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Abstract 

 
Glioblastoma is the most common primary malignant brain tumor and still carries a bleak 

prognosis despite intensive treatment. In order to guide more personalized treatment options, a 

lot of scientific effort has been put into developing means to investigate the peritumoral edema 

for microscopic tumor infiltration. Diffusion Tensor Imaging (DTI) has emerged as a promising 

imaging tool for the detection of microstructural tissue alterations. However, its application in 

the assessment of peritumoral edema is impeded by partial volume effects due to free-water 

contamination. 

The purpose of this thesis was to evaluate a novel deep learning-based approach for correcting 

the free-water contamination of DTI data for its utility in recurrence prediction of glioblastoma.  

Therefore, in a first step, in 35 glioblastoma cases from our institute’s prospective glioma 

cohort, semi-automatic tumor segmentation was performed on the preoperative MR images as 

well as on the first postoperative scans showing tumor recurrence. Subsequently, a novel 

algorithm for free-water correction (FWC) was applied on the DTI data by employing an 

artificial neural network that disentangles the free-water and tissue component for each voxel. 

The resulting tissue volume maps (TVM), as well as fractional anisotropy (FA) and mean 

diffusivity (MD) values were collected for areas with and without later tumor recurrence in the 

peritumoral edema. 

The results show that FWC FA values are significantly lower in areas of the peritumoral edema 

where later recurrence occurred, even in the lowest range of FA values (in clear contrast to 

uncorrected FA data). However, the FWC of MD values seems to bring no benefit to their 

application in recurrence prediction, which might be explained by the reduction of isotropic 

diffusion signal through the FWC. 

Consequently, FWC is a powerful tool for improved brain tumor imaging with the potential for 

refining surgical and radiotherapy planning in the near future.  
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Zusammenfassung 

 
Unter allen primären bösartigen Tumoren des zentralen Nervensystems stellen Glioblastome 

die mit Abstand häufigste Untergruppe. Leider ist ihre Prognose bis heute infaust und selbst die 

maximale Therapie an hochspezialisierten Zentralen verbessert die Überlebenszeit für 

betroffene Patienten nur unwesentlich. 

Ein wichtiger Schwerpunkt der Hirntumorforschung ist daher die Weiterentwicklung der MRT-

Bildgebung mit dem Ziel, personalisierte Behandlungspläne für die Chirurgie und 

Strahlentherapie zu erhalten. Ein besonderes Augenmerk liegt dabei auf der Darstellung des 

Perifokalödems des Tumors, da die überwiegende Mehrheit der Rezidive in diesem Bereich 

auftritt, die mikroskopische Infiltration von Tumorzellen allerdings in den konventionellen 

MRT-Sequenzen nicht visualisiert werden kann. Die Diffusions-Tensor-Bildgebung (DTI) und 

insbesondere die daraus ableitbare Fraktionelle Anisotropie (FA) haben sich als 

vielversprechende Ansätze für diese Fragestellung herausgestellt. Allerdings sind ihre Werte 

durch die Kontamination von Wasser im Perifokalödem verzerrt. 

Das Ziel dieser Promotionsarbeit ist es deshalb, einen Lösungsansatz vorzustellen, wie man 

diese Wasserkontamination der DTI-Daten beseitigen und dadurch Gewebeveränderungen 

durch anderweitig „unsichtbare“ Tumorinfiltration aufdecken kann. Dies wird am Beispiel von 

35 Glioblastom-Fällen aus der prospektiven Gliom-Datenbank unseres Institutes dargestellt. 

Dafür wird in einem ersten Schritt eine semi-automatische Segmentierungsmethode angewandt, 

die das Perifokalödem vom Kontrastmittel-anreichernden Tumoranteil abgrenzt. In einem 

zweiten Schritt werden daraufhin die DTI-Datensätze vom Störfaktor des freien Wassers 

befreit. Die hierfür entwickelte Methode basiert auf einem neuronalen Netzwerk, welches in 

jedem Voxel den Anteil freien Wassers bzw. Gewebes schätzt und daraus korrigierte FA-Werte 

generieren kann (neben korrigierten Werten der Allgemeinen Diffusivität (MD) und eigens 

entwickelten Gewebevolumen-Karten).  

Ein Vergleich zwischen den unkorrigierten und den korrigierten DTI-Daten zeigt, dass die 

korrigierten FA-Werte in Bereichen des Perifokalödems, in denen später das Rezidiv auftritt, 

bereits in den präoperativen MRT-Bildern signifikant verändert sind. Im Gegensatz dazu ergibt 

eine Analyse der korrigierten MD-Werte und der Gewebevolumen-Karten keinen zusätzlichen 

Nutzen.  

Die hier vorgestellte Methode könnte in Zukunft dabei helfen, die Lokalisation von späteren 

Tumorrezidiven bereits auf den ersten präoperativen MRT-Bildern vorherzusagen. Dadurch 

könnte die chirurgische und strahlentherapeutische Behandlung von Glioblastomen präzisiert 
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werden, um dadurch einen erheblich verbesserten Therapieerfolg für betroffene Patienten zu 

gewährleisten.  
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1. Motivation and Outline 
 
1.1 Motivation 
 
Glioblastoma (GBM, historically for glioblastoma multiforme) is the most common, and at the 

same time, the most aggressive primary brain tumor. Despite intensive treatment efforts, the 

median overall survival (MOS) only reaches 15.6 months [1]. Unfortunately, after initial 

therapy (which usually consists of surgical resection and combined radiochemotherapy) 

recurrence occurs in essentially all patients with a progressive-free survival (PFS) of only 6 to 

9 months [2]. One of the most fatal biological characteristics of GBM leading to this bleak 

prognosis is their ability to diffusely infiltrate the surrounding brain tissue. Since it is a 

commonly accepted assumption that the contrast enhancing tumor margins on Magnetic 

Resonance Imaging (MRI) do not represent the true tumor borders, major scientific efforts are 

dedicated for developing means to assess more accurately the peritumoral edema for 

microscopic tumor infiltration. Importantly, 90% of tumor recurrences develop within the 

peritumoral edema [3], an area that is especially difficult to examine because of the large partial 

volume effects of free water. Particularly diffusion tensor imaging (DTI), an imaging method 

that enables the visualization of tissue microstructure, is impeded by the water component of 

the peritumoral edema, which is why studies assessing its utilization for recurrence prediction 

have shown contradictory results [4]. However, in 2009, Pasternak et al. introduced an 

algorithm that extracts the free-water component from diffusion MRI enabling a better 

estimation of tissue-specific indices [5], such as fractional anisotropy (FA) which reflects the 

directionality of brain fiber tracts and has shown to correlate with cell density and proliferation 

activity [6]. 

The purpose of this project was to substantially advance this promising approach and, in a next 

step, evaluate its applicability for recurrence prediction in GBM patients. For that, our team 

developed a novel method of free-water elimination based on the implementation of an artificial 

neural network (ANN) that can be retrospectively applied to any diffusion MRI data [7].  

Our main goal was to obtain valuable image information for personalized treatment decisions 

which might eventually lead to improved survival times for GBM patients in the future.  

 

1.2 Outline 
 

This thesis begins with a profound introduction to the theoretical background of the project. 

The first section focuses on DTI, the central MRI modality used in this work (Section 2.1). 
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Next, I provide an overview of the current state of clinical management of GBM and its medical 

background (Section 2.2). This is followed by a chapter dedicated to the well-established 

imaging protocol of GBM as well as the latest advancements in brain tumor imaging and is 

subdivided into the preoperative and the postoperative assessment (Section 2.3).  

The main part describes our research project in detail, including a detailed protocol of the 

methodology (Section 3), the presentation of the results (Section 4), and a comprehensive 

discussion of the results with regard to the current state of the relevant research (Section 5). The 

thesis is concluded with a short summery and an outlook on future research options (Section 6).        
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2 Theoretical Background 
 

This section aims to provide the reader with a solid understanding of the theoretical 

prerequisites of this thesis. It is divided into three parts: An introduction to DTI (Section 2.1) 

and to the clinical background of GBM (Section 2.2), which is concluded with an overview on 

imaging procedures for GBM (Section 2.3).  

 

2.1 Diffusion Tensor Imaging 
 

DTI is an enhancement of the classical diffusion weighted imaging (DWI), which is useful for 

addressing specific questions as those outlined in this project, dealing with the detection of 

alterations in tissue microstructure. In fact, DTI is a specific type of modeling DWI. Therefore, 

I start with briefly explaining the background of DWI. 

 

2.1.1 Diffusion Weighted Imaging 

 

In principle, DWI measures the Brownian motion, i.e., the random molecular movement of 

water molecules [8]. In the human body, an uninhibited pattern of such motion is only present 

within “pure” body fluids, like cerebrospinal fluid (CSF). In most tissues, for example in brain 

matter, various cellular, subcellular, and extracellular structures impede the movement of water 

molecules. Therefore, the “velocity” of diffusion is lower in tissue. This velocity is referred to 

as diffusion (D). Since it is impossible to exactly measure D, the corresponding value in MR 

imaging is referred to as the apparent diffusion coefficient (ADC). 

