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Abstract

Neural networks are considered as one of the most powerful tools for handling a
huge amount of data [1]. Thereby, convolutional neural networks are known for their
excellent performance in feature recognition. Those properties solve the problems
appearing in many-body quantum systems and establish methods for solving them in
numerically inaccessible regimes [4, 22]. Additionally, researches prove that "initializing
with transferred features" is able to improve the performance of neural networks [25].
In this work, we want to combine both approaches and analyze the effect of transfer
learning on neural-network quantum states. Therefore, we create neural networks for
classifying representations of 1D and 2D Transverse-field Ising models into their Ising
phases. With these pretrained weights as initial values, the performance of predicting
ground state vector entries from their corresponding spin configuration is measured
and compared to the random initialized case. It appears, that transfer learning is
improving the predictions for the two-dimensional case, but not for 1D Ising models.
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1 Introduction

The simulation of strongly interacting many-body quantum systems is limited by the
"curse of dimensionality" [5]. Here, it says that the state space grows exponentially with
the number of particles. 1D models with 6 particles therefore have 26 = 6.87 · 1010 states
and with 7 particles even 27 = 5.63 · 1014 [6], what leads to a general number of 2N spin
configurations, with N denoting the total number of spins in the model. Fortunately,
neural networks are known for handling a huge amount of data and have shown "the
greatest potential in the study of complicated physical phenomena such as quantum
physics" [8, 15]. Therefore, new research directions covering the neural-network quan-
tum states are widely explored and give new insights to many-body quantum systems
[18, 26].

In this thesis, we want to determine if transfer learning has a positive impact on
such neural networks. In concrete terms, we create a neural network, which pre-
dicts entries of the ground state vector for a given spin configuration. Hereby, we
consider the Transverse-field Ising model for two dimensions and briefly discuss the
one-dimensional case. In order to be able to determine the influence of transferred
weights on the Ground State Predictor, two classifiers are created. These should learn
features from the representation of the Transverse-field Ising model and accordingly
improve the predictions for the ground state. [3, 4, 10, 21]

The structure of the work is as follows. At first, the relevant background is covered
in Chapter 2, including the Transverse-field Ising model and neural networks. For the
latter, especially convolutional neural networks in Section 2.2.2 and transfer learning
in Section 2.2.3 are presented. As mentioned before, the created classifiers should
learn special characteristics of the Transverse-field Ising model. We try to archive
this by classifying the representations of an Ising model in its phases: ferromagnetic,
paramagnetic, and equal. In Chapter 3 we focus on the first, more accurate represen-
tation, namely the ground state. In Chapter 4 the second representation with spin
configurations is classified. In both Chapters a dataset for the classification task is
generated (Section 3.1 and Section 4.1), followed by a convolutional neural network
for two-dimensional Ising models (Section 3.2 and Section 4.2.1), which is analyzed in
Section 3.3 and Section 4.2.2. For the one-dimensional case, a fully connected neural

1



1 Introduction

network with spin configurations as input is presented and analyzed in Section 4.3.
In the last Chapter 5, the trained weights of the previous Chapters are inserted into
the target network. For the 2D Ising model, the convolutional neural network of the
target network is explained in Section 5.1.1, and in Section 5.1.2 the performance of
the network is analyzed with and without transferred weights. In Section 5.2 the same
is done for the 1D Ising model. At the end of the paper, we summarize the results in
Chapter 6 and conclude with further work.

The whole work is based on implementations in Python with Tensorflow. All
computations are performed on an Intel(R) Core(TM) i5-8250U CPU @ 1.80 GHz with
8,00GB RAM and a 64bit architecture.
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2 Background

2.1 Transverse-field Ising model

The following is based on [23].
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(b) paramagnetic (h >> J)

Figure 2.1: Spin configurations for 2D Ising model with three particles per dimension:
Here, h represents the strength of the transverse field and J the spin coupling.
(a) visualizes a typical ferromagnetic Ising model, whereas (b) shows a
typical paramagnetic Ising model.

The Traverse-field Ising model, in the following also denoted as Ising model, is
"described as an ensemble of binary spins with coupling interactions in some lattices"
[15]. The spins, or particles, of the Ising model, can point up or down represented by 1
or 0. Two examples for 2D Ising models with nine particles are illustrated in Figure 2.1.
Depending on the spin coupling J and the strength of the transverse field h, different
spin configurations occur. For h >> J, the spins try to align in opposite directions,
which is called paramagnetic. For h << J, the magnetic field tries to forces the spins
in the same direction, which results in a ferromagnetic model. Typical examples for
ferromagnetic and paramagnetic models can be seen in Figure 2.1. Because each spin
can point up or down, there exist 2pdim

= 2N = 29 = 512 possible spin configurations,
with p representing the number of particles per dimension, dim the dimension of the
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2 Background

Ising model and N denoting the total number of spins [5].

Although the Figure represents the typical configurations for the different phases,
h << J can also result in a different spin configuration and even the configuration as
in Figure 2.1b. On the other hand, there is only a very high probability that a spin con-
figuration as in Figure 2.1a has h << J. Therefore, for less typical spin configurations,
the correlation between h and J becomes more unclear. [16, 22]

The spin configuration is one possibility to describe an Ising model, but as we
could determine, it loses some information of the whole system. Another possibility
to describe the system is the ground state of the Hamiltonian. The ground state is
obtained by taking the eigenvector with the lowest eigenvalue of the Hamiltonian. For
the Traverse-field Ising model, the Hamiltonian is defined as:

H = −J · ∑
<i,j>

σz
i · σz

j − h ·∑
i

σx
i , (2.1)

where σz =

(
1 0
0 −1

)
and σx =

(
0 1
1 0

)
are the Pauli-matrices. J represents the spin

coupling and is defined as 1. The strength of the transverse field is expressed with h
and variable through the whole work [22]. This is possible because, for our purpose,
the "absolute value of J and h do not matter, [but] their ratio h/J" [22]. In Equation 2.1
< i, j > denotes the set of neighbored spins. It should be noted that the elements on the
borders are also considered neighbors. Consequently, for 1D Ising models we consider
the spin configuration as a circle and obtain < i, j >= {(1, 2), (2, 3), (3, 1)} for three
particles. Accordingly, ∑<i,j> σz

i · σz
j represents the impact of the neighbor interaction

to the model. Each summation term is calculated with the tensor product of σz
i , σz

j , and

implicit Identity matrices 1 ∈ R2×2 =

(
1 0
0 1

)
. In concrete terms, we iterate over the

number of particles and check if the current index matches i or j. If this is the case, we
multiply σz to the current result, otherwise 1. The same is repeated for ∑i σx

i , with the
difference that σx is used and that we only have one matching index. The result of this
summation represents the influence of transverse field strength on the model. If we
stick to the example above, the Hamiltonian would evaluate to:

H = −J · ∑
{(1,2),(2,3),(3,1)}

σz
i · σz

j − h · ∑
{1,2,3}

σx
i

= −J · [σz
1 · σz

2 + σz
2 · σz

3 + σz
1 · σz

3 ]− h · [σx
1 + σx

2 + σx
3 ]

= −J · [(σz
1 ⊗ σz

2 ⊗ 1) + (1⊗ σz
2 ⊗ σz

3) + (σz
1 ⊗ 1⊗ σz

3)]

− h · [(σx
1 ⊗ 1⊗ 1) + (1⊗ σx

2 ⊗ 1) + (1⊗ 1⊗ σx
3 )],
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2 Background

using the tensor product ⊗.

2.2 Neural network

The following Section 2.2 is based on [9, 24].

Deep learning is making major advances in solving problems that have resisted the
best attempts of the artificial intelligence community for many years. It has turned
out to be very good at discovering intricate structures in high-dimensional data and
is therefore applicable to many domains of science, business, and government. The
following Section discusses the origin of neural networks, their structure, and special
cases like convolutional neural networks or transfer learning. [5, 14, 15]

2.2.1 Fully connected neural network

The following is based on [13, 17].

Figure 2.2: Biological neuron (left) and neural network neuron (right) [13]

Neural networks are inspired by the biological neural system, which is able to filter
inputs and obtain information. Thereby, the basic computational unit is a neuron, which
is interconnected by synapses. The human nervous system consists of approximately 86
billion neurons and 1014 to 1015 synapses. Figure 2.2 (left) shows the general structure of
such a neuron. After receiving input signals of its dendrites, it produces output signals
along its axons. Each axon can branch out and "connects via synapses to dendrites of
other neurons" [13]. If the summed dendrites are above a certain threshold, the cell
body fires signals through the axons. This principle was adopted for neural networks,
which is illustrated in Figure 2.2 (right). As in the original neuron, the dendrites (xiwi)
carry the information to the cell body, where they are summed. The dendrite consists
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2 Background

of the signal traveling along the axons (xi) and the synaptic strength at the synapse
(wi). The idea behind the synaptic strength is that they "are learnable and control the
strength of influence [...] of one neuron on another" [13]. After passing the resulting
sum to an activation function, it is sent among the axons and input to other neurons.
All in all, "each neuron calculates the dot product of inputs and weights, adds the bias,
and applies non-linearity [ f ] as a trigger function" [11] which results in the Equation:

f ((∑
i

xiwi) + b), (2.2)

with i denoting the number of dendrites to the neuron.

x1x1x1

x2

x4

h1

h3

ŷ1

ŷ2

w11

w12

w14

w21

w23

Figure 2.3: Fully connected neural network: wji is denoting the weights of the network.
The bias is implicit for every neuron and not depicted in the Figure.

