure 3.13 B). The cells from the different time-points aligned based
on the day they were retrieved from infection from left to right (Figure 3.13 B).

Unsupervised Leiden clustering (Traag et al. 2019) was applied and 8 clusters were found.
Exemplified by a few memory and effector signature genes, subsets expressing Sell, Tcf7, Il7r
or Cd27 were found in the bottom part of the UMAP2 axis, while cells expressing Klrg1 and
Cx3cr1 covered the upper part of the UMAP (Figure 3.13 C-F). From the comparison of the
gene expression levels with the protein expression for the markers CD62L, IL7R, CD27 and
CX3CR1 and it was observed that gene and protein expression coincided as representatively
shown for the OTI T cells from day 12 p.i. Taking into account the surface expression, the
cluster-defining gene expression and the proliferation status of a cell (data not shown), the cells
were annotated as cMP, cEMP, cEFF, ncM, ncEM or ncEFF and resting memory subsets.

Next, RNA velocity analyses were performed and very comparable results as in the analyses for
the P14 T cells after LCMV Armstrong infection were found. In the same way, as in the LCMV
Armstrong scRNA-seq dataset, RNA velocities of OTI T cells during infection with L.m.-OVA
originated from the cMP subset (Figure 3.15 A).

More extensive analysis with CytoTRACE identified the cMP subset as the most undifferentiated
state and corroborated the RNA velocity result (data not shown). These findings suggested that
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Figure 3.15.: Inference of a mathematical model topology to describe the OTI T cell response
after L.m.-OVA infection using RNA velocities and PAGA connectivity graphs. A Experiment as
in Figure 3.13. F. RNA velocities based on the UMAP representation with Leiden clustering and
own annotation. B PAGA connectivity graph based on Leiden clusters as in E. The thickness of
connectivities represents connection strength. Own experiments, bioinformatical data analysis
was performed by Jonas Mir.

independent of the pathogen-type that causes the acute infection, multipotent cMP CD8+ T
cells are found at the developmental root and give rise to any other subsets.

These findings were further validated by the investigation of the connectivities between the T
cell clusters with PAGA analysis. The PAGA connectivity graph linked the cMP compartment
with the cEMP and cEFF subsets (Figure 3.15 B). At the time cells transitioned from active
proliferation to cell cycle quiescence, the cell retained their phenotypic identity. Interestingly,
at day 12 p.i. with L.m.-OVA a progressive differentiation pattern for the non-dividing cells the
way it was detected in the RNA velocity analyses in LCMV Armstrong was not observed (Figure
3.12 B).

During the LCMV Armstrong infection, the progressive stream after division cessation stem
mainly from the day 21 p.i. dataset and might indicate that the transition between active cell
division and cell cycle quiescence masked the effects of differentiation accessible by the applied
methods.

In these transcriptomic analyses we identified the same T cell subsets for both, bacterial and
viral infections.

In both infection models, the differentiation origin pinpointed to the MP subset and followed
a strikingly similar pattern with a transition to terminally differentiated states through cell
cycle exit. PAGA analysis reflected some of these trajectories. However, the RNA velocity
directionalities were supported by experimental data. In the next section, we will construct a
mathematical model based on the structure suggested from the RNA velocity analyses and test
it on the LCMV Armstrong single-cell fate-mapping data.
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3.6. Mathematical modelling corroborates the MP to EFF subset
lineage relationship

In the previous section, we performed lineage tracing with the scRNA-seq data and found pos-
sible differentiation patterns. In line with published research using animal models of early acute
infection (Buchholz et al. 2013a; Kretschmer et al. 2020; Pace et al. 2018; Pais Ferreira et al.
2020), our analyses pinpointed the MP compartment as the origin of differentiation that fed the
other, EMP and EFF, subsets.
For model construction, we then translated the results from the lineage analyses of the scRNA-
seq data into a mathematical model, where the RNA-velocity analyses in the 2-D UMAP rep-
resentation formed the core structure (Figure 3.12).
The dynamics of differentiation were initiated starting from one single naïve CD8+ T cells. The
naïve T cell is recruited following the infection and reaches the MP compartment. Cells in the
MP compartment can either divide and self-renew, exit the cell cycle to become a cell of the
ncM type, or differentiate and end up in the EMP compartment.
A cell with an EMP subset identification can either proliferate, stop dividing and become a
ncEMP cell or differentiate into an cEFF T cell. cEFF T cells are terminally differentiated and
have the ability to increase their subset size by proliferation or accumulate in a non-dividing
state. Non-dividing T cells and exit their state and start to differentiate along the progressive
axis and advance from memory (M) T cells to EM T cells, and eventually become EFF T cells.
We call this model the full differentiation model (Figure 3.16 A). The preceding part on the
mathematical modelling was performed by my colleague Jonas Mir.
The full differentiation model comprises of 11 subsets and 14 parameters. In this mathematical
framework, differentiation, proliferation and cell cycle exit are stochastic processes that follow
an exponential waiting time. The waiting time for the recruitment was constructed to follow a
gamma-distribution
However, for the mathematical modelling the lowest layer, as indicated by the box (Figure 3.16,
A) was omitted, as it was only observed in the data after day 8 p.i. The data that is used for
the following mathematical description covers the time points from the expansion phase.
Therefore, the model structure as in Figure 3.16 A without the boxed layer was used. It contains
7 compartments and 9 parameters, whereby the proliferation rates of the EMPs and EFFs posed
a combined rate and the time at which cells stop proliferating was the 9th parameter. Based
on these 7 compartments and 9 parameters, equations to describe the time dependence of the
means, variances and covariances were derived. These equations were solved and their solution
used to fit the data and to find parameters that reflect the underlying measurements realistically.
For the mathematical modelling, the means, CVs and correlation coefficients from the single-cell
fate-mapping data from day 8 after LCMV Armstrong infection was used (summary of data in
Appendix I Table A.1).
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Figure 3.16.: A by cell cycle drop-out extended progressive model supports the fate decision of
P14 T cells during LCMV Armstrong infection. A The full model of progressive differentiation.
The boxed layer is only observed after the peak of the response during the contraction and
memory phase. B Mathematical model that best represents the data. C Fit to the mean value
of the MP, EMP and EFF progenies, also to the D coefficient of variation (CV) and to the
E three pair-wise Pearson correlation coefficients (ρ) and F the relative subset sizes. G Cell
cycle drop out dynamics over time predicted by the mathematical model and data, containing
the fraction of cycling cells, data as in Figure 3.10 D. H The proliferation rate ratio of the MP
versus the non-MP subset. I Ratio of each cycling subset with one another and s.e.m. Asterisks
(∗) indicate data points used in the model fitting routine, open circles (◦) represent predicted
data. Jonas Mir has developed the mathematical model and identified the best supporting model
for the data. Experimental data shown in C-E were generated by Lorenz Kretschmer and Dr.
med. Veit Buchholz. Data depicted in F-I stem from own experimental and bioinformatics
analysis.
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Figure 3.17.: Verification of cell cycle arrest progressive model using the Markov stochastic
simulation. Pair-wise correlation of the single-cell fate-mapping data at day 8 p.i. with LCMV
Armstrong as in Figure 3.6. Open circles (◦) represent the data, and grey triangles (4) the
model simulation. Jonas Mir generated the simulated data shown in this figure. Experimental
data stems from Lorenz Kretschmer and Dr. med. Veit Buchholz.

The model was further informed using the relative subset sizes from day 4.5, 6, 7 and 8 after
LCMV Armstrong infection. Furthermore, the cell cycle exit kinetics of the P14 T cell response
provided information on the non-dividing compartment, using the analyses from the scRNA-seq
data from day 3 to 8.
The cell cycle speed quantifications were used to constrain the proliferation rates of the model.
For this, the cell cycle durations were converted into division rates (using equation 6.3) and the
ratio of these rates between the MP and non-MP subset taken to fit the model. The parameter
were estimated by minimising the sum of squared residuals.
The best-describing model for the LCMV Armstrong P14 response up to day 8 is shown in
Figure 3.16 B. This model is, in essence, the progressive model as published in Buchholz et al.
2013a, which has been extended with a cell cycle exit process and we will call from here on as
extended progressive model of differentiation.
The resulting fit of this model is shown in Figure 3.16 C-I. This model can accurately describe
the mean values, variability and correlations, and the evolution of subset sizes over time, cell
cycle rates and division arrest.
In terms of AICc, the extended progressive model outperformed the full model of differentiation,
in which the processes in last layer were omitted (Figure 3.16 A, model structure without the
boxed layer). Therefore, the full model of differentiation was rejected given the provided data.
Compared to the full differentiation model, the best model was reduced in such a way, that it
used only 7 parameters to describe the data, demanding the same cell cycle drop out rate (td)
for the three subsets.
Six out of the seven parameters explained the transition processes between or within the com-
partments, such as the recruitment (r0), the differentiation (r1, the differentiation rate from
cMP to cEMP and r2, the differentiation rate from cEMP to cEFF), the cell division (λMP and
λnon-MP and the transition to the non-cycling subset (td).
The additional parameter τ represented the time at which cells can stop dividing. The pa-
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Table 3.1.: Best fit parameters to the by cell cycle drop out extended progressive model of
differentiation. Parameter estimation and identification of their 95 % interval confidence bounds
were done by Jonas Mir.

parameter value 95 % CI

naïve → cMP rate (r0) 1.1 d−1 (0.8, 2.5) d−1

cMP → cEMP rate (r1) 0.3 d−1 (0.2, 0.5) d−1

cEMP → cEFF rate (r1) 0.082 d−1 (0.045, 0.124) d−1

MP proliferation rate (λMP) 1.1 d−1 (0.9, 1.3) d−1

non-MP proliferation rate (λnon-MP) 1.8 d−1 (1.5, 2.0) d−1

drop out rate (td) 1.3 d−1 (1.0, 1.8) d−1

drop out time (τ) 5.2 d (4.7, 5.7) d

rameters from the best fit and the parameter uncertainties that were estimated by the profile
likelihood method are listed in Table 3.1.
In the extended progressive differentiation model the recruitment rate reflected a realistic value
and was found to lie in the range of published recruitment times (De Boer et al. 2001).
Using Markov’s stochastic simulation algorithm, the results from the mathematical modelling
were tested and corroborated (Figure 3.17). Also, the dispersion of the T cell response size was
correctly reflected when the single-cell responses were simulated based on the parameters from
the extended progressive model. This was further confirmed by the comparison of the evenness
index of the data (iGini,d = 0.914) to the modelled response (iGini,m = 0.876).
Furthermore, the simulations showed that the model described the dichotomy between a few
large clones (giants) and many small clones (dwarfs) adequately.
It was further tested whether the extended progressive model could recreate the OTI response
up to day 12 after L.m.-OVA infection. Using similar input data as when modelling the LCMV
Armstrong P14 T cell response (mean, CV, ρ, proliferation rate, cell cycle drop out kinetics),
this model also accurately reproduced the OTI T cell dynamics and when including the lower
layer (Figure 3.16 A, including the processes in the box) and applying it to data at later time
points, it described the CD8+ T cell responses during the contraction and memory phase as well
(unpublished observations by Jonas Mir, data not shown).
Finally, we have established a differentiation model that quantitatively describes the differenti-
ation dynamics of CD8+ T cells during the expansion phase of a bacterial and viral infection.
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4. Developmental plasticity and the
commitment to T cell exhaustion

Following the detailed investigation of the T cell dynamics during the acute infection with two
different pathogens, both viral and bacterial, in the last chapter, we investigate how exhausted
T cells develop in this chapter.
We use the animal model for LCMV, which, depending on the strain, leads to either an acute,
self-clearing LCMV infection (Armstrong) or a chronic one (clone 13 strain) with concomitant
T cell exhaustion.
In particular, we focus in this chapter on the early time points of the expansion phase and
investigate the antigen-specific T cell responses before the peak of the infections.
Our aim is to scrutinize the role of progenitor T cells in the development of T cell exhaustion.
Also, we want to understand which modulators lead to a divergence between functional and
exhausted T cell subsets at these early stages of the infection.
As in the previous chapter, we employ an interdisciplinary approach: First, we use single-cell
transcriptomics to investigate the heterogeneity of the T cell responses after the two infections.
Through scRNAseq analyses, we aim to understand the processes during differentiation that
differ between the acute and chronic infection and those that are shared between both.
Differential gene expression analyses, allowed us to find markers that identify the different sub-
populations of these T cells and we verified the expression of these markers by flow cytometric
analysis.
Furthermore, we test the extended progressive model on data from both LCMV Armstrong
and clone 13 infection using the same phenotypic marker combination. Thereby, we intend to
understand which parameters need to be different in the chronic infection setting compared to
the acute infection.
To understand the role of exhausted progenitor cells and their branching from canonical differ-
entiation trajectories we also mathematically examine the arrested model of T cell exhaustion.
Among other things, we also investigate the role of TOX, a hallmark of T cell exhaustion.
Therefore, we re-analyse a published scRNA-seq dataset obtained from wild-type and Tox -/-

T cells at day 7 of LCMV clone 13 infection with the aim to understand how its expression
hampers the differentiation into effector subsets in a persisting infection setting.
This chapter contains experimental data collected by Lorenz Kretschmer from Dr. med. Veit
Buchholz’s laboratory and data from experiments that were performed by myself. I performed
mathematical modelling and bioinformatics analyses. Jonas Mir quantified the duration of the
cell cycle length. Dr. med. Veit Buchholz, Lorenz Kretschmer and Jonas Mir are affiliated to
the Institute of Medical Microbiology, Immunology and Hygiene at the Technical University of
Munich in Munich, Germany.
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4.1. Early divergence of T cell transcriptomes following acute and
chronic infection

Integration of time series data to study acute and chronic infection

CD8+ T cell responses are highly diversified in the early phase of the infection and heterogeneous
in an acute and chronic infection setting. To investigate early differentiation dynamics during
both infections, we analysed the single-cell transcriptome of P14 T cells at day 4.5, 6 and 7 and
8 p.i. with LCMV Armstrong and clone 13 using previously published datasets and generating
own scRNA-seq data.
For both the published data and our own data sets, naïve P14 T cells were adaptively transferred

Figure 4.1.: Transcriptomic comparison of the P14 response during the acute phase of LCMV
Armstrong and LCMV clone 13 infection. A Schematic representation of the experimental set
up for scRNA-seq. Data stem from different sources (day 4.5 from Yao et al. 2019, day 6
own and day 8 Chen et al. 2019). For the generation of all data sets, naïve P14 T cells were
adoptively transferred into C57BL/6 mice, and their progenies from the spleens were re-covered
by flow cytometric sorting. Single-cell transcriptomes from purified P14 T cells from day 4.5,
6 or 8 after LCMV Armstrong or clone 13 infections were generated using the 10× Genomics
protocol. B UMAP representation of the day 4.5, 6 and 8 p.i. samples infected with either
LCMV Armstrong or clone 13 after applying the batch-balanced k nearest neighbour (bbknn)
batch correction method using the originating publication as batch key is shown. C UMAP
embedding was computed on both infections at the time points indicated in A. UMAP plots
show the P14 T cells from either LCMV Armstrong (left) or LCMV clone 13 infection (right)
coloured by the day p.i.
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into congenic recipients infected with LCMV Armstrong or clone 13 on the following day (Figure
B.1 A). At time points day 4.5, 6, 7 and 8 after infection, P14 T cells were isolated from the
spleen and enriched by flow cytometric sorting. Afterwards, scRNA-seq was performed using
the 10× Genomics method.
To perform a time-resolved analysis of the P14 T cell responses, we analysed the published and
our datasets together. Without batch correction, the different datasets were separated in the
UMAP embedding (Figure B.1 B), while both the data sets from the two infections, stemming
from our laboratory overlap.
An overlap of the cells from both infections in the data from Chen et al. 2019’s publication was
also observed. This was also the case for the data sets from Yao et al. 2019 at day 4.5 p.i. The
separation between the laboratories in which the data was created, suggested the presence of a
technical effect. However, the day 7 LCMV clone 13 infection sample was separated from the
other datasets generated by Yao and colleagues (Figure B.1 B). It remained unclear whether the
observed partitioning was due to technical or biological source.
We then attempted to merge the data sets and applied different batch corrections to account
for the technical differences.
After application of two batch corrections methods batch-balanced k nearest neighbour (bbknn)
correction (Polański et al. 2020) and Harmony (Korsunsky et al. 2019) batch correction methods,
integration of the day 7 clone 13 sample remained unsuccessful. While the other data were
arranged in their logical time series, the day 7 data set remained detached (Figure B.1 C).
To this end, we excluded the day 7 samples and only considered the day 4.5, 6 and 8 p.i. data
for all subsequent analyses (Figure 4.2 A).

Heterogeneous antiviral T cell responses after acute and chronic infections

We computed a joint UMAP of the remaining time points and observed a substantial overlap
between the infections at day 4.5 (Figure 4.1 B, C). From day 6 on, the cells from the two
infections began to diverge, and the separation between the P14 T cells from the Armstrong
and the clone 13 infection became even more significant at day 8 (Figure 4.1 B, C).
Next, we looked at various marker genes associated with either memory, effector and exhausted
T cells (Figure 4.2). A pronounced expression of T cell memory genes, such as Tcf7 (encoding
TCF1) (Jeannet et al. 2010; Zhao et al. 2010), Il7r (Kaech et al. 2003) and Sell (encoding
CD62L) (Buchholz et al. 2013a; Graef et al. 2014) were found in both infections in the lower
section of the UMAP2 axis with enhanced enrichment along UMAP1 (Figure 4.2 A-B).
We observed that over time fewer cells expressed the above mentioned memory genes, while a
slightly stronger expression was detected in the LCMV clone 13 sample.
Effector signatures, exemplified by the expression of Cx3cr1 (Böttcher et al. 2015), Klrg1 (Kaech
et al. 2003) and Gzma were mainly found in the P14 T cells from the LCMV Armstrong infection
and showed a stronger expression already from day 4.5 compared to the cells from the clone 13
infection (Figure 4.2 C-D). In the UMAP plot, the cells with an effector signature were located
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Figure 4.2.: Distinct T cell exhaustion signatures detectable early during LCMV clone 13
infection. A UMAP representation of the P14 T cell transcriptomes after LCMV Armstrong
or LCMV clone 13 infection (as in Figure 4.1) A and B showing the expression profiles of the
memory signature genes Tcf7, Il7r and Sell. B To the memory signature genes corresponding
violin plots per time point and infection are shown. C UMAP as in A showing the effector
signature genes Cx3cr1, Klrg1 and Gzma and D violin plots depicting the expression of the
effector signature genes from B for each infection per time-point. E UMAP showing selected
exhaustion signature genes Pdcd1, Tox and Entpd1 for LCMV Armstrong (top row) and LCMV
clone 13 (bottom row). F Violin plots displaying the expression of the exhausted genes as in E
for LCMV Armstrong (left) and LCMV clone 13 (right) per time point.

in the upper section of the UMAP2 axis.
In agreement with the literature, looking at single exhaustion-associated signature genes, we saw,
as expected, that the inhibitory receptor PD1 (Pdcd1 ) (Wherry et al. 2007) and the thymocyte
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Figure 4.3.: Subset identification based on the clustering by the Leiden algorithm identifies a
LCMV Armstrong unique EFF cluster. A UMAP representation showing the P14 T cell tran-
scriptomes after LCMV Armstrong or LCMV clone 13 infection coloured by Leiden clustering.
B Bar graph shows the percentage of cells in the Leiden cluster per time point. C Log ratio of
Leiden cluster distribution of P14 T cells from LCMV clone 13 versus Armstrong infection. D
Heat map showing 3 of the top 10 differentially expressed genes for each Leiden cluster when
each cluster was compared to the rest. E Volcano plots showing the differentially expressed
genes in cluster 3 and the remaining cells in the other clusters. (Green: Genes up-regulated
in cluster 3, grey: genes down-regulated in cluster 3) (left). F Volcano plots with differentially
expressed genes in cluster 6 and the cells outside cluster 6. (Dark grey: up-regulated in cluster
six, grey: down-regulated in cluster 6) (right). X-axis represents the Log2-fold change (Log2FC)
using a fold change of 1.1 as cut-off. Y-axis shows the −Log10(padj). G Dot plot showing the
mean expression of proliferation, memory, effector and exhaustion signature genes in the Leiden
clusters. Dot size represents the fraction of the cells in each cluster.

selection-associated high mobility group box protein (TOX, Tox) (Alfei et al. 2019; Khan et al.
2019; Yao et al. 2019) were more abundantly expressed in the clone 13 infection and that over
time, the expressions of these genes accumulated in all cells (Figure 4.2 C).
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In LCMV Armstrong, the expression of Pdcd1 and Tox was also observed at day 4.5 p.i., albeit
to a lower level (Figure 4.2 E-F).
However, in the acute infection Pdcd1 and Tox expression was down-regulated from day 4.5
onwards (Figure 4.2 C). Entpd1, a gene found in terminally exhausted T cells, encoding for the
CD39 protein (Chen et al. 2019) was lowly expressed during the early time points, with slightly
higher expression at day 8 in the clone 13 infection (Figure 4.2 E-F).
To assign the cells to specific clusters, we used the Leiden algorithm (Traag et al. 2019) and
found 8 different clusters (Figure 4.3 A). Among them were 5 clusters (clusters 0, 1, 2, 4 and 7)
from both samples of the day 4.5 time point.
On day 6, all clusters were represented, although cluster 0, 1 and 2 had shrunk in size and
contributed only minimally to the total cells present at day 6 p.i. Cluster 5 was strongly
represented on day 6. On day 8 after infection, clusters 0, 5 and 7 diminished in size and
contributed marginally to the total number of the day 8 samples.
Instead, a large proportion of the clusters 3, 4 and 6 formed the main cell types on day 8 after
infection (Figure 4.3 B). In comparison, we saw that in the LCMV clone 13 infection, clusters 3
and 4 were stronger represented, and in the Armstrong infection sample, consisted of clusters 5
and 6 instead (Figure 4.3 C).
To define the clusters, we performed differential gene expression analysis. We found that in the
clusters 0, 1, 2, 5 and 7, cell cycle genes were differentially expressed (Tuba1b, Birc5, Mcm5 and
Tubb5 ) (Figure 4.3 D, G). Leiden clusters 1, 2 and 5 additionally differentially expressed effector
molecules such as Gzmb and Gzma. In contrast to cluster 7 which, according to differential gene
expression analysis, was assigned to a proliferating memory T cell subset (Sell, Slamf6 and
Batf ) (Figure 4.3 D,G). Likewise, in cluster 4, differential gene expression analysis revealed that
memory T cell markers such as Sell were up-regulated.
Cluster 3, mainly composing the T cell responses from day 6, up-regulated in comparison to the
remaining clusters encoding for inhibitory receptor genes such as Lag3, Pdcd1 and also for Tox.
In addition, cluster 3 was defined by the increased expression of chemokines such as Ccl3, Ccl4,
Ccl5 (Figure 4.3 D). Genes down-regulated in cluster 3 are mainly cell cycle-associated (Mki67,
Top2a, Birc5 ) and effector-phenotype associated genes (Klrg1, Ehz2 ) (Figure 4.3 C, E and G).
In contrast, cluster 6 was defined by the up-regulation of effector signature genes and the down-
regulation of inhibitory receptors in comparison to the cells in the other clusters (Figure 4.3 C,
F-G).
The clone 13 infection samples completely lacked the cells in cluster 6, indicating that effector
cells were absent during persisting infection. This finding was shown in previous studies (Wherry
et al. 2003a, 2007) and, suggests that exhaustion develops early during infection and is further
propagated with time.
In the next sections we analyse how the responses to the two infections differ at the time points
before the peak.
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4.2. Cessation of cell division halfway before reaching peak response

So far, it has been described that MP cells (Buchholz et al. 2013a) and MEX cells (Alfei et al.
2019; Chen et al. 2019; Utzschneider et al. 2020) develop early during infection.

Therefore, we compared the transcriptomes before the responses in the acute infection setting
culminate.

The differentially expressed genes in the Armstrong versus clone 13 comparison at day 6 after
infection showed that distinctive phenotypes were present at this time point.

In the clone 13 infection, the cells showed an up-regulation of the inflammatory chemokines Ccl3
and Ccl4 (Figure 4.4 A). The expression of Ccl3 and Ccl4 was already reported in other studies
that investigated exhausted T cells (Wherry et al. 2007), but their role not followed up.

Similarly, in the cells from clone 13 infection, we found an up-regulation of Xcl1 (Figure 4.4
A). Xcl1 is expressed in activated T cells and leads to the recruitment of DCs, expressing the
associated receptor XCR1. During an established clone 13 infection, XCL1-producing T cells
were thought to be involved in keeping the virus under control (Argilaguet et al. 2019).