To make an MR image sensitive to diffusion, typically a pair of gradient pulses is applied at 

very high amplitude, one before and one after the 180° radiofrequency pulse. Usually, ultrafast 

echoplanar imaging (EPI) acquisitions are used so that the small-scale motion due to diffusion 

is not overwhelmed by larger-scale physiologic or gross patient motion [9]. The term b-value 

is used to describe the net gradient effect and therefore, the total amount of diffusion 

sensitization:  

 

𝑏𝑏 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  𝛾𝛾2𝐺𝐺2𝛿𝛿2(Δ − 𝛿𝛿/3) 

 

It is determined by the gyromagnetic ratio γ, the gradient strength G, the time the gradients  
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are kept on (δ), and the time interval between the two pulsed gradients (𝛥𝛥). Its unit is 

[s/mm2][10]. Typically, b-values of 700 to 1000 are used in clinical DWI. To generate an image 

that is sensitive to diffusion in all directions, three orthogonal diffusion-sensitizing gradients 

are applied subsequently. In single-shot imaging techniques like EPI, T1 contrast is naturally 

not present. Thus, DWI generally employs T2-weighted EPI images. A routine DWI study 

consists of the acquisition of four sets of T2-weighted EPI images: One without any diffusion 

sensitization (the b=0 image) and three with the addition of diffusion-sensitizing gradients (the 

diffusion-weighted images, e.g., b=1000). 

Given the T2-weighted nature of these images, a quantitative measurement of diffusion is 

necessary to distinguish areas with high T2 signal (e.g., due to edema) from areas with true 

diffusion restriction. To approximate this ADC, a two-point method is sufficient: When plotting 

the signal intensity from the b=0 image and that from the b=1000 images, the slope of the 

resultant line will approximate the ADC. As a result, regions with abnormally restricted 

diffusion will appear with high signal on the DWI and a relatively low pixel intensity (not signal 

intensity because it is a calculation) on the ADC map. In contrast, areas with high T2 signal but 

without restricted diffusion will not appear dark on the ADC map (see Figure 1) [11]. 

 

2.1.2 Diffusion Tensor Imaging 

 

The development of DTI was a major achievement in the field of white matter mapping. It has 

been introduced by Basser et al. in 1994 [12]. Whereas DWI only measures the magnitude of 

Figure 1 - Diffusion Weighted Imaging. On the left, there is a T2-weighted EPI image without any diffusion-
sensitizing gradient (the b=0 image). On the image in the middle, a diffusion-sensitizing gradient is added making 
the ventricles appear dark because of signal loss due to diffusion of spins in CSF (DWI). On the right, there is the 
calculated ADC map that quantifies the magnitude of diffusion as described in the text [11]. 



 10 

diffusion, DTI can give directional information about the diffusion in tissue, i.e., the absolute 

direction of diffusion and the homogeneity of diffusion direction within a voxel. 

The basic concept of DTI is that water molecules diffuse differently along tissues depending on 

the type, integrity and architecture of tissue. In CSF and any other “pure” liquid, diffusion is 

unrestricted in all directions which is called isotropic diffusion. In contrast to that, the diffusion 

in white matter is not the same in all directions of a three-dimensional space, e.g., it is usually 

less restricted along the axon. This is called diffusion anisotropy. For each voxel, the diffusion 

direction and its anisotropy can be described using the second-rank diffusion tensor, a 3 x 3 

symmetric matrix derived from diffusivity measurements in at least six noncollinear directions. 

It can be visualized as an ellipsoid whose diameter in any direction describes the diffusivity in 

that direction. The orientation of the long axis of this ellipsoid depicts the preferred direction 

of diffusion at a given voxel. This is referred to as the principle eigenvector and can be 

described by an eigenvector ε (that reflects the direction of diffusion) and its length, the 

eigenvalue λ (which represents the magnitude of diffusion in that direction). Most commonly, 

three orthogonal vectors (each with an eigenvector and an eigenvalue) are used for describing 

the ellipsoid. In CSF, where diffusion is completely random, the ellipsoid will become a sphere, 

illustrating isotropy [11].  

Figure 2 - Diffusion Tensor Imaging. Top left: Fiber tracts arbitrarily oriented in the xyz-coordinate 
system of the scanner lead to anisotropic diffusion. Top right: The three-dimensional diffusivity can 
be modeled as an ellipsoid with three eigenvectors (ε1, ε2, ε3) and their corresponding eigenvalues 
(λ1, λ2, λ3). Bottom: Via matrix diagonalization the ellipsoid model is fitted to a set of at least six 
noncollinear diffusion measurements (ADCs). It results in a matrix of three eigenvectors[13]. 
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The 3 x 3 tensor matrix is diagonally symmetric (Dij = Dji) with six degrees of freedom. This 

means that only six of the tensor matrix’s nine values are independent and thus, the matrix is 

fully determined by these six parameters [13]. That is the reason why at least six diffusion-

encoded measurements are required to fully describe the tensor (see Figure 2). However, using 

more than six encoding directions will improve the accuracy of tensor measurement [14].  

Mathematically, diffusion anisotropy can be seen as the degree to which the three tensor 

eigenvalues differ from each other. The most common metric to describe this is the fractional 

anisotropy (FA). It derives from the standard deviation of the three eigenvalues and has a range 

from 0 (isotropy) to 1 (anisotropy). The FA can be calculated for each voxel using the following 

formula: 

𝐹𝐹𝐹𝐹 =  �3
2
�(λ1−λ�)2+(λ2−λ�)2+(λ3−λ�)2

λ1
2+λ2

2+λ3
2 , 

 

where λ� denotes the mean of the three eigenvalues, which is equal to the directionally averaged 

diffusivity of each voxel [λ� = (λ1 + λ2 + λ3) / 3]. FA itself has no information about the 

orientation. It provides a gray scale 2D map, enhancing diffusion anisotropy differences with 

intensity limits between 0 and 1. A commonly used method to illustrate the direction of 

maximum diffusivity, however, is a color-coded FA-map in which the color of each voxel 

demonstrates its main diffusion direction [15]. Usually blue represents inferior-to-superior, red 

left-to-right, and green posterior-to-anterior diffusion direction (see Figure 3). 

 

Figure 3 - Fractional anisotropy maps without (left) and with directional 
information (right). Brightness is proportional to FA. The color-coding is described 
in the text [13]. 
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Another often used diffusion index in DTI simply is the mean diffusivity (MD) or traceADC. It 

can be calculated for each voxel by the mean of the three eigenvalues and corresponds to the 

molecular diffusion rate with lower values meaning lower diffusivity: 

 

𝑀𝑀𝑀𝑀 =  λ1+λ2+λ3
3

= 𝐷𝐷𝑥𝑥𝑥𝑥 +𝐷𝐷𝑦𝑦𝑦𝑦+𝐷𝐷𝑧𝑧𝑧𝑧
3

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
3

, 

 
where Dxx, Dyy and Dzz are the diagonal terms of the diffusion tensor [16]. Typically, the MD of 

damaged tissue is higher in comparison to normal tissue due to increased free diffusion. In 

contrast, FA usually decreases in damaged tissue because of reduced coherence in the main 

diffusion direction.  

A third important application of DTI data to mention is tractography. With this method, a three-

dimensional representation of white matter pathways or fiber bundles can be obtained from the 

principle eigenvector of diffusion for each voxel. The processing of tractography consists of 

seeding, i.e. defining the starting points from which the fiber bundles will be drawn, 

propagation, i.e. the fiber tracking process, and termination of the fiber tracking which is based 

on well-defined criteria [16]. 

Other, less often used DTI measures quantify myelin neuropathology (radial diffusivity) or 

axonal degeneration (axial diffusivity) [17]. 



 13 

2.2 Glioblastoma 
 

GBM is the most common primary malignant tumor of the central nervous system (CNS). 

Histologically, it belongs to the greater group of gliomas, which comprise the majority of 

primary tumors within the brain parenchyma. The term glioma refers to the similarity of the 

tumors’ cells to normal glial cells, i.e., astrocytes, oligodendrocytes, and ependymal cells. GBM 

represents the most aggressive subtype of glioma, referring to WHO (World Health 

Organization) grade IV, which has historically been labeled as “high-grade glioma”. 

Despite intensive treatment options GBM still carries a bleak prognosis. To date, there are no 

curative treatment options. Standard treatment follows the landmark Stupp trial of 2005 and 

initially consists of maximal safe surgical resection followed by radiotherapy with concurrent 

temozolomide chemotherapy, followed again by six cycles of maintenance temozolomide [18]. 

However, in the past decade there have been major advancements in the differentiated diagnosis 

of GBM (e.g., the 2016 WHO classification of CNS tumors) and in new patient-tailored 

treatment options. This chapter shall provide a systematic overview of the current state of 

clinical management and an insight into previous and recent milestones of research on GBM.    

 

2.2.1 Epidemiology of glioblastoma 

 

The annual incidence of gliomas is around 6 / 100,000 [19]. In Germany, there were 

approximately 6,700 cases of malignant brain tumors in 2014. Among adults, GBM accounted 

for more than two thirds of cases (see Figure 4). The median age of disease onset is 62 years 

for men and 66 years for women, respectively [20].  

Many environmental and genetic factors have been studied but no risk factor has been identified 

which could account for a relevant proportion of GBMs. The majority are sporadic [21]. 

However, there are two known risk factors that increase the likelihood of developing brain 

cancer: One is ionizing radiation for another head or neck condition in the past. The other one 

is a positive family history. Studies showed that having an immediate relative with GBM 

doubled a person’s risk of developing the same disease [22]. Moreover, people with certain 

inherited conditions, such as neurofibromatosis and tuberous sclerosis, are at an increased risk. 