If one combines those neurons to layers and series those layers, a fully connected
neural network, as visualized in Figure 2.3, can be built. Each circle represents a neuron
and each arrow to the neuron the dendrites. Inside each neuron, the dendrites are
summed, added with the individual bias, and input to the activation function. This
output is then input to the neurons of the next layer. In concrete terms, the neurons h1

and ŷ1 evaluate to

h1 = f ((
4

∑
i=1

xiw1i) + b11) and

ŷ1 = f ((
3

∑
i=1

hiw2i) + b21),

(2.3)

with b11, b21 the corresponding bias and f denoting the activation function.

There exist many different activation functions, which can be chosen for f and have
different impacts on the final model. Two common choices are ReLU and Softmax,
which are used later for the networks. The ReLU or Rectified Linear Unit activation
function, which is calculated by f (x) = max(0, x), is shown in Figure 2.4. As one can
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2 Background

Figure 2.4: ReLU activation function: f (x) = max(0, x)

see, the domain of the function is R and the value set [0, ∞). Therefore, the activation
function is applied to each layer output individually. The reason for the success of this
activation function is the resulting faster training [11].

The Softmax activation function, on the other hand, is calculated by f (x) = ex

∑i exi . Its
domain is the same as for ReLU, but its output values are in [0, 1) and sum up to 1.
For this reason, the output values can be interpreted as a probability distribution, and
consequently, Softmax is often used for the output layer of classification networks. The
goal of classifications is to divide the input in one of n given classes. Accordingly, the
output layer consists of n neurons, each representing a class. If this output layer has
Softmax as an activation function, the result of each neuron is a value between 0 and
1, which represents the probability of being in this concrete class. Hence, the input is
classified to the class with the highest probability. Alternatively, the network can simply
predict a real-valued number, which is then called a regression network. In this case, the
last layer does not need an activation function, because the output is already real-valued.

The goal of a network, in general, is to "transform the representation at one level
(starting with the raw input) into a representation at a higher, slightly more abstract
level" to recognize a pattern in the input and predict the right class or value [14].

7



2 Background

Thereby, the neurons should extract and learn features. This learning is done during
the training process by adjusting the learnable weights wji. Therefore, a labeled dataset
- meaning a dataset with the corresponding class in the case of a classification network
or the real value in the case of a regression network - is needed. During training, the
network produces an output for each input, which is compared to the label. With
an objective function, this error can be measured and is minimized by adjusting the
weights with stochastic gradient descent during backpropagation [14]. During this
training process, the network is validated with the validation set, to verify the current
performance. This procedure of training and validation is continued, till the number of
epochs is reached, or in the case of EarlyStopping, the validation loss is getting worse.
The latter is an established technique to gain a network, which generalizes the data
very well.

In the end, the trained model should respond correctly to the given input. This is
measured on unseen data samples from the so-called test set, which "test the general-
ization ability of the machine - its ability to produce sensible answers on new inputs
that it has never seen during training" [14].

2.2.2 Convolutional neural network

The following Section, including its Subsections, is based on [1, 2, 7, 11, 12, 19]
A convolutional neural network, also called CNN, consists of neurons with learnable
weights and biases and hence is "a special case of the neural network" described in
Section 2.2 [11]. A classical CNN consists of a feature extraction zone and an inference
zone. As the name says, the feature extraction zone extracts features from the input.
This happens typically in a hierarchical manner, by extracting low-level features at first
and combine them by the higher layers. Hereby, the key aspect is that the weights and
biases "are learned from data using a general-purpose learning procedure" [14]. This
zone often consists of convolutional and pooling layers, which are explained in Section
2.2.2. In the inference zone, the extracted features are usually passed through a fully
connected neural network and produce a final result.

Convolution layers

The characteristic operation of convolutional neural networks is convolution. Each
convolution has a filter K of size k× k, with k denoting the specified kernel size. During
a convolution, the particular filter slides across the width and height of "the input while
performing the sum of an element-wise multiplication between the filter values and the
corresponding Section of the input" [2].

8



2 Background

This procedure is shown in Figure 2.5. In a convolution layer, more than only one
kernel can be applied to extract more features of the input. During the backward pass,
these kernels are learned and updated. Thereby, the convolution learns to "detect local
conjunctions of features from the previous layers" and learns new features [11, 12, 14].

Additionally to the kernel size, one can specify the stride and padding for each
convolution. The stride indicates the step size of the filter. In the case of a stride of two,
one would jump two entries instead of just one. [12]

For the padding, usually zero-padding, 0 is added on each border before performing
the convolution. Through this, not only do the border entries get more included in the
calculation but also the output size can be forced to be equal to the input size.

Pooling layers

A convolution layer is usually followed by a pooling layer, which merges similar
features and therefore performs feature extraction. This has the positive effect that the
features are more robust. There exist two common pooling operations Max pooling
and Average pooling. For both, two-dimensional non-overlapping spaces of the input
are picked and the max or average values are taken. In Figure 2.6 this operation is
illustrated for both pooling operations. [11, 14]

2.2.3 Transfer learning

Generally, neural networks work with the assumption that training and testing data
are from the same distribution. This causes the problem that for changing distributions,
new models with new training data have to be created. But in many cases collecting
an enormous amount of training data is very expensive or not possible. With transfer
learning, it is possible to reduce the amount of training data by using pretrained
weights from a base class. The intuition behind using these weights is that the learned
weights can be relevant for the target task. Therefore, the learned features should be
suitable for both the base and the target tasks to gain any improvement. In practice,
this means that a base network with a large dataset is trained with randomly initialized
weights. Afterwards, these weights are copied to a target network, which usually has
a smaller dataset. In the end, the target network is trained with the dataset for the
specific task. Due to transfer learning, this target network has usually lower training
time and additionally achieves better results than with random initialization. [20, 25,
26]
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I K I · K

Figure 2.5: Convolution on input I with filter K: Each entry of the output is calculated
by summing up the element-wise multiplied values. To compute the whole
output matrix, the kernel slides from left to right and top to bottom across
the picture.

Figure 2.6: Average and Max Pooling [11]: The pooling operation takes the average or
the maximum value from a 2× 2 section of the input
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3 Neural network for the classification of
ground states

This Chapter covers the creation and training of our first neural network. It classifies the
ground state of an Ising model in one of the three classes: paramagnetic, ferromagnetic,
and equal. The first class contains all paramagnetic Ising models and thereby fulfill
h >> J, so, in our case, h >> 1. In the second class, all ferromagnetic models with
h << J = 1 are contained and for the third, both, J and h, are equal (h = J = 1). In
the following, these classes are also called labels. For this, we first present in Section
3.1 the details about the created dataset afterward, the model structure is explained in
Section 3.2 and analyzed in Section 3.3. Later, in Chapter 5, these trained weights are
transferred to the target network and analyzed if they gain any improvement in the
ground state prediction.

3.1 Dataset

To create a neural network that classifies the ground state, first, a dataset is created.
This dataset depends on the number of particles and the dimension of the Ising model.
First of all, we choose a value for h and compute the Hamiltonian with Equation 2.1.
From the resulting matrix, the ground state of the Hamiltonian is calculated. This is
done by taking the eigenvector of the lowest eigenvalue. The ground state value, as
well as h and the corresponding label, are stored in the dataset. We choose HDF5 as
data format because it allows very efficient storing and accessing of NumPy arrays.

3.1.1 Distribution of h

The most influential decision for the dataset creation is the distribution of h. By this,
the inputs for the network and consequentially the learned features are defined. This
results in a realistic h distribution that spreads the h values evenly is desired. Therefore,
we choose h such that the paramagnetic and ferromagnetic cases appear equally often.
With this property, the classifier is trained on the same amount of data for both labels
and should distinguish them only by their ground states. In contrast to these labels,
the equal label consists only of one value. Due to that, and the fact that h = J is only a
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3 Neural network for the classification of ground states

Fraction Probability Label h value scope
16
33 48% ferromagnetic [0, 1)
16
33 48% paramagnetic (1, ∞)
1

33 3% equal {1}

Table 3.1: Distribution of h for the Ground State Dataset: This Table shows the distri-
bution of the h value, as well as the distribution of the labels in the dataset.
Inside each scope the h value is evenly distributed. Here, "Fraction" and
"Probability" denote what portion of the dataset has an h value from the
scope, specified in the last column. "Label" indicates the corresponding label
of these datasamples.

