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Abstract

Uncertainty quantification plays a central role in modern engineering practice. It supports judging
the adequacy of modelling choices, the description of naturally random phenomena and — ultimately
— making optimal decisions in an imperfect, partially known world. Uncertainty quantification
in engineering is carried out with a computational model that describes the physical processes
underlying an engineering application. This thesis addresses two major challenges within model-
based uncertainty quantification.

1. In the face of ever-increasing disposable computational resources, more complex models are
employed both in the description of the engineering application as well as the description of uncer-
tainty. This frequently leads to increased numbers of uncertain parameters, which in turn implies
high-dimensional models. A common example is in modelling spatially or temporally distributed
uncertainty with random fields and processes. Such high-dimensional models require carefully de-
signed approaches to achieve computationally affordable and accurate uncertainty quantification.
This need is addressed by introducing a surrogate modelling approach that relies on dimension-
ality reduction and is able to significantly alleviate the computational demands associated with
high-dimensional uncertainty quantification, especially when the engineering model is computation-
ally expensive. Based on this surrogate, approaches for uncertainty propagation, sensitivity and
reliability analysis are developed in several original contributions.

2. Within uncertainty quantification, different types of uncertainty can be discerned. This distinction
is based on whether uncertainty arises due to an inherently random phenomenon— known as aleatory
uncertainty — or whether it stems from a lack of knowledge that can be potentially alleviated with
more information — known as epistemic uncertainty. The separate treatment of different types
of uncertainty can be of paramount importance, yet is currently often neglected in practice. This
thesis presents a framework for the separate treatment of two generic classes of uncertainty. Original
methods for the efficient computation of quantities of interest related to uncertainty separation
are proposed. In particular, this entails efficient methods to compute the probability of failure
conditional on one of the two uncertainty classes as well as a novel reliability sensitivity measure
arising from uncertainty separation.
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Zusammenfassung

Die Quantifizierung von Unsicherheiten ist von zentraler Bedeutung für das Ingenieurwesen. Sie di-
ent der Bewertung verschiedener Modelle und der diesen Modellen zugrunde liegenden Annahmen,
der Beschreibung von zufälligen Prozessen und in letzter Konsequenz auch der optimalen Entschei-
dungsfindung im Angesicht unvollständiger Information. Die Quantifizierung von Unsicherheiten in
der Ingenieurspraxis beruht üblicherweise auf einem Computermodell, welches die dem untersuchten
System zugrunde liegenden physikalischen Prozesse beschreibt. Die vorliegende Arbeit befasst sich
mit zwei Problemstellungen innerhalb der modellbasierten Quantifizierung von Unsicherheiten:

1. Die Komplexität und Detailtreue der verwendeten Modelle wächst gemeinsam mit den verfüg-
baren Rechenkapazitäten stetig. Dies gilt für die Computermodelle, welche die Ingenieursanwendung
selbst abbilden wie auch die probabilistischen Modelle, welche zur Beschreibung von Unsicherheit
herangezogen werden. Oftmals schlägt sich diese Entwicklung in einer wachsenden Zahl von mod-
ellierten Unsicherheiten im probabilistischen Modell nieder, was zu sogenannten hochdimensionalen
Modellen führt. Ein verbreitetes Beispiel findet sich in der Modellierung zeitlich und räumlich
verteilter Unsicherheit mittels durch hochdimensionale Zufallsvektoren diskretisierter Zufallsfelder
und -prozesse. In der vorliegenden Arbeit entwickeln wir ersatzmodellbasierte Methoden zur Anal-
yse solch hochdimensionaler Probleme, welche die benötigte Rechenkapazität signifikant reduzieren,
insbesondere wenn das Computermodell rechenintensiv ist. Basierend auf diesem Ersatzmodell en-
twickeln wir in mehreren Publikationen Methoden zur Propagation von Unsicherheiten wie auch für
die Sensitivitäts- und Zuverlässigkeitsanalyse von Computermodellen.

2. Innerhalb der Quantifizierung von Unsicherheiten lassen sich verschiedenen Typen von Un-
sicherheit unterscheiden: Unsicherheiten, welche inhärent zufällige Prozesse beschreiben, werden als
aleatorische Unsicherheiten bezeichnet und unterschieden von den epistemischen Unsicherheiten,
die von unvollständiger Information herrühren. Die getrennte Behandlung dieser beiden Unsicher-
heiten ist oft von entscheidender Wichtigkeit, wird in der Praxis gegenwärtig allerdings häufig ignori-
ert. In der vorliegenden Arbeit entwickeln wir ein allgemeines Konzept zur getrennten Behandlung
zweier verschiedener Typen von Unsicherheiten. Wir entwickeln neuartige Methoden zur effizienten
Berechnung verschiedener Interessengrößen, die sich aus der expliziten Trennung von Unsicherheiten
ergeben, so zum Beispiel die Versagenswahrscheinlichkeit bedingt auf einen der beiden Unsicherheit-
stypen sowie neueartige Zuverlässigkeitssensitivitätsmaße, deren Definition auf der Trennung von
Unsicherheiten beruht.

viii



Acknowledgements

The past four years have been a joyful and memorable time to me and doing my PhD in the
Engineering Risk Analysis group is a decision I value highly to this date.

I want to thank my supervisors Daniel and Iason for trusting me with this project and supporting me
unconditionally throughout the process. Iason, in particular, I have to thank for countless hours of
fruitful discussion, constant creative input and his yoga lessons somewhere on the spectrum between
soothing and tormenting (more towards the former, though).

I am thankful to Karen Willcox and Bruno Sudret for having me as an academic guest in their
respective research groups and the fruitful collaborations that have emerged from these visits.

To my former and current colleagues Felipe, Elizabeth, Max, Sebastian and Antonis, I am very
grateful for keeping me company, for our discussions both of professional and rather unprofessional
nature as well as myriads of cups of coffee and pints of beer shared over these conversations.

Finally I am grateful to my family for nothing in particular since just having them is the greatest
of pleasures. To be more specific, though, I have Lilli to thank for taking care of Eleni for days and
weeks and months on end while I was trying to finalize this document and I have my parents to
thank for nagging me on a constant basis over when I was going to submit it and I have my sister
Hannah to thank for not doing just that.

ix



Part I

Synopsis

x



Chapter 1

Introduction

1.1 Motivation & context

Uncertainties are ubiquitous in engineering practice. They must be acknowledged and accounted for
at various stages of the engineering process ranging from system analysis and design to assessment,
retrofitting and decommission decisions. The ever-increasing capabilities of modern computers have
rendered model-based simulation and computer-aided engineering in general a sharp tool in the
engineer’s shed. While increasingly fast computers have largely unlocked the world of determin-
istic model-based engineering, quantifying uncertainties requires switching to a non-deterministic
paradigm, which is usually associated with significantly increased computational analysis expenses.
In response to the need for computationally efficient methods in this vein, the relatively young field
of uncertainty quantification (UQ) has formed at the intersection of applied and statistical mathe-
matics with applied sciences as, e.g., engineering. UQ is broadly concerned with the model-based
systematic and quantitative treatment of uncertainties. The model contains a description of the
application, in which uncertainties shall be quantified and typically comes in the form of a computer
code that maps inputs to outputs. This model is usually of deterministic nature, which is to say the
model output is deterministic conditional on the model input. We refer to this as the computational
model. The description and modelling of uncertainty is separated from the computational model and
formulated in terms of the model inputs: Any uncertainty about a given system will be formulated
as an input to the computational model. It is common practice to resort to probability theory [114,
191] for representing uncertainty. Other representations of uncertainty can be summarized under the
term ‘imprecise probability’ [231], all of which share the common denominator of expressing belief
in a manner that is in conflict with the axioms of probability theory (see Section 2.1) in one way or
another. Examples are interval probabilities [9, 19, 151], fuzzy numbers [77, 82, 108, 207], p-boxes
[69, 200] and random sets [45, 110].

The first step of any UQ analysis is the elicitation and characterization of uncertainty associated
with the system. Physical sources of uncertainty in engineering and mechanical systems include
randomness in geometric and material properties as well as applied loads. Several other sources,
such as uncertainties about the constitutive laws describing the physics underlying the system’s
behaviour, the discretization of these laws as well as boundary and initial conditions imposed on
the system, are related to the computational model itself. The inference of probabilistic models

1



1.1. Motivation & context Chapter 1. Introduction

for input uncertainties often pertains to selecting a suitable distribution model and estimating that
distribution’s parameters based on measurement data. A detailed account of model selection and
parameter estimation is given in [83] and [21], respectively.

A word of warning is in order about the potential dependency of input uncertainties. Failure to rec-
ognize and appropriately model such dependencies can lead to a vast misrepresentation of stochastic
properties of the model response and consequentially to spurious and misleading UQ results. A sec-
ond prominent pitfall associated with the uncertain model inputs is their cardinality: if the number
of inputs grows beyond a certain limit, both conceptual and computational challenges arise. Com-
putational challenges emerge through the oftentimes exponential scaling of computational cost with
the input dimension (take numerical integration as an example) for which the term curse of dimen-
sionality was coined in [20]. Conceptual challenges often stem from the counter-intuitive properties
of the high-dimensional spaces, in which these inputs reside. Such properties may, however, lend
themselves to an advantageous exploitation of some form, which is appropriately referred to as the
blessing of dimensionality [105]. These phenomena are usually based on concentration-of-measure
phenomena in high dimensions. Additionally, many high-dimensional problems faced in engineering
applications possess a low-rank structure that can be exploited to efficiently compute solutions in
a lower-dimensional setting. There is generally no single number of inputs that separates high-
dimensional problems from low-dimensional problems as the point at which said challenges arise
largely depend on the very algorithm and application at hand. In the context of UQ, this boundary
is often quoted as lying somewhere between 10 and 100 dimensions.

The second step of UQ analyses consists in the propagation of uncertainty across the computa-
tional model. This propagation can be oriented in one of two ways: if uncertainty is propagated
from the uncertain inputs to the response, we speak of forward UQ. Vice versa, if the model is
used to propagate uncertainty observed in the response or a quantity of interest derived thereof to
characterize statistical properties of the inputs, we speak of inverse UQ. Examples of inverse UQ
techniques are Bayesian model inversion (see Section 2.5) and — to a certain degree — probabilistic
sensitivity analysis (see Section 2.4). Depending on the analysis goal, different sub-disciplines of
forward UQ can be discerned: If the goal resides in the probabilistic characterization of the model
response (another term for the output of the computational model), we speak of uncertainty prop-
agation (see Section 2.2). A second discipline is reliability analysis, the goal of which consists in
computing the probability of a previously specified (typically rare) event associated with system fail-
ure (see Section 2.3). Sensitivity analysis is concerned with assessing the sensitivity of the response
(or quantities of interest derived thereof) with respect to the model inputs in a non-deterministic
setting (see Section 2.4) and as such can be grouped into either of both UQ categories (forward and
inverse). Other disciplines — featured less prominently in this work yet present — include decision
analysis that aims at formalizing optimal decision making under uncertainty based on utility theory
and stochastic optimization, where either the optimization objective or constraints contain random-
ness.

In literature, uncertainty is frequently classified according to whether it represents an inherently
random process (e.g., predicting the outcome of a dice throw) or a lack of knowledge (e.g., having
to guess the outcome of a dice already thrown that rolled around a corner in the process such that
we cannot see it) [66, 70, 85, 161]. The former is often referred to as aleatory uncertainty and the
latter is termed epistemic uncertainty. A similar terminology that reveals why such a distinction
may be useful discriminates between irreducible (corresponds to aleatory) and reducible (corresponds
to epistemic) uncertainty, where reducibility means the possibility to reduce uncertainty by gather-
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Chapter 1. Introduction 1.2. Thesis organization & contributions

ing more information. While probability theory is the unanimous choice for modelling irreducible
uncertainty, the question of how to model epistemic uncertainty is subject to an ongoing debate
with different viewpoints including subjective Bayesian probability [161, 49] as well as any of the
non-probabilistic approaches mentioned above [207, 70, 85, 151].

1.2 Thesis organization & contributions

Chapter 2 offers a discussion of the theoretical and methodological foundations underlying this thesis.
As such, Chapter 2 contains no original research but provides an overview of the state of the art
along with a brief discussion of selected well-known methods. In Section 2.1, the necessary elements
of probability theory and uncertainty modelling are introduced. Sections 2.2 through 2.4 treat
the disciplines of uncertainty propagation, reliability analysis and sensitivity analysis, respectively.
Section 2.5 details a brief discussion of Bayesian inference along with an account of uncertainty
separation under the Bayesian paradigm. Figure 1.1 illustrates the general uncertainty quantification
and separation framework that integrates the various forward and inverse UQ disciplines.

Computational/Surrogate Model
(Section 2.2)

Type A Uncertainty
(Section 2.5)

Type B Uncertainty
(Section 2.5)

Physical
Model

Bayesian
Updating

(Section 2.5)

D
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(Section 2.2)

Reliability
Analysis

(Section 2.3)

Sensitivity
Analysis

(Section 2.4)

Decision
Analysis

(Section 2.5)

Stochastic
Optimization
(Section 2.5)

Figure 1.1: The combined uncertainty quantification and separation framework.

In part II, the publications in which this thesis is grounded follow as Chapters 4 to 8.

In Chapters 4 to 6, we focus on developing surrogate-based methods for forward UQ (uncer-
tainty propagation, sensitivity analysis and reliability analysis, respectively) in the context of high-
dimensional uncertainty. Following this, in Chapters 7 and 8, we develop a general framework
for uncertainty separation and devise methods for reliability sensitivity and conditional reliability
analysis. The corresponding original publications are listed in the following:

• Publication 1 (original publication [174]; Chapter 4) introduces PLS-PCE, a novel polynomial
chaos expansion (PCE) with built-in dimensionality reduction via a subspace regression tech-
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nique termed partial least squares (PLS) that paves the way for high-dimensional surrogate
modelling using PCEs.

• Publication 2 (original publication [61]; Chapter 5) builds on publication 1 and derives a
backtransformation from any PLS-PCE to standard PCE format. In this way, postprocessing
PLS-PCEs is rendered a straightforward and efficient procedure and quantities of interest like
global variance-based sensitivity measures are readily computed by analyzing the PLS-PCE
model coefficients.

• Publication 3 (original publication [62]; Chapter 6) combines PLS-PCE models with a se-
quential importance sampling scheme for rare event probability estimation. The efficiency
of sequential importance sampling is demonstrably improved by several orders of magnitude
as the importance densities are reconstructed using locally and adaptively learned PLS-PCE
models.

• Publication 4 (original publication [63]; Chapter 7) proposes an efficient approach to solving
a sequence of parametrized reliability problems based on an information reuse strategy and
controlled and mixture importance sampling [164]. Such sequences arise in the context of
uncertainty separation, in particular in conditional reliability analysis, where the probability
of failure is conditional on one of the two separated groups of uncertainties.

• Publication 5 (original publication [60]; Chapter 8) builds on this conditional probability of
failure to define a new reliability sensitivity index and proposes a bi-level surrogate modelling
approach to efficiently compute the new indices.
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Chapter 2

Uncertainty Quantification & Separation

2.1 Elements of probability theory

2.1.1 Probabilistic framework, conditional probability and independece

A probability space consists of the triplet (Ω,F ,P) (the presentation given here follows [114, 191]).
Ω is the set of all possible outcomes ω called the sample space. F ⊆ 2Ω is a σ-field on Ω. That is, F
is a set of sets containing subsets of Ω (at least the empty set ∅ and Ω) and is closed under the set
operations of union, complementation and intersection. The most commonly used σ-field is the Borel
σ-field of Ω, B(Ω), as whenever Ω is a topological space, B(Ω) is the smallest possible σ-field that
guarantees measurability. Together, Ω and F constitute a measurable space on which P : F → [0, 1] is
a probability measure. This means that P(E) ∈ R≥0 , E ∈ F (Kolmogorov’s first axiom), P(∅) = 0,
P(Ω) = 1 (Kolmogorov’s second axiom) and ∀ i 6= j : Ai ∩ Aj = ∅ ⇒ P(∪∞i=1Ai) =

∑∞
i=1 P(Ai)

(σ-additivity; Kolmogorov’s third axiom).

For two events A,B ∈ F , the probability of A given that B has occurred (that implies P(B) > 0)
is called the probability of A conditional on B. The notation for such a conditional probability is
P(A|B) and its definition reads

P(A|B) =
P(A ∩B)

P(B)
, (2.1)

where P(A∩B) is the joint probability of A andB and P(A), P(B) are the marginal (or unconditional)
probabilities of A and B, respectively. P(·|B) obeys Kolmogorov’s axioms and thus also forms a
probability measure on (Ω,F). If the probability of A is unaffected by whether B occurs or not, A
and B are said to be independent. This is the case, if P(A|B) = P(A) or equivalently — by inserting
this in Eq. (2.1) — P(A∩B) = P(A)P(B). There are at least two notable consequences of Eq. (2.1).
The first is the partition theorem or law of total probability, which states that for an event A ∈ F
and a partition of Ω {Bi ∈ F}ni=1, such that B1 ∪ B2 ∪ · · · ∪ Bn = Ω and Bi ∩ Bj = ∅ whenever
i 6= j, the marginal probability of A can be computed as

P(A) =
n∑

i=1

P(A|Bi)P(Bi). (2.2)
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The second is Bayes’ law, which reverses the conditioning and for 1 ≤ k ≤ n states

P(Bk|A) =
P(A|Bk)P(Bk)

P(A)
=

P(A|Bk)P(Bk)∑n
i=1 P(A|Bi)P(Bi)

. (2.3)

2.1.2 Random variables, distributions, moments

A random variable is a measurable map from (Ω,F ,P) to some other measurable space. Given the
scope of this thesis, it is sufficient to consider real-valued random variables and vectors. Let X be
a real-valued random variable, then

X : (Ω,F)→ (R,B(R)) such that {ω ∈ Ω : X(ω) ∈ B}, B ∈ B(R). (2.4)

That is to say, the measurable function X maps to the measurable space (R,B(R)) and for each
measurable event B ∈ B(R), its pre-image under X has to belong to F . P, being a probability
measure on (Ω,F), induces a probability measure on (R,B(R)), namely PX(B) = P(X ∈ B) =
P(X−1(B)), B ∈ B(R). The Borel measure on the real line is the Lebesgue measure on R, λ, which
assigns to each interval its length. The random variable X may be completely characterized by its
cumulative distribution function (CDF) FX(x), which is defined as

FX(x) = P(ω ∈ Ω : X(ω) ≤ x) = PX((−∞, x]). (2.5)

If not indicated otherwise, upper-case letters represent random variables and corresponding lower-
cases indicate sample space variables, i.e., deterministic and specific outcomes of the random variable.
The CDF has the following properties: limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1. Moreover,
FX(x) is non-decreasing and right-continuous, i.e., limx↘x0 FX(x0) = FX(x0)). The expected value
of X is defined as

µX = E[X] =

∫

Ω
XdP =

∫

Ω
X(ω)P(dω) =

∫

R
xPX(dx) =

∫

R
xdPX (2.6)

assuming its existence, i.e., E[|X|] < ∞. The integral over ω requires abstract integration and
measure theory and is beyond the scope of this thesis. However, for real-valued random variables,
the expectation can be cast in terms of a standard integral and the measure ofX as on the right-hand
side of this equation. Eq. (2.6) indicates that the expectation operator is linear, i.e., E[aX + b] =
aE[X] + b. The random variable X is said to be absolutely continuous if whenever λ(B) = 0, then
also PX(B) = 0 for any B ∈ B(R) (this is often written as PX � λ and reads ‘λ dominates PX ’)
and we can write [191, Chapter 12]

PX(B) =

∫

B
fX(x)λ(dx). (2.7)

fX is a non-negative function called the probability density function (PDF) of X and can be used
to completely define an absolutely continuous random variable in place of FX . In fact, fX and FX
are closely related. To see this, choose B = (−∞, x] in Eq. (2.7) such that

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(x′)λ(dx′) =

∫ x

−∞
fX(x′)dx′, (2.8)

6
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in which the rightmost equality holds if and only if fX is Riemann-integrable. It follows that
fX(x) = dFX(x)/dx wherever the derivative exists. fX(x) is a non-negative function and since
limx→∞ FX(x) = 1, it is ∫

R
fX(x)dx = 1. (2.9)

There exists a second frequently used flavor of real-valued random variables that is not absolutely
continuous, namely discrete random variables. The equivalent to a PDF in the context of discrete
random variables is the probability mass function. However, since discrete random variables are of
no further interest to this work, we do not introduce them formally. A useful extension to Eq. (2.6)
is the change of variables theorem [191, Chapter 6]. It states that, for any measurable, Riemann-
integrable function g : R→ R, the expectation of g is

E[g(X)] =

∫

Ω
g(X(ω))P(dω) =

∫

R
g(x)dPX =

∫

R
g(x)fX(x)dx. (2.10)

That is, instead of computing the density of the random variable g(X), fg, we may use fX to
compute the expectation of g(X). In particular, setting g(X) = (X − E[X])m with m ∈ N>0 yields
the m-th central moment of X and with m = 2 the definition of variance (i.e. the second central
moment of X) emerges as

σ2
X = V[X] = E[(X − E[X])2] =

∫

R
(x− E[X])2fX(x)dx, (2.11)

if the integral exists. In general, the family of p-integrable real-valued random variables, i.e.,
E[Xp] ≤ ∞, on a probability space (Ω,F ,P) constitute a Lebesgue space LpP(Ω,R) together with the
norm ‖X‖p= E[Xp]1/p. If p = 2, we simply write ‖·‖ (as we typically work with square-integrable
random variables). σX is called the standard deviation of X. Properties of the variance operator
following from Eq. (2.11) are i.) V[X] = E[X2]− E[X]2 and ii.) V[aX + b] = a2V[X].

In engineering, it is common to define random variables in terms of their CDF or PDF rather
than constructing a probability space for a given experiment. However, an underlying probability
space still exists and the simplest way of constructing it is by the identity map X(ω) = ω, such that
Ω = R, F = B(R) and P = PX . This is sometimes referred to as the canonical probability space
[5, Chapter 4.6]. In this work, probability spaces are of canonical type unless explicitly defined
otherwise.

An isoprobabilistic transformation from one absolutely continuous real-valued random variable X
to another Y , where both X and Y are defined on the same probability space, is defined as the map
T : R → R between the images of X and Y such that P(X(ω)) = P(Y (ω)) ∀ω ∈ R . If the CDFs
FX(x) and FY (y) are known this can be expressed as FX(x) = FY (y) and if FY is invertible we have
Y = T (X) with T = F−1

Y ◦FX . For a sample xi drawn from the density fX , we write xi ∼ fX . T can
be used to transform samples drawn from fX into samples drawn from fY , yi ∼ fY . In particular,
if X has the uniform distribution on [0, 1], we have T = F−1

Y . It is common practice to generate
uniformly distributed random samples with a random number generator (see [124, Chapter 8] for an
introduction to and overview over common random number generators) and use F−1

Y to transform
these samples into samples from the desired distribution. If F−1

Y is not available, alternative meth-
ods to sample from fY include rejection sampling [159] and Markov Chain Monte Carlo (MCMC)
methods [149, 150] .

7



2.1. Elements of probability theory Chapter 2. Uncertainty Quantification & Separation

2.1.3 Random vectors, joint, marginal and conditional distributions

A d-dimensional real-valued random vector X on the probability space (Ω,F ,P) is defined as the
measurable function X : (Ω,F) → (Rd,B(Rd)). Note, that boldface letters distinguish vectors and
matrices from scalar quantities here as well as in the remainder of this work. The induced measure
in the image space of X, PX , is the Lebesgue measure on Rd that assigns to each d-dimensional
rectangle its volume and in analogy to Eq. (2.5), the CDF reads

FX(x) = P(X1 ≤ x1 ∩X2 ≤ x2 ∩ · · · ∩Xd ≤ xd)
= PX(X1 ∈ (−∞, x1] ∩X2 ∈ (−∞, x2] ∩ · · · ∩Xd ∈ (−∞, xd]).

(2.12)

The construction of a canonical probability space underlying X if X is defined in terms of FX(x) is
in analogy to the univariate case discussed in the previous section: X(ω) = ω, Ω = Rd, F = B(Rd)
and P = PX . Further, if X is absolutely continuous, its joint PDF fX is given by

fX(x) =
∂dFX(x)

∂x1 · · · ∂xd
. (2.13)

Just as its univariate counterpart, fX(x) is a non-negative function which integrates to 1 over its
definition space Rd. The continuous analogue of marginal probability in the fundamental probability
space of Subsection 2.1.1 is the marginal probability distribution. The marginal PDF of anm-variate
subset ofX is obtained by integrating the joint PDF fX over all coordinates ofX that are not present
in the subset. Let I ⊂ {1, . . . , d} be an index set with m entries and let its complement with respect
to the set {1, . . . , d} be Ic = I \ {1, . . . , d}. Then, the marginal PDF of XI = [XI1 , XI2 , . . . , XIm ]
reads

fXI (xI) =

∫

R
· · ·
∫

R
fX(x)dxIc1 · · · dxIcd−m

. (2.14)

Likewise, the continuous analogue of conditional probability is the conditional probability distribu-
tion. Introducing a second index set J such that I∩J = ∅ lets us define the PDF ofXI conditional
on XJ = xJ in analogy to Eq. (2.1) (with B = {XJ = xJ}, other events may be conditioned upon
as well):

fXI |XJ (xI |XJ = xJ ) =
fX(x)

fXJ (xJ )
. (2.15)

Two absolutely continuous real-valued random variables Xi and Xj are independent if their joint
PDF factorizes as fXi,Xj (xi, xj) = fXi(xi)fXj (xj). Likewise, if the coordinates of X are pairwise
independent, i.e., if Xi and Xj are independent whenever i 6= j, then

fX(x) =

d∏

i=1

fXi(xi). (2.16)

The expectation of X extends in the obvious way from the univariate case as does the change of
variables theorem, i.e.,

µX = E[X] =

∫

Rd

xfX(x)dx = [E[X1], . . . ,E[Xd]]
T = [µX1 , . . . , µXd

]T, (2.17)

where the integration is performed element-wise and

E[g(X)] =

∫

Rd

g(x)fX(x)dx. (2.18)
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The covariance of two elements of X, Xi and Xj , is

COV[Xi, Xj ] = E[(Xi − E[Xi])(Xj − E[Xj ])]

=

∫

R

∫

R
(xi − E[Xi])(xj − E[Xj ])fXiXj (xi, xj)dxidxj .

(2.19)

The Pearson correlation coefficient of Xi and Xj is defined as ρij = COV[Xi, Xj ]/
√

V[Xi]V[Xj ].
COV[Xi, Xj ] such that −1 ≤ ρij ≤ 1 always since COV[A,B] ≤

√
COV[A,A]COV[B,B] =√

V[A]V[B] by the Cauchy-Schwarz-inequality. Assembling all covariances of the elements ofX in a
matrix yields the covariance matrix Σ ∈ Rd×d with Σij = COV[Xi, Xj ], i, j = 1, . . . , d. Analogously,
the correlation matrix R ∈ Rd×d can be defined. Both Σ and R are at least positive-semidefinite
matrices, i.e., they have a non-negative spectrum. Covariance and correlation are measures of
linear dependence. If two random variables Xi, Xj are independent they are also uncorrelated
such that ρij = COV[Xi, Xj ] = 0 (the reverse is not generally true). Further properties follow-
ing from Eq. (2.19) are: i.) COV[Xi, Xj ] = E[XiXj ] − E[Xi]E[Xj ], ii.) COV[Xi, Xi] = V[Xi],
iii.) COV[Xi, Xj ] = COV[Xj , Xi], iv.) COV[aXi + bXj , Z] = aCOV[Xi, Z] + bCOV[Xj , Z] , v.)
V[Xi +Xj ] = V[Xi] + V[Xi] + 2COV[Xi, Xj ].

X is referred to as Gaussian random vector if its joint distribution is multivariate Gaussian. The
Gaussian joint PDF is defined as

N (x|µ,Σ) =
1√

(2π)ndetΣ
exp

{
−1

2

[
(x− µ)T Σ−1 (x− µ)

]}
(2.20)

with mean vector µ and covariance matrix Σ. Based on Eq. (2.20), multivariate Gaussian random
vectors are completely defined by their mean vector µX and covariance matrix ΣX . Moreover,
linear transformations of Gaussian random vectors are Gaussian. If µX = 0d and ΣX = Id×d
(with 0d a d-dimensional vector of zeros and Id×d the d-dimensional identity matrix), X is said to
be standard-normal. We write ϕd(·) for the d-dimensional standard-normal PDF and Φd(·) for the
corresponding CDF. If the elements of X are uncorrelated they are also independent (this is not
generally true but holds for Gaussian random vectors). In general, ΣX is a real, symmetric matrix
and therefore diagonalizable. In particular, it can be written in terms of an orthogonal matrix A
and a diagonal matrix D as

ΣX = ADAT. (2.21)

The columns of A = [v1, . . . ,vn] form an orthogonal basis of Rd and together with the diagonal
entries of D, {λi}di=1, form solutions to the eigenvalue problem

ΣXv = λv. (2.22)

The {vi}di=1 are called the eigenvectors of ΣX and the {λi}di=1 are the corresponding non-negative
eigenvalues. By diagonalization of ΣX , any dependent Gaussian random vector X can be trans-
formed into an independent one X ′, where X ′ = AT(X − µX). Vice versa, a correlated Gaussian
random vector can be generated from a standard-normal random vector U by

X = µX + AD1/2U = µX +

d∑

i=1

√
λiviUi. (2.23)

Alternatively, the factorization ΣX = BBT may be used to obtain a standard-normal random vec-
tor as U = B−1(X − µX). If B is a lower triangular matrix, this factorization is the Cholesky
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decomposition of ΣX and with B = AD1/2, the eigendecomposition of ΣX is recovered.

In the context of this work and UQ subdisciplines such as reliability analysis, it is common practice
to formulate problems on a canonical probability space with standard-normal measure. Thus, the
transformation of input random vectorsX with arbitrary joint distribution into the standard-normal
random vector U ∼ ϕd(u) is an important task. If either the joint CDF FX or a series of conditional
CDFs as follows are known, a possible transformation T : X → U is the Rosenblatt transformation
[190] for which

T = [Φ−1 ◦ FX1(x1),Φ−1 ◦ FX2|X1
(x2|x1), . . . ,Φ−1 ◦ FXd|X1···Xd−1

(xd|x1, . . . , xd−1)]T. (2.24)

While such complete dependence information is rare in practice, knowledge of the marginal distri-
butions of the coordinates of X and the covariance structure is more common. Based on these two
ingredients, the coordinates can be transformed marginally to an independent Gaussian random
vector that is in turn transformed to a correlated Gaussian random vector. This transformation is
known as the Nataf transformation [157, 134] and reads

T = B−1[Φ−1 ◦ FX1(x1),Φ−1 ◦ FX2(x2), . . . ,Φ−1 ◦ FXd
(xd)]. (2.25)

B is the lower triangular matrix resulting from the Cholesky decomposition of ΣU . The entries
of ΣU in turn are computed based on the prescribed ΣX through an integral equation. A third
possibility of finding T if partial dependency information is available that is not necessarily limited
to marginal distributions and the covariance structure of X is presented by copula theory. A copula
C : [0, 1]d → [0, 1] is a d-variate CDF with uniform marginal distributions FX1(x1), . . . , FXd

(xd)
such that

FX(x) = C(FX1(x1), . . . , FXd
(xd)) = C(x1, . . . , xd). (2.26)

According to Sklar’s theorem [209, without proof], [158, Chapter 2] any multivariate joint CDF may
be represented by its marginal CDFs and a copula C that contains all the dependency information
about the coordinates of X. Further, if the marginal distributions are continuous, then C is unique.
There exist various copula types that model different features such as tail dependence (Gumbel
copula [158, Chapter 4]) or conditional dependence amongst groups of variables using graphical
models (Vine copulas [18, 223]). The Nataf model has been shown to be equivalent to a Gaussian
copula [123]. A detailed discussion of various copula types and inference of copulas is found in [158].

2.1.4 Random functions

Some definitions

Random phenomena need not be scalar quantities but can depend on an independent parameter such
as time (random process) or location (random field). We may view the corresponding mathematical
object as a real function-valued random variable, sometimes also referred to as random function,
H : (Ω × S,F × B(S)) → R on the probability space (Ω,F ,P) and the index space S ⊆ RN with
B(S) the Borel σ-algebra on S [80, Chapter 3]. Since s is a continuous index, H(s) can be viewed
as an infinite collection of random variables {s ∈ S : H(s, ω)} that can be partially characterized in
terms of its finite-dimensional distributions. The nth-order CDF of H(s, ω) is defined as the joint
CDF of the n random variables {H(s1, ω), H(s2, ω), . . . H(sn, ω)},

FH(s1)...H(sn)(h1, . . . , hn; s1, . . . , sn) = P[H(s1, ω) ≤ h1 ∩ · · · ∩H(sn, ω) ≤ hn]. (2.27)
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The expectation and variance of H(s, ω), µH(s) and σ2
H(s) are defined via the 1st-order or marginal

CDF of H, FH(s)(h) = F (s, h). If H is an absolutely continuous random function such that its PDF
f(s, h) exists wherever F (s, h) is differentiable and is computed according to Eq. (2.13), then

µH(s) = E[H(s, ω)] =

∫

R
hf(s, h)dh,

σ2
H(s) = V[H(s, ω)] =

∫

R
(h− µH(s))2f(s, h)dh

(2.28)

assuming the integrals exist. In analogy to Eq. (2.19), the auto-covariance function ΓH and auto-
correlation function ρH of H are based on its 2nd-order distribution and are defined as

ΓH(s1, s2) = E[(H(s1, ω)− µH(s1))(H(s2, ω)− µH(s2))],

ρH(s1, s2) =
ΓH(s1, s2)

σH(s1)σH(s2)
.

(2.29)

ΓH and ρH are bounded (by the Cauchy-Schwarz-inequality), symmetric (to the line s1 = s2) and
positive semi-definite functions.

H(s, ω) is said to be stationary if all of its finite-dimensional distributions are translation invariant
[80, Chapter 3], i.e.,

FH(s1)...H(sn)(h1, . . . , hn; s1, . . . , sn) = FH(s1+ξ)...H(sn+ξ)(h1, . . . , hn; s1 + ξ, . . . , sn + ξ). (2.30)

In practice, random functions are described by 1st- and 2nd-order distributions only due to the
impracticality or impossibility of obtaining higher-order distributions. H(s, ω) is said to be weakly
stationary if its 1st- and 2nd-order distributions are translation-invariant [80, Chapter 3], i.e.,

FH(s1)H(s2)(h1, h2; s1, s2) = FH(s1+ξ)H(s2+ξ)(h1, h2; s1 + ξ, s2 + ξ). (2.31)

In either case, µH(s) is constant and the second-moment functions ΓH(s1, s2) and ρH(s1, s2) are
merely functions of the separation vector δ = s1 − s2 [3, Chapter 2]. (Weakly) stationary random
functions whose second-moment functions depend equally on each coordinate of δ are referred to
as isotropic. This is, e.g., the case, when ΓH(s1, s2) and ρH(s1, s2) depend on the `p-norm of δ, ‖δ‖p.

Typical isotropic correlation models are the exponential model ρ(δ) = exp{−‖δ‖1/l}, the squared-
exponential model ρ(δ) = exp{−(‖δ‖/l)2/2} and the Matérn model [187, Chapter 4]

ρ(δ; ν, r) = (21−ν)/Γ(ν)(
√

2ν/r‖δ‖)νKν(
√

2ν/r‖δ‖). (2.32)

Γ(·) is the Gamma-function and Kν(·) is the modified Bessel function of the second kind [2, Chapter
9]. The Matérn model includes both the exponential and the squared-exponential model as special
cases with ν = 0.5 and ν → ∞, respectively as well as r = l. In all three models, l is a scale
parameter that controls the rate of decay of the autocorrelation with the separation distance. The
major difference between the models are the varying degrees of differentiability they impose upon
H in the mean-square sense [3, Chapter 2]. This can be roughly understood as an indication as
to how smooth sample trajectories of H(s, ω) will be. In particular, if H(s, ω) is Gaussian, the
Matérn model is bνc times mean-square differentiable which implies that the exponential model is
non-differentiable and the squared-exponential model is infinitely differentiable in the mean-square
sense.

11
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Gaussian random functions [1, 187] are random functions whose every finite-dimensional distribution
is a Gaussian distribution. In particular, the finite-dimensional distribution of order n is n-variate
Gaussian such that the corresponding PDF of the random vector H = [H(s1, ω), . . . ,H(sn, ω)]T is
given by Eq. (2.20) with mean vector µH = [µH(s1), . . . , µH(sn)] and covariance matrix ΣH = [ΓH(si, sj)]n×n.
Since H(s, ω) is completely specified by µH and ΣH , any weakly stationary Gaussian random func-
tion is stationary.