However, such conditions cause only about 5% of gliomas [23].  
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2.2.2 The 2016 WHO classification of tumors of the central nervous system 

 

CNS tumors are divided into four different grades (I-IV) following the classification system of 

the WHO. These grades are defined by increasing degrees of dedifferentiation, anaplasia and 

aggressiveness. Historically, the slower-growing lesions (WHO grade I and II) have been 

referred to as low-grade gliomas, while the more rapidly progressive tumors (WHO grade III 

and IV) have been named high-grade gliomas. However, nowadays the WHO recommends 

avoiding these terms due to the heterogeneity of properties and prognoses within the groups. 

The classification was initially based on the histological characteristics of the tumors. The most 

recent version of the classification is the revised 4th edition released in 2016 [24]. This update 

is markedly different from its 2007 precursor. For the first time, it incorporates molecular 

characteristics into the classification. This approach is referred to as integrated diagnosis.  

Figure 4 – Distribution of the main histological subtypes of primary malignant brain tumors. 
Adults in Germany, 2012-2014. Data from [20]. 
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In terms of gliomas (see Figure 5), the most notable change is, that while in the past all 

astrocytic tumors had been grouped together, now all diffusely infiltrating gliomas belong to 

one group (whether their cells resemble astrocytic or oligodendroglial cells). This attribution is 

based on the tumors’ growth pattern and behavior but also on the shared genetic driver 

mutations in the IDH1 and IDH2 (isocitrate dehydrogenases 1 and 2) genes. The presence or 

absence of IDH1 and IDH2 gene mutations now separates astrocytomas and glioblastomas into 

IDH-mutant and IDH-wildtype entitites. For the diagnosis of the common oligodendroglioma, 

on the other hand, in addition to IDH mutation, combined losses of the short arm of 

chromosome 1 and the long arm of chromosome 19 is necessary (1p/19q codeletion) [25].  

The advantage of this dynamic classification is that it now groups tumors with similar 

prognostic markers and guides the use of therapies for biologically and genetically similar 

entities.  

Glioblastomas, which are all graded as WHO grade IV tumors, are now divided into two 

subgroups: First, glioblastoma, IDH-wildtype (about 90% of cases), which mostly corresponds 

to the primary or de novo glioblastoma and is more common in patients of over 55 years of age. 

Second, glioblastoma, IDH-mutant (about 10% of cases) which often corresponds to secondary 

glioblastoma (deriving of a prior lower grade diffuse glioma) and preferentially affects younger 

Figure 5 - The 2016 WHO classification for tumors of the Central Nervous System. IDH mutation 
status and other genetic parameters classify the diffuse gliomas. The designation “not otherwise 
specified” (NOS) is used for tumors that either have not been fully tested for genetic alterations or 
have been tested but do not show the common diagnostic genetic alterations [25]. 
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patients [26]. Between these two subgroups, MOS differs significantly from 15 months for 

IDH-wildtype glioblastoma to 31 months for IDH-mutant glioblastoma under maximal standard 

treatment consisting of surgery and radiochemotherapy. This demonstrates the prognostic value 

of this new, integrated diagnosis [26].  

 

2.2.3 Standard treatment and recent developments 

 

Patients diagnosed with GBM usually receive gross-total tumor resection. A 2016 meta-

analysis of over 40,000 GBM patients showed that gross-total resection was associated with 

better survival in comparison to subtotal resection [56]. 

Microsurgical techniques are state of the art. There are several neurosurgical and imaging tools 

that help increasing the extent of resection and minimizing the risk of new neurological deficits. 

Those include navigation systems based on functional MRI datasets, intraoperative MRI, 

ultrasound, and intraoperative functional monitoring, as well as the fluorescent dye 5-

aminolevulinic acid (ALA) to visualize tumor tissue [27]. When resection is performed in 

eloquent areas of the brain, evoked potentials, electromyography, or mapping in awake patients 

under local anesthesia can be used to monitor and preserve language and cognition. This is 

highly important since postoperative deficits due to complications are a negative prognostic 

factor [19].  

Within 24-48 hours after surgery a post-operative CE-T1w (contrast-enhanced T1-weighted) 

MRI scan is routinely obtained to evaluate for tumor remnants since a study has shown that the 

radiological determination of the extent of tumor resection via MRI had massive prognostic 

significance [57]. Following surgery, since the implementation of the Stupp protocol, in most 

cases a combined radiotherapy with concomitant administration of temozolomide, a DNA 

alkylating agent, is added [18]. Initially, temozolomide (75 mg/m2) is administered on days 1 

through 42 with concomitant radiotherapy. 

Radiotherapy plays a crucial rule in preserving function and increasing survival. Its indications, 

timing, dosing and scheduling is determined by diagnosis and prognostic factors, especially by 

the extent of resection [28]. The standard radiation dose of 50-60 Gy is usually administered in 

30 fractions of 1.8-2.0 Gy. In elderly patients or those with poor prognosis, hypofractionated 

radiotherapy with higher fraction sizes and lower total dose, e.g., 15 x 2.67 Gy, is appropriate. 

Doses above 60 Gy have not shown to be beneficial, at least in the setting of whole-brain 

radiation [29]. 
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For generating the planning target 

volume (PTV), no definite 

guideline has been established so 

far. Two major guidelines exist in 

parallel, one presented by the 

European Organization for 

Research and Treatment of 

Cancer (EORTC) and one that is 

recommended by the 

Radiotherapy and Oncology 

Group (RTOG). They mainly 

differ in the inclusion of 

surrounding Fluid Attenuated 

Inversion Recovery (FLAIR)-

hyperintense edema and the 

addition of a radiation boost to the 

resection cavity and contrast 

enhancing tumor remnants in the 

2-phase RTOG approach [30]. 

However, in trials that allowed 

application of both concepts, no 

significant difference in outcome 

is seen between these 

radiotherapy techniques [31]. 

Moreover, as a third possibility, 

radiotherapists often follow the 

current European joint consensus 

by ESTRO-ACROP (European Society for Radiotherapy and Oncology – Advisory Committee 

on Radiation Oncology Practice) (see Figure 6). It describes the clinical target volume (CTV) 

as gross tumor volume (GTV = residual enhancement on T1w imaging plus surgical bed) with 

a margin of up to 2.5 cm including the hyperintensity on T2w/FLAIR imaging which is 

modified to reduce radiation dose on critical structures and in areas where tumor spreading is 

unlikely. To that, another margin of 0.3-0.5 cm is added to account for error setup and patient 

Figure 6- Flowchart for delineating the planning target volume (PTV) 
according to ESTRO-ACROP guidelines of 2015. Abbreviations are 
explained in the text [32]. 
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movement during radiation [32]. However, there are continuing controversies regarding the 

optimal volume delineation [33]. 

Modern techniques of focused radiotherapy, such as stereotactic, intensity-modulated or image-

guided radiotherapy may improve patient outcome due to protection of surrounding tissue. To 

date, however, randomized data comparing such novel approaches with standard treatment are 

not yet available [19]. 

After a break of 4 weeks after initial radiochemotherapy, there usually follows another 6 cycles 

of 4 weeks temozolomide (150 – 200 mg/m2 on days 1-5) each as maintenance therapy [18]. It 

is important to note that temozolomide only leads to a significantly prolonged survival in 

tumors exhibiting a methylated O6–methylguanine-DNA methyltransferase (MGMT) - 

promotor since an unmethylated one makes the tumor cells resistant to the alkylating effect of 

temozolomide.  

In case of tumor recurrence (which invariably occurs despite maximum treatment with the 

majority of recurrences being diagnosed within the first year [34]), standards of care are not yet 

defined. Repeated surgical intervention or reirradiation are highly individual decisions 

(considering general prognostic factors such as age and KPS), and significant data from 

randomized controlled studies are lacking. Most patients, however, receive temozolomide in 

standard dose, in combination with one of the available nitrosoureas carmustine (BCNU), 

lomustine (CCNU), or fotemustine, which are DNA alkylating agents as well. Again, the benefit 

of temozolomide in recurrent GBM seems limited to patients with MGMT promotor 

methylation [35].  

In 2009, the anti-vascular endothelial growth factor (VEGF) A-antibody bevacizumab has been 

approved by the FDA (Food and Drug Administration) in the United States for the treatment of 

recurrent GBM on the basis of uncontrolled data. Higher median PFS and higher MOS were 

reached in 2 of 3 retrospective studies favoring reirradiation combined with bevacizumab in 

comparison to reirradiation alone [36]. The recent EORTC 26101 phase III trial did not report 

a difference in MOS comparing lomustine plus bevacizumab with lomustine alone in patients 

with recurrent GBM, although prolonged PFS was confirmed [37]. Therefore, its utilization 

remains controversial and further molecular and neuroimaging research should aim to identify 

patients who might benefit from that treatment. 

Immunotherapeutic treatment options are currently under evaluation for both newly diagnosed 

and recurrent GBM with partially promising preliminary data which warrant further efforts 

[36].  
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2.2.5 Prognosis 

 

The 5-year survival rate for GBM patients averages 5.8% [1]. Most disease-associated deaths 

occur in the 5th quarter postdiagnosis. However, patients surviving past 2 years from diagnosis 

have a relatively favorable conditional probability of survival into the future [38]. Since the 

implementation of the Stupp protocol (co-administration of temozolomide and radiation) there 

has been a remarkable increase in survival (from 13.5 months to 15.6 months MOS) [1]. The 

median survival without any treatment is only 3 months, indicating the high malignancy of this 

tumor entity [39].  