Fraction Probability Label h value scope
1

33 3% ferromagnetic {0}
15
33 45% ferromagnetic (0, 1)
10
33 30% paramagnetic (1, m]
6

33 18% paramagnetic (m, ∞)
1

33 3% equal {1}

Table 3.2: Detailed distribution of h for the Ground State Dataset: This Table is a
specialization of Table 3.1. To get more data in the critical area around 1,
the introduced parameter m splits the h values of the paramagnetic case. As
before, inside each scope the h value is evenly distributed. Later, for the Spin
Configuration Classifier, we refer to this distribution with h1.

special case, we choose fewer data samples with h = J = 1. In concrete terms, 1
33 ≈ 3%

of the dataset is labeled with equal. The remaining 32
33 ≈ 97% of the dataset are split

between the ferromagnetic and paramagnetic Ising phase with 16
33 ≈ 48% each. This

distribution is shown in Table 3.1, which also can be seen as the distribution of the
corresponding labels. For each label, the probability of having a concrete h value of
this scope is evenly distributed. This leads to two problems. First, the probability of
having h = 0 is very low, and therefore the classifier may never see pure ferromagnetic
models. To solve this problem, we split the amount of the ferromagnetic labeled data
and assign h = 0 to 1

33 ≈ 3% and h ∈ (0, 1) for the remaining values. Second, if the h
values are evenly distributed in the domain (1, ∞) only a low number of h values are
close to 1. But those values are the most critical ones because the transition to the other
labels happens in this area. Therefore, we want to have more data in this critical area
than close to infinity. To realize this, we introduce a new variable m, which splits the
interval for the paramagnetic case in (1, m] and (m, ∞). Now, we assign a value in the

12



3 Neural network for the classification of ground states

first interval to 30% and a value of the second interval to 18%. For more values close
to 1, it is important to choose a small m. We set m = 50, which results in the final h
distribution as visualized in Table 3.2.

3.1.2 Number of data-samples

A second important decision is the number of data samples. The more different data
the neural networks get, the better it should be able to distinguish between the Ising
phases. But because of the high computation time for calculating a Hamiltonian, which
is analyzed in Section 3.1.3, too big datasets are not feasible. Therefore, we choose a
trade-off between many samples, and an acceptable computation time, which resulted
in 60, 000 data samples. It should be noted that for datasets with more than two
dimensions and/or more than three particles per dimension, we recommend fewer
data samples because of the exponential computation time shown in Figure 3.1. For
analyzing the performance of the network, we evaluate it with a separate testing set,
which represents 10% of the whole dataset. Hence, 6, 000 samples are used for the
testing dataset, and the remaining 54, 000 samples for the training and validation.

3.1.3 Analysis

Dimension Particles per dimension Paramagnetic Ferromagnetic Equal

1

1 26258 26058 1684
2 25912 26411 1677
3 26240 26034 1726
4 26080 26231 1689
5 26200 26077 1723

2
1 26229 26113 1658
2 26219 26150 1631
3 26250 26133 1617

Table 3.3: Label distribution of the training Ground State Dataset: This Table visualizes
the distribution of the labels in the Ground State Dataset depending on the
dimension and particles.

To analyze the created datasets and especially its h distribution, Table ?? shows the
number of data samples for each label. Just as we expected, the number of paramagnetic
and ferromagnetic labeled data is almost evenly distributed, and the equal label exists
less often. Additionally, it is a satisfactory observation that the number of samples for
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(a) (b)

Figure 3.1: Run time for the creation of the Ground State Dataset: The plots shows the
exponential growth of the runtime, depending on the number of dimensions
and particles per dimension.

one label is independent of the dimensions and numbers of particles. Those results
confirm that the dataset meets the required characteristics.

Next, we analyze the runtime of the dataset creation. As mentioned in Section 3.1.2,
the computation time is very high due to the very expensive Hamiltonian calculation.
Figure 3.1 illustrates this phenomena for 1D and 2D Ising models. The Figure shows
very accurately that with the rising number of particles or dimensions, also the Hamilto-
nian calculation and consequently, the run time is increasing. This exponential growth
is also known as the "curse of dimensionality".

3.2 Neural network architecture

In this Section, we cover the structure of the Ground State Classifier. To learn patterns
in the ground state, we create the convolutional neural network illustrated in Figure
3.2. At first, we input a matrix to the convolution with 32 filters and stride 1. It uses
the ReLU activation function, as well as zero padding. The kernel size can be chosen
concerning the dataset and is specified later. Next, a MaxPool operation is performed,
which should extract features learned by the convolution. It follows a dropout layer to
add some regularization to the model and prevent overfitting. The rate of the dropout
is also chosen later, depending on the dataset. The resulting tensor is flattened and
connected to a fully connected layer with 128 neurons and the ReLU activation function.
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Figure 3.2: Model for the 2D Ground State Classifier: The elements of the convolutional
neural network are described from left to right. The first blue rectangle
represents the 2D input matrix of reshaped ground states. It it followed
by a convolutional layer and a MaxPool layer. The 2D output is flattened,
which is represented with the first fully connected layer. The last two layers,
also fully connected layers, have 128 and three neurons. The different colors
of the last layer should represent the three distinct labels into which the
network classifies. The grey neurons should represent the dropout of the
model.

After adding another dropout layer with the same rate as before, a fully connected
layer with three neurons and the Softmax activation function is added. Here, the
classification of the Ising phases takes place. The whole model uses the Categorical
Cross-entropy Loss function, the optimizer Adam with a learning rate of 0.0005, and
an epoch of 100. To only use the best-trained model and prevent overfitting, we use
EarlyStopping and safe the best model. As mentioned in Section 4.1.2, the split for
training, validation and testing of the whole dataset is (80%, 10%, 10%).

The format of the ground state, which is a vector, and the expected input for the
classifier do not match. Therefore, we reshape the dataset into a matrix while prepro-
cessing the data. It should be noted that the shape of every ground state is a vector,
independent of the dimension and number of parameters. This is why this network
is useable for any dataset. In our case, we use the dataset of 2D Ising models with
three particles per dimension. More particles are not possible in our case because the
allocated memory for the Hamiltonian is so high that it leads to a memory error on the
used device.

15
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Nr Layer Shape Parameters
1 Conv2D (None, 16, 32, 32) 544
2 MaxPooling2D (None, 8, 16, 32) 0
3 Dropout (None, 8, 16, 32) 0
4 Flatten (None, 4096) 0
5 Dense (None, 128) 524416
6 Dropout (None, 128) 0
7 Dense (None, 3) 387

Table 3.4: Detailed Model for 2D Ground State Classifier: This Table is a specialization
of Figure 3.2 for three particles per dimension. It lists the concrete layer, their
output shape, and learnable parameters.

The concrete dataset with a total of nine particles consists of ground states of length
512 and is reshaped into a matrix of shape (16, 32). With this additional information,
the neural network can be further specified, which can be seen in Table 3.4. The Table
reflects the explained network structure and additionally shows the output shape after
each operation. In total, the network has 525, 347 trainable parameters, where the first
544 parameters are transferred to the target network.

3.3 Analysis

Lastly, the resulting neural network is validated and analyzed. In Section 3.2 the whole
network is specified, except for the kernel size and dropout rate. Those parameters
can be chosen individually for the concrete dataset. To find the best configuration,
we implemented a grid search algorithm to test the combination of different kernel
sizes and dropout rates. It appears that there exist a few combinations, which perform
almost equal. We decided to choose a kernel size of 3 and a dropout rate of 0 because
these parameters achieve accurate results for this classifier and the Spin Configuration
Classifier. Using the same parameters enables better comparisons of the model, espe-
cially in terms of transfer learning.

After training the model with the set parameters, we receive the accuracy and loss
curves shown in Figure 3.3. At first sight, the validation curve is in both plots very
fluctuating, whereas the training curve is comparable smooth. If we take a closer
look at the scale of the plot, it appears that the interval is in the range of the second
decimal digit. Therefore, minor differences look like huge fluctuations. Further, the
loss and accuracy during training and validation are very good. This can be validated
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(a) accuracy (b) loss

Figure 3.3: Loss and accuracy curve for 2D Ground State Classifier: The curves are
produced during training of the Ground State Classifier with no dropout
and kernel size 3. The classifier was trained with a dataset of 2D Ising
models with three particles per dimension.

by testing the model with the created testing dataset. With a testing loss of 0.015 and a
testing accuracy of 0.996, the classifications are extremely precise, and it seems that the
convolution found features in the input.

To get a better feeling for the predictions of the classifier, we plot the probability
distribution after the Softmax operation. Therefore, we input ground states of different
h values to get the probability of the predicted label and plot the probability of the
correct label. If the classifier is predicting the right label, we illustrate this with green,
otherwise with a red dot. The related plots can be seen in Figure 3.4 for different
h ranges. It is striking that the classifier predicts only in the critical area around 1
wrong labels. Here, the certainty of the prediction is also smaller. In all other cases, the
classifier predicts to almost 100% the right label.