In addition, we also found an elevated expression of Cd200 in the cells from the clone 13 infection
(Figure 4.4 A, B). We examined the protein levels of CD200 seen at day 6 after LCMV Armstrong
and clone 13 infection and found that in the clone 13 infection more cells were positive for CD200
and that Tim3-negative T cells have a slightly higher CD200 MFI (Figure 4.4 C).

Studies using an Influenza infection model implicated that CD200 up-regulation is crucial to
prevent CD8+ T cell mediated immunopathology (Rygiel et al. 2009). However, the exact
function of CD200 in CD8+ T cells under persisting infection conditions remains unclear and
will not be further investigated in this thesis.

Tnfsrf4 (coding for OX40) was up-regulated in the T cells from clone 13 infection compared to
the acute infection with LCMV Armstrong (Figure 4.4 A, B). OX40 is a co-stimulatory protein
known for the maintenance and memory formation of anti-viral T cells, whose role is essential
for containing the virus during chronic LCMV infection (Boettler et al. 2012).

We used flow cytometry to monitor the surface expression of OX40 and observed similar levels
in both infections at day 4.5. On day 6, after the infection with LCMV clone 13, as already
indicated in the differential gene expression analysis, we observed higher OX40 levels in the P14
T cells from the persistent infection (Figure 4.4 A, B and D).

This is consistent with data from Boettler et al. 2012, where they showed that by the peak of
the acute immune response in LCMV Armstrong OX40 is completely down-regulated. However,
in clone 13 infection, OX40 remains expressed well beyond the peak of chronic infection. Tnfsrf4
is increasingly expressed in T cells from cluster 7, which contains T cells with a distinct memory
T cell signature (Figure 4.3 and Figure 4.4 B).
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Figure 4.4.: Changes in the proliferation activity among the most distinctive drivers between
LCMV Armstrong and clone 13 at day 6 p.i. A Matrix plot depicting the mean gene expression
at day 4.5, 6 and 8 p.i. of significantly up-regulated differentially expressed genes in P14 T cells
in LCMV Armstrong versus clone 13 at day 6. B UMAP visualisation as in Figure 4.2 showing
the expression of Cd200, Tnfsrf4 and Mki67. C-D After adoptive transfer of 5× 102 or 5× 103

naïve P14 T cells to C57BL/6 mice. Mice were infected with either 2× 105 LCMV Armstrong
or 2 × 106 LCMV clone 13 and analysed by flow cytometry. C Representative contour plot
displaying the expression of CD200 and Tim-3 and the quantification of the relative subset size
at day 6 p.i. n = 3, data from one experiment.
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This is indicative that OX40 is responsible for the maintenance of the T cell pool and thus has a
role in virus control. This is in line with the compromised secondary response that is exhibited
in OX40 deficiency (Hendriks et al. 2005). The more specific properties of OX40 in this context
will not be further investigated.
We also determined the differentially expressed genes in the T cells from the LCMV Armstrong
infection. In contrast to the T cells from clone 13 infection, in the Armstrong infection, calreti-
culin Calr7, a protein that binds free calcium ions, and the adhesion molecule Itgb7 were both
differentially expressed transcripts (Figure 4.4 A). In addition, cell cycle-related genes (Top2a,
Mki67, Mcm5 ) were differentially expressed (Figure 4.4 A, B), suggesting distinct division dy-
namics between the two infections.

The role of the cell cycle during the development of exhaustion

To this end, we tested whether the T cells from the two infections exhibit different proliferation
activities. To investigate this, we infected wild-type C57BL/6 mice that received P14 T cells by
adoptive transfer the day before infection with LCMV Armstrong or clone 13. We analysed the
splenic P14 T cell response at the time points 4.5, 6, 7 and 8 days after infection. Exactly 3 h
before the time of analysis, the mice were administered a dose of BrdU i.p. and the incorporation
of BrdU was measured by flow cytometry.
While on day 4.5 after infection, the P14 T cells from both infections took up the same amount
of BrdU within 3 h, on day 6 after infection with LCMV clone 13 a 1.5 times smaller fraction
of P14 T cells incorporated BrdU than the P14 T cells from the LCMV Armstrong infection
(Figure 4.3 E). While a smaller percentage of T cells became BrdU+ towards the peak of the
acute response, more T cells from the clone 13 infection remained in division and incorporated
BrdU (Figure 4.3 E).
We also inferred the cell cycle activity in the transcriptome data. For this, we have used the
cell cycle gene list of Tirosh et al. 2016, which contains genes, whose expression enables us to
distinguish proliferating and non-proliferating cells.
We applied the Vision method, a tool that allows to display gene signature to describe variation
between cells. In other words, a list of signature gene is provided and the tool box computes
a score, determining a positive or negative correlation to that signature. Here we applied the
Vision method (DeTomaso et al. 2019) on the cell cycle gene list, a score is calculated for each cell.

Figure 4.4 : D Representative contour plots depicting the OX40 (Tnfsrf4 gene) and PD1
expression at 4.5 or 6 p.i. Mean and std, n = 3, data from one experiment. E Experimental set
up similar as in C-D, with analysis at days 4.5, 6, 7 and 8 p.i. 3 h after i.p. BrdU administration,
the incorporation of BrdU was analysed by flow cytometry. Representative histograms with
BrdU profiles and the quantification for each time point. Mean and std, n = 3 − 4, data from
one experiment. Mann-Whitney U test, ns= not significant, *p < 0.05
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The higher the value of the score, the more pronounced is the proliferation signature in the cells
in this case (Figure 4.5 A). As already described with by BrdU measurements at this time point
after infection (Figure 4.4 E), we observed that in both infections at day 4.5 p.i. the majority
of the cells showed a pronounced proliferation signature (Figure 4.5 A). For both infections, the
proliferation signature weakened from day 6 onwards. While in the LCMV Armstrong infection
day 6 sample a large fraction of cells showed a distinct proliferation signature, the signature was
lost on day 8 (Figure 4.5 A).
The cells from the clone 13 infection displayed a weaker pronounced proliferation signature on
day 6 (Figure 4.5 A), while the signature remained at similar levels between day 6 and day 8.
In comparison to the infection with LCMV Armstrong, the LCMV clone 13 derived P14 T cells
exhibited a much weaker proliferation signature.
Based on our own method to infer division drop out from scRNA-seq data (the method is in
detail described in section 3.4.), we derived the percentage of actively proliferating T cells for
all time points (Figure 4.5 B).
While at day 4.5 p.i., approximately 90 % of P14 T cells actively divided, over time, the fraction
of T cells exiting the cell cycle increased. On day 6 after infection with LCMV clone 13, slightly
more cells stopped dividing (Figure 4.5 B), resulting that at mid peak 50 % of the virus-specific
T cells terminated their proliferation. It is of common understanding that during persisting
infection the loss of proliferative activity is observed among the activated T cells.

Quantification of cell division duration

As next, we quantified the duration of the cell cylce length. Therefore, we measured BrdU
incorporation and total DNA content with 7AAD at different time points between day 4.5 and
the peak of chronic infection at day 12. Based on the gating strategy, that was described in detail
under section 3.1, we inferred the division speed of the cells to be analysed by simultaneously
measuring BrdU and total DNA content.
In the comparison of the ratios of the divided P14 T cells at day 4.5, 6, 7, 8 and 12 after infection,
the P14 T cells from the LCMV Armstrong infection proliferated faster at day 6 than the T
cells from the clone 13 infection (Figure 4.5 C). Towards the peak of the acute phase, the cell
division times equalised, whereas towards the peak of the chronic infection on day 12, the P14 T
cells from the LCMV Armstrong infection divided very slowly relative to the cells isolated from
the infection with LCMV clone 13 (Figure 4.5 C).
A discrimination between considerable deceleration and cell cycle exit, or a combination of both
could only be inferred through the assessment of the cell cycle status for each cell (Figure 4.5
C). Therefore, we first investigated the division cessation by flow cytometric measurement of the
p-Rb protein. Upon exit from the cell cycle and thus entry into the G0-phase, the Rb protein
is de-phosphorylated. Thus, it provides good a evidence of whether a cell performs active cell
division or has stopped dividing.
For this, we transferred P14 T cells into wild-type mice and infected the recipients the next day
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with either LCMV Armstrong or clone13. On day 6 after infection, we detected the proportion
of P14 T cells that were p-Rb positive.
When we examined the overall P14 response to p-Rb expression, in the clone 13 infection at
day 6 p.i., approximately half of the P14 T cells had already stopped actively dividing, while
in LCMV Armstrong, approximately 70 % of the P14 T cells were still actively proliferating
(data not shown). Further differentiation between the phenotypes using the markers TCF1 and
CX3CR1 revealed that in both infections, the TCF1+CX3CR1− subset had the lowest p-Rb
levels and stopped proliferating to a significantly greater extent compared to the other two
subsets (Figure 4.5 D).
The P14 T cells of the TCF1−CX3CR1− and TCF1−CX3CR1+ subsets each had similar p-Rb+

proportions within the same infection, although, for all subsets, the P14 T cells stemming from
the infection with LCMV clone 13 exhibited a lower fraction of p-Rb+ P14 T cells (Figure 4.5
D). As indicated in the transcriptomic data, we observed an increased division drop out on day 6
in the P14 T cells following LCMV clone 13 infection than in the T cell responses after infection
with LCMV Armstrong. The observed division drop out was subset specific.
To find out whether the P14 T cells from the clone 13 infection divide at different rates compared
to the cells from the LCMV Armstrong infection, we quantified the cell cycle duration using our
mathematical formalism (see under section 3.1, Kretschmer et al. 2020). The cell cycle length
quantification, was done by my colleague Jonas Mir, and the fraction of cells in the divided-gate
at the respective time points after infection and the percentages of the T cell fractions in the
G1- and G2M-phases were used.
As described in subsection 3.1, the different cell cycle stages were extracted by simultaneous
measurements of BrdU and total DNA content. The fraction of cells in the G1- and G2/M-
phases were obtained through a measurement using a short BrdU labelling time of 0.5 h (Figure
3.4 A, left).
Since the BrdU-negative gate with diploid DNA content contained T cells from both G0- and
G1-phase, the fraction of G0-phase cells was subtracted from the G0/G1-gate and only the cells
in the G1-phase were considered for the cell cycle speed quantification. The proportion of G0-
phase cells was obtained by inferring the quiescent cells from the scRNAseq data or by the p-Rb
measurement using flow cytometry.
On day 4.5, after infection with LCMV Armstrong or clone 13, the P14 T cells divided at a
speed of 5.8 h and 6.0 h, respectively, and thus at the same rate (Figure 4.5 E). While on day
6, the P14 T cells from the LCMV Armstrong infection divided at similar speed as on day 4.5
p.i. (5.1 h on day 6 to 5.8 h on day 4.5), the P14 T cells from the clone 13 infection decelerated
and divided 1.3 times slower than on day 4.5 p.i. (Figure 4.5 E).
Consequently, on day 6 after the infection with LCMV clone 13, the virus-specific T cells exited
the cell cycle at a higher proportion and displayed a prolonged average division speed.
From day 7 after both infections, the P14 T cells slowed down to 13.3 h per division following
LCMV Armstrong infection and to 11.7 h for P14 T cells from LCMV clone 13 infection. Thus,
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Figure 4.5.: A greater extent of cell cycle arrest is observed in clone 13-derived P14 T cells.
A UMAP representation is visualised for each time point individually for LCMV Armstrong
(upper row) and LCMV clone 13 (lower row) showing the proliferation score computed with
Vision based on the gene list from Tirosh et al. 2016 B Estimate of the fraction of cycling cells
from the scRNA-seq analysis as in Figure 3.10. Mean and pooled variance, n = 1−2. C Similar
experimental set up as in Figure 4.4 E. In addition to BrdU, we also measured the total DNA
content with 7AAD. Based on the gating strategy as in Figure 3.4, the fraction of P14 T cells
in the divided gate was quantified. Dot plot depicts the log ratio of the in 3 h-divided P14 T
cells in c13 versus Armstrong at the days 4.5, 6, 7, 8 and 12 p.i. D Bar graph depicted the
fraction of p-Rb on the Y807/811 residues at day 6 p.i. with LCMV Armstrong or clone 13.
n = 6− 7, data from two independent experiments. One-way ANOVA, ****p < 0.0001. E Bar
plots depict the quantified mean inter-division times of cycling P14 T cells at the days 4.5, 6
and 7 after infection with LCMV Armstrong or clone 13. F Bar plots display the quantified
mean inter-division time of cycling MP (TCF1+) and non-MP (TCF1−) P14 T cells at the day
4.5 p.i. Data is own, Jonas Mir quantified the cell cycle speed.

the duration of cell division aligned between the infections towards the peak (Figure 4.5 E).

For day 4.5 after the infection with Armstrong and clone 13, we also quantified the mean division
times for the MP (TCF1+) and non-MP (TCF1−) subsets. Consistent with the data from other
bacterial and viral infection models (see Section 3.1), the cell cycle duration for the MP subset
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was longer than for the non-MP subset, for P14 T cells from both viral infections. The ratios
between the mean division time of the MP to non-MP subsets were slightly different in the
respective infections. In LCMV clone 13, the ratio of division between the MP subset to the
non-MP subset was 1.4, and in the Armstrong infection, the MP divided 1.6 times slower than
the non-MP T cells (Figure 4.5 F).
The sightly, but not significantly different relative sizes for the TCF1+ and TCF1− subsets at
day 4.5 (Figure 4.10 C) might have compensated for the distinct infection-specific speeds of the
subsets, resulting in the similar cell cycle durations for the total P14 T cell response (Figure 4.5
E, F).
It seemed that already at day 6 following the persisting infection, the CD8 + T cells committed
towards an exhausted phenotype. After the LCMV clone 13 infection, the T cells already differ
strongly from the P14 T cells from the LCMV Armstrong infection regarding their cell cycle
activity and gene expression. Using mathematical modelling we want to further elucidate how
the trajectories of P14 T cells differ between both these infections.

4.3. The extended progressive model of differentiation describes the
mechanisms of CD8+ T cells during the onset of the chronic
infection

As we have described in the previous chapter, the extended progressive differentiation model
that includes cell cycle arrest described the data from two different types of acute infections,
including the P14 T cell response following infection with LCMV Armstrong until day 8.
Therefore, our data implies that for acute systemic infections differentiation follows a conserved
patterns that is independent of the infectious pathogen.
To determine the differences and similarities between the acute and chronic infection by mathe-
matical modelling, the Buchholz laboratory followed single P14 T cells during LCMV Armstrong
and clone 13 infection with readout at day 8 p.i. Therefore, the naïve P14 T cell-matrix was
adoptively transferred into recipient mice that were infected with LCMV Armstrong or clone
13 the next day. On day 8 p.i., the single-cell progenies in the spleen were analysed for their
expression of TCF1, Tim3 and CX3CR1 by flow cytometry.
While we discussed in detail the responses to the LCMV Armstrong infection in the previous
chapter, we will focus on the differences between LCMV Armstrong and clone 13 in this section.
The mean P14 T cell response at day 8 p.i. with LCMV clone 13 was smaller than the response
after the LCMV Armstrong infection (Figure B.2 B). An expected finding, regarding that at
day 8 the peak response in the Armstrong infection is reached while, the response to the clone
13 infection culminates around day 12 (single-cell fate-mapping data at day 12 not shown).
On day 8 p.i., the single-cell progenies from the LCMV clone 13 infection showed less variation
in the total population size than the P14 T cell responses after the LCMV Armstrong infection
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(CVArm = 3.58, CVc13 = 1.78) (Figure B.2 B). Notably, the three giant clones that accounted
for 94 % of the variability in the response toward LCMV Armstrong were missing entirely in
the clone 13 infection (Figure B.2 B). In consistence with experiments after population transfer,
the progeny of individual P14 T cells do not propagate a CX3CR1high subset after the LCMV
clone 13 infection (Figure B.2 A, C).
Several mechanisms could play in concert to limit the formation of a CX3CR1high compartment
in the clone 13 infection. On the one hand, the T cells might be forced out of the cell cycle
before they reach and effector differentiation state. Alternatively, the differentiation process from
an EMP (TCF1-CX3CR1-) cell into a terminal EFF (TCF1-CX3CR1high) cell is prolonged, and
exhaustion mechanisms as suggested by the elevated expression of TOX and hence its regulation
of the exhausted epigenetics landscape (Alfei et al. 2019; Khan et al. 2019) intervene before the
T cell terminally differentiates.
Due to the lack of available experimental data to identify cells that have stopped dividing and
also have committed towards an exhausted phenotype, we will focus solely on the role of division
drop out during the expansion phase of the infection with LCMV clone 13 in this section.

Quantitative comparison of the LCMV Armstrong versus clone 13 mediated CD8+

T cell immunity

Application of the extended model of progressive differentiation, we aimed to disentangle the
differentiation pathways and discover which mechanistic differences are required to describe the
course of a chronic infection.
For the mathematical modelling, we used the mean values and the CVs of the subsets and also
the pairwise Pearson correlation coefficients between the subsets within an infection. For both
infections, we also used the ratio between the cell cycle duration of the TCF1+- and TCF1−-
subsets to inform the mathematical model.
Furthermore, the cell cycle drop out kinetics for both infections, which were inferred from the
transcriptome data were used. For the clone 13 infection, we also used the fraction of dividing
cells from the p-Rb flow cytometric measurement at day 6. Furthermore, the model was also
informed by the relative subset sizes for both infections at the time points, day 4.5, 6, 7 and 8
after infection.
We performed simultaneous fitting and chose the same parameters for both infections (Figure
4.6 A). However, having the same parameter set for both infections did not reflect the data
(data not shown). We then performed a forward selection to identify which infection-specific
parameter sets were required.
We started the model selection from a model in which all rates were the same for both infections
(model as in Figure 4.6 A). In the first round of the forward selection, all parameters were fixed
except for one that was allowed to be infection-specific (6 fixed parameters, 1 infection-specific,
total 8 parameters). We then performed non-linear least-squares fitting and calculated the χ2

for each model. This process was repeated until we iterated through all the parameters. We

72



A

B

CλMP λ λnon-MP non-MP
r0

t d

r1Naïve
t d t d

cTCF1+ cDN

ncTCF1+ ncDN

r 2
cCX3CR1+

ncCX3CR1+

λMP λ λnon-MP non-MP
r0

t d

r1Naïve
t d t d

cTCF1+ cDN

ncTCF1+ ncDN

r 2

ncCX3CR1+

cCX3CR1+

λMP λ λ
r1Naïve

non-MP non-MP
r0

t d t d t d
cTCF1+ cDN

ncTCF1+ ncDN

r 2

ncCX3CR1+

cCX3CR1+

λMP λ λnon-MP non-MP
r0

t d t d t d
cTCF1+ cDN

ncTCF1+ ncDN

r 2

ncCX3CR1+

cCX3CR1+

λMP λ λ
r1Naïve

non-MP non-MP
r0

t d t d t d
cTCF1+ cDN

ncTCF1+ ncDN

r 2

ncCX3CR1+

τ

τ τ

τ

r1Naïve

Figure 4.6.: Mathematical models tested by forward selection to explain the fate-decision of
P14 T cells during LCMV Armstrong and clone 13 infection. A Topology of the cell cycle arrest
progressive model of differentiation. For both infections the data was fitted simultaneously and
all parameters were forced to be equal. B Best-fitting model found by forward selection after
simultaneous fitting was performed. The following processes differed between infections: the
proliferation rates for the MP and the non-MP (λMP and λnon-MP), the differentiation rate from
the cycling DN to cycling CX3CR1+ subset and, the time-point from which cell cycle drop out is
initiated (τ). C The two other models, performing better than the model shown in (A) with an
∆AICc ≤ 10 than the model depicted in (B). In black transitions where the same parameter was
used for both infections are indicated, the red colour marks the processes where the parameters
differ between the two infections.

found that the model with pathogen-distinct r2 rate to exhibit the lowest χ2-value.
Starting from the latter model, we proceeded with the second step of model selection. This time
five parameters were fixed. Again, one parameter was allowed to be different for the infection (5
fixed parameters, 2 that could be infection-unique, total 9 parameters). It was iterated through
all parameters until the model with the lowest χ2-value was found.
We continued performing the forward selection until the introduction of additional pathogen-
dependent rates led to an increase in the χ2-value. At that point, we stopped the forward
selection.
Based on the χ2 values and the number of parameters, the AICc was calculated for each model.
The AICc-differences (∆AICc) between the individual models were determined, and the models
with a ∆AICc greater than 10 were rejected.
The best-performing model compared to the simple model with 7 equal rates is shown in Figure
4.6 B. It contains 11 parameters, 3 of which are shared between the two infections, and 4 are
infection-specific rates. The models shown in Figure 4.6 C were more favourable than the simple
model in Figure 4.6 A, but could not be ruled out given the data (a ∆AICc smaller than 10
compared to the best model was determined).
For the following analyses we focused on the model in Figure 4.6 B. In the best-performing
model (Figure 4.6 B), the following parameters must be different so that the data from both
infections was adequately described.
On the one hand, different proliferation rates were required for the MP and non-MP subsets
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Figure 4.7.: Results after simultaneous fitting to the P14 T cell responses after the infection
with LCMV Armstrong and clone 13. Best-fit results of the extended progressive model of dif-
ferentiation to the means, the coefficient of variation and the three pairwise Pearson correlation
coefficients for A LCMV Armstrong and B LCMV clone 13. Data from Lorenz Kretschmer and
Dr. med. Veit Buchholz, mathematical modelling was performed by myself.

depending on the infection. Since the ratio of the proliferation rates entered into the modelling,
and we have previously demonstrated, that the MP T cells divided slower in the LCMV Arm-
strong infection than in the one with the clone 13 variant (Figure 4.5 F), it was evident that
the model demanded different division rates. In addition, the rate of differentiation from the
DN-subset into the CX3CR1high subset must be different in both infections. Consistent with the
experimental data, the time point at which drop out of the cell cycle was observed, was different
in the LCMV Armstrong and the clone 13 infection.

Using this mathematical model we were able to explain the response until day 8 p.i. for the P14
T cell response after LCMV Armstrong and clone 13 infection. Although, the models in Figure
4.6 C generated comparable fits (data not shown).

The best fit to the means, the CV and pairwise correlation coefficients is shown in Figure
4.7. The fit to the cell cycle drop out kinetics also described that the TCF1+ subset stopped
proliferating first, followed by the other two subsets (Figure 4.8 B and E), for both infections.
Furthermore, the rates at which the cells exited the cell cycle were found to be the same for the
T cell responses of both infections. Finally, Figure 4.8 C and F show the best fit result for the
ratio of the proliferation rates.
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Figure 4.8.: A uniform model correctly depicts the population dynamics for the P14 T cell
subsets and their proliferation and cell cycle exit kinetics. Best-fit results to the relative subset
sizes, the cell cycle drop out kinetics from the ratio of the proliferation rates of the MP and
non-MP subset following infection with LCMV Armstrong or LCMV clone 13.

Validation of the mathematical model using stochastic simulations

Next, we corroborated the best-fitting model by performing simulations. We generated in sil-
ico P14 responses using the Gillespie simulation algorithm (Gillespie 1976). With the given
parameter set from the best fitting model (Figure 4.6 B), our simulations reproduced the data
accurately (Figure 4.9). Even fine subtleties, such as large clones with missing TCF1 expression,
were reproduced with this model (Figure 4.9 A, middle column). In addition, the variability of
the absolute P14 response was also correctly modelled (Figure 4.9 B and D). Of note, the upper
model from Figure 4.6 C failed to reproduce the distribution between the subsets, while the
lower model was unable to reproduce fine differences in the marker expression (data not shown).
We computed 95 % confidence bounds parameter estimates using the profile likelihood method
(Venzon et al. 1988). All parameters are listed in Table 4.1. The recruitment rate from naïve
T cells to TCF1+ T cells was found to take on average 1.2 d−1, a value similar to findings by
De Boer et al. 2001 where they mathematically modelled virus-specific CD8+ T cell responses
during LCMV Armstrong infection.
Interestingly, the differentiation rate between the DN-subset and the CX3CR1high compartment
was forty times smaller during the response to LCMV clone 13 than to LCMV Armstrong. The
small value of the DN → CX3CR1+-transition rate indicated that during the LCMV clone 13
infection, the formation of CX3CR1+ T cells was prevented.
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Figure 4.9.: Verification of the mathematical model by simulating the single CD8 + T cell
responses after LCMV Armstrong and clone 13 infection. A Pair-wise correlations of the three
subsets showing the data and the model simulations performed with the Gillespie stochastic
simulation algorithm at day 8 after LCMV Armstrong infection. B Pie chart depicting the
distribution of the population size each clone has contributed to at day 8 p.i. with LCMV
Armstrong for the data (top) and the model simulations (bottom). C As in (A), but for P14 T
cells after LCMV clone 13 infection. D As is (B), but shows the distribution of the total P14 T
cell response at day 8 following LCMV clone 13 infection. Data stems from Lorenz Kretschmer
and Dr. med. Veit Buchholz, mathematical modelling was performed by myself.