Essentially all patients develop recurrence or progressive disease after initial treatment. The 

median PFS is between 6 and 9 months, depending on therapy and molecular status [2]. The 

MOS at recurrence is approximately 6 months [40]. 
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2.3 Standard and Advanced Imaging of Glioblastoma 
 

The last part of the theoretical section shall give the reader a concise overview of the standard 

imaging protocol for suspected brain tumors. Furthermore, it covers some advanced imaging 

techniques that are increasingly utilized in the clinical setting because of the benefit they bring 

to diagnostic precision. It is divided into two parts. A first part focuses on the preoperative 

setting, whereas the second part illuminates the challenges of postoperative imaging when 

treatment response has to be evaluated and progress needs to be distinguished from treatment-

associated changes.   

 

2.3.1 Preoperative evaluation of the brain tumor 

 

Most patients with GBM receive a CT scan of the brain when they initially present at the 

hospital (see Figure 7).  

When a mass is identified and hemorrhage of the brain is ruled out, a contrast-enhanced MRI 

examination of the patient is usually performed. The minimum standard protocol [41] consists 

of T2-weighted (T2w), T2-fluid attenuated inversion recovery (T2w-FLAIR), DWI, T1-

weighted (T1w), and T1-weighted contrast-enhanced (CE-T1w) sequences. In addition, most 

institutions perform high-resolution MRI (0.5-1.2 mm slice thickness) that is utilized by 

neurosurgeons for surgical planning and intraoperative guidance [42]. DWI is usually 

incorporated in standard imaging protocols because it alleviates the differential diagnosis of 

cystic brain lesions: Brain abscesses, epidermoid tumors and lymphomas typically show high 

signal intensity on DWI and low ADC values, while cystic / necrotic tumors and metastases, 

arachnoid cysts and toxoplasmosis usually show similar signal intensity to CSF on DWI. This 

is due to the differences in cell density and cellularity between these entities. The higher the 

cellularity or cell density (e.g., with very high values in lymphomas), the more diffusion is 

restricted. However, necrotic tumor and cystic metastases may occasionally show restricted 

diffusion as well, it has especially been documented for metastatic squamous cell carcinoma 

and radiation necrosis. In unclear cases, Magnetic Resonance Spectroscopy (MRS) may be 

useful for a definitive diagnosis [43]. 



 21 

Standard imaging provides a lot of relevant biological information about the tumor mass. Those 

include the volume of the different tumor sub-regions (i.e., necrotic, enhancing, and non-

enhancing tumor), compression of the surrounding peritumoral tissue and the risk of toxicity to 

nearby eloquent regions (i.e., cortex areas which directly control function and will lead to major 

focal neurological deficits if damaged), and midline deviation due to mass effect. Moreover, on 

T2w-FLAIR images the extent of the peritumoral edema can be assessed. This white matter 

edema develops in response to angiogenic and vascular permeability factors which are 

associated with infiltrating tumor [44]. Its potential in estimating tumor invasiveness and 

recurrence probability will be discussed later (see Section 5).  

Some advanced imaging methods are increasingly used in the preoperative setting as well. 

Functional MR imaging (fMRI) might be utilized for surgical planning in cases where tumors 

or their resection might disrupt eloquent areas (see Figure 7) [45].  

Another common method to guide surgical planning is to use DTI which generates white matter 

tractography images that can be used for intraoperative navigation as well (see Figure 7) [46]. 

DTI also helps to differentiate intra-/ post-operative vascular damage from residual enhancing 

Figure 7 – Extracts from sets of imaging studies acquired for different glioblastoma patients. Top row: 
Standard images showing a right frontal intracranial mass with contrast enhancement in axial slices (from 
left to right: CT, T2wFLAIR, CE-T1w) Bottom row: Three examples of advanced imaging modalities (from 
left to right: PWI (Cerebral Blood Volume), DTI tractography, fMRI) [42]. 



 22 

tumor [47] and it has been subject to numerous studies examining its ability to distinguish 

different brain gliomas, metastases, and lymphomas, from each other and different, non-

malignant pathologies of the brain [48]. In our study, DTI has been used to predict the 

localization of later tumor recurrence in the preoperative MRI by assessing the peritumoral 

edema for early alterations. This will later be discussed in detail.  

Furthermore, perfusion weighted images (PWI) parameters can be used in the preoperative 

setting to evaluate tumor characteristics (see Figure 7). In general, PWI techniques assess 

hemodynamic parameters derived from a time-intensity curve following contrast agent 

injection. Therefore, they can detect pathological alterations of tissue vascularity, such as in 

brain tumors, which in these cases are mostly due to increased vascular permeability or tumor- 

induced angiogenesis. Dynamic contrast enhancement (DCE) and dynamic susceptibility 

contrast (DSC) sequences have both been utilized in studies to assess for early disease 

progression and survival [49], and tumor type prediction or glioma grading, respectively [50].  

As mentioned above, MRS is another useful tool for the diagnosis of malignant brain tumors 

(see Figure 8). Basically, it noninvasively measures concentrations of metabolites within 

tissues. In the context of preoperative imaging of brain tumors, it especially helps to exclude 

differential diagnoses with markedly different spectroscopic patterns which may look similar 

on conventional MRI, such as strokes, brain abscesses, or focal cortical dysplasias. MRS has 

also been suggested as a tool to discriminate solitary metastases from primary brain tumors by 

assessing the peri-enhancing tumor regions: While gliomas often show elevated Choline levels 

in the surrounding brain tissue, metastases tend to be more encapsulated and do not usually 

show high Choline signals outside the region of enhancement [51]. Generally, the combination 

of post-contrast MRI, DWI, PWI, and MRS has been shown to improve the diagnosis and 

classification of intracranial masses [52].  

18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) plays a crucial role 

in oncologic imaging. However, due to the high background uptake by the normal brain its 

diagnostic relevance in brain tumor imaging has been quite limited. However, more recently, 

specific amino acid PET tracers, such as 11C-methionine, 18F-fluorothymidine (FLT), 18F-

fluoro-ethyl-tyrosine (FET), 18F-dihydroxyphenylalanine (DOPA) have been introduced. 

Their high lesion-to-background uptake ratios make them suitable for different applications in 

brain tumor imaging, such as predicting tumor grade, detecting recurrent tumor, and assessing 

treatment response [53].  
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Another advancement of brain tumor imaging is due to the increasing computing power and 

availability of pre-engineered algorithms which made it possible to analyze signal intensity 

variations on a voxel-to-voxel level. With this information, imaging features can be correlated 

with tumor biology / phenotypes and treatment response. This type of biomarkers, called 

radiomics, carries potential in evaluating especially high-grade gliomas with their genetic 

heterogeneity and complex imaging phenotypes [54]. For example, the integration of multiple 

conventional MR image parameters using machine learning (ML) based approaches has shown 

promising results in predicting WHO grade of gliomas [55]. Furthermore, IDH mutation status 

has shown to be predictable by using MRS driven measurement of 2-hydroxyglutarate (2HG) 

[56], static and dynamic FET-PET measurements [57], and also by applying ML algorithms on 

conventional MRI data [58][59].  

 

2.3.2 Response assessment in postoperative imaging 

 

Following standard treatment as explained above, 20-30% of patients with GBM develop 

increased contrast-enhancement within 3 months after the end of radiotherapy which subsides 

Figure 8 - Single voxel MR spectroscopy at long TE (228 ms). MRI appearance is compatible with 
a glial neoplasm in the right temporoparietal region. There is markedly elevated choline (resonates 
at 3.2 ppm) and markedly decreased NAA (N-acetyaspartate, resonates at 2 ppm). These findings 
are consistent with high grade glioma [42]. 
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without any change of treatment [60]. This effect is termed pseudoprogression. It likely results 

from transiently increased permeability of the tumor vessels due to irradiation and may be 

enhanced by temozolomide administration. It is important to not mistake this for true tumor 

progression since treatment with potentially beneficial adjuvant temozolomide might be 

erroneously stopped and patients might be included in trials of progressive or recurrent glioma 

inappropriately. To mitigate this problem the Response Assessment in Neuro-Oncology 

(RANO) criteria have been developed in 2010 [60]. They require a minimum of 12 weeks after 

completion of radiochemotherapy before progressive disease can be confirmed unless the 

location of increased contrast enhancement is distant from the radiation field or there is 

pathologic evidence of progressive or recurrent tumor. In the last decade, tremendous efforts 

have been put into improving the diagnosis of pseudoprogression. For example, it has been 

shown that recurrent or progressive tumor more commonly shows lower ADC values in 

comparison to normal brain tissue or necrosis [61]. Moreover, recent studies demonstrated that 

a voxel-vise analysis of ADC maps can differentiate pseudoprogression from true progression 

by utilizing a newly introduced postprocessing tool called ADC parametric response maps [62]. 

Other approaches found that pseudoprogression, compared to true tumor progression, exhibits 

lower relative blood volume in DSC-MRI [63] and significantly lower 18F-FET uptake [64]. 

And also MRS using choline to N-acetylaspartate (NAA) ratio has been shown to distinguish 

glioma progression from radiation necrosis with a sensitivity and specificity of 0.88 and 0.86, 

respectively [65].  