To conclude, in this Chapter, we created a dataset with evenly distributed h values for
each label. These ground states were fed to the convolutional neural network in Figure
3.2 and resulted in a network with 99% accuracy. This gives hope that the convolution
has learned features from the ground state and that this leads to good results during
transfer learning.
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(a) h values between 0 and 70 (b) h values between 0 and 1

(c) h values between 0.8 and 1.2 (d) h values between 40 and 100000

Figure 3.4: Confidence of h for the trained Ground State Classifier: The Figures show
the predicted probability of the correct label depending on the h value.
Therefore, the output value of the network on the position of the correct
label is plotted in the figure. Here, red dots represent wrong and green
right classified samples.
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4 Neural network for the classification of
spin configurations

As in Chapter 3, this Chapter covers the creation and training for classification neural
network. Analog, the classes for the classifier are paramagnetic for h >> J = 1, ferro-
magnetic for h << J = 1 and equal for h = J = 1. The structure and even the network
architecture are strongly based on Chapter 3, which enables a better comparison of the
networks, especially concerning transfer learning. The main difference is the dataset of
the model, which consists of the concrete spin configuration in contrast to the ground
state. Hence, the creation of the new dataset is explained in Section 4.1, followed by
the general network structure and the analyzation of concrete networks in Section 4.2.1
and Section 4.2.2. To test transfer learning on 1D Ising models, Section 4.3 creates
and analyzes a fully connected neural network for one-dimensional Ising models. The
creation of such a network is not able for the Ground State Classifier. More information
regarding this can be found in Section 5.2.

4.1 Dataset

At first, we have to create a dataset that can be classified in its Ising phases. This time
the dataset does not contain the ground state of the Hamiltonian but a concrete spin
configuration. Therefore, we have to calculate the ground state for a concrete h value.
After taking the absolute values squared, we obtain the probability distribution d. This
distribution is a vector, where each value represents the probability of being in the spin
configuration identified with their index. Therefore, the number of spin configurations
and the size of the vector d are equal and evaluate to 2pdim

= 2N , as mentioned in
Section 2.1. In case of a 1D model with one particle (p = N = 1), d could look like:
(0.4, 0, 6). This means that to 40% < 0 > and 60% < 1 > is the corresponding spin
configuration for the calculated Hamiltonian. From this distribution, the final spin
configurations are sampled. For this purpose, we create random numbers r between 0
and 1, which should represent a probability. If r is smaller than the sum of the previous
entries, the corresponding spin configuration for this index is chosen. This means, for
r = 0.5 the first index does not match, because r = 0.5 
 0.4. For the second index we
have: r = 0.5 ≤ 0.4 + 0.6 = 1 and therefore we choose the second index with < 1 > as
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corresponding spin configuration. In doing so, we sample a few spin configurations
for each Hamiltonian and store them with the corresponding h value, the label, and
for debugging purposes also the distribution d. As for the Ground State Dataset, we
choose HDF5 as the data format.

4.1.1 Distribution of h

Because there is only a fixed number of input spin configurations for a given dimension
and number of particles, there exist a few approaches for the distribution of h, which
can lead to good results. We try three different approaches, which are explained in the
following.

h3

At first, we try to keep the calculation of h as simple as possible. Hence, we choose only
very extreme h values. This means, with a probability of 50% a value in [0, 0.3] and to
50% a value in [m, ∞] is taken. Here, we use the same m as introduced in Section 3.1.1,
which represents the lower bound for the very high h values. To stay consistent with
the other results, we choose m = 50.
With this approach, we hope that for every spin configuration, enough samples are
produced and that they can be clearly classified. In the following, we refer to this h
distribution with h3.

h2

In h3, no samples with an h value in the critical area are chosen. Additionally, there
can exist no samples for the equal label. To solve both problems, we choose to have
three ranges. Strictly speaking, values in [0, 0.3], [0.8, 1.2] and [m, ∞]. The probability of
having an h value in one of the ranges is again evenly distributed. This h distribution
is referred as h2.

h1

A third approach is to choose h as we did for the Ground State Classifier in Section
3.1.1, which we call h1. This way, h has values distributed over the whole R+ ∪ {0}.
With h1, the amount of ferromagnetic and paramagnetic data samples is equal, and less
equally labeled data samples appear. This approach has the most realistic h distribution,
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wherefore we concentrate on the following on that case.

4.1.2 Number of samples

To get comparable results, we create 60.000 samples in total for training, testing and
validation set. As we did in Section 3.1.2, this dataset is split into 90% = 54000 training
and validation samples and 10% = 6000 testing samples.
As described in Section 4.1, a certain number of samples is derived from one Hamil-
tonian. Therefore, we have to decide how many samples should be sampled from
on Hamiltonian (= num_per_ham) and how many Hamiltonians should be created
(= num_ham). The greater num_per_ham, the better the probability distribution d
of the Hamiltonian is represented. Consequently, num_ham is very low to fulfill the
total number of data samples. But the lower num_ham, the less different h values are
represented. Hence, for the training and validation data, we choose num_ham = 60
to have sufficient different h values and num_per_ham = 900 to guarantee that the
distribution is well represented. For the testing set, we want to validate our model
on many different h values, and as a consequence, we choose a comparatively higher
num_ham-value. In this case we choose num_ham = 60 and num_per_ham = 100.

4.1.3 Equal spin configurations

Dimension Particles per dimension Paramagnetic Ferromagnetic Equal

1

1 30932 21121 1947
2 34519 17940 1541
3 39864 12331 1805
4 40078 11476 2446
5 43890 7501 2609

2
1 30887 23113 0
2 43424 10285 291
3 51245 1193 1562

Table 4.1: Label distribution of the training Equal Spin Configuration Dataset: The
Table visualizes the distribution of the labels in the dataset depending on
the dimension and particles. In the created dataset, each spin configuration
appears equally, whereby we use h1 as h distribution.

Additionally, we try to force the algorithm to generate a dataset where each spin
configuration appears equally often. The intention behind this idea is to have the
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(a) original (b) predicted

Figure 4.1: Original and predicted label distribution of the testing Equal Spin Configu-
ration Dataset: (a) visualizes the label distribution for the testing dataset and
(b) shows their predicted labels. In the used dataset, each spin configuration
appears equally, whereby we use h1 as h distribution.

same number of information for every spin configuration and therefore classify them
better. As a calculation method for h, we choose h1 because it is able to represent all h
values. After creating the dataset, we analyze the distribution with Table 4.1. It appears
that more samples are labeled paramagnetic, especially with increasing particles per
dimension. For example, for 2D and three particles per dimension, only 2% of all
54000 data samples are ferromagnetic. This is even less than for the equal label, which
should only represent a border case. On the other hand, 95% of the data is labeled
paramagnetic. In the one-dimensional case, we have similar results with only 14%
ferromagnetic and 81% paramagnetic samples for five particles. With these results, we
can assume that the neural network always predicts the paramagnetic label because
it appears with an extremely high probability. After creating the network explained
in Section 4.2.1 and training it, this hypothesis holds. The input samples contain still
a few ferromagnetic labels, as shown in Figure 4.1a. Contrary to this, the predicted
label is always paramagnetic, independent of the h value. This can be seen in Figure
4.1b. With this approach, the network is not learning any features related to the spin
configuration. Therefore, we do not cover this dataset approach in the following.

4.1.4 Analysis

After building a dataset for each h distribution, the resulting label distribution can be
analyzed, which is done in Table 4.2. At first, it is noticeable that only h1 produces spin
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h distribution Paramagnetic Ferromagnetic Equal
h1 25200 27900 900
h2 26100 27900 0
h3 27000 27000 0

Table 4.2: Label distribution of the training Spin Configuration Dataset for h1, h2,
and h3: The distribution is for a 2D Ising model with three particles per
dimension.

configuration with an equal label. Apparently, the probability for choosing h = 1 in h2
is too low that we can assume samples with this label. Besides, every entry distributes
the data samples evenly among the paramagnetic and ferromagnetic label, what is
beneficial for the classification task.

For a deeper analysis of the resulting datasets, we count the appearance of each spin
configuration among the datasets. As one can see in Figure 4.2, each spin configuration
exists for each dataset. Therefore, all datasets are trained with all spin configurations
and can learn their corresponding Ising phase. Thereby, spin configuration with all
spins pointing in one direction is most represented in all datasets. For h3, the remaining
spin configurations have all a similar occurrence, as one can see in Figure 4.2d. h1 and
h2 result in nearly the same distribution, where all have an equal frequency except for
a few samples. Those samples appear at regular intervals and produce a symmetrical
pattern. These results validate all approaches for dataset creation. Nevertheless, we
are focusing on the dataset h1 because, in contrast to the other datasets, it contains
all three labels and additionally enables better comparison to the Ground State Classifier.