Furthermore, the cells from the two infections also stopped proliferating at different time-points.
While the majority of the P14 T cells from the clone 13 infection stopped dividing at an earlier
time. On average P14 T cells from clone 13 infection ceased to proliferate around day 4.3 p.i.,
whereas P14 T cells from Armstrong infection kept dividing until day 4.9 p.i. However, as
indicated by the increased division speed measured in the clone 13-derived P14 T cells (Figure
4.5 C), the fraction of these cells that remained actively cycling after day 8 infection divided
faster until the peak of the infection with clone 13 was reached.
Thus, several mechanisms are acting on T cell development in chronic infection. Different
proliferation activity and reduced differentiation into the effector compartment were two of the
processes that we could identify with the help of this mathematical model.
However, what role inhibitory receptor expression and exhaustion-driving transcription factors
play at the onset of the chronic response remains elusive and requires further investigation.
Therefore, we test as next, how similar the response between the infection with LCMV Arm-
strong and clone 13 is at an earlier time point.
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Table 4.1.: Best fit parameters to the by cell cycle drop out extended progressive model of
differentiation where the model was fitted to the data for LCMV Armstrong and clone 13
simultaneously. Identification of the 95 % interval confidence bounds of the parameters was
performed using the profile likelihood method.

parameter value 95 % CI
shared parameters

naïve → TCF1+ rate (r0) 1.2 d−1 (1.1, 1.5) d−1

TCF1+ → DN rate (r1) 0.25 d−1 (0.21, 0.31) d−1

drop out rate (td) 1.1 d−1 (1.0, 1.2) d−1

parameters specific for LCMV Armstrong

TCF1+ proliferation rate (λTCF1+) 0.95 d−1 (0.99, 1.04) d−1

TCF1− proliferation rate (λTCF1-) 1.6 d−1 (1.5, 1.7) d−1

DN → CX3CR1+ rate (r1) 0.08 d−1 (0.05, 0.12) d−1

drop out time (τ) 4.9 d (4.8, 5.3) d

parameters specific for LCMV clone 13

TCF1+ proliferation rate (λTCF1+) 1.18 d−1 (1.12, 1.24) d−1

TCF1− proliferation rate (λTCF1-) 1.4 d−1 (1.3, 1.5) d−1

DN → CX3CR1+ rate (r1) 0.002 d−1 (0.0008, 0.0045) d−1

drop out time (τ) 4.3 d (4.2, 4.5) d

4.4. Early fate plasticity at the onset of a persisting infection

Early divergence of T cell fates

In the previous section we identified distinct division drop out kinetics as differential mechanism
in the best fitting model during T cell diversification after LCMV Armstrong and clone 13
infection.
The time point of division cessation was different in either infection and clone 13-derived T cells
arrested from proliferation half a day earlier than the Armstrong-derived counterparts. P14 T
cells after the LCMV Armstrong infection stopped proliferating around 4.9 days p.i., while P14
T cells following a clone 13 infection exited from cell cycle around 4.3 day p.i.
Furthermore, we showed that the recruitment rate and the differentiation rate between MP to
the non-MP (DN + CX3CR1+) subset could be explained using the same parameter for both
infections. As the MP subset has formed early during the infection, and at day 4.5 p.i. all subsets
of interest (MP, non-MP) were readily present, we will focus our analyses in this section to the
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single-cell transcriptomic data from day 4.5 p.i.

At day 4.5 p.i. the majority of cells were actively dividing at similar speed, even though in
the clone 13 infection the division drop out of the P14 T cells was initiated. This time point
was of particular interest, as the overlap of the P14 T cells on day 4.5 following infection with
LCMV Armstrong or clone 13 that was observed in the UMAP plot and indicated some degree
of similarity in expression of gene transcripts.

Indeed, the overlap of the day 4.5 samples in the UMAP embedding could therefore also be
attributed to a high expression of proliferation signatures. Nevertheless, we investigated if
diverging events were taking place and, therefore, analysed the differentially expressed genes in
LCMV Armstrong versus clone 13.

In the LCMV Armstrong infection, effector genes were already differentially up-regulated at
day 4.5. Among the differentially expressed genes were the transcription factor Id2, and genes
related to cytotoxic effector function (Klrg1, Gzmb and Gzma) (Figure 4.10 A, B).

Furthermore, compared to the day 4.5 P14 T cells from the infection with LCMV clone 13, Satb1
was up-regulated in LCMV Armstrong-derived cells. Satb1 is thought to play a role in regulating
PD1 during T cell activation (Stephen et al. 2017). It is also down-regulated in exhausted T
cells compared to naïve CD8+ T cells (Wherry et al. 2007) (Figure 4.10 A). These five genes
exhibited a stronger expression in the P14 T cells from the LCMV Armstrong infection at all
time points. Although, the expression levels of Gzmb and Gzma decreased towards the peak of
acute infection, starting to diminish from a time point where the virus reduced viral titers are
abserved (Moskophidis et al. 1995; Wherry et al. 2003a).

In the P14 T cells from the clone 13 infection, the inhibitory receptors Pdcd1 and Lag3 were
differentially up-regulated compared to the P14 T cells from the infection with LCMV Arm-
strong.

Similarly, Tox, which has been identified as a key driver of T cell exhaustion (Alfei et al. 2019;
Khan et al. 2019; Yao et al. 2019), was already up-regulated at day 4.5 after chronic infection
(Figure 4.10 A, B). We also found that Slamf6 (encoding Ly108), a progenitor-associated gene,
was up-regulated compared to the LCMV Armstrong infection (Figure 4.10 A, B).

Also Batf, a TCR-regulated transcription factor, has been shown to promote the transcription
of inhibitory PD1 (Kallies et al. 2020; Quigley et al. 2010). Furthermore, high expression of
Batf coincided with impaired T cell function (Kallies et al. 2020; Kurachi et al. 2014; Man
et al. 2017; Quigley et al. 2010). BATF was differentially up-regulated on day 4.5 following
the LCMV clone 13 infection (Figure 4.10 A). Furthermore, it has been shown that BATF
counteracts the formation of exhausted memory-like precursor cells by repressing TCF1 (Man
et al. 2017; Utzschneider et al. 2020).

The surface expression of some of these marker genes was analysed by the Buchholz laboratory.
They performed a flow cytometry staining for day 4.5 and day 8 after infection.

78



Figure 4.10.: Differential gene expression analysis suggests that the fate of P14 T cells during
clone 13 LCMV infection is decided as early as day 4.5. A Matrix plot depicting the mean gene
expression at day 4.5, 6 and 8 p.i. of significantly up-regulated differentially expressed genes in
P14 T cells in LCMV Armstrong vs. clone 13 at day 4.5. B UMAP visualisation as in Figure
4.2 depicting only the cells from day 4.5 p.i. and their expression of Slamf6, Tcf7 and Tox. C-D
5× 102 or 5× 104 naïve P14 T cells were adoptively transferred into C57BL/6 mice. The mice
were infected with either 2×105 LCMV Armstrong or 2×106 LCMV clone 13. C Representative
contour plot showing the expression of TCF1 and KLRG1 at day 6 p.i. and D representative
contour plot depicting the PD1 and TOX expression at 4.5 or 8 p.i. by flow cytometry. Mean
and std, n = 5 − 6, data from two independent experiments. One-way ANOVA with multiple-
comparison testing, ns= not significant, **p < 0.05, ****p < 0.0001. Experiments for the data
shown in C-D were performed by Lorenz Kretschmer and Dr. med. Veit Buchholz.
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First, by staining for KLRG1 and TCF1 (as surrogate for the surface protein Ly108), the pre-
cursors and effector subtypes were examined (Figure 4.10 C). Already at day 4.5 after infection,
differences in expression between these two markers were observed. This was further manifested
at this early stage of the chronic LCMV infection, 5 times less KLRG1+TCF1− P 14 T cells
were formed compared to the infection with LCMV Armstrong (Figure 4.10 D). In return, there
were 2 times more KLRG1−TCF1− P 14 T cells in the clone 13 infection, and slightly but not
significantly more KLRG1−TCF1+ P 14 T cells (Figure 4.10 C).
Between day 4.5 and day 8, these differences in the subset distributions mentioned above in-
tensified (Figure 4.10 D). Second, the expression of TOX and PD1 was measured. As early as
day 4.5 p.i., the P14 T cells from clone 13 infection had a higher PD1 and TOX MFI (data not
shown) and, percentage-wise, more cells were positive for the expression of both markers (Figure
4.10 D) than during infection with LCMV Armstrong.
While in the P14 T cells from LCMV Armstrong infection, the expression of PD1 and TOX
was transient and both markers were down-regulated until the peak response at day 8, the P14
T cells in the clone 13 infection maintained their high expression for PD1 and TOX (Figure
4.10 D). The TOX expression was highest in the TCF1+-subset in both infections, with the
percentage of TOX-expressing cells decreasing with progressing effector phenotype (Figure B.4
B). The enriched expression of TOX in TCF1+ T cells fits the current opinion that TOX is
responsible for maintaining the exhausted T cell pool during chronic infection (Alfei et al. 2019;
Khan et al. 2019; Yao et al. 2019).

Developmental flexibility of P14 T cells early during the LCMV clone 13 infection

It has been previously described that TCF1+ T cells and, therefore, also MEX precursor T cells,
possess self-renewing properties (Chen et al. 2019; Im et al. 2016; Utzschneider et al. 2013).
Furthermore, it was shown that even after antigen removal, the exhausted imprint is retained,
and only exhausted progeny can be formed when MEX subset cells were adoptively transferred
(Im et al. 2016; Utzschneider et al. 2013). Therefore, we wondered whether during early time
points, e.g. at day 4.5 after infection, the exhausted fate remained plastic and the TCF1+ P14
T cells still retained the ability to generate functional effector progeny.
Even though several differences were observed on the transcriptional level on day 4.5, co-
localisation in the UMAP embedding and comparable proliferative speeds suggested a certain
degree of similarity. The Buchholz laboratory performed the following experiments to test our
hypothesis.
Therefore, naïve Tcf7 -GFP P14 T cells were transferred into wild-type C57BL/6 mice. The
mouse recipients were subsequently infected with LCMV clone 13. At day 4.5 p.i., the P14 T cells
from the spleen were isolated, and enriched based on their Tcf7 expression by flow cytometric
sorting (Figure 4.11 A, B). Tcf7 -GFP+ and Tcf7 -GFP− P14 T cells were then transferred into
mice infected with LCMV Armstrong or LCMV clone 13 4.5 days ago.
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Figure 4.11.: P14 T cells from day 4.5 LCMV clone 13 p.i. retain the potential to become
functional effector cells. A Scheme of experimental setup. C57BL/6 mice received naïve Tcf7 -
GFP reporter P14 T cells i.p. and were infected with LCMV clone 13 the next day. On day 4.5
p.i. MP (TCF7+) and non-MP (TCF7−) subsets were re-isolated by flow cytometric sorting and
re-transferred into infection matched or time point matched LCMV Armstrong infected hosts.
On day 8 p.i., the P14 T cells from the spleens were analysed. B Contour colour plot depicting
the gating strategy for FACS-purification of MP and non-MP subsets based on the expression
of Tcf7 -GFP (top) and representative histograms of the Tcf7 -GFP profiles of the purity control
(bottom). C Representative contour colour plots of the Tcf7 -GFP and KLRG1 expression at
day 8 p.i. with LCMV Armstrong (top row, left) or LCMV clone 13 (bottom row, left) and the
quantification of the subset sizes (right).
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At day 8 p.i., or 3.5 days post re-transfer, the progeny of Tcf7 -GFP+ and Tcf7 -GFP− P14 T
cell subsets were examined for their expression of Tcf7 and KLRG1 (Figure 4.11 A-C). MP cells,
when re-transferred into infection-matched recipients, could self-renew or down-regulate TCF1
and generated TCF1−KLRG1− progeny (Figure 4.11 C). Non-MP subsets, after re-transfer into
clone 13, retained their phenotype and produced only few KLRG1+ progeny (< 5 %) (Figure
4.11 C). After re-transfer into time point-matched but LCMV Armstrong-infected recipients,
the TCF1+ subset retained the ability of self-renewal, but at the same time differentiated into
TCF1−KLRG1− and TCF1−KLRG1+ terminal EFF progeny (Figure 4.11 C).
Nevertheless, after re-transfer into clone 13, non-MP subsets retained their phenotype and pro-
duced only few KLRG1+ progeny (Figure 4.11 C). Whereas, non-MP precursors failed up-
regulate TCF1 expression and were, therefore, unable to form TCF1+KLRG1− MP T cells
(Figure 4.11 C).
These results were in agreement with data from Utzschneider et al. 2020. Utzschneider and
colleagues investigated the role of ID3+ P14 T cells during the development of T cell exhaustion.
ID3+ P14 T cells essentially map to the TCF1+ T subset, and accordingly also express other
memory precursor cell markers such as Ly108, and CXCR5 (Kallies et al. 2020; Utzschneider
et al. 2020). In their study, Utzschneider and colleagues used an Id3 -GFP reporter system
and isolated ID3+ P14 T cells at day 5 after persistent LCMV infection. After re-transfer of
ID3+ P14 T cells into time-matched and LCMV Armstrong infected recipients with subsequent
analysis at day 7 post-infection (day 2.5 after re-transfer), they showed that ID3+ P14 T cells
were able to generate effector T cells, albeit to a lesser extent.
Furthermore, it was further investigated whether the P14 T cells retained their PD1 and TOX
imprint after transfer from clone 13 infection into LCMV Armstrong. On day 4.5, after infection
with LCMV Armstrong and clone 13, all progenies were PD1 and TOX double-positive (Figure
4.10 D). After the isolation from clone 13-infected donors and subsequent re-transfer into recip-
ients with ongoing LCMV Armstrong infection, both MP and non-MP subset T cells lost their
expression for the two markers PD1 and TOX (Figure 4.11 D). However, when the P14 T cells
remained in an ongoing chronic infection (Figure 4.10 D, bottom row) or were transferred to
infection-matched recipients, the high expression of PD1 and TOX lasted (Figure 4.11 D).
The findings imply that at the early stages of infection with LCMV clone 13, the fate of a CD8+

T cell has not yet been entirely decided, and the remaining fate-flexibility can be used to rescue
the exhaustion phenotype when removing the antigen.
As next, we aim to reconstruct the differentiation trajectories in the scRNA-seq data to identify

Figure 4.11 : D Representative pseudocolour plots showing the expression of PD1 and TOX
at day 8 p.i. with LCMV Armstrong (top row, left) or LCMV clone 13 (bottom row, left) and
the quantification of the subset sizes (right). n = 6, data from two independent experiments.
One-way ANOVA, ns= not significant, **p < 0.05, ***p < 0.005, ****p < 0.0001. Lorenz
Kretschmer and Dr. med. Veit Buchholz generated experimental data.
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additional mechanisms preventing the formation of EFF T cells in the infection with LCMV
clone 13.

4.5. An early differentiation program drives the acquisition of an
exhausted phenotype

Deflection of memory-like progenitor cells during the course of differentiation

It is assumed that during a persisting infection, inhibitory receptors influence the transcription
of effector genes. Thus, the formation of functional effector T cells is prevented and thereby
also the consequences of an immune pathology during persistent infection. However, it is still
unclear how the differentiation pathways between the CD8+ T cell subsets are related during
the acute or chronic LCMV infection.
Therefore, we performed trajectory analyses of time-resolved splenic transcriptomes from day
4.5 to 8 to unravel the differentiation relationships between functional or exhausted precursors
to more terminal differentiated subsets.
First, we computed the RNA velocities based on the relative abundance between spliced and
unspliced mRNA to predict the future status of a cell (La Manno et al. 2018). We calculated the
RNA velocities for the infections separately and visualised them in the jointly determined UMAP
embedding (Figure 4.12 A). We have analysed the RNA velocities during LCMV Armstrong
infection in more detail in section 3.4. Considering only the early time points up to the peak of
the immune response the directionalities in the LCMV Armstrong data set were equivalent to
the analysis, including the time point from the contraction phase.

Figure 4.12.: According to RNA velocity analysis EFF subset cells are not formed during the
infection with LCMV clone 13.
A UMAP representation with Leiden clustering is showing the RNA velocities for the P14 T cells
after LCMV Armstrong (left) or LCMV clone 13 infection (right). RNA velocities were computed
individually per infection and projected into the same UMAP embedding. B UMAP is showing
the CytoTRACE score for LCMV Armstrong and clone 13. The CytoTRACE score displays the
degree of differentiation, where a score of one represents cells in the most undifferentiated state
and a score of zero represents cells with terminal differentiation.
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The cells were flowing from the proliferating state to the non-proliferating state, keeping their
phenotypic identity (Figure 4.5, Figure 4.12 A, left). Meaning, that the differentiation started
from the P14 T cells with a proliferating memory T cell phenotype, following the arrows follow
from the cells in cluster 7 (MP) into the cells in cluster 4 (non-proliferating MP cells). We also
observed that from the junction area between clusters 0 (proliferating EMP) and 7 (cycling MP),
there is a bifurcation from which cells either migrate through cluster 7 into cluster 4 (cMP →
ncMP), or via cluster 0, through cluster 1 (cMP→ cEMP) into the highly proliferative effector-
like cluster 5 into cluster 6 (cEMP→ cEFF→ ncEFF) (Figure 4.12 A). Cluster 6 contained the
cells with a characteristic terminal effector signature (Figure 4.3 F). These findings are in line
with published observations (Pritykin et al. 2021).
In the clone 13 infection, the arrow directions in the UMAP embedding for the common clusters
were very similar. Here too, clusters 0 and 7 were the first clusters from which the arrows emerged
(Figure 4.12 A, left). By calculating the CytoTRACE score (Gulati et al. 2019) we identified
which cells were most advanced in their differentiation path and which ones still retained stem
cell-like properties. The cells that were embedded between clusters 0 and 7 received the highest
CytoTRACE score and represented the least differentiated cells in both infections (Figure 4.12
B).
Starting from cluster 7, cells with a memory-like signature ended up in cluster 4 (cTCF1+ →
ncTCF1+). And as from cluster 0 (pendant to cEMPs), the cells in clone 13 also passed over
cluster 1 (transitioning cEMPs to ncEMPs) and were then directly diverted into cluster 3, the
cluster with a pronounced exhaustion signature (Figure 4.3 E, Figure 4.12 A).
Based on the increased cell cycle exit at day 6 after clone 13 infection (Figure 4.5) and the
associated absence of the highly proliferative cluster 5, the P14 T cells from clone 13 failed to
reach the terminal EFF compartment. It has been described that the formation of functional
MP and EFF subsets is possible during acute infection in absence of TOX (Alfei et al. 2019;
Khan et al. 2019). That the EFF population is not generated during the infection with LCMV
clone 13 is possibly due to the lack of TCF1 and TOX expression (Angelosanto et al. 2012; Khan
et al. 2019).

4.6. TOX limits differentiation into the terminal effector subtype

Supporting previous findings

The expression of TOX inhibits the manifestation of the effector phenotype (Alfei et al. 2019;
Khan et al. 2019; Yao et al. 2019). Therefore, we wanted to investigate whether the deletion
of TOX altered the differentiation streams during clone 13 infection and therefore, re-analysed
the scRNA-seq data set from Yao et al. 2019. Yao et al. 2019 generated scRNA-seq data from
H-2Db:gp33 tetramer+ wild-type and Tox -/- CD8+ T cells.
For this, the authors infected wild-type and Tox -/- reconstituted bone marrow chimeras with
LCMV clone 13 following analysis on day 7 p.i. Splenic wild-type and Tox -/- CD8+ T cells
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were isolated, purified and enriched by flow cytometric sorting and scRNA-seq using the 10×
Genomics technology was performed.
As in the original publication, we pooled the wild-type with the Tox -/- sample for the bioinfor-
matics analysis.
In the UMAP embedding little overlap between the wild-type and Tox -/- T cells was observed.
The segregated localisation indicated that the cells from either condition were at different stages
of differentiation (Figure 4.13 A).
After clustering with the Leiden algorithm (Traag et al. 2019), we obtained 7 different clusters
(Figure 4.13 B). Cluster 5 was not represented in the Tox -/- T cells, and cluster 3 to a lesser
extent. In the original analysis of the publication by Yao et al. 2019 it was shown that Tox -/-

cells generated less TCF1+ (Figure 4.13 C, E and F). The reduced representation of the TCF1+

subset was also in line with findings from Alfei et al. 2019.
Moreover, we found that cluster 0 was five times larger in the Tox -/- CD8+ T cells. In this cluster,
terminal effector-signature genes were expressed and the cluster comprised Klrg1 -positive cells
with cytolytic properties (Figure 4.13 C, E and F). Comparing the differentially expressed genes
between wild-type and Tox -/- T cells in cluster 0, we observed that in the wild-type T cells,
exhaustion-associated genes such as Tox and Pdcd1 were up-regulated, while the genes that
were up-regulated in the Tox -/- T cells resembled effector-associated signatures (Gzma, Ccl5,
Klrg1 ) (Figure 4.13 D-F).
The expression of the cytotoxic effector signature in Tox -/- cells was probably associated with
the enhanced immunopathology observed by Alfei et al. 2019. However, how much alike to
effector T cells formed during acute infection the Tox -/- cells are, remains unclear.

TOX expression and proliferation

In our comparison between Armstrong and clone 13, we observed that the fraction of dividing
cells was different. In clone 13, the cells were forced out of active cell division at mid-peak, while
a small fraction kept on proliferating. During acute infection with LCMV Armstrong cell cycle
arrest was observed closer to the peak time. Most likely this was due to the viral clearance and
accompanied by the on-set of cell death of the highly proliferative effector compartment with
the starting contraction phase. Therefore, we wondered whether the proliferative activity in the
Tox -/- CD8+ T cells was different from wild-type CD8+ T cells.
We calculated a signature score based on the cell cycle gene list of Tirosh et al. 2016 and thus
identified the proliferating cells. A low proliferation score marks cells that are in the G0-phase
of the cell cycle.
Approximately 40 % of the Tox -/- cells on day 7 after infection were still actively proliferating,
a proportion that is very similar to the fraction of dividing T cells from Armstrong infection
(Figure 4.13 G-H, Figure 3.10 D-E). In contrast, a more significant proportion of cell proliferated
in the presence of TOX (Figure 4.13 G-H).

85



Figure 4.13.: Tox -/- P14 T cells during LCMV clone 13 infection develop into terminal effector
subsets. A Mixed bone marrow chimeras that received wild-type and Tox -/- cells were infected
with LCMV clone 13. H-2Db:gp33 tetramer+ wild-type and Tox -/- CD8+ T cells from mixed
bone marrow chimeras on day 7 p.i. were isolated form the spleen and analysed by scRNA-seq.
UMAP with wild-type and Tox -/- CD8+ T cells. B UMAP representation as in (A) showing
Leiden clustering. C Bar graph depicts the fraction of cells in each Leiden cluster for wild-type or
Tox -/- transcriptional data. D Volcano plot showing the differentially expressed genes in cluster
0 for wild-type and Tox -/-. Selected genes with a fold change > 1.1 and padj < 0.05 are shown
(blue: up-regulated in wild-type, orange: up-regulated in Tox -/-). E UMAP representation
using the same embedding showing the expression of Tcf7, Pdcd1, Klrg1 and Gzma in wild-type
or Tox -/- responses. F Violin plots display the expression of Tcf7, Pdcd1, Klrg1 and Gzma for
wild-type and Tox -/- CD8+ T cells. G UMAP depicting the proliferation score. The signature
scoring was computed in Vision using the cell cycle gene list from Tirosh et al. 2016. H Bar
graph shows the fraction of cycling cells inferred from the scRNA-seq data. Data from Yao et al.
2019 with own analysis.

How TOX deficiency alters differentiation

One study suggested that the effector function of T cells was not affected by TOX. They proposed
that TOX rather acted by regulating inhibitory receptor expression in exhausted T cells (Scott
et al. 2019). We, therefore, wondered whether the differentiation dynamics in Tox -/- T cells more
closely resembled that of CD8+ T cells during acute LCMV infection, in contrast to classical
exhaustion differentiation.
We performed RNA velocity analyses on the Tox -/- and wild-type data (Figure 4.14). Indeed, the
arrow directionalities in wild-type CD8+ T cells pointed from the proliferating TCF1+ cluster
(Cluster 5) to the non-proliferating TCF1+ cluster 3.
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Figure 4.14.: Deflection in the progressive direction of differentiation during a clone 13 infection
prevents the formation of effector cells. RNA velocity analysis of wild-type (left) or Tox -/- (right)
CD8+ T cells on day 7 p.i. LCMV clone 13. RNA velocities were computed separately and
projected into the same UMAP embedding. Data from Yao et al. 2019 with own analysis.