Another post-therapeutic phenomenon to consider is pseudoresponse after antiangiogenic 

therapy. The monoclonal antibody against VEGF, bevacizumab, and similar agents can result 

in rapid normalization of vascular permeability which may reduce the intensity of contrast 

enhancement on T1w MRI. However, this phenomenon is not associated with improved patient 

survival [66]. A subset of patients treated with bevacizumab have been shown to develop tumor 

recurrence characterized by an increase in the non-enhancing component. Therefore, the RANO 

criteria also require evaluation of the non-enhancing T2/FLAIR-hyperintense tumor. There are 

multiple promising approaches to enhance investigation of tumor progression under 

antiangiogenic therapy, e.g. T1 subtraction mapping [67] or ADC threshold values to 

differentiate hypercellular progressive tumor and necrosis [68]. 

Addressing the emerging use of immunotherapeutic treatment options, the RANO group has 

already published a guideline for the assessment of radiological changes following 

immunotherapy, called the iRANO criteria [69].  
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3 Materials and Methods 
 

3.1 Patient Acquisition and Imaging Protocol 

 

For the study, 35 glioblastoma cases from this institute’s prospective glioma cohort were 

selected. This was approved by the local ethics committee. Criteria for inclusion were 

availability of pre- and postoperative DTI data (2 mm isotropic resolution, TE = 78 ms, TR = 

5000 ms) with 32 directions (b = 800 s/mm2) and one non-diffusion-weighted b0 volume (Nb= 

32) besides the standard MRI protocol for brain tumor diagnosis: T2 turbo spin echo (T2w), 

T2-FLAIR, non-enhanced and contrast-enhanced T1 (T1w and CE-T1w). Availability of MR 

images showing (first) tumor recurrence was also mandatory. All cases underwent 

histopathological examination and were diagnosed as IDH-wildtype glioblastoma according to 

the 2016 WHO classification of brain tumors [24]. All patients were scanned in a 3 T whole-

body MRI scanner (Achieva or Ingenia, Philips Medical Systems, Best, The Netherlands). 

 

3.2 Semi-automatic tumor segmentation and image registration 

 

The preoperative as well as the first postoperative MR scan showing tumor recurrence were 

semi-automatically segmented into FLAIR-hyperintense and contrast-enhancing areas of the 

tumor by using an in-house-developed segmentation algorithm (see Figure 9). 

This algorithm comprises a generative probabilistic model for brain tumor segmentation which 

is based on Bayesian clustering. It then uses Gaussian copulas to capture dependencies between 

the intensities in the different input modalities. Finally, two random forests are included to 

generate robust label prior maps for the model, and to ensure spatial coherence in the 

segmentations, respectively. It also includes two semi-automated extensions to allow the user 

to interactively guide the segmentation [70]. 

Where necessary, segmentation masks were manually corrected using ITK-SNAP, a general-

purpose interactive tool for image visualization, manual segmentation and semi-automatic 

segmentation [71]. To align the preoperative scans with the postoperative exam showing tumor 

recurrence, nonlinear co-registration (SyN, [72]) was applied using the open-source toolkit 

ANTs (advanced normalization tools for brain and image analysis) 

(https://github.com/ANTsX/ANTs). While linear registration only globally translates, rotates, 

zooms and / or shears one image to match it with another, nonlinear registration accounts for 
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deformable and voxel-wise image transformation and local misalignment which is especially 

useful in images with local abnormalities like tumors. SyN (symmetric image normalization) is 

a nonlinear symmetric diffeomorphic registration technique that matches images well by first 

performing an affine registration algorithm, which is a subtype of linear registration, for 

initialization, and then applying a nonlinear SyN registration algorithm. 

In a next step, the segmentation of tumor recurrence was warped onto the preoperative MR 

image using nearest-neighbor interpolation, also utilizing the ANTs framework. In this 

technique, missing voxel intensities in the output image are estimated based on their immediate 

neighbors, guaranteeing a transformed image which matches the intensity distribution of the 

original moving image.  

Thus, both segmentation masks (the one of the primary tumor and the one of the tumor 

recurrence) were combined in the preoperative image space, which allowed for objective 

extraction of DTI parameters from every voxel of the image space. The benefit of this method 

was that there was no need for manual region-of-interest (ROI)-placement which has the 

disadvantage of being subjective and unreliable.  

 

Figure 9 - Preoperative semi-automatic segmentation in one glioblastoma case. The image on the left shows the raw 
CE-T1w image, the picture in the middle depicts the FLAIR image of the same slice. On the right, there is the 
segmentation mask overlaid on the CE-T1w image. Peritumoral edema is marked in blue, the contrast-enhancing 
areas are red-labeled and yellow denotes necrotic tumor core. 
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3.4 Free-Water Correction of DTI Data 

 

The methodology of FWC has first been described in 2009 by Ofer Pasternak et al. [5]. In this 

context, free-water is defined as water molecules in the brain that are not restricted by their 

surroundings and do not flow. It is found as CSF or vasogenic edema in the extracellular space 

due to leakiness of the blood-brain barrier caused by tumors, brain trauma or hemorrhage [73]. 

Free-water can be identified using DTI by showing isotropic values of the ADC of about 

3  10-3 mm2/s for 37°C which is almost 4 times larger than the typical ADC values of the brain 

parenchyma [74]. However, if a voxel contains more than one tissue type, e.g., free-water and 

white matter, DTI indices only reflect the weighted average of all compartments (partial volume 

effect). This hinders the evaluation of areas with such partial volume effects, for example the 

delineation of fiber tracts along the ventricles as well as the identification of the underlying 

tissue condition in areas with vasogenic edema. Commonly, FLAIR-DWI has been used to 

eliminate CSF contamination but it shows several drawbacks, including: It reduces the signal-

to-noise ratio (SNR), increases scan time and it usually does not correct edema contamination 

due to different relaxation times [75]. Since in our project, the underlying tissue of voxels 

contaminated by vasogenic edema is the point of interest (as most recurrences occur closely to 

the initial tumor site in the peritumoral edema) we decided to apply FWC, which instead uses 

a bi-tensor model to get tissue-specific diffusion indices for each voxel and to obtain a voxel-

wise map of the amount of free-water. FWC uses a two-compartment tissue model composed 

by tissue and free-water. For each voxel, the diffusion signal is modeled along the diffusion 

directions as the contribution of tissue and free-water components, thus disentangling the “true” 

diffusion signal from the contamination by free-water. 

Fitting the diffusion tensor in a two-compartments model is an ill-posed problem. This has been 

solved using spatial regularization or optimized acquisition protocols before [76]. However, 

these approaches are limited by the availability of rich datasets. Therefore, here we used a new 

method based on an ANN that is trained with synthetically generated data and can be applied 

retrospectively to any diffusion MRI data. The method is briefly summarized below, following 

previously published work of our working group [7]. 

 

3.4.1 Synthetic signal modelling 

 

In a first step, a mathematical framework is established to generate unlimited synthetic diffusion 

signals, containing known amounts of free-water partial volume effects, as training set for the 
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ANN. The random variables in this model are the diffusion signals of the tissue component St 

and the volume fraction of free-water ffw. The other variables of the model are known, 

depending on the diffusion metrics and the random values of St and ffw. They follow a simplified 

equation defining the diffusion signal of a single voxel S: 

 

𝑆𝑆(𝑏𝑏,𝒈𝒈) = 𝑆𝑆0 �𝑓𝑓𝑡𝑡𝑆𝑆𝑡𝑡(𝑏𝑏,𝒈𝒈) +  𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑓𝑓𝑓𝑓(𝑏𝑏,𝒈𝒈)�, 

 

where b and g summarize the gradient effects of the diffusion weighted image, S0 is a scaling 

factor proportional to the proton density, and ft and ffw are the volume fractions of tissue and 

free-water, respectively. Sfw is considered known due to the well characterized diffusion 

properties of free-water at body temperature showing isotropic diffusion with a diffusion 

coefficient of Dfw= 3 x 10-3 mm2/s and Sfw(b,g) = e-bD_fw.  

St and ffw are represented as random variables of a uniform distribution U (0,1).  

 

3.4.2 ANN architecture 

 

The purpose of the ANN is to estimate the tissue volume fraction ft directly from the raw 

diffusion signal S(b,g). It is designed as a regression fully connected ANN with an input layer 

Figure 10 - Illustration of the artificial neural network. The single components are 
explained in the text. 
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of as many units as the number of acquired b-values (including non-diffusion-weighted 

volumes), Nb, and a single output unit yielding the estimate of ft. The ANN is composed in a 

pyramidal structure with two hidden layers with Nb/2 and Nb/4, respectively (see Figure 10). 

To train the model, 2000 synthetic signals (as described above) were used, with 70% for 

training, 15% for validation and 15% for testing. Convergence was reached after nine epochs 

and 4.7s in a consumers’ laptop (Apple MacBook Pro, Intel Core i5, 8GB RAM; MATLAB, 

Mathworks, Natwick, MA). In comparison with the state of the art methods of Pasternak et al. 

[5] and Hoy et al. [76], the ANN results were equivalent or even less over-regularized in the 

case of MD estimations [7]. Afterwards, robust estimation of tensors by outlier rejection 

(RESTORE) was employed for tensor estimation to extract DTI metrics both from the FWE 

data and the standard DTI data [77]. This method uses iteratively reweighted least squares 

regression to exclude potential outliers prior to tensor estimation. The major advantage of this 

approach is that it takes into account the signal variability of not only thermal noise (= Brownian 

motion), but also artifacts from “physiologic noise” due to subject motion, cardiac pulsation 

and acquisition-related factors.  