Further, we analyze the runtime for the creation of the h1 dataset with Figure 4.3.
Because the other h distributions produce comparable runtime results, we do not
discuss them here. It should be also mentioned that these values should only be seen as
orientation because they differ depending on the concrete machine and implementation.
Nevertheless, one can see in Figure 4.3 the exploding runtime for an increasing number
of particles for both dimensions. From Figure 4.3b one can also derive that the runtime
increases not only for the number of particles but also for increasing dimensions. This
characteristic was also noticeable in Figure 3.1. When comparing those two graphs, one
can also see that the runtime for higher dimensions and number of particles is lower in
Figure 4.3 than in Figure 3.1. This results from the fact, that for the Spin Configuration
Dataset only 120 Hamiltonian’s are calculated (see Section 4.1.2) compared to the 60, 000
for the Ground State Dataset (see Section 3.1.2). This confirms that the computation of

23



4 Neural network for the classification of spin configurations

(a) h1, h2, h3 (b) h1

(c) h2 (d) h3

Figure 4.2: Spin configuration appearance in the training Spin Configuration Dataset:
The plot illustrates the appearance of each spin configuration for the datasets
of Table 4.2. Thereby, the spin configurations on the x-axis are identified
with their indices.
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(a) (b)

Figure 4.3: Run time for the creation of the Spin Configuration Dataset using h1: The
plots show the exponential growth of the runtime, depending on the number
of dimensions and particles per dimension.

the Hamiltonian requires most of the runtime.

Summarized, all three distributions produce reasonable datasets, which contain all
spin configurations. Because only the h1 dataset contains equal labeled samples, the
remaining work focuses on the distribution h1.

4.2 2D

Next, we present the basic structure for the convolutional neural network and analyze
it for the previously generated datasets.

4.2.1 Neural network architecture

Because we hope that convolutions can find structures in the given spin configuration,
we create a convolutional neural network similar to the one from Section 3.2. As one
can see in Figure 4.4, the model contains only one convolution because the model is
trained on spin configurations with few spins and therefore less information.

We begin with a convolution that should extract relations between the different spins.
This convolution has 32 filters, a stride of 1, and uses the ReLU activation function,
as well as zero padding. The kernel size is set to 3, as in Section 3.3. Both must have
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Figure 4.4: Model for the 2D Spin Configuration Classifier: The elements are explained
from left to right. The first blue rectangle represents the (p× p) input matrix
of spin configurations. It is followed by a convolutional layer and a MaxPool
layer. The 2D output is flattened, which is represented with the first fully
connected layer. The last two layers represent fully connected layers, where
the last one has exactly three neurons. The different colors of these neurons
should represent the three different labels into which the network classifies.
The grey neurons of the first two fully connected layers should represent
the dropout of the model.

the same kernel size because only then do their filter weights have matching sizes and
can be transferred to the same target network. Next, we perform a MaxPool operation,
which should extract the learned features. It follows a dropout layer to add some
regularization and prevent overfitting. The dropout rate is selected depending on the
dataset to find the best customized network. The resulting tensor is flattened and
connected to a fully connected layer with 16 neurons and the ReLU activation function.
After another dropout layer, we add a fully connected layer with three neurons and a
Softmax activation function. This last layer is responsible for the classification in the
Ising phases. We choose a learning rate of 0.0002 and keep the remaining settings from
the Ground State Classifier in Section 3.2, to enable a good comparison of the resulting
models.

4.2.2 Analysis

In this Section, the network of Figure 4.4 is analyzed for the different datasets with a
respective dropout rate. Additionally, we limit our observation to Ising models with
three parameters. As explained in Section 3.2, more parameters are not possible to
compute on the used machine. For fewer parameters, the model would results in zero
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or one neuron after the MaxPool operation and thereby prevents reasonable further
calculation.

h1

For the first model, we use the dataset created with h1. Figure 4.5 shows the label
distribution of the created dataset for the training and testing set. One can see that the
distribution between the paramagnetic and ferromagnetic labels is not perfect. Espe-
cially for the testing set, the ferromagnetic labels are dominating. This results from the
fact that the h values have a stochastic distribution and that the dataset has fewer values
than the training dataset. Nevertheless, the values are relatively evenly distributed and
should give an accurate representation of the possible spin configurations. The equal la-
beled data is also represented a few times but, as explained in Section 4.1, not very often.

Nr Spin Prediction Predicted Label
1 [0 0 0 0 0 0 0 0 0] [0.01, 0.97, 0.02] ferromagnetic
2 [0 0 0 1 0 1 0 1 0] [1.00, 0.00, 0.00] paramagnetic
3 [1 0 0 0 0 0 0 0 0] [0.17, 0.79, 0.04] ferromagnetic
4 [1 0 0 1 0 0 0 0 0] [0.66, 0.32, 0.02] paramagnetic

Table 4.3: Exemplary results from the 2D Spin Configuration Classifier (h1): The Table
visualizes the output distribution ("Prediction") for given spin configurations.

To find the optimal network for this concrete dataset, we implemented a grid search
algorithm, which determines the best dropout rate for the current dataset. In our case,
the best configuration is achieved, with a dropout of 0. After train the model with
this dropout, we achieve the training and validation curves depicted in Figure 4.6.
These curves show a decreasing loss curve as well as very accurate classifications. It is
rather untypical for neural networks that the validation curve is better than the training
curve in both plots. But it does make sense in our case. We sampled 900 data samples
from the same Hamiltonian, and therefore, the validation data is not entirely unseen.
Additionally, there exist only a limited number of input data, which plays an important
role. It is also visible that the network needed only a few epochs to stop training with
precise results. This can also be validated by the testing set, which results in a loss of
0.225 and an accuracy of 0.939. Additionally, we can validate the network with the
testing set of the other datasets. For example, the accuracy for the h3 testing set is
0.979 and the loss 0.070, which are even better than for its own testing set. This results
from the fact that the h1 dataset has more different h values and therefore classify more
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(a) training (b) testing

Figure 4.5: Label distribution of the training and testing Spin Configuration Dataset
(h1): The plots illustrate the portion of each label in the dataset. The dataset
was generated with the distribution h1.

(a) accuracy (b) loss

Figure 4.6: Loss and accuracy curve for 2D Spin Configuration Classifier using h1: The
curves are produced during training of the Spin State Classifier with no
dropout and kernel size 3. The classifier was trained with a dataset of 2D
Ising models with three particles per dimension and the h1 distribution.
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(a) original (b) predicted

Figure 4.7: Original and predicted label distribution of the testing Spin Configuration
Dataset using h1: (a) visualizes the label distribution for the testing dataset
and (b) shows their predicted labels of the network.

general than h3.

Furthermore, we analyze the network by looking at its classifications. Figure 4.7
shows the distribution of the original and predicted labels of 60, 000 data samples. As
one can see, the classifier never predicts the equal label. This is plausible because the
classifier had less data for this label. On the other hand, h = J is a very special case,
which results in the same spin configurations as the paramagnetic and ferromagnetic
models. Therefore, it is very hard to distinguish between the three states based on spin
configurations. We can also see that the label distributions for the paramagnetic and
ferromagnetic samples are rather similar, which sustains the high accuracy.

Lastly, we analyze the network concerning the physical interpretation. Therefore, we
have a look at the concrete results of the Spin Configuration Classifier. Because we input
spin configurations with a concrete number of spins, the possible inputs are limited.
Therefore, we can input each spin configuration and analyze the result from a physical
point of view. In Table 4.3 one can see some exemplary results from the classification.
Thereby, the second column represents the flattened input spin configuration, the third
column the prediction of the model, and the last column interprets the prediction of
the model. For the first entry, the spins point all in one direction, and therefore, the
model is with a very high probability ferromagnetic. As we could deduce physically,
the classifier predicts this label with a very high probability. Analog, for a typical
paramagnetic model, the classifier predicts to nearly 100% the correct label. The last
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two entries show spin configurations, which could not be assigned clearly to one phase.
This is also represented by the probabilities in the prediction. Additionally, the third
entry has many spins pointing in the same direction and therefore suggests to be
ferromagnetic. This characteristic is also reflected by the classifier. The same holds for
the last entry.

To sum it all up, under the circumstances that the classifier can not be perfect, its
classification of the spin configurations is accurate. The predictions for the different
spin configurations are physically reasonable, and therefore, the model should have
learned some features from the spin configuration. In Section 5.1.2 we analyze if these
learned weights can produce good results for the target network.

h2

Nr Spin Prediction Predicted Label
1 [0 0 0 0 0 0 0 0 0] [0.20, 0.75, 0.06] ferromagnetic
2 [0 0 0 1 0 1 0 1 0] [0.92, 0.07, 0.00] paramagnetic
3 [1 0 0 0 0 0 0 0 0] [0.72, 0.26, 0.02] paramagnetic
4 [1 0 0 1 0 0 0 0 0] [0.83, 0.16, 0.01] paramagnetic

Table 4.4: Exemplary results from the 2D Spin Configuration Classifier (h2): The Table
visualizes the output distribution ("Prediction") for given spin configurations.