Thus, we observed such a differentiation pattern in all the RNA velocities that were analysed in
this thesis (Figure 4.14 left). The differentiation along the proliferation axis (horizontal arrows
in the upper part of the UMAP image), starting from the TCF1-positive cluster and moving
over to the TCF1-negative cluster 5 (Figure 4.14 left). Furthermore, the differentiation was
deflected to the right side of the UMAP, allowing the cells to rarely reach the areas where Klrg1
and Gzma were expressed.
In the Tox -/- T cells, this deflection was abrogated, and the cells gained access to the KLRG1-
positive EFF subset of cluster 0 (Figure 4.14, right).
Thus, expression of TOX prevented the formation of a large EFF subset pool.
In the following section, we aim to discern the differentiation relationships during chronic LCMV
infection and determine the branch points from canonical diversification paths leading to T cell
exhaustion. We, therefore, perform mathematical modelling based on a differentiation frame-
work described in the literature as the arrested model of T cell exhaustion.

4.7. MP and non-MP subsets exhaust independently

The arrested model of T cell exhaustion states that at some point during the differentiation
process, the T cells deviate from their default differentiation path, arrest, and become ultimately
exhausted (Henning et al. 2018). Since the pool of exhausted T cells is very diverse, it is assumed
in this model that different subtypes emerge depending on the differentiation stage at which the
cells leave their standard path and start the exhaustion program. That is, MP T cells give rise
to MEX T cells, and EFF T cells give rise to TEX cells. Experimental evidence exists that the
formation of a terminal exhausted T cell pool is driven solely by the exhaustion of the MP subset
to MEX T cells (Alfei et al. 2019; Angelosanto et al. 2012; Pritykin et al. 2021; Utzschneider
et al. 2020) and that the exhaustion imprint is passed on to the progeny. The MEX subset
has similar characteristics as the MP subset. MEX T cells are identifiable by the expression of
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Figure 4.15.: Exhaustion driven only by the MP and non-MP subset explains the single cell
transfer responses to LCMV clone 13. A Mathematical model topology. B Best fit to the mean,
C the CV andD the correlation coefficient of the single CD8+ T cell responses at day 8 following
the infection with LCMV clone 13. As well as the best fit of the model shown in A E to the
relative cell number in each subset, F the fraction of PD1+TOX+ MEX, EEX or TEX subset
and G to the relative proliferation rate. Data used for the modelling and shown in B-D and F
stem from Dr. med. Veit Buchholz and Lorenz Kretschmer. Data shown in E and G stem from
own experiments. Mathematical modelling was performed by myself.

memory markers such as TCF1, CXCR5 and CD62L and exhibit similar stem-like properties
(Alfei et al. 2019; Im et al. 2016; Utzschneider et al. 2016a, 2020). The T cells from the MEX
subset, however, also express high levels of several inhibitory receptors (PD1, Lag3) and are
positive for TOX, a transcription factor that plays a key role in the regulation and promotion
of T cell exhaustion (Alfei et al. 2019; Khan et al. 2019; Yao et al. 2019).

Modelling T cell exhaustion using the arrested differentiation model

Using mathematical modelling, we investigated which functional subsets can exhaust. We build
a topology based on the blueprint of the arrested T cell exhaustion model.
Angelosanto et al. 2012 showed that KLRG1high T cells cannot exhaust after isolation during
the peak response in LCMV Armstrong and upon re-transfer into clone 13 infected recipient
mice. Therefore, the mathematical model was simplified in such a way, that the transition
between KLRG1high EFF T cells and TEX T cells was prevented. This was achieved by setting
the transition rate form the EFF to the TEX subset to zero. Furthermore, as in the arrested
exhaustion model (Henning et al. 2018) the ability to proliferate decreases with the accumulation
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of exhaustion traits. Therefore, we further simplified the mathematical model by assuming that
TEX T cells were unable to proliferate (Figure 4.15 A). Thus, the first model we tested followed a
scheme where naïve T cells linearly differentiated from MP to early effector (EE) T cells to EEF
T cells. In this process, the functional (f) subsets were allowed to deviate from their canonical
pathway starting at a particular time point after infection and to differentiate at the rate rf→ex

to feed the exhausted (ex) subsets. The time point at which the branching into the exhausted
compartment started was estimated by the mathematical model (Figure 4.15 A).
We informed the mathematical modelling, using the single-cell fate-mapping data, that was also
used in the preceding chapters. The Buchholz laboratory conducted experiments in which mice
received individual congenic P14 T cells by adoptive transfer. These mice were then infected
with LCMV clone 13. On day 8 after LCMV clone 13 infection, the P14 T cells were isolated from
the spleens and analysed based on the expression of TCF1, Tim3 and CX3CR1. Because T cells
with an exhausted phenotype emerge early (Philip et al. 2017; Schietinger et al. 2016), using
the aforementioned marker combination, we were unable distinguish which cell was already
exhausted and which not. Unfortunately, further single-cell fate-mapping data, providing a
segregation between functional and exhausted subsets was unavailable to date.
We have worked around this problem by assuming the following: We observed that on day 8
p.i. KLRG1 and CX3CR1 were co-expressed (data not shown), and therefore, assumed that the
fraction of KLRG-positive subset was similar to the CX3CR1-positive one. This way we could
use the data from Figure B.3 A-B to identify the exhausted subsets based on the expression
of PD1+TOX+ on day 8 p.i. with LCMV clone 13. We are aware, that this posed a drastic
simplification because exhausted T cells are difficult to be identified by solely two markers.
Ideally, for each subset (functional and exhausted) the expression of distinct inhibitory receptors
and the information about cytotoxic properties would have been used. However, even when such
data had existed, the characterisation by multiple markers would reveal many heterogeneous
subsets that hitherto would complicate the mathematical model.
Furthermore, the proliferation measurements as well comprised of a mixture of functional and
exhausted cells. Due to lack of data to distinguish the speed between the both, we weighted
the proliferation rates according to the functional and exhausted subset sizes. This poses of a
heuristic assumptions that requires experimental validation.
For the mathematical modelling, we used least-squares fitting and determined the best fit based
on χ2-minimisation. The best fit to the means, CVs and correlation coefficients between MP +
MEX and EE + EEX subsets is shown (Figure 4.15 B-D). Similarly, the best fit to the relative
subset sizes at time points 4.5, 6, 7 and 8, to the day 8 PD1+TOX+ percentages and to the
ratios of proliferation rates between TCF1+ and TCF1− is shown (Figure 4.15 F-G). The model
where the MP and the TCF1−CX3CR1low non-MP (here denoted as EE) subset can exhaust
individually described the data well.
We also tested the model that has been described in the literature, i.e. allowing only the MP
subset to arrest (Utzschneider et al. 2020). This way, we aimed at investigating whether the
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MP subset acted as the sole source for the formation of the exhausted pool and was sufficient
to explain the single-cell fate-mapping data. Thus, we set the rate rf→ex between the EE and
the EEX subset to zero (Figure B.4 A).
We re-run the model fitting and saw that a model that allowed the transition into the exhausted
compartments only via the MP subset was also able to describe the data equally well. The best
fit for the MP-driven exhaustion model only is shown in Figure B.4 B-F. To discriminate which
of the two models performs best, we conducted model selection by comparing the AICc values
between the two models. By determining the difference in the AIC score, we found that the
difference between the two models is 4.11 (∆AIC = 4.11). While the MP and EE independent
exhaustion model was favoured over the MP-driven exhaustion model.
We are aware that the classification of the exhausted subsets by the expression of PD1 and TOX
solely is ambiguous. With regard that both TOX and PD1 are expressed, albeit transiently, in
acute infection (Figure 4.10 D) (Alfei et al. 2019). Also, on day 8 after the infection with LCMV
Armstrong, on average, about 50 % of the MP subset and approximately 10 % of the EE subset
remained positive in their expression for PD1 and TOX (Figure B.3 C). Solely the EFF cells
completely down-regulated TOX and PD1 until day 8 (Figure B.3 C).
Hence, assignment of the exhausted subsets based on these two markers provided a rough es-
timate and an approximation of how many cells were exhausted. The sizes of the MEX, EEX
and TEX subsets were probably overestimated using the classification based on TOX and PD1.
Furthermore, the estimation of the cell cycle rate relied on a heuristic assumption. Whether
this represented a valid hypothesis has yet to be tested.
Given this set of data both models were unidentifiable and the CI bounds for several parameters
could not be determined. Therefore, the parameters values are not listed.
Even though the mathematical modelling was drastically simplified due to limited available
experimental data resulting in non-identifiable parameter confidence regions, we wanted to ex-
perimentally test whether a discrimination between the two exhaustion models could be made.
Therefore, the Buchholz laboratory performed experiments where the MP, EE and EFF subsets
after canonical differentiation during acute infection were isolated and re-transferred into hosts,
previously infected with LCMV clone 13.

MP and EE subset cells fuel the exhausted T cell pool

To this end, naïve Tcf7 -GFP P14 T cells were transferred into wild-type C57BL/6 mice. On
day 8, after infection with LCMV Armstrong, the P14 T cells were isolated from the spleen and
enriched according to their expression for KLRG1 and Tcf7 by flow cytometric sorting (Figure
4.16 A, B).
KLRG1+Tcf7− EFF, KLRG1−Tcf7− EE T cells and KLRG1−Tcf7+ MP T cells were adaptively
re-transferred into ongoing LCMV Armstrong or clone 13 infection at day 4.5 adaptively re-
transferred, 3.5 day after the re-transfer respectively on day 8 of the infection the P14 T cells
from the spleen were analysed (Figure 4.16 A, B).
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Figure 4.16.: EFF T cells do not exhaust upon re-transfer into chronic LCMV infection. A
Experimental set-up for re-transfer of functional subsets. Naïve TCF7 -GFP were adoptively
transferred into wild-type C57BL/6 mice and infected with LCMV Armstrong. On day 8 p.i.
the subsets were sorted based on their expression of KLRG1 and TCF7 -GFP. Subsets were re-
transferred into LCMV Armstrong- or LCMV clone 13-infected mice and were analysed at day
8 p.i. (3.5 days after re-transfer).B Representative contour plot shows the gating strategy for
the KLRG1 and TCF7 -GFP expression and the post-sorting control. C On day 8 p.i. LCMV
Armstrong (upper row) and LCMV clone 13 (bottom row) the three subsets were analysed on
their expression of KLRG1 and TCF7 -GFP and F TOX and PD1. D Quantification of C F
and D. n = 7− 10, mean, data from two independent experiment. ns, not significant. *p < 0.5,
***p < 0.001, ****p < 0.0001 One-way ANOVA. Data stems from Lorenz Kretschmer and Dr.
med. Veit Buchholz.

91



After re-transfer into the acute LCMV infection, we observed that MP T cells formed all subsets,
whereas EE T cells only regenerated themselves and produced EFF progeny (Figure 4.16 C, D,
top row). EFF cells maintained their T cell pool and retained their KLRG1-positive phenotype
(Figure 4.16 C, D).
After the re-transfer into an ongoing clone 13 infection, the MP T cells gave rise to the EE subset.
Furthermore, the MP subset also differentiated to EFF T cells, even though this differentiation
path was limited and only a few KLRG1-positive cells developed (Figure 4.16 C, bottom row,
D).
EE T cells proliferated and differentiated into EFF T cells. Upon re-transfer of EFF T cells into
clone 13 infection, the EFF T cells retained their original phenotype, similar to re-transfer into
an acute infection (Figure 4.16 C, bottom row, D).
As expected, all subtypes did not express TOX or PD1 after re-transfer from LCMV Armstrong
into infection with LCMV Armstrong (Figure 4.16 E, top row, F). However, interestingly, TOX
and PD1 were expressed after re-transfer into LCMV clone 13 from MP and EE subsets (Figure
4.16 E, bottom row, F). These results suggest that not only the MP subset was the driving
component of T cell exhaustion, but that the EE subset can exhausted independently of the
MP subset and thus, generated exhausted progeny. These findings validate the model prediction
(Figure 4.15 A).
Furthermore, we found that EFF T cells no longer up-regulated TOX and PD1 after re-transfer
into a clone 13 infection, indicating that their terminal effector state prevented them from
acquiring an exhausted phenotype (Figure 4.16 E, bottom row, F). Moreover, the adoptive
transfer of functional EFF T cells caused more severe immunopathology in the lungs of clone
13 infected mice than the other two subsets, in which the exhaustion phenotype still could be
imposed (data not shown).
Epigenetic factors such as open loci that allow rewiring could potentially play a role in the
flexibility of phenotypic emergence. However, further work is needed to understand the role of
TOX during CD8+ T cell differentiation in the suppression of effector phenotypes during the
expansion phase of infection.
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5. Discussion

In this thesis, we investigated the developmental relationship between functional CD8+ T cell
subsets emerging during self-limiting infections and exhausted T cell subsets that develop during
chronic diseases. Using a unique approach that combined experimental methods, bioinformatical
analyses and mathematical modelling, we dissected the mechanisms that lead to these hetero-
geneous populations during the expansion phase of acute and chronic infections.

5.1. Subset-dependent cell cycle speed is conserved between
different infections

The peak of the immune response is dominated by the EFF subset, while the MP subset com-
prises of a minor population (Buchholz et al. 2013b; Gerlach et al. 2013; Kretschmer et al. 2020).
Thus, the number of divisions an activated CD8+ T cell undergoes strongly correlates with its
expansion size and phenotype, both of which are dependent of the division speed.
The progressive model of differentiation predicted that the differential progeny size measured
at the peak is due to the subset-specific proliferation (Buchholz et al. 2013b). In this thesis we
tested and validated the model prediction, using a recently published mathematical framework
(Kretschmer et al. 2020).

Cell cycle speed CD8+ T cell in different infection systems

We have recently developed a computational method to quantify the duration of the cell cycle
(Kretschmer et al. 2020). The quantification relies on the in vivo measurements of the fraction
of cells that divide within a certain time window.
In contrast to dye-dilution methods or the FUCCI-reporter system, our approach is able to
extract the actual mean division speed. Division dye-dilutions such as CFSE or CellTrace
Violet (Marchingo et al. 2014; Yoon et al. 2010) can only detect up to 9 divisions, and reflect the
number of undergone proliferations at the generation level over multiple days without accessible
information on the division speed. Or, the FUCCI-reporter (Kinjyo et al. 2015) reliably informs
about the cell cycle stage of the dividing CD8+ T cells, however the speed at which cells progress
through these stages cannot be determined.
Our method is based on the simultaneous assessment of DNA and BrdU incorporation at an ex-
plicitly specified time frame. The time window between DNA analysis and BrdU administration
is chosen as such, that within all BrdU+ cells recently divided cells are segregated from those in
the S-phase cell. The distinction between the two populations of BrdU+ cells is made through
their DNA content.
In line with the progressive differentiation model (Buchholz et al. 2013b), experimental mea-
surements of the fraction of cells that divided within a certain time window showed that MP T
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cells cycle at a slower speed than cells from the non-MP subset.
Interestingly, we noticed comparable inter-division times in all the infection models analysed.
While at the day 4.5 p.i. time point the MP subset was consistently slower proliferating with
an average speed of approximately 7.5-9 hours, the cells of the non-MP subset divided every
5.5-6 h. Thus, the MP subset divides on average 1.5 time slower than the non-MP subset. The
ratio between the subset-specific division speeds is maintained during the expansion and early
contraction phase (data not shown). Extrapolating from the day 4.5 inter-division times, the
non-MP subset undergoes one more division per day, and consequently becomes more numerous
than the MP subset at the peak.
In the comparison of the infection with LCMV Armstrong with the one of the clone 13, we found
that the division speed of the overall cycling CD8+ T cell population from the clone 13 infection
decelerated around day 6 and continued to proliferate at a slower pace until day 12 p.i. It is
noteworthy to mention here that we did not investigate time points beyond day 12. Therefore,
it is likely that after this particular time point, a small fraction of cells continues proliferating.
The reduction in the division speed at day 6 p.i. might be explained through the phenotype-
specific attributes of the subsets. I.e. during the LCMV clone 13 infection, the fast-proliferating
EFF subset is not formed. Thus, the lack of this fast-cycling population would on average
decrease the overall speed of division.
In contrast, the P14 T cells from infection with LCMV Armstrong cycle very rapidly until time
points before the peak. Around the peak, they significantly reduce their division rate.
The initiating contraction phase, accompanied by shifts in the cytokine environment and the
increase of pro-apoptotic signals could affect the division speed and promote cell cycle exit
(Heinzel et al. 2017; Pucci et al. 2003; Schluns et al. 2003). However, it requires further research
to discern the molecular drivers of division time elongations during an infection setting.

5.2. A uniform model describes CD8+ T cell responses

With the emergence of single-cell omics technologies and the development of computational
methods to infer lineage dynamics from such data, considerable progress has been made in the
understanding of the mechanisms regulating the commitment to effector and memory lineages
(Johnnidis et al. 2021; Kurd et al. 2020; Pace et al. 2018). The use of scRNAseq has drastically
improved our knowledge on how exhaustion fits into the developmental program of T cell differ-
entiation (Cerletti et al. 2020; Chen et al. 2019; Hudson et al. 2019; Yao et al. 2019) and how key
modulators tailor the response to contain a persisting infection (Yao et al. 2021, 2019). Also,
the tracking of individual cells in vivo has shown that the eliciting responses within the same
host are remarkably heterogeneous, and the underlying stochastic pattern was observed for T
cell responses against a variety of pathogens (Buchholz et al. 2013b; Cho et al. 2017; Gerlach
et al. 2013; Grassmann et al. 2020; Kretschmer et al. 2020). The application of mathematical
modelling on such data have discerned the developmental order of T cell responses (Buchholz
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et al. 2013b; Cho et al. 2017; Kretschmer et al. 2020). Therefore, we use these highly informative
single-cell responses to build a powerful investigative framework for determining the differentia-
tion relationships between different cell populations when combined with mathematical models.

Inferring differentiation dynamics from single cells

We have studied the single-cell transcriptomes following two acute infections, a viral and bac-
terial one. Therefore, we have analysed tightly paced time points during the expansion phase
of these two infections. Although the CD8 + T cell responses that were elicited from these two
infections were separately investigated, the same subpopulations were found in both infection
settings.
Furthermore, we performed dimensional reduction methods that relied on features related to the
cell cycle and were thereby able to distinguish cycling (c) from non-cycling (nc) cells. This way,
the proliferative status of a cell could be inferred and allowed us to investigate the mechanistic
role of proliferation in the developmental path.
Strikingly, for both infections, the trajectory inference analyses revealed similar developmental
patterns. For both infections, a proliferating subset of TCF1+CD62L+ MP cells formed the start-
ing point of the developmental path. The MP subset gave rise to proliferating TCF1−CD62L−

progeny (EMP subset). The EMP cells gradually increased their expression of effector cytokines
such as granzymes and perforins, and correlated with the increased expression of effector signa-
ture genes (Klrg1 and Cx3cr1 ), marking the EFF subset.
Within these subsets of proliferating cells, we observed a developmental order previously de-
scribed as the progressive model of differentiation: cMP → cEMP → cEFF.
However, when the cells transitioned from active proliferation to quiescence, each subset kept
the phenotypic identity it had while it was still proliferating: cMP → ncMP, cEMP → ncEMP,
cEFF → ncEFF.
At the later time points of the contraction phase, when the cells ceased to divide, the progressive
differentiation pattern was repeated: ncMP → ncEMP → ncEFF.
The ncMP → ncEMP → ncEFF progression at a late time point was observed during the
infection with LCMV Armstrong but not following the infection with L.m.-OVA. We speculate
that this could pose a time-point related effect, caused by the intrinsic nature of the pathogen.
Although the clearance of these two pathogens strongly depends on robust CD8+ T cell immu-
nity, distinct pathogen replication kinetics as well as the route of inoculation could affect the
time frame of the immune response (Dangi et al. 2020; Kernbauer et al. 2013). Also, a pathogen-
unique cytokine milieu drives the responses towards these two pathogens (Curtsinger et al. 2010;
Keppler et al. 2009) that influence the speed of recruitment and differentiation (Badovinac et al.
2007; Wherry et al. 2003a).
Nevertheless, we identified that until day 8 p.i., the responses to both these pathogens fol-
lowed the equivalent developmental order, suggesting that the mechanisms on how CD8+ T cell
differentiate are conserved.
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The extended progressive model of CD8 + T cell differentiation

The developmental trajectories from the scRNAseq data were translated into a construct that
served as a base for the mathematical modelling. The states in the model were defined by the
distinct subsets, characterised by the expression profiles of TCF1 and CX3CR1 (and additional
gene that hallmark memory and effector subsets). The transitions between the states were
determined through the observed connectivities within these subsets and also included the arrest
from the cell cycle.
Our results show that the extended progressive model of differentiation accurately reflects the
total CD8+ T cell response. In addition, it correctly depicts the subset sizes, the correlation
between the individual subsets as well as the modelled cell cycle drop out kinetics.
These results are in line with the proposed biological model of the decreasing developmental
potential: A naïve CD8+ T cell that receives little stimulation differentiates into a memory cell,
while those that receive cumulative stimuli differentiate into effector cells. In this setting a cu-
mulative stimulation comprises of TCR signalling, co-stimulatory- and cytokine signals (Ahmed
et al. 1996). The model proposed in this thesis adds to the decreasing potential model by in-
cluding a quiescent state to each subset. Interestingly, EFF cells are identified as the population
that arrested from cell cycle the latest. Their increased responsiveness to IL-2 signalling through
the expression of CD25 impacts the proliferation of effector cells (Kretschmer et al. 2020) could
hold them from dropping out of the cell cycle.
However, the picture that emerges from our analyses contradicts the effector-first model that
proposes an opposite path of differentiation, in which CM cells originate from the EFF subset
(Wherry et al. 2003b). Wherry and colleagues performed adoptive transfer experiments during
the contraction and memory phase of the infection. In our analyses the EFF → EM → CM
transition was not observed. The reasons resulting in these discrepancies remain unresolved.
Moreover, we have not investigated the importance of the first cell division to be asymmetric on
the differentiation pattern during the expansion phase. So far, ACD has mainly been studied
in vitro or ex vivo (Borsa et al. 2019; Chang et al. 2007), and it remains unclear to what extent
the first cell division is asymmetric during an in vivo infection. These percentages are not
inferable from the scRNAseq data. Therefore, such a question requires further mathematical
investigation.