 

3.5 Data Collection and Statistical Analysis 

 

The purpose of this work was to find a new way to predict the exact localization of tumor 

recurrence. Therefore, the peritumoral edema was the region of interest that was assessed for 

alterations in MD and FA values before and after FWC in a way that was also described in a 

previously published paper of our working group [78]. In particular, following the analysis by 

Bette et al. [79], eight 3 x 3 x 3 mm patches from the peritumoral edema of each patient were 

randomly sampled, of which four showed later recurrence and four did not. Afterwards, the 

10th, 50th, and 90th percentile, as well as the mean of MD and FA values were automatically 

extracted from these patches, both for original and FWC DTI data. In a next step, three 

generalized mixed-effect models (with patient being the random effect) were fitted to predict 

later recurrence: One, using only FWC FA values from the patches, a second, using only 

noncorrected FA values, and a third, using both values. To minimize the bias while fitting the 

models, threefold cross-correlation was applied. Furthermore, DeLong’s test was used to 

compare correlated receiver-operating-characteristic (ROC) curves. All statistical analyses 

were done in Python (3.6) and R (3.6).  
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4 Results 
 

Some of the results in this chapter have been published in the Special Issue “Tumors of the 

Central Nervous System: An Update” of the MDPI-journal Cancers in March 2020 [78]. 

 

4.1 Tissue Volume Fraction Estimates 

 

The ANN was trained to estimate the fractions of free-water and tissue, respectively, in each 

voxel from the measured diffusion signal. Therefore, in a first step, we generated tissue volume 

maps (TVM) that visualized the amount of tissue in each voxel (see Figure 11). As one would 

expect, the tissue volume fraction approximates zero in CSF of the ventricles and is very high 

in healthy gray and white matter. In the area of the brain tumor, however, the fraction of tissue 

is the lowest inside the necrotic core of the tumor. Concerning the non-enhancing part of the 

tumor, the TVM show an inhomogeneous pattern.  

 

 

 

Therefore, we were interested in whether or not there might be alterations in the amount of 

tissue in voxels of those parts of the peritumoral edema on preoperative MR images that showed 

later tumor recurrence (see Figure 12). Thus, we performed statistical analysis of the tissue 

volume fractions obtained from the recurrence- and the non-recurrence-part of the peritumoral 

Figure 11 – One example of a TVM in a patient with left frontal GBM. Observations are described in the text. A FLAIR 
and a CE-T1w image of the same slice is added for reference. 
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edema. However, there were no significant differences in the 10th, 50th, or 90th percentile of 

tissue volume fraction values (see Table 1 and Figure 13). 

Figure 12 - Tissue volume maps. For reference, a preoperative CE-T1w image is depicted on the left. The image in the middle 
shows the preoperative TVM. In the image on the right, the segmentation mask of the postoperative recurrence is added in red. 
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Percentile of 

Tissue Volume 

Fraction values 

CET Recurrence Edema p-value  

Edema vs. 

Recurrence 

10th 0.32948 0.29437 0.28969 0.41430 

50th 0.51801 0.51203 0.47913 0.42105 

90th  0.71627 0.73903 0.77102 0.39444 
Table 1 - Comparison of different percentiles of tissue volume fraction values between contrast-enhancing tumor 

(CET), edema with later tumor recurrence and pure peritumoral edema. 

 

 

Figure 13 – Tissue volume fractions of contrast-enhancing tumor (red), area of 
peritumoral edema with later recurrence (blue) and pure peritumoral edema (green). 
Diamonds denote outliers. 
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4.2 Free-Water Corrected Mean Diffusivity 

 

Subsequently, we examined MD values after performing FWC as described above and 

compared them with the original MD values in analyzing peritumoral edema. The hypothesis 

was that there might be significant differences in FWC MD values between areas with later 

tumor recurrence on postoperative MR images and areas with “pure”, later recurrence-free 

edema.  

 

 

However, these differences appeared to be rather small and were only significant in the 90th 

percentile of FWC MD values with lower values in the areas of later recurrence (p90 = 0.04649). 

In contrast, without applying FWC there were no significant differences between both types of 

edema at all (p90 = 0.16753). The results are summarized in Table 2 and Figure 15. It is 

noticeable that FWC clearly decreased the contrast of MD maps (see Figure 14). This effect 

will be discussed later (see Section 5.2). 

 

 

 

 

Figure 14 - Mean Diffusivity maps of a preoperative MRI examination. For reference, a FLAIR image showing 
the tumor region is depicted on the left. Since FWC clearly decreases contrast, in the FWC MD map showed on 
the right, contrast is inverted to ease evaluation.  
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Percentile of  

Mean Diffusivity 

values 

CET 

 

Recurrence Edema p-value Edema 

vs. Recurrence 

Free-Water Corrected DTI data    

 10th 0.00060 0.00060 0.00061 0.80062 

50th 0.00064 0.00063 0.00065 0.15018 

Mean    0.23317 

90th  0.00068 0.00067 0.00070 0.04649 

Original DTI data    

10th 0.00091 0.00090 0.00086 0.30961 

50th 0.00121 0.00119 0.00139 0.19837 

Mean    0.24728 

90th  0.00159 0.00164 0.00177 0.16753 

     
Table 2 - Comparison of Mean Diffusivity values between contrast-enhancing tumor (CET), edema with later 
tumor recurrence and pure vasogenic edema with and without free-water correction. 

 

Figure 15 - Original Mean Diffusivity values (left) and Mean Diffusivity following free-water elimination (right) of contrast-
enhancing tumor (red) and peritumoral edema with (blue) and without (green) later tumor recurrence. Diamonds denote 
outliers. 
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4.3 Fractional Anisotropy Recovery 

 

Visually comparing FWC FA maps with the original ones, there is a relevant improvement of 

FA information, especially in areas with large partial volume contamination of free-water. 

Especially at the borders of the ventricles and in the area of peritumoral edema one can suspect 

more information about the underlying tissue from the more pronounced shading of the FWC 

FA maps (see Figure 16).  

 

Therefore, we evaluated this new information for its applicability in predicting the localization 

of tumor recurrence. Again, we compared FA values of areas within the peritumoral edema 

which showed later tumor recurrence and recurrence-free edema (see Figure 17).  

Figure 16 – Visual improvement of FA maps due to FWC. Especially in areas with partial volume effect of water, for 
example at the boarders of the ventricles (black circles), or in the peritumoral edema (red arrows), more information 
is recovered. The preoperative FLAIR image on the right illustrates the extent of the peritumoral edema of the left 
frontal GBM.   
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The 10th, 50th, and 90th percentile of the FWC FA values, as well as their mean values showed 

significant differences between both types of edema with p10 = 0.00112, p50 = 0.00314, and p90 

= 0.00007. In particular, FA values of regions with later tumor recurrence were significantly 

lower than those of recurrence-free edema, indicating some disturbance of the tissue-

microstructure integrity.  

In contrast, the original, noncorrected FA values only showed significant differences in the 90th 

percentile (p90 = 0.0003 vs. p10 = 0.07515 and p50 = 0.07908) (see Table 3 and Figure 18).  

 

 

Percentile of  

Fractional 

Anisotropy values 

CET 

 

Recurrence Edema p-value  

Edema vs. 

Recurrence 

Free-Water Corrected 

DTI data 

    

10th 0.19191 0.19270 0.24735 0.00112 

50th 0.35545 0.36701 0.42509 0.00314 

Mean    0.0029 

90th  0.52599 0.53314 0.63188 0.00007 

Figure 17 -Comparison of original and FWC FA maps in gray scale. For reference, again the preoperative FLAIR image is 
added on the left. FWC of FA maps reveals more information about the tissue microstructure in the area of peritumoral 
edema. As a special region of interest, the recurrence site is marked in red in the image on the rightmost.   
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Original DTI data     

10th 0.07418 0.08654 0.08907 0.07515 

50th 0.15967 0.17141 0.01719 0.07908 

Mean    0.06146 

90th  0.27801 0.26958 0.33056 0.00030 

Table 3 - Comparison of different percentiles and mean of FA values between contrast-enhancing tumor (CET), 

edema with later tumor recurrence and pure peritumoral edema with and without free-water correction.

Figure 18 - Original FA values (left) and FA values after free-water correction (right) comparing contrast-enhancing 
tumor (red), edema showing later tumor recurrence (blue) and pure edema (green), each for 10th, 50th, and 90th percentile 
and mean. Diamonds denote outliers. 
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4.4 Predictive Value of Free-Water Corrected Fractional Anisotropy Maps 
 

For statistical analysis of the potential of FA maps to predict later tumor recurrence three 

generalized mixed-effects models were fitted with either noncorrected or FWC FA values or 

both. The resulting ROC curves can be seen in Figure 19.  

The cross-validated area under curve (AUC) for FWC FA values was significantly higher than 

the AUC for a model based on noncorrected FA values (AUCFWC = 0.9 vs. AUCorg = 0.77; 

p < 0.001, DeLong’s test). This indicates the opportunity to utilize FWC FA maps for prediction 

of tumor recurrence that is not possible with original, noncorrected FA data. 