For h2, a dropout of 0.2 produces the highest accuracy. The resulting training curves,
which are shown in Figure 4.8, are insufficient. On the one hand, the learning curves
are worse than for h1. On the other hand, with an accuracy of 0.863 and a loss of 0.381
the network classifies less accurately. This is unexpected because the dataset does not
contain any equal labeled data samples and consequently has a better chance to predict
the correct label.

Nevertheless, if one looks at the output for concrete spin configuration, which is
shown in Table 4.4, the network produces reasonable results, although with a lower
certainty as in Table 4.3. As explained in h1 under Section 4.2.2, the third entry is
physically classified to the ferromagnetic phase. However, this classifier predicts the
paramagnetic label. Except for this, both networks classify correct and to the same
class, which is validating both networks.

In conclusion, the network does produce mostly reasonable results but with a lower
certainty and also some wrong classifications. All in all, the network is worse than the
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classifier trained with the h1 dataset.

h3

Nr Spin Prediction Predicted Label
1 [0 0 0 0 0 0 0 0 0] [0.00, 1.00, 0.00] ferromagnetic
2 [0 0 0 1 0 1 0 1 0] [1.00, 0.00, 0.00] paramagnetic
3 [1 0 0 0 0 0 0 0 0] [0.76, 0.24, 0.00] paramagnetic
4 [1 0 0 1 0 0 0 0 0] [1.00, 0.00, 0.00] paramagnetic

Table 4.5: Exemplary results from the 2D Spin Configuration Classifier (h3): The Table
visualizes the output distribution ("Prediction") for given spin configurations.

For the third dataset, the optimal dropout rate is again 0. The learning curves,
plotted in Figure 4.9, are equal for training and validation, which indicates that the
network is quite sure of its decisions. This can be also confirmed with a testing loss
of 0.029 and an accuracy of 0.992. The network does not only produce very accurate
classification but also physically reasonable distributions. This can be seen in Table
4.5, which visualizes the output for concrete spin configurations. All results are with
very high certainty and produce the same label as in Table 4.4. Again, it is surprising
that the third entry is evaluated as paramagnetic because most spins point in the same
direction. Nevertheless, the results are extremely good and produce even for the h1
testing set accurate results with a loss of 0.507 and an accuracy of 0.900.

Summarized, this dataset produces a very precise classifier with mostly reasonable
results. Nevertheless, this network can not outperform the h1 dataset. This can be
derived from the lower accuracy for the h1 testing dataset and the remarkably accurate
results of the h3 dataset for the network in h1 (compare h1 under Section 4.2.2).
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(a) accuracy (b) loss

Figure 4.8: Loss and accuracy curve for 2D Spin Configuration Classifier using h2:
The curves are produced during training of the Spin State Classifier with a
dropout of 0.2 and kernel size 3. The classifier was trained with a dataset of
2D Ising models with three particles per dimension and the h2 distribution.

(a) accuracy (b) loss

Figure 4.9: Loss and accuracy curve for 2D Spin Configuration Classifier using h3: The
curves are produced during training of the Spin State Classifier with no
dropout and kernel size 3. The classifier was trained with a dataset of 2D
Ising models with three particles per dimension and the h3 distribution.
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4.3 1D

In this Chapter, a classifier for one-dimensional Ising models is created, with the goal
to test transfer learning for those models. At first, a fully connected neural network
is produced, which is trained with the h1 dataset. Afterward, it is analyzed and in
Section 5.2 used for transfer learning.

4.3.1 Neural network architecture

Figure 4.10: Model for the 1D Spin Configuration Classifier: The whole model consists
of fully connected layers. The first layer, also called the input layer, receives
spin configurations with p particles as input, wherefore the number of
neurons is p. The second layer represents a hidden layer with five neurons
and the last one the output layer with three neurons. The different colors
of those neurons should represent the three different labels into which the
network classifies. The grey neurons should represent the dropout of the
model.

For the one-dimensional case, the input is only a vector of spins, pointing up or down.
Hence, it is not possible to use the classical 2D convolution directly. We could reshape
the vector to a matrix to use convolutions, but depending on the number of particles,
this is not always possible. Another approach would be to use 1D convolutions, but
this functionality is not supported in the target network. Therefore, we decided to use
a neural network, which is only using fully connected layers. Because the input size,
which is equal to the number of particles, is usually smaller than 10, we select a small
model with three layers. The first layer has p neurons, whereby p denotes the length of
the input vector. After this layer, a dropout and a hidden layer with five neurons follow.
Lastly, we add a second dropout and the output layer with three neurons. As we did
in the other models, the dropout rate is customized for each dataset. For the first two
fully connected layers, we use ReLU as an activation function. The last layer has three
neurons and uses Softmax as an activation function to classify into the corresponding
classes. The remaining settings are equal to the two-dimensional model in Section 4.2.1.
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4.3.2 Analysis

Figure 4.11: Loss and accuracy curve for 1D Spin Configuration Classifier using h1:
The curves are produced during training of the Spin State Classifier with a
dropout of 0.1 and kernel size 3. The classifier was trained with a dataset of
1D Ising models with four particles per dimension and the h1 distribution.

The best dropout rate for our dataset is 0.1, which results in the learning curves
shown in Figure 4.11. Both curves show continuous improvement and result in an
accuracy of 0.847 and a loss of 0.519. These are not very good results, but under the
circumstance that it is only a fully connected neural network, the results are acceptable.
Table 4.6 shows the outputs for all possible spin configurations. As one can see, for all
configurations except [0000] and [1111], the network predicts the paramagnetic phase.
In the case of only 4 particles, this makes sense from a physical standpoint. It is nice to
observe that for classical paramagnetic configurations, as in entry 10, the probability of
being in this state is higher than for non-classical configurations. Therefore, the results
are reasonable from a physical point of view.

All in all, the model is good but not very precise. It delivers comprehensible results
and has acceptable accuracy.
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Nr Spin Prediction Predicted Label
1 [0 0 0 0] [0.15, 0.82, 0.02] ferromagnetic
2 [0 0 0 1] [0.69, 0.29, 0.02] paramagnetic
3 [0 0 1 0] [0.88, 0.11, 0.01] paramagnetic
4 [0 0 1 1] [0.76, 0.22, 0.02] paramagnetic
5 [0 1 0 0] [0.81, 0.17, 0.02] paramagnetic
6 [0 1 0 1] [0.85, 0.13, 0.01] paramagnetic
7 [0 1 1 0] [0.90, 0.09, 0.01] paramagnetic
8 [0 1 1 1] [0.75, 0.23, 0.02] paramagnetic
9 [1 0 0 0] [0.72, 0.26, 0.02] paramagnetic

10 [1 0 0 1] [0.92, 0.08, 0.01] paramagnetic
11 [1 0 1 0] [0.88, 0.11, 0.01] paramagnetic
12 [1 0 1 1] [0.84, 0.14, 0.01] paramagnetic
13 [1 1 0 0] [0.74, 0.24, 0.02] paramagnetic
14 [1 1 0 1] [0.88, 0.11, 0.01] paramagnetic
15 [1 1 1 0] [0.66, 0.32, 0.03] paramagnetic
16 [1 1 1 1] [0.15, 0.82, 0.02] ferromagnetic

Table 4.6: Results from the 1D Spin Configuration Classifier (h1): The Table visualizes
the output distribution ("Prediction") for given spin configurations.
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In this Chapter, we cover the target network, which returns the corresponding entry of
the ground state vector for a given spin configuration. For this, the network needs a
specified h value, a dimension, and a number of particles per dimension. For example,
for a 2D Ising model with one particle, the ground state vector would have two entries.
For the first spin configuration < 0 >, the network should predict the first entry of
the ground state, for < 1 > the second one. In case the network predicts 0.96 for
< 0 > and 0.28 for < 1 >, the predicted ground state of the network would evaluate
to [0.96, 0, 29]. Therefore, the network is able to predict the whole ground state of the
system by inputting and merging all spin configurations.

Because the input of the network is a spin configuration, we have to distinguish
between 1D and 2D Ising models. At first, in Section 5.1 the more interesting 2D Ising
models are covered and analyzed for pretrained and random weights. The same is
done for the 1D Ising model in Section 5.2. For the analysis of the networks, we use the
deviation of the exact energy E0 and the energy E. E is calculated by < psi|H|psi >,
with H denoting the Hamiltonian and psi denoting the predicted ground state by the
network. So it depends on the predicted ground state entries and is, therefore, a good
indicator for the performance of the network.

The used code for the ground state optimization is based on a previous implementa-
tion from Irene López Gutiérrez and Prof. Dr. Christian Mendl.