Translation functions are an important class of non-Gaussian random functions that arise through
marginally transforming Gaussian random functions. That is, a translation function H with non-
Gaussian marginal distribution FH is obtained as H(s, ω) = F−1

H ◦ Φ(U(s, ω)) with U(s, ω) a
standard-normal random function, i.e., U(ω)|s ∼ N (u|0, 1). The covariance structure of H(s, ω),
ΓH(s1, s2), implicitly depends on ΓU (s1, s2) and can be obtained using, e.g., the Nataf model.

Discretization

Due to the impossibility of treating an infinite collection of random variables computationally, ran-
dom functions are discretized to make them accessible to computation. There exists a variety of
discretization methods all of which aim at representingH(s, ω) as accurately as possible using a finite
number of random variables. These methods are usually divided in point discretization methods,
averaging methods and series expansion methods. In point discretization methods, a set of random
variables are used to represent the values of H(s, ω) at discrete coordinates in the index space S and
are taken in a linear combination with a set of deterministic functions to represent H(s, ω) on the
entire space S. Particular methods then typically differ in the choice of these deterministic functions,
where examples include the midpoint method ([50]; piecewise constant), the shape function method
([135]; piecewise linear) as well as the optimal linear estimation method ([112]; optimal variance
representation). Averaging methods represent the random function as weighted averages of H taken
over discrete subdomains of S and include the spatial averaging approach [228] and the weighted
integral method [46, 47]. Finally, series expansion methods also represent H(s, ω) as a linear com-
bination of random variables and deterministic functions, where, however, the random variables
do not necessarily correspond to local values of H(s, ω). Examples include the expansion-optimal
linear estimation method [112], the spectral representation method [206] and the Karhunen-Loeève-
expansion (KLE) [136]. In the following, we briefly describe the midpoint method and the KLE due
to their relevance to several example applications showcased in the original publications in Part II.

The midpoint method belongs to the group of point discretization methods and is perhaps the
simplest approach to discretizing a random function. The idea is to ensure the mth-order distri-
bution of the approximated random function Ĥ(s, ω) at m discrete points in {si ∈ S}mi=1 (the
midpoints) equals that of H(s, ω). The midpoints are typically chosen as the barycenters of a polyg-
onal partitioning of S and the value Ĥ(s, ω) takes at any midpoint is assumed constant over the
corresponding polygon. If H(s, ω) is Gaussian, we can generate samples from its mth-order distri-
bution through Eq. (2.23). Likewise, if H(s, ω) is a translation function, the Nataf transform is
available to approximately sample from Ĥ(s, ω).

The KLE can be viewed as a continuous extension of Eq. (2.23) for H(s, ω) with arbitrary finite-
dimensional distributions (not necessarily Gaussian) and continuous covariance function ΓH(s1, s2)

12
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that — according to Mercer’s theorem — admits a spectral decomposition such that the KLE reads

H(s, ω) = µX +
∞∑

i=1

√
λiai(s)ξi(ω) with

∫

S
ΓH(s, s′)ai(s′)ds′ = λiai(s). (2.33)

The eigenfunctions {ai(s)}∞i=1 : S → L2(S) form a complete orthogonal basis (COB) of L2(S).
The eigenvalues {λi}∞i=1 are ordered in the sense that λi ≤ λj ⇔ i ≤ j and have the property
limi→∞ λi = 0. Due to the orthogonality of the {ai(s)}∞i=1, the variance of the random function
representation (2.33) reads V[H(s, ω)] =

∑∞
i=1 λia

2
i (s) meaning that each eigenvalue represents the

variance contributed by its associated eigenfunction. Thus, the truncated KLE

Ĥm(s, ω) = µX +

m∑

i=1

√
λiai(s)ξi(ω) (2.34)

is optimal in the sense that it minimizes the mean squared error
∫
S E[(H(s, ω) − Ĥm(s, ω))2]ds =

E[‖H(s, ω)− Ĥm(s, ω)‖2] =
∑∞

i=m+1 λi. In general, the {ξi}mi=1 are obtained by projecting H(s, ω)
on the eigenbasis {ai}mi=1 as

ξi =
1√
λi

∫

S
[H(s, ω)− µH(s)]ai(s)ds (2.35)

and are always centered and uncorrelated, i.e. E[ξi] = 0 and E[ξiξj ] = δij . For Gaussian random
functions H(s, ω), the latter property implies pairwise independence amongst the coordinates of
ξ. In fact, ξ is a (standard-normal) Gaussian random vector as the integral in Eq. (2.35) can be
written as a weighted Riemann sum of Gaussian random variables, which is Gaussian again. Finding
the joint distribution of ξ in the general case of non-Gaussian random functions is a non-trivial
undertaking. However, translation functions can be generated in the familiar manner by generating
a KLE for a Gaussian random function and then transforming it. The integral eigenvalue equation
on the right of Eq. (2.33) is a Fredholm equation of the second kind and its solution presents the
main computational task when discretizing Gaussian or translation random functions with a KLE.
Several numerical solution techniques are discussed in [24].

2.2 Uncertainty Propagation

2.2.1 Setup

Throughout this work, the computational model Y : X → Y is assumed to be a scalar- and real-
valued mapping from the canonical probability space (Rd,B(Rd),PX) to the probability space of the
model response Y ∈ (R,B(R),PY ). In practice, the input random vector X will always be defined
in terms of its joint PDF fX(x) or its joint CDF FX(x). We assume that Y ∈ L2

fX
(Rd,R) =

{u : Rd → R such that
∫
Rd |u(x)|2fX(x)dx ≤ ∞} This means that the model response is square-

integrable with respect to fX : EfX [|Y(X)|2] ≤ ∞. Note, that this setting may be extended to
the vector-valued case of Y with model responses Y ∈ RdY by applying the concepts introduced
hereafter to each coordinate of Y, {Yi = Yi(X)}dYi=1. Moreover, Y is assumed to be a black box,
meaning the sole information we can retrieve from Y are point-wise evaluations. In particular, no
intermediate results between input and output can be probed and no additional quantities of interest
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such as derivatives can be computed alongside the model output (however, numerical differentiation
of the model using the black box is possible, of course).

The central objective of uncertainty propagation lies in characterizing the uncertainty in the model
response Y . The PDF of the model response, fY provides an exhaustive description of said uncer-
tainty. However, estimates of fY are rarely available in satisfactory quality due to the large amount
of information required to construct them. The target is thus often replaced with partial knowledge
of the distribution, e.g., as encoded by a finite number of its moments.

2.2.2 Second moment analysis

The goal here is to compute the first two moments of Y , µY = EfX [Y(X)] and σ2
Y = EfX [(Y(X)−

µY )2] . For the special case of a linear model,

Y = aTX + b with a ∈ Rd, b ∈ R, (2.36)

by linearity of expectation and the definition of covariance in Eq. (2.19), we have

µY = aTµX + b

σ2
Y = aTΣXa

(2.37)

with µX the mean vector of X and ΣX its covariance matrix.

If M is nonlinear, we may develop M in a Taylor series around µX to obtain arbitrary-order ap-
proximations to µY and σY . The m-th order approximations of µY and σY require model derivatives
of order m and X-statistics of order m and m2, respectively. Estimated quantities are distinguished
from their true counterparts with a ·̂. The second-order approximation of Y around µX reads

Ŷ(X) = Y(µX) +

d∑

i=1

(Xi − µXi)
∂Y
∂xi

∣∣∣∣
µX

+
1

2

d∑

j=1

d∑

i=1

(Xi − µXi)(Xj − µXj )
∂2Y
∂xi∂xj

∣∣∣∣
µX

= Y(µX) + [X − µX ]T∇xY(µX) +
1

2
[X − µX ]THxY(µX)[X − µX ].

(2.38)

∇xY = [∂Y/∂x1, . . . , ∂Y/∂xd]T ∈ Rd is a d-dimensional column vector that represents the gradient
of Y with respect to the coordinates of x and HxY ∈ Rd×d is the Hessian matrix of second derivatives
of Y with respect to x with entries [HxY]ij = ∂2Y/(∂xi∂xj). Therefore, if second-order statistics
of X and second-order derivatives of Y are available, the second-order approximation of µY and
first-order approximation of σ2

Y can be computed as

µ̂Y = Y(µX) +
1

2

d∑

j=1

d∑

i=1

COV[Xi, Xj ]
∂2Y
∂xi∂xj

∣∣∣∣
µX

= Y(µX) +
1

2
‖HxY(µX) ◦ΣX‖2F ,

σ̂2
Y = Y(µX) +

d∑

j=1

d∑

i=1

COV[Xi, Xj ]
∂Y
∂xi

∣∣∣∣
µX

∂Y
∂xj

∣∣∣∣
µX

= [∇xY(µX)]TΣX∇xY(µX).

(2.39)

A◦B denotes the Hadamard (i.e., element-wise) product of two matrices A and B of equal size and
‖A‖F= (

∑
i

∑
jAij)

1/2 is the Frobenius norm of A.
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Computational models of engineering problems frequently do not possess a closed form representa-
tion but come as a set of discretized differential equations which represent conservation laws and
other first principles. Given the black-box nature of Y, the required derivatives in Eq. (2.39) must
be obtained using numerical differentiation. Alternatively, if Y is not of black-box type, the equa-
tions underlying the model may be manipulated such as to yield explicit expressions for the sought
response derivatives. This is known as the probabilistic perturbation method [106].

2.2.3 Monte Carlo

Monte Carlo simulation (MC) is an umbrella term for stochastic simulation methods that are based
on repeated experiments with artificially generated random samples [196]. MC can be used to
characterize the response Y through a finite number of samples from the PDF of y, fY . These are
obtained by generating a set of n random samples of X, {xi}ni=1, and computing the corresponding
values of Y , {yi = Y(xi)}ni=1. Moments of Y can be estimated from the sample {yi = Y(xi)}. In
particular, standard estimators for the mean µY and variance σ2

Y of Y read

µ̂Y =
1

n

m∑

i=1

yi, σ̂2
Y =

1

n− 1

m∑

i=1

(yi − µ̂Y )2, yi
i.i.d.∼ fY (2.40)

yi
i.i.d.∼ fY indicates that the samples {yi = Y(xi)}ni=1 are independent and identically distributed

according to fY . These estimators are unbiased, which means E[µ̂Y ] = µY and E[σ̂2
Y ] = σ2

Y , and
converge to the true mean µY and variance σ2

Y asymptotically as n → ∞ due to the law of large
numbers. If the samples are i.i.d., the estimators are random variables of their own and the variance
of µ̂Y is σ2

µ̂Y
= σ2

Y /n. Estimation errors are typically quantified with their coefficient of variation
(CoV)

δµ̂ =
σµ̂
µ

=
σ

µ
√
n
≈ σ̂

µ̂
√
n
. (2.41)

Eq. (2.41) reveals both the relatively slow convergence of MC (∝ √n) as well as the remarkable
property of dimension independence.

Often, we are not only interested in estimating moments of Y from samples but also its PDF
fY (y). The empirical PDF is given as a sum of Dirac delta functions femp(y) = 1/n

∑n
i=1 δ(y − yi),

where δ is defined as

δ(y) =

{
0, y 6= 0,

1, y = 0
, with

∫ ∞

−∞
δ(y)dy = 1. (2.42)

The most common technique to obtain a smooth PDF estimate f̂Y is kernel density estimation. The
kernel density estimator is given by the convolution of femp(y) with a kernel K and reads

f̂Y (y) =
1

nh

n∑

i=1

K

(
x− xi
h

)
. (2.43)

Next to the kernel, the bandwidth h has to be chosen such as to do justice to the data (see Fig. 2.1).
If chosen too large, the resulting density estimate is oversmoothed, which leads to information loss; if
chosen to small, the resulting f̂Y (y) will exhibit mostly features of K and contain spurious artifacts
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Figure 2.1: Illustration of undersmoothed (left, bandwidth h ≤ hopt) , optimal (center, bandwidth
hopt = 1.06σ̂Y n

−1/5) and oversmoothed (right, bandwidth h ≥ hopt) kernel density estimators
of a Gaussian distribution with Gaussian kernel K. Colored lines represent the weighted kernel
contributions {1/(nh)K((yi − y)/h)}ni=1. The dashed line emerges as the sum of the colored lines.

due to undersmoothing/overfitting. Popular choices of K and h are the Gaussian kernel ϕ(·) and
h = 1.06σ̂Y n

−1/5 [208, Chapter 3]. If computationally feasible, Monte Carlo is usually the simplest
and one of the most reliable approaches to estimate moments or parameters in general. However,
when Y is expensive to evaluate, the number of samples required by MC to achieve a prescribed
accuracy is often unaffordable. In such cases, a possible remedy is to construct cheap-to-evaluate
surrogate models of Y, which we discuss in the following section.

2.2.4 Surrogate Modelling

Introduction

Surrogate models are used in uncertainty quantification to alleviate the computational burden of re-
peated model evaluations if the model is expensive. This is frequently the case in engineering, where
— as mentioned above — models often compute solutions of differential equation systems represent-
ing first principles such as conservation of mass and energy. Surrogate models are functions Ŷ(X;θ)
that are parameterized by θ and considerably cheaper to evaluate than Y. The goal is to replace
the expensive model Y with the cheap surrogate model Ŷ. For this replacement to be sensible,
the parameters are computed based on a set of evaluations of the original model referred to as the
design of experiments (DoE) or experimental design, E = {X,Y}ni=1 with X = {xi}ni=1 ∈ Rn×d and
Y = {yi = Y(xi)}ni=1 ∈ Rn such that Ŷ becomes as similar to Y as possible in some sense. In what
sense is made precise by the loss function L(Y(X), Ŷ(X,θ)) that provides a measure of dissimilarity
between Ŷ and Y for any viable choice of parameters θ, such that the goal is to minimize L over E .
Without loss of generality, X is assumed standardized in the remainder of this chapter. That means
a linear transformation {Xi = (X̃i−µX̃,i)/σX̃,i}di=1 is applied to the non-standardized input matrix
X̃, where µX and σX are the columnwise mean and standard deviation of X̃. Standardization serves
to reduce scaling influence amongst different variables in regression methods.

Within the field of statistical learning theory [83], surrogate modelling for UQ as introduced above
is best described as supervised, model-based or predictive learning. Most surrogates are designed to
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solve regression problems meaning that the output of Y is of quantitative nature rather than cate-
gorical. Conversely, if the output is categorical, the underlying problem is referred to as classification
problem. Sometimes, classification methods are useful in UQ, e.g., in solving reliability and rare
event estimation problems [94, 32] (see Chapter 2.3). In high-dimensional applications, surrogate
modelling is combined with/preceded by a dimensionality reduction step for which both supervised
and unsupervised methods may be deployed. Unsupervised methods are geared towards detecting
structures in theX-data of the DoE only, meaning these methods do not receive output information
(also termed labeled data in the context of statistical learning theory). If, however, as in the case
of a surrogate modelling setting, label information is available, supervised dimensionality reduction
techniques usually have an advantage over their unsupervised pendants. Nonparametric methods
make use of the DoE to compute predictions immediately rather than identifying parameters θ first
and using the resulting model for prediction. An example is the kernel density estimator in Eq. (2.43).

Different surrogate models arise by choosing different functional forms for Ŷ as well as different
loss functions L. The black box assumption for Y dictates that any and all surrogate modelling ap-
proaches discussed in the following and used in Part II are so-called non-intrusive approaches. An
incomplete list of non-intrusive modelling approaches includes linear [83, Section 3.2] and nonlinear
[204] as well as generalized [146] and additive models [83, Chapter 9], spectral methods , Gaussian
process [187] and support vector regression [55, 210] as well as neural networks [76, 95, 27]. In
the following, several regression methods as well as spectral methods such as polynomial chaos ex-
pansions (PCE) and spectral low-rank approximations (LRA) are discussed in more detail due to
their relevance in Part II. Moreover, an account of dimensionality-reducing regression techniques is
given introducing principal component regression (PCR) and linear as well as nonlinear partial least
squares (PLS).

Error measures, model selection & validation

When using surrogate models in UQ, the interest is in accurate predictions for future unobserved
data. Thus, quantifying the prediction error of Ŷ away from the training set is key in assessing the
surrogate model quality. Upon determining an estimate of the model parameters θ based on a fixed
DoE E , θ̂, taking the expectation of L(Y(X), Ŷ(X, θ̂)) with respect to the input PDF fX yields
the generalization error or expected risk ErrL. As θ̂ is fixed, we drop it and write

ErrL =

∫

R
L
(
Y(X), Ŷ(X)

)
fX(x)dx = EfX

[
L
(
Y(X), Ŷ(X)

)]
. (2.44)

Evaluating ErrL requires point-wise knowledge of Y, which defeats the purpose of constructing a
surrogate model Ŷ. An approximation of ErrL is given by the empirical error ÊrrL, which amounts
to evaluating Eq. (2.44) over E :

ÊrrL =
1

n

n∑

i=1

L
(
Yi, Ŷ(xi)

)
. (2.45)

Minimizing ÊrrL is one way of computing the parameter estimate θ̂. In regression problems, the
square loss function L = (Y(X)− Ŷ(X,θ))2 is a standard choice and is employed throughout this
work. We write lower-case err for relative error estimates. A natural normalization for relative
square-loss errors is the variance of Y and the corresponding relative generalization and empirical
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errors read

err`2 =

EfX

[(
Y(X)− Ŷ(X)

)2
]

VfX [Y(X)]
and êrr`2 =

1
n

n∑
i=1

(
Yi − Ŷ(xi)

)2

1
n−1

∑n
i=1

(
Yi − 1

n

∑n
i=1 Yi

)2 . (2.46)

err`2 (and Err`2) is also referred to as (relative) mean-squared error(RMSE) . They express the
accuracy of Ŷ conditional on a fixed DoE E (and corresponding θ̂ given a deterministic estimation
procedure). In order to describe the sampling properties of Ŷ under random DoEs, we may define
the pointwise MSE at any input x ∈ R and average over the DoE distribution fE (or equivalently –
but less likely to be accessible – the sampling distribution of θ̂) to obtain the pointwise MSE

ErrE`2(x) = Ef
θ̂

[(
Y(x)− Ŷ(x, θ̂)

)2
]

= EfE

[(
Y(x)− Ŷ(x, E)

)2
]
. (2.47)

ErrE`2 admits a decomposition in two parts representing systematic and random errors as follows

ErrE`2(x) = EfE

[(
Y(x)− Ŷ(x, E)

)2
]

=
(
EfE

[
Y(x)− Ŷ(x, E)

])2
+ VfE

[
Y(x)− Ŷ(x, E)

]

=
(
Y(x)− EfE

[
Ŷ(x, E)

])2

︸ ︷︷ ︸
Bias2(x)

+VfE
[
Ŷ(x, E)

]

︸ ︷︷ ︸
Variance(x)

.

(2.48)

The bias can be understood as measuring how far off the surrogate model is on average when re-
constructed with infinitely many randomly redrawn DoEs of size n, E . Thus, the bias accounts
for systematic errors, e.g., in the model form, that are independent of the random draw of the
DoE. The variance part of the MSE on the other hand represents the variability of Ŷ due to the
random character of the DoE and the fact that it is of limited size n and vanishes in theory as n→∞.

Being a function of the DoE only, the empirical error is not informative regarding how well Ŷ
generalizes/extrapolates away from the data. In particular, the relative empirical error and the re-
lated coefficient of determination R2 = 1− êrr`2 can always be improved by adding more parameters
to Y. This means that choosing the complexity of the model (e.g., the number of parameters in θ)
based on êrr`2 is likely to result in overly complex models that grant too much importance to the
DoE and generalize poorly away from it. This is referred to as overfitting. One way of resolving
this issue is to select the model and its complexity based on modified versions of err`2 that penalize
model complexity (see, e.g., [36] for a correction to the empirical error in linear regression prob-
lems). Another is to consider loss functions that impose structure such as sparsity on the model
(these approaches are discussed in more detail in Subsection 2.2.4). A less heuristic way of perform-
ing model selection is given by k-fold cross-validation, where the DoE is divided in k equal-sized
partitions that each contain n/k data points. Each partition is then removed from the DoE once
and a corresponding model is constructed without this partition present in the DoE leading to a set
of k models {Ŷi}ki=1. The empirical error of each model is then evaluated over its corresponding left
out data partition and thereby measures generalization ability. The relative cross-validation error is
computed as the average of these k errors normalized with the response variance:

êrrCV,k =
1
k

∑k
i=1 Êrr`2,i
V[Y]

with Êrr`2,k =
1

n

n∑

i=1

(
Yi − Ŷ(xi)

)2
. (2.49)
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If k = n, n models are constructed and each one is constructed using all points in the DoE except
one. Therefore, n-fold cross validation is also known as leave-one-out cross validation (LOO-CV).

Linear regression

For each point in E , (xi, yi) (corresponding to th i-th row of X and Y, respectively), the linear
regression model assumes a linear relationship contaminated with an error term εi:

yi = Ŷ(xi) + εi = a0 + a1xi1 + · · ·+ adxid + εi, i = 1, · · · , n. (2.50)

In the context of regression,X/Y are often referred to as regressors/regressees, independent/dependent
variables or explaining/explained variables. Several assumptions are made for the linear regression
model:

A1 (strict exogeneity of the error terms) The error terms have zero mean conditional on all obser-
vations of the regressors X, i.e., E[ε|X] = 0n (which implies E[ε] = 0n).

A2 (spherical error model) The error terms are independent of one another conditional on all
observations of the regressors and their variance is constantly σ2, i.e., E[εεT|X] = σ2In×n
(which implies E[εεT] = σ2In×n as well)

A3 (no multicollinearity) X has full rank. This last property is required by the solution of the
least-squares problem Eq. (2.53).

Sometimes, the assumption of Gaussian errors is added, which allows for maximum-likelihood and
Bayesian estimation of a and yields finite-sample properties of the least squares estimator such as
unbiasedness and the covariance structure of the estimated parameters â.

The linear model can include nonlinear functions ψ(·) of one, several or all independent variables as
long as the model remains linear in a. These functions are called features and enhance the flexibility
of the linear model. The design matrix Ψ ∈ Rn×P is the matrix representing P features evaluated
at all n DoE-points, i.e., Ψij = ψj(xi). The constant term a0 can be collected in Ψ by choosing
ψ1(X) = 1, such that the model in matrix notation and with the Gaussianity assumption for ε reads

Y = Ψa+ ε, with ε|Ψ ∼ N (e|0n, σ2In×n). (2.51)

The parameters of this model are θ = [aT, σ2]T. In many presentations of linear regression, the
conditioning of ε on the design matrix is dropped as Ψ is assumed fixed and deterministic. To
maintain that the design matrix in general may be random but the properties of OLS discussed in
this paragraph do not account for said randomness, we carry the conditioning along in the notation.
The primary goal is to find the coefficient vector a ∈ RP . This may be achieved by minimizing the
squared distance between Y and Ŷ over E , which is known as the (ordinary) least squares method
(OLS) and implies a quadratic loss function L, which is also referred to as the residual sum of squares
(RSS) in the context of regression. The minimization reads

â = arg min
a∈RP+1

RSS(a) = arg min
a∈RP+1

n∑

i=1

(Yi − Ŷi(a))2 = arg min
a∈RP+1

(Y −Ψa)T(Y −Ψa). (2.52)
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Eq. (2.52) is a convex and continuous optimization problem and setting the derivative of the RSS
with respect to a to 0 yields the normal equations

â = (ΨTΨ)−1(ΨTY). (2.53)

An unbiased estimate of the error variance σ2 reads

σ̂2 =
1

n− P (Y −Ψâ)T(Y −Ψâ). (2.54)

The number n − P is referred to as the degrees of freedom of the regression model and can be
understood as the number of unconstrained residuals (P residuals are constrained by Eq. (2.53),
which limits its variability [84]). An estimator with few degrees of freedom is prone to overfitting.
In the limit n = P , the problem is ill-posed and Eq. (2.54) is not defined. Strategies for treating the
n ≤ P -case are discussed in Subsection 2.2.4. An alternative derivation of Eq. (2.53) can be obtained
by maximizing the log-likelihood of a given E [155, Section 7.3]. This means, the least-squares
estimator of the linear model coincides with its maximum-likelihood-estmator under the assumed
Gaussian and spherical error model. Based on assumptions A1 and A2 above, unbiasedness and the
covariance structure of â are readily stated as

E[â− a|Ψ] = E[(ΨTΨ)−1ΨTε|Ψ]

= (ΨTΨ)−1ΨTE[ε|Ψ]
A1
= 0

V[â|Ψ] = V[â− a|Ψ] = V[(ΨTΨ)−1ΨTε|Ψ]

= (ΨTΨ)−1ΨTV[ε|Ψ]Ψ(ΨTΨ)−T A2
= σ2(ΨTΨ)−1.

(2.55)

If ε is assumed Gaussian, â asymptotically has distribution â ∼ N (α|a, σ2(ΨTΨ)−1) as n → ∞.
The Gauss theorem states that Eq. (2.53) is the best linear unbiased estimator (BLUE) of a given
the model Eq. (2.51) [203]. If ε is more generally distributed according to a member of the exponen-
tial family of distributions, the model parameters can be estimated with the maximum likelihood
principle as well. Such models are known as generalized linear models (GLM) [146].

Frequently, modellers need to decide which subset amongst all available features to include in a
linear regression model. This is a model selection problem and as mentioned above, cross-validation
is frequently used to select the subset that minimizes the cross-validation error. In the case of linear
regression, the leave-one-out cross validation error is particularly convenient to evaluate [203] and
reads

ÊrrLOO =
n∑

i=1

(
Y(xi)− Ŷ(xi)

1− hi

)2

, (2.56)

with hi being the i-th main diagonal element of the matrix Ψ(ΨTΨ)−1ΨT. This means the LOO-
CV may be computed without constructing n different models, which renders it an attractive tool
for model selection in linear regression problems.

Regularization, ridge regression & subset selection

Eq. (2.53) explains the necessity of assumption A3 above: if Ψ is of full rank, (ΨTΨ) is invertible
and the least squares solution exists. In the context of regression, the problem of rank-deficient
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Ψ is often referred to as multicollinearity. Even if the features (i.e., the columns of Ψ) are not
linearly dependent, they may be strongly correlated, which renders the computation of the inverse
numerically unstable in many instances. A remedy is provided by regularization of the loss function
such that

â = arg min
a∈RP+1

(Y −Ψa)T(Y −Ψa) + λR(a). (2.57)

λ controls the amount of regularization and is usually identified with cross-validation and R(a) is
a penalty term. Choosing the penalty term as R(a) = ‖a‖2= aTa penalizes the complexity of the
parameter vector. This penalty is known as Tikhonov regularization and the associated regression
technique is sometimes called ridge regression. Eq. (2.57) is a convex and continuous optimization
problem as well and attains its global minimum at

â = (ΨTΨ + λIP×P )−1(ΨTY). (2.58)

As the introduced penalty term leads to the addition of λ to all main diagonal entries of (ΨTΨ),
it has a stabilizing effect on the computation of the inverse matrix. In other words, the regression
problem is well-posed again. The result of Eq. (2.58) can also be obtained in a Bayesian setting
as the maximum a-posteriori point (MAP) by reusing the Gaussian OLS-likelihood and placing a
suitable prior on a. In particular, a ∼ N (·|0, τ2I), and known σ2 then yield the MAP Eq. (2.58)
with λ = σ2/τ2 [155, Section 7.5].

By choosing R(a) = ‖a‖1 =
∑P

i=1 |ai|, it is possible to penalize the number of non-zero parameters,
which leads to subset selection amongst the available regressors and produces sparse solutions. This
regularization scheme is also known as Least Absolute Shrinkage and Selection Operator (LASSO)
[220] or — in a slight variation of formulation — Basis Pursuit [38]. The associated optimization
problem is non-continuous and thus does not possess a simple closed-form solution like ordinary or
ridge regression. Instead, algorithms such as least-angle regression (LARS) [59], coordinate descent
and proximal gradients [155, Section 13.4] may be used to solve for the parameter vector.

Subset selection can be achieved with various penalty types, e.g., by choosing an `0-regularization
term R(a) = ‖a‖0 =

∑P
i=1 I(ai = 0), which however results in a non-convex optimization problem.

Algorithms for solving such problems proceed by adding regressors to the solution in a stepwise
manner and decide which regressors to add in each step based on heuristic principles. Popular
examples are forward-backward selection [244], matching pursuit [141] and its orthogonal variants
[180, 43, 224, 53]. Similar to OLS and ridge regression, subset selection can be achieved by stating
the regression problem in a Bayesian setting and choosing an appropriate (that is, sparsity-inducing)
prior — such as the Laplace distribution — for the model parameters. A Bayesian framework for
sparse linear models was proposed in [222] and the idea went on to produce a plethora of descendants
in the realm of sparse Bayesian learning ever since [103, 11, 225]. For a detailed overview, the reader
is referred to [155, Section 13.7].

Both subset selection and ridge regression can be viewed as trading bias for variance in Eq. (2.48)
to decrease the MSE compared to OLS. The estimator variance reduces as less parameters have to
be estimated based on a fixed DoE size, whereas the bias increases as a consequence of artificially
forcing otherwise small parameters to zero (subset selection) or at least shrinking them below their
OLS-value (ridge regression). Subset selection also renders the model more interpretable compared
to OLS through reducing the number of explaining variables retained in the model.
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Nonlinear regression

The nonlinear regression model no longer assumes linearity in a so that any nonlinear function of
X and a may be postulated:

Y = h(X,a) + ε, with ε|X ∼ N (e|0n, σ2In×n). (2.59)

In special cases, this model can be linearized by a suitable transformation of X and/or Y. Lin-
earization, however, bears implications concerning the error model: if, for example, in the original
regression model, the error is assumed additive spherical Gaussian, then a log-transformation of Y
leads to multiplicative errors with log-normal distribution. Whether this is appropriate has to be
checked carefully. Even if no such transformation can be applied, Eq. (2.59) may be solved using
least squares and an iterative procedure known as Gauss-Newton algorithm. Upon choosing an
initial value âk ∈ RP at k = 0, expanding h(X,a) in a first-order Taylor series about âk yields

h(X,a) ≈ h̃(X,a) = h(X, âk) +∇ah(X, âk) (a− âk)︸ ︷︷ ︸
∆a

. (2.60)

∇ah(X, âk) is short notation for ∇ah(X,a)|a=âk
∈ Rn×P . h̃ represents the tangent plane to the

true nonlinear model parameter surface at âk. Minimizing the distance between Y and h̃ yields the
best possible a on this plane, which is used as ak+1 and identified through the following updating
rule:

âk+1 = âk + ∆̂aopt

= âk + arg min
∆a∈RP

(Y − h(X, âk)−∇ah(X, âk)∆a)T(Y − h(X, âk)−∇ah(X, âk)∆a)

= âk + ([∇ah(X, âk)]
T∇ah(X, âk))

−1[∇ah(X, âk)]
T(Y − h(X, âk)).

(2.61)

The second equality amounts to selecting the optimal update ∆̂aopt as the one that minimizes the
distance between Y and h̃. The last equality makes use of the known linear least squares solu-
tion, Eq. (2.53). There exist several extensions to the Gauss-Markov algorithm that improve both
efficiency and stability, e.g., the Levenberg-Marquardt-algorithm that uses the `2-regularized least
squares solution in Eq. (2.53) rather than OLS to compute the update.

An asymptotic estimate of the covariance structure of the final parameter estimate â follows from
invoking the linear approximation Eq. (2.60) once more. Upon convergence, â = (ATA)−1ATY,
where A = ∇ah(X, âk). Based on this, it can be shown that â− a ∼ N (α|0,V[â− a|X]) for large
n [204, Theorem 2.1]. The covariance matrix of â is then given by

V[â|X] = V[â− a|X] ≈ V[(ATA)−1ATε|X]

= (ATA)−1ATV[ε|X]A(ATA)−T A2
= σ2(ATA)−1.

(2.62)

Principal component regression and partial least squares

We briefly return to the linear least squares problem to review a collection of subspace methods
that are relevant for the construction of dimensionality-reducing surrogate models in Part II. The
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idea is to solve the linear regression problem in a linear subspace of Rd as defined by W ∈ Rd×m
such that Z = WTX ∈ Rm and WTW = Im×m with m < p. Such an approach is useful when
the regression model has only a few degrees of freedom in the original space or even d > n. It also
serves as an alternative to regularized regression approaches in that it can handle multicollinearity
in X and potentially reduce V[a]. It is straightforward to show that the matrix maximizing V[Z]
and minimizing the reconstruction error ‖X −WWTX‖F in Frobenius-norm (as defined below
Eq. (2.39)) is given by the m eigenvectors of the empirical covariance of X, Σ̂X , associated with
the m largest eigenvalues of that matrix [155, Section 12.2]. Assuming X was centered such that it
has column mean equal 0, the full eigendecomposition of Σ̂X reads

Σ̂X =
1

n
XTX = VDVT with V = [v1 . . . ,vd] ∈ Rd×d and D = diag(λ1, . . . , λd) ∈ Rd×d, (2.63)

where the eigenpairs {λi,vi}di=1 are solutions of Σ̂Xvi = λivi. Thus, setting W = [v1 . . . ,vm] =

Vm, the empirical covariance of Z is Σ̂Z = VT
mΣ̂XVm = diag(λi, . . . , λm). That is, the eigenvalues

equal the variance represented by their associated principal component. For the sake of stability,
computing the PCR subspace Vm via the eigendecomposition in Eq. (2.63) is typically replaced with
computing the singular value decomposition (SVD) of X (in particular, the thin SVD [75, Section
2.4]). The SVD is a matrix factorization that can be understood as generalizing the eigendecom-
position to non-square matrices [75, Section 2.4]. For any real-valued matrix X ∈ Rn×d, the SVD
consists of the orthogonal matrices U ∈ Rn×n and Ṽ ∈ Rd×d as well as the rectangular diagonal
matrix S ∈ Rn×d with the singular values of X, {si}min(n,d)

i=1 on the main diagonal in decreasing
order. The SVD reads

X = USṼT =

min(n,d)∑

i=1

siuiv
T
i with U = [u1, . . . ,ud] and Ṽ = [v1, . . . ,vd]. (2.64)

The second expression in Eq. (2.64) may be understood as representing X with a linear combination
of rank-1 matrices. By Σ̂X = XTX/n = ṼS2ṼT/n, we see that Ṽ equals V such that the column
space defined by Ṽ equals the eigenspace of Σ̂X and λi = s2

i /n. Computing the regression coeffi-
cients in the PCA subspace amounts to solving m univariate linear regression problems due to the
orthogonality of the principal components. Choosing m = d recovers the OLS solution. PCR can
also be applied to feature vectors, in which case m < P directions in feature space are identified.

While PCR can be effective in stabilizing and improving the OLS procedure, it is suboptimal for
surrogate modelling as the DoE output data Y lies waste and the linear subspace is computed solely
based on the input data covariance. Supervised methods like canonical correlation analysis (CCA)
[92], sliced inverse regression [129] and partial least squares (PLS) [237, 239] offer a remedy by using
Y in the construction of a relevant subspace.

In the following, we discuss PLS1, a PLS variant for scalar-valued output data. The extension
to vector-valued output is straight-forward and known as PLS2. Just as PCA, PLS identifies a set
of principal components that however maximizes the squared empirical cross-covariance between in-
put and output (XTY/n)2 (the quadratic form prevents positively and negatively correlated entries
from cancelling one another) rather than the autocovariance of the input (as is done in PCA). The
direction maximizing this quantity is the first weight

w1 =
XTY

‖XTY‖ . (2.65)
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The input data projected along the new direction is referred to as the first score t1 = Xw1 ∈ Rn. The
rank-1 reconstruction of X, X̂1 = t1p

T
1 is obtained by solving the linear regression problem to find the

first load p1 = XTt1/t
T
1 t1 ∈ Rd. In linear PLS, the inner mapping between the univariate projected

input t1 and Y is taken to be a linear regression model Y = b1t1 + ε, whereby b1 = tT1 Y/tT1 t1.
The rank-1 approximation of Y is thus Ŷ1 = b1t1. This completes the first step of linear PLS.
The following step proceeds identically on the residual input and output matrices E2 = X − X̂1

and F2 = Y − Ŷ1 to extract the second principal component and so forth (compare Fig. 2.2).
Various termination criteria have been proposed to identify the optimal number of components in
the PLS subspace, e.g., based on cross-validation or simply by tracking residual output variability
(as in Fig. 2.2). Upon termination with k components, the weights, loads and scores are gathered
in matrices W ∈ Rd×k, T ∈ Rn×k and P ∈ Rd×k to compute R = W(P−TW)−1 ∈ Rd×k, where
R maps the input data to the PLS scores, i.e., T = RX. The procedure is visualized in Fig. 2.2.
To overcome the limitation of linear inner mappings in linear PLS models, any residual Fk may be

set
k = 0

Ek = X
Fk = Y

maximize cross-covariance
wk = ET

kFk/‖ET
kFk‖

project E on wk

tk = Ekwk

regress F on tk
bk = tTkFk/t

T
k tk

pk = ET
k tk/t

T
k tk

Ek+1 = Ek − tkpTk
Fk+1 = Fk − bktk

‖Fk+1 − Fk‖
≤ ε

W = [w1, . . . ,wm]
P = [p1, . . . ,pm]

R = W(P−TW)−1

âOLS = Rb

linear PLS regression

yes

m← k + 1

no

k ← k + 1

Figure 2.2: Flow chart of linear partial least squares regression with univariate output (PLS1).

assumed as an arbitrary nonlinear function of tk parametrized by bk along the k-th direction [238].
This implies solving a nonlinear regression problem for the model

Fk = h(Ekwk; bk) + ε, with ε|X ∼ N (e|0n, σ2In×n). (2.66)

[13] presents a modified version of the approach put forward in [238] that is reminiscent of the
Gauss-Markov algorithm: in the first step, the nonlinear inner mapping is fitted to obtain bk (an
initial guess of tk is computed with linear PLS) and then a first-order approximation as in Eq. (2.61)
is used to compute a weight update ∆wk. This process is repeated until a stationary solution for
the set of coefficients {wk, bk} is achieved (according to an upper bound on the norm of ∆wk, see
also Fig. 2.3). Several other nonlinear PLS methods have been proposed, a comprehensive overview
of which (including kernel PLS) is provided in [192]. In publication 1 (Chapter 4), we have proposed
a nonlinear PLS technique to construct PCEs for high-dimensional surrogate modelling problems.
PCEs belong to the class of spectral expansions that are discussed in the next section.
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Newton− Raphson step

set
k = 0
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Figure 2.3: Flow chart of nonlinear partial least squares regression.