Figure 19 - Receiver-operating-characteristic curves for a generalized mixed-effect model to predict 
later recurrence on the basis of free-water corrected FA values (red curve; AUC = 0.9) or 
noncorrected FA values (turquoise curve; AUC = 0.77). Both models were threefold cross-validated. 
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5 Discussion 
 

5.1 Purpose of the Study and Justification of the Methodology 
 
The purpose of our work was to introduce a novel approach for assessing the peritumoral edema 

of glioblastomas for signal alterations caused by tumor infiltration. By removing the signal of 

free-water from DTI data we aimed to recover information from the true diffusion signal of the 

underlying tissue. We were particularly interested in those parts of the preoperative peritumoral 

edema where later, postoperative images revealed recurrence of the tumor. Our overall goal 

hereby was to find new and reliable means for recurrence prediction, thereby obtaining valuable 

information for personalized treatment decisions. Ultimately, we aim to contribute to 

personalized therapy, thus improving survival times for patients diagnosed with GBM which to 

date still carries one of the most fatal prognoses of all types of cancer. 

Our results demonstrated that free-water corrected FA maps can reveal more pronounced 

differences between areas with later tumor recurrence and pure, recurrence-free edema. Thus, 

areas of later tumor recurrence displayed significantly lower FA values, comparable to FA 

values seen in contrast-enhancing tumor. Those differences were significant even in the lowest 

range of FA values, whereas uncorrected FA data only showed significant differences in the 

90th percentile of FA values. In contrast to that, MD values did not exhibit significant 

differences between both “types” of peritumoral edema, whether FWC was applied or not. 

Likewise, the ANN’s tissue volume estimates did not show any significant alterations in those 

parts of the edema where later recurrence appeared. 

The reason we applied FWC was to remove the diffusion-isotropic noise stemming from free-

water from the diffusion signal with the result of revealing actual tissue anisotropy. We 

hypothesized that the FA would further decrease in areas of tumor infiltration due to disruption 

of white matter tracts which would be in accordance with prior studies [80]. 

We used a two-compartment tissue model to disentangle the true diffusion signal from free-

water contamination by modeling the diffusion signal of each single voxel as the contribution 

of a tissue and a free-water component. Therefore, for the first time, we trained an ANN to 

estimate the tissue volume fractions directly from the diffusion data. The training set for the 

model consisted of synthetic, random data on which free-water contamination was induced. 

There are three benefits of using random data: First, large amounts of data are available without 

the need of patient data for training. Second, the data is robust against artifacts in the signal. 
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And third, no assumptions can be made on tissue orientation regarding the prescribed diffusion 

gradients. 

 

5.2 Comparison with Similar Studies Focusing on Diffusion Tensor Imaging 
 
Our work built on previous studies that examined the peritumoral edema for predicting tumor 

recurrence. Most related to our work is the study by Bette et al. which also found lower FA 

values in areas of later tumor recurrence inside the peritumoral edema [79]. In their work, 

manually drawn regions of interest (ROIs) were placed in the contralateral hemisphere to 

consider regional differences and obtain comparable FA ratio values. As opposed to that, we 

used automated tumor segmentation and nonlinear image registration which allowed for an 

unbiased analysis of the entire peritumoral edema, thus promising higher robustness compared 

to manual ROI placement. Beyond that, our method can be integrated into fully automated 

analysis workflows. To objectively evaluate our results in comparison to prior reports, we 

analyzed them in mixed-effect models. While Bette et al. described an AUC of 0.839 for 

manually sampled FA values [79], we reported a very similar performance for our automated 

FWC FA values with an AUC of 0.9, indicating a comparable effectiveness while showing the 

above-mentioned advantages in methodology. 

There are numerous other studies that focused on differentiating peritumoral edema from 

microscopic glioma infiltration. DTI is a promising, yet controversial tool for these efforts 

because it assesses local white matter integrity, and FA values have been shown to correlate 

with cell density and proliferation activity in gliomas [6]. However, utilizing DTI for this 

purpose is not simple and conflicting results between different studies indicate that there are 

some limitations and pitfalls to be considered. First, it is noticeable that FA values show a wide 

heterogeneity, even in healthy brain tissue [81]. Regarding gliomas, one theory states that this 

diversity is due to multipotent stem cell-like tumor cells which serve as the origin of glial 

neoplasms. The theory assumes that regional variations in the tumor karyotype develop when 

the multipotent progenitor cell transforms [82]. This may lead to significant tissue heterogeneity 

within the tumor. Therefore, Hoefnagels et al. pointed out that FA values have to be assessed 

locally as he noticed that studies failed to reveal regions of tumor infiltration when they 

evaluated DTI measurements on a global, only ROI-based level [4]. They thus established a 

voxel-based probability map based on a combination of DTI parameters to prospectively 

discern areas of tumor infiltration from vasogenic edema in the same T2-hyperintense region 

in GBM. As stated above, we also preferred a ROI-free approach for similar reasons and even 
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found a way to utilize a single DTI parameter (FA) instead of performing a multiparametric 

assessment. 

The tissue heterogeneity might also be the cause why we did not observe significant differences 

in the recurrence-part of peritumoral edema in the TVMs generated by our ANN, simply 

because the tissue volume fractions there might be too similar to tissue-rich voxels in the non-

recurrence part. Apparently, a few infiltrating tumor cells are enough to alter the FA but they 

are not reflected in significant differences of the tissue volume estimates immediately.  

A second limitation of many DTI-related studies on tumor infiltration is their lack of 

histopathological verification since in clinical practice, biopsies are usually taken only from the 

contrast-enhancing part of the tumor. Only a few studies performed stereotactic biopsies of non-

enhancing portions of the tumor to investigate correlations between imaging and 

histopathological parameters in assessing tumor infiltration. However, histopathological 

verification carries its own risks, for example the potential for misregistration between biopsy 

sites and MRI findings and the hazard of damaging functioning brain.  

Nevertheless, in 2006, Stadlbauer et al. reported a strong, negative correlation between FA and 

tumor infiltration by histopathological comparison [6]. Unfortunately, they only investigated 

WHO grade 2 and 3 gliomas, and no GBM were included. Barajas et al. found an inverse 

correlation between ADC values and cellular proliferation and architectural disruption in non-

enhancing regions of GBM when matching DWI findings with histopathological analyses [63]. 

Although this correlation has been well-established, later studies found that FA is a stronger 

predictor for tumor cell density than ADC [83]. We therefore focused our work on FA values 

but also evaluated FWC MD values and our generated TVM. 

As regards MD values, here, FWC did not reveal additional information about the 

microstructure of peritumoral edema. Moreover, due to the removal of the free-water 

component, which is basically the source of contrast in MD, the signal intensity of the FWC 

MD values was much lower. The decreased contrast in the FWC MD maps was clearly visible 

(see Figure 14). Therefore, we propose that different methods of DTI processing might be more 

suitable for the utilization of MD values in this context. Since, as mentioned above [63], ADC 

maps showed potential in detecting tumor infiltration inside the peritumoral edema and recent 

studies even successfully evaluated these changes for recurrence prediction [84], more research 

should be undertaken to detect further potential of MD for this purpose. It should be mentioned 

here that MD and ADC are not equivalent since they arise from different MRI modalities (DTI 

vs. DWI) and are calculated in different ways (see Section 2.1). However, they both express the 



 42 

overall magnitude of diffusion in a single voxel (without any directional information) and thus 

can be interchangeably utilized for similar questions. 

Beyond FA and MD, studies have also suggested other DTI parameters in the evaluation of 

tumor infiltration. Price et al. found that tumor recurrence occurred along directions where the 

region of abnormal isotropic diffusion p extended beyond the region of abnormal anisotropic 

diffusion q [85]. Those examinations on growth patterns warrant further studies on their 

potential for recurrence prediction as well. Radial and axial diffusivity are further DTI 

parameters that have already been taken into consideration [86]. 

 

5.3 Different Approaches for the Assessment of Tumor Infiltration 
 
In our study on recurrence prediction, we exclusively focused on DTI metrics of the peritumoral 

edema. However, there have been some other, promising approaches for the assessment of 

tumor infiltration that used other advanced imaging tools.  

Most prominently, amino acid PET has emerged as a possibly useful method for evaluating 

tumor infiltration, since it has been shown that tracer accumulation of 11C-labeled methionine 

correlates with tumor cell density within the tumor core of glioma [87]. Yet, background uptake 

of the tracer makes it more difficult to quantify tumor cell invasion in the surrounding tissue 

and more advanced methods have to be applied to solve this issue, for example by uncovering 

the true 11C-methionine uptake by tumor cells via comparison with the 18F-FDG uptake of the 

same area [88]. More recently, Lundemann et al. reported that 18F-FET-uptake was the most 

important parameter for their recurrence probability modelling, indicating the relevance of this 

PET-tracer [89]. Furthermore, 18F-FET-uptake has already been applied for investigating more 

accurate radiotherapy plans [90]. 

A recent study of our working group found a correlation between 18F-FET uptake and cellularity 

in stereotactic biopsies [91]. However, the association with cellularity was even stronger for 

another, relatively novel MRI technique, namely amide proton transfer-weighted (APT) 

imaging. Very shortly, APT semi-quantitatively reflects the concentration of endogenous 

proteins and peptides. It can be measured as the amount of water signal suppression that is 

caused by chemical exchange of the priorly absorbed energy from macromolecules (received 

by a selectively applied “off-resonance” radiofrequency-pulse) to the water resonance. APT has 

already been successfully applied for differentiating between gliomas of different WHO grades 

[92] and has proved potential in identifying pseudoprogression [93]. Prior studies on the tissue 

heterogeneity of gliomas exposed by APT [94] and the aforementioned, recent detection of the 
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correlation with cellularity warrant further studies in the direction of recurrence prediction as 

well. 