Comparison of the T cells kinetics following an acute and chronic viral infection

After having identified a mathematical model that explains the lineage paths of CD8+ T cells
during two different kinds of acute infections, we tested if the same model is able to describe
the responses within a chronic infection setting.
It is unlikely for a naïve CD8+ T cells to have a predetermined fate before the first encounter
with antigen (Gerlach et al. 2010; Stemberger et al. 2007). In addition, the increasing viral
titres and the shift from a pro-inflammatory to an immunosuppressive milieu at the onset of a
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persisting infection, drive the progressive exhaustion of CD8+ T cells (Wherry et al. 2003b).
We, therefore, assumed that the initial phase of the CD8+ T cell differentiation in developing
chronic conditions must be similar to those during acute infections. Thus, the immune response
would follow a normal differentiation pathway in the first stages of the chronic infection. External
influences, such as the persistence of the antigen, interfere with the canonical differentiation
path and induce T cell exhaustion. This theory would support of the arrested model of T cell
exhaustion, where T cells would deviate from the normal pathway of differentiation and become
incapacitated (Henning et al. 2018).
At first, we aimed to compare the gross differences between the two infections of LCMV Arm-
strong and clone 13 without discriminating the exhausted from the non-exhausted subsets.
Therefore, the subsets were defined by their expression of TCF1, Tim3 and CX3CR1.
The use of the same phenotypic markers allowed us to quantitatively compare the responses
by simultaneously fitting LCMV Armstrong and clone 13-derived progenies to the extended
progressive differentiation model. Through systematic forward selection, we identified the pa-
rameters that were common to both infections and those that differed in the immune response
to LCMV clone 13.
The recruitment rate of a naïve cell to the TCF1+ subset was described using the same parameter
for both infections. This finding is rather surprising because LCMV clone 13 is transmitted i.v.
and uses a higher infectious dose, suggesting a higher transmission rate and faster systemic
spread compared to the i.p.-inoculated LCMV Armstrong. Furthermore, it is supported by the
study that compared the viral loads at 24 h following the infections and found higher viraemia
in the spleen of LCMV clone 13 infected mice (Snell et al. 2018).
The same recruitment rate could be attributed to the properties of the model topology. The
waiting time for recruitment rate in this model follows a gamma-distribution. This long-tailed
distribution is required to explain the large variability in the total response to the infection with
LCMV Armstrong (a waiting time for the recruitment that is exponentially distributed does not
describe the data, data not shown). However, if the clone 13 data is fitted separately to the
extended model of progressive differentiation the recruitment parameter unique to the LCMV
clone 13 infection (data not shown) lies within the confidence bounds of the shared parameter.
The transition rate between TCF1+ → Tim3+CX3CR1llow and the rate at which cells drop
out of cell cycle were as well described by the same parameters. The latter indicates that cell-
intrinsic processes regulate cell cycle exit. Division cessation is suggested to be governed by the
expression of c-myc and the phosphorylation state of Rb (Gookin et al. 2017). Therefore, it
seems to be independent of the infection-causing pathogen.
The proliferation parameters were informed from the cell cycle speed measurements. Even
though the ratios between the cell cycle speed of the TCF1+ and TCF1− subsets were comparable
in both infections, distinct parameters were required to account for the disparity in the fate-
mapping data. This indicates that next to division cessation, during the time window of the
expansion, proliferation is substantially different between the two infections, supported through
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the significantly distinct cell division speeds on day 6.
As already described in the literature, during LCMV clone 13 infection, a KLRG1+ and CX3CR1+

EFF cannot be formed (Wherry et al. 2007). Our model predicts that the transition rate that
propagates the formation of CX3CR1high cells is forty times lower in the infection with clone 13
than in the infection with LCMV Armstrong. Hence, the TCF1−CX3CR1low → CX3CR1high

transitions occur rarely. Limiting the development of functional EFF cells during a persisting
infection constitutes a protection mechanism to prevent cell-induced tissue destruction. It has
also been shown that the accumulated expression of TOX in the TCF1+ subset during a persist-
ing infection minimises further diversification into cytolytic effector subsets (Alfei et al. 2019;
Khan et al. 2019; Yao et al. 2019).
In addition, the high expression of inhibitory receptors, manipulating cell cycle progression,
further retrain the proliferation-linked differentiation (Sharpe et al. 2018; Waterhouse et al.
1995). This is supported by the model, predicting distinct division drop out times between the
two infections. We will discuss the effect of division cessation in detail in section 5.3.
To our knowledge, the modelling introduced in this thesis is the first to describe the CD8+ T cell
response to acute and chronic LCMV infection, driven by single-cell data and without relying
on any assumptions of extrinsic signals.

From a modelling point of view

Many mathematical frameworks exist that describe the diversification of lymphocytes during
T cell expansion (Crauste et al. 2017; Ganusov 2007; Gossel et al. 2017; Pandit et al. 2019).
However, most of these models require additional parameters to account for the cytokine en-
vironment, the pathogen replication kinetics, proliferation and cell death (Crauste et al. 2017;
Gossel et al. 2017; Pandit et al. 2019). Some of them were solely applied on the total number
of cells without information on the subpopulations (Ganusov 2007).
Other studies have also concentrated on dissecting the mechanisms of T cell exhaustion. These
studies have applied mathematical modelling to characterise the immune responses towards
these two infections and heavily relied on population data as well, did not further explore the
relationship between the different subsets (Althaus et al. 2007; Bocharov 1998; Bolouri et al.
2020).
The study by Althaus and colleagues was limited by the unknown initial precursor frequency,
which had to be estimated through combining the activation parameter with the precursor size.
Bolouri et al. 2020 investigated the molecular network during the development of exhaustion,
including transcription factor interactions and antigen stimulation. While experimental data
informed the underlying network (serving as a construct for the model topology), the outcomes
stem from model simulations without fitting to data.
A mathematical model that includes the effects of global and internal factors to describe the
outcome is complex and comprises numerous parameters, representing the interactions between
the virus, immune cells, and cytokines and even transcription factor networks (Baral et al. 2019;
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Bocharov 1998; Bolouri et al. 2020).
The mathematical modelling we present in this thesis is independent on any intrinsic or extrinsic
cues, such as the pathogen replication or cytokine signalling and merely relies on the sizes of
the subsets, their relative fractions, the total number of cycling cells and the proliferation rate.
Furthermore, since we only model the expansion phase of the infection, we simplified the model
by neglecting the role of cell death. This poses a valid assumption, a study using an apoptosis-
reporter system has shown that the impact of cell death during the expansion phase is marginal
(Garrod et al. 2012).
Also, the type of data that we use for fitting is much richer in information as compared to the
above mentioned studies. In addition to the mean, the variances and co-variances of the response
are determined. In contrast, the variance and co-variance cannot be extracted from population-
derived responses because the bulk transfer of cells averages over the response, emerging from
each single cell.
This model contributes to the understanding on how the different population of memory and ef-
fectors cells emerge during the expansion phase of infection and how subset-specific proliferations
and division cessation result in the magnitude of heterogeneity.

5.3. Cell cycle quiescence dictates the course of T cell exhaustion

The processes leading to T cell exhaustion occur in an hierarchical manner. The loss of effector
functions, the IL-2 production and a decreased proliferative capacity are among the features that
are observed during the early stages of exhaustion. However, these are processes that happen as
well during canonical differentiation. Here, we observed that already early during the expansion
phase of the infection, the cells can become quiescent. Whereas in the clone 13 infection, division
drop out occurs earlier and is probably driven by the different inflammation and the increased
expression of inhibitory receptors.

Inhibitory receptors regulate cell cycle activity

Mathematical analysis of the response to the acute LCMV infection, using the extended pro-
gressive model of differentiation, predicted that cell cycle drop out commences before the peak
of the response is reached, with roughly 60% of the cells remaining in the cell cycle at day 6 p.i.
Interestingly, at this time point during infection with the persisting LCMV variant, only 40%
actively divided.
During acute infection, the exit out from the cell cycle might be mediated through the decreasing
viral loads upon resolution of the infection. It is accompanied by alterations in the inflammatory
environment and the increasing apoptotic signals (Pucci et al. 2003; Schluns et al. 2003). In
contrast, during a chronic infection, the expression of inhibitory receptors play a crucial role in
regulating the proliferation activity.
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Several inhibitory receptors have been implicated to control and inhibit cell cycle activities. For
example, in comparison to the infection with LCMV Armstrong, Pdcd1 was differentially up-
regulated at day 4.5 in the cells stemming from the infection with LCMV clone 13. Even though
PD1 expression is transient in the acute infection (Ahn et al. 2018), under persisting conditions,
its expression levels remain high with strong inhibitory consequences. The interaction of PD1
with its ligands (PDL1 or PDL2) forms a control mechanism that blocks proliferation under
persistent antigen stimulation. By acting downstream of the TCR and CD28 signalling, PD1
regulates the cell cycle activity and, inhibits the mammalian target of rapamycin (mTOR) and c-
Myc (Barber et al. 2006; Sharpe et al. 2018). While the inhibition of mTOR has been described
to block the G1-phase progression, the levels of expressed c-Myc regulate the cell cycle exit:
c-Myc values below a certain threshold promote cell cycle quiescence (Heinzel et al. 2017).
Next to PD1, Lag3 and Batf were as well differentially expressed in the cells from the LCMV
clone 13 infection at day 4.5. While Lag3 blocks proliferation and cytokine production through
cross-linkage with CD3 (Waterhouse et al. 1995), Batf signalling up-regulates CTLA4 expression
that blocks IL-2 pathways (Parry et al. 2004; Quigley et al. 2010).
Our findings suggest that many inhibitory receptors interplay very early during the onset of
chronic infection and regulate cell division at different levels.
Interestingly, the TCF1+ subset was the first one affected from the cell cycle drop out, with a
significant fraction of cells being quiescent at day 6 p.i. (40 % quiescence in the LCMVArmstrong
infection and 70 % in the infection with the clone 13 variant). We speculate, that the immune
system locks these cells in the quiescent state early in the infection to avoid full differentiation
into other subsets, to thereby ensure the maintenance of their pool when the antigen is gone.
This speculation finds support in our RNA velocity analyses where further differentiation is
only observed again during the phases of late contraction and the mathematical modelling, that
does not support differentiation within the quiescent states. However, follow on investigation is
required to back this hypothesis.
Furthermore, one of the top differentially expressed genes at day 4.5 p.i. with LCMV clone
13 was TOX. TOX is required for the generation and the maintenance of this subset and its
induction has been described to be dependent on NFAT (Khan et al. 2019; Scott et al. 2019).
Interestingly, NFAT has been implicated in influencing the cell cycle activity probably through
its involvement in promoting exhaustion by playing a crucial role in the regulation of PD1,
CTLA4 and also Tim3 (Martinez et al. 2015; Oestreich et al. 2008). Additionally, it has been
described that TOX is responsible for the maintenance of high PD1 levels (Wang et al. 2019).
Several studies showed that on a proliferation level CD8+ T cells deficient of TOX and TOX-
competent counterparts during the clone 13 infection were similar (Alfei et al. 2019; Khan
et al. 2019; Scott et al. 2019). These studies employed dye-dilution methods to compare cell
division at early time points before the peak or measured the 5-Ethynyl-2’-deoxyuridine (EdU)
incorporation (integrates into the DNA similar to BrdU) and the Ki67 expression for time points
after the peak response (Alfei et al. 2019; Khan et al. 2019; Scott et al. 2019). While division
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cessation cannot be extracted directly from dye-dilution and/or BrdU/EdU measurements, Ki67
is commonly used to distinguish between cycling and non-cycling cells. However, the long lag
time of Ki67 down-regulation might mask subtle differences occurring at these time points
(Gossel et al. 2017). Thus, only measurements of c-Myc or p-Rb would reliably identify the
quiescent subsets of these cells.
Furthermore, it was recently found, that TOX directly inhibits mTOR in colorectal cancer cells,
and thereby also the cell cycle progression (Yang et al. 2021). However, if these findings also
mimic the mode of action of TOX in activated T cells requires further research.
Summarising, there are implications on how TOX expression could regulate cell division. How-
ever, its role in the intricate network of inhibitory receptors, antigenic stimulus and cytokine
environment regulating division drop out is incompletely understood.
We also observed that CX3CR1+ (or EFF) subsets cycled longer before they returned to the
quiescent state. A possible explanation could be that a faster cell cycle progression prevents
premature division cessation.

5.4. The fate of the CD8+ T cells from early time points of
persisting infection remains plastic

TCF1+ MEX and memory (or MP) CD8+ T cells have a shared transcriptional profile, attribut-
ing the MEX subset to sustain the pool of exhausted cells through their ability to self-renew
(Chen et al. 2019; He et al. 2016; Hudson et al. 2019; Im et al. 2016; Utzschneider et al. 2016a,
2020). However, their epigenetic landscapes are significantly different, suggesting an antigen-
driven transcriptional regulation that results in the production of exclusively exhausted progeny
(Ghoneim et al. 2017; Jadhav et al. 2019; Pauken et al. 2016; Sen et al. 2016).
However, the mechanisms leading to the formation of precursor cells during chronic infection
remain an open question.

Before the exhaustion fate is sealed

Despite the retained proliferative capacity and the ability to self-renew, the progeny that is prop-
agated from the MEX subset retains the exhaustion imprint (Pritykin et al. 2021; Utzschneider
et al. 2016a, 2020).
In this thesis, we show that the fate of TCF1+ CD8+ T cells from the onset of a persisting
infection is reverted upon transfer into an ongoing acute infection. Moreover, TCF1− CD8+ T
cells can as well be rescued from their exhaustion imprint when changing from persisting to re-
solving infection conditions. Both of these subpopulations followed the canonical differentiation
path and down-regulated the expression of TOX and PD1 upon transfer into an acute infection.
However, when the cells were transferred into the same chronic environment, PD1 and TOX
expression remained high and the formation of an EFF subset was limited.
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In contrast to the current picture that suggests a unique epigenetic profiling to counteract the
rescue from the exhaustion imprint (Ghoneim et al. 2017; Jadhav et al. 2019; Pauken et al.
2016; Sen et al. 2016). However, these studies investigated MEX subset cells at late stages of
the chronic infection.

A recent study by Utzschneider and colleagues investigated at early time points of infection
the plasticity of the MEX precursor (and non-MEX precursors) subset and detected that both
subsets remained high in their expression of TOX upon re-transfer into an LCMV Armstrong
infection, resulting as a consequence of their imprinted epigenetic landscape (Utzschneider et al.
2020).

However, in their investigation Utzschneider et al. 2020 used the LCMV docile infection. The
LCMV docile variant replicates faster than clone 13, and additionally causes a life-long persisting
infection, while the clone 13 strain is cleared in the mouse after approximately two months
(Moskophidis et al. 1995).

It is therefore possible, that in the LCMV docile infection model the exhaustion is further
progressed and that these MEX precursor resemble MEX cells from later stages, where the
imprint of exhaustion is fixed (Pritykin et al. 2021). Along with this, also the developmental
flexibility is lost, preventing the reversion to the canonical path of differentiation.

Non-peer reviewed observations from the Oxenius and Claassen laboratories showed that the
re-transfer of the TCF1+ subset from the wild-type LCMV clone 13 infection into LCMV clone
13 P14-escape mutant infected hosts, did not develop exhausted progeny (Cerletti et al. 2020).

The LCMV clone 13 escape mutant used in their study has alterations in the gp33 epitope,
making it unrecognisable to P14 T cells, yet resulting in the same inflammatory environment as
the wild-type clone 13 strain. They suggest that a continuous TCR stimulations is required to
drive exhaustion and that differentiation is halted when the stimuli is removed (Cerletti et al.
2020). While their findings concerning the presence of antigen are in line with the observations
from Utzschneider et al. 2020, Cerletti and colleagues did not examine other attributes to account
for an exhausted phenotype, such as the expression of inhibitory receptors.

It was shown that during the acute infection antigen levels are declining around day 5 (this is
the time point at which the transfer experiments by Utzschneider and Cerletti were performed)
(Moskophidis et al. 1995; Wherry et al. 2003a). In comparison to our results, that were obtained
upon re-transfer into the setting of the LCMV Armstrong infection setting, the full differentiation
was observed in spite of antigen presence. Although, the abundance of the antigen regulates the
chances of its encounter, implicating that a certain threshold level of stimulation is required to
drive exhaustion.

Thus, at early time points of infection the fate of the subsets are flexible, suggesting that the
initial molecular pathways are conserved between the two infection settings.
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5.5. The arrested model of T cell exhaustion

T cell exhaustion is considered a parallel programme to the normal T cell differentiation, which
can occur at any stage of development. As a result, the arrested model of differentiation proposes
that exhausted T cells arise from memory and effector T cells that have branched from the
normal differentiation pathway before progressing to a terminal EFF cell stage (TEF). Multiple
branching points within the canonical differentiation pathway can thus lead to the exhausted
counterpart, reflecting the large heterogeneity of the exhausted T cell pool (Henning et al. 2018).

Exhausted progeny originates from the MP and non-MP subsets

Many studies have concentrated on dissecting the developmental relationships of exhausted T
cell subsets. While there is large consensus on the developmental order within the exhausted
subsets, suggesting a propagation of the exhausted progenies originating from TCF1+ MEX
progenitor cell (Alfei et al. 2019; Chen et al. 2019; He et al. 2016; Hudson et al. 2019; Im et al.
2016; Utzschneider et al. 2016a, 2020), the origin of exhausted progenitor cells remains unclear.

In the joint RNA velocity analyses, where we examined the differentiation of cells during acute
and chronic infections, we observed two endpoints of settling in an exhausted state, marked
by the two subsets of exhausted cells, MEX and TEX. While the initial branch arose from the
TCF1+ subset ended in the cluster containing the MEX cells, the other branch was directed
through an effector-like cluster to the TEX cluster. Interestingly, the source that fed the ex-
hausted progenies co-localised with the cells fuelling the functional subsets, suggesting that at
the onset of a persisting infection the progression is initiated towards a functional phenotype.
This is in line with the afore-discussed flexibility in the developmental fates and the arrested
model of T cell exhaustion.

We performed mathematical modelling, taking the arrested model of T cell exhaustion as
blueprint for the model structure.

The facts that the parametrisation of the model relied on scarce data, rendered the model
unidentifiable. Nevertheless, it predicted that the individual exhaustion of the MP subset is
insufficient to drive the exhausted T cell pool. Instead, the independent exhaustion of the
non-MP subset is required. This prediction was experimentally validated.

Our results are in consent with the current picture, that exhaustion is driven through the
exhaustion of MP cells, leading to MEX precursors (Alfei et al. 2019; Utzschneider et al. 2020).
Additionally, the EFF subset is prevented from exhaustion due to their terminal differentiation
state (Angelosanto et al. 2012). Moreover, we add to this picture of the exhaustion program by
showing that EE subset cells exhaust separately, as suggested in the arrested model of T cell
exhaustion.
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5.6. Significance

Viral infections can lead to various outcomes. They can be acute with a short-term illness,
become chronic and sometimes co-exist as a latent infection or cause significant damage to the
immune system and tissue. T cell immunity has a significant role in protecting against viral
infection and in determining their outcome. Therefore, understanding the mechanisms that lead
to the failure of a viral clearance is essential for finding ways to prevent it.
In this study, we have examined the lineage relationships of CD8+ T cells using the mouse models
of acute and chronic lymphocytic choriomeningitis virus infection. We show that the CD8+

T cell development follows a core motif that is conserved among different infectious diseases.
Alterations in the environmental conditions, such as antigen persistence and immunosupressive
cytokine milieu, mediate branching from the canonical differentiation path, rendering the T
cells incapacitated. These results provide important insights into the differentiation hierarchy
during the onset of persisting infections and offer novel opportunities to identify interventions
to prevent such diseases.
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6. Materials and Methods
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6.1. Materials

All materials, reagents and equipment used in this thesis are listed in alphabetical order in the
Tables 6.1, 6.2 and 6.3. Antibodies and primers are summarised in the Tables 6.4, 6.5 and
6.6. All antibodies used in this study are directed towards mouse epitopes and were titrated to
optimal dilutions for the use in flow cytometry stainings.

Table 6.1.: List of experimental equipment used in this study.
Device Model Manufacturer

analytical balance ACJ/ACS Kern & Sohn GmbH

biosafety cabinets HSL 12 Heraeus

centrifuges Megastar 3.0R VWR
Fresco 21 Microcentrifuge Thermo Fisher Scientific

flow cytometer CytoFlex LX Beckman Coulter
MoFlow XPD Beckman Coulter
MoFlow Astrios EQ Beckman Coulter
Aria III Sorter BD Bioscience

GEM generator Chromium Controller 10x Genomics

hemocytometer Neubauer Superior Marienfeld

incubator Heracell 240i CO2 Incubator Thermo Fisher Scientific

microscope Axiovert S100 Carl Zeiss

pH-Meter 766 Calimatic Knick

photometer BioPhotometer Eppendorf

QC & quantification Bioanalyzer Agilent
QuBit 4.0 Fluorometer Thermo Fisher Scientific

sequencer NovaSeq 6000 S2 Illumina

thermal cycler Biometra TAdvanced 96S Analytik Jena

thermoblock Thermomixer C Eppendorf

vortex mixer Vortex Genie 2 VWR

water bath 1003 GFL
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Table 6.2.: List of chemical compounds and reagents used in this study.

Compound Manufacturer
Ammonium chloride (NH4Cl) Roth
Ampure XP beads Beckman Coulter
Brain heart infusion medium TUM
Brain heart infusion agar plates TUM
Bovine serum albumine Sigma
Bromodeoxyuridine Sigma
Buffer EB Qiagen
Chromium Chip B Single Cell Kit 10x Genomics
Chromium i7 Multiplex Kit 10x Genomics
Chromium Single Cell 3'Reagent Kit v3 10x Genomics
Dimethyl sulfoxide Sigma
DNAse I Sigma
Ethanol Merck
Fetal Calf Serum Biochrome
FITC BrdU Flow Kit BD Bioscience
Foxp3/Transcription Factor Staining Buffer Set eBioscience
Gentamicin Gibco
L-glutamine Gibco
Glycerol Merck
Heparin-Sodium-25000 RatiophArmstrong
HEPES Roth
High Sensitivity DNA Kit Agilent
Hydrochloric acid Roth
KAPA Hifi Master Mix Roche
Low TE buffer Thermo Fisher Scientific
β-mercaptoethanol Gibco
nuclease-free water Thermo Fisher Scientific
Paraformaldehyde Sigma
Penicilline/Streptomycin Gibco
Phosphate buffered saline Gibco

Continued on next page
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Table 6.2 – Continued from previous page
Compound Manufacturer

Propodium Iodide Thermo Fisher Scientific
Qubit dsDNA HS Assay Kit Gibco
RPMI-1640 PAA
Transcription Factor Phospho Buffer Set BD Bioscience
Tris-Hydroxychloride (Tris-HCl) Roth
Triton-X Roth
Trypan blue Roth
Trypsin-EDTA Gibco
Tween-20 Bio-Rad
Zombie UVTM Fixable Viability Kit Biolegend

Table 6.3.: List of buffers and media used in this study.
Buffer Composition

ACT solution 0.17 M NH4Cl
0.3 M Tris-HCl, pH 7.5

cell culture medium 500 mL RPMI-1640
10 % (v/v) FCS
5 % (v/v) SC+

flow cytometry buffer 500 mL PBS, pH 7.5
0.5 % (w/v) BSA
2 mM EDTA

SC+ medium 1 mL β-mercaptoethanol
10 mL Gentamicin
11.9 g HEPES
2 g L-Glutamine
100 mL Penicillin/Streptomycin
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Table 6.4.: List of antibodies used for analyses by flow cytometry.
Antibody Label Clone Provider

αCD4 APC-Cy7 GK1.5 Biolegend
PE/Dazzle GK1.5 Biolegend

αCD8a BV510 53-6.7 Biolegend
Pacific Blue 53-6.7 Biolegend
Pacific Orange 5H10 Life Technologies

αCD16/CD32 unlabelled 93 Biolegend
αCD19 APC-Cy7 6D5 Biolegend

PE/Dazzle 6D5 Biolegend
αCD25 APC PC61.5 Life Technologies
αCD27 BV421 LG.3A10 Biolegend

PE/Cy7 LG.7F9 Life Technologies
αCD44 APC IM7 Biolegend

FITC IM7 Biolegend
αCD45.1 BV785 A20 Biolegend

FITC A20 Biolegend
Pacfic Blue A20 Biolegend

αCD45.2 BV650 102 Biolegend
αCD62L BV421 MEL-14 Biolegend

APC MEL-14 Biolegend
αCD200 APC OX-90 Biolegend
αCX3CR1 BV785 SAO11F11 Biolegend

PE/Cy7 SAO11F11 Biolegend
αKLRG1 PE/Cy7 2F1 Biolegend
αOX-40 BV421 OX-86 Biolegend
αPD-1 (CD279) BV510 29F.1A12.7 Biolegend
αp-Rb(Y807/811) PE D20B12 Cell Signaling
αTCF-7/TCF-1 BV421 S33-966 BD Bioscience

PE S33-966 BD Bioscience
αThy1.1 FITC HIS51 Life Technologies

eF450 HIS51 Life Technologies
αThy1.2 BV785 H30-H12 Biolegend
αTim-3 (CD366) APC RTM3-23 Biolegend

BV421 RTM3-23 Biolegend
αTOX PE TXRX10 Life Technologies
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Table 6.5.: List of oligonucleotide-conjugated antibodies used for protein expression analyses
in combination with scRNA-seq.
Antibody Label Clone Provider

αCD27 CAAGGTATGTCACTG LGA.3A10 Biolegend
αCD62L TGGGCCTAAGTCATC MEL-14 Biolegend
αCD127 (IL7R) GTGTGAGGCACTCTT A7R34 Biolegend
αCX3CR1 CACTCTCAGTCCTAT SAO11F11 Biolegend
Hashtag 1 ACCCACCAGTAAGAC M1/42,30-F12 Biolegend
Hashtag 2 GGTGCAGAGCATTCA M1/42,30-F12 Biolegend
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Table 6.6.: List of primers used in this study.
Name Sequence

ADT additive primer 0.2 µM 5’ CCTTGGCACCCGAGAATT*C*C 3’
D702_s 5’ CAAGCAGAAGACGGCATACGAGATTCTCCG-

GAGTGACTGGAGTTCAGACGTGTGCTCTTC-
CGAT*C*T 3’

D703_s 5’ CAAGCAGAAGACGGCATACGAGATAAT-
GAGCGGTGACTGGAGTTCAGACGTGT-
GCTCTTCCGAT*C*T 3’

D704_s 5’ CAAGCAGAAGACGGCATACGAGATG-
GAATCTCGTGACTGGAGTTCAGACGTGT-
GCTCTTCCGAT*C*T 3’

D705_s 5’ CAAGCAGAAGACGGCATACGAGATTTCT-
GAATGTGACTGGAGTTCAGACGTGTGCTCTTC-
CGAT*C*T 3’

D706_s 5’ CAAGCAGAAGACGGCATACGAGATAC-
GAATTCGTGACTGGAGTTCAGACGTGT-
GCTCTTCCGAT*C*T 3’

HTO additive primer 0.2 µM 5’ GTGACTGGAGTTCAGACGTGTGCTCTTCC-
GAT*C*T 3’

RPI2 5’ CAAGCAGAAGACGGCATACGAGATA-
CATCGGTGACTGGAGTTCCTTGGCACCCGA-
GAATTC*C*A 3’

RPI3 5’ CAAGCAGAAGACGGCATACGAGATGCC-
TAAGTGACTGGAGTTCCTTGGCACCCGA-
GAATTC*C*A 3’

RPI4 5’ CAAGCAGAAGACGGCATACGAGATTG-
GTCAGTGACTGGAGTTCCTTGGCACCCGA-
GAATTC*C*A 3’

SI-PCR primer 5’ AATGATACGGCGACCACCGAGATCTA-
CACTCTTTCCCTACACGACGC*T*C 3’

* indicate phorphorylated bonds.
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6.2. Experimental Methods

6.2.1. Mice

Female C57BL/6 wild-type mice were purchased from Envigo (Germany) and housed in indi-
vidually ventilated cages under specific pathogen free conditions at the animal facility at the
Technische Universität München. Rag1−/−OTI-transgenic T cells recognizing the SIINFEKL
peptide as well as P14-transgenic C57BL/6 mice expressing a T cell receptor specific for the
LCMV gp33-41 peptide were crossed to C57BL/6 mice that express distinct combinations of
the congenic markers CD45.1, CD45.2, Thy1.1 and Thy1.2 and held in-house under specific
pathogen free conditions. Wild-type C57BL/6 mice entered the experiments at 6 to 8 weeks of
age, OTI T cell-transgenic and P14 T cell-transgenic female mice were used at an age of 6 to
20 weeks. All animal experiments were performed in accordance with the ethics committee and
approved by the Regierung von Oberbayern in Germany.