Stochastic Spectral Methods

Stochastic spectral methods are based on representing Y on a complete orthonormal basis (CONB)
of the weighted Lebesgue space L2

fX
(Rd,R) (a Lebesgue space with p = 2 is a Hilbert space).

This approach was first introduced in [236] for Gaussian product measures as homogeneous chaos
and repopularized in the context of stochastic finite element methods (SFEM) in [73]. The latter
approach uses polynomial chaos expansions as ansatz functions for a Galerkin procedure in order to
solve stochastic boundary value problems. This is an example of an intrusive approach that requires
manipulating the governing equations describing the problem and is not compatible with the black
box limitation assumed in this work. Other examples of intrusive spectral stochastic methods are
[122, 12]. The vast majority of Hilbert spaces arising in the description of physical systems are
separable and any Hilbert spaces used in the following discussion are assumed to be separable. The
inner product associated with L2

fX
(Rd,R) is defined as

〈u, v〉fX =

∫

Rd

u(x)v(x)fX(x)dx = EfX [u(X)v(X)]. (2.67)

By definition, an orthonormal basis of L2
fX

(Rd,R), {hi(x)}i∈N, satisfies

〈hi, hj〉fX = δij =

{
0, i 6= j

1, i = 1
. (2.68)

Then, since Y belongs to the space spanned by {hi(x)}i∈N, we may express it as a linear combination
of the basis functions:

Y(X) =
∞∑

i=0

aihi(X). (2.69)
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Due to the orthonormality property of the {hi(x)}i∈N, the coefficients {ai}i∈N can be evaluated by
projecting Y on the corresponding basis elements:

〈Y, hj〉fX =

〈 ∞∑

i=0

aihi, hj

〉

fX

=

∞∑

i=0

ai 〈hi, hj〉fX =

∞∑

i=0

aiδij = aj . (2.70)

If the coordinates of X are pairwise independent, then fX is a product measure as in Eq. (2.16).
Consequently, L2

fX
(Rd,R) is isomorphic to a tensor product of the set of univariate Hilbert spaces

weighted with the marginal densities {fXk
(xk)}dk=1,

L2
fX1

(R,R)⊗ L2
fX2

(R,R)⊗ · · · ⊗ L2
fXd

(R,R). (2.71)

Let {h̃(k)
j (xk)}pkj=0 be a CONB of L2

fXk
(R,R). A CONB of L2

fX
(Rd,R) can then be constructed as

{hi(x)}i∈N =

{
d⊗

k=1

h̃
(k)
Ik (xk)

}

I∈Nd

. (2.72)

By using copulas as defined in Eq. (2.26), an isoprobabilistic transformation T : X → X̃ may be
used to transform any dependent random vector X̃ into an independent oneX such that Y ◦T is an
element of Eq. (2.71) and the above basis construction can be applied. In an alternative approach,
[214] constructs a CONB for L2

fX̃
(Rd,R) by assuming that fX̃k

is known and L2
fX̃k

(R,R) admits the

CONB {h̃(k)
j (xk)}pkj=0 such that

{hi(x̃)}i∈N =





⊗d
k=1

√
fX̃k

(x̃k)h̃
(k)
Ik (x̃k)

√
fX̃(x̃)




I∈Nd

. (2.73)

By using the copula PDF c(u) = ∂dC(u)/(∂u1 · · · ∂ud) , this reduces to

{hi(x̃)}i∈N =





⊗d
k=1 h̃

(j)
Ik (x̃k)√

c(FX̃1
(x̃1), . . . , FX̃d

(x̃d))




I∈Nd

. (2.74)

Thus, going forward, we consider independent X only as either of the two described methods may
be used to constuct stochastic spectral expansions of dependent random vectors.

Truncating representation Eq. (2.69) after P terms gives

ŶP (X) =
P−1∑

i=0

aihi(X). (2.75)

This approximation is guaranteed to converge to Y(X) in mean-square as p→∞ [183].
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Polynomial chaos expansions

Polynomial chaos expansions are spectral representations that arise by restricting the space of ad-
missible basis functions to orthonormal polynomials. Such an orthonormal polynomial basis of
L2
fX

(Rd,R) can be constructed, e.g., with a Gram-Schmidt-orthonormalization procedure [188] for
arbitrary fX . [242] proposed the generalized polynomial chaos expansion by exploiting the fact that
different known families of orthogonal polynomials can be normalized to form CONBs of Hilbert
spaces weighted with PDFs of different standard distribution types (see Tab. 2.1 for a few important
examples).

Upon identification of the univariate bases associated with Xk, {ψ(k)
i (X)}i∈N and assuming X

is an independent random vector (or has been transformed into one prior to the PCE construction),
the PCE reads

YP (X) =
∑

I∈Nd

aIΨI(X) with ΨI(X) =

d∏

j=1

ψ
(j)
Ij (Xj). (2.76)

An intuitive way of truncating Eq. (2.76) is limiting the admissible total polynomial degree p =
‖p‖1=

∑d
k=1 Ik, j = 1, . . . , P . The resulting set of multivariate polynomial basis functions has

cardinality

P =

p∑

q=0

(
q + d− 1

q

)
=

(
d+ p

d

)
(2.77)

and the corresponding approximation reads

Ŷp(X) =
∑

‖I‖1≤p
aIΨI(X). (2.78)

We can summarize all P possible combinations of univariate basis elements in a matrix α ∈ NP×d≥0 ,
such that the polynomial orders of the univariate basis elements are stored columnwise and the P
different multivariate basis elements are stored rowwise. With this definition, Eq. (2.78) becomes

ŶP (X) =

P−1∑

i=0

ai

d∏

k=1

ψ(k)
αik

(Xk). (2.79)

Finding the set of all possible combinations of univariate polynomials up to total polynomial order
p is a combinatorial problem for which an efficient solution is presented in [219, Chapter 3].

Computing the coefficients {ai}P−1
i=0 by projection as in Eq. (2.70) can be accomplished using either

the integral or the expectation formulation in Eq. (2.67). The former leads to quadrature methods,
in which the coefficients are identified using multi-dimensional numerical integration schemes [211,
109, 12, 241]. The latter gives rise to simulation methods in which the expectation in Eq. (2.67)
is approximated with either crude MC sampling [74] or more elaborate approaches such as latin
hypercube sampling [147, 165] or quasi-random sequence sampling [160, 34, 109].

Eq. (2.79) may be understood as a linear regression model with the multivariate basis elements repre-
senting features. Thus, the PCE coefficients may be identified by solving a linear regression problem,
the solution of which is given by Eq. (2.53) with design matrix Ψ = [Ψα1:(X), . . . ,ΨαP :(X)]. This
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solution is asymptotically equivalent to the projection solution [22] as n→∞.

Based on the orthonormality of the polynomial basis, mean and variance of Ŷ are readily com-
puted as

EfX [Ŷp(X)] = a0 and VfX [Ŷp(X)] =
∑

0<‖I‖1≤p
a2
I =

P−1∑

i=1

a2
i . (2.80)

Moreover, global variance-based sensitivites of Ŷp(X) with respect to X can be computed based on
the PCE coefficients directly [217], which is detailed in Subsection 2.4.2 as well as publications 2 &
5 (Chapters 5 and 8).

The basis cardinality P given the total polynomial order p grows factorially with d and quickly
surpasses feasibility bounds for many applications due to several informational and computational
bottlenecks. Most prominently, for accurate estimation, the DoE size n has to grow relative to the
number of explanatory variables in the regression problem, somewhere between n = 2P [217, 10] and
n = O(P 2) [40, 156] depending on the complexity of the problem. This is an informational bottle-
neck. The number of required true model evaluations quickly defeats the purpose of constructing a
surrogate model (that purpose being to evaluate the original model as scarcely as possible). Subset
selection as discussed in Subsection 2.2.4 is well-suited to tackle this particular problem and has
been successfully used to construct sparse PCEs in many variations. A comprehensive overview is
provided in [138]. Beyond this issue, the computational bottleneck of constructing and storing the
multi-index set α additionally limits the application of PCEs in high-dimensional problems. Sorting
the P multi-indices will require an effort of 2O(P ) operations. The disdavantageous scaling of P with
d is often relaxed through restricting the number of basis elements heuristically, e.g., by computing
the total degree with a q-norm with q < 1 (this is referred to as hyperbolic truncation) or by only
allowing a small fraction of the d coordinates to possess non-constant contributions to a multivari-
ate basis element at a time (this is referred to as interaction order). In our experience, retaining
computability of PCEs for models with d ≥ 100 requires sacrificing expressivity by considerably
restricting the basis in one way or another.

A fundamentally different approach is proposed in [221] under the name basis adaptation, in which
the rotational symmetry of Gaussian PDFs is exploited to project high-dimensional Gaussian in-
put random vectors to low-dimensional (one-dimensional in the extreme case) linear subspaces.
These linear combinations of the original inputs will have a Gaussian measure again and thus lend
themselves to a (low-dimensional) PC representation using Hermite polynomials. Thus, if a ‘good’
subspace can be identified, the dimensional limitations of PCEs may be overcome elegantly. In pub-
lication 1 (Chapter 4), we demonstrate how to use nonlinear PLS (see Subsection 2.2.4) to identify
such a subspace along with an optimal subspace PCE.
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Table 2.1: Some standard distributions with PDFs fX and normalized orthogonal polynomial family
spanning L2

fX
. The gamma function is defined as Γ(s) =

∫∞
0 us−1 exp{u}du. The normalization

constant of the Jacobi polynomials is c(r, s, n) =
√

(2n+r+s+1)Γ(r+n+1)Γ(r+1)Γ(s+1)
n!Γ(r+s+n+1)Γ(n+s+1)Γ(r+s+2) .

disitribution support PDF fX(x) family ψn(x)

Normal(0, 1) (−∞,∞) 1√
2π
e−

x2

2 Hermite
√
n!
bn/2c∑
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(−1)k

k!(n−2k)!
xn−2k

2k

Uniform(−1, 1) [−1, 1] fX(x) = 1
2 Legendre

√
2n− 1

bn/2c∑
k=0

(−1)k(2n−2k)!xn−2k

(n−k)!(n−2k)!k!2n
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Γ(α+1)x
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√

k!Γ(α+1)
Γ(n+α+1)

n∑
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(−1)k
(
n+α
n−k
)
xk

k!

Beta(r + 1, s+ 1) [−1, 1] Γ(r+s+2)
Γ(r+1)Γ(s+1)

(x+1)r(1−x)s

2r+s+1 Jacobi(r, s) c(r, s, n)
n∑
k=0

(
n
k

)Γ(r+s+n+k+1)
Γ(r+k+1)

(
x−1

2

)k

Low-rank apximations

Canonical decompositions (also termed CANDECOMP, PARAFRAC or Canonical Polyadics) rep-
resent a generalization of the SVD to tensors of dimension ≥ 3 and have first been introduced in
[86]. In the same way the SVD decomposes a matrix in a weighted sum of outer products of two
vectors in Eq. (2.64), canonical decompositions represent a d-way tensor as the weighted sum of
outer products of d vectors. The tensor rank r is defined as the number of components required in
this decomposition to exactly recover the original tensor [113]. Thus, each component corresponds
to a rank 1-tensor. The canonical decomposition is the simplest of several low-rank tensor approx-
imation formats but also places the strongest assumptions on the low-rank data structure in the
full tensor. Other formats include the tensor train [163], the Tucker format [226] and the closely
related higher-order SVD [44] as well as the hierarchical Tucker format [78]. Comprehensive reviews
of low-rank tensor decomposition and approximation techniques are given in [113, 79].

By replacing the discrete d-way tensor with a d-variate continuous function that is approximated
by a linear combination of rank 1-functions, a continuous canonical decomposition emerges that is
referred to as low-rank approximation (LRA) [54, 39] in the context of spectral stochastic meth-
ods. Due to the product structure of the underlying L2

fX
(Rd,R), a spectral decomposition of Y is

achieved by selecting the univariate orthonormal polynomial bases introduced for PCEs to build up
the rank-1 functions. The resulting format is illustrated in Fig. 2.4 reads

Ŷ(X) =
r∑

i=1

ai

i−th rank 1-function︷ ︸︸ ︷
d∏

k=1

mk∑

j=0

zijkψ
(k)
j (Xk)

︸ ︷︷ ︸
f
(k)
i (Xk)

, (2.81)

where mk is the maximally considered polynomial order in each coordinate of X and thus the coef-
ficient tensor z has a total of r

∑d
k=1(mk + 1) entries. The format of Eq. (2.81) can be transformed

into a PCE by collecting duplicate basis functions {Ψi}P−1
i=1 that arise by taking the f (k)

i (Xk) in
a product and summing up the corresponding coefficients. Solving for all coefficients (a and z)
at once is an ill-posed problem. A greedy approach is devised in [39], which is inspired by the
greedy construction of a canonical decomposition in the discrete setting [113] and leads to a series
of well-posed optimization problems. In particular, rank 1-functions are added to the model one
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Figure 2.4: Visualization of the LRA format for a three-dimensional model Y.

by one, where each new rank 1-function is fitted on the residual between the current and the true
model (based on E). The coefficients of the i-th single rank 1-function zi:: are computed with an
alternating least squares approach. The idea is to fix all coefficients but those associated with the
k-th direction and solve an ordinary least squares problem for zik:. This procedure is repeated over
all directions until the RSS (see Eq. (2.52)) rate of change drops below a prescribed threshold. This
completes the correction step, the first of two steps that are repeated alternatingly. The correction
step is followed by the updating step, in which the outer coefficients b of all rank 1-functions added
to the model so far are refit with a least squares procedure conditional on z. The optimal stopping
rank may be identified with k-fold cross validiation (in the leave-one-out case Eq. (2.56) can be used).

The combination of greedy construction, ALS and linear growth of card(z) with d make the LRA
better suited to high-dimensional problems compared to (sparse) PCEs. However, while PCEs
asymptotically (P →∞) converge to the true model in mean-square, there is no such guarantee for
LRAs and the greedy construction is suboptimal compared to a direct approach with fixed rank r [39].

In the context of this thesis, on the one hand LRAs are used to compute surrogate-based reli-
ability sensitivity measures within the framework introduced in publication 5 (Section 2.4). On
the other hand, in publication 1 (Chapter 4), LRAs serve as a reference method for constructing
high-dimensional surrogate models.

2.3 Reliability Analysis

2.3.1 Introduction

Reliability analysis is concerned with estimating the probability of failure of a model, where failure
is defined in terms of unacceptable model outcomes, i.e., a (typically unlikely) subset of all possible
model outcomes. Estimating a probability of failure is usually a rare event probability estimation
[193] problem, which is a statistical discipline in its own right due to the difficulties associated with
estimating small probabilities (say, of order ≤ O(10−3)). The reliability of a system is a key quan-
tity in many decision problems either via constraints arising from modern structural design codes
(design decision) [148] or as the target quantity driving a decision (risk-based decision analysis) [65].
A variety of approaches gathered under the terms structural reliability methods (SRM), rare event
simulation methods and rare event probability estimation methods have been proposed to estimate
the probability of failure associated with a computational model Y and a given limit-state function
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(LSF) g. The LSF is a function that defines which model responses are deemed unacceptable.

Reliability problems may be very challenging tasks due to a number of reasons: the typically small
target probability (probability of failure) renders crude MC approaches inefficient due to the large
required number of samples, while large numbers of random inputs present challenges for many
approaches that suffer from the curse of dimensionality (e.g., numerical integration). Additional
complexity may be due to strong non-linearities in both the underlying computational model Y
and the LSF g as well as through the consideration of time-dependent reliability problems (see [52,
Chapter 15] for an introduction and further references) and system reliability problems [52, Chapter
14] & [124, Chapter9], in which the interaction of several components and their reliability has to be
considered. Time-dependent and system reliability problems are, however, beyond the scope of this
thesis.

In the following, after a formal statement of the reliability problem, we summarize the state of
the art of both sampling-based and surrogate-assisted rare event simulation methods and give an
account of a few select methods in view of their relevance in Part II of this thesis.

2.3.2 The reliability problem

By convention, the LSF g(X) describes unacceptable realizations in the input as g(X) ≤ 0 ⇔
Failure. The associated failure event reads F = {x ∈ Rd : g(x) ≤ 0}. g often explicitly depends on
the response of the computational model Y describing the engineering system. A typical example is
the exceedance of a threshold, for example if the response of Y represents stresses or deformations.
The corresponding LSF reads g(X) = threshold−Y(X). We considerX on the canonical probability
space (Rd,B(Rd),P). The probability of failure is expressed as

p = P(F) =

∫

Rd

I[g (x) ≤ 0]fX (x) dx = EfX [I(g(X) ≤ 0)] . (2.82)

Therein, I[·] is an indicator function assuming the value 1 whenever its argument resolves as true
and 0 otherwise. The above reliability problem can be stated in standard-normal space using an
isoprobabilistic transformation T : X → U , e.g., as in Eqs. (2.24) to (2.26). With the transformed
LSF G = g ◦ T−1, the probability of failure reads

p =

∫

Rd

I[G (u) ≤ 0]ϕd (u) du = Eϕd
[I(G(U) ≤ 0)] , (2.83)

where ϕd denotes the d-dimensional independent standard-normal PDF (stated here again for con-
venience). The failure event expressed in the probability space of U reads F = {u ∈ Rd : G(u) ≤ 0}.

2.3.3 Sampling methods

SRM can be classified into approximation-based methods (e.g., the first- and second-order reliability
method as discussed in [184, 48]) that approximate the LSF and compute the failure probability
associated with the approximation, and sampling-based methods that aim at reducing the variance
of the crude MC estimator. Examples include importance sampling (IS) [201, 33, 64, 6], sequential
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importance sampling (SIS) [15, 176, 175], subset simulation (SUS) [7], cross-entropy-based impor-
tance sampling (CE-IS) [118, 121, 234, 196, 175], line-sampling [88, 117, 177] as well as multi-level
[227, 230] and multi-fidelity [181] MC methods. In this thesis, simulation methods such as crude
MC, IS, SIS, SUS and CE-IS are used and modified and are thus detailed in the following.

The crude MC estimate of Eq. (2.83) can be constructed using n independent and identically dis-
tributed (i.i.d.) samples {uk}dk=1 as

p̂MC =
1

n

n∑

k=1

I[G(uk) ≤ 0], uk
i.i.d.∼ ϕd. (2.84)

The crude MC estimator is consistent, i.e., it converges to p in probability as n → ∞ (in fact,
by virtue of the strong law of large numbers, it converges almost surely, which is stronger than
convergence in probability) and unbiased, i.e., E[p̂MC] = p. The estimator’s variance and CoV are

V[p̂MC] =
p(1− p)

n
and δMC =

√
V[p̂MC]

E[p̂MC]
=

√
1− p
np

. (2.85)

The number of samples required to compute p̂MC at a prescribed CoV δ0 reads

n0 =
1− p
δ2

0p

p�1≈ 1

δ2
0p
. (2.86)

This is the reason crude MC is inefficient for rare event probability estimation as, by definition, p� 1
and thus n0 becomes large. An intuitive explanation of this circumstance is offered in Fig. 2.5: sam-
ples drawn from fX have probability p of being failure samples. Since p is small, a large number of
samples from fX is necessary to obtain non-zero contributions in Eq. (2.84).1

Instead of fixing δ0, we may as well fix n0 and ask how the estimator variance may be reduced
while keeping this fixed computational budget. Such methods are referred to as variance reduction
methods and span a large variety of approaches. A detailed discussion of several variance reduc-
tion methods is provided in [166, Chapters 7 - 9]. Arguably one of the most widespread variance
reduction techniques is IS including numerous variations on the basic theme [166, Chapter 8]. The
principal idea is to express Eq. (2.83) as

p =

∫

Rd

I(G (u) ≤ 0)
ϕd (u)

h (u)︸ ︷︷ ︸
ω(u)

h (u) du = Eh [I(G(U) ≤ 0)ω(U)] . (2.87)

1Of course, if there is no failure sample amongst a large number n of MC samples, this does contain some information
on the rarity of the failure event. A consistent way to exploit this information is by way of constructing a Bayesian
estimate of p with a Binomial likelihood (observing m successful trials out of n total trials with an underlying success
probability p and success in this case being failure) [246]. A straight-forward approach is to select a conjugate prior
(for a binomial likelihood this will be a Beta-distributed prior) and compute the probability of failure estimate as the
posterior mean. If the uniform distribution on [0, 1] is selected as prior (this is a special case of the Beta distribution
on [0, 1]), the posterior mean reads p̂MC,Bayes = (m + 1)/(n + 2), where m is the number of failure samples. If n is
large, the estimator CoV can be approximated as δMC ≈ 1/

√
m+ 1. That is, if no failure samples are encountered

although n is large, p ≈ (n + 2)−1 with CoV 1. [23] investigates the conservativeness of credible intervals computed
based on such posterior distributions and recommends the uniform prior as the one producing the most conservative
upper credible bounds on p.
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Figure 2.5: Monte Carlo sampling in one-dimensional standard-normal space from the nominal
density ϕ(u): the right tail of ϕ(u) decays too fast to offer fair chances of generating failure samples
from this density.

Eq. (2.87) is defined if the weight function ω(u) is defined, which is precisely the case if {u ∈ F :
h(u) > 0}. The IS estimator then reads

p̂IS =
1

n

n∑

k=1

I[G(uk) ≤ 0]ω(uk), uk
i.i.d.∼ h. (2.88)

It has variance

σ2
IS =

1

n

∫

Rd

(I(G (u) ≤ 0)ω (u)− p)2h (u) du =
1

n
Eh
[
(I(G(U) ≤ 0)ω(U)− p)2

]
(2.89)

and coefficient of variation δIS = σIS/p̂IS. This CoV can be estimated based on samples from h with

δ̂IS =
1

p̂IS

√√√√ 1

n(n− 1)

n∑

k=1

(I[G(uk) ≤ 0]ω(uk)− p̂IS)2, uk
i.i.d.∼ h. (2.90)

p̂IS is a consistent and unbiased estimator of p.

In the context of IS, the original sampling density ϕd(u) is referred to as nominal density and
h is the biasing density or simply IS density. The performance of the IS estimator hinges on the
selection of h. A standard choice for h when estimating failure probabilities is a Gaussian density
centered around the design point as determined with FORM [201]. This is the point on the hy-
persurface G(U) = 0 that is closest to the origin in standard-normal space and thus is the most
probable point of failure (MPPF). MPPF-based IS approaches usually suffer from poor performance
in high-dimensional problems as identifying the MPPF becomes an expensive task. They are more-
over not well suited to tackle series system reliability problems or more generally problems with
several relevant failure domains that are not captured by a single MPPF. There exists an optimal
IS density h∗ = I[G(u) ≤ 0]ϕd (u) (see Fig. 2.6) in the sense that one obtains σ2

IS = 0 in Eq. (2.89).
However, since p is the normalizing constant of this optimal IS density h∗, it is of little relevance in
practice. Yet, h∗ provides information on the shape of potentially powerful IS densities and can be
used to guide the search for a useful h.
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Figure 2.6: Importance sampling visualized in one-dimensional standard-normal space: a Gaussian
IS density hIS(u) along with the optimal IS density h∗(u) and associated samples drawn from each
density in matching colors: the optimal IS density is merely the cut-off right tail of ϕ(u) renormalized
with p.

Modern rare event simulation methods capitalize on this theoretical result for optimal variance
reduction by approaching h∗ with a sequence of IS densities. Depending on the method, IS densi-
ties are represented with ensembles of samples [176], non-parametric KDE estimates [153, 14] and
parametric PDF models [118, 196]. [234] uses a von Mises-Fisher mixture which effectively exploits
the concentration of measure-phenomenon associated with Gaussian densities in high dimensions.
Such measure concentrations are a blessing of dimensionality [105], i.e., a collection of geometric
properties of high-dimensional spaces facilitating efficient data analysis in high-dimensional prob-
lems. In [175], the von Mises-Fisher mixture is augmented with a Nakagami distribution modelling
an additional free distribution parameter (namely, the radius of the important ring [107]).

Inspired by h∗, two possible choices for the sequence of IS densities are

hi(u) =
1

Pi
I[G(u) ≤ ti]ϕd(u) (2.91a) and hi(u) =

1

Pi
Φ

(
−G(u)

ti

)
ϕd(u), (2.91b)

where Pi =
∫
Rd I[G(u) ≤ ti]ϕd(u)du in Eq. (2.91a) and Pi =

∫
Rd du in Eq. (2.91b). In both cases,

the sequence starts at i = 0 with t0 = ∞ and P0 = 1, which recovers the nominal density ϕd(u).
Then, by choosing ti+1 < ti in each step, both sequences converge to h∗ as limti→0 hi = h∗.

When using Eq. (2.91a), the sequence {ti}mi=1 can be understood as defining a nested set of fail-
ure events {Fi = {u : G(u) ≤ ti}}mi=1. In each step, ti+1 is selected as the ρ-quantile of hi(u), which
is approximated as the ρn-th order statistic of {G(uki )}nk=1, where u

k
i ∼ hi.

In cross-entropy-based IS [194, 196], a parametric density model is used to approximate the hi of
Eq. (2.91a) in each step based on the elite samples, i.e., those samples that are contained in Fi. This
is done by solving a stochastic optimization problem, namely a cross-entropy minimization between
the parametric model and hi based on the nρ elite samples. Typical choices are ρ = 10−2 . . . 10−1.
After m steps, hm will be sufficiently close to h∗ and is used to construct an IS estimate of p ac-
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cording to Eq. (2.88). Details of this method are described in publication 4 (Chapter 7).

In SUS [7] (see Fig. 2.7), the IS density sequence Eq. (2.91a) is given in terms of samples only.
Rather than fitting a new parametric model on the nρ elite samples of hi in each step and sampling
n new samples from the fitted distribution, n(1− ρ) additional new samples are drawn from hi with
an MCMC sampler using the elite samples as seeds. By design, P(Fi+1|Fi) ≈ ρ and thus the ratio of
two subsequent normalizing constants is Pi+1/Pi ≈ ρ. To verify this, we note that P(Fi) = Pi and
write

ρ · Pi ≈ P(Fi+1|Fi)P(Fi) = P(Fi|Fi+1)P(Fi+1) = P(Fi+1) = Pi+1 ⇔ ρ ≈ Pi+1

Pi
. (2.92)

Typical choices are ρ = 0.1 . . . 0.3 [246]. If at least ρn samples lie in F (the original failure domain
associated with ti = 0), the algorithm terminates by setting m = i, tm = 0. The SUS estimate is
then an IS estimate using hm−1 as IS density such that

p̂SUS =
1

n

n∑

k=1

I[G(uk) ≤ 0]
Pm−1

I[G(uk) ≤ tm−1]
=
ρm−1

n

n∑

k=1

I[G(uk) ≤ 0], uk
i.i.d.∼ hm−1. (2.93)

This is an interpretation of SUS as a special case of SIS [176]. The original motivation of Eq. (2.93)
invokes the chain rule of probability to write p̂SUS = P(∩mi=1Fi) = P(F1)

∏m−1
i=1 P(Fi+1|Fi) =

ρm−1/n
∑n

k=1 I[G(uk) ≤ 0] yielding an identical estimator. SUS produces biased estimates of p
due to the adaptive estimation of the {ti}mi=1 [30] as well as correlation present in the MCMC sam-
ples [7]. Efficient MCMC algorithms for SUS are discussed in [179] and several other enhancements
are proposed in [246]. Notably, within both CE-based IS and SUS, a fraction of 70−99% of samples
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h2(u)
h3(u)

Safe Domain Failure Domain

Subset Simulation
Ordinary Samples
Elite Samples

Figure 2.7: Subset simulation visualized in one-dimensional standard-normal space with associated
sampling densities and samples (circles) drawn from each density in matching colors: at each step,
the ρ = 10% of samples with the smallest g-values are selected as elite samples (crosses). The
associated quantile determines the threshold for the next conditional sampling density from which
more samples are generated by simulating Markov chains with the current elite samples as seeds.

lie waste at each level. This shortcoming may be rectified by replacing Eq. (2.91a) with Eq. (2.91b).
Then, instead of classifying samples into elite and non-elite samples binarily, each sample is reused
in computing the subsequent IS density with an associated weight that expresses ‘eliteness’ on a con-
tinuous scale between 0 and 1. [176] introduces this weighting for MCMC-based SIS and [175] does
the same for CE-based IS. Both the SIS and the CE-IS version are described in detail in publications
3 (Chapter 6) and 4 (Chapter 7), respectively and are illustrated in Fig. 2.8.
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Figure 2.8: Sequential importance sampling visualized in one-dimensional standard-normal space
with associated sampling densities and samples drawn from each density in matching colors: step
by step the IS densities {hi}3i=1 approach the optimal IS density.

2.3.4 Surrogate-assisted sampling methods

A different approach to solving Eq. (2.82) efficiently replaces the expensive computational model Y
with one or several surrogate models to reduce the cost per sample rather than the overall number
of samples required. [67] used a polynomial response surface method in reliability analysis as early
as 1989. Improved response surfaces are proposed, e.g., in [81]. A variety of surrogate modelling
techniques have been put forward in the meantime. In the context of reliability analysis, approaches
such as artificial neural networks (ANN) [171, 95, 202, 170], support vector machines [94, 32, 31],
Gaussian process regression [57, 56, 93, 16] and projection to polynomial bases including polynomial
chaos expansions (PCE) and low-rank tensor approximations (LRA) [133, 128, 127, 218, 116] have
been investigated.

Early surrogate-based approaches to rare event probability estimation rely on the construction of a
globally accurate surrogate model based on which the probability of failure is estimated with a large
number of (computationally cheap) samples. A drawback of such approaches is that by definition
and with high probability, information on failure events is scarce in a DoE that is drawn from the
joint input PDF fX as failure domains are typically located in the tails of fX . To some extent this
shortcoming may be rectified by choosing the DoE adaptively to represent the domain of interest
better than a random sample from fX . In statistics, this is known as optimal experimental design
[68] and a recent increase in interest in such concepts in the context of machine learning is linked
to the term of active learning [205]. Amongst a variety of existing active learning approaches, the
version encountered most often in the context of adaptive surrogate construction is the pool-based
approach (Fig. 2.9): an initial DoE is used to construct the surrogate model. Based on this surrogate
model, an acquisition function or learning function is evaluated at a large set of points randomly
sampled from fX . The output of Y at these points is unknown, thus they are referred to as unlabeled
data points. These points constitute the pool in pool-based active learning. In each iteration, those
members of the pool that maximise the learning function, are labeled: the original model Y is eval-
uated at these points and the new labeled data tuples are added to the DoE. The surrogate model is
then reconstructed with the new DoE and the process starts anew until a convergence condition is
met. The learning function usually encodes two preferences: 1. Minimizing some form of prediction
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uncertainty or error measure of the surrogate model. 2. Balancing exploitation of regions in which
the surrogate model is highly uncertain/error-prone with exploring other potentially influential re-
gions of the model input space. In rare event probability estimation, this pertains to both balancing

Construct
surrogate

Evaluate
learning
function

Augment
DoE

Figure 2.9: Three steps of active learning: 1. Construct the surrogate model Ŷ based on the current
DoE. 2. Evaluate the learning function on all unlabeled points in the pool. 3. Evaluate Y at
one/several points maximising the learning function and add the new points to the DoE. Repeat.

proximity of a given point to the failure hypersurface with prediction uncertainty in that point (see
Fig. 2.10) as well as balancing the contributions from different disjunct failure subdomains to the
overall probability of failure. The latter is often achieved with clustering techniques. For example,
[199] identify a prescribed number of clusters in the pool of unlabeled data points and select one
point maximizing the learning function in each cluster. In this way several disjunct failure domains
are more likely to be represented evenly in the DoE (for example in Fig. 2.10, both the prominent
egg-shaped failure domain in the back and the quarter circle in the left corner should be identi-
fied with two clusters). The learning function must be cheap to evaluate (as in each iteration it is
evaluated at each point in the pool of unlabeled data). The majority of adaptive surrogate-assisted
approaches in the context of rare event probability estimation are based on Gaussian process regres-
sion [25, 57, 17, 56, 14, 199]. This is mainly due to the fact that Gaussian process models provide
a pointwise uncertainty measure (the conditional GP variance) that proves handy in constructing
learning functions. In [143], PCEs are paired with active learning for rare event probability estima-
tion. The pointwise uncertainty measure in this approach is obtained with a bootstrap resampling
step [58]. Pool-based adaptive surrogate-assisted approaches, however, face similar limitations as
crude MC: The smaller the probability of failure, the larger the random sample from fX has to be
in order to obtain a certain number of points in or close to the failure domain. The situation is less
sensible for these methods since most of these points will not have to be evaluated with Y, yet the
memory requirements for storing the pool quickly become prohibitive (e.g., if p = 10−6 such that at
least, say, 108 pool members are desirable and the problem input dimension is d = 100, the required
storage for the resulting 1010 double entries equals 80 gigabytes).

Much in the same way sequential sampling techniques solved this issue for crude MC, coupling
these sequential sampling techniques with surrogate-based approaches solves the storage problem
for pool-based active learning. This usually leads to schemes, in which the surrogate model is re-
constructed for maximum local accuracy in each step of the sequential sampling procedure. [170]
couples SUS with neural networks — however, without using adaptive DoEs. In [32, 31], SUS is
combined with support vector regression and an adaptive approach to the local DoEs. [16] combines
SUS with Bayesian GPRs and [243] use a sequential IS approach based on acceptance-rejection-

37



2.3. Reliability Analysis Chapter 2. Uncertainty Quantification & Separation

X
1 X2

Ĝ
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Figure 2.10: Surrogate-based active learning illustrated: the LSF surrogate mean prediction Ĝ
(surface plot) as estimated based on a DoE (black stars) of 20 points is shown along with a measure
of prediction uncertainty of Ĝ, in this case the surrogate standard deviation σ

Ĝ
(contour plot, dark

indicates large σ
Ĝ
- light indicates low σ

Ĝ
). The selection of a new DoE point from the current pool

of unlabeled points (blue crosses) is based on each test points’ proximity to the failure domain as
predicted by the GPR model (i.e., where Ĝ ≤ 0, red surface) on the one hand and the uncertainty
of Ĝ at each of these points on the other hand. The size of the crosses corresponds to the inverse U -
function [57] such that the largest cross exposes the combination of model uncertainty and proximity
to the failure domain deemed most critical. Therefore, the largest blue cross corresponds to the pool
element added to the DoE in this iteration of the active learning algorithm run with the U -function.

sampling along with GPRs. Sequential sampling techniques for rare event probability estimation
based on locally reconstructed and/or actively learned surrogate models represent a contemporary,
active field of research and giving a full account of recent approaches along these lines is beyond
the scope of this work. We notice that many approaches that have been published within the past
five years and that go unmentioned here are making promising contributions to this field. Fig. 2.11
depicts a general schematic of this class of methods.