Another approach in assessing the peritumoral edema is PWI because studies have shown that, 

in contrast to the surrounding edema of brain metastases, the peritumoral edema of GBM had 

significantly higher rCBF values [95]. This is probably due to tumor cell invasion and structural 

defects in endothelial tight junctions around GBM and carries potential for future studies on 

recurrence prediction. The above-mentioned study of Lundemann et al. already observed an 

elevation of vascular permeability (Ki) and extra-cellular blood volume (Ve) for voxels that 

later showed tumor recurrence [89]. Moreover, it has been reported that patients with a high 

rCBV on DSC imaging have a significantly more rapid time to progression, independent of 

pathologic findings [96]. 

Furthermore, as discussed earlier (see Section 2.3), MRS has been used to assess the degree of 

tumor infiltration, especially in differentiating gliomas from metastases. Generally, studies 

concluded that NAA concentration is the most significant parameter to detect low levels of 

tumor cell infiltration [97]. More recently, Anwar et al. found that the amount of cell turnover, 

as indicated by an elevated Cho/NAA index, was the greatest predictor for the likelihood of a 

voxel to progress from normal appearing tissue on conventional MRI to non-enhancing tumor 

[98]. Other studies confirmed these results [99].  

Nevertheless, DTI has some important advantages over other advanced imaging methods. In 

comparison to PET, MRS and PWI, it displays a much better spatial resolution, requires a 

modest acquisition time and is more broadly available.  

However, irrespective of their availability, combinations of these modalities have shown the 

most promising results in recurrence prediction and future studies should also focus on 

multiparametric approaches. Recent multiparametric models for recurrence prediction reached 

AUCs of 0.77 [89] and 0.84 [86]. In the latter study by Akbari et al. it was clearly pointed out 

that the single MRI parameters each displayed subtle differences between recurrence and non-

recurrence but they were not useful for prediction when used individually. However, the 

integration of the different signals via ML methods provided fairly reliable predictive indices 

of infiltration and recurrence [86]. 

Lastly, another approach in estimating future tumor recurrence is the mathematical modeling 

of tumor growth on the basis of estimated tumor cell density [100]. Based on high resolution 

MRI scans and FET-PET metabolic maps, this has already been successfully implemented in 

personalized radiotherapy design [101].  
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5.4 Clinical Relevance of the Study 
 
The clinical relevance of our study arises from the necessity for a more differentiated 

assessment of the peritumoral edema. Since GBM are diffusely infiltrating tumors it is a widely 

accepted fact that the contrast enhancing tumor margins do not represent the true tumor borders 

[102]. However, due to a lack of methods visualizing this infiltration of the tumor, current 

surgical treatment of GBM is largely guided by contrast enhancement on T1w MRI. Yet, it is 

known that this practice leaves the majority of infiltrating tumor unresected. Likewise, the CTV 

of radiotherapy comprises a mostly uniform margin around the resection bed and recurrence 

almost always occurs within this peritumoral tissue. Undoubtedly, the efficacy of these 

therapies could be significantly improved if the exact extent of the infiltrative component within 

the peritumoral edema was known and could be specifically targeted. Therefore, by providing 

a new approach for predicting areas beyond the contrast enhancing tumor that are prone to 

recurrence, we aim to inform more accurate surgery planning and also give guidance for the 

creation of personalized radiotherapy plans that spare more healthy tissue and allow for dose 

escalation in the tissue at risk for recurrence. At our institution, Peeken et al. already made a 

proposition for a novel clinical target volume (nCTV) that is based on infiltrative GTV (iGTV) 

added to the current standard GTV of radiotherapy planning (see Section 2.2.5). The iGTV here 

derived from FWC TVM and FA maps and might represent infiltrative tumor within the 

FLAIR- hyperintense region. They demonstrated that tumor recurrence overlapped with the 

iGTV and was completely covered by nCTV. Future studies should further assess the true value 

of iGTV which might benefit from our investigation on FWC FA maps for recurrence 

prediction. 

 

5.5 Limitations of the Study 
 
Up to now we only performed a retrospective, yet promising analysis of the data. Future studies 

have to test if simple thresholding of FWC FA data or multiparametric approaches 

incorporating this and other parameters can reliably identify tumor-infiltrated areas in the 

peritumoral edema. In a next step, those values should be evaluated in a prospective study. 

Another limitation of our study is that it was conducted in a single center with a relatively small 

number of patients. We expect that the ANN could be applied to DTI data from different centers 

with comparable performance, but this needs to be demonstrated in future multicenter studies. 

Furthermore, to independently validate our results, a histopathological correlation will be 

beneficial in case further results will allow for extended resection.  
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Ultimately, deep learning-based correction of diffusion imaging data for free-water 

contamination holds potential for further applications beyond recurrence prediction of brain 

tumors. Recently, Weninger et al. introduced their implementation for the improvement of 

peritumoral tractography which might be relevant for presurgical planning [103]. This is just 

another piece of evidence indicating that FWC needs to be taken into consideration whenever 

areas of the brain need to be assessed that exhibit partial volume effects and might benefit from 

the differentiation of the free-water and tissue component.  
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6 Conclusion and Future Directions 
 

It has become clear that conventional T1w- / T2w images are insufficient for assessing the 

invasion of GBM into their surrounding tissue. Developing means to improve the detection of 

tumor infiltration in the peritumoral edema to guide more accurate surgery planning and 

personalized radiotherapy plans plays a key role in combating the fatal prognosis of this tumor 

entity. To date, none of the numerous approaches for challenging this issue has been transferred 

to clinical practice. 

The elimination of the free-water contamination of DTI data using an ANN has emerged as a 

promising, new method for predicting the areas of the peritumoral edema where later recurrence 

occurred: FWC FA values differed significantly between areas of later tumor recurrence and 

pure, vasogenic edema. Due to the fact that this analysis has been performed on preoperative 

and widely applicable MR data, it carries the potential to be utilized for personalized surgical 

and radiation therapy planning in the future. 

Further studies need to prove its capability to be applied prospectively and its applicability in 

different centers and on larger patient cohorts. 

This work highlights the potential of artificial intelligence (AI) - driven image analysis in 

neuroradiology. It may be expected that future developments in this field will eventually lead 

to improved outcome of patients diagnosed with malignant brain tumors. The application of AI 

might help to uncover more useful information from imaging data by finding patterns in large 

amounts of data, providing powerful image processing tools and enabling future methods that 

have not been thought up before and remain with the reader’s imagination. 

In conclusion, rather than being a threat, AI emerges as an exciting tool for the neuroradiologist 

to enhance brain tumor imaging and enlivens further research in this field.  
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7 Abbreviations 
 

ADC:  Apparent Diffusion Coefficient 

AI:  Artificial Intelligence 

ANN:  Artificial Neural Network 

APT:  Amide Proton Transfer 

a.u.: Arbitrary unit 

AUC:  Area under Curve 

CE-T1w:  Contrast-enhanced T1-weighted MRI sequence 

Cho:  Choline 

CNS:  Central Nervous System 

CSF:  Cerebrospinal Fluid 

CT:  Computed Tomography 

CTV:  Clinical Target Volume 

D:  Diffusion 

DCE:  Dynamic Contrast Enhancement 

DL:  Deep Learning 

DSC:  Dynamic Susceptibility Contrast 

DTI:  Diffusion Tensor Imaging 

DWI:  Diffusion Weighted Imaging 

EORTC: European Organization for Research and Treatment of Cancer 

EPI:  Echoplanar Imaging 

FA:  Fractional Anisotropy 

FDG:  Fluordeoxyglucose 

FET:  Fluoroethyltyrosine 

FLAIR:  Fluid Attenuated Inversion Recovery 

fMRI:  Functional Magnetic Resonance Imaging 

FWC:  Free Water Correction 

FWE:  Free Water Elimination 

GBM:  Glioblastoma (glioblastoma multiforme) 

GRE:  Gradient Recalled Echo 

GTV:  Gross Tumor Volume 

IDH:  Isocitrate dehydrogenase 

iGTV:  Infiltrative Gross Tumor Volume 
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KPS:  Karnofsky Performance Score 

MD:  Mean Diffusivity 

MGMT:  O6-methylguanine-DNA methyltransferase 

ML:  Machine Learning 

MOS:  Median Overall Survival 

MRI:  Magnetic Resonance Imaging 

MRS:  Magnetic Resonance Spectroscopy 

NAA:  N-acetylaspartate 

NOS: Not otherwise specified 

nGTV:  Novel Clinical Target Volume 

PET:  Positron Emission Tomography 

PFS:  Progression Free Survival 

PTV:  Planning target volume 

PWI:  Perfusion Weighted Imaging 

RANO: Response Assessment in Neuro-Oncology 

rCBF:  Relative Cerebral Blood Flow 

ROC:  Receiver Operating Characteristic 

ROI:  Region of Interest 

RTOG: Radiotherapy and Oncology Group 

SE:  Spin Echo 

SNR:  Signal-to-Noise Ratio 

T1w:  T1-weighted sequence 

T2w:  T2-weighted sequence 

TTF:  Tumor-treating fields 

TVM:  Tissue volume maps 

VEGF:  Vascular Endothelial Growth Factor 

WHO:  World Health Organization 
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