6.2.2. Infections with LCMV

Viral stocks for LCMV Armstrong and LCMV clone 13 were generated in-house and kept in
frozen vials at −80 °C. The LCMV stocks were thawed on ice and diluted in PBS to a final
infectious concentration of 2× 105 phage forming units (pfu) for LCMV Armstrong and 2× 105

pfu for LCMV clone 13. LCMV Armstrong was administered intraperitoneally (i.p.), LCMV
clone 13 intravenously (i.v.) by tail vein injection. Both infections were performed using a
26-gauge needle (BD Plastipak 1 mL Sub-Q).

6.2.3. Infections with L.m.-OVA

The infections with OVA-expressing Listeria monocytogenes species (L.m.-OVA) were performed
as previously described in Buchholz et al. 2013a. In brief, frozen gylcerol cultures of recombinant
L.m.-OVA were stored at −80 °C, thawed at room temperature and 12.5 µL of the liquid culture
were incubated for 4 h in 4 mL brain-heart-infusion (BHI) medium in a shaking incubator at
37 °C and with 90 rpm. After a 4 h incubation, the optical density at 600 nm (OD600nm) of the
culture was measured using a photometer. When an OD600nm between 0.05 and 0.1 was reached,
the number of colony forming units (cfu) was determined by # cfu/ml = 1.1×109OD600nm. The
culture was then serially diluted in PBS to a final dose of 5× 103 cfu in 200 µL. The infections
dose was verified by colony counting after plating 20 µL on BHI agar plates and incubating over
night at 37 °C. L.m.-OVA were administered i.v. using a 26-gauge needle (BD Plastipak 1 mL
Sub-Q).

6.2.4. Infections with MVA-OVA

Ready-to-infect MVA-OVA aliquots containing 2× 108 PFU were a generous gift from Andreas
Muschaweckh from the Korn laboratory (Institute for Experimental Neuroimmunology at the
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Technical University of Munich). Each mouse received a dose of 200 µL 2×108 PFU MVA-OVA
one day after the adoptive transfer of OTI T cells. For the infection a 26-gauge needle (BD
Plastipak 1 mL Sub-Q) was used.

6.2.5. Purification of T cells from the blood

For blood sample collection, the vena facialis was punctured with a lancet and 100-200 µL blood
was directly collected in 1.5 mL Eppendorf tubes containing 20 µL Heparin. The blood samples
were transferred into 15 mL Falcon tubes, diluted in ACT solution for erythrocyte lysis to a final
volume of 10 mL and incubated at room temperate for 10 min. After centrifugation at 1500 rpm
at room temperature (VWR Megastar 3.0R), the supernatant was discarded and the pellet was
re-suspended in 5 mL ACT solution. After a second incubation for 5 min, the lysis was stopped
by the addition of 5 mL cell culture medium and the samples was centrifuged at 1500 rpm at
room temperature for 6 min. The supernatant was discarded and the pellet re-suspended in flow
cytometry buffer.

6.2.6. Purification of T cells from the spleen and lymph nodes

The spleen and the cervical, axillary, cubital, mesenteric, inguinal and popliteal lymph nodes
were harvested from sacrificed mice and collected in 5 mL cell culture medium. Using a syringe
stamp, the tissue was mechanically disrupted and pressed through a 70 µm cell strainer (Falcon).
The single-cell suspension was centrifuged at 1500 rpm at 4 °C for 6 min and the supernatant
was discarded. For the removal of the remaining erythrocytes, the cell pellets were re-suspended
in 3 mL ACT solution and incubated for 3 min at room temperature. The further erythrocyte
lysis was blocked by the addition of 7 mL cell culture medium. After centrifugation (1500 rpm,
4 °C, 6 min) the cells were collected, counted using a Neubauer hemocytometer and diluted to
1× 107 cells per 100 µL flow cytometry buffer.

6.2.7. Adoptive T cell transfers

Naïve CD8+CD44low P14-transgenic T cells from the peripheral blood or from the spleen were
purified to > 99% by flow cytometric cell sorting. After isolation of the leukocytes from the
blood or spleen (as described in section 6.2.5 and 6.2.6), the cells were stained with CD44-FITC
and CD8-eF450 for 30 min on ice in the dark. The cells were then washed 2.5 times and re-
suspended in flow cytometry buffer and filtered through a 30 µm syringe filcon (BD Bioscience).
For the exclusion of dead cells, propodium iodide (PI) was added immediately before sorting.
1×103, 1×104 or 5×104 P14-transgenic cells were sorted into V-bottom plates (VWR), containing
5 × 105 wild-type C57BL/6 splenocytes in 200 µL fetal calf serum (FCS). The purified naïve
P14 T cells were adoptively transferred into naïve C57BL/6 hosts via i.p.-injection on day prior
to infection.
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6.2.8. Cell surface staining for flow cytometry

For the staining of surface epitopes, 1 × 107 leukocytes were collected in 96- well V-bottom
plates. If not stated differently, all steps were performed on ice using ice cold flow cytometry
medium, and with centrifugation at 1500 rpm at 4 °C for 3 min. To block unspecific binding
sites, αCD16/CD32 antibodies (Fc-block) were incubated with fixable viability dye for 20 min.
The cells were washed 1.5 times before addition of the cell surface staining mix. The cell surface
staining was performed for 30 min in flow cytomety buffer, containing the appropriate dilution
of a combination of the antibodies listed in Table 6.4 The cells were then washed 2.5 times
and either fixed in 1 % PFA in PBS for 20 min, filtered and analysed by flow cytometry, or
intracellular staining steps were performed.

6.2.9. Intracellular staining of transcription factors

The intracellular staining was performed after the surface staining using the Foxp3/Transcription
Factor Staining Kit according to manufacturer’s instructions. The cells were stained for 45 min
at 4 °C using a combination of the intracellular antibodies listed in Table 6.4. After filtration
and re-suspension in flow cytometry buffer, cells were acquired by flow cytometry.

6.2.10. Intracellular staining of phosphorylated proteins and transcription factors

The staining of phosphyorlated proteins in combinations with transcription factors was per-
formed using the Transcription Factor Phospho Buffer Set. After the surface staining, the cells
were fixed according to manufacturer’s instructions and incubated over night at 4 °C. After the
intracellular staining, the cells were filtered and the retinoblastoma protein signal was measured
by flow cytometry.

6.2.11. BrdU staining for cell cycle phase quantification

Mice received a single dose of bromodeoxyuridine (BrdU, 1 mg/mL) i.p. 3 h respectively 0.5
h before end point analysis. For BrdU analysis, cells were first stained with surface markers
and transcriptions factors as indicated in the sections 6.2.8 and 6.2.9, then stained and fixed
according to the BrdU FITC Flow Kit protocol. To stain for total DNA content, the cells were
filtered and 20 µL 7AAD was added to 180 µL cell suspension in flow cytometry buffer. After
an incubation period of 20 min at 4 °C the samples were directly measured by flow cytometry.
Apoptotic and sub-G1 cells were excluded from the analysis.

6.2.12. Single-cell fate-mapping

The single-cell fate-mapping experiments were performed by Lorenz Kretschmer and Dr. med.
Veit Buchholz at the Institute for Medical Micobiology, Immunology and Hygiene at the Tech-
nical University Munich. For the fate-mapping experiments, a matrix of single congenic P14-
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transgenic T cells was adoptively transferred into naïve C57BL/6 female hosts that were infected
with LCMV Armstrong or clone 13 the next day. At day 8 post infection, the P14 T cells in the
spleen were analysed by flow cytometry.

6.2.13. Re-transfer experiments

The experiments where functional subsets were re-transfer into time-point or infection-matched
mice were conducted by Lorenz Kretschmer and Dr. med. Veit Buchholz at the Institute for
Medical Micobiology, Immunology and Hygiene at the Technical University Munich.
Frozen spleen samples from TCF7-GFP-reporter P14 transgenic wild-type mice were generously
provided by Prof. Dr. med. Dietmar Zehn (Division of Animal Physiology and Immunology
at the Technical University Munich, mice were generated as described in (Utzschneider et al.
2016a)). The frozen spleens were thawed, re-suspended in culture medium and prepared for flow
cytometric sorting as described in section 6.2.7 except that CD44-APC was used to determine
the naïve TCF7-GFP-reporter P14 T cells.
One day prior to the infection with LCMV Armstrong or clone 13, the naïve TCF7-GFP-reporter
P14 T cells were transferred into wild-type C57BL/6 mice. At day 4.5 after infection with LCMV
Armstrong or clone 13, adoptively transferred TCF7-GFP-reporter P14 T cells were re-isolated,
purified and enriched based on their expression of TCF7-GFP by flow cytometric sorting and
re-transferred into infection-matched or time-point matched hosts (LCMV clone 13 derived into
LCMV Armstrong transferred or transfer from LCMV clone 13 to LCMV clone 13). The final
readout was performed by flow cytometry at day 8 after infection.
For the re-transfer experiments from LCMV Armstrong infected mice into Armstrong or clone
13 infected, naïve TCF7 -GFP-reporter P14 T cells were adoptively transferred into wild-type
C57BL/6 mice and infected with LCMV Armstrong the next day. On day 8 p.i. P14 T cells
were isolated from the spleens and sorted by flow cytometry based on the expression on TCF7
and KLRG1. TCF7+KLRG1−, TCF7−KLRG1− and TCF7−KLRG1+ subsets were sorted and
re-transferred into recipients that were infected 4.5 days before with either LCMV Armstrong
or clone 13. Exactly 3.5 days after re-transfer, the progeny of the subsets in the spleens was
analysed by flow cytometry.

6.2.14. Analysis of flow cytometry data

The measurements performed by flow cytometry were analysed by the CyExpert software v2.4
(Beckman Coulter) and FlowJo v10 (Treestar).

6.2.15. Re-isolation of T cell populations for single cell RNA sequencing

At day 6 post infection (p.i.) with LCMV Armstrong or LCMV clone13 or at day 4.5, 8 and
12 p.i. with L.m.OVA, the spleen and the lymph nodes were collected from sacrificed mice.
The cervical, axillary, cubital, mesenteric, inguinal and popliteal lymph nodes were pooled
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for further processing. After generation of a single cell suspension as described in section
6.2.6, the cells were counted and 2 − 4 × 107 cells were used for the proceeding steps. Un-
specific binding sites were blocked using unlabelled αCD16/CD32 antibodies for 15 min on
ice. The master mix containing the fluorescent antibodies for sorting (αCD44-FITC, αCD8-PE,
αCD4-PE/Dazzle, αCD19-PE/Dazzle, α CD45.1-APC, αThy1.1-APC, αCD45.1-Pacific Blue,
αThy1.1 eF450) and oligonucleotide-conjugated antibodies to detect surface proteins as used
here for sample discrimination after sequencing (hashtag 1 for the spleens and hashtag 2 for
the lymph nodes) and for immune-profiling (see Table 6.5) were added and incubated for ad-
ditional 30 min on ice. The cells were then washed trice in EDTA-poor flow cytometry buffer
and filtered using a 30 µm syringe filcon (BD Bioscience). Immediately before enrichment by
flow cytometric sorting, PI was added to the samples. For either infection, 1 − 1.2 × 104 live
CD4−CD19−CD8a+CD44highCD45.1+Thy1.1+ P14 or OTI T cells, respectively, were enriched
from the spleen and the lymph nodes and sorted into the same well of a 96-well V bottom plate
(VWR) containing PBS supplemented with 2 % BSA.

6.2.16. Single cell RNA sequencing

After cell sorting, the cells were centrifuged at 1500 rpm for 3 min at 4 °C and the supernatant
was removed without disturbing the pellet. The total cell pellet was re-suspended in the master
mix with 46.6 µL nuclease-free water and 75 µL of the cell suspension was directly loaded on
the chip (Chromium Single Cell 3'GEM v3 user guide, instead of step 1.1. and 1.2a). From step
1.2.c to step 2.1, the experimental procedures were performed as in the manufacturers instruc-
tions. During the cDNA amplification step (original protocol step 2.2) supplementary primers
to recover the proteogenomic information were added, that were 1 µL ADT additive primer and
1 µL HTO additive primer. In total, 11 amplification cycles were performed. The cDNA-clean
up step was performed according to manufacturers protocol Feature Barcode Technology for
Cell Surface Protein RevD.
For the preparation of the mRNA libraries, the original protocol has been followed. For the cell
surface library construction, 5 µL of the purified supernatant fraction of the sample were mixed
with 2.5 µL of the SI-PCR primer, and either 2.5 µL TrueSeq D702_s (TrueSeq D703_s,TrueSeq
D704_s, TrueSeq D705_s or TrueSeq D706_s), RPI2 (or RPI3, RPI4, RPI5 or RPI6) primer,
together with 50 µL KAPA Hifi Master Mix and 40 µL nuclease-free water was incubated with
protocol in Table 6.7 for D70x_s and according to the protocol in Table 6.8 for the RPI primers.
After cell surface library construction, 120 µL of Ampure XP beads were added to each sample.
The samples were well re-suspended and incubated for 5 min at room temperature. The beads
were magnet-enriched and while on the magnet, washed twice with fresh 80 % Ethanol. After
removal of the Ethanol, the tubes with the beads were removed from the magnet, the sample
was re-suspended in 40.5 µL buffer EB and incubated at room temperature for 2 min. The tubes
with the eluted library and beads mixture was placed back on the magnet and the supernatant
containing the cell surface library was collected. All libraries were quantified with the Qubit
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dsDNA HS assay kit and sample size and quality was assessed with the high sensitivity DNA-Kit
on a Bioanalyzer 2100. All libraries were pooled according to the required reads (2× 104 for the
3'libraries and 5 × 103 for the cell surface libraries). The pooled libraries were sequenced on a
Illumina Novaseq 6000 S2 (paired-end, 28+94 bp).

Table 6.7.: Thermocycle protocol for
hashtags
temperature time cycles

98 °C 2 min

98 °C 20 s
64 °C 30 s 15
72 °C 20 s

72 °C 5 min
4 °C hold

Table 6.8.: Thermocycle protocol for
antibody-derived tags
temperature time cycles

98 °C 2 min

98 °C 20 s
60 °C 30 s 18
72 °C 20 s

72 °C 5 min
4 °C hold

6.3. Bioinformatics methods

6.3.1. Generation of gene expression count matrices

The alignment of the single cell RNA sequencing data to the mouse reference genome (GRCm38,
release 8.4) including filtering were performed using the 10x Genomics Cell Ranger software
(v3.1.0). The resulting .bam-files were used as input for further analysis with velocyto (v0.17.17)
(La Manno et al. 2018) to generate the count matrices for the spliced and unspliced RNA counts.

6.3.2. Data processing and quality control

The Python software package SCANPY (v1.6.0) was used for all further analyses (Wolf et al.
2019). Cells that expressed less than 200 genes, had less than 20 counts and more then 7.5 %
mitochondrial gene counts have been excluded from the analysis. Gene counts were per-cell-
normalised and (log+ 1)-transformed. Highly variable genes were computed using the first 4000
most highly variable genes for all samples.

6.3.3. De-multiplexing of samples

As the cells from spleen and lymph nodes were pooled into one well during the preparation of
the gel-beads emulsion (Step 1 of Chromium Single Cell 3'GEM v3 user guide), the samples were
first de-multiplexed. Separation of spleen from lymph node samples based on the expression of
the oligonucleotide-antibody label (spleen: hashtag 1, lymph nodes: hashtag 2).

117



The expression of the hashtags was (log+1)-transformed and an expression threshold of 4 was set
for both hashtags. The cells with a hashtag 1 expression count ≥ 4 were assigned to be spleen-
derived, and cells with a hashtag 2 expression count ≥ 4 as derived from the lymph nodes.
The cells expressing both, hashtag 1 and 2 were classified as doublets and removed before the
downstream analysis.

6.3.4. Proteogenomics analysis

For the surface immune-phenotyping, the counts for the antibody derived tags (ADTs) were
per-cell- normalised and (Log + 1)-transformed. Expression levels of the surface markers were
visualised in the UMAP representation.

6.3.5. Removal of doublets

For data sets containing n > 5000 cells, doublet cells were identified and removed using the
solo doublet detection tool (Bernstein et al. 2020). Solo was run using the standard parameter
settings. Using the hashtag label information, a list containing the known doublets was passed
when running solo. For the LCMV Armstrong day 6 samples 935 doublets and for the LCMV
Armstrong day 7 data set 126 doublets were detected and excluded from the analysis. In the
LCMV clone 13 data sets at day 6 and day 7, 889 cells and 133 cells were classified as doublets
and as well removed before further analyses.

6.3.6. LCMV data integration and batch correction

Our own day 6 spleen single cell RNA sequencing data sets were combined with previously
published data from (Chen et al. 2019, Kurd et al. 2020, Yao et al. 2019). By integrating these
data sets, we were able to investigate the T cell differentiation dynamics during LCMV infection
in a time-resolved manner. Therefore, the .fastq- or .bam- files of the published data sets were
downloaded from the genesetomnibus or ENA data base and aligned with the 10x Genomics
Cell Ranger Software (v3.1.0.). The .bam-file were first converted to .fastq-files using the 10x
Genomics bam2fastq (v1.2.0) command. Then the count matrices for the spliced and unspliced
reads were generated with velocyto (v0.17.17) (La Manno et al. 2018). All count matrices
were combined by concatenation in SCANPY (v1.6.0) before initial filtering for cells with more
than 200 expressed genes, more than 20 spliced and 10 unspliced counts and lower than 7.5
% mitochondrial genes. The top 4000 highly variable genes (flavor="Seurat") were selected for
the combined data set. As the different data sets exhibited up to a 10 fold variance in their
expression of mitochondrial genes, the percentage of mitochondrial genes was regressed out with
a linear model using the scanpy.pp.regress_out command. The batch-corrected neighbourhood
graph was computed using the SCANPY implementation of batch-balanced k nearest neighbour
method (bbknn, v1.3.7) (Polański et al. 2020) based on n = 30 principal components, k = 30
neighbours. Data sets from the same publication were considered as the same batch.
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6.3.7. Cell cycle scoring

To assign cell cycle phases the spliced count matrix of the combined data set was first filtered for
genes that were minimally expressed in 3 cells, then per-cell-normalised, (log + 1)-transformed
and scaled to unit variance and zero mean. The cell cycle stage scoring was performed as by
(Satija et al. 2015) given two lists of genes associated to S phase and G2M phase (Kowalczyk
et al. 2015). Cells assigned a G2M-phase score > 0.5 were classified as being in G2M stage, cells
with a S phase score > 0.5 to S-phase respectively. Cells with S-phase and G2M-phase scores
< 0.5 were labelled as G1.

6.3.8. Dimensionality reduction and clustering

The principal component analysis (PCA) was performed only on the highly variable genes. The
Leiden algorithm (Traag et al. 2019) with a resolution r = 0.8 was used for the clustering.
The neighbourhood graph fort the combined data sets was computed as described in section
6.3.6. For analysis of single datasets, the neighbourhood graph was computed based on n =
30 principal components and k = 30 neighbours. The uniform manifold approximation and
projection (UMAP) and the diffusion map projections were calculated on the default parameters
in SCANPY (v1.6.0).

6.3.9. Differential gene expression testing and GO term analysis

The marker genes were identified by computing a ranking for highly differentially genes in
SCANPY (v1.6.0). The scanpy.tl.rank_genes_group command was used and the differentially
expressed genes were obtained by the comparison between Armstrong versus clone 13 per time-
point. The differential gene expression analysis to compare the Leiden clusters with each other,
was performed using the MAST R package (v 1.10.0) (Finak et al. 2015). Gene Ontology
analyses were performed with Metascape 3.0 using the list differential gene expression analysis
from MAST and visualised in Python using matplotlib (v 3.3.1). A cut-off of 0.05 for the
adjusted p-value and a Log2-fold change of bigger than 1.1 was chosen.

6.3.10. T cell signature scoring

The signature scores were calculated using the R package VISION (v.2.1.0) (DeTomaso et al.
2019). Therefore, the count matrices were normalised to total counts per cell and scaled to the
median of total counts per sample. Genes with high expression contributed positively to the
signature, while genes with low expression conversely contributed negatively.

6.3.11. Trajectory inference analysis

The RNA velocities within a stochastic model (Bergen et al. 2020) were computed for each time
point individually using the scVelo Python tool (v.0.2.2). Partition-based graph abstraction
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(PAGA) (Wolf et al. 2019) connectivities within cell clusters were computed taking into account
the RNA velocity information. Using the R package CytoTRACE (v.0.3.3) (Gulati et al. 2019)
and running iCytoTRACE on multiple data sets, where data from the same publications were
considered as the same batch, a differentiation score was computed for each cell. For diffusion
pseudo-time analysis (Angerer et al. 2016) with SCANPY (v.1.6.0), a cell with a CytoTRACE
score of 1.0 within the cMP-subset was randomly chosen as root cell and n = 10 diffusion
components were used.

6.3.12. Inferring cell cycle drop out from scRNA-seq data

RNA velocities using the stochastic method were computed only on genes related to cell cycle
using scVelo (v.0.2.2) (Bergen et al. 2020). Firstly, the count matrices for each individual time
point were filtered for the genes on the cell cycle gene list (Kowalczyk et al. 2015) and genes
that were expressed in less than 3 cells were excluded.
Next, the count matrices were normalised to total counts per cell, (log + 1) -transformed and
scaled to zero mean and unit variance. As described in section 6.3.7 the cell cycle phases were
calculated based on the S- and G2M-phase score of a cell. Then, the principal component
analysis was performed on all the cell cycle genes, the neighbourhood graph was obtained using
n = 2 − 5 principal components and k = 30 neighbours and the UMAP in cell cycle gene
space was computed. Based on k = 30 neighbours and n = 30 principal components the first
and second order moments were computed for each cell. Then the velocities were estimated
and the velocity graph was computed. The single cell velocities were then projected in the
UMAP embedding. Areas with high velocity activity (large arrows) indicate movement along
cell cycle gene space and represent cycling cells. The fraction of cycling cells was used to fit the
mathematical model.