A largely unaddressed issue with such approaches arises with the reintroduction of a problem di-
mensionality bottleneck through the use of surrogate models. While several sequential sampling
techniques such as SUS and SIS with carefully chosen MCMC proposal distributions [176] or para-
metric IS density models [175] overcome this dependence on the problem dimension, the same cannot
be said of surrogate models in many instances. [173] proposes sequential subspace importance sam-
pling (SSIS), in which the intermediate IS densities of a sequential IS approach are reconstructed
using PLS-PCE models. PLS-PCE models are introduced briefly in Subsection 2.2.4 and in full detail
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in publication 1 (Chapter 4) and combine surrogate modelling with dimensionality reduction, which
makes them suitable for high-dimensional problems. In publication 3 (Chapter 6), we detail active
sequential subspace importance sampling (ASSIS), which complements the sequential reconstruction
of IS densities in low-dimensional subspaces with an active learning algorithm that optimizes the
local DoEs with respect to both the subspace and the surrogate modelling error. Besides PLS, active
subspaces [41], sliced inverse regression [129] and autoencoders are some alternative techniques for
identifying linear subspaces that have been explored recently to construct surrogate models for rare
event simulation [169, 104, 132].
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Figure 2.11: A general schematic of sequential sampling schemes for rare event estimation based
on actively learned surrogates: after having learned an initial surrogate based on a DoE sampled
from fX , an alternating succession of sample propagation and surrogate reconstruction steps follow.
Convergence criteria are based on how well the current sample set covers the target failure domain
according to the current surrogate model.

2.4 Sensitivity Anlaysis

2.4.1 Sensitivity analysis of model output

Given a model, sensitivity analysis quantifies how model inputs affect either model output or quan-
tities of interest derived thereof. The classical setting is sensitivity analysis of model ouput (SAMO)
[197], which is discussed in this section followed by a discussion of reliability-oriented sensitivity
analysis (ROSA, [35]). In literature, a variety of metrics for quantifying sensitivities with respect to
different quantities of interest can be found. Different metrics may be suitable for different purposes
depending on what kind of decision shall be made: [198] distinguishes factor prioritization, fixing
and mapping as well as variance cutting as potential goals of a sensitivity analysis. [29] complements
these with the goals of investigating model structure, sign of change and stability. We are interested
in producing a ranking of variables based on their importance, which corresponds to factor prioriti-
zation and – to a lesser degree – factor fixing. The various metrics proposed in sensitivity analysis
literature can be roughly grouped according to ...
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• ...scope: Local sensitivity measures are based on derivatives of the model Y with respect
to the inputs using numerical [98] and automatic differentiation [96] or adjoint solvers [4] and
provide local sensitivity measures to small perturbations in the input. [154] proposed averaging
these local measures over the input space to obtain a derivative-based global sensitivity measure
(DGSM).

• ...measure type: [154] marked the prelude to the invention of various global sensitivity
measures. These include but are not limited to other global derivative-based methods [212,
120], variance-based [213, 89, 99], moment-free [28] and more generally f -divergence-based
sensitivity measures [229, 185] as well as Shapely effects [167].

• ...variable type: Some methods hinge on the type of variables with respect to which sensi-
tivities are assessed. These variables can be either uncertain model inputs, i.e., coordinates of
X, or deterministic parameters (e.g., parameters of Y, G or fX). This differentiation is not so
much a factor in SAMO but more commonly encountered in ROSA, in the context of which
IS methods can be used to compute sensitivities specifically with respect to parameters of fX
[152] or G [172].

• ...variable dependency: If sensitivities are computed with respect to random quantities,
a distinction between dependent and independent inputs is of paramount importance. While
classical variance-based sensitivity analysis requires independent variables by construction (see
Subsection 2.4.2), a variety of different extensions to dependent inputs are proposed in [91,
126, 37, 119, 142]. These different approaches may result in different importance rankings for
the sample model [235], which suggests a certain ambiguity as to how the results of such an
analysis are to be interpreted. The moment-free approach of [28] appears to be more naturally
suited to the scenario of dependent variables.

• ...analysis goal: Finally, a sensitivity is not only computed with respect to a set of variables
but also of a quantity of interest. The most common analysis goal is the output of a computa-
tional model. But a variety of other quantities of interest may be considered as well with the
probability of failure being a prominent example discussed in the next subsection.

A more comprehensive introduction to sensitivity analysis is given in [197] and [97] is a recent
overview of global sensitivity analysis methods for model output.

2.4.2 Variance-based SAMO with surrogate models

Variance-based sensitivity indices are motivated by decomposing the model output variance V[Y(X)]
into fractions that can be attributed to the coordinates of the model inputs X. To this end, any
square-integrable function Y ∈ L2

fX
(Rd,R) with independent inputs X (that is, fX is a product of

univariate PDFs1) can be written as a Sobol’-Hoeffding-decomposition [87, 213] or high-dimensional
model representation (HDMR):

Y(X) = Y0 +
d∑

i=1

Yi(Xi) +
d∑

i=1

d∑

j=i+1

Yij(Xi, Xj) + · · ·+ Y12...d(X). (2.94)

1[213] originally assumes marginally uniformly distributed inputs on the d-dimensional unit cube. It is, however, simple
to extend the assumptions in [213] to arbitrary product measures of X [182].
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Therein Y0 = EfX [Y(X)] is a constant. By defining a multi-index v ∈ P({1, . . . , d}\∅) (this is the
power set of {1, . . . , d} excluding the empty set ∅, which has a total of 2d − 1 elements) and Xv =
{Xj}j∈v, any remaining summand on the right-hand side of Eq. (2.94) may be written as Yv(Xv).
If the {Yv(Xv)}v∈P({1,...,d})\∅ are pairwise orthogonal, i.e., if v 6= w ⇔ EfX [Yv(Xv)Yw(Xw)] = 0,
the HDMR in Eq. (2.94) exists uniquely and [213]

Yv(Xv) = EfX∼v [Y(X)|Xv]−
∑

w⊂v
EfX∼w [Y(X)|Xw].2 (2.95)

X∼v denotes the complement of Xv on X, i.e., all coordinates of X not contained in Xv. Due to
the the pairwise orthogonality of the {Yv}v∈P({1,...,d}), the variance fraction associated with v is

Dv = VfXv [Yv(Xv)] = VfXv [EfX∼v [Y(X)|Xv]]−
∑

w⊂v
VfXv [EfX∼w [Y(X)|Xw]]. (2.96)

Based on Eq. (2.96), the variance V[Y(X)] can be decomposed into 2d − 1 variance fractions con-
tributed by the 2d−1 possible combinations of the d inputs. Four types of variance-based sensitivity
indices are commonly defined as a consequence of this based on how terms associated with v are
collected (see also Fig. 2.12):

Sobol’ index [213]: SY,v =
Dv

V[Y(X)]

Closed Sobol’ index [182]: Sclo
Y,v =

∑
w⊆vDw

V[Y(X)]

Total Sobol’ index [89]: STY,v =

∑
w∩v 6=∅Dw
V[Y(X)]

Superset index [90]: SSY,v =

∑
v⊆wDw

V[Y(X)]

(2.97)

That is, the Sobol’ index measures the variance contribution associated precisely with the interaction
of the coordinates of Xv. The closed Sobol’ index (also lower index [168]) is a superset of the Sobol’
index and measures all variance contributions by one or several coordinates of Xv. The total Sobol’
index (sometimes also total-effect index or upper index [168]) measures the variance contributions
stemming from all interactions of any subset ofXv with any subset ofX∼v. Finally, the total Sobol’
indices defined in Eq. (2.97) are closed total Sobol’ indices, which leaves a fourth type of index to
be defined, namely the non-closed total Sobol’ index or superset index [90]. This index accounts for
variance contributions of interactions of the entire input subset Xv with any subset of X∼v. The
superset index is thus more restrictive compared to the closed total Sobol’ index in the same manner
the Sobol’ index is more restrictive than the closed Sobol’ index. The superset index, however, is
stated merely for completeness and bears no practical relevance in this work. For univariate indices,
i.e., if ‖v‖0= 1, the Sobol’ index and the closed Sobol’ index are identical as are the total Sobol’
index and the superset index. An illustration of how Sobol’ indices are computed for a two variable
model is given in Fig. 2.13. Variance-based sensitivity indices may also be computed based on pre-
viously constructed surrogate models such as PCEs [217], canonical LRA [115], spectral tensor-train
LRA [26] and GPR models [144, 233]. This computation is particularly simple for PCEs: comparing
the PCE format in Eq. (2.79) with the HDMR in Eq. (2.94) reveals that if Y is a PCE, each Yv(Xv)

2Due to the independence of the coordinates of X, fX∼w|Xw (x∼w|xw) = fX∼w (x∼w).

41



2.4. Sensitivity Anlaysis Chapter 2. Uncertainty Quantification & Separation

S
ob

ol
’/
lo
w
er

in
d
ic
es

T
ot
al
/u

p
p
er

in
d
ic
es

non-greedy greedy

Sobol’ index Closed Sobol’ index

Superset index Total Sobol’ index

S1

S2

S3

S12

S23

S13

S123

Sclo
12

SS12 ST12

Figure 2.12: Venn diagrams of variance fractions in a three-variable model: the different variance
fractions as gathered for the four types of variance-based sensitivity indices of variables 1 and 2 are
filled in green.

is simply the sum of basis functions depending on Xv. By Eq. (2.80), the associated variance Dv is
thus equal to the sum of the squared coefficients associated with these basis functions, which yields
the Sobol’ index of the PCE [217]. In a similar way the other indices can be computed by collecting
basis functions and summing the corresponding coefficients squared. A detailed discussion is found
in publications 2 & 5 (Chapters 5 and 8).

Publication 2 (Chapter 5) establishes how to compute variance-based sensitivity measures of PLS-
PCE models. To this end, we derive a backtransformation that allows to represent PLS-PCEs in
the standard PCE format. In this way, upon having transformed the PLS-PCE model, sensitivites
can be obtained with the well-established procedures described in the previous paragraph.
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Figure 2.13: Illustration of the meaning of Sobol’ indices in a two variable model Y = Y(X1, X2)
(surface plot) with X1, X2 ∼ U(−π, π): the conditional expectations (black dotted for X1, black
dashed for X2) with respect to either input variable are the result of a ‘slicewise’ probability inte-
gral along the X2/X1-direction at each point along the X1/X2-axis. The Sobol’ indices are then
proportional to the variances of the black solid lines that is seen to yield 0 for X2 immediately.

2.4.3 Reliability-oriented sensitivity analysis

For decision-making purposes, the absolute value of the probability of failure of a system is often less
important than the sensitivity of this value with respect to input parameters and variables. These
can be parameters of the input joint PDF fX , the computational model Y or the LSF G. Many ap-
proaches dedicated to reliability sensitivities are concerned with determining local derivative-based
sensitivity measures of the probability of failure with respect to deterministic model parameters.
[195] introduced score functions to estimate these derivatives with an IS approach. A similar ap-
proach is taken in [240] based on adaptive IS. Several other sampling methods have been used in the
following to estimate these derivative-based indices, e.g., line sampling [8, 137], SUS [215] and SIS
[172]. [232] propose a DGSM of the probability of failure to obtain a global reliability sensitivity mea-
sure. In the context of approximative SRM such as FORM and SORM, global reliability sensitivity
measures may also be obtained as a byproduct of the MPPF calculation [139, 48]. These so-called
α-factors can be interpreted as variance-based sensitivity indices of the FORM- and SORM-based
LSF approximations [178]. [111] extend the notion of α-factors by accounting for several design
points and regions along the failure hypersurface by means of a Gaussian mixture (GM) model and
the definition of a participation factor for the different subdomain contributions of the GM compo-
nents.

[42] introduced a global sensitivity measure for the probability of failure based on the notion of
moment-independent sensitivity put forward in [28] for SAMO. That is, they compute probability-
weighted distances (one absolute distance and one quadratic distance) between the unconditional
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and conditional probability of failure. Similarly, [125] defines perturbed-law indices for ROSA with
respect to parameters of fX . These indices measure the relative signed change in probability of
failure upon introducing small perturbations in the distribution parameters. [131] computes global,
variance-based sensitivities for the indicator function of the LSF and show that these are equivalent
to the squared distance measure of [42]. They use a surrogate model to relax the computational cost
induced by the sampling-based sensitivity computation approach. Variance-based sensitivity mea-
sures for the probability of failure conditioned upon input distribution parameters are investigated
in [152, 233]. Efficient computation of variance-based indices of the conditional failure probability as
well as perturbed-law indices is available through IS by running what [166, Section 9.14] calls what-if
simulations based on a set of failure samples obtained with the unconditional/unperturbed input
density fX . Recently, [216] proposed to directly measure the sensitivity of a reliability-based engi-
neering decision (assessment and design decisions are considered) with respect to the input variables
and parameters based on value of information. While often computationally more expensive than
other reliability sensitivity methods, this approach yields easily interpretable results and handles
variable dependency seamlessly (as do the moment-free approaches of [42, 125]).

In publication 5 (Chapter 8), we introduce a reliability analysis framework that foots on uncer-
tainty separation (detailed in Section 2.5). There, we define sensitivity indices using a similar notion
of conditional probability of failure as [42, 152]. We devise a bi-level surrogate modelling strategy to
compute the proposed indices of the magnitude of the probability of failure with respect to inputs
that may be both uncertain model inputs X or model/LSF/input distribution parameters.

2.5 Uncertainty Separation

2.5.1 Introduction to Bayesian Analysis

Bayesian analysis is a framework for statistical inference, i.e., for computing probability distributions
based on observations. The distinguishing feature of Bayesian methods compared to other statistical
inference methods is the utilization of prior belief along with observations. The variables we want
to infer are referred to as the unobserved random variables X ∈ Rd, whereas the variables on which
observations are made, are the observed random variables Y ∈ Rm. As usual, the corresponding
sample space variables are written as the lower-case letters x and y, respectively. The first step
in Bayesian inference is the specification of a joint statistical model for x and y, fXY (x,y) such
that conclusions about X can be drawn based on the observations [71, Section 1.1]. We consider n
Y -observations of equality type and summarize these as data D = {Y = y1,Y = y2, . . . ,Y = yn}.
Drawing conclusions about X based on D (i.e., inference) then takes the form of a conditional PDF
that follows from Bayes’ law as

fX|Y (x|D) =

Likelihood L(x)︷ ︸︸ ︷
fY |X(D|x)

Prior︷ ︸︸ ︷
fX(x)

fY (D)︸ ︷︷ ︸
Evidence

=
fY |X(D|x)fX(x)∫
fY |X(D|x)fX(x)dx

. (2.98)

Following the form of Eq. (2.98), fXY (x,y) is usually specified via fY |X(y|x) and fX(x), the prior
PDF. The conditional PDF evaluated at D is referred to as the likelihood L(x) = fY |X(D|x). The
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Figure 2.14: Bayesian parameter inference with conjugate priors: Gaussian prior and Gaussian
likelihood with known variance σ2 lead to a Gaussian posterior where the posterior mean (xPM) is a
convex combination of prior and data mean. In this case, posterior mean and maximum a-posteriori
(xMAP) coincide due to the symmetry of the Gaussian. The influence of the prior compared to the
pure maximum likelihood (xML) estimate is clearly visible.

likelihood establishes a connection between observed and unobserved variables that is required for
performing inference. The prior on the other hand is where the abovementioned prior belief enters
that sets Bayesian inference apart from, e.g., solely likelihood-based inference. The likelihood quan-
tifies how likely any given value of x is to generate the observed data D according to the chosen
conditional model fY |X(y|x), whereas the prior assigns a belief of how likely any value of x is to
occur to begin with. The denominator of Eq. (2.98) represents the model evidence, which is a mea-
sure for the plausibility of the chosen model fXY (x,y). The model evidence is therefore a way of
comparing different models (both likelihood and prior models) based on the available data.

Two common settings in which the above general framework finds application in the context of
engineering are Bayesian parameter inference and Bayesian model inversion. In the former case,
X are parameters of the PDF fY |X(y|x) and the goal is to compute the posterior distribution of
these distributional parameters after seeing the data on Y . Upon selecting representative points
from fX|Y (x|D), such as the maximum a-posteriori point (MAP) xMAP = arg max fX|Y (x|D) or
the posterior mean xPM =

∫
xfX|Y (x|D)dx, the updated distribution of Y is obtained by plugging

these points in the conditional model, i.e., as fY |X(y|xMAP) or fY |X(y|xPM) (compare Fig. 2.14).
Alternatively, if the uncertainty in the parameters is large, their entire posterior PDF may be used
to compute the posterior predictive PDF of Y , fỸ |Y (ỹ|D), as

fỸ |Y (ỹ|D) =

∫
fY |X,Y (ỹ|x,D)fX|Y (x|D)dx =

∫
fY |X(ỹ|x)fX|Y (x|D)dx. (2.99)

The second equality in Eq. (2.99) holds due to the independence assumption of Ỹ and D conditional
on X, i.e., fỸ |X,Y (ỹ|x,D) = fỸ |X(ỹ|x).

In the second setting — Bayesian model inversion — the Bayesian framework is used to infer the
input distribution based on observations corresponding to the output of a computational model
Y : X → Y . This is typically achieved by modelling the discrepancy between each observation
and the corresponding model output with a probability distribution: εi = yi − Y(x) ∼ fEi(εi).
fEi(εi) is frequently taken as a zero mean Gaussian PDF, i.e., Ei ∼ N (εi|0,Σ), where Σ is a covari-
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ance matrix describing possible linear dependencies amongst the observation components. Further,
assuming statistically independent measurements {yi}ni=1, the likelihood reads

L(x) =
n∏

i=1

N (yi|Y(x),Σ). (2.100)

As mentioned above, choosing a prior is the subjective part of a Bayesian analysis. The degree of
subjectivity may vary, however, as it may be based on personal belief, expert elicitation (which may
be equivalent to personal belief if the reader considers themselves an expert in the relevant field),
selection rules [162] and/or guiding principles to construct noninformative priors such as Jeffreys’s
priors [102, 101] or priors satisfying the maximum entropy principle [100]. While many of these
principles rest on the idea to minimize the influence the prior exerts on the posterior distribution
and thus aim at ‘letting the data speak’, it is flat/weak priors in particular that can lead to overly
confident inference results [72]. A single layer of priors may not do justice to complex models with
a large number of unobserved variables [71, Section 2.8]. Instead, hierarchical models may be used,
where additional so-called hyperpriors are placed on the parameters of the prior distribution of x (in
turn, the parameters of the hyperpriors can be equipped with a distribution again and in this manner
hierarchical models with a potentially arbitrary number of layers can be constructed). Moreover,
priors are frequently selected functionally, e.g., to achieve closed-form solutions (so-called conjugate
priors [186, 51]), to provide regularization for ill-posed inference problems [140] or to induce sparse
solutions [222].

With the exception of conjugate priors, where for a given likelihood, the prior is chosen such that
prior and posterior are of the same distribution type, computing the posterior exactly and in closed
form is rarely possible (a few non-conjugate special cases with exact closed-form solutions exist but
are not further discussed). Therefore, a compendium of approximate and simulation-based methods
for sampling from posterior distributions and computing the model evidence has formed. These ap-
proaches include MC-based numerical integration, acceptance-rejection and importance sampling,
Laplace approximations, ABC (Approximate Bayesian Computation) methods, variational Bayesian
inference and MCMC methods. We refer to [71, Chapters 10 - 13] for a review and a detailed account
of original literature on all these methods.

2.5.2 Bayesian Uncertainty Separation

Many QoIs arising in UQ can be cast in terms of an expectation of a function of the computational
model Q, where we restrict ourselves to the case of scalar model output Y = Y(X). Any such QoI
can be written as

q = E[Q] =

∫

Rd

Q ◦ Y(x)f(x)dx =

∫

Rd

Q ◦ Y ◦ T−1(u)ϕ(u)du. (2.101)

Depending on the UQ discipline, Q takes different forms:

Uncertainty
Propagation
Q = Y m

Sensitivity
Analysis

Q = E[Y |Xv]2

Reliability
Analysis

Q = I[g(Y ) ≤ 0]

Decision
Analysis
Q = L(Y, a)

Optimization
Q = P(Y, δ)
Q = C(Y, δ)

In uncertainty propagation, the interest is in moments of the model output (potentially also in its
entire distribution), in (variance-based) sensitivity analysis it is in the output variance conditional

46



Chapter 2. Uncertainty Quantification & Separation 2.5. Uncertainty Separation

on subsets of the model inputs Xv and in reliability analysis it is the probability of failure. In
(stochastic) optimization, the quantity of interest is the output of an uncertain performance func-
tion P (e.g. in robust optimization, a combination of the noisy performance criterion’s mean and
standard deviation are maximized) or a probabilistic constraint C (e.g., in reliability-based design
optimization, a deterministic objective is maximized under a stochastic constraint, namely on the
probability of failure of the system) that depend on the optimization parameters δ. Finally, the
decision analysis scenario can be considered generalizing stochastic optimization in the sense that
it formulates the search of optima over a set of decisions {a} rather than a set of parameters {δ}.
Typically, a loss function L(Y, a) measures the expected loss given any of the available decisions and
needs to be minimized.

Frequently, a subset of the model inputs is of particular interest and we would like to investi-
gate how q depends on these inputs. We call them type B inputs and write XB and all remaining
inputs are referred to as the type A inputs XA. Without loss of generality, one may assume that X
can be ordered such that X = [XA,XB]. As q is an expectation taken over all inputs, Eq. (2.101)
establishes no direct relation between these inputs and the QoI. To obtain such a relation, any
q = EfXB

[Q(XB)] can be evaluated conditional on the subset of the model inputs we are interested
in:

Q(XB) = EfXA
[Q|XB] =

∫

RdA

Q ◦ Y(xA,XB)fXA|XB
(xA|XB)dxA. (2.102)

This is the principle idea of uncertainty separation: as opposed to q, Q(XB) is no longer a deter-
ministic quantity but a random variable whose properties may be analyzed in order to characterize
how XB affects Q. Just as Eq. (2.101), Eq. (2.103) can be cast in standard-normal space by means
of the isoprobabilistic transformation T : X → U as

Q(UB) = EϕdA
[Q|UB] =

∫

RdA

Q̂ ◦ Y ◦ T−1(uA,UB))ϕdA(uA)duA, (2.103)

where dA = dim(XA). If T is a bijective map (e.g., if T is given by a Rosenblatt transform or a
marginal probability integral transform), the uncertainty separation X = [XA,XB] directly trans-
lates to standard-normal space U = [UA,UB].

A possible motivation for uncertainty separation is to treat non-learnable (type A) and learnable
inputs (type B) separately. Learning here refers to the collection of additional data that can subse-
quently be used to reduce uncertainty in the type B inputs using a Bayesian approach. Depending
on the nature of the collected data, this may be done through either parameter inference or model
inversion as described in Subsection 2.5.1. The influence of the learnable inputs on the unconditional
QoI q can be characterized by first computing and analyzing the conditional QoI. Its variance or
interval bounds containing 90%/95%/99% probability mass may be used to communicate the uncer-
tainty in the conditional QoI and thus the potential of reducing uncertainty in type B inputs (see
publication 4 in Chapter 7).

In a next step, Q may be subjected to a sensitivity analysis to identify an importance ranking
amongst the type B inputs to determine which of the type B inputs should be learned in order to
optimally reduce uncertainty in the QoI. While many sensitivity metrics are potentially applicable
to obtain such a ranking, the crux resides in approximating Q(XB) with sufficient accuracy, which
is often too computationally expensive. For example, if Q = I[g(Y ) ≤ 0] (i.e., the reliability set-
ting), each evaluation of Q requires solving a reliability problem over a dA-dimensional input space,
while efficient MC estimates of Sobol’ indices call for n(dB + 2) model evaluations (which in this
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case means solving n(dB + 2) reliability problems) with n ∼ O(102 − 103) [99]. The conditional
reliability analysis method of publication 4 in Chapter 7 can be used to solve this series of n(dB + 2)
reliability problems efficiently. Alternatively, the bi-level surrogate modelling approach mentioned in
Section 2.4 and described originally in publication 5 (Chapter 8), can be used to efficiently compute
a surrogate of Q, from which variance-based sensitivities of the conditional probability of failure
with respect to XB may be derived. These sensitivities can be understood as a preposterior (prior
to actually collecting more data and reducing uncertainty) heuristic of how much variability there
is to reduce in Q by reducing uncertainty in any subset of XB (i.e., learning it).

A related, decision-oriented approach to such a preposterior analysis is discussed in [216]. Here,
a sensitivity ranking amongst the type B variables is computed for a concrete decision directly. Such
a decision is defined as choosing between a set of available options given a loss function L(Y, a)
that associates each option a with a loss or cost. Investigated decision types include whether or
not to repair a system (a is binary) and how to design a system (a is continuous). The sensitiv-
ity of the decision with respect to a subset of type B inputs is then defined by the expected loss
reduction induced by knowing the value of said subset with certainty (this is referred to as partial
perfect information). In [216], the conditional probability of failure forms the basis for computing
the conditional QoI (which is the loss conditional on various type B input subsets v) in two versions:
once using the optimal a-priori decision without any additional information, aopt (the associated
loss being L(Y, aopt|XB,v)) and once using the optimal decision conditional on knowing XB,v per-
fectly, aopt|XB,v

(the associated loss being L(Y, aopt|XB,v
|XB,v)). The difference between these two

is referred to as the conditional value of partial perfect information (CVPPI) and the sensitivity
index is obtained by taking the expected value of the CVPPI with respect to fXB,v

, which yields
the expected value of partial perfect information (EVPPI). [216] refers to this as decision-theoretic
reliability sensitivity since loss functions based on failure probabilities are considered exclusively.
The general concept, however, can be transferred to loss functions depending on other conditional
statistics of the model output. Other such statistics may include quantile values or tail-constrained
expectations (e.g., in relation to the Conditional Value at Risk [189]), moments, et cetera. Again,
the decisive computational requirement is the ability to compute Q(XB) efficiently and accurately.

Once XB is updated with novel data D on the observable variables (observable variables could
be either XB itself or the model output Y , in which case the inference mode switches to Bayesian
model inversion as discussed in Subsection 2.5.1) in the Bayesian framework, we obtain either a
closed-form expression/approximation or samples of the posterior PDF fXB |Y (xB|D). Once a sur-
rogate model of the conditional QoI Q̂(XB) is established in the course of a preposterior analysis
as laid out in the previous paragraphs, q can be updated approximately at no additional cost via

q̂post =
1

n

n∑

k=1

Q̂(xkB), xkB ∼ fXB |Y

= ÊfXB
|Y [Q̂(XB)|D]dxB ≈

∫

RdB

Q̂(xB)fXB |Y (xB|D).

(2.104)

The estimate q̂post involves two sources of inaccuracy, namely the sampling error and the surrogate
approximation error. While sampling errors can be efficiently controlled through the number of
posterior samples, the quality of the surrogate approximation depends largely on how different the
prior and posterior PDFs fXB

(xB) and fXB |Y (xB|D) are. As the surrogate model is constructed
over a DoE sampled from the prior PDF, it can only be expected to accurately predict Q at posterior
samples if the posterior PDF support remains somewhat close the the prior PDF support.
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Illustration

In the following, we demonstrate the concept of uncertainty separation in reliability analysis (q =
P(F)) of a wind turbine foundation that is also investigated in Publication 4 & 5 (Chapters 7 and 8).
The considered monopile foundation is described in Fig. 2.15. Specific values for distributional and
computational model parameters are provided in Chapters 7 and 8. In the following we briefly
summarize the main features of this model for convenience. The monopile interacts with stiff plastic
clay. The clay stiffness su along the monopile boundary is modelled by a series of springs. su is
random and varies with the vertical coordinate z whence it is modelled as a random field. The
random field trend in turn is modelled linear in z and s0 and s1 represent its intercept and slope,
respectively (µs(z) = s0 + s1z). s0 and s1 are random themselves (hyperparameters) and modelled
with lognormal distributions. H is the load acting on the turbine blades and is assumed to follow a
Gumbel distribution with parameters aH and bH , which are hyperparameters as well and assumed
to have log-normal distributions. In the illustrated scenario, all hyperparameters (aH , bH , s0, s1) as
well as the soil stiffness random field itself are considered learnable.

H(aH , bH)

z = 0

z = L

D, t, L, ν, E

su(z)

p

y
Prior

Posterior

H
(type A)

aH
(type B)

bH
(type B)

su|z
(type B)

s0
(type B)

s1
(type B)

Figure 2.15: Y is a FE model of the interaction between a wind turbine monopile foundation and
stiff plastically behaving soil under wind load H.

The unconditional QoI q in this example is the probability of failure, where failure occurs if the
maximum occuring stress in the foundation exceeds a threshold, i.e., q = P(F). Based on the
approaches developed in publications 4 & 5 (Chapters 7 and 8), a DoE for the mapping from
XB = [ξT, s0, s1, aH , bH ]T to Q = P(F|XB) can be computed based on which a surrogate Q̂(XB)
can be constructed. The PDF of the conditional probability of failure f

Q̂
is shown in Fig. 2.16 (top).

By integrating Q̂(XB) with respect to different subsets of the XB vector, the PDF of Q̂ conditional
on all XB coordinates not integrated over emerges. This process is called marginalization. Fig. 2.16
depicts the resulting PDFs of Q̂ conditional on various subsets of XB obtained through different
marginalization steps. Evidently, the PDFs conditional on bH and – to a lesser extent – aH exhibit
considerably larger dispersion than those conditional on any of the remaining parameters. This
implies that bH and aH are most influential for the conditional failure probability and should be
prioritized when deciding on which of the parameters additional information should be gathered.
This is consistent with the surrogate-based reliability sensitivity analysis results obtained for the
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Figure 2.16: Hierarchy of conditional failure magnitude densities: each density is estimated with
a KDE using 2000 samples of − log10 P̂(F|XB) with different subsets XB. Starting at the top
with a model for − log10 P̂(F|XB), other conditional models are obtained via marginalization (the
marginalized variables are indicated along the edges connecting two conditional models in the graph).

monopile example in publication 5 (Chapter 8) and the conditional densities estimated in publication
4 (Chapter 7).
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Chapter 3

Concluding Remarks & Outlook

3.1 High-dimensional surrogate modelling for UQ

3.1.1 Summary

In Chapter 4, we addressed the problem of constructing surrogate models for problems with high-
dimensional probabilistic input. While most conventional surrogate models suffer from the curse
of dimensionality and are thus not fit to tackle such high-dimensional problems, we propose to
construct polynomial chaos expansions in low-dimensional linear subspaces of the original high-
dimensional input space. This subspace is constructed with a dimensionality-reducing regression
technique known as nonlinear partial least squares. The procedure is designed to optimally match
the identified subspace with the polynomial chaos expansion constructed therein. Our method offers
polynomial computational complexity in the number of inputs d, as opposed to standard polynomial
chaos expansions that scale exponentially with d.

In Chapter 5, we showed how to transform any partial least squares-based polynomial chaos ex-
pansion as introduced in Chapter 4 into a standard polynomial chaos format. The latter admits a
sampling-free and exact way of computing moments of the surrogate output as well as variance-based
sensitivity indices thereof. Thus, by means of our transformation, partial least squares-based poly-
nomial chaos expansions inherit these properties, which allows for efficient surrogate-based global
sensitivity analysis of high-dimensional models. We provide both a simple asymptotic (large sample)
approximation for this backtransformation as well as correction formulae for the small sample case
(the sample size referred to here is the size of the design of experiments based on which the surrogate
is constructed).

Finally, in Chapter 6, we demonstrate how to use our surrogate model for efficient rare event
probability estimation of high-dimensional models. Surrogate models that are constructed with
a non-adaptive design of experiments drawn from the input distribution cannot be expected to ac-
curately predict the behaviour of the model in the tails of the model output, which, however, is
crucial for accurate rare event probability estimation. We circumvent this issue by combining our
surrogate approach with a sequential sampling technique that allows to gradually shift the design of
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experiments towards the failure domain. This allows for constructing tail-accurate surrogate mod-
els. We introduced an active learning approach that allows for adaptively augmenting the design
of experiments in each step of the sequential sampling technique such as to control the error of the
partial least squares-based subspace as well as the polynomial chaos expansion constructed therein.

3.1.2 Outlook

The workhorse of our surrogate modelling approach is a nonlinear partial least squares algorithm.
The algorithm is based on a nonlinear regression (Gauss-Newton) approach to iteratively identify
subspace directions along with low-dimensional PCEs constructed in said subspace. This is done
using a local linearization of the PCE model. In principle, this idea can be adapted to any other type
of surrogate model. It is worth noting, however, that the gradients required for the linearization step
can be obtained in analytically closed form when paired with polynomial chaos expansions, which
makes for a particularly fast and powerful algorithm. We have observed that Gaussian processes
tend to destabilize the nonlinear partial least squares algorithm, perhaps due to their increased
flexibility compared to polynomial chaos expansions.

As partial least squares naturally extends to multivariate output, where it identifies subspace di-
rections in both the input and output space simultaneously, extending our surrogate approach to
problems with both high-dimensional inputs and outputs is straight-forward so that it can be used
for sensitivity analysis of multivariate output [130].

Both in the context of uncertainty propagation and reliability analysis, a flexibilization of the dimen-
sionality reduction approach could be achieved by giving up on the premise of a linear underlying
subspace. This however means sacrificing several convenient properties of the latent variables such
that it becomes necessary to think about how consistent surrogate models can be constructed on
nonlinear manifolds.

3.2 Uncertainty separation

3.2.1 Summary

In Chapters 7 and 8, the concept of uncertainty separation is introduced with a focus on failure prob-
ability targets. The goal is to compute the probability of failure of an engineering system conditional
on a subset of uncertain model inputs that are of special interest. Often this heightened interest
arises from the fact that these inputs are learnable in the sense that more data can potentially
be gathered that would lead to the reduction of uncertainty about these inputs. Computing the
conditional probability allows for an in-depth analysis of how each of the learnable inputs influences
the reliability of the system and consequently which of the inputs should be learned with priority.
The associated computations are, however, expensive as a series of failure probabilities have to be
estimated (one for each realization of the conditioned upon input subset at which the conditional
failure probability is to be evaluated). This can be understood as a sequence of rare event probability
estimation problems that are parametrised by the realizations of the conditioned upon input subset.
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To render the solution of such problem series computationally feasible with expensive engineer-
ing models, we devised an algorithm that transfers and reuses information in between problems
in Chapter 7. In particular, the approach is based on reusing importance sampling densities from
other problems in the series in the context of a cross-entropy-based importance sampling method.
Combining this idea with mixture and control variates importance sampling [164] yields an efficient
way of solving series of hundreds to thousands of reliability problems. A central finding of ours
is that the efficiency of the approach depends inversely on the variability of the target conditional
probability. In order to alleviate computational burden of uncertainty separation independent of the
variability contained in the conditioned upon variable subset, surrogate models may be invoked.

Such a surrogate-based approach is described in Chapter 8. Here, we aim at computing variance-
based sensitivities of the conditional probability of failure with respect to each of the conditioned
upon (i.e., learnable) model inputs. Based on these metrics, we aim at supporting decisions on which
of these inputs additional information should be collected. The computational approach rests on a
bi-level surrogate modelling framework, in which the first level emulates the model output and on
the second level this first surrogate is used to construct a second surrogate model for the conditional
probability of failure in function of the learnable inputs directly. This second surrogate model can
then be used to compute the desired sensitivity metrics at negligible computational cost.

3.2.2 Outlook

Our uncertainty separation formulation has several connections to other domains of computational
engineering. Foremost, there is a direct relationship with optimization under uncertainty and
reliability-based optimization. In theses fields, statistics of the model output such as mean, variance
and tail probabilities have to be evaluated repeatedly at varying values of design parameters as the
optimization progresses. By artificially considering the design parameters a set of conditioned upon
random variables, the computational tools developed for uncertainty separation in this thesis are
directly applicable for optimization under probabilistic constraints.

A second noteworthy connection exists with stochastic simulators [145, 245]. In essence, stochastic
simulators are non-deterministic models in the sense that they may produce different outputs when
evaluated at the same input values several times. Thus, only a fraction of the system uncertainty
described by a stochastic simulator can be formulated as model input while another fraction is in-
herent to the model itself (examples are epidemiological or wind turbine performance models). A
typical goal is to accurately emulate the model output distribution conditional on the model inputs.
By defining the model inputs as a conditioned upon variable set and the model-inherent uncertainty
as the remaining set of uncertainties, uncertainty separation can be applied to immediately obtain
conditional moments or tail probabilities of such stochastic models. A promising future research
direction could therefore consist in computing full conditional output densities based on uncertainty
separation.

A third application of uncertainty separation is found in a recent work on decision-oriented reli-
ability sensitivity analysis [216]. There, the value of information of perfectly knowing each of the
learnable inputs is assessed in the framework of a particular system reliability-based decision such
as whether or not to repair the system or how to choose the design of a system component. The
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underlying computations in this approach require knowledge of the conditional probability of failure
as defined and computed in Chapters 7 and 8.

Finally, we have addressed the possibility of using the conditional surrogate models introduced
in Section 2.5 for performing approximate Bayesian updating of quantities of interest given newly
available parameter data. We pointed out that for such an approximation to be satisfactory, the
conditional surrogate should perform well where the parameter posterior has considerable probabil-
ity mass and that this is only the case if parameter prior (from which the DoE of the surrogates
is usually sampled) and posterior are sufficiently close to one another. In a future project, the
approach could be extended to cases where prior and posterior significantly differ by developing
adaptive strategies to train the surrogate on the parameter posterior rather than its prior.