5.1 2D

At first, the model and results for 2D Ising models are discussed. Therefore, the
general structure of the neural network is explained in Section 5.1.1. Next, the network
is trained with and without transferred weights, and the results are compared and
analyzed in Section 5.1.2. We limit the observation to the ground state weights and the
spin configuration weights with the dataset h1. The other distributions for h are not
discussed here because they produce worse results. Additionally, the comparison of
the ground state and spin configuration weights is more reasonable because they share
the same h distribution.

36



5 Transfer learning

5.1.1 Neural network architecture

C
O
N
V

Figure 5.1: Model for the 2D Ground State Calculator: The elements are explained from
left to right. The blue rectangle represents the (p× p) input matrix of a spin
configuration. It is followed by a convolution layer and a fully connected
layer with 20 neurons. The last layer consists of one neuron, which outputs
the corresponding ground state entry of the Ising model.

The concrete model of the target network is illustrated in Figure 5.1. It consists of
only one convolution layer and two fully connected layers with 20 and one neuron.
The kernel and bias weights of the convolution are randomly selected if we do not use
transfer learning. Otherwise, those weights are reused from the pretrained models.
Therefore, the kernel size, stride, and the number of filters are fixed to 3, 1, and 32.
The fully connected layers with 20 and one neuron use random initialization. To stay
consistent with the pretrained models, the activation function is ReLU for all layers.
The networks use 512 number of samples, a learning rate of 1e− 3, and a batch size of
100. In the following, this network is trained and analyzed for 2D Ising models with
three particles per dimension.

5.1.2 Analysis

To compare the performance of the network with and without transferred weights, this
Section analyses the results for three different h values among the network in Figure
5.1. At first, a very high h value of 1e5 is chosen with an exact ground state energy of
−900, 000, denoted as E0. The Figures 5.2, 5.3 and 5.4 show the plots for the objective
function, the probability distribution d (see Chapter 4.1), and the recorded ground state.
In each case, the plots are generated for random weights and transferred weights from
the Ground State Classifier and the Spin Configuration Classifier with the h1 dataset.
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Weights Deviation Relative error Overlap error
random 0.053 5.856e-08 3.140e-08
ground 2.466e-05 2.740e-11 2.899e-11

spin 4.500e-05 5.000e-11 5.625e-11

(a) h = 1e5
Weights Deviation Relative error Overlap error
random 6.907 0.384 0.825
ground 8.000 0.444 1.000

spin 1.125e-10 6.251e-12 0.197

(b) h = 1e− 5
Weights Deviation Relative error Overlap error
random 1.131 0.059 0.342
ground 0.344 0.018 0.152

spin 1.066 0.056 0.323

(c) h = 1

Table 5.1: Evaluation of transfer learning for 2D Ising models: The Table shows the
evaluation of the predicted result with and without transferred weights.
The column "Weights" specifies which initial weights are used for the net-
work. Hereby, "random" represents the network without transferred weights
and "spin" or "ground" the transferred weights of the Spin Configuration
Classifier or the Ground State Classifier. "Deviation" means the deviation
of the prediction to the exact energy, so E − E0, with E being the energy
calculated from the network and E0 the exact energy. The relative error
between E and E0 is calculated with |(E− E0)/E0|, and the overlap error
with 1− | < gs| f ound > |. Here, gs denotes the exact ground state and f ound
the predicted ground state of the network. Hence, f ound is the concatenation
of the network results for all possible spin configurations. With the whole
formula, we can estimate how similar the ground state vectors are. For an
easier interpretation, the cell color represents the quality of the result.

As one can see in Figure 5.2a, for random weights the ground state energy starts at
a value around −850, 000 and reaches after a low number of iterations E0. For the
pretrained weights of the ground state model, the initial value of about −899, 700 is
already very close to E0, which can be derived from Figure 5.2b. In Figure 5.2c one can
see, that for the spin configuration weights, the initial value is already matching E0.
The fact that both transferred weights cause a closer initial value to the exact energy
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suggests that the pretrained weights improve the network.

Figure 5.3 shows the probability distribution for the different spin configurations.
The network without trained weights has a very fluctuating graph and, therefore, very
different probabilities. This can be seen in Figure 5.3a. Figure 5.3b with the ground
state weights has already less fluctuations and a pattern is recognizable, and Figure
5.3c with the spin configuration weights has no fluctuation at all and has constant
probabilities.

Finally, in Figure 5.4 the predicted and exact ground state are compared. Here, the
exact ground state entries for the corresponding spin configurations are plotted in blue.
They are compared to psi, the ground state values, which are painted in orange. Ideally,
the blue and orange curves are matching, which is not the case for any of the three plots.
Figure 5.4a, which has no trained weights, has very high fluctuation in the psi curve
and a large deviation between the curves. Therefore, the prediction of the ground state
is not very accurate. The second plot, Figure 5.4b, which has weights of the Ground
State Classifier, has some matching intervals. Besides, the psi function has nearly no
fluctuation and is close to the blue curve, which can be derived from the y-coordinates.
Similar applies to Figure 5.4c, which uses weights of the Spin Configuration Classifier.
The deviation to the blue curve is very small and additionally very similar to Figure
5.4b. Although the two curves have only one matching point, the predictions are very
close to the exact ground state. Therefore, both transferred weights obtain a more
accurate representation of the ground state than the randomly initialized weights.

Summarized, with transfer learning, not only the performance at the beginning of
the training is better, but also the predicted ground state is more accurate. Therefore,
the Figures indicate that transfer learning improves the performance of the network.

To validate these observations, the results of the network are evaluated in Table 5.1a
using the energy and the ground state of the system. The deviation of the energy is
for both transferred weights minimal. Additionally, they achieve similar deviations
and improve the random weights. The same holds for the relative error. Therefore, the
energy of the model can be predicted very accurate. For the overlap error, we achieve
similar results. The transferred weights are able to reduce the error by about two
decimal digits. Thereby, the ground state produces slightly better ground states, which
is also visible in Figure 5.4. But all in all, the accuracy of the ground state prediction is
very high for all weights.

In the following, we validate the transferred weights for lower h values, for example
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for h = 1e− 5 as shown in Table 5.1b. For random and ground state weights, the results
are very imprecise. Additionally, there is deterioration due to the ground state weights.
Consequently, both the predicted energy and the predicted ground state are inaccurate
for those two entries. This is in total contrast to the "Deviation" and "Relative error"
for the spin configuration weights, which are remarkably good and even outperform
the results of Table 5.1a. The "Overlap error" is still very high but better than for the
other weights. This means that with the weights of the Spin Configuration Classifier,
the network is able to predict E very accurately, there are still deviations in the ground
state predictions. Nevertheless, these weights achieve an improvement in contrast to
the untrained weights.

Lastly, we check the performance for h = 1. In this case, all results are similar and
not very good. Nevertheless, they are better than in Table 5.1b for random or ground
state weights. Here, exactly the opposite than in Table 5.1b happens. The ground state
weights show better results, whereas the spin configuration weights have only a very
low impact.

All in all, the transferred weights show, in most cases, improved results in comparison
to the untrained network. Only with very high h values perform both transferred
weights comparably and significantly better than with random weights. For lower h
values, the impact of the transferred weights is diminishing and differs among the two
transferred weights. Especially for h close to 0, the results are different, where the spin
configuration weights show excellent results for the energy. Further analysis of the
impact due to transfer learning is covered in Chapter 6.

40



5 Transfer learning

(a) random weights

(b) Ground State Classifier weights (c) Spin Configuration Classifier weights

Figure 5.2: Predicted energy per iteration for 2D model with and without pretrained
weights for h = 1e5
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(a) random weights

(b) Ground State Classifier weights (c) Spin Configuration Classifier weights

Figure 5.3: Probability distribution d (|psi|2) for 2D model with and without pretrained
weights for h = 1e5
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(a) random weights

(b) Ground State Classifier weights (c) Spin Configuration Classifier weights

Figure 5.4: Recorded ground state for 2D model with and without pretrained weights
for h = 1e5: The blue line represents the exact ground state values for the
corresponding spin configuration and the orange line the predicted ground
state psi.
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5.2 1D

In the following, we have a look at transfer learning for 1D Ising models with a
fully connected neural network. Because the input of the neural network are spin
configurations, and the weights of the first fully connected layer are transferred, only
the spin configuration weights can be used. For the ground state, the input vector
has 2p 6= p neurons, and therefore, the size of the weights and biases does not match
with the target network. As already defined in in Section 4.1, p denotes the number of
particles per dimension and is in our case set to p = 4.

5.2.1 Neural network architecture

Figure 5.5: Model for the 1D Ground State Calculator: The whole model consists of
fully connected layers. The inputs are spin configurations with p particles
per dimension, wherefore the input layer consists of p neurons. The last
layer consists of a single neuron, which outputs the corresponding ground
state entry.