6.3.13. Bioinformatics analysis of OTI T cells derived from L.m.-OVA infection

The analyses of the OTI T cells at the days 4.5, 8 and 12 p.i. with L.m.-OVA were performed
by my colleague Jonas Mir in a similar fashion as described before in detail for the P14 T cells
during LCMV infection.
Briefly, the gene expression count matrices were generated as described in section 6.3.1. The
Python software packages SCANPY (v1.4.6) and scVelo (v0.1.25) were used for all further anal-
yses (Wolf et al. 2019). Basic filtering was performed the same way as aforementioned. Highly
variable genes were determined using the R package scater (v1.12.2) (McCarthy et al. 2017).
Data sets were demultiplexed similarly as described in section 6.3.3 but without performing
(log + 1)- transformation and a threshold between 20-120 was used for the hashtags 1-4. Then,
the percentage of mitochondrial gene counts was regressed using a linear model. For the prin-
cipal component analysis (PCA) the default parameter set was used. Clustering based on the
Leiden algorithm (Traag et al. 2019) with a resolution r = 0.8. The neighbourhood graph for
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combined data sets was computed using n = 30 PC and k = 50 neighbours. The UMAP was
calculated on the default parameters in SCANPY (v1.4.6). The trajectory inference analyses
were performed as described in section 6.3.11, except that the RNA velocities were computed
using the deterministic model.

6.3.14. Bioinformatics analysis of LCMV-specific CD8+ TOX knock-out and
wild-type T cells responses during LCMV clone 13 infection

The scRNA-seq data for the Tox knock-out (Tox-/-) and wild-type CD8+ T cells responses at
day 7 after infection with LCMV clone 13 stem from Yao et al. 2019. The gene expression count
matrices were generated as previously described in section 6.3.1. The Python software packages
SCANPY (v1.4.6) and scVelo (v0.1.25) were used for all further analyses (Wolf et al. 2019). We
performed basic filtering the same way as aforementioned and selected the n = 3000 top highly
variable genes (flavor="Seurat"). The UMAP was computed for the pooled cells from wild-type
and Tox-/- progenies. Leiden clustering was performed with a resolution r = 0.6 (Traag et al.
2019). The differential gene expression analysis was performed as described in section 6.3.9.
The RNA velocities were determined for each condition separately using the stochastic method
(La Manno et al. 2018).

6.4. Mathematical and statistical methods

6.4.1. Summary statistics

For comparison between two groups a Mann-Whitney U test was used (GraphPad Prism v8).
We tested for normality using the D’Agostino Pearson omnibus normality test (GraphPad Prism
v8) to identify if values come from a Gaussian distribution. For normally distributed data and
comparison of the group mean over time a one-way ANOVA was performed.
For stochastic modelling, the mean values, the coefficient of variations (CV), as well as the
Pearson correlation between the subsets were used. The errors for the means, the CVs and
the Pearson correlation between the subsets were determined by repetitive sampling using non-
parametric bootstrapping. The errors for the relative subset sizes and the fraction of cycling
P14 T cells at day 4.5, 6, 7 and 8 that were inferred from the scRNA-seq data, were assessed
by taking the square root of the pooled variance. The uncertainties of the fraction of cycling
subsets at day 6 post infection with LCMV Armstrong or c13 were obtained by calculation of
the standard error of the mean (s.e.m.). The uncertainties for the proliferation rates, that were
informed by the cell cycle length measurements, were unknown and therefore set to 10 %. The
evenness of the single T cell-derived population at day 8 was quantified using the Gini index
(Gini 1921). The data used for the mathematical modelling, along with an reference to their
origin, are summarised in Table C.1 in the appendix C.
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6.4.2. Quantification of cell cycle speed and the length of cell cycle phases

Cell cycle length was quantified as previously described by Kretschmer et al. 2020. In brief, a
system of the following three equations has to be solved in order to estimate the duration of the
cell cycle:

p(BrdU+DNA(2N)) = 2(1− ec(tMl−〈TG2M〉)) (6.1)

and

p(BrdU−DNA(4N)) = ec(〈TG2M〉−tMs) − 1, (6.2)

where p(BrdU+DNA(2N)) is the probability of a cell to appear inside the BrdU+DNA(2N )
divided-gate at time tMl with tMl = 3 h. In other words, the mother cells of divided progenies
passed through S-phase during the time window when BrdU was available and divided within
the time of measurement tMl. 〈TG2M〉 denotes the expected mean duration of the G2M-phase.
Furthermore, the fraction of cells not having undergone cell division during the measurement
is captured by p(BrdU−DNA(4N)), the probability of cells that are in the G2M-phase after a
short labelling time tMs with tMs = 0.5 h. The exponential growth rate c is approximated by

c ≈ log(2)
〈D(TDiv)〉 , (6.3)

where 〈D(TDiv)〉 represents the inter-division time distribution. By substitution of equation (6.2)
to equation (6.1), we can solve for c. Further substitution of c into equation (6.3) gives us the
duration of the cell cycle. In order to quantify the mean length for the G1- and G2M-phase, the
following equations (6.4) and (6.5) were evaluated together with equations (6.1) and (6.3).

p(BrdU−DNA(2N)) = 2(e−c(tMs−〈TG2M〉) − ec(〈TG1〉) (6.4)

p(BrdU−DNA(4N)) = ec(〈TG2M〉−tMs) − 1 (6.5)

6.4.3. Mathematical modelling

The mathematical model describing the P14 T cell response after LCMV Armstrong infection
as well as mathematical model for the OTI T cell dynamics after L.m.-OVA infection were both
developed and investigated by Jonas Mir. The mathematical for the LCMV clone 13 infection
and the combined modelling of LCMV Armstrong and clone 13 P14 T cell response was based
on the best-fitting model Jonas Mir found in the LCMV Armstrong and L.m.-OVA infection
setting and was performed by myself. The identification of the model topology underlies the
findings from the RNA velocity analyses of the scRNA-seq data following LCMV Armstrong or
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L.m.-OVA infection and is discussed in detail in section 3.4 and 3.5. The mathematical model
fitting routine to the single cell progenies derived from L.m.-OVA infection and to the LCMV
Armstrong infection was performed by Jonas Mir as described here. The model topology was
defined as described in Chapter 3 in Figure 3.12 H.
Starting from a naïve state, cells diversified and generated offspring associated to three different
subsets (TCF1+, TCF1−CX3CR1low and CX3CR1high for LCMV infection and CD62L+CD27+,
CD62L−CD27+ and CD62L−CD27− for L.m.-OVA infection). These three subsets were further
subdivided into a cycling and a non-cycling compartment.
In this diversification system, the state vector consists of the species

(
N1−5, CA, CB, CC, NCA, NCB, NCC

)
with the number of naïve (N1−5), cycling TCF1+ (or CD62L+CD27+) (CA), cycling TCF1−CX3CR1low

or CD62L−,CD27+ (CB), cycling CX3CR1high or CD62L−,CD27− (CC) and the corresponding
non-cycling TCF1+ (or CD62L+CD27+) (NCA), non-cycling TCF1−CX3CR1low (or CD62L+CD27−)
(NCB), non-cycling CX3CR1high (or CD62L−CD27−) (NCC) cells.
All reactions in our mathematical model, recruitment, proliferation, differentiation and transi-
tions between cycling and non-cycling compartments, were assumed to be Markov processes. In
a Markov system, transitions between states follow an exponential distribution. To introduce
a long-tailed distribution for the recruitment process, several naïve compartments were sequen-
tially linked, as the addition of several exponential distributions with equal rates results in a
gamma distribution.
The ordinary differential equations (ODE) for the first and second cell number moments of the
differentiation model can easily be derived by solving the master equations as in Lestas et al.
2008. Thus, the first order moments are defined as d〈x(t)〉

dt := ∑
i riWi(x) with ri representing

the replacement vector and Wi the species propensity.
In the linear case, the equation above can be written as d〈x(t)〉

dt = A〈x(t)〉+f0, A ∈ Rn×n f0 ∈
Rn where 〈x(t)〉 denotes the expected mean of the state x at time t, A is the stoichiometric
matrix multiplied with the reaction rate vector ~θ and the constant f0. In this case, ~x(t) =
(N1N2N3N4N5CACBCCNCANCBNCC)T ,
~θ = (rN1N2 rN2N3 rN3N4 rN4N5 rN5CA rCACB rCBCC rCANCA rCBNCB rCCNCC λCA λCB λCC)T and
f0 = 0. The moments equations for the evolution of the states’ means can be derived according
to equation d〈x(t)〉

dt = A〈x(t)〉 and are summarised in Appendix C.
Similarly, in a linear case, the second order moments are defined as in Lestas et al. 2008:
dΣ(t)

dt = AΣ(t) + Σ(t)AT + ∑
i riWi(〈x(t)〉)rTi . Where, Wi is the species propensity that was

introduced in the equation for the first order moments.
Solving the equation for the second order moments, we obtain the ODEs for the variances and
covariances (Appendix C, equations (C.1),(C.2) and (C.3)).
Accordingly, we derived the moments for the model of T cell exhaustion. For the arrested
model of T cell exhaustion, we also used the single-cell responses after LCMV clone 13 infection.
The TCF1+ subset constituted the MP and MEX T cells, the TCF1−CX3CR1low the EE and
EEX T cells and the CX3CR1high subset the TEF and TEX T cells. For moments equation
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derivation of the arrested T cell model, we used ~x(t) = (N AfBfCfAexBexCex)T and ~θ =
(rNAf rAfBf rBfCf rAfAex rBfBex rCfCex λAf λBf λAex λBex)T . The equations for the arrested model of
exhaustion are listed in Appendix C, equations (C.4),(C.5) and (C.6)).

6.4.4. Fitting the model to the data

Parameter estimation was performed by solving the non-linear least-squares problem in Matlab
(v2020a). All models were fit to the mean values, and the coefficients of variation (CV) and the
Pearson correlation coefficients (ρ) of the single-cell descendants at day 8 p.i.
For modelling the LCMV Armstrong infection, we used all three correlation coefficients between
the subsets, but for LCMV clone 13 infection, only a few single-cell progenies were found in the
CX3CR1high compartment, therefore only the correlation coefficient between the TCF1+ and
TCF1−CX3CR1low was used.
In addition, the fraction of cycling cells inferred from the scRNA-seq data at the day 4.5, 6,
7 and 8 (as described in section 6.3.12, the fraction of cycling cells in each subset at day 6
(flow cytometric measurements of the phospho-Rb protein) and the ratio of the cell cycle length
between the TCF1+ vs. TCF1− subsets. The uncertainties of those quantities were used as
described in section 6.4.1.
In the division drop out model we have 11 compartments, whereas from the experimental single
cell fate-mapping data we have only the information for the population distribution in terms
of their expression of TCF1+, TCF1−CX3CR1low and CX3CR1high and not if a cell was yet
arrested or still progressing through cell cycle at the time point of measurement. Therefore, to
describe the first and second order moments, we combined the cycling and non-cycling TCF1+,
as well as the naïve compartments to the one subset named TCF1+. The same was as well
done for the TCF1−CX3CR1low and CX3CR1high subsets, that comprised of the cycling and
non-cycling TCF1−CX3CR1low and cycling and non-cycling CX3CR1high cells, respectively.
For the evaluation of the solution, the means of each sub-compartment were added and for
the coefficients of variation and correlation coefficients, the variance sum law for the dependent
variable was applied. This means, for the variances were added to two times the co-variance of
each sub-compartment to the other.
The combination of the T cell compartments was as well employed for the arrested model of
T cell exhaustion. However, in the latter model only one naïve compartment and instead of
cycling and non-cycling, the grouping of the subsets was performed based on the functional (f)
and exhausted (ex) states.
The best fit was determined by a local optimisation based algorithm with 1000 different random
starting values, sampling from a Latin hypercube with an edge length of 7 (7, for the extended
model of differentiation and 8 for the arrested model of T cell exhaustion) with random initial
values.
We performed χ2- minimisation with the above mentioned summary statistics for the objective
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function: χ2 =
n∑
i=1

(
〈Yi〉−Ȳ d

i
σYi

)2
. With 〈Yi〉 denoting the model prediction, Ȳ d

i standing for the
data and error of the data point σYi .

In cases where the model was fit to the LCMV Armstrong data, we used the mean and the
CV for each subset from day 8 p.i. after LCMV Armstrong infection, the pair-wise Pearson
correlation coefficients, the relative subset sizes at day 4.5, 6, 7 and 8 p.i. for the TCF1+ and
TCF1−CX3CR1low subset, and the fractions of cycling cells inferred from the scRNA-seq on
day 3, 4, 4.5, 5, 6, 7 and 8 p.i. Also, the ratio of the proliferation rate between the TCF1+ and
TCF1− subset from the day 4.5 p.i. measurement was used in the objective function.

For parameter estimation to describe the LCMV clone 13 infection, the objective function con-
tained the mean values for the three subsets, the CV for the TCF1+ and TCF1−CX3CR1low

subset and the pair-wise Pearson correlation coefficient for TCF1− and TCF1−CX3CR1low. In
addition, the relative subset sizes as previously described for the LCMV Armstrong infection,
the fraction of dividing cells inferred from the scRNA-seq on the days 4.5, 7 and 8 as well as the
fraction of p-Rb-positive P14 T cells for each subset at day 6 was used. Furthermore, we also
included the ratio of measured division rate between the TCF1+ and TCF1− subset from the
day 4.5 p.i. measurement. To estimate the parameter in a model where both infections were fit
together, we used χ2 = χ2

Arm + χ2
c13 for the objective function.

For parameter estimation to describe the LCMV clone 13 infection using the arrested model
of T cell exhaustion, the mean values for the three subsets, the CV for the TCF1+ and
TCF1−CX3CR1low subset and the pair-wise Pearson correlation coefficient for TCF1− and
TCF1−CX3CR1low were included in the cost function. In addition, the cost function also in-
cluded the relative subset sizes, the fraction of exhausted T cells based on the expression of
PD1 and TOX on day 8 p.i. Furthermore, we also included the ratio of measured division rate
between the TCF1+ and TCF1− subset from the day 4.5 p.i. measurement. Due to lack of
experimental data on the division speed of the exhausted subset, we weighted the measured
proliferation rate using the subset sizes.

Under the assumptions that the errors in our linear models are independent and normally
distributed, then β̂ := arg minβ χ2(β) = argmaxβ logL(β)withβ = (θ, y). Minimising χ2 with
respect to a set of parameters θ and a set of data y is equivalent to maximisation of the log-
likelihood logL.

6.4.5. Model comparison and selection

The different models were ranked according to the corrected Akaike information criterion for
small sample sizes (Cavanaugh 1997),

AICc = 2k − 2logL+ 2k(k + 1)
(n− k − 1) . (6.6)
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Where k denotes the number of parameters used in the model and n number of data points at
day 4.5, 6, 7 and 8. Given that logL = −1

2χ
2
min + constant,

AICc = χ2
min + 2k + 2k(k + 1)

(n− k − 1) + constant. (6.7)

We used equation (6.7) to evaluate the models. We therefore calculated the AICc for each
model and compared the difference of each tested model i to the best fitting model AICcmin,
∆AICci = AICci − AICcmin. Models with a ∆AICc > 10 did not support the data and were
omitted from further consideration.
For the combined analysis of the LCMV Armstrong and LCMV clone 13 derived P14 T cell
responses, forward selection (Friedman et al. 2014) was employed to identify the mathematical
model providing best support for both of the data sets. When performing forward selection, we
started with the simplest model that contained k = 7 parameters, i.e. the parameters were set
to be the same for both infections. In the first round of the model selection process, 6 out of 7
parameters were kept the same for both infections, except for one that was iteratively allowed
to differ. Thus, during the first round of model selection a total of 8 parameters were fit (6
fixed, and 2 infection-specific). After the first selection round, the model with the lowest χ2 was
chosen and additional parameter was iteratively altered. This way, the number of parameters
were successively increased during each new round of the fitting routine until the χ2 -value did
not decrease any further. Then, the AICc was calculated for each model

6.4.6. Confidence intervals for the model parameters

For the best performing model, we computed the confidence intervals (CI) of each parameter
using the profile likelihood method (Venzon et al. 1988). Briefly, in this method each parameter
θi is fixed to its best fit value and χ2 is minimised over the remaining parameters. Then, to
obtain the 95 % confidence region of each parameter, the parameter values at ∆χ2

min(θi) =
χ2

min(θi)− χ2
min = 3.84 were taken.

6.4.7. Model simulations

All the simulations were based on Gillespies stochastic simulation algorithm (Gillespie 1976).
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7. Abbreviations

7AAD 7-aminoactinomycin D
ACD asymmetric cell division
ACT Ammonium chloride-Tris
APC Allophycocyanin
APCs antigen-presenting cells
Arm Armstrong
AIC Akaike information criterion

bbknn batch-balanced k nearest neighbour
BHI brain heart infusion growth medium
BrdU 5-Bromo-2’-deoxyuridine
BSA bovine serum albumin
BV brilliant violet

c13 clone 13
CCL3 C-C Motif Chemokine Ligand 3
CCL4 C-C Motif Chemokine Ligand 4
CCL5 C-C Motif Chemokine Ligand 5
CD cluster of differentiation
CFU colony forming units
CI confidence interval
CMP central memory precursor T cell
CV coefficient of variation
CX3CR1 C-X3-C motif chemokine receptor 1

d days
DC dendritic cell
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid

EDTA Ethylenediaminetetraacetic acid
EdU 5-Ethynyl-2’-deoxyuridine
EMP effector memory precursor T cell
EE early effector T cell
EFF effector T cell

FCS fetal calf serum
FITC Fluorescein-isothiocyanat
FUCCI Fluorescent ubiquitination-based cell cycle indicator

G0 gap 0
G1 gap 1
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G2/M gap 2/ mitosis
GEM gel bead in emulsion
GFP green fluorescent protein
gp gylcoprotein
Gzma Granzyme a
Gzmb Granzyme b

h hours

IL Interleukin
IL2Rα Interleukin 2 receptor alpha
IL7R Interleukin 7 receptor
i.p. intraperitoneal
Irf4 Interferon Regulatory Factor 4
Irf8 Interferon Regulatory Factor 8
i.v. intravenous

KLRD1 Killer Cell Lectin Like Receptor D1
KLRG1 Killer Cell Lectin Like Receptor G1

LCMV Lymphocytic Choriomeningitis Virus
L.m. Listeria monocytogenes
L.m.-OVA Listeria monocytogenes expressing ovalbumin

MFI median fluorescent intensity
MKI67 Marker Of Proliferation Ki-67
MP memory precursor T cell
MVA Modified vaccinia virus Ankara
MVA-OVA ovalbumin-expressing Modified vaccinia virus Ankara

N Naïve
Nur77 Nuclear Receptor Subfamily 4 Group A Member 1

OVA ovalbumin
OX40 TNF Receptor Superfamily Member 4

padj adjusted p-value
PAGA Partition-based graph abstraction
PBS phage forming units
PD1 Programmed Cell Death 1
PE phycoerythrin
PFA paraformaldehyde
PFU phage forming units
p.i. post infection
PI propidium iodide
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p-Rb phosphprylated Retinoblstoma protein
QC quality control

Rack1 Receptor For Activated C Kinase 1
Rag Recombination activating gene
RNA Ribonucleic acid
RPM rotations per minute

S synthesis
scRNA-seq single cell RNA-sequencing
Sell L-selectin (CD62L)
s.e.m. standard error of the mean

TCF1 T cell factor 1
TCR T cell receptor
Tim3 T-cell immunoglobulin and mucin-domain containing-3
TOX Thymocyte selection associated high mobility group box
Tox-/- Tox knock-out

UMAP uniform manifold approximation and projection

WT wild-type

•
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Table A.1.: Summary statistics and bootstrapped errors of the 40 single-cell derived P14 T
cell responses at day 8 following the infection with LCMV Armstrong.

statistical quantity subset data

mean total cell number (1577± 846.)
absolute number of MP (19.4± 11.3)
absolute number of EMP (907± 599)
absolute number of EFF (636.± 357)

CV total cell number (3.5± 1.1)
absolute number of MP (3.7± 0.8)
absolute number of EMP (3.6± 0.9)
absolute number of EFF (3.6± 1.1)

correlation coefficient absolute number of MP vs. EMP (0.79± 0.36)
absolute number of MP vsb EFF (0.48± 0.81)
absolute number of EMP vs. EFF (0.88± 0.16)

Gini coefficient total cell number (0.91)
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Figure A.1.: The progressive model of T cell differentiation describes the first and second
order moments of the P14 T cell response after LCMV Armstrong infection. A Topology of
the progressive model. The differentiation rates are described by r0−1 and the subset-specific
proliferation rates are represented as λMP, λEMP and λEFF. The best fit of the progressive model
to B the means, C the coefficients of variation and D the three pair-wise correlation coefficients.
Data as in Figure 3.5 and 3.6
.
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Figure A.2.: Sorting strategy for the re-isolation of CD8+ T cells after infection with LCMV
Armstrong or L.m.-OVA. Pseudo-colour FACS plots are showing the gating strategy for the
scRNA-seq experiments. The re-isolation of the P14 T cells from the spleens at day 6 p.i. with
LCMV Armstrong is shown as representative. The same gating strategy was applied for the
re-isolation of the P14 or OTI T cells after LCMV clone 13 or L.m.-OVA infection, respectively.
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Figure A.3.: Inference of cell cycle arrest from scRNA-seq data and RNA velocities. A- B
UMAP representation computed on cell cycle genes from Tirosh et al. 2016 at the days 4.5, 6
and 8 A with RNA velocities as in Figure 3.10 C and A displaying the proliferation signature
score. C As in B, but at day 7 p.i.

158



A B

Leiden

S
ub
se
t

cMP

25 50 75 100

ncM

cEMP

ncEM

cEFF

ncTEF0.1 0.2 0.3

Cx3cr1
Tcf7

Leiden

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

cMP
ncM
cEMP
ncEM
cEFF
ncTEF

Subset
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infection. A Dot plot depicting the expression of Tcf7 and Cx3cr1 genes in each Leiden cluster.
Colour represents the mean expression and dot size, the fraction of cells in each group. B
Composition of subsets based on the Leiden clusters. Dot size represents the fraction of cells
from the contributing Leiden cluster.

Figure A.5.: Diffusion pseudo-time predicts similar differentiation trajectory as the RNA ve-
locity and the CytoTRACE analysis. A-D P14 T cells after the LCMV Armstrong infection
in the diffusion map embedding. Diffusion map of the LCMV Armstrong data sets at the day
4.5, 6, 7, 8 and 21 p.i. as in the Figures 3.7, 3.10 and 3.11 coloured by A time point p.i. and by
B subset grouping. C-D Diffusion pseudo-time analysis projected in C diffusion embedding.
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Figure A.6.: During infection with L.m.-OVA cells from the MP subset cycle slower compared
to the non-MP subset. C57BL/6 mice received 1 × 102 − 5 × 104 naïve OTI T cells and were
subsequently infected with 5× 103 CFU L.m.-OVA. On day 4.5, 8 and 12 p.i. phosphorylation
of the Rb protein on the Y807/811 residues was assessed by flow cytometry. A Fraction of
phospho-Rb+ OTI T cells over time. Mean and s.e.m. n = 6− 7 per time point, data from one
out of two similar experiments. B and C as in A, but 3 h (B) or 0.5 h (C) before analysis of
the splenocytes at day 4.5, the mice received 1 mg/mL BrdU i.p. B Pie chart with the cell cycle
phase distribution for the MP (CD62L+) and non-MP (CD62L−) after 0.5 h of BrdU labelling
(n = 1). C Bar graphs depict the percentage of cycling cells gated as in Figure 3.2. Mean and
std. *P < 0.05, Man-Whitney U rank test. D Quantified cell cycle speed for MP and non-MP
cells and their corresponding cell cycle stage duration based on the mathematical quantification
of the data shown in B and C. E Contribution of each cell cycle phase to the overall cell cycle
length. Data as in D.
Data stems from own experiments, the cell cycle quantification in D was performed by my
colleague Jonas Mir.
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Figure B.1.: Analysis of the P14 T cells transcriptomes during the expansion phase of the
T cell differentiation. A Scheme of experimental scRNA-seq set-up. C57BL/6 mice received
naïve P14 T cells one day before infection with either 2× 105 pfu LCMV Armstrong or 2× 106

LCMV clone 13. On day 4.5, 6, 7 and 8 p.i. P14 T cells were collected from the spleen and
enriched by flow cytometry before performing scRNA-seq (10 × Genomics). The data sets from
day 4.5 and 7 stem from Yao et al. 2019, day 8 from Chen et al. 2019 and the data from day
6 p.i. was generated in-house. B UMAP of combined analysis of the eight data sets from both
infections. Colour indicates the infection and the publication from which the data originates. C
UMAP plot from the combined computed embedding after batch correction with bbknn (left)
or Harmony (right) shown for LCMV Armstrong and clone 13, coloured by time-point p.i.