References

[1] P. Abrahamsen. A Review of Gaussian Random Fields and Correlation Functions. Technical
Report 917, Norwegian Computing Center, Olso, Norway., 1997.

[2] M. Abramowitz and I. A. Stegun. Handbook of mathematical function: with formulas, graphs
and mathematical tables. New York: Dover Publications, 1965.

[3] R. Adler. The Geometry of Random Fields. Probability and Statistics Series. Wiley, 1981.

[4] J. S. Arora and E. J. Haug. “Methods of Design Sensitivity Analysis in Structural Optimiza-
tion”. In: AIAA Journal 17.9 (1979), pp. 970–974.

[5] R. Ash et al. Probability and Measure Theory. Elsevier Science, 2000.

[6] S. Au and J. Beck. “A new adaptive importance sampling scheme for reliability calculations”.
In: Structural Safety 21.2 (1999), pp. 135–158.

[7] S.-K. Au and J. L. Beck. “Estimation of small failure probabilities in high dimensions by
subset simulation”. In: Probabilistic Engineering Mechanics 16.4 (2001), pp. 263–277.

[8] S. Au. “Reliability-based design sensitivity by efficient simulation”. In: Computers & structures
83.14 (2005), pp. 1048–1061.

[9] J. M. Aughenbaugh and C. J. Paredis. “The value of using imprecise probabilities in engi-
neering design”. In: Journal of Mechanical Design 128.4 (2006), pp. 969–979.

[10] P. C. Austin and E. W. Steyerberg. “The number of subjects per variable required in linear
regression analyses”. In: Journal of Clinical Epidemiology 68.6 (2015), pp. 627–636.

[11] S. D. Babacan, R. Molina, and A. K. Katsaggelos. “Bayesian Compressive Sensing Using
Laplace Priors”. In: IEEE Transactions on Image Processing 19.1 (2010), pp. 53–63.

[12] I. Babuska, F. Nobile, and R. Tempone. “A Stochastic Collocation Method for Elliptic Partial
Differential Equations with Random Input Data”. In: SIAM J. Numerical Analysis 45 (2007),
pp. 1005–1034.

[13] G. Baffi, E. Martin, and A. Morris. “Non-linear projection to latent structures revisited
(the neural network PLS algorithm)”. In: Computers & Chemical Engineering 23.9 (1999),
pp. 1293–1307.

54



Chapter 3. Concluding Remarks & Outlook References

[14] M. Balesdent, J. Morio, and J. Marzat. “Kriging-based adaptive Importance Sampling al-
gorithms for rare event estimation”. In: Structural Safety 44.Supplement C (2013), pp. 1–
10.

[15] P. Beaurepaire et al. “Reliability-based optimization using bridge importance sampling”. In:
Probabilistic Engineering Mechanics 34 (2013), pp. 48–57.

[16] J. Bect, L. Li, and E. Vazquez. “Bayesian Subset Simulation”. In: SIAM/ASA Journal on
Uncertainty Quantification 5.1 (2017), pp. 762–786.

[17] J. Bect et al. “Sequential design of computer experiments for the estimation of a probability
of failure”. In: Statistics and Computing 22.3 (2012), pp. 773–793.

[18] T. Bedford and R. M. Cooke. “Vines–a new graphical model for dependent random variables”.
In: Ann. Statist. 30.4 (Aug. 2002), pp. 1031–1068.

[19] M. Beer et al. “Reliability analysis with scarce information: Comparing alternative approaches
in a geotechnical engineering context”. In: Structural Safety 41 (2013), pp. 1–10.

[20] R. Bellman. Adaptive Control Processes. Princeton University Press, 1961.

[21] J. Benjamin and C. Cornell. Probability, Statistics, and Decision for Civil Engineers. Dover
Books on Engineering. Dover Publications, 2014.

[22] M. Berveiller, B. Sudret, and M. Lemaire. “Stochastic finite element: a non intrusive approach
by regression”. In: European Journal of Computational Mechanics 15.1-3 (2006), pp. 81–92.

[23] W. Betz, I. Papaioannou, and D. Straub. Bayesian postprocessing of Monte Carlo simulation
in reliability analysis. Manuscript in preparation. 2021.

[24] W. Betz, I. Papaioannou, and D. Straub. “Numerical methods for the discretization of ran-
dom fields by means of the Karhunen-Loève expansion”. In: Computer Methods in Applied
Mechanics and Engineering 271 (2014), pp. 109–129.

[25] B. J. Bichon et al. “Efficient Global Reliability Analysis for Nonlinear Implicit Performance
Functions”. In: AIAA Journal 46.10 (2008), pp. 2459–2468.

[26] D. Bigoni, A. P. Engsig-Karup, and Y. M. Marzouk. “Spectral Tensor-Train Decomposition”.
In: SIAM Journal on Scientific Computing 38.4 (2016), A2405–A2439.

[27] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Berlin, Heidelberg: Springer-Verlag, 2006.

[28] E. Borgonovo. “A new uncertainty importance measure”. In: Reliability Engineering & System
Safety 92.6 (2007), pp. 771–784.

[29] E. Borgonovo and E. Plischke. “Sensitivity analysis: a review of recent advances”. In: European
Journal of Operational Research 248.3 (2016), pp. 869–887.

[30] Z. I. Botev and D. P. Kroese. “Efficient Monte Carlo simulation via the generalized splitting
method”. In: Statistics and Computing 22.1 (2012), pp. 1–16.

[31] J.-M. Bourinet. “Rare-event probability estimation with adaptive support vector regression
surrogates”. In: Reliability Engineering & System Safety 150 (2016), pp. 210–221.

[32] J.-M. Bourinet, F. Deheeger, and M. Lemaire. “Assessing small failure probabilities by com-
bined subset simulation and Support Vector Machines”. In: Structural Safety 33.6 (2011),
pp. 343–353.

[33] C. G. Bucher. “Adaptive sampling — an iterative fast Monte Carlo procedure”. In: Structural
Safety 5.2 (1988), pp. 119–126.

55



References Chapter 3. Concluding Remarks & Outlook

[34] R. E. Caflisch. “Monte Carlo and quasi-Monte Carlo methods”. In: Acta Numerica 7 (1998),
pp. 1–49.

[35] V. Chabridon. “Reliability-oriented sensitivity analysis under probabilistic model uncertainty
– Application to aerospace systems”. PhD thesis. Université Clermont Auvergne, Nov. 2018.

[36] O. Chapelle, V. Vapnik, and Y. Bengio. “Model selection for small sample regression”. In:
Machine Learning 48.1-3 (2002), pp. 9–23.

[37] G. Chastaing, F. Gamboa, and C. Prieur. “Generalized Hoeffding-Sobol Decomposition for
Dependent Variables -Application to Sensitivity Analysis”. In: Electronic Journal of Statistics
6 (Dec. 2011).

[38] S. S. Chen, D. L. Donoho, and M. A. Saunders. “Atomic Decomposition by Basis Pursuit”.
In: SIAM Journal on Scientific Computing 20.1 (1998), pp. 33–61.

[39] M. Chevreuil et al. “A Least-Squares Method for Sparse Low Rank Approximation of Multi-
variate Functions”. In: SIAM/ASA Journal on Uncertainty Quantification 3.1 (2015), pp. 897–
921.

[40] A. Cohen and G. Migliorati. “Optimal weighted least-squares methods”. In: SMAI Journal of
Computational Mathematics 3 (2017), pp. 181–203.

[41] P. G. Constantine, E. Dow, and Q. Wang. “Active Subspace Methods in Theory and Practice:
Applications to Kriging Surfaces”. In: SIAM Journal on Scientific Computing 36.4 (2014),
A1500–A1524.

[42] L. Cui, Z. Lü, and X. Zhao. “Moment-independent importance measure of basic random vari-
able and its probability density evolution solution”. In: Science China Technological Sciences
53.4 (2010), pp. 1138–1145.

[43] G. M. Davis, S. G. Mallat, and Z. Zhang. “Adaptive time-frequency decompositions”. In:
Optical Engineering 33.7 (1994), pp. 2183–2191.

[44] L. De Lathauwer, B. De Moor, and J. Vandewalle. “A Multilinear Singular Value Decompo-
sition”. In: SIAM Journal on Matrix Analysis and Applications 21.4 (2000), pp. 1253–1278.

[45] A. P. Dempster. “Upper and Lower Probabilities Induced by a Multivalued Mapping”. In:
Ann. Math. Statist. 38.2 (Apr. 1967), pp. 325–339.

[46] G. Deodatis. “Weighted Integral Method. I: Stochastic Stiffness Matrix”. In: Journal of En-
gineering Mechanics 117.8 (1991), pp. 1851–1864.

[47] G. Deodatis and M. Shinozuka. “Weighted Integral Method. II: Response Variability and
Reliability”. In: Journal of Engineering Mechanics 117.8 (1991), pp. 1865–1877.

[48] A. Der Kiureghian. “First-and second-order reliability methods”. In: Engineering Design Re-
liability Handbook. Ed. by E. Nikolaidis, D. M. Ghiocel, and S. Singhal. Boca Raton, FL:
CRC Press, 2005. Chap. 14.

[49] A. Der Kiureghian and O. Ditlevsen. “Aleatory or epistemic? Does it matter?” In: Structural
Safety 31.2 (2009), pp. 105–112.

[50] A. Der Kiureghian and J.-B. Ke. “The stochastic finite element method in structural relia-
bility”. In: Probabilistic Engineering Mechanics 3.2 (1988), pp. 83–91.

[51] P. Diaconis and D. Ylvisaker. “Conjugate Priors for Exponential Families”. In: The Annals
of Statistics 7.2 (1979), pp. 269–281.

[52] O. Ditlevsen and H. O. Madsen. Structural reliability methods. John Wiley & Sons Ltd, 1996.

56



Chapter 3. Concluding Remarks & Outlook References

[53] A. Doostan and H. Owhadi. “A non-adapted sparse approximation of PDEs with stochastic
inputs”. In: Journal of Computational Physics 230.8 (2011), pp. 3015–3034.

[54] A. Doostan, A. Validi, and G. Iaccarino. “Non-intrusive low-rank separated approximation
of high-dimensional stochastic models”. In: Computer Methods in Applied Mechanics and
Engineering 263 (2013), pp. 42–55.

[55] H. Drucker et al. “Support Vector Regression Machines”. In: Advances in Neural Information
Processing Systems. Ed. by M. C. Mozer, M. Jordan, and T. Petsche. Vol. 9. MIT Press, 1997.

[56] V. Dubourg, B. Sudret, and F. Deheeger. “Metamodel-based importance sampling for struc-
tural reliability analysis”. In: Probabilistic Engineering Mechanics 33 (2013), pp. 47–57.

[57] B. Echard, N. Gayton, and M. Lemaire. “AK-MCS: An active learning reliability method
combining Kriging and Monte Carlo Simulation”. In: Structural Safety 33.2 (2011), pp. 145–
154.

[58] B. Efron. “Bootstrap methods: Another look at the jackknife”. In: Annals of Statistics 7.1
(1979), pp. 1–26.

[59] B. Efron et al. “Least angle regression (with discussion)”. In: The Annals of Statistics 32.2
(2004), pp. 407–499.

[60] M. Ehre, I. Papaioannou, and D. Straub. “A framework for global reliability sensitivity anal-
ysis in the presence of multi-uncertainty”. In: Reliability Engineering & System Safety 195
(2020), p. 106726.

[61] M. Ehre, I. Papaioannou, and D. Straub. “Global sensitivity analysis in high dimensions with
PLS-PCE”. In: Reliability Engineering & System Safety 198 (2020), p. 106861.

[62] M. Ehre et al. Active sequential learning of low-dimensional model representations for relia-
bility analysis. Submitted to SIAM J. Comp. Sci. 2021.

[63] M. Ehre et al. “Conditional reliability analysis in high dimensions based on controlled mixture
importance sampling and information reuse”. In: Computer Methods in Applied Mechanics and
Engineering 381 (2021), p. 113826.

[64] S. Engelund and R. Rackwitz. “A benchmark study on importance sampling techniques in
structural reliability”. In: Structural Safety 12.4 (1993), pp. 255–276.

[65] M. Faber. Statistics and Probability Theory: In Pursuit of Engineering Decision Support.
Topics in Safety, Risk, Reliability and Quality. Springer Netherlands, 2012.

[66] M. H. Faber. “On the treatment of uncertainties and probabilities in engineering decision
analysis”. In: Journal of Offshore Mechanics and Arctic Engineering 127.3 (2005), pp. 243–
248.

[67] L. Faravelli. “Response Surface Approach for Reliability Analysis”. In: Journal of Engineering
Mechanics 115.12 (1989), pp. 2763–2781.

[68] V. Fedorov. Theory of Optimal Experiments. Probability and Mathematical Statistics. Aca-
demic Press, Jan. 1972. 306 pp.

[69] S. Ferson et al. Constructing probability boxes and Dempster-Shafer structures. University of
North Texas Libraries, Jan. 2003.

[70] S. Ferson et al. “Summary from the epistemic uncertainty workshop: consensus amid diver-
sity”. In: Reliability Engineering & System Safety 85.1 (2004), pp. 355–369.

[71] A. Gelman et al. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in
Statistical Science. Taylor & Francis, 2013.

57



References Chapter 3. Concluding Remarks & Outlook

[72] A. Gelman and Y. Yao. “Holes in Bayesian statistics”. In: Journal of Physics G: Nuclear and
Particle Physics 48.1 (Dec. 2020), p. 014002.

[73] R. Ghanem and P. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag,
Berlin, 1991.

[74] D. M. Ghiocel and R. G. Ghanem. “Stochastic Finite-Element Analysis of Seismic Soil-
Structure Interaction”. In: Journal of Engineering Mechanics 128.1 (2002), pp. 66–77.

[75] G. H. Golub and C. F. van Loan. Matrix Computations. Fourth. JHU Press, 2013.

[76] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[77] W. Graf and J. U. Sickert. “Time-dependent fuzzy stochastic reliability analysis of structures”.
In: Applied Mechanics and Materials. Vol. 104. Trans Tech Publ. 2012, pp. 45–54.

[78] L. Grasedyck. “Hierarchical Singular Value Decomposition of Tensors”. In: SIAM Journal on
Matrix Analysis and Applications 31.4 (2010), pp. 2029–2054.

[79] L. Grasedyck, D. Kressner, and C. Tobler. “A literature survey of low-rank tensor approxi-
mation techniques”. In: GAMM-Mitteilungen 36.1 (2013), pp. 53–78.

[80] M. Grigoriu. Stochastic Systems. Springer Series in Reliability Engineering 978-1-4471-2327-9.
Springer, Dec. 2012.

[81] X. Guan and R. Melchers. “Effect of response surface parameter variation on structural
reliability estimates”. In: Structural Safety 23.4 (2001), pp. 429–444.

[82] M. Hanss and S. Turrin. “A fuzzy-based approach to comprehensive modeling and analysis
of systems with epistemic uncertainties”. In: Structural Safety 32.6 (2010), pp. 433–441.

[83] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., 2001.

[84] F. Hayashi. Econometrics. Princeton Univ. Press, 2000. XXIII, 683.

[85] J. Helton and W. Oberkampf. “Alternative representations of epistemic uncertainty”. In:
Reliability Engineering & System Safety 85.1 (2004). Alternative Representations of Epistemic
Uncertainty, pp. 1–10.

[86] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”. In: Journal
of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

[87] W. Hoeffding. “A Class of Statistics with Asymptotically Normal Distribution”. In: The An-
nals of Mathematical Statistics 19.3 (1948), pp. 293–325.

[88] M. Hohenbichler and R. Rackwitz. “Improvement Of Second-Order Reliability Estimates by
Importance Sampling”. In: Journal of Engineering Mechanics 114.12 (1988), pp. 2195–2199.

[89] T. Homma and A. Saltelli. “Importance measures in global sensitivity analysis of nonlinear
models”. In: Reliability Engineering & System Safety 52.1 (1996), pp. 1–17.

[90] G. Hooker. “Discovering Additive Structure in Black Box Functions”. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’04. Seattle, WA, USA: Association for Computing Machinery, 2004, pp. 575–580.

[91] G. Hooker. “Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of
Dependent Variables”. In: Journal of Computational and Graphical Statistics 16.3 (2007),
pp. 709–732.

58

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Chapter 3. Concluding Remarks & Outlook References

[92] H. Hotelling. “Relations between two sets of variates”. In: Biometrika 28.3-4 (Dec. 1936),
pp. 321–377.

[93] X. Huang, J. Chen, and H. Zhu. “Assessing small failure probabilities by AK–SS: An active
learning method combining Kriging and Subset Simulation”. In: Structural Safety 59 (2016),
pp. 86–95.

[94] J. E. Hurtado. “Filtered importance sampling with support vector margin: a powerful method
for structural reliability analysis”. In: Structural Safety 29.1 (2007), pp. 2–15.

[95] J. E. Hurtado and D. A. Alvarez. “Neural-network-based reliability analysis: a comparative
study”. In: Computer Methods in Applied Mechanics and Engineering 191.1 (2001), pp. 113–
132.

[96] D. Hwang, D. W. Byun, and M. Talat Odman. “An automatic differentiation technique for
sensitivity analysis of numerical advection schemes in air quality models”. In: Atmospheric
Environment 31.6 (1997), pp. 879–888.

[97] B. Iooss and P. Lemaître. “A review on global sensitivity analysis methods”. In: Uncertainty
management in Simulation-Optimization of Complex Systems: Algorithms and Applications.
Ed. by C. Meloni and G. Dellino. Springer, 2015.

[98] J. Iott, R. T. Haftka, and H. M. Adelman. “Selecting step sizes in sensitivity analysis by finite
differences”. In: NASA Technical Memorandum 86382 (Aug. 1985).

[99] M. J. Jansen. “Analysis of variance designs for model output”. In: Computer Physics Com-
munications 117.1 (1999), pp. 35–43.

[100] E. Jaynes. “On the rationale of maximum-entropy methods”. In: Proceedings of the IEEE 70.9
(1982), pp. 939–952.

[101] E. T. Jaynes. “Prior Probabilities”. In: IEEE Transactions on Systems Science and Cybernet-
ics 4.3 (1968), pp. 227–241.

[102] H. Jeffreys. “An invariant form for the prior probability in estimation problems”. In: Proceed-
ings of the Royal Society of London. Series A. Mathematical and Physical Sciences 186.1007
(1946), pp. 453–461.

[103] S. Ji, Y. Xue, and L. Carin. “Bayesian Compressive Sensing”. In: IEEE Transactions on Signal
Processing 56.6 (2008), pp. 2346–2356.

[104] Z. Jiang and J. Li. “High dimensional structural reliability with dimension reduction”. In:
Structural Safety 69 (2017), pp. 35–46.

[105] P. C. Kainen. “Utilizing Geometric Anomalies of High Dimension: When Complexity Makes
Computation Easier”. In: Computer Intensive Methods in Control and Signal Processing: The
Curse of Dimensionality. Ed. by M. Kárný and K. Warwick. Boston, MA: Birkhäuser Boston,
1997, pp. 283–294.

[106] M. Kaminski. The Stochastic Perturbation Method for Computational Mechanics. John Wiley
& Sons, Ltd, 2013.

[107] L. Katafygiotis and K. Zuev. “Geometric insight into the challenges of solving high-dimensional
reliability problems”. In: Probabilistic Engineering Mechanics 23.2 (2008). 5th International
Conference on Computational Stochastic Mechanics, pp. 208–218.

[108] A. Kaufman and M. M. Gupta. Introduction to fuzzy arithmetic. Van Nostrand Reinhold
Company New York, USA, 1991.

59



References Chapter 3. Concluding Remarks & Outlook

[109] A. Keese. “Numerical Solution of Systems with Stochastic Uncertainties: A General Purpose
Framework for Stochastic Finite Elements”. PhD thesis. Apr. 2004.

[110] D. G. Kendall. “Foundations of a theory of random sets”. In: Stochastic geometry. Ed. by
E. F. Harding and D. G. Kendall. Wiley, 1974, pp. 322–376.

[111] T. Kim and J. Song. “Generalized Reliability Importance Measure (GRIM) using Gaussian
mixture”. In: Reliability Engineering & System Safety 173.C (2018), pp. 105–115.

[112] C.-C. L. A. D. Kiureghian. “Optimal Discretization of Random Fields”. In: Journal of Engi-
neering Mechanics 119.6 (1993), pp. 1136–1154.

[113] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In: SIAM Review
51.3 (Sept. 2009), pp. 455–500.

[114] A. Kolmogorov, N. Morrison, and A. Bharucha-Reid. Foundations of the Theory of Probability.
AMS Chelsea Publishing Series. Chelsea Publishing Company, 1956.

[115] K. Konakli and B. Sudret. “Global sensitivity analysis using low-rank tensor approximations”.
In: Reliability Engineering & System Safety 156.Supplement C (2016), pp. 64–83.

[116] K. Konakli and B. Sudret. “Reliability analysis of high-dimensional models using low-rank
tensor approximations”. In: Probabilistic Engineering Mechanics 46 (2016), pp. 18–36.

[117] P. Koutsourelakis, H. Pradlwarter, and G. Schuëller. “Reliability of structures in high di-
mensions, part I: algorithms and applications”. In: Probabilistic Engineering Mechanics 19.4
(2004), pp. 409–417.

[118] D. P. Kroese, R. Y. Rubinstein, and P. W. Glynn. “Chapter 2 - The Cross-Entropy Method for
Estimation”. In: Handbook of Statistics: Machine Learning: Theory and Applications. Vol. 31.
Handbook of Statistics. Elsevier, 2013, pp. 19–34.

[119] S. Kucherenko, S. Tarantola, and P. Annoni. “Estimation of global sensitivity indices for mod-
els with dependent variables”. In: Computer Physics Communications 183.4 (2012), pp. 937–
946.

[120] S. Kucherenko et al. “Monte Carlo evaluation of derivative-based global sensitivity measures”.
In: Reliability Engineering & System Safety 94.7 (2009). Special Issue on Sensitivity Analysis,
pp. 1135–1148.

[121] N. Kurtz and J. Song. “Cross-entropy-based adaptive importance sampling using Gaussian
mixture”. In: Structural Safety 42 (2013), pp. 35–44.

[122] O. Le Matre et al. “A stochastic projection method for fluid flow. I. Basic formulation”. In:
Journal of Computational Physics 173.2 (2001), pp. 481–511.

[123] R. Lebrun and A. Dutfoy. “An innovating analysis of the Nataf transformation from the
copula viewpoint”. In: Probabilistic Engineering Mechanics 24.3 (2009), pp. 312–320.

[124] M. Lemaire, A. Chateauneuf, and J.-C. Mitteau. Structural reliability. Wiley-ISTE, 2009.

[125] P. Lemaitre et al. “Density modification-based reliability sensitivity analysis”. In: Journal of
Statistical Computation and Simulation 85.6 (2015), pp. 1200–1223.

[126] G. Li et al. “Global Sensitivity Analysis for Systems with Independent and/or Correlated
Inputs”. In: The Journal of Physical Chemistry A 114.19 (May 2010), pp. 6022–6032.

[127] J. Li, J. Li, and D. Xiu. “An efficient surrogate-based method for computing rare failure
probability”. In: Journal of Computational Physics 230.24 (2011), pp. 8683–8697.

60



Chapter 3. Concluding Remarks & Outlook References

[128] J. Li and D. Xiu. “Evaluation of failure probability via surrogate models”. In: Journal of
Computational Physics 229.23 (2010), pp. 8966–8980.

[129] K.-C. Li. “Sliced Inverse Regression for Dimension Reduction”. In: Journal of the American
Statistical Association 86.414 (1991), pp. 316–327.

[130] L. Li, I. Papaioannou, and D. Straub. Partial least squares-based polynomial chaos expansion
for global sensitivity analysis of dynamic models in high dimensions. Manuscript. 2019.

[131] L. Li et al. “Moment-independent importance measure of basic variable and its state depen-
dent parameter solution”. In: Structural Safety 38 (2012), pp. 40–47.

[132] M. Li and Z. Wang. “Deep learning for high-dimensional reliability analysis”. In: Mechanical
Systems and Signal Processing 139 (2020), p. 106399.

[133] R. Li and R. Ghanem. “Adaptive polynomial chaos expansions applied to statistics of extremes
in nonlinear random vibration”. In: Probabilistic Engineering Mechanics 13.2 (1998), pp. 125–
136.

[134] P.-L. Liu and A. Der Kiureghian. “Multivariate distribution models with prescribed marginals
and covariances”. In: Probabilistic Engineering Mechanics 1.2 (1986), pp. 105–112.

[135] W. K. Liu, T. Belytschko, and A. Mani. “Random field finite elements”. In: International
Journal for Numerical Methods in Engineering 23.10 (1986), pp. 1831–1845.

[136] M. Loeve. Probability theory II. 4th ed. Springer-Verlag New York, 1978.

[137] Z. Lu et al. “Reliability sensitivity method by line sampling”. In: Structural Safety 30.6 (2008),
pp. 517–532.

[138] N. Lüthen, S. Marelli, and B. Sudret. Sparse Polynomial Chaos Expansions: Literature Survey
and Benchmark. 2021.

[139] M.Hohenbichler and R.Rackwitz. “Sensitivity and importance measures in structural relia-
bility”. In: Civil Engineering Systems 3.4 (1986), pp. 203–209.

[140] D. J. C. MacKay. “Bayesian interpolation”. In: Neural computation 4 (1992), pp. 415–447.

[141] S. G. Mallat and Zhifeng Zhang. “Matching pursuits with time-frequency dictionaries”. In:
IEEE Transactions on Signal Processing 41.12 (1993), pp. 3397–3415.

[142] T. A. Mara and S. Tarantola. “Variance-based sensitivity indices for models with dependent
inputs”. In: Reliability Engineering and System Safety 107 (2012), pp. 115–121.

[143] S. Marelli and B. Sudret. “An active-learning algorithm that combines sparse polynomial
chaos expansions and bootstrap for structural reliability analysis”. In: Structural Safety 75
(2018), pp. 67–74.

[144] A. Marrel et al. “Calculations of Sobol indices for the Gaussian process metamodel”. In:
Reliability Engineering & System Safety 94.3 (2009), pp. 742–751.

[145] A. Marrel et al. “Global sensitivity analysis of stochastic computer models with joint meta-
models”. In: Statistics and Computing 22.3 (2012), pp. 833–847.

[146] P. McCullagh and J. Nelder. Generalized Linear Models, Second Edition. Chapman and
Hall/CRC Monographs on Statistics and Applied Probability Series. Chapman & Hall, 1989.

[147] M. D. McKay, R. J. Beckman, and W. J. Conover. “Comparison of three methods for selecting
values of input variables in the analysis of output from a computer code”. In: Technometrics
21.2 (1979), pp. 239–245.

61



References Chapter 3. Concluding Remarks & Outlook

[148] R. E. Melchers. Structural reliability analysis and prediction. Civil Engineering Series. John
Wiley, 1999.

[149] N. Metropolis and S. Ulam. “The Monte Carlo method”. In: Journal of the American statistical
association 44.247 (1949), pp. 335–341.

[150] N. Metropolis et al. “Equation of State Calculations by Fast Computing Machines”. In: The
Journal of Chemical Physics 21.6 (1953), pp. 1087–1092.

[151] B. Möller and M. Beer. “Engineering Computation Under Uncertainty - Capabilities of Non-
traditional Models”. In: Comput. Struct. 86.10 (May 2008), pp. 1024–1041.

[152] J. Morio. “Influence of input PDF parameters of a model on a failure probability estimation”.
In: Simulation Modelling Practice and Theory 19.10 (2011), pp. 2244–2255.

[153] J. Morio. “Non-parametric adaptive importance sampling for the probability estimation of a
launcher impact position”. In: Reliability Engineering & System Safety 96.1 (2011). Special
Issue on Safecomp 2008, pp. 178–183.

[154] M. D. Morris. “Factorial Sampling Plans for Preliminary Computational Experiments”. In:
Technometrics 33.2 (1991), pp. 161–174.

[155] K. P. Murphy. Machine learning : A probabilistic perspective. MIT Press, 2013.

[156] A. Narayan, J. Jakeman, and T. Zhou. “A Christoffel function weighted least squares al-
gorithm for collocation approximations”. In: Mathematics of Computation 86.306 (2017),
pp. 1913–1947.

[157] A. Nataf. “Determination des distribution dont les marges sont données”. In: Comptes Rendus
de l’Académie des Sciences 225 (1962), pp. 42–43.

[158] R. B. Nelsen. An Introduction to Copulas. Springer Publishing Company, Incorporated, 2010.

[159] J. von Neumann. “Various techniques used in connection with random digits”. In:Monte Carlo
Method. Ed. by A. S. Householder, G. E. Forsythe, and H. H. Germond. Vol. 12. National
Bureau of Standards Applied Mathematics Series. Washington, DC: US Government Printing
Office, 1951. Chap. 13, pp. 36–38.

[160] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Society for
Industrial and Applied Mathematics, 1992.

[161] A. O’Hagan and J. E. Oakley. “Probability is perfect, but we can’t elicit it perfectly”. In:
Reliability Engineering & System Safety 85.1 (2004), pp. 239–248.

[162] A. O’Hagan. “Expert Knowledge Elicitation: Subjective but Scientific”. In: The American
Statistician 73 (2019), pp. 69–81.

[163] I. V. Oseledets and E. E. Tyrtyshnikov. “Breaking the Curse of Dimensionality, Or How to
Use SVD in Many Dimensions.” In: SIAM J. Sci. Comput. 31.5 (2009), pp. 3744–3759.

[164] A. Owen and Y. Zhou. “Safe and effective importance sampling”. In: Journal of the American
Statistical Association 95.449 (2000), pp. 135–143.

[165] A. B. Owen. “Controlling correlations in Latin hypercube samples”. In: Journal of the Amer-
ican Statistical Association 89.428 (1994), pp. 1517–1522.

[166] A. B. Owen. Monte Carlo theory, methods and examples. 2013.

[167] A. B. Owen. “Sobol’ Indices and Shapley Value”. In: SIAM/ASA Journal on Uncertainty
Quantification 2.1 (2014), pp. 245–251.

62



Chapter 3. Concluding Remarks & Outlook References

[168] A. B. Owen. “Variance Components and Generalized Sobol’ Indices”. In: SIAM/ASA Journal
on Uncertainty Quantification 1.1 (2013), pp. 19–41.

[169] Q. Pan and D. Dias. “Sliced inverse regression-based sparse polynomial chaos expansions
for reliability analysis in high dimensions”. In: Reliability Engineering & System Safety 167
(2017). Special Section: Applications of Probabilistic Graphical Models in Dependability,
Diagnosis and Prognosis, pp. 484–493.

[170] V. Papadopoulos et al. “Accelerated subset simulation with neural networks for reliability
analysis”. In: Computer Methods in Applied Mechanics and Engineering 223 (2012), pp. 70–
80.

[171] M. Papadrakakis, V. Papadopoulos, and N. D. Lagaros. “Structural reliability analysis of
elastic-plastic structures using neural networks and Monte Carlo simulation”. In: Computer
Methods in Applied Mechanics and Engineering 136.1-2 (1996), pp. 145–163.

[172] I. Papaioannou, K. Breitung, and D. Straub. “Reliability sensitivity estimation with sequential
importance sampling”. In: Structural Safety 75 (2018), pp. 24–34.

[173] I. Papaioannou, M. Ehre, and D. Straub. “Efficient PCE representations for reliability analysis
in high dimensions”. In: Proceedings of the 19th working conference of the IFIP Working Group
7.5 on Reliability and Optimization of Structural Systems. Ed. by J. Song. ETH Zürich, 2018.

[174] I. Papaioannou, M. Ehre, and D. Straub. “PLS-based adaptation for efficient PCE repre-
sentation in high dimensions”. In: Journal of Computational Physics 387 (2019), pp. 186–
204.

[175] I. Papaioannou, S. Geyer, and D. Straub. “Improved cross entropy-based importance sam-
pling with a flexible mixture model”. In: Reliability Engineering & System Safety 191 (2019),
p. 106564.

[176] I. Papaioannou, C. Papadimitriou, and D. Straub. “Sequential importance sampling for struc-
tural reliability analysis”. In: Structural Safety 62 (2016), pp. 66–75.

[177] I. Papaioannou and D. Straub. “Combination line sampling for structural reliability analysis”.
In: Structural Safety 88 (2021), p. 102025.

[178] I. Papaioannou and D. Straub. “Variance-based reliability sensitivity analysis and the FORM
α-factors”. In: Reliability Engineering & System Safety 210 (2021), p. 107496.

[179] I. Papaioannou et al. “MCMC algorithms for Subset Simulation”. In: Probabilistic Engineering
Mechanics 41 (2015), pp. 89–103.

[180] Y. C. Pati et al. “Orthogonal Matching Pursuit: Recursive Function Approximation with
Applications to Wavelet Decomposition”. In: Proceedings of the 27th Annual Asilomar Con-
ference on Signals, Systems, and Computers (1993). 1993, pp. 40–44.

[181] B. Peherstorfer, B. Kramer, and K. Willcox. “Multifidelity Preconditioning of the Cross-
Entropy Method for Rare Event Simulation and Failure Probability Estimation”. In: SIAM/ASA
Journal on Uncertainty Quantification 6.2 (2018), pp. 737–761.

[182] C. Prieur and S. Tarantola. “Variance-Based Sensitivity Analysis: Theory and Estimation
Algorithms”. In: Handbook of Uncertainty Quantification. Ed. by R. Ghanem, D. Higdon, and
H. Owhadi. Springer International Publishing, June 2017, pp. 1217–1239.

[183] C. R.H. and W. Martin. “The orthogonal development of non-linear functionals in series of
Fourier–Hermite functionals”. In: Ann. Math. 48 (1947), pp. 285–392.

63



References Chapter 3. Concluding Remarks & Outlook

[184] R. Rackwitz and B. Fiessler. “Structural reliability under combined random load sequences”.
In: Computers & Structures 9.5 (1978), pp. 489–494.

[185] S. Rahman. “The f -Sensitivity Index”. In: SIAM/ASA Journal on Uncertainty Quantification
4.1 (2016), pp. 130–162.

[186] H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory. Harvard Business School Pub-
lications. Division of Research, Graduate School of Business Adminitration, Harvard Univer-
sity, 1961.

[187] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. Adaptive Com-
putation and Machine Learning. Cambridge, MA, USA: MIT Press, Jan. 2006, p. 248.

[188] B. Reddy. Introductory Functional Analysis: With Applications to Boundary Value Problems
and Finite Elements. Introductory Functional Analysis Series. Springer, 1998.

[189] R. T. Rockafellar and S. Uryasev. “Optimization of Conditional Value-at-Risk”. In: Journal
of Risk 2 (2000), pp. 21–41.

[190] M. Rosenblatt. “Remarks on a multivariate transformation”. In: The Annals of Mathematical
Statistics 23.3 (1952), pp. 470–472.

[191] J. Rosenthal. A First Look at Rigorous Probability Theory. World Scientific, 2000.

[192] R. Rosipal. “Nonlinear Partial Least Squares: An Overview”. In: Chemoinformatics and Ad-
vanced Machine Learning Perspectives: Complex Computational Methods and Collaborative
Techniques (Jan. 2010), pp. 169–189.

[193] G. Rubino and B. Tuffin. Rare Event Simulation using Monte Carlo Methods. John Wiley &
Sons, Ltd, 2009.

[194] R. Y. Rubinstein. “Optimization of computer simulation models with rare events”. In: Euro-
pean Journal of Operational Research 99.1 (1997), pp. 89–112.

[195] R. Y. Rubinstein. “The score function approach for sensitivity analysis of computer simulation
models”. In: Mathematics and Computers in Simulation 28.5 (1986), pp. 351–379.

[196] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method. 3rd. Wiley
Publishing, 2017.

[197] A. Saltelli, K. Chan, and E. Scott. Sensitivity Analysis. John Wiley & Sons, Inc., 2000.

[198] A. Saltelli et al. Sensitivity analysis in practice: a guide to assessing scientific models. John
Wiley & Sons, 2004.

[199] R. Schöbi, B. Sudret, and S. Marelli. “Rare Event Estimation Using Polynomial-Chaos Krig-
ing”. In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
Engineering 3.2 (2017), p. D4016002.

[200] R. Schöbi and B. Sudret. “Global sensitivity analysis in the context of imprecise probabilities
(p-boxes) using sparse polynomial chaos expansions”. In: Reliability Engineering & System
Safety 187 (2019). Sensitivity Analysis of Model Output, pp. 129–141.

[201] G. Schuëller and R. Stix. “A critical appraisal of methods to determine failure probabilities”.
In: Structural Safety 4.4 (1987), pp. 293–309.