The structure of the network is very simple and consists only of two fully connected
layers. The first layer consists of p neurons and is directly connected to the output
neuron. This neuron outputs the value of the ground state vector corresponding to the
input spin configuration. The weights and biases of the first layer are transferred from
the Spin Configuration Classifier or chosen randomly. For the last neuron, these values
are chosen randomly for all cases. We use the highest possible number of samples,
which is 2p·dim and evaluates to 16, and ReLU as activation function. The remaining
parameters stay the same as in the 2D case in Section 5.1.1.

5.2.2 Analysis

As for the two-dimensional case in Section 5.1.2, we analyze the performance of the net-
work with the deviation of the energies, the relative error, and the overlap error, which
are listed in Table 5.2. For very high and low h values, the deviation and the relative
error are not only very low but also nearly equal for both weights. Hence, the model is
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Weights Deviation Relative error Overlap error
random 7.452e-06 1.863e-11 1.029e-11

spin 7.143e-06 1.786e-11 8.164e-12

(a) h = 1e5
Weights Deviation Relative error Overlap error
random 1.000e-10 2.500e-11 0.324

spin 1.000e-10 2.500e-11 0.763

(b) h = 1e− 5
Weights Deviation Relative error Overlap error
random 0.152 0.029 0.175

spin 0.398 0.076 0.332

(c) h = 1

Table 5.2: Evaluation of transfer learning for 1D Ising models: The Table shows the
evaluation of the predicted result with and without transferred weights. The
column "Weights" specifies which initial weights are used for the network.
Hereby, "random" stands for the network without transferred weights and
"spin" for the transferred weights of the Spin Configuration Classifier. "Devi-
ation" means the deviation of the prediction to the exact energy, so E− E0,
with E being the energy calculated from the network and E0 the exact energy.
The relative error between E and E0 is calculated with |(E− E0)/E0|, and the
overlap error with 1− | < gs| f ound > |. Here, gs denotes the exact ground
state and f ound the predicted ground state of the network. Hence, f ound is
the concatenation of the network results for all possible spin configurations.
With the whole formula, we can estimate how similar the ground state vectors
are. For an easier interpretation, the cell color represents the quality of the
result.

predicting the energy very accurately. For h = 1, the spin configuration weights have
even worsened the model. However, these minor deviations among the weights could
also have stochastic reasons. Accordingly, any improvement or deterioration should
not be interpreted as a result of transfer learning. If one takes a look at the overlap
error, only the results of h = 1e5 are very accurate and can outperform the random
weights. For the other two h values, the transferred weights increase the overlap error
and consequently predict the ground state more inaccurate.

All in all, the neural network produces precise results, except for h = 1. Thereby,
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the quality of the results does not depend on the initial weights. From that, we can
conclude that the neural network optimizes so well that it can not benefit from the
transferred weights.
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6 Summary

In this Chapter, we summarize all results and give an overview of what did and did
not improve the Ground State Predictor.

6.1 2D

Weights h Energy Ground state

ground
1e5 high improvement high improvement
1 high improvement high improvement

1e− 5 high deterioration small deterioration

spin
1e5 high improvement high improvement
1 small improvement small improvement

1e− 5 very high improvement very high improvement

Table 6.1: Improvement due to transfer learning (2D): This Table shows the interpreta-
tion of Table 5.1. This is done, by comparing the results of the transferred
weights for "Deviation" and "Overlap error" with the randomly initialized
weights. The Table entry "Weights" denotes the used initialization weights.
Hence, for "ground", the transferred weights of the Ground State Classifier are
used. The cell colors highlight the improvement due to transferred weights.

For the two-dimensional case, the impact of transfer learning to the predicted energy
and ground state can be derived from Table 6.1. These interpreted results are combined
with the results from Table 5.1 to get a final conclusion. All observations apply to both
the energy and the ground state. For the weights of the Ground State Classifier, the
target network is improved for h ≥ 1. For h = 1e5, the transferred weights are able
to further improve the already very good results of the randomly initialized network
for both the energy and the ground state. In the case of h = 1, the improvement due
to the transferred weights leads also to precise results, which stands in total contrast
to h = 1e− 5. Here, the transferred weights are not able to achieve any improvement
and even deteriorate the results. When looking at the concrete results in Table 5.1b,
one can observe that the predictions with and without the transferred ground state

47



6 Summary

weights are very inaccurate. Therefore, transferring the weights of the Ground State
Classifier and using it for very low h values is not recommendable. With h values
greater than 1, the predictions of the network are precise, especially for high h values.
All in all, the ground state weights are only suitable for h ≥ 1, where they achieve large
improvements.

For the spin configuration weights, we obtain improvements for all h values. Just
as for the ground state weights, the improvement of h = 1e5 is remarkably good and
results in very accurate predictions. Lower h values, such as h = 1, perform worse
than the ground state weights. Nevertheless, a minor improvement to the random
initialization is identifiable, which results in a network with acceptable accuracy. With
h = 1e− 5 we were able to observe the greatest improvement of all covered scenarios.
Here, the predictions of the randomly initialized network are very inaccurate, in total
contrast to the network, with the transferred weights. These results are extremely
good and even outperform all other values in terms of energy. For the ground state,
the prediction is still accurate but significantly worse than for h = 1e5. This great
improvement is very surprising, especially considering the deterioration of the ground
state weights. However, it holds the advantage of using these weights for h values
close to 0. All in all, the weights of the spin configuration show improvements over
the whole range. Therefore, the learned weights from the Spin Configuration Classifier
have learned features, which were helpful for the prediction of the ground state.

In conclusion, for each considered h, the results of the randomly initialized weights
could be outperformed with one of the transferred weights. Thereby, depending
on the concrete h value, either the ground state weights or the spin configuration
weights achieve the best performance. We can conclude that transfer learning is able to
significantly improve the target network.
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6.2 1D

h Energy Ground state
1e5 small improvement small improvement
1 small deterioration small deterioration

1e− 5 no improvement small deterioration

Table 6.2: Improvement due to transfer learning (1D): This Table shows the interpre-
tation of Table 5.2. This is done, by comparing the results of the spin
configuration weights for "Deviation" and "Overlap error" with the random
initialized weights. The cell colors highlight the improvement due to trans-
ferred weights.

As for the two-dimensional case, we analyze the results of the target network from
1D Ising models. Hereby, Table 6.2 interprets the results of Table 5.2. In the following,
both are used to obtain a final estimate of the influence of transferred weights. Except
for h = 1e5, the pretrained weights could not obtain any improvement in the network.
But even for this high h value, the transfer learning could not significantly improve
the predictions. As we can derive from Table 5.2a, the results of both networks are
extremely precise. The same holds for the energy of h = 1e− 5, where the pretrained
weights show no difference to the random weights. It is interesting to see that the
results of the Ground State Calculator are worse due to the transferred weights and
also predict very imprecise. In the case of h = 1, the spin configuration weights only
worsened the predictions of energy and ground state. Their final results are acceptable
but not as good as for the other h values.

Summarized, the pretrained weights show mainly deterioration or no significant
improvement. Thereby, the results of trained and untrained weights have a very small
difference. This leads to the assumption that some improvements and deteriorations
have stochastic reasons and can vary. Consequently, it is not recommendable to use
pretrained weights for the 1D case. Nevertheless, most results of both models are
precise, and therefore, the models are predicting very well.
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7 Conclusion

This work covers the creation of two neural networks classifying the Transverse-field
Ising model into their Ising phases. At first, the two-dimensional case with convo-
lutional neural networks and three particles per dimension is considered. Here, we
created a few networks and analyzed their performance. The first network, which
classifies the ground state, achieves very precise results with an accuracy of 99%. Simi-
larly, the second network, which classifies the concrete spin configurations, achieves an
accuracy of 94%. We transferred these learned weights to the target network, which
is predicting the ground state entry for a corresponding spin configuration. After
analyzing the results for different h values, it appears that the transferred weights
almost always outperform the randomly initialized network. Only for the ground state
weights and a h close to 0, the performance is worse due to pretrained weights. For the
case of very high h values, the network predicted the ground state very accurately and
with a huge improvement due to the transferred weights.
Second, we discover the influence of transfer learning for the 1D case with four particles.
We limit the observation to the spin configuration weights created by a fully connected
neural network. With an accuracy of 85%, the classification is less accurate than for the
2D classifiers. During transfer learning, we determined that we could achieve almost
no improvement due to the transferred weights. Additionally, the difference between
the trained and untrained weights is so low that the reasons could also be stochastic.
Consequently, the transfer learning was not able to improve the Ground State Predictor
and is not recommended for that case.
All in all, this work shows that it is possible to improve the performance of the Ground
State Predictor with transferred weights in the two-dimensional case. For the one-
dimensional case, we could gain no significant improvement. Consequently, we assume
that only for high dimensions meaningful features can be extracted, which results in
improvements. This presumption can be covered in future work. Also, this work covers
only the influence of transfer learning, trained on a low number of particles. For future
work, it would be interesting how the influence changes for Ising models with more
particles.
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