Table B.1.: Summary statistics of the 29 single-cell derived P14 T cell responses at day 8 p.i.
LCMV clone 13 with bootstrapped errors.

statistical quantity subset data

mean total cell number (497± 90)
absolute number of MP (39± 13)
absolute number of EMP (250± 82)
absolute number of EFF (2.3± 0.8)

CV total cell number (1.7± 0.3)
absolute number of MP (1.9± 0.4)
absolute number of EMP (1.8± 0.3)

correlation coefficient absolute number of MP vs. EMP (0.47± 0.15)
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Figure B.2.: Disparate single-cell fates after the infection with LCMV Armstrong or clone 13.
A Representative pseudo-colour plot of the 5× 102−cell derived response on their expression of
TCF1, Tim3 and CX3CR1 at day 8 p.i. with LCMV Armstrong (top row) or clone 13 (bottom
row). B Total size of the single-cell derived progenies at day 8 p.i. with LCMV Armstrong or
clone 13. E Representative pseudo-colour plots of single-cell progenies ordered from large (top)
to small (bottom) showing the expression of TCF1, Tim3 and CX3CR1 at day 8 p.i. for LCMV
Armstrong (left) or clone 13 (right). Experiments were performed by Lorenz Kretschmer and
Dr. med. Veit Buchholz. n = 6−26, data are pooled from two to four independent experiments.
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Figure B.3.: TOX is expressed to low levels after acute infection with LCMV Armstrong.
A Experimental set-up. 5 × 102 naïve P14 T cells were adoptively transferred into C57BL/6
recipients that were infected with either LCMV Armstrong or LCMV clone 13 the next day. On
day 8 p.i. the splenic P14 T cells were isolated and analysed by flow cytometry. Based on the
expression for TCF1 and KLRG1, the cells were grouped into MP, EE and EFF subsets. Then,
the fraction of PD1+TOX+ cells in the MP, EE and EFF subsets were analysed. B Bar graph
depicts the percentage PD1+TOX+ P14 T cells following infection with LCMV clone 13. n = 6,
Data from two independent experiments. Mean and s.e.m. C Bar graph is showing the fraction
of PD1+TOX+ P14 T cells on day 8 after infection with LCMV Armstrong. n = 5, Data from
two independent experiments. Mean and s.e.m. Data stems from Dr. med. Veit Buchholz and
Lorenz Kretschmer.
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Figure B.4.: Mathematical modelling of P14 T cell responses allowing exhaustion only of the
MP subset. A Scheme of the mathematical model. B Best fit to the mean, C the CV and D the
correlation coefficient of the P14 T cells from day 8 after LCMV clone 13 infection. E Using the
model in A, the best fit to the relative cell number in each subset, F the fraction of PD1+TOX+

MEX, EEX or TEX subset and G to the relative proliferation rate is shown. Experimental data
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C.1. Summary of experimental data

The experimental data used to mathematically model CD8+ T cells responses directed against
LCMV Armstrong, LCMV clone 13 or L.m.-OVA infection were obtained from different sources.
Table C.1 provides an overview of the data type, its origin and names the person who performed
the experiment and/or analysed the data, grouped by infection system.

Table C.1.: Summary of experimental data used for mathematical modelling in this study.
infection model data type data origin and analysis

LCMV Armstrong single cell fate mapping unpublished data, Buchholz lab
rel. subset sizes own data and analysis
in vivo proliferation own data and analysis
cell cycle length quantification own data, analysis by Jonas Mir
cell cycle drop out own data and analyses
scRNA-seq day 6 own data and analysis
scRNA-seq day 4.5 and 7 Yao et al. 2019, own analysis
scRNA-seq day 8 Chen et al. 2019, own analysis
scRNA-seq day 3-7 Kurd et al. 2020, own analysis

LCMV clone 13 single cell fate mapping unpublished data, Buchholz lab
rel. subset sizes own data and analysis
exhaustied subsets day 8 unpublished data, Buchholz lab
in vivo proliferation own data and analysis
cell cycle length quantification own data, analysis by Jonas Mir
cell cycle drop out own data and analyses
scRNA-seq day 6 own data and analysis
scRNA-seq day 4.5 and 7 Yao et al. 2019, own analysis
scRNA-seq day 8 Chen et al. 2019, own analysis

L.m.-OVA single cell fate mapping Buchholz et al. 2013a
rel. subset sizes Buchholz et al. 2013a
in vivo proliferation own data and analysis
cell cycle length quantification own data, analysis by Jonas Mir
cell cycle drop out own data and analyses
scRNA-seq day 4.5, 8 and 12 own data, analysis by Jonas Mir
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C.2. ODE system for first and second order moments for the cell
cycle drop out extended progressive model

The ODEs, which describe the development of the mean values over time in the cell cycle
dropout extended progressive model, were derived using the moments equations as described
under section 6.4.3 and are listed here:

d〈N1(t)〉
dt = −rN1N2〈N1(t)〉

d〈N2(t)〉
dt = rN1N2〈N1(t)〉 − rN2N3〈N2(t)〉

d〈N3(t)〉
dt = rN2N3〈N2(t)〉 − rN3N4〈N3(t)〉

d〈N4(t)〉
dt = rN3N4〈N3(t)〉 − rN4N5〈N4(t)〉

d〈N5(t)〉
dt = rN4N5〈N4(t)〉 − rN5CA〈N5(t)〉

d〈CA(t)〉
dt = 2rN5CA〈N5(t)〉 − (rCACB − λA + rCANCA)〈CA(t)〉

d〈CB(t)〉
dt = rCACB〈CA(t)〉 − (rCBCC − λB + rCBNCB)〈CB(t)〉

d〈CC(t)〉
dt = rCBCC〈CB(t)〉+ (λC − rCCNCC(t))〈CC(t)〉

d〈NCA(t)〉
dt = rCANCA〈CA(t)〉 − rCANCA〈NCA(t)〉

d〈NCB(t)〉
dt = rCBNCB〈CB(t)〉+ rNCANCB〈NCA(t)〉 − rNCBNCB〈NCB(t)〉

d〈NCC(t)〉
dt = rCCNCC〈CC(t)〉+ rNCBNCC〈NCB(t)〉. (C.1)

The ODEs describing the time evolution of the variances and co-variances for the cell cycle arrest
extended progressive model were derived according to the second moments and the equations
for the variances are summarised here:

dΣN1(t)
dt = −2rN1N2ΣN1(t) + rN1N2〈N1(t)〉

dΣN2(t)
dt = 2rN1N2ΣN1N2(t)− 2rN2N3ΣN2(t) + rN1N2〈N1(t)〉+ rN2N3〈N2(t)〉

dΣN3(t)
dt = 2rN2N3ΣN2N3(t)− 2rN3N4ΣN3(t) + rN2N3〈N2(t)〉+ rN3N4〈N3(t)〉

dΣN4(t)
dt = 2rN3N4ΣN3N4(t)− 2rN4N5ΣN4(t) + rN3N4〈N3(t)〉+ rN4N5〈N4(t)〉

dΣN5(t)
dt = 2rN4N5ΣN4N5(t)− 2rN5CAΣN5(t) + rN4N5〈N4(t)〉+ rN5CA〈N5(t)〉

dΣCA(t)
dt = 4rN5CAΣN5CA(t) + 4rN5CA〈N5(t)〉 − 2(rCACA − λA + rCANCA)ΣCA(t)

+ (λA + rCACA + rCANCA)〈CA(t)〉
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dΣCB(t)
dt = 2rCACBΣCACB(t) + rCACB〈CA(t)〉 − 2(rCBCC − λB + rCBNCB)ΣCACB(t)

+ (rCBCC + λB + rCBNCB)〈CB(t)〉
dΣCC(t)

dt = 2rCBCCΣCBCC(t) + rCBCC〈CB(t)〉+ 2(λA − rCCNCC)ΣCC(t)

+ (λA + rCCNCC)〈CC(t)〉
dΣNCA(t)

dt = 2rCANCAΣCANCA(t) + rCANCA〈CA(t)〉 − 2rCANCAΣNCANCA(t)

+ rCANCA〈NCA(t)〉
dΣNCB(t)

dt = 2rCBNCBΣCBNCB + rCBNCB〈CB(t)〉+ 2rNCANCBΣNCBNCC(t)

+ rNCANCB〈NCA(t)〉 − 2rNCBNCCΣNCB(t) + rNCBNCC〈NCB(t)〉
dΣNCC(t)

dt = 2rCCNCCΣCCNCC(t) + rCCNCC〈CC(t)〉+ 2rNCBNCCΣNCBNCC(t)

+ rNCBNCC〈NCB(t)〉, (C.2)

and the equations for the co-variances here:

dΣN1N2(t)
dt = rN1N2ΣN1(t)− (rN1N2 + rN2N3)ΣN1N2(t)− rN1N2〈N1(t)〉

dΣN1N3(t)
dt = rN2N3ΣN1N2(t)− (rN1N2 + rN3N4)ΣN1N3(t)

dΣN1N3(t)
dt = rN2N3ΣN1N2(t)− (rN1N2 + rN3N4)ΣN1N3(t)

dΣN1N4(t)
dt = rN3N4ΣN1N3(t)− (rN1N2 + rN4N5)ΣN1N4(t)

dΣN1N5(t)
dt = rN4N5ΣN1N4(t)− (rN1N2 + rN5CA)ΣN1N5(t)

dΣN1CA(t)
dt = 2rN5CAΣN1N5(t)− (rN1N2 + rCACB − λA + rCANCA)ΣN1CA(t)

dΣN1CB(t)
dt = rCACBΣN1CA(t)− (rN1N2 + rCBCC − λB + rCBNCB)ΣN1CB(t)

dΣN1CC(t)
dt = rCBCCΣN1CB(t)− (rN1N2 − λB + rCCNCC)ΣN1CC(t)

dΣN1NCA(t)
dt = rCANCAΣN1CA(t)− rN1N2ΣN1NCA(t)

dΣN1NCB(t)
dt = rCBNCBΣN1CB(t)− rN1N2ΣN1NCB(t)

dΣN1NCC(t)
dt = rCCNCCΣN1CC(t)− rN1N2ΣN1NCC(t)

dΣN2N3(t)
dt = rN1N2ΣN1N3(t) + rN2N3ΣN2(t)− (rN2N3 + rN3N4)ΣN2N3(t)− rN2N3〈N2(t)〉

dΣN2N4(t)
dt = rN1N2ΣN1N4(t) + rN3N4ΣN2N3(t)− (rN2N3 + rN4N5)ΣN2N4(t)

dΣN2N5(t)
dt = rN1N2ΣN1N5(t) + rN4N5ΣN2N4(t)− (rN2N3 + rN5CA)ΣN2N5(t)
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dΣN2CA(t)
dt = rN1N2ΣN1CA(t) + 2rN5CAΣN2N5(t)− (rN2N3 + rCACB − λA + rCANCA)ΣN2CA(t)

dΣN2CB(t)
dt = rN1N2ΣN1CB(t) + rCACBΣN2CA(t) − (rN2N3 − rCBCC + λB − rCBNCB)ΣN2CB(t)

dΣN2CC(t)
dt = rN1N2ΣN1CC(t) + rCCCCΣN2CB(t) − (rN2N3 − λB + rCCNCC)ΣN2CC(t)

dΣN2NCA(t)
dt = rN1N2ΣN1NCA(t) + rCANCAΣN1CA − rN2N3ΣN2NCA(t)

dΣN2NCB(t)
dt = rN1N2ΣN1NCB(t) + rCBNCBΣN1CB − rN2N3ΣN2NCB(t)

dΣN2NCC(t)
dt = rN1N2ΣN1NCC(t) + rCCNCCΣN1CC − rN2N3ΣN2NCC(t)

dΣN3N4(t)
dt = rN2N3ΣN2N4(t) + rN3N4ΣN3(t)− (rN3N4 + rN4N5)ΣN3N4(t)− rN3N4〈N3(t)〉

dΣN3N5(t)
dt = rN2N3ΣN2N5(t)− rN4N5ΣN3N4(t)− (rN3N4 + rN5CA)ΣN3N5(t)

dΣN3CA(t)
dt = rN2N3ΣN2CA(t) + 2rN4CAΣN3N5(t)− (rN3N4 + rCACB − λA + rCANCA)ΣN3CA(t)

dΣN3CB(t)
dt = rN2N3ΣN2CB(t) + rCACBΣN3CA(t)− (rN3N4 + rCBCC − λB + rCBNCB)ΣN3CB(t)

dΣN3CC(t)
dt = rN2N3ΣN2CC(t) + rCBCCΣN3CB(t) + (λC − rCCNCC)ΣN3CC(t)

dΣN3NCA(t)
dt = rN2N3ΣN2NCA(t) + rCANCAΣN3CA(t) + rN3N4ΣN3NCA(t)

dΣN3NCB(t)
dt = rN2N3ΣN2NCB(t) + rCBNCBΣN3CB(t) + rN3N4ΣN3NCB(t)

dΣN3NCC(t)
dt = rN2N3ΣN2NCC(t) + rCCNCCΣN3CC(t) + rN3N4ΣN4N5(t)

dΣN4N5(t)
dt = rN3N4ΣN3N5(t) + rN4N5ΣN4(t)− (rN4N5 + rN5CA)ΣN4N5(t)− rN4N5〈N4(t)〉

dΣN4CA(t)
dt = rN3N4ΣN3CA(t) + 2rN5CAΣN4N5(t)− (rN3N4 + rCACB − λA + rCANCA)ΣN4CA(t)

dΣN4CB(t)
dt = rN3N4ΣN3CB(t)− rCACBΣN4CA(t)− (rN4N5 + rCBCC − λB + rCBNCB)ΣN4CB(t)

dΣN4CC(t)
dt = rN3N4ΣN3CC(t) + rCBCCΣN4CB(t)− (rN4N5 − λB + rCBNCB)ΣN4CC(t)

dΣN4NCA(t)
dt = rN3N4ΣN3NCA(t)− rN3N4ΣN4NCA(t) + rCANCAΣN4NCA(t)

dΣN4NCB(t)
dt = rN3N4ΣN3NCB(t)− rN3N4ΣN4NCB(t) + rCBNCBΣN4NCB(t)

dΣN4NCC(t)
dt = rN3N4ΣN3NCC(t)− rN3N4ΣN4CC(t) + rCCNCCΣN4NCC(t)

dΣN5CA(t)
dt = rN4N5ΣN4CA(t) + 2rN5CAΣN5(t)− (rN5CA + rCACB − λA + rCANCA)ΣN5NCA(t)

− 2rN5CA〈N5(t)〉
dΣN5CB(t)

dt = rN4N5ΣN4CB(t) + rCACBΣN5CA(t)− (rN5CA + rCBCC − λB + rCBNCB)ΣN5CB(t)
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dΣN5CC(t)
dt = rN4N5ΣN4CC(t) + rCBCCΣN5CB(t)− (rN5CA − λC + rCCNCC)ΣN5CC(t)

dΣN5NCA(t)
dt = rN4N5ΣN4NCA(t) + rCANCAΣN5NCA(t)− rN5CAΣN5NCA(t)

dΣN5NCB(t)
dt = rN4N5ΣN4NCB(t) + rCBNCBΣN5NCB(t)− rN5CAΣN5NCB(t)

dΣN5NCC(t)
dt = rN4N5ΣN4NCC(t) + rCCNCCΣN5NCC(t)− rN5CAΣN5NCC(t)

dΣCACB(t)
dt = 2rN5CAΣN5CB(t) + rCACBΣCA(t)

− (rCACB − λA + rCANCA + rCBCC − λB + rCBNCB)ΣCACB(t)− rCACB〈CA(t)〉
dΣCACC(t)

dt = 2rN5CAΣN5CC(t) + rCACBΣCACB(t)

− (rCACB − λA + rCANCA − λC + rCCNCC)ΣCACC(t)
dΣCANCA(t)

dt = 2rN5CAΣN5NCA(t) + rCANCAΣCA(t)− (rCACB − λA + rCANCA)− rCANCA〈CA(t)〉

dΣCANCB(t)
dt = 2rN5CAΣN5NCB(t) + rCBNCBΣCACB(t)− (rCACB − λA + rCANCA)ΣCANCB(t)

dΣCANCC(t)
dt = 2rN5CAΣN5NCC(t) + +rCCNCCΣCACC(t)− (rCACB − λA + rCANCA)ΣCANCC(t)

dΣCBCC(t)
dt = rCACBΣCACC(t) + rCBCCΣCB(t)

− (rCBCC − λB + rCBNCB − λC + rCCNCC)ΣCBCC(t)− rCBCC〈CB(t)〉
dΣCBNCA(t)

dt = rCANCAΣCACB(t) + rCACBΣCANCA(t)− (rCBCC − λB + rCBNCB)ΣCBNCA(t)

dΣCBNCB(t)
dt = rCACBΣCANCB(t) + rCBNCBΣCB(t)

− (rCBCC − λB + rCBNCB)ΣCBNCB(t)− rCBNCB〈CB(t)〉
dΣCBNCC(t)

dt = rCACBΣCANCC(t) + rCCNCCΣCBCC(t)− (rCBCC − λB + rCBNCB)ΣCBNCC(t)

dΣCCNCA(t)
dt = rCANCAΣCACC(t) + rCBCCΣCBNCA(t) + (λC − rCCNCC)ΣCCNCA(t)

dΣCCNCB(t)
dt = rCBNCBΣCBCC(t) + rCBCCΣCBNCB(t) + (λC − rCCNCC)ΣCCNCB(t)

dΣCCNCC(t)
dt = rCBCCΣCBNCC(t) + rCCNCCΣCC(t) + (λC − rCCNCC)ΣCCNCC(t)− rCCNCC〈CC(t)〉

dΣNCANCB(t)
dt = rCANCAΣCANCB(t) + rCBNCBΣCBNCA(t)

dΣNCANCC(t)
dt = rCANCCΣCANCB(t) + rCCNCCΣCCNCA(t)

dΣNCBNCC(t)
dt = rCBNCBΣCBNCC(t) + rCCNCCΣCCNCB(t) (C.3)
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C.3. ODE system for first and second order moments for the
arrested model of T cell exhaustion

The ODEs describing the mean values over time for the early bifurcation model, that was
introduced during chapter 4, were derived according to the master equation for the moments as
described under section 6.4.3 and are listed here:

d〈N(t)〉
dt = −rNAf〈N(t)〉

d〈Af(t)〉
dt = rNAf〈N(t)〉 − (rAfBf − λAf + rAfAex)

d〈Bf(t)〉
dt = rAfBf〈Af(t)〉 − (rBfCf − λBf + rBfBex)

d〈C f(t)〉
dt = rBfCf〈Bf(t)〉+ (λCf + rCfCex)

d〈Aex(t)〉
dt = rAfAex〈Af(t)〉+ (λAex + rAexBex)

d〈Bex(t)〉
dt = rBfBex〈Bf(t)〉+ rAexBex〈Aex(t)〉 − (rBexCex − λBex)

d〈Cex(t)〉
dt = rCfCex〈Cf(t)〉+ rBexCex〈Bex(t)〉 (C.4)

The equation to quantify the time development for the variances and co-variances were deduced
from equation (??). The ODEs for the variances are listed below:

dΣN (t)
dt = −2rNAfΣN (t) + rNAf〈N(t)〉

dΣAf(t)
dt = rNAf〈N(t)〉+ (λAf + rAfBf + rAfAex)〈Af(t)〉+ 2rNAfΣNAf(t)

− 2(rAfBf − λAf + rAfAex)ΣAf(t)
dΣBf(t)

dt = rAfBf〈Af(t)〉+ (λBf + rBfCf + rBfBex)〈Bf(t)〉+ 2rAfBfΣAfBf(t)

− 2(rBfCf − λBf + rBfBex)ΣBf(t)
dΣCf(t)

dt = rBfCf〈Bf(t)〉+ (λCf + rCfCex)〈C f(t)〉+ 2rBfCfΣBfCf(t) + 2(λCf − rCfCex)ΣCf(t)
dΣAex(t)

dt = rAfAex〈Af(t)〉+ (λAex + rAfAex)〈Aex(t)〉+ 2rAfAexΣAfAex(t) + 2(λAex − rAfAex)ΣAex(t)
dΣBex(t)

dt = rBfBex〈Bf(t)〉+ rAexBex〈Aex(t)〉+ (λBex + rBfBex)〈Bex(t)〉+ 2(rBfBex − λBex)ΣBex(t)

+ 2rBfBexΣBfBex(t) + 2rAexBexΣAexBex(t)
dΣCex(t)

dt = rCfCex〈C f(t)〉+ c〈Bex(t)〉+ 2rCfCexΣCfCex(t) + 2rBexCexΣBexCex(t). (C.5)
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The ODE equations for the co-variances are listed here:

dΣNAf(t)
dt = −rNAf〈N(t)〉+ rNAfΣN (t)− (rNAf + rAfBf − λAf + rAfAex)ΣNAf(t)

dΣNBf(t)
dt = rAfBfΣNAf(t)− (rNAf + rBfCf − λBf + rBfBex)ΣNBf(t)

dΣNCf(t)
dt = rBfCfΣNBf(t)− (rNAf − λCf + rCfCex)ΣNCf(t)

dΣNAex(t)
dt = rAfAexΣNAf(t)− (rNAf − λAex + rAexBex)ΣNAex(t)

dΣNBex(t)
dt = rBfBexΣNBf(t) + rAexBexΣNAex(t)− (rNAf − λBex + rBexCex)ΣNBex(t)

dΣNCex(t)
dt = rCfCexΣNCf(t) + rBexCexΣNBf(t)− rNAfΣNCex(t)

dΣAfBf(t)
dt = −rAfBf〈Af(t)〉+ rAfBfΣAf(t) + rNAfΣNBf(t)

− (rAfBf − λAf + rAfAex − λBf + rBfBex)ΣAfBf(t)
dΣAfCf(t)

dt = rNAfΣNCf(t) + rBfCfΣAf(t)

+ (λCf − rCfCex − rAfBf − λAf + rAfAex)ΣAfCf(t)
dΣAfAex(t)

dt = −rAfAex〈Af(t)〉+ rAfAexΣAf(t) + rNAfΣNBf(t)

+ (λAex − rAexBex − rAfBf − λAf + rAfAex)ΣAfAex(t)
dΣAfBex(t)

dt = rNAfΣNBex(t) + rBfBexΣAfBf(t)rAexBexΣAfAex(t)

− (rBexCex − λBex − rAfBf − λAf + rAfAex)ΣAfBex(t)
dΣAfCex(t)

dt = rNAfΣNCex(t) + rCfCexΣAfAex(t) + rBexCexΣAfBex(t)

+ (rAfBf − λAf + rAfAex)ΣAfCex(t)
dΣBfCf(t)

dt = −rBfCf〈Bf(t)〉+ rBfCfΣBf + rAfBf + ΣAfCf(t)

− (rBfCf − λBf + rBfBex − λCf + rCfCex)ΣBfCf(t)
dΣBfAex(t)

dt = rAfAexΣAfBf + rAfBfΣAfAex

− (rBfCf − λBf + rBfBex − λAex + rAexBex)ΣBfAex(t)
dΣBfBex(t)

dt = −rBfBex〈Bf(t)〉+ rBfBexΣBf + rAfBf + ΣAfBex(t) + rAexBex + ΣBfAex(t)

− (rBfCf − λBf + rBfBex − λBex + rBexCex)ΣBfBex(t)
dΣBfCex(t)

dt = rAfBf + ΣAfCex(t) + rCfCex + ΣBfCf(t) + rBexCex + ΣBfBex(t)

− ((rBfCf − λBf + rBfBex)ΣBfCex(t)
dΣCfAex(t)

dt = rAfAex + ΣAfAex(t) + rBfCf + ΣBfAex(t) + (λCf − rCfCex + λAex − rAexBex)ΣCfAex(t)
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dΣCfBex(t)
dt = rBfBex + ΣBfCf(t) + rBfCf + ΣBfBex(t) + rAexBex + ΣCfBex(t)

− (rCfCex − λCf + rBexCex − λBex)ΣCfBex(t)
dΣCfCex(t)

dt = −rCfCex〈C f(t)〉+ rCfCexΣCf(t) + rBfCf + ΣBfCex(t) + rBexCex + ΣCfBex(t)

+ (λCf + rCfCex)ΣCfCex(t)
dΣAexBex(t)

dt = −rAexBex〈Aex(t)〉+ rAexBexΣAex(t) + rAfAexΣAfBex(t) + rBfBexΣBfAex(t)

− (rAexBex − λAex − λBex + rBexCex)ΣAexBex(t)
dΣAexCex(t)

dt = rAfAexΣAfCex(t) + rCfCexΣCfAex(t) + rBexCexΣAexBex(t)

+ (λAex + rAexBex)ΣAexCex(t)
dΣBexCex(t)

dt = −rBexCex〈Bex(t)〉+ rBexCexΣBex(t) + rBfBexΣBfCex(t) + rCfCexΣCfBex(t)

+ rAexBexΣAexBex(t)− (rBexCex − λBex)ΣBexCex(t)

(C.6)
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