[202] L. Schueremans and D. V. Gemert. “Benefit of splines and neural networks in simulation
based structural reliability analysis”. In: Structural Safety 27.3 (2005), pp. 246–261.

[203] G. Seber and A. Lee. Linear Regression Analysis. Wiley Series in Probability and Statistics.
Wiley, 2003.

64



Chapter 3. Concluding Remarks & Outlook References

[204] G. A. Seber. Nonlinear Regression. John Wiley & Sons, 2005.

[205] B. Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648.
University of Wisconsin–Madison, 2009.

[206] M. Shinozuka and G. Deodatis. “Simulation of stochastic processes by spectral representa-
tion.” In: Applied Mechanics Reviews 44.4 (1991), pp. 191–204.

[207] J. Sickert et al. “Fuzzy probabilistic structural analysis considering fuzzy random functions”.
In: Proceedings of the 9th International Conference on Applications of Statistics and Proba-
bilistics in Civil Engineering. 2003, pp. 379–386.

[208] B. W. Silverman. Density Estimation for Statistics and Data Analysis. London: Chapman &
Hall, 1986.

[209] M. Sklar. “Fonctions de répartition à n dimensions et leurs marges”. In: Publ. inst. statist.
univ. Paris 8 (1959), pp. 229–231.

[210] A. J. Smola and B. Schölkopf. “A tutorial on support vector regression”. In: Statistics and
Computing 14.3 (2004), pp. 199–222.

[211] S. A. Smolyak. “Quadrature and interpolation formulas for tensor products of certain class of
functions”. In: Dokl. Akad. Nauk SSSR 148.5 (1963). Transl.: Soviet Math. Dokl. 4:240-243,
1963, pp. 1042–1053.

[212] I. M. Sobol and G. A. “On an alternative global sensitivity estimators”. In: Proc. of the
Sensitivity Analysis on Model Output (SAMO) Conference 1995. 1995.

[213] I. Sobol’. “Sensitivity Estimates for Nonlinear Mathematical Models”. In: Math. Modeling &
Comp. Exp 1 (1993), pp. 407–414.

[214] C. Soize and R. Ghanem. “Physical Systems with Random Uncertainties: Chaos Representa-
tions with Arbitrary Probability Measure”. In: SIAM J. Scientific Computing 26 (Jan. 2004),
pp. 395–410.

[215] S. Song, Z. Lu, and H. Qiao. “Subset simulation for structural reliability sensitivity analysis”.
In: Reliability Engineering & System Safety 94.2 (2009), pp. 658–665.

[216] D. Straub, M. Ehre, and I. Papaioannou. Decision-theoretic reliability sensitivity. 2021.

[217] B. Sudret. “Global sensitivity analysis using polynomial chaos expansions”. In: Reliability
Engineering & System Safety 93.7 (2008), pp. 964–979.

[218] B. Sudret. “Meta-models for Structural Reliability and Uncertainty Quantification”. In: Proc.
5th Asian-Pacific Symp. Struct. Reliab. (APSSRA 2012), Singapore (Mar. 2012).

[219] B. Sudret and A. Der Kiureghian. Stochastic finite element methods and reliability: a state-of-
the-art report. Department of Civil and Environmental Engineering, University of California,
2000.

[220] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal
Statistical Society (Series B) 58 (1996), pp. 267–288.

[221] R. Tipireddy and R. Ghanem. “Basis adaptation in homogeneous chaos spaces”. In: Journal
of Computational Physics 259 (2014), pp. 304–317.

[222] M. E. Tipping. “Sparse Bayesian Learning and the Relevance Vector Machine”. In: J. Mach.
Learn. Res. 1 (Sept. 2001), pp. 211–244.

[223] E. Torre et al. “A general framework for data-driven uncertainty quantification under complex
input dependencies using vine copulas”. In: Probabilistic Engineering Mechanics 55 (2019),
pp. 1–16.

65



References Chapter 3. Concluding Remarks & Outlook

[224] J. A. Tropp and A. C. Gilbert. “Signal Recovery From RandomMeasurements Via Orthogonal
Matching Pursuit”. In: IEEE Trans. Inf. Theor. 53.12 (2007), pp. 4655–4666.

[225] P. Tsilifis et al. “Sparse Polynomial Chaos expansions using variational relevance vector ma-
chines”. In: Journal of Computational Physics 416 (2020), p. 109498.

[226] L. R. Tucker. “Some mathematical notes on three-mode factor analysis”. In: Psychometrika
31.3 (1966), pp. 279–311.

[227] E. Ullmann and I. Papaioannou. “Multilevel Estimation of Rare Events”. In: SIAM/ASA
Journal on Uncertainty Quantification 3.1 (2015), pp. 922–953.

[228] E. Vanmarcke and M. Grigoriu. “Stochastic Finite Element Analysis of Simple Beams”. In:
Journal of Engineering Mechanics 109.5 (1983), pp. 1203–1214.

[229] S. D. Veiga. “Global sensitivity analysis with dependence measures”. In: Journal of Statistical
Computation and Simulation 85.7 (2015), pp. 1283–1305.

[230] F. Wagner et al. “Multilevel Sequential Importance Sampling for Rare Event Estimation”. In:
SIAM Journal on Scientific Computing 42.4 (2020), A2062–A2087.

[231] P. Walley and W. Peter. Statistical Reasoning with Imprecise Probabilities. Chapman &
Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1991.

[232] P. Wang, Z. Lu, and Z. Tang. “A derivative based sensitivity measure of failure probability
in the presence of epistemic and aleatory uncertainties”. In: Computers & Mathematics with
Applications 65.1 (2013), pp. 89–101.

[233] P. Wang, Z. Lu, and Z. Tang. “An application of the Kriging method in global sensitiv-
ity analysis with parameter uncertainty”. In: Applied Mathematical Modelling 37.9 (2013),
pp. 6543–6555.

[234] Z. Wang and J. Song. “Cross-entropy-based adaptive importance sampling using von Mises-
Fisher mixture for high dimensional reliability analysis”. In: Structural Safety 59 (Mar. 2016),
pp. 42–52.

[235] P. Wiederkehr. Global Sensitivity Analysis with Dependent Inputs. 2018.

[236] N. Wiener. “The homogeneous chaos”. In: Amer. J. Math. 60 (1938), pp. 897–936.

[237] H. O. A. Wold. “Nonlinear estimation by iterative least squares procedures”. In: Research
Papers in statistics, Festschrift for J. Neyman. Ed. by F. N. David. New York, New York:
CRC Press, 1966, pp. 411–414.

[238] S. Wold, N. Kettaneh-Wold, and B. Skagerberg. “Nonlinear PLS modeling”. In: Chemomet-
rics and Intelligent Laboratory Systems 7.1 (1989). Proceedings of the First Scandinavian
Symposium on Chemometrics, pp. 53–65.

[239] S. Wold et al. “The collinearity problem in linear regression. The partial least squares (PLS)
approach to generalized inverses”. In: SIAM Journal on Scientific and Statistical Computing
5.3 (1984), pp. 735–743.

[240] Y.-T. Wu. “Computational methods for efficient structural reliability and reliability sensitivity
analysis”. In: AIAA journal 32.8 (1994), pp. 1717–1723.

[241] D. Xiu. “Efficient collocational approach for parametric uncertainty analysis”. In: Communi-
cations in Computational Physics 2 (Apr. 2007), pp. 293–309.

[242] D. Xiu and G. E. Karniadakis. “The Wiener–Askey polynomial chaos for stochastic differential
equations”. In: SIAM Journal on Scientific Computing 24.2 (2002), pp. 619–644.

66



Chapter 3. Concluding Remarks & Outlook References

[243] J. Zhang and A. A. Taflanidis. “Adaptive Kriging Stochastic Sampling and Density Approxi-
mation and Its Application to Rare-Event Estimation”. In: ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part A: Civil Engineering 4.3 (2018), p. 04018021.

[244] T. Zhang. “Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear
Models”. In: Advances in Neural Information Processing Systems. Ed. by D. Koller et al.
Vol. 21. Curran Associates, Inc., 2009.

[245] X. Zhu and B. Sudret. Emulation of stochastic simulators using generalized lambda models.
2021.

[246] K. M. Zuev et al. “Bayesian post-processor and other enhancements of Subset Simulation for
estimating failure probabilities in high dimensions”. In: Computers & Structures 92-93 (2012),
pp. 283–296.

67



Part II

Published Papers

68



Chapter 4

PLS-based adaptation for efficient PCE representation in
high dimensions

Original Publication

I. Papaioannou, M. Ehre, and D. Straub. “PLS-based adaptation for efficient PCE representation
in high dimensions”. In: Journal of Computational Physics 387 (2019), pp. 186–204.

Author’s contribution

Iason Papaioannou developed the idea of PLS-based PCE and implemented the algorithm with
help from Max Ehre. Max Ehre carried out all numerical experiments. Iason Papaioannou drafted
chapter 1-4 of the manuscript and Max Ehre drafted chapter 5. Iason Papaioannou and Max Ehre
jointly drafted the conclusions in chapter 6 and Daniel Straub provided revisions on the manuscript.

Abstract

Uncertainty quantification of engineering systems modeled by computationally intensive numerical
models remains a challenging task, despite the increase in computer power. Efficient uncertainty
propagation of such models can be performed by use of surrogate models, such as polynomial chaos
expansions (PCE). A major drawback of standard PCE is that its predictive ability decreases with
increase of the problem dimension for a fixed computational budget. This is related to the fact
that the number of terms in the expansion increases fast with the input variable dimension. To
address this issue, Tipireddy and Ghanem (2014) introduced a sparse PCE representation based on
a transformation of the coordinate system in Gaussian input variable spaces. In this contribution,
we propose to identify the projection operator underlying this transformation and approximate
the coefficients of the resulting PCE through partial least squares (PLS) analysis. The proposed
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PCE-driven PLS algorithm identifies the directions with the largest predictive significance in the
PCE representation based on a set of samples from the input random variables and corresponding
response variable. This approach does not require gradient evaluations, which makes it efficient
for high dimensional problems with black-box numerical models. We assess the proposed approach
with three numerical examples in high-dimensional input spaces, comparing its performance with
low-rank tensor approximations. These examples demonstrate that the PLS-based PCE method
provides accurate representations even for strongly non-linear problems.

4.1 Introduction

In many domains of science and engineering, one employs models of physical systems that aim
at representing accurately the behavior of the underlying system under future conditions. Input
parameters of models and future conditions are subject to uncertainties. Uncertainties can be
due to limited availability of data, limited understanding of the underlying physical process or
the intrinsic randomness of a phenomenon, such as wind or earthquake. Proper quantification of
uncertainties and their impact on the performance of the model is paramount for obtaining accurate
predictions. Efficient uncertainty propagation of complex numerical models remains a challenge
despite the increase in computer power. The challenge is two-fold: on the one hand, the analysis of
complex systems often requires the use of computationally intensive deterministic solvers that are
only available as black boxes, i.e. one does not have access to core routines of the computer code
and hence cannot modify them. On the other hand, output quantities of interest are integrals over
the space of uncertain inputs and numerical evaluation of these integrals suffers from the curse of
dimensionality, i.e. the number of model evaluations increases geometrically with increase of the
number of inputs for a fixed target accuracy.

Monte Carlo sampling can be easily coupled with black-box models and resolves the curse of di-
mensionality, but suffers from slow convergence rates. A possible remedy is to construct a surrogate
model of the computationally intensive model using a simple mathematical form and then employ
the surrogate model to perform uncertainty propagation. In particular, surrogate models based
on polynomial chaos expansions (PCE) [18, 52] have enjoyed extensive application in uncertainty
quantification due to their simplicity and guaranteed convergence property, among other reasons.
The basic idea of PCE is to project the model output onto a space spanned by multivariate poly-
nomials that are orthogonal with respect to the input probability measure. The projection can be
performed by stochastic Galerkin schemes [18, 51, 28], which are intrusive in the sense that they re-
quire modification of existing deterministic solvers, or collocation-type methods [41, 7, 3, 49], which
are non-intrusive and can be coupled with black-box deterministic solvers.

Non-intrusive PCE approaches estimate the coefficients of the expansion by numerical quadrature,
interpolation or regression methods. Both numerical quadrature and interpolation techniques with
tensor product grids suffer from the curse of dimensionality, i.e. their rate of convergence deteriorates
drastically with increase of the dimension, e.g. [3, 49]. Approaches that employ sparse grids to delay
the curse of dimensionality associated with integration/interpolation based on tensor product grids
can be found in [50, 49, 31].

Accurate estimation of the PCE coefficients with regression requires an experimental design with size
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equal to a multiple of the total number of PCE terms. The number of PCE terms in common trun-
cation schemes increases fast with increase of the number of inputs. This implies that in problems
with high-dimensional inputs, a large number of model evaluations is required for estimating accu-
rately the PCE coefficients with regression. A possible solution is to construct a sparse polynomial
basis through selecting the most significant terms in the PCE. This can be done though regulariza-
tion techniques, such as the least-angle regression [8] or l1-minimization, also known as compressive
sensing [16, 53]. Adaptive algorithms for determining sparse PCEs based on such techniques can be
found in [8, 38, 22].

The quality of the PCE approximation obtained with regression can be potentially increased by
choosing an appropriate experimental design set. A common choice is to use samples from the
distribution of the input random variables obtained with standard Monte Carlo, stratified or quasi-
random sampling schemes [9, 8]. Schemes based on the roots of the orthogonal polynomials are
discussed in [7, 40] and randomized versions thereof in [55]. Alternative random sampling schemes
that present optimal performance, especially in high-order PCEs, are discussed in [19, 30, 12]. Similar
approaches have been proposed for use within compressive sensing-based sparse PCEs methods [53,
19, 23].

Another non-intrusive approach for surrogate modeling with polynomial bases is provided by canon-
ical decompositions [15, 32, 17], a special case of low-rank tensor approximations (LRA). This
approach is based on approximating the model response by a linear combination of rank-one ap-
proximations, obtained as products of univariate polynomial expansions. The coefficients can be
determined adaptively, e.g. with a technique termed alternating least-squares regression [15, 11].
It is demonstrated in [25] that LRA performs better than sparse PCE in moderate dimensional
problems and small experimental designs.

Recently, it has been proposed to reduce the number of terms in the classical PCE representation
through performing a coordinate transformation in Gaussian space [42]. The transformed basis can
be adapted to the output quantity of interest, e.g. through performing a small initial number of
model evaluations. For example, the basis adaptation can be informed by evaluating the low-order
coefficients with a sparse-grid numerical quadrature. This approach has been combined with com-
pressive sensing for simultaneously determining the basis adaptation as well as the PCE coefficients
in [43].

An alternative approach for identifying important directions in the space of uncertain inputs is
the active subspace (AS) method [14, 13]. This approach is based on identifying the projection
subspace of highest variability through decomposing the covariance matrix of the gradient of the
model. Usually this matrix is estimated by a set of samples and corresponding gradient evaluations.
Although AS can lead to vast dimensionality reduction, in high-dimensional problems with black box
numerical models, the additional computational cost from the numerical evaluation of the gradients
might be prohibitive. The AS method has been combined with PCEs in [44], wherein the covariance
of the gradient vector is computed based on a low-order PCE.

In this contribution, we propose an approach that computes the basis transformation based on a
given experimental design with a technique termed partial least squares (PLS) regression [48]. The
proposed approach takes advantage of the structures in the covariance of the input parameters
and model response to determine the directions with largest predictive significance in the PCE
representation. Unlike the AS method, PLS does not require gradient evaluations at the samples,
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and hence is ideally suited for application to high-dimensional problems with black box numerical
models. The PLS method is widely used in the field of chemometrics, where regression with many
variables but only a few observations is common [21, 47]. Here, we employ a nonlinear version
of the PLS algorithm [46, 4] and modify it for use with PCE models. The proposed PCE-driven
PLS algorithm identifies simultaneously a set of dominant directions and the corresponding PCE
coefficients along each direction. The performance of the method is demonstrated with three high-
dimensional examples, a linear elastic bar with stochastic axial rigidity, a hysteretic oscillator under
random loading and a low-carbon steel plate with stochastic stiffness. The results are compared with
the ones obtained by LRA and it is shown that the proposed PLS-based PCE approach performs
consistently better than LRA for experimental design sizes in the order of the dimension of the
random variable space.

4.2 PCE representations

Let X be a random vector with outcome space Rn and joint PDF fX(x). Consider the Hilbert space
H of all functions from Rn to R with finite mean-square under the probability measure of X. The
inner product of two functions g, h ∈ H is defined as

〈g, h〉H =

∫

Rn

g(x)h(x)fX(x)dx . (4.1)

Consider the random variable Y = M(X) representing the response of an engineering model and
assume thatM∈ H. Let {hi(x), i ∈ N} be a complete orthonormal basis of H, thus satisfying

〈hi, hj〉H = δij , (4.2)

where δij is the Kronecker symbol. Since {hi(x), i ∈ N} is a complete basis of H, we can represent
every element of H as a linear combination of the functions {hi(x), i ∈ N}. Therefore Y can be
expressed as

Y =M(X) =
∞∑

i=0

aihi(X) . (4.3)

Truncating the representation of Eq. (4.3) after the first L terms, we get the following approximation
of Y

Ŷ =
L∑

i=0

aihi(X) , (4.4)

which converges to Y in the mean-square sense as L→∞. We now make the following assumption
on the distribution of the vector X.

Assumption 1. The random vector X follows the independent standard Gaussian distribution.

In such case, we can construct an orthonormal polynomial basis of H using products of one-
dimensional normalized Hermite polynomials [18]

Ψk(X) =

n∏

i=1

ψki(Xi) , (4.5)

where {ψi(X), i ∈ N} are the normalized (probabilist) Hermite polynomials and k = (k1, . . . , kn) ∈
Nn.
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Remark. In cases where the Gaussian restriction of assumption 1 does not apply, it is possible to
express the random variable Y as a function of an underlying independent Gaussian input through
performing an isoprobabilistic transformation [36].

The p-th order total degree Hermite polynomial chaos expansion (PCE) of Y is the representation
of Y on the space spanned by products of Hermite polynomials with total degree up to p

Ŷp =
∑

|k|≤p
akΨk(X) , (4.6)

where |k| = ∑n
i=1 ki. The total number of terms in Eq. (4.6) is

P =


 n+ p

p


 . (4.7)

The coefficients ak are found by projectingM(X) on the space spanned by {Ψk, |k| ≤ p}. According
to the projection theorem, this is equivalent to minimizing the norm of the truncation error of the
PCE representation ‖Y − Ŷp‖H = E[(Y − Ŷp)2]1/2. Using a set of samples X = {x(i), i = 1, . . . , N}
from the distribution of X and corresponding model evaluations Y = {y(i) =M(x(i)), i = 1, . . . , N},
one can estimate the coefficients ak through minimizing a sample estimate of E[(Y − Ŷp)

2], i.e.
through solving

â = arg min
a:a∈RP

1

N

N∑

i=1


y(i) −

∑

|k|≤p
akΨk(x(i))




2

. (4.8)

Eq. (4.8) corresponds to an ordinary least squares (OLS) regression problem [7].

Alternative choices of the experimental design set X can lead to a weighted least squares problem,
e.g. [12]. As seen in Eq. (4.7), the total number of terms P in the PCE representation increases
factorially with increase of either the dimension n or the polynomial degree p. A typical requirement
for obtaining reasonable estimates of the regression coefficients in OLS is that N > 2P , e.g. [2, 40].
It is noted that the minimum number of experimental points N depends on the sampling scheme
used and on the probability measure of X, and could potentially be significantly larger than 2P .
In fact, for standard Monte Carlo sampling it has been shown that stable solutions are obtained at
best for N ∼ O(P log(P )) and in some cases for N ∼ O(P 2) [12, 30].

Therefore, for a fixed number of experimental points N , the number of terms in the expansion that
can be computed with accuracy through solution of Eq. (4.8) is limited.

To avoid over-fitting and obtain reliable predictions even for relatively large P , several adaptive
approaches have been proposed for selecting the most significant terms in the PCE based on solving
regularized regression problems [8, 38, 22]. These approaches result in sparse PCE representations.
Although regression-based sparse PCEs perform well in moderate dimensional problems, their ap-
plicability in high dimensions (n > 100) is limited. This is due to the fact that they require the
evaluation of the full set of multi-indices k of the orthogonal polynomials as well as the assembly
and storage of the corresponding Vandermonde matrix. In particular, adaptive methods evaluate the
multi-indices for a typically high maximum polynomial degree. For the total degree construction of
Eq. (4.6), this requires a huge computing and storage capability in dimensions > 100, when consid-
ering that common algorithms for ordering the multi-indices scale exponentially with the dimension,
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e.g. [6]. Here, we focus on a different approach for reducing the number of coefficients in the PCE
that performs a linear coordinate transformation of the Gaussian parameter space.

4.2.1 Transformed PCE basis

Consider the following coordinate transformation:

Z = QTX , (4.9)

where Q is an n × n orthogonal matrix, i.e. satisfying QTQ = I. The columns of matrix Q are
orthonormal vectors and define a complete basis in Rn. Therefore, Eq. (4.9) defines a projection
of X on the coordinate system defined by the columns of Q. Due to the rotational symmetry of
the independent standard Gaussian distribution of X, any orthogonal transformation of X will also
be independent standard Gaussian. Therefore, the polynomials defined in Eq. (4.5) with argument
Z form a complete basis in the transformed space defined by the matrix Q. The p-th order PCE
representation of Y on the transformed space reads

Ŷ Q
p =

∑

|k|≤p
bkΨk(Z) =

∑

|k|≤p
bkΨk

(
QTX

)
. (4.10)

The representations of Eq. (4.10) and Eq. (4.6) are equivalent, i.e. it is possible to express the
coefficients bk in terms of ak [42]. The representation of Eq. (4.10), introduced by [42], provides
an additional flexibility in constructing sparse PCE representations through identifying dominant
effects in the form of linear combinations of input variables. For example, if a dominant direction in
X-space is known, then one possible construction of matrix Q is to set its first column equal to the
dominant direction and determine the remaining columns by the Gram-Schmidt process. In such
case, it might be possible to obtain an accurate representation of Y by only including the terms
in Eq. (4.10) for which {ki = 0, i = 2, . . . , n}. In [42], it is suggested to determine the dominant
direction by estimating the low-order PCE coefficients. As an example, the direction defined by the
linear PCE coefficients is q1 ∝ [a(1,...,0); . . . ; a(0,...,1)].

Consider now the case where one has identified a set of m dominant directions. We formalize the
process of retaining only the terms in Eq. (4.10) with non-zero indices in k for i ≤ m by defining
a reduced orthogonal matrix Qm of dimensions n×m, whose columns correspond to the dominant
directions. The corresponding PCE representation reads

Ŷ Qm
p =

∑

|km|≤p
bkmΨkm

(
QT
mX

)
, (4.11)

where km ∈ Nm. In the following section we discuss an approach that determines directions in
the input space with high predictive ability based on a set of experimental points. In the subse-
quent section, we employ this approach to construct the matrix Qm and compute the corresponding
coefficients {bkm ,km ∈ Nm}.

4.3 Partial least squares

Partial Least Squares (PLS) is a modelling technique that attempts to find relations between ob-
servable variables using latent variables [48, 21, 47]. This approach was originally developed in the
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field of chemometrics, where it is often the case that the number of independent variables in an
experimental setting is significantly larger than the number of data points, whereas the underlying
process is driven by a small number of latent (not directly observable) variables. The basic idea of
PLS is to find uncorrelated linear transformations of the original predictor variables that have high
covariance with the response variables.

Let X be an N×n matrix of samples from the input random vector X and let Y be the corresponding
N × 1 vector of model responses. It is convenient to assume that both X and Y are centered around
their means; centering implies the operation X ← X − X̄ , where X̄ denotes the arithmetic mean of
X . Standard PLS projects the matrix X to latent components ti of dimensions N×1 by sequentially
maximizing the covariance between the response Y and the latent components. After determining
each ti, it assumes a linear relationship between ti and Y and evaluates the coefficient of ti by OLS.

The procedure starts by evaluating the projection to the first latent component t1 = Xw1, where
w1 has dimensions n× 1, by maximizing the covariance between t1 and Y under the constraint that
‖w1‖ = 1. The corresponding optimization problem is stated as

w1 = arg max
w:w∈Rn,‖w‖=1

cov
(
YTXw,YTXw

)
. (4.12)

The exact solution of Eq. (4.12) is given by

w1 =
XTY
‖XTY‖ . (4.13)

The regression coefficient of t1 is then evaluated by OLS as

b1 =
tT

1 Y
tT

1 t1
. (4.14)

To obtain the next latent component, the residual matrices E and F for the regressor and response
matrices, X and Y, respectively, are evaluated by subtracting from X and Y their rank-one approx-
imations based on t1

E = X − t1p
T
1 , (4.15)

F = Y − b1t1 , (4.16)

where p1 is the load vector corresponding to t1 and defines the projection of the rows of X on the
first latent component. It is

p1 =
XTt1

tT
1 t1

. (4.17)

The procedure is continued by extracting the next component from the deflated matrices E and F ,
until a certain error criterion is satisfied. The latter is usually based on estimates of the mean-square
error of the PLS prediction. One possible approximation of this error is obtained through the norm
of the residual ‖F‖. Alternatively, a more robust estimate can be derived based on cross-validation,
e.g. [48]. The PLS process leads to a total ofm ≤ n latent components or scores ti and corresponding
weight vectors wi and load vectors pi. The PLS algorithm is summarized in Alg. 1.

Remark. The deflation of the response vector Y in step 9 of Alg. 1 is not required for computing
the PLS weights, i.e. it will not influence the resulting components and regression coefficients [21].

75



4.3. Partial least squares

Algorithm 1 PLS algorithm
1: Input Data matrix X and response matrix Y
2: Center matrices: X ← X − X̄ , Y ← Y − Ȳ
3: Set E = X , F = Y, i = 1
4: repeat
5: Compute weight: wi = ETF/‖ETF‖
6: Compute score: ti = Ewi

7: Compute load: pi = ETti/(t
T
i ti)

8: Compute regressor: bi = tT
i F/tT

i ti
9: Deflate: E ← E − tip

T
i , F ← F − biti

10: i← i+ 1
11: until change in ‖F‖ is smaller than εy

Remark. Alg. 1 is often termed PLS1 in the literature to distinguish it from the PLS algorithm for
multivariate outputs, termed PLS2.

The scores, weights and loads computed by the PLS algorithm, can be gathered in matrices T =
[t1, . . . , tm] ∈ RN×m, W = [w1, . . . ,wm] ∈ Rn×m and P = [p1, . . . ,pm] ∈ Rn×m. The PLS
algorithm determines each latent component as a linear combination of columns of the corresponding
residual matrix E . However, it is also possible to express ti as linear combinations of the data matrix
X [20, 35]. Define the matrix R ∈ Rn×m as follows

R = W
(
PTW

)−1
. (4.18)

The PLS scores can be expressed by projecting X on the space defined by the columns of matrix R,
i.e.

T = XR . (4.19)

The columns of matrix R = [r1, . . . , rm] can also be obtained through the following recursive relation
[21]

r1 = w1 ,

ri = wi − ri−1

(
pT
i−1wi

)
.

(4.20)

The approximation X̂ of the data matrix X using m PLS components can be expressed using the
load matrix P as follows

X̂ = TPT . (4.21)

4.3.1 Properties of the PLS matrices

PLS identifies dominant directions in the input space that can be potentially used within the context
of PCE in transformed basis. In order to proceed, it is useful to review the properties of the matrices
derived by the PLS process.

The PLS algorithm identifies orthogonal directions in the data space, i.e. it holds [21]

tT
i tj = 0 for i 6= j . (4.22)
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This implies that the PLS scores form an orthogonal basis in the space generated by the columns
of matrix X . Eq. (4.22) is a crucial ingredient of the PLS approach; it enables evaluation of the
regression coefficients bi one by one, as in step 8 of Alg. 1.

The columns of matrices W, P and R define directions in the space generated by the rows of matrix
X ; each direction corresponds to a linear combination of the underlying random variables X. The
matrix R contains the reduced basis in X-space that defines the PLS components, cf. Eq. (4.19).

The matrix W is orthogonal, i.e. it holds WTW = I [21], and hence its columns form an orthonormal
basis in the X-space. However, the same cannot be said for matrices P and R. Therefore, if the PLS
algorithm is applied not for prediction purposes but to determine orthogonal dominant directions
then the orthogonal projection matrix W is often the desired output, e.g. [54]. The matrices P and
R are not necessarily orthogonal, but their columns are mutually orthogonal, i.e. it holds PTR = I
[35].

In the context of PCE representations in transformed basis, it is possible to define the reduced basis
using the orthogonal directions of matrix W, i.e. setting Qm = W in Eq. (4.11). Projecting the
data on the columns of matrix W would lead to scores T̃ = XW, that differ from the PLS scores
given by Eq. (4.19). This is somewhat suboptimal as the PLS components are determined based on
maximizing the covariance with the prediction error obtained from regressing the PLS scores T (and
not T̃) with Y. Moreover, unlike the PLS scores T, the scores T̃ are not necessarily orthogonal.

As will become clear in the next section, employing directly the directions of the PLS components,
i.e. the columns of matrix R, to define the PCE reduced basis is of particular benefit; it allows
estimating simultaneously the reduced basis and PCE coefficients. However, as the matrix R is in
general not orthogonal, the projection of the random variables X on the columns of R will not be
independent standard Gaussian. This poses a problem to the PCE representation of Eq. (4.11): the
Hermite polynomial basis of Eq. (4.5) will not be orthogonal in the resulting transformed space. That
is, if the matrix R is not orthogonal then the orthogonal polynomial basis need to be determined
for the problem at hand, e.g. by application of the Gram-Schmidt process.

Next we look more closely at the properties of matrix R and determine a condition under which this
matrix becomes orthogonal.

Lemma 4.3.1. The matrix RTW is a lower triangular matrix with unit diagonal elements.

Proof. The proof follows from the recursive relation of Eq. (4.20). Eq. (4.20) can be rewritten as
follows

ri = wi +
i−1∑

j=1

cjwj ,

where cj ∈ R are coefficients, which are not used here. This gives

rT
i wk = 0 for i < k

and
rT
i wi = 1 ,

where we have used that wT
i wj = δij .
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We now consider the special case where the columns of the centered data matrix X have equal norm
and are mutually orthogonal, i.e.

XTX = ωI , (4.23)

where ω ∈ R>0 and I is the n× n identity matrix.

Proposition 4.3.1. If the data matrix X satisfies Eq. (4.23), then the matrix R is orthogonal, i.e.
RTR = I.

Proof. From Eq. (4.22) and expressing each PLS score as ti = X ri, we get

rT
i

(
XTX

)
rj = 0 for i 6= k .

Using Eq. (4.23), we obtain
rT
i rj = 0 for i 6= k .

From Eq. (4.20) and using lemma 4.3.1, we have

rT
i ri = rT

i wi − rT
i ri−1

(
pT
i−1wi

)
= rT

i wi = 1 .

Proposition 4.3.1 implies that if the pair-wise sample correlation of the underlying random variables
vanishes and the sample variances of all variables are equal, then the directions identified by PLS,
the columns of R, will be orthogonal and will have unit length. One interpretation of this result
is that if the underlying variable space is uncorrelated and has equal variances, then the directions
identified by PLS should contribute equally to the explained variance of X .

Although Eq. (4.23) is not necessarily true, under assumption 1 it is asymptotically true as N →∞.
Moreover, one can generate X through sampling techniques that aim at approximately satisfying
Eq. (4.23) for finiteN . This is achieved by stratification techniques such as Latin hypercube sampling
(LHS) [29], or a modified version that aims at minimizing the correlation between samples, e.g. [33].

4.4 PLS-based PCE

We now discuss how the PLS approach can be used in the context of the PCE representation in
transformed basis. We discuss two versions of PLS-based PCE representations; the first is based on
the linear PLS algorithm presented in Section 4.3 and the second is based on a nonlinear version of
the PLS algorithm tailored for use with PCE models.

4.4.1 Linear PLS-based transformation

As mentioned in the previous section, it is possible to build a PCE representation of Y by selecting
Qm = W or R in Eq. (4.11). The matrix of PLS weights W is orthogonal, while the matrix
R defining the PLS components in X-space is asymptotically orthogonal as N → ∞. Having
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determined the PLS directions with samples X = {x(i), i = 1, . . . , N} from the distribution of X
and corresponding model evaluations Y = {y(i) =M(x(i)), i = 1, . . . , N}, the same samples can be
used to determine the PCE coefficients {bkm ,km ∈ Nm} in Eq. (4.11) by OLS regression.

We note that for the first PLS component it holds r1 = w1, cf. Eq. (4.20). We make the following
observation.

Proposition 4.4.1. If the reduced basis is determined by a single direction (m = 1) as computed by
Alg. 1, then this direction is asymptotically equivalent to the direction defined by the first-order PCE
coefficients.

Proof. The first linear PLS direction r1 is obtained as follows

r1 ∝
N∑

i=1

(x(i) − X̄ )(y(i) − Ȳ) ,

where X̄ and Ȳ are the arithmetic means of {x(i), i = 1, . . . , N} and {y(i), i = 1, . . . , N}, respectively.
Under assumption 1, X̄ → 0 as N →∞. Therefore as N →∞, it is

r1 ∝
N∑

i=1

x(i)y(i) .

The vector of first-order PCE coefficients a1 is obtained by projecting Y = M(X) on the linear
Hermite polynomials {Ψk, |k| = 1} = {X1, . . . , Xn}. It is

a1 = E[M(X)X] = E[YX] .

As the samples x(i) and y(i) follow respectively the distribution of X and Y , the PLS direction r1

converges to the one defined by a1 as N →∞.

Proposition 4.4.1 implies that the linear PLS algorithm with m = 1 is asymptotically equivalent to
the linear PCE-driven Gaussian adaptation proposed in Section 3.1 of [42].

The linear PLS algorithm does not not always result in an optimal coordinate transformation because
the matrices W and R are evaluated assuming a linear relationship between the response and each
latent variable. Next we discuss an approach that adapts PLS for obtaining directions that are
optimal for use in the representation of Eq. (4.11).

4.4.2 PCE-driven PLS-based transformation

Several variants of the classical PLS method have been proposed for addressing problems where
the underlying process is nonlinear [37]. Here, we employ the approach proposed by [46] and later
modified by [4]. This approach was originally proposed for quadratic models and later extended for
use with neural networks [5]. Here, we adapt this approach for use in PCE representations.

The nonlinear PLS algorithm proceeds by obtaining a first approximation of each projection vector
wi with standard PLS. Thereafter, it assumes a nonlinear relationship between the response and the
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latent variable ti, which is fitted by OLS. Within the context of PCE representations, the nonlinear
relationship in each latent variable is a one-dimensional Hermite polynomial expansion of order p

M̂p
i (t) =

p∑

j=1

b̂pijψj(t) . (4.24)

For the first latent variable, the PCE regression problem is stated as

Y =

p∑

j=1

bp1jψj(t1) + e , (4.25)

wherein the operations are performed element-wise, t1 = Xw1 and e is the vector of regression
errors. Eq. (4.25) is solved for the coefficients {bp1j}. The vector w1 is then modified iteratively by
means of a Newton-Raphson linearisation of Eq. (4.25), i.e. by performing a first-order Taylor series
expansion of Eq. (4.25) with respect to w1 and then solving it for the increment ∆w1. This gives

∆w1 = (ATA)−ATe , (4.26)

where (·)− denotes the generalized inverse of a matrix and A is the gradient of the PCE model
with respect to the weights A = ∇wM̂p

1(Xw). Thereafter, w1 is updated, w1 = w1 + ∆w1,
and normalized. The latent component t1 is then updated, Eq. (4.25) is fitted anew and the next
increment ∆w1 is evaluated. This iterative procedure is continued until ∆w1 is sufficiently small.

To obtain the next latent component, the residual matrices E and F are evaluated by subtracting
from X its rank-one approximations based on t1 and from Y its PCE approximation using the first
direction M̂p

1(t1) and the same process is repeated using E and F as the new X and Y.

In order to obtain PLS directions that reflect the nonlinear nature of the underlying process while
avoiding over-fitting, we choose the polynomial degree in Eq. (4.25) for each latent variable by
evaluating each latent component for different polynomial degrees q = {1, . . . , p} and retaining the
one that results in the smallest modified leave-one-out error εqLOO; ε

q
LOO can be evaluated based on a

single PCE built using the Vandermonde matrix of the OLS problem [10, 8]. The PCE-driven PLS
algorithm is detailed in Alg. 2.

Remark. The matrix A required in step 13 of Alg. 2 can be computed analytically using the prop-
erties of the derivatives of the Hermite polynomials [1] and hence does not require additional model
evaluations.

The algorithm returns m quintuples {qi,M̂qi
i , t

qi
i ,w

qi
i ,p

qi
i }, with qi denoting the polynomial degree,

M̂qi
i the one-dimensional PCE representation, tqii the scores, wqi

i the weights and pqii the loads
of the i-th PLS component. The PLS directions rqii can then be evaluated through Eq. (4.18) or
Eq. (4.20). Using the one-dimensional fitted PCEs M̂qi

i and the PLS directions rqii , we obtain the
following representation

Ŷ PLS
m = M̂m(X) = b0 +

m∑

i=1

M̂qi
i

[
(rqii )TX̃)

]
, (4.27)

where b0 = Ȳ and X̃ = X − X̄ . Due to the asymptotic behavior of the matrix R = [rq11 , . . . , r
qm
m ],

described in Proposition 4.3.1, and because X̃ → X as N → ∞, the representation of Eq. (4.27) is
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Algorithm 2 PCE-driven PLS algorithm
1: Input Data matrix X and response matrix Y
2: Center matrices: X ← X − X̄ , Y ← Y − Ȳ
3: Set E = X , F = Y, i = 1
4: repeat
5: Compute weight: w0

i = ETF/‖ETF‖
6: for q ← 1, p do
7: Set wq

i = w0
i

8: repeat
9: Compute score: tqi = Ewq

i

10: Fit a 1D PCE of order q: b̂qi ← fit
[
F =

∑q
j=1 b

q
ijψj(t

q
i ) + ε

]

11: Set M̂q
i (t) =

∑q
j=1 b̂

q
ijψj(t)

12: Compute the error: F̂ = M̂q
i (t

q
i ); e = F − F̂

13: Compute: ∆wq
i = (ATA)−ATe with A = ∇wM̂q

i (Ew)
14: Set: wq

i ← wq
i + ∆wq

i

15: Normalize: wq
i ← wq

i /‖w
q
i ‖

16: until ‖∆wq
i ‖ is smaller than εw

17: Evaluate the relative leave-one-out error εqLOO as in [8]
18: Set {qi,M̂qi

i ,w
qi
i } as the triple {q,M̂q

i ,w
q
i } with the smallest εqLOO

19: Compute score: tqii = Ewqi
i

20: Compute load: pqii = ETtqii /((t
qi
i )Ttqii )

21: Deflate: E ← E − tqii (pqii )T, F ← F − M̂qi
i (tqii )

22: i← i+ 1
23: until change in ‖F‖ is smaller than εy
24: return {qi,M̂qi

i , t
qi
i ,w

qi
i ,p

qi
i }, i = 1 . . . ,m.
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asymptotically equivalent to the PCE representation of Eq. (4.11) with Qm = R, for the case where
only the main-effects in the transformed coordinate system are considered.

The PCE-driven PLS algorithm identifies simultaneously the PLS directions and the coefficients of
the one-dimensional PCEs in each PLS component. A disadvantage of this approach is that the
matrix R defining the PLS components is only asymptotically orthogonal. This implies that for
finite N the multivariate Hermite polynomials are not orthogonal with respect to the distribution
of the latent variables and hence the polynomial basis loses its optimality. However, as mentioned
in Subsection 4.3.1, tailored sampling techniques can be used to obtain approximately orthogonal
PLS directions for finite N .

An alternative approach would be to employ the orthogonal matrix W = [wq1
1 , . . . ,w

qm
m ] obtained

from Alg. 2 to define the orthogonal projection. In such case, the PCE coefficients need to be
evaluated anew through setting Qm = W and regressing Eq. (4.11) with the responses Y.

4.5 Examples

In this section, we evaluate the proposed method with three numerical examples in high dimensions.
We investigate the performance of both the linear PLS-based approach of Subsection 4.4.1 and the
PCE-driven PLS algorithm of Subsection 4.4.2. We compare the linear PLS approach with a single
latent component to the linear PCE-driven Gaussian adaptation of Tipireddy and Ghanem (TG)
[42], computed with a quadrature-based pseudo-spectral projection, to numerically verify Propo-
sition 4.4.1. We employ a sufficient number of quadrature points in the TG approach to ensure
accuracy of the result. We note that the proposed PLS methods are based on model evaluations
at a set of samples from the distribution of the input variables, whereas the TG approach applies
numerical quadrature to evaluate the PCE coefficients. Hence, a direct comparison of the com-
putational cost of PLS methods with the TG approach would be difficult to set up1. Instead, we
compare the performance of the PCE-driven PLS method against polynomial-basis low-rank approx-
imations (LRA), which can be constructed based on the same set of model evaluations. We use the
LRA implementation of UQlab [27], which employs alternating least-squares to fit the LRA with an
adaptive scheme for the rank selection while considering every polynomial order up to p within the
selected ranks. We choose to compare our method to the particular implementation of LRA, as it
has been shown that it performs better than sparse PCEs in moderate dimensional problems and
small experimental designs [25]. In addition, the computational cost of building an LRA in high
dimensions is feasible as its construction is based on products of univariate polynomial expansions.
In contrast, sparse PCEs, e.g. based on compressive sensing, require evaluation and storage of the
full Vandermonde matrix for high polynomial orders, which is prohibitive in very high dimensions
(see the relevant discussion in Section 4.2). For all methods, we choose a maximum polynomial
degree of p = 10 and for the LRA a maximum rank of R = 10.

The reduced basis identified by the columns of the R-matrix, {rqii , i = 1, . . . ,m}, need not be
orthogonal for finite sample size N ; this compromises the optimality of the Hermite PCE basis as
the basis will not be orthogonal in the transformed space. In order to quantify this error, we consider

1The first direction obtained by the linear PLS-based PCE can be viewed as a Monte Carlo approximation of the linear
PCE-based transformation of TG. Therefore, the linear PLS-based approach is itself a way of approximating TG.
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the Gramian of R

G(R) = RTR . (4.28)

If R is orthogonal, then it is G(R) = I. We therefore use ‖I−G(R)‖2 as the error measure, where
‖ · ‖2 denotes the 2-norm of a matrix.

We compare the proposed method against LRA in terms of the errors in the mean and variance of
the output quantity of interest as well as the generalization error errG. The latter is defined as the
mean-square of the residual

errG = E[(Y − Ŷ )2] , (4.29)

where Ŷ denotes the output response of the surrogate model. An estimate êrrG of errG can be
obtained using a large set of samples Xval, termed validation set.

The experimental designs for both PLS-PCE and LRA are generated via LHS with sample decorre-
lation, using the built-in Matlab function lhsdesign with correlation criteria; this function iteratively
generates samples with LHS to find the ones with the smaller sample correlation. For each example,
the analysis is performed 100 times to obtain confidence intervals (CI) on the predictive quantities.
Reference solutions are obtained with Monte Carlo simulation with 2× 105 samples.

4.5.1 Linear elastic bar

The first example consists of a linear elastic bar of length L = 1m, as shown in Fig. 4.1. The
displacement of the bar u(x) satisfies the following differential equation

− d

dx

(
D(x)

d

dx
u

)
= q(x) in [0, L] . (4.30)

The axial resistance of the bar D(x) = EA(x) is described by a homogeneous random field with

q

x D(x)

u(L)

L

Figure 4.1: Linear elastic bar with random axial rigidity.

lognormal marginal distribution with mean µD = 100kN and standard deviation σD = 10kN. The
autocorrelation function of the underlying Gaussian random field lnD is ρlnD(∆x) = exp(−|∆x|/l)
with correlation length l = 0.04m. The random field lnD is represented by a Karhunen-Loève (KL)
expansion [18] with 100 terms, which captures 95% of the variability of lnD. This leads to an
input random vector consisting of 100 independent standard Gaussian random variables. The bar is
subjected to a deterministic load q = 1kN/m. Eq. (4.30) is solved by the finite element method with
100 piecewise linear finite elements. The output quantity is the displacement at the tip of the bar
Y = u(L). Fig. 4.2 compares the log-densities obtained with the linear PLS-based PCE with m = 1
for increasing experimental design sizes to the one obtained with the linear PCE-based adaptation of
TG. The latter compares well with the reference solution computed with direct Monte Carlo, which
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Figure 4.2: Linear elastic bar: log-densities of response. Comparison of linear PLS-PCE (with
m = 1) with various design sizes with the linear PCE-based adaptation of Tipireddy and Ghanem
(TG) [42] and direct Monte Carlo (DMC) using 2× 105 samples.

implies that a single latent component suffices to describe the behavior of the model response. It is
also shown that the linear PLS-based PCE approaches the solution of TG as the number of samples
N increases, which verifies Proposition 4.4.1. Fig. 4.3 compares the generalization error obtained

Figure 4.3: Linear elastic bar: comparison of the linear PLS-based (solid line) and nonlinear (PCE-
driven) PLS-based (dashed line) adaptation at various design sizes and number of latent components.

with the linear and PCE-driven PLS methods for increasing number of latent components m. It
is seen that the PCE-driven PLS method using a single latent component yields consistently lower
errors than the linear PLS , whereas using additional components does not improve the results. This
is to be expected as the nonlinear PLS algorithm employed within the PCE-driven PLS approach
identifies the directions that minimize the residual in the PCE approximation. As the linear PLS
assumes a linear relationship between input and output and, hence, is not optimized for use with
higher order PCEs, it requires more latent components to capture the behavior of the model.

We now compare the performance of the nonlinear PLS-PCE method with the LRA surrogate based
on the same experimental design scheme. Both surrogates capture the response PDF increasingly
well as the number of points in the experimental design rises (Fig. 4.4). The PLS-based PCE
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Figure 4.4: Linear elastic bar: log-densities of response at various design sizes with 95 % CI. Results
of (nonlinear) PLS-PCE and LRA are compared with direct Monte Carlo (DMC) results using 2×105

samples.

model exhibits a bias at low experimental designs, which vanishes as the size of experimental design
increases. The variability of the PDF estimates obtained by the LRA model is in general larger than
the one of the PLS-based PCE model. Fig. 4.5 shows the one-dimensional PCE model along the
first latent direction. The nonlinearity (polynomial degree) of the PLS-based PCE model in general
increases with the increase of the experimental design size. At N/n = 2, the PLS-based PCE model
exhibits good convergence while the LRA model still produces occasional outliers (Fig. 4.6). In terms
of generalization error, the LRA error is slightly smaller for small experimental designs (N/n ≤ 0.5).
The PLS-based PCE error continuously decreases as we add points to the experimental design while
the LRA error seems to stagnate from N/n = 1 on (Fig. 4.7, top left). Both methods yield virtually
identical mean errors, while the variance error exhibits similar behaviour as the generalization error
(Fig. 4.7, bottom right & left). Across all N , the PLS-based PCE reduced space is constructed with
m = 2 directions, which exhibit relatively low orthogonality error (Fig. 4.7, top right).
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Figure 4.5: Linear elastic bar: 1-D Surrogate model along first PLS direction t1 vs. the design of
experiments at N/n = 0.5 (left) and N/n = 2 (right).

Figure 4.6: Linear elastic bar: scatter plots of (nonlinear) PLS-based PCE (left) and LRA (right)
response vs original response at N/n = 2 using a validation set of 2× 105 samples.
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Figure 4.7: Linear elastic bar: error measures with 95 % confidence intervals obtained from 100
repeated analyses with different experimental designs; reference solution obtained with 2 × 105

samples. The top right panel includes the average number of latent components (PLS directions)
mavg.
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4.5.2 Nonlinear oscillator

The second example, adapted from [45], is a hysteretic oscillator under random loading, defined by
the following differential equation:

mü(t) + cu̇(t) + k[αu(t) + (1− α)uyz(t)] = f(t) , (4.31)

where u(t), u̇(t) and ü(t) denote the displacement, velocity and acceleration of the oscillator. The
mass, stiffness and damping of the oscillator are m = 6 × 104kg, k = 5 × 106N/m, c = 2mζ

√
k/m

with ζ = 5%, and the yielding displacement is uy = 0.04m. The parameter α, which controls the
degree of hysteresis is set to α = 0.1. The parameter z(t) follows the Bouc-Wen hysteresis law

ż(t) =
1

uy

[
Au̇(t)− β|u̇(t)||z(t)|n̄−1z(t)− γu̇(t)|z(t)|n̄

]
, (4.32)

with β = γ = 0.5, A = 1 and n̄ = 3. The loading f(t) is a seismic load process modelled by a white
noise ground acceleration and discretized in the frequency domain as follows [39]

f(t) = −mσ
n/2∑

i=1

[Xi cos(ωit) +X(n/2+i) sin(ωit)] , (4.33)

where Xi, i = 1, . . . , n, are independent standard Gaussian random variables, ωi = i∆ω, ∆ω =
30π/n (the cut-off frequency is ωcut = 15π) and σ =

√
2S∆ω, where S = 0.03m2/s3 is the intensity

of the white noise. We use n = 300 terms in Eq. (4.33), which leads to an input random vector
X of dimension 300. We are interested in approximating the displacement of the oscillator at
t = 8s, u(8s). As in example 1, convergence of the linear PLS-based PCE with m = 1 to the

Figure 4.8: Nonlinear oscillator: log-densities of response. Comparison of linear PLS-PCE (with
m = 1) with various design sizes with the linear PCE-based adaptation of Tipireddy and Ghanem
(TG) [42] and direct Monte Carlo (DMC) using 2× 105 samples.

TG solution is again observed. However, here the TG approach with a single linear PCE-based
component cannot capture the behavior of the nonlinear oscillator (Fig. 4.8). Evidently, the strong
nonlinearity present in the hysteretic oscillator model is more challenging to both PLS-based PCE
and LRA compared to the bar example. In particular, we were unable to obtain non-diverging
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Figure 4.9: Nonlinear oscillator: log-densities of response at various design sizes with 95 % CI.
Results of (nonlinear) PLS-PCE and LRA are compared with direct Monte Carlo (DMC) results
using 2× 105 samples.

Figure 4.10: Nonlinear oscillator: 1-D Surrogate model along first PLS direction t1 vs. the design
of experiments at N/n = 0.5 (left) and N/n = 2 (right).
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Figure 4.11: Nonlinear oscillator: error measures with 95 % confidence intervals obtained from
100 repeated analyses with different experimental designs; reference solution obtained with 2× 105

samples. The top right panel includes the average number of latent components (PLS directions)
mavg.

surrogate models with the LRA as can be seen from Fig. 4.9. In contrast, PLS-based PCE yields a
series of converging surrogate models as N increases. That is, the response PDF is approximated
increasingly well and the generalization error decreases monotonously (Fig. 4.11, top left). The
polynomial degree of the one-dimensional PCE identified for the first latent directions increases on
average with the size of the experimental design, while the percentage of explained variance by the
first latent component decreases (Fig. 4.10). Therefore, the number of PLS components increases
with increase of the experimental design size (Fig. 4.11, top right). The response mean is captured
well by the PLS-based PCE model even with the smallest investigated N (Fig. 4.11, bottom left).
Note, that for this example, Fig. 4.11 depicts the unscaled absolute mean error since µu = 0.
In this example, depending on the experimental design, between 2–4 reduced space directions are
included by the PLS algorithm as N ≥ n. The orthogonality error increases slightly when N ≥ n,
yet it remains reasonably low for all N . Fig. 4.12 depicts the three Gramian matrices corresponding
to m = {2, 3, 4}. The first two directions which explain most of the output variance enclose angles
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Figure 4.12: Depiction of Gramian matrices of the nonlinear PLS algorithm resulting from m = 2
(left), 3 (center) and 4 (right).

close to π/2 in all three cases, whereas combinations of less important directions are responsible for
most of the orthogonality error. Thus, using R to define the transformation does not compromise
significantly the optimality of the Hermite polynomial basis.

4.5.3 Steel plate

For a third example, we consider a modified version of the example given in [26], which consists
of a low-carbon steel plate of length 0.32 m, width 0.32 m, thickness t = 0.01 m, and a hole
of radius 0.02 m located at the center. The Poisson ratio is set to ν = 0.29 and the density of
the plate is ρ = 7850 kg/m3. The horizontal and vertical displacements are constrained at the
left edge. The plate is subjected to a fixed surface load of q = 96 MPa, which acts on the right
narrow plate side. The Young’s modulus E(x, y) is considered uncertain and spatially variable.
It is described by a homogeneous random field with lognormal marginal distribution, mean value
µE = 2 × 105 MPa and standard deviation σE = 3 × 104 MPa. The autocorrelation function of
the underlying Gaussian field lnE is modeled by the isotropic exponential model, ρlnE(∆x,∆y) =
exp(−

√
∆x2 + ∆y2/l) with correlation length l = 0.04m. The random field lnD is discretized by

a KL expansion with M = 1000 terms, which yields a global relative variance error of 7%. The
stress (σ(x, y) = [σx(x, y), σy(x, y), τxy(x, y)]T ), strain (ε(x, y) = [εx(x, y), εy(x, y), γxy(x, y)]T ) and
displacement (u(x, y) = [ux(x, y), uy(x, y)]T ) fields of the plate are given through elisticity theory,
namely the Cauchy-Navier equations [24]. Given the configuration of the plate, the model can be
simplified under the plane stress hypothesis, which yields

G(x, y)∇2u(x, y) +
E(x, y)

2(1− ν)
∇(∇ · u(x, y)) + b = 0 . (4.34)

Therein, G(x, y) := E(x, y)/(2(1 + ν)) is the shear modulus, and b = [bx, by]
T is the vector of body

forces acting on the plate. Eq. (4.34) is discretized with a finite-element method. That is, the spatial
domain of the plate is discretized into 282 eight-noded quadrilateral elements, as shown in Fig. 4.13.
The scalar model output is the first principal plane stress

σ1 = 0.5(σx + σy) +
√

[0.5(σx + σy)]2 + τ2
xy

at node 11 (see green marker Fig. 4.13), which is where maximum plane stresses occur typically
in this example. Fig. 4.14 shows that the TG method with linear PCE-based adaptation performs
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Figure 4.13: FE-mesh of 2D-plate model. Green marker: location of maximum first principal stress
σ1.

Figure 4.14: Steel plate: log-densities of response. Comparison of linear PLS-PCE (with m = 1)
with various design sizes with the linear PCE-based adaptation of Tipireddy and Ghanem (TG) [42]
and direct Monte Carlo (DMC) using 2× 105 samples.

well for this example. Again, the linear PLS-based PCE with m = 1 approaches the TG solution
with increase of N . Comparing the linear and nonlinear PLS-PCE methods, we see again that the
nonlinear PCE-driven PLS algorithm gives consistently lower generalization errors with fewer number
of latent components than the linear PLS (Fig. 4.15). Comparing the performance of the nonlinear
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Figure 4.15: Steel plate: comparison of the linear PLS-based (solid line) and nonlinear (PCE-driven)
PLS-based (dashed line) adaptation at various design sizes and number of latent components.

PLS-PCE and LRA surrogates, we see that both methods are capable of producing a converging
approximation of the numerical model as the number of points in the experimental design increases
(Figs. 4.16 and 4.17). Fig. 4.17 indicates that the PLS-based PCE model represents the model
response more accurately in the tails. Moreover, the variability associated with the random choice
of the experimental design is very small across all N . Similar to the bar example, all PLS-based
PCE surrogates are constructed with m = 2 with two quasi-orthogonal directions in the reduced
space (Fig. 4.18, top right). The PLS-based PCE mean and generalization errors become smaller
than the corresponding LRA errors for N/n = 2 (Fig. 4.18, bottom & top left).
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Figure 4.16: Steel plate: log-densities of response at various design sizes with 95 % CI. Results of
(nonlinear) PLS-PCE and LRA are compared with direct Monte Carlo (DMC) results using 2× 105

samples.

Figure 4.17: Steel plate: scatter plots of PLS-based PCE (left) and LRA (right) response vs original
response at N/n = 2 using a validation set of 2× 105 samples.
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Figure 4.18: Steel plate: error measures with 95 % confidence intervals obtained from 100 repeated
analyses with different experimental designs; reference solution obtained with 2× 105 samples. The
top right panel includes the average number of latent components (PLS directions) mavg.
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4.6 Concluding remarks

This paper presented a novel sparse polynomial chaos expansion (PCE) representation based on a
transformation of the coordinate system in Gaussian space using a number of dominant directions.
These directions are identified based on partial least squares (PLS) analysis using a set of exper-
imental points.. Two PLS algorithms were investigated; the standard linear PLS algorithm and a
novel PCE-driven nonliear PLS algorithm. It was shown that the linear PLS with a single latent
component is asymptotically (as N → ∞) equivalent to the linear PCE-based adaptation of [42].
The proposed PCE-driven PLS algorithm is able to simultaneously determine the dominant direc-
tions in input space and the PCE coefficients in the transformed space. Three numerical examples
demonstrated the ability of the method to provide accurate estimates of the moments and PDF of
quantities of interest in problems with high-dimensional input spaces, provided that the behavior
of the model is governed by a small number of latent variables. The method presented compara-
ble performance to the low-rank tensor approximation (LRA) surrogate in moderately nonlinear
problems for experimental design sizes in the order of the input dimension. In addition, the pro-
posed method was able to provide an accurate representation of the response of a highly nonlinear
oscillator, whereas the LRA model was unable to obtain converging results for the same example.

4.6.1 Discussion on computational complexity

The linear PLS algorithm (Alg. 1) has complexity approximately O(m n N), with m being the
number of latent components. Solution of the OLS problem in the reduced space has complexity
O(P 2

m N), with Pm denoting the number of terms in the total degree expansion in reduced space.
The complexity of the nonlinear PCE-driven PLS algorithm is dominated by the Newton-Raphson
iteration (step 13 in Alg. 2), which has approximate cost O(n2 N) (for N > n). This step is repeated
at most l times, with l denoting the maximum number of Newton-Raphson iterations. Since the
nonlinear PLS process is repeated for each candidate polynomial degree and each latent component,
the computational complexity of the algorithm is approximately O(m p l n2 N), with p being the
maximum polynomial degree considered. Although the cost of Alg. 2 is often much higher than
the one of Alg. 1, it remains polynomial in the dimension n. It is noted that the computational
complexity of ordinary or regularized regression-based PCE in high dimensions is governed by the
complexity of the algorithm used to order the multi-indices of the orthogonal polynomials, which
is asymptotically 2O(n). This does not pose a problem to PLS-PCE methods as typically m << n.
Hence, the proposed algorithms are orders of magnitude more efficient than sparse PCEs based on
compressive sensing as n → ∞. It is also worth mentioning that the two PLS-PCE methods have
low memory requirements, as opposed to regularized regression algorithms that require storage of
the full Vandermonde matrix of dimensions N × P , with P increasing factorially with n for a total
degree construction.

4.6.2 Outlook

The size of the experimental design for obtaining accurate predictions depends on the nonlinearity of
the problem and on its effective dimension, i.e. the number of latent variables that have significant
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effect on the behavior of the output quantity. One possible future improvement of the method is to
estimate the size of the experimental design adaptively, for example based on a cross validation error
criterion. In the present implementation, the experimental design is generated with Latin hypercube
sampling with sample decorrelation, to minimize the error in the orthogonality of the polynomials in
transformed space. The performance of alternative sampling schemes will be investigated in future
studies. Additionally, the method can potentially be extended to the case of multivariate output
quantities. This could be enabled by application of the multivariate version of the PLS method, the
PLS2 algorithm.
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Abstract

Global sensitivity analysis is a central part of uncertainty quantification with engineering models.
Variance-based sensitivity measures such as Sobol’ and total-effect indices are amongst the most
popular and commonly used tools for global sensitivity analysis. Mutiple sampling-based estimators
of these measures are available, but they often come at considerable computational cost due to the
large number of required model evaluations. If the computational model is expensive to evaluate,
these approaches are quickly rendered infeasible. An alternative is the use of surrogate models, which
reduce the computational cost per sample significantly. This contribution focuses on a recently intro-
duced latent-variable-based polynomial chaos expansion (PCE) based on partial least squares (PLS)
analysis, which is particularly suitable for high-dimensional problems. We develop an efficient way
of computing variance-based sensitivities with the PLS-PCE surrogate. By back-transforming the
surrogate model from its latent variable space-basis to the original input variable space-basis, we
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derive analytical expressions for the sought sensitivities. These expressions depend on the surrogate
model coefficients exclusively. Thus, once the surrogate model is built, the variance-based sensitivi-
ties can be computed at negligible computational cost and no additional sampling is required. The
accuracy of the method is demonstrated with two numerical experiments of an elastic truss and a
thin steel plate.

5.1 Introduction

Surrogate models have received much attention due to their potential of alleviating computational
cost significantly in applications requiring elaborate and expensive numerical models, see e.g. [18,
16, 47]. A common example is the propagation of uncertainties through computationally intensive
numerical models. The general concept of surrogate modeling techniques is to establish an abstract,
parametrized input-output-relation that has similar properties as the original model. The param-
eters of the surrogate model are determined based on a finite set of original model evaluations, to
maximize similarity between the surrogate and the original model according to a suitable criterion.
Subsequently, the surrogate model can be used to cheaply approximate the original model and, in
the context of uncertainty quantification, compute statistics of the output or a quantity of interest
derived thereof.

In many scenarios, a statistical characterization of the pure model output is less important than
an analysis of its sensitivity with respect to changes and variability in the model inputs. Surrogate
models have also proven useful in efficiently performing model sensitivity analysis - an otherwise
computationally intensive task. Sensitivity analysis is a collection of measures and tools designed
to determine how the random inputs and/or deterministic model parameters of a model influence
its output or a quantity of interest derived from the output. Amongst these, one can discern lo-
cal (derivative-based) [25, 1, 15, 35, 36] and global [41, 19, 24, 51, 8] sensitivity measures. Local
sensitivities are suitable to determine the impact an input has on the output in the vicinity of a
nominal value, by virtue of the model structure. However, they neglect the global significance of
the input. Global sensitivity measures on the other hand take into account the entire input vari-
able support as well as the variability of the inputs over their support. Regression-based sensitivity
measures aim at linearly regressing the output on its inputs to identify global sensitivity indices;
this approach works well if the output depends approximately linearly on the inputs [24, 51]. A
second category of global sensitivity measures is referred to as ANOVA (ANalysis Of VAriance) [13].
Generally speaking, these measures aim at quantifying an input variable’s influence (or that of a
combination of inputs) through identifying the fraction of output variance it causes. A recent, third
category of global sensitivity measures can be summarized under the terms ’moment-independent’
or ’distribution-based’ [7, 34, 32, 6, 57, 17]. The underlying idea is to quantify the sensitivity of the
output to a given input through the distance between the output density conditional on the given
input from its unconditional counterpart. Our work focusses on variance-based sensitivity measures.
The most commonly used variance-based measures are the Sobol’ index [45] and the total-effect
index [21], which can be computed using Monte Carlo methods [41, 26, 44, 29, 42], Fourier analysis
[11, 2] or surrogate models as in [46, 28]. The works of [46, 28] have derived variance-based sen-
sitivity measures directly from the model coefficients of conventional polynomial chaos expansions
(PCE) [55] and polynomial-based low-rank approximations (LRA) [10], respectively.
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Along these lines, we derive global, variance-based sensitivity measures for the model output from
the coefficients of basis-adapted PCEs [49]. The basic idea of basis adaptation is to identify a
low dimensional latent variable space and construct a PCE in this space. We focus on a recently
introduced approach for identifying the latent variables and computing the corresponding PCE coef-
ficients termed partial least squares-driven polynomial chaos expansion (PLS-PCE) [37]. PLS-PCE
allows application of PCEs in very high dimensions. By back-transforming the PCE from the latent
variable space to the original input variable space, we enable estimation of the sensitivity indices as
with the standard PCE model [46].

The paper is structured as follows: in Section 5.2, we review the PLS-PCE surrogate model, its
construction and some important properties. In Section 5.3, we give a brief introduction to variance-
based sensitivity analysis and its application in the context of polynomial basis surrogate models.
In Section 5.4, we develop the methodology to compute sensitivities based on the model coefficients.
In Section 5.5, we demonstrate the new method based on two numerical examples and in Section 5.6
we provide some concluding remarks.

5.2 Partial least squares and polynomial chaos expansions

Let X be a random vector on the outcome space Rd with joint cumulative distribution function
(CDF) FX and Y(X) = Y ∈ R. If Y is square-integrable, i.e. EX [Y(X)2] < ∞, it belongs to a
Hilbert space H with inner product of any two functions g, h ∈ H

〈g, h〉H = EX [g(X)h(X)] (5.1)

=

∫

Rd

g(x)h(x)fX(x)dx, (5.2)

where fX(x) is the joint probability density function (PDF) of X. g and h are orthogonal if

〈g, h〉H = EX [g(X)h(X)] = 0. (5.3)

Note, that if g and h can be written as products of univariate functions gi and hi, i = 1, ..., d, of the
components of X and these components are statistically independent, the following holds:

〈g, h〉H =
d∏

i=1

EXi [gi(Xi)hi(Xi)]. (5.4)

5.2.1 Polynomial Chaos Expansion

Given a complete and orthonormal basis of H, {hi(X), i ∈ N}, Y may be expressed as a linear
combination of the basis functions:

Y = Y(X) =
∞∑

i=0

bihi(X). (5.5)
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Then, since Y ∈ H, the approximation

Ŷn = Ŷ(X) =

n∑

i=0

bihi(X) (5.6)

asymptotically (n→∞) converges to Y in the mean-square sense. Henceforth, without loss of gen-
erality, we will consider the case FX = Φd, where Φd denotes the d-variate independent standard-
normal CDF. If the joint PDF of X is known, one can express X as a function of standard normal
random variables through an iso-probabilistic transformation [39]. Then, one can construct an or-
thonormal polynomial basis ofH using products of one-dimensional normalized Hermite polynomials

Ψk(X) =
d∏

i=1

ψki(Xi) (5.7)

where {ψi(X), i ∈ N} are the normalized (probabilist) Hermite polynomials and k = (k1, . . . , kd) ∈
Nd. The PCE of maximum total order p reads

Ŷp =
∑

|k|≤p
bkΨk(X). (5.8)

The total number of basis functions in the PCE P is given combinatorially in terms of the dimensions
d and the maximum total polynomial order p:

P =

(
d+ p

p

)
. (5.9)

The coefficients b are computed through a projection of Y onto the space spanned by {Ψk, |k| ≤ p},
where the projection can be transformed into an equivalent ordinary least squares (OLS) problem [4].
Eq. (5.9) indicates a fast growth of the associated regression problem with increasing dimension d,
rendering PCEs intractable for high-dimensional problems. Sparse PCE methods have been proposed
to relax this constraint by solving a modified, L1-regularized least-squares problem, which penalizes
the number of terms in the expansion and thus reduces P [5]. This is also known under the term
’compressive sampling/sensing’ [12, 56]. Nevertheless, the computation of a sparse PCE still requires
computing the entirety of all possible basis elements, which can become a second (combinatorial)
bottleneck in addition to the solution of the regression problem.

5.2.2 Basis adaptation

In order to address this problem, one may rotate the PCE representation onto a new basis defined
by the new variables Z = QTX, where Q ∈ Rd×d and QTQ = I, with I denoting the identity
matrix. Then, an equivalent PCE representation is given by [49]

Ŷ Qp =
∑

|k|≤p
akΨk(Z) =

∑

|k|≤p
akΨk

(
QTX

)
. (5.10)

The coordinate transformation allows for the construction of PCEs along important directions of
the problem input space. These directions are defined by linear combinations of the original variable
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vector X, the coefficients of which are stored in the rows of Q. Then, by retaining only the m < d
most important directions in Q, one obtains a matrix Qm and the corresponding PCE reads

Ŷ Qm
p =

∑

|k̃|≤p
ak̃Ψk̃

(
QT
mX

)
, (5.11)

where k̃ ∈ Nm. [49] compute the basis adaptation Qm by evaluating first- or second-order PCE
coefficients only with a sparse-grid numerical quadrature. [50] couple this approach with compressive
sensing to simultaneously identify Qm and the PCE coefficients in the latent space. In [37], we show
that important directions can be identified efficiently based on a set of original function evaluations
via partial least squares (PLS). The next section summarizes the approach.

5.2.3 Partial least squares-based PCE

PLS finds a relationship between variables X and Y based on N observations of both quantities
[54, 22, 53]. X ∈ RN×d stores observations from X and Y ∈ RN×1 stores the corresponding
responses. PLS sequentially identifies latent components ti ∈ RN×1 such that they have maximum
covariance with Y. After determining each ti, PLS assumes a linear relationship between ti and
Y and evaluates the corresponding coefficient ai of ti by OLS. After each sequence, the matrices
X and Y are deflated by the contribution of the i-th PLS-component. Components are extracted
until a certain error criterion is met, which can be formulated e.g. through the norm of the residual
response vector or via cross-validation.

The nonlinear version of PLS in turn relaxes the assumption of a linear relationship between latent
component and the response. A number of nonlinear PLS algorithms have been proposed [40]. Here
we employ the approach of [52, 3], which introduces an additional loop into the algorithm for running
a Newton-Raphson procedure iterating between the current latent component and the response. In
the context of PCE, the nonlinear relationship between the {ti}i=1,...,m and the response is a one-
dimensional Hermite polynomial expansion [37]. The coefficients of the PLS-driven PCE can be
computed simultaneously with the latent variable structure as a byproduct of the PLS algorithm.
Ultimately, the nonlinear PCE-driven PLS algorithm, which is developed in [37] and summarized in
Alg. 3, identifies m latent components. For each component, it returns the direction ri and the 1-
dimensional PCE along this direction, which is defined by its polynomial order qi and the coefficient
vector ai. The polynomial order is identified with leave-one-out cross validation. For each (i-th)
latent component, the nonlinear PLS iteration is repeated for different polynomial orders and qi is
chosen as the order minimizing the leave-one-out error. The PLS-PCE reads

Ŷ PLS
m = a0 +

m∑

i=1

(aqii )Tψqi

[
(ri)

TX̃
]
, (5.12)

where a0 = Ê[Y], ψqi(X) is a vector function assembling the evaluations of the one-dimensional
Hermite polynomials up to order qi and X̃ = X − µX , where µX is the columnwise sample mean
of the training data X . The PLS directions ri can be evaluated in terms of the PLS weights wi and
loads pi computed by Alg. 3 through the following recursive relation [23]:

r1 = w1

ri = wi − ri−1

(
pT
i−1wi

)
.

(5.13)
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Algorithm 3 PCE-driven PLS algorithm [37]
1: Input Data matrix X and response matrix Y
2: Center matrices: X ← X − X̄ , Y ← Y − Ȳ
3: Set E = X , F = Y, i = 1
4: repeat
5: Compute weight: w0

i = ETF/‖ETF‖
6: for q ← 1, p do
7: Set wq

i = w0
i

8: repeat
9: Compute score: tqi = Ewq

i

10: Fit a 1D PCE of order q: âqi ← fit
[
F = (aqi )

Tψq(t
q
i ) + ε

]

11: Set M̂q
i (t) = (âqi )

Tψq(t
q
i )(t)

12: Compute the error: F̂ = (âqi )
Tψq(t

q
i ); e = F − F̂

13: Compute: ∆wq
i = (ATA)−ATe with A = ∇w(âqi )

Tψq(Ew)
14: Set: wq

i ← wq
i + ∆wq

i

15: Normalize: wq
i ← wq

i /‖w
q
i ‖

16: until ‖∆wq
i ‖ is smaller than εw

17: Evaluate the relative leave-one-out error εqLOO as in [5]
18: Set {qi, âqii ,w

qi
i } as the triple {q, âqi ,w

q
i } with the smallest εqLOO

19: Compute score: tqii = Ewqi
i

20: Compute load: pqii = ETtqii /((t
qi
i )Ttqii )

21: Deflate: E ← E − tqii (pqii )T, F ← F − (âqii )Tψqi(t
qi
i )

22: i← i+ 1
23: until change in ‖F‖ is smaller than εy
24: return {qi, âqii , t

qi
i ,w

qi
i ,p

qi
i }, i = 1 . . . ,m.
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Let R = [r1, . . . , rm] ∈ Rd×m be the matrix that collects all PLS directions. The matrix R is not
necessarilty orthogonal, i.e. in general RTR 6= I. However, in [37] it is shown that RTR → I as
N →∞ and hence Eq. (5.12) is asymptotically equivalent to a PCE of the form of Eq. (5.11), where
only the main effects in the latent components are considered.

5.3 Global sensitivity analysis

5.3.1 Variance-based sensitivity analysis

The idea behind variance-based sensitivity analysis for model outputs Y is to decompose V[Y ] into
partial variances that are attributable to variable combinations in the input X. If X is jointly
uniform on [0, 1] and its components are independent, this is accomplished by projecting Y onto a
unique, orthogonal basis with respect to the uniform joint density. The representation of Y is then
the Sobol’-Hoeffding decomposition [45], which reads:

f(X) = f0 +

d∑

i=1

fi(Xi) +

d∑

i=1

d∑

j=i+1

fij(Xi, Xj) + · · ·+ f12...d(X). (5.14)

Each summand in Eq. (5.14) represents the influence of a distinct variable subset of X, XA, and
due to the orthogonality property, the partial variance associated with A is given immediately by
V[fA]. The Sobol’ index is then the ratio of the partial variance due to fA and the total variance
[45]:

SY,A = V[fA]/V[Y ]. (5.15)

Alternatively, one can utilize the closed Sobol’ index [38], which is based on the partial variance
contributed by XA and any subset of XA, i.e.,

Sclo
Y,A =

∑

B⊆A
V[fB]/V[Y ]. (5.16)

While the Sobol’ and closed Sobol’ indices are identical for single variables, i.e., card(A) = 1, the
former represents the net interaction in between all elements of XA and the latter represents the
total contribution of all elements of XA. Finally, the total-effect index ST [21, 38] is based on the
partial variance contributed by all variable combinations containing any element from XA, such
that

STY,A =
∑

A∩B6=∅
V[fB]/V[Y ]. (5.17)

The decomposition of Eq. (5.14) is generalizable to arbitrary joint distributions with independent
components through an iso-probabilistic transformation.

5.3.2 PCE-based sensitivity analysis

A major benefit of representing a response Y ∈ H as Ŷ with an orthogonal basis of H lies in the
simplicity of finding statistical properties of Ŷ and thus - if the model accurately represents Y -
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approximately of Y . Given the model representation in Eq. (5.8) with P terms, e.g. the first two
moments can be computed as

E[Ŷ ] = b0, V[Ŷ ] =
∑

0<|k|≤p
b2k. (5.18)

Moreover, [46] showed that the indices SŶ ,A and ST
Ŷ ,A of the representation in Eq. (5.8) can also be

found merely by post-processing its coefficients b. For a given subset of the input variables denoted
by the index set A, we define a boolean index vector IA ∈ {0, 1}d×1 s.t. IAi = 0 if i /∈ A and IAi = 1
if i ∈ A. In the same way, we define such a boolean vector for the multi-index k s.t. Iki = 0 if ki = 0
and Iki = 1 if ki > 0. Then, the PCE-based sensitivity indices read

ŜŶ ,A =
1

V[Ŷ ]

∑

IA=Ik,
0<|k|≤p

b2k, Ŝclo
Ŷ ,A =

1

V[Ŷ ]

∑

IA−Ik≥0,
0<|k|≤p

b2k, ŜT
Ŷ ,A =

1

V[Ŷ ]

∑

(IA)TIk 6=0,
0<|k|≤p

b2k. (5.19)

5.4 Global sensitivity analysis with PLS-PCE

Here we derive expressions for SŶ and ST
Ŷ
for Ŷ of the form in Eq. (5.12). Note, that if the columns

of R form an orthonormal basis, i.e., if RTR = I, the sensitivity indices of any latent variable
component Zi = rT

i X̃ can be obtained immediately as

SŶ PLS
m ,Zi

= Sclo
Ŷ PLS
m ,Zi

= ST
Ŷ PLS
m ,Zi

=

qi∑

j=1

(aqiij)
2

/
m∑

i=1

qi∑

j=1

(aqiij)
2. (5.20)

However, as discussed in Section 5.2, the condition on R only holds asymptotically as N → ∞. In
practice, the sensitivity indices associated with the latent variables are of less interest than those
of the original inputs. That is, one is interested in computing sensitivities of Ŷ PLS

m to the original
input vector X rather than Z. For convenience, we restate the format of Ŷ PLS

m :

Ŷ PLS
m = a0 +

m∑

i=1

(aqii )Tψqi
[
(ri)

T(X − µX )
]
. (5.21)

In the following two subsections we derive expressions and state corresponding algorithms for com-
puting the Sobol’ and total-effect indices of the PLS-PCE model response with respect to X for
both large and small sample sizes.

5.4.1 Computation in the asymptotic limit N →∞

Asymptotically, i.e. for N →∞, we have

lim
N→∞

µX = 0

and [37] proves that
lim
N→∞

‖ri‖= 1 i = 2, . . . ,m,
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while the first PLS-direction ‖r1‖ always has length 1. [9] provides a multinomial theorem for non-
normalized probabilist’s Hermite polynomial of order k, which is restated in the following for the
normalized poylnomials.

Theorem 5.4.1. Let j ∈ N0 be the polynomial order of the normalized probabilist’s Hermite poly-
nomial ψj, d ∈ N and X ∈ Rd×1. Let further k ∈ Nd0 be an index set and s ∈ Rd×1 such that∑d

i=1 s
2
i = 1. Then,

ψj(s
TX) =

√
j!
∑

|k|=j

d∏

l=1

skll√
kl!
ψkl(Xl)

=
√
j!
∑

|k|=j

sk11 · sk22 · ... · skdd√
k1! · k2! · ... · kd!

Ψk(X). (5.22)

Therefore, in the asymptotic limit we can use Eq. (5.22) to write

Ŷ PLS
m = a0 +

m∑

i=1

∑

|k|≤qi
aqii|k|

√
|k|! r

k1
i1 · rk2i2 . . . rkdid√
k1! · k2! . . . kd!

Ψk(X). (5.23)

In practice, the sample mean decays towards 0 relatively fast, such that the approximation error
introduced by neglecting the variable centering in Eq. (5.23) is typically orders of magnitude smaller
than the leading error introduced by the surrogate model itself. The error due to ‖ri‖6= 1 grows
with the number of included components m (with m = 1, the representation is exact since ‖r1‖= 1
always). Alternatively, it is possible to derive exact expressions with respect to both non-zero sample
mean and non-unit-length component directions and we will do so in Subsection 5.4.2.

Eq. (5.23) is merely a linear combination of m standard PCEs, each representing a latent com-
ponent in standard PCE format, so that we can write

Ŷ PLS
m = a0 +

∑

|k|≤qmax

ckΨk(X), (5.24)

where
qmax = max

i∈{1,...,m}
(qi). (5.25)

The equivalent PCE coefficients c read

ck =

m∑

i=1

aqii|k|
√
|k|!

d∏

l=1

rklil√
kl!
, (5.26)

where
{
aqii|k| : qi < |k|

}
= 0. Thus, one can apply the standard post-processing defined by Eq. (5.19)

to the format in Eq. (5.24) in order to obtain variance-based sensitivity indices based on [46]. The
corresponding subroutine is referred to as PCE_sensitivites.

Alg. 4 efficiently determines the Sobol’ and total-effect indices of a PLS-PCE model. The algo-
rithm requires to compute the set of multi-indices k = (k1, ..., kd) ∈ Nd that satisfy |k| ≤ qmax.
This multi-index set is only computed once at the beginning using a routine termed multi_index.
Various methodologies such as the ball-box-algorithm [48] have been proposed for computing the set
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Algorithm 4 PLS-based sensitivities - asymptotic case
1: Input PLS components qi,aqi , ri ∀ i = 1, ...,m
2: Initialize c = 0
3: qmax = max

i∈{1,...,m}
(qi)

4: Compute PCE multi-index set, e.g.: α← multi_index(d, qmax) ∈ NP×d
5: for i← 1,m do
6: j = 1
7: while |αj | ≤ qi do
8: Set current multi-index k← αj ∈ N1×d

9: Compute coefficients ck ← aqii|k|
√
|k|!∏d

l=1
r
kl
il√
kl!

10: Augment: cj ← cj + ck
11: j ← j + 1
12: Compute sensitivities: S, Sclo, ST ← PCE_sensitivities(α, c)
13: Return S, Sclo, ST

of multi-indices of a PCE. We observe that the index set k required for the PLS-based sensitivity
indices is equivalent to that of a full PCE formulation of maximum polynomial order qmax. For-
tunately, the additional degrees of freedom emerging from the latent variable formulation (i.e. the
ri) lead to significantly smaller required polynomial degrees in PLS-PCE compared to sparse and
classical PCE models. That is, the computational bottleneck of computing k is not critical in most
applications.

5.4.2 Corrections for small samples sizes

The presented methodology to extract sensitivities from a PLS-PCE model is asymptotically ex-
act. However, PLS-PCE is a surrogate modeling technique, which is particularly suitable when the
number of samples is small compared to the problem dimension. In this case, the exact sensitivities
accounting for non-zero sample mean µX and non-unit-length PLS-directions ri can still be derived.
Rewriting Eq. (5.21), we have

Ŷ PLS
m = a0 +

m∑

i=1

(aqii )Tψqi
(
‖ri‖(r̃i)T(X − µX )

)
, (5.27)

where r̃i = ri/‖ri‖. We can view the argument of each polynomial ψj in Eq. (5.27) as an affine
transformation of the PLS-component z = r̃T

i X. Then, expressing each ψj(βz + γ) in Eq. (5.27)
in terms of ψj(z), where β = ‖ri‖ and γ = −(ri)

TµX , provides a representation of the PLS-PCE
model that can be exactly transformed in the form of Eq. (5.23) even for small sample sizes (but in
the asymptotic limit as well). We start with the following well-known product theorem [20, 43]:

ψj(βz) =
√
j!

bj/2c∑

l=0

βj−2l(β2 − 1)l√
(j − 2l)!2ll!

ψj−2l(z). (5.28)

Moreover, expanding ψj(z + γ) in a Taylor series around z yields

ψj(z + γ) =

j∑

t=0

(
j

t

)√
t!

j!
γj−tψt(z). (5.29)
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Consequently,

ψj
(
‖ri‖(r̃i)T(X − µX )

) (5.28)
=

√
j!

bj/2c∑

l=0

ζ1(j, l)ψj−2l((r̃i)
T(X − µX ))

(5.29)
=

√
j!

bj/2c∑

l=0

ζ1(j, l)

j−2l∑

t=0

ζ2(j, l, t)ψt((r̃i)
TX) (5.30)

(5.22)
= j!

bj/2c∑

l=0

ζ1(j, l)

j−2l∑

t=0

ζ2(j, l, t)
∑

|k|=t
ζ3(k)Ψk(X),

where

ζ1(j, l) =
‖ri‖j−2l(‖ri‖2−1)l√

(j − 2l)!2ll!
(5.31)

ζ2(j, l, t) =

(
j − 2l

t

)√
t!

(j − 2l)!
(−(ri)

TµX )j−2l−t (5.32)

ζ3(k) =
r̃k1i1 · r̃k22 . . . r̃kdd√
k1! · k2! . . . kd!

. (5.33)

In the same way as for the asymptotic formulation, this yields cumulative coefficients for a given
multivariate basis function associated with k. An efficient way to compute the equivalent PCE-
coefficients, which ensures the index set α only has to be computed once, is presented by Alg. 5.

Algorithm 5 PLS-based sensitivities - non-asymptotic case

1: Input PLS components ai, qi, ri ∀ i = 1, ...,m
2: Initialize c = 0
3: qmax = max

i∈{1,...,m}
(qi)

4: Compute PCE multi-index set, e.g.: α← multi_index(d, qmax) ∈ NP×d
5: for i← 1,m do
6: for j ← 0, qi do
7: for l← 0, bj/2c do
8: Compute ζ1(j, l) from Eq. (5.31)
9: for t← 0, j − 2l do

10: Compute ζ2(j, l, t) from Eq. (5.32)
11: Get the multi-index subset of length t: A = {αp : |αp| = t}
12: for p← 1, len(A) do
13: Get current multi-index k← αp ∈ N1×d

14: Compute ˜ζ3(k) from Eq. (5.33)
15: Augment: cp ← cp + j!aqiit ζ1ζ2ζ3

16: p← p+ 1
17: Compute sensitivities: S, Sclo, ST ← PCE_sensitivities(α, c)
18: Return S, Sclo, ST
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5.4.3 A comment on variance-based sensitivity analysis with the standard basis
adaptation format

In the previous two subsections, we have derived expressions for the Sobol’ and total-effect index of
a basis-adapted PCE of the format in Eq. (5.12), which differs from the standard basis adaptation
format in Eq. (5.11). While the former is a summation of m univariate PCEs of m latent variables,
the latter represents anm-variate PCE of the latent variables. In the following we state an expression
for the standard basis-adapted PCE format in terms of Hermite polynomials of the original inputs
only. We write k̃ ∈ Nm and k ∈ Nd to express multi-indices in the latent and original input spaces,
respectively. Then,

Ŷ Qm
p

(5.11)
=

∑

|k̃|≤p
ak̃Ψk̃

(
QT
mX

)

(5.22)
=

∑

|k̃|≤p
ak̃

m∏

j=1

∑

|k|=k̃j

√
|k|!

d∏

`=1

Qk`m,`j√
k`!

ψ` (X`)

=
∑

|k̃|≤p
ak̃

m∏

j=1

∑

|k|=k̃j

ζkΨk (X) , ζk =
√
|k|!

d∏

`=1

Qk`m,`j√
k`!

. (5.34)

Back-transforming Eq. (5.34) to a standard PCE is non-trivial due to the inner summation, which
induces multiple occurences of the k-th multivariate basis polynomial Ψk in the full expansion.
Instead of back-transforming Eq. (5.34) to a standard PCE, one may plug it directly in the definitions
of the variance-based sensitivity indices in Eqs. (5.15) and (5.17) and collect the partial variance
contributions associated with any Ψk. Such an approach is chosen in [28] for deriving variance-based
sensitivities of canonical LRAs. We leave this task for a future work. We remark that for the case
where the basis-adapted format of Eq. (5.11) does not consider mixed effects, i.e. it is |k̃| = max(k̃i),
the coefficients of the equivalent standard PCE representation will be identical to the ones defined
in Eq. (5.26) with rij set to Qm,ij . In such case, Alg. 4 is directly applicable for computing the
sensitivity indices.

5.5 Numerical experiments

In this section, we evaluate the proposed methods with one low-dimensional and one high-dimensional
numerical experiment. We examine the performance of both the asymptotic approximation proposed
in Alg. 4 and the exact computation performed with Alg. 5. The results are compared to those ob-
tained with other surrogate modelling techiques, namely sparse PCE based on least-angle regression
[5] and LRAs in the canonical polyadics format [28]. For all polynomial bases (sparse PCE, LRA,
PLS-PCE) we prescribe a maximum degree of p = 10, for the LRA a maximum rank of R = 10 and
for the PLS-PCE the same maximum number of components, i.e. m = 10. When computing LRAs,
we use an adaptive scheme for the rank selection while considering every polynomial order up to p
within the selected ranks [10]. All experimental designs are generated via latin hypercube sampling.
In both examples, we draw 100 random experimental designs to quantify the relative error mean
and standard deviation, where the error for a quantity Q with respect to to its reference solution
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Qref is defined as their difference:
εQ = Q−Qref .

In our studies, Q refers to the Sobol’ and the Total-effect indices and the respective reference solutions
Qref are obtained with double-loop Monte Carlo and the estimators stated in [26, 42] depending on
the example. The latter estimators are based on drawing a single set of n independent input samples
of dimensions d and splitting them in two equally sized subsets. Permuting columns between the
subsets yields a dependent sample of size n(d+2)/2 based on which all Sobol’ and total-effect indices
can be estimated. We refer to these as permutation matrix estimators.

5.5.1 Elastic truss

We consider an elastic truss that consists of 23 rods as depicted in Fig. 5.1 [30]. Horizontal and di-
agonal rods have cross-sections A1, A2 and Young’s moduli E1, E2, respectively. The truss sustains
6 vertical point loads P1 - P6. The input variable definitions are provided in Tab. 5.1. We compute

4m 4m 4m 4m 4m 4m

2m

P1P2P3P4P5P6

umax

E1, A1

E1, A1 E2, A2
E2, A2

Figure 5.1: 2-D truss example.

Table 5.1: Input variable definitions of the truss example.

Random Distribution Mean Standard

Variable deviation

A1 [m2] Log-Normal 2 · 10−3 2 · 10−4

A2 [m2] Log-Normal 1 · 10−3 1 · 10−4

E1, E2 [Pa] Log-Normal 2.1 · 1011 2.1 · 1010

P1 - P6 [N ] Gumbel 5.0 · 104 7.5 · 103

Sobol’ and total-effect indices for the maximum truss deflection umax using Alg. 4. Reference solu-
tions (direct Monte Carlo - DMC) are obtained based on n = 106 independent samples (Fig. 5.2)
with the permutation matrix estimators.

Fig. 5.2 indicates good agreement of the PLS-PCE-based sensitivities with the reference solution.
Fig. 5.3 shows that all three surrogate-based sensitivity indices are estimated with similar mean
relative error and convergence rate as N increases. Fig. 5.4 indicates the same for the relative er-
ror variance. Fig. 5.5 shows a performance comparison of Algs. 4 and 5 for the truss. Here, the
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Figure 5.2: Sobol’ (left) and total-effect (right) indices of umax obtained with N = 100.

Figure 5.3: Mean relative errors for the two most influential inputs E1 and A1, computed with PCE,
LRA and PLS-PCE.
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Figure 5.4: Relative error standard deviation for the two most influential inputs E1 andA1, computed
with sparse PCE, LRA and PLS-PCE.
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asymptotic approximation introduces only negligible error into the sensitivity estimate. For vari-
ables of little significance, which yield small absolute values for the corresponding sensitivity indices
(e.g. E2, A2), the surrogate modelling error is much larger than the error due to the asymptotic
approximation of the sensitivity indices so that there is no visible difference left in the error plots.
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Figure 5.5: Mean relative errors with 90% CI, computed with asymptotic approximation (Alg. 4)
and exactly (Alg. 5).
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5.5.2 Steel plate

For the second example, we consider a modified version of the example given in [33], which consists
of a low-carbon steel plate of length 0.32 m, width 0.32 m, thickness t = 0.01 m, and a hole of radius
0.02 m located at the center. The Poisson ratio is set to ν = 0.29 and the density of the plate is
ρ = 7850 kg/m3. The horizontal and vertical displacements are constrained at the left edge. Both
the surface load q, which acts on the right plate side, and the plate’s Young’s modulus E(x, y) are
considered uncertain and spatially variable. Both are described by homogeneous random fields in
two and one spatial dimension, respectively. E has log-normal marginal distribution, mean value
µE = 2× 105 MPa and standard deviation σE = 3× 104 MPa. The autocorrelation function of the
underlying Gaussian field lnE is modeled by the isotropic exponential model

ρlnE(∆x,∆y) = exp(−
√

∆x2 + ∆y2/lE) (5.35)

with correlation length lE = 0.08m. The random field lnE is discretized by a Karhunen-Loève-
expansion (KLE), i.e.

E(x, y) = exp

{
µlnE + σlnE

dE∑

i=1

√
λEi ϕ

E
i (x, y)ξEi

}
, (5.36)

where µlnE and σlnE are the parameters of the log-normal marginal distribution of E, {λqi , ϕEi } are
the eigenpairs of the correlation kernel Eq. (5.35) and ξE ∈ RdE×1 is a standard-normal random
vector. The number of terms in the expansion dE is chosen such that 90% of the random field variance
is represented by the discretization in Eq. (5.36), which yields dE = 169. Selected eigenfunctions of
ρlnE are shown in Fig. 5.7. q also has log-normal marginal distribution with mean value µq = 60 MPa
and standard deviation σq = 12 MPa. The autocorrelation function of the underlying Gaussian field
ln q is also modeled by an isotropic exponential model,

ρln q(∆y) = exp(−|∆y|/lq) (5.37)

with correlation length lq = 0.02m. The random field ln q is also discretized by a KLE, s.t.

q(y) = exp



µln q + σln q

dq∑

i=1

√
λqiϕ

q
i (y)ξqi



 , (5.38)

where µln q and σln q are the parameters of the log-normal marginal distribution of q, {λqi , ϕ
q
i } are

the eigenpairs of the load correlation kernel Eq. (5.37) and ξq ∈ Rdq×1 is a standard-normal random
vector constituting the model input of the plate together with ξE , i.e. X = [ξq, ξE ]T . With the
same accuracy criterion on the represented random field variance as for E (> 90%) , one obtains
dq = 32. The first 4 eigenfunctions of ρln q are shown in Fig. 5.8.
The stress field

σ(x, y) = [σx(x, y), σy(x, y), τxy(x, y)]T ,

strain field
ε(x, y) = [εx(x, y), εy(x, y), γxy(x, y)]T

and displacement field
u(x, y) = [ux(x, y), uy(x, y)]T
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Figure 5.6: FE-mesh of 2D-plate model with uncertain Young’s modulus E subject to random surface
load q.

of the plate are given through elasticity theory, namely the Cauchy-Navier equations [27]. Given
the configuration of the plate, the model can be simplified under the plane stress hypothesis, which
yields

G(x, y)∇2u(x, y) +
E(x, y)

2(1− ν)
∇(∇ · u(x, y)) + b = 0. (5.39)

Therein, G(x, y) = E(x, y)/(2(1 + ν)) is the shear modulus, and b = [bx, by]
T is the vector of body

forces acting on the plate. Eq. (5.39) is discretized with a finite-element method. That is, the spatial
domain of the plate is discretized into 282 eight-noded quadrilateral elements, as shown in Fig. 5.6.
The scalar model output is the maximally occurring first principal plane stress

σ1 = 0.5(σx + σy) +
√

[0.5(σx + σy)]2 + τ2
xy.

The FE-model of the plate with random inputs is illustrated in Fig. 5.6. We compute sensitivity in-
dices for both the random variables characterizing the uncertainty associated with the single modes
of the KL-decompositions as well as for the two random fields as such. The random field sensitivity
analysis can be understood as interpreting each random field as a single input. Thus the variance
decomposition of the model output with respect to its inputs is computed once with respect to each
single random variable input and once with respect to two subgroups of these random variables each
characterizing one of the random fields in the problem description. Random field-oriented Sobol’
indices are always of closed form (see Eq. (5.16)) as the classical Sobol’ index would conceal most
of the contributed variance. The PLS-PCE-based sensitivity indices are computed with Alg. 4 and
compared against LRA-based sensitivities and Monte Carlo reference solutions. The latter (DMC)
are obtained with 4 · 106 samples using the double-loop (2 · 103 samples per stage) to compute the
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Figure 5.7: The nine most important eigenfunctions of the exponential, isotropic Young’s modulus
correlation kernel ρlnE .
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Figure 5.8: First four eigenfunctions of exponential load correlation kernel ρln q, ϕ
q
1(y) - ϕq4(y).

Figure 5.9: Closed Sobol’ (left) and total-effect (right) indices for the two random fields q and E
obtained with N = 103 .

random field sensitivities and with n = 2× 104 independent samples using the permutation matrix
estimators to compute the random variable sensitivities. For this application, sparse PCE surrogates
are difficult to obtain beyond relatively low total polynomial degrees (p ≤ 3) due to the large input
dimension d. PCE-based sensitivity indices are thus not considered in this study.

The random field-oriented sensitivity index means are plotted in Fig. 5.9 and attribute a larger
influence to the random load field q(y) compared to the material parameter field E(x, y). The
PLS-PCE-based indices are consistently closer to the reference than the LRA-based indices while
both surrogate-based indices approximate the reference well. According to Fig. 5.10, both surrogate
indices converge in standard deviation with increasing N while the LRA-based mean relative error
does not decrease further beyond a certain sample size. The PLS-PCEs are superior in this respect
as the corresponding mean relative error decreases further as N → 103. The means of the sensitivity
indices of the random variables corresponding to the KL eigenmodes (the 10 most important ones)
are plotted in Fig. 5.11. The random variable corresponding to the first mode of the load random
field is by far the most important input. The next 9 random variable inputs in the ranking all
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Figure 5.10: Relative error mean and standard deviation for sensitivity estimates of the maximum
first main stress to q and E.

Figure 5.11: Sobol’ (left) and total-effect (right) indices for the ten most important random field
modes obtained with N = 103 .
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correspond to modes of the material parameter field E(x, y) and their associated eigenfunctions are
plotted in Fig. 5.7. For the largest mode-oriented sensitivity indices, the PLS-PCE yields slightly
better approximations of the reference than the LRA while both approximations are fairly accurate.
Figs. 5.12 and 5.13 show the convergence study of the mode-oriented Sobol’ and total-effect indices
as N increases. The dominant random variable ξq1 reproduces the convergence behaviour of the ran-
dom field-oriented sensitivity study. Namely, the mean relative error of the LRA-based sensitivity
reaches a plateau and increases again after reaching a certain experimental design size (N ≈ 300).
The remainder of the 10 most important inputs (all E-modes) show consistent convergence in the
relative error mean and standard deviation as N increases.

5.6 Conclusion

This paper derives analytical expressions for variance-based sensitivity indices of PLS-PCE surro-
gate model outputs and formulates two algorithms for their efficient computation. The expressions
for the sensitivities involve only the surrogate model coefficients. Thus, these sensitivities can be
computed with negligible additional computational effort once the surrogate model is identified by
a mere post-processing of the model coefficients. For the first algorithm, a multinomial theorem
for Hermite polynomials is applied to derive expressions for the sensitivity measures based on the
model coefficients, which is asymptotically exact. That is, with the number of samples N → ∞,
these estimators exactly match the theoretical Sobol’ and total-effect indices of the surrogate model.
For the second algorithm, corrected expressions are derived, which are exact also when N is small.
These can be used when the experimental design is small. The sensitivity estimates obtained with
both algorithms are compared to Monte-Carlo-based reference solutions as well as estimates based
on sparse PCEs and LRAs for two different numerical examples: A low-dimensional (d = 10) truss
example as well as a high-dimensional plate example (d = 201). For both examples, the PLS-PCE-
based sensitivity estimates approximate the reference solution well and perform at least as good
as the two alternative surrogate-based estimators. Finally, we comment on the applicability of our
approach to general basis adaptation formats: we recast the standard basis adapted format in terms
of the original input but find that a back-transformation to a standard PCE format based on the
stated expression is non-trivial. Instead, sampling-free variance-based sensitivity indices may be
computed for standard basis-adapted PCEs by analysing the stated expression term by term as
done for canonical LRAs in [28]. We leave this to future research. The presented procedure can be
extended to multivariate output in combination with the PLS2 algorithm [31].
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5.6. Conclusion

Figure 5.12: Relative error mean and standard deviation for the Sobol’ and total-effect indices
of the ten (1.-5.) most influential model inputs computed with LRA and PLS-PCE over varying
experimental design size N .
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Figure 5.13: Relative error mean and standard deviation for the Sobol’ and total-effect indices of
the ten (6.-10.) most influential model inputs computed with LRA and PLS-PCE over varying
experimental design size N .
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Abstract

To date, the analysis of high-dimensional, computationally expensive engineering models remains
a difficult challenge in risk and reliability engineering. We use a combination of dimensionality
reduction and surrogate modelling termed partial least squares-driven polynomial chaos expansion
(PLS-PCE) to render such problems feasible. Standalone surrogate models typically perform poorly
for reliability analysis. Therefore, in a previous work, we have used PLS-PCEs to reconstruct the
intermediate densities of a sequential importance sampling approach to reliability analysis. Here, we
extend this approach with an active learning procedure that allows for improved error control at each
importance sampling level. To this end, we formulate an estimate of the combined estimation error
for both the subspace identified in the dimension reduction step and surrogate model constructed
therein. With this, it is possible to adapt the training set so as to optimally learn the subspace
representation and the surrogate model constructed therein. The approach is gradient-free and thus
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can be directly applied to black box-type models. We demonstrate the performance of this approach
with a series of low- (2 dimensions) to high- (869 dimensions) dimensional example problems featur-
ing a number of well-known caveats for reliability methods besides high dimensions and expensive
computational models: strongly nonlinear limit-state functions, multiple relevant failure regions and
small probabilities of failure.

6.1 Introduction and previous work

An important challenge in the design, analysis and maintenance of engineering systems is the man-
agement of the associated uncertainties. It is common practice to analyse engineering systems by
employing computational models that aim at representing the physical processes relevant to the
system in consideration. These computational models take the form of an input-output mapping.
Therein, uncertainty is represented by equipping the model input with an appropriate probabilistic
model. Undesirable system responses are defined through a limit-state function (LSF). Reliability
analysis is concerned with quantifying the probability of failure, which can be expressed as a d-fold
integral of the input probability mass over the failure domain defined by non-positive values of the
LSF, where d is the number of uncertain model inputs (see Section 6.2). In engineering, target fail-
ure probabilities are typically small; hence, reliability analysis requires the estimation of rare event
probabilities. Reliability analysis approaches can be categorized into approximation (e.g. the first-
and second-order reliability methods FORM and SORM [67, 28, 18]) and simulation methods. If the
LSF is only weakly nonlinear and the input dimension of the model is moderate, FORM and SORM
perform well even for small failure probabilities. The simplest simulation method is the Monte Carlo
(MC) method [55]. The MC method performs well independent of the problem input dimension,
however its performance deteriorates as the failure probability decreases if the computational budget
is fixed. Various techniques such as importance sampling (IS) [13, 25, 2] and line-sampling [30, 40]
have been proposed to mitigate this dependence on the magnitude of the failure probability. More
recently, sequential MC methods such as subset simulation [3] and IS-based sequential methods
[42, 43, 84, 62, 69, 61] have been used successfully to efficiently solve high-dimensional reliability
problems with small failure probabilties. If the computational model is expensive and a hierarchy of
increasingly coarse and cheap models is accessible, multilevel and multi-fidelity [64] MC methods can
help alleviate computational cost by performing most model evaluations on the cheaper models (e.g.,
a discretized differential equation with coarser resolution). In [80], multilevel MC is combined with
subset simulation and recently [83] have introduced multilevel sequential IS based on the sequential
IS approach in [62]. All of the above-mentioned approaches are designed to work with the prob-
abilistic computational model directly. However, often this model encompasses a numerical solver
for (sets of) partial differential equations such that a model evaluation is computationally expensive.

This has increasingly lead researchers to turn towards surrogate model-based reliability methods.
Such methods attempt to approximate the expensive computational model with a cheap surrogate
model, whose coefficients are identified based on a set of original model evaluations: the training set.
[26] uses a polynomial response surface method for performing reliability analysis as early as 1989.
[29] proposes an improved version of the response surface method. Since then, a variety of surrogate
modelling techniques has been applied in the context of reliability analysis such as artificial neural
networks [58, 35, 72], support vector machines [34, 12, 11], Gaussian process regression-based models
[22, 21] and projection to polynomial bases including polynomial chaos expansions (PCE) [48, 46,
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45, 74] and low-rank tensor approximations [39].

Static, global surrogate models suffer from a decrease in accuracy in the tails of the model re-
sponse distribution such that they are of limited use for reliability analysis. In this context, static
refers to surrogate models that are constructed based on a fixed training set and global refers to
surrogate models that are trained and evaluated on the entire input space (as opposed to locally
con- and re-fined models). Thus, one can distinguish two strategies to overcome this limitation:

• Locality : Surrogate models are coupled with sequential sampling techniques which serve to
focus the training set and accuracy in the relevant regions around the failure hypersurface [57,
12, 11, 6, 59].

• Adaptivity (in the training set): The training set is augmented with points that are most
informative with respect to the failure probability estimate according to an ’in-fill criterion’.
The refined surrogate model is then used to estimate the probability of failure with a sampling
method and a large number of cheap samples. Such procedures are summarized under the
terms active learning (AL) or optimal experimental design. AL in combination with crude MC
have been applied in reliability-based optimization and reliability analysis in [22, 54, 8, 66]. [72]
investigates the performance of splines and neural networks in combination with directional
sampling and IS and [21, 14] combine Gaussian process models with IS. [71] proposes a crude
MC procedure relying on a Gaussian process surrogate model with PCE-based mean trend
(PCE-Kriging) along with a novel termination criterion for the AL.

Often, both AL and sequential sampling techniques are combined using various combinations of
in-fill criteria and sequential sampling techniques such as adaptive IS [5] and subset simulation [12,
33, 6, 11]. [53] turns away from surrogate models that naturally provide a measure of prediction
uncertainty such as Gaussian processes or support vector machines and demonstrate how an AL
algorithm can be realized with PCE using a bootstrap estimator of the PCE prediction uncertainty.

In spite of a plethora of existing approaches to surrogate-assisted reliability analysis, the litera-
ture on high-dimensional problems (d ≥ 100) in this context is scarce. [37, 47] propose to perform
reliability analysis with a static, global Kriging model constructed in a low-dimensional linear sub-
space of the original model input space, which is identified by the active subspaces method [16] and
autoencoders, respectively. Both [37, 47] apply their methods to moderate-dimensional problems
with up to d = 20 and d = 40 input variables, respectively. [56] uses sliced inverse regression to
identify a linear low-dimensional subspace and construct a static, global PCE in this space based
on which they perform reliability analysis directly. [90] develops these ideas further by combining
the active subspace-Kriging model with an AL approach and applies this combination to a high-
dimensional analytical problem of d = 300 that posesses a perfectly linear low-dimensional structure.

In this work, we propose an importance sampler based on a dimensionality-reducing surrogate
model termed partial least squares-driven PCE (PLS-PCE) [60] to efficiently solve high-dimensional
reliability problems with underlying computationally expensive, nonlinear models and small tar-
get probabilities (O(10−9)). Similar to sliced inverse regression and active subspaces, PLS-PCE
achieves dimensionality reduction by identifying a low-dimensional linear subspace of the original
input space. Our method is based on [59] but introduces AL to refine the PLS-PCE approximation
in each sequence of the IS procedure. In [59], PLS-PCE models are reconstructed in each level of a
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sequential importance sampling (SIS) scheme that is used to gradually shift the importance density
towards the optimal importance density. In this work, we augment this approach with two novel
contributions to rare event simulation of computationally expensive, potentially (but not necessarily)
high-dimensional and nonlinear models:

1. We demonstrate how to perform active learning with PCE models by deriving an in-fill criterion
from large-sample properties of the PCE coefficient estimates.

2. We use projection to linear subspaces to construct efficient surrogate models for high-dimensional
problems and include the subspace estimation error in the in-fill criterion. This means, we are
not only learning the surrogate model but also the subspace itself.

Using AL in the context of PLS-PCE-based SIS provides effective error control and benefits from
the local confinement of the learning procedure of each subspace/surrogate model combination to
the support of the current importance density. Constructing local variance estimates for polyno-
mial models in the way we propose here creates new possibilities to design goal-oriented surrogate
modelling approaches that are driven by adaptive sampling based on such models (where so far,
Gaussian processes were the dominant tool).

In Section 6.2, we set up the reliability problem and discuss the crude MC sampler of the prob-
ability of failure. Section 6.3 reviews IS and a variant of SIS [62] that is at the base of our approach.
Section 6.4 introduces PLS-PCE models and their construction. Subsection 6.5.2 details the theoret-
ical foundations of active learning of PLS-PCE models within SIS and summarizes our approach. In
Section 6.6, we present comprehensive investigations of the method’s performance in two engineering
examples and provide a detailed discussion of the results. Conclusions are given in Section 6.7.

6.2 Reliability analysis

Consider a system represented by the computational model Y : DX → R with d-dimensional contin-
uous random input vector X : Ω→ DX ⊆ Rd, where Ω is the sample space of X and by FX(x), we
denote its joint cumulative distribution function (CDF). Y maps to the system response Y = Y(x)
with the model input x ∈ DX . Based on the response Y , unacceptable system states are defined
by means of the limit-state function (LSF) g̃(Y ). Defining g(x) = g̃ ◦ Y(x) and introducing the
convention

g(x) =

{
≤ 0,Failure

> 0,Safety,

the failure event of the system is defined as F = {x ∈ DX : g(x) ≤ 0}. The probability of failure is
given by [19]

p = P(F) =

∫

DX
I[g(x) ≤ 0]fX(x)dx = EfX [I(g(X) ≤ 0)] , (6.1)

where fX(x) = ∂dF/(∂x1 . . . ∂xd)|x is the joint probability density function (PDF) ofX and the in-
dicator function I[·] equals 1 if the condition in the argument is true and 0 otherwise. Without loss of
generality, one may formulate an equivalent reliability problem with respect to the standard-normal
probability space using the random vector U : Ω → Rd. Given an isoprobabilistic transformation
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T : DX → Rd, such that U = T (X), see, e.g., [31, 49], and defining G(U) = g(T−1(U)), one can
write Eq. (6.1) as

p =

∫

Rd

I[G (u) ≤ 0]ϕd (u) du = Eϕd
[I(G(U) ≤ 0)] , (6.2)

where ϕd denotes the d-dimensional independent standard-normal PDF. The crude MC estimate of
Eq. (6.2) is

p̂MC =
1

n

n∑

k=1

I[G(uk) ≤ 0], uk
i.i.d.∼ ϕd, (6.3)

where uk i.i.d.∼ ϕd means that {uk}nk=1 are n samples that are independent and identically distributed
according to ϕd. This estimate is unbiased and has coefficient of variation (CoV)

δMC =

√
1− p
np

. (6.4)

The number of samples required to compute p̂MC at a prescribed CoV δ0 reads

n0 =
1− p
δ2

0p

p�1≈ 1

δ2
0p
. (6.5)

Therefore, crude MC is inefficient for estimating rare event probabilities as, by definition, p� 1 and
thus n0 becomes large.

6.3 Sequential importance sampling for rare event estimation

Variance reduction techniques can be used to reduce the CoV of the probability estimate at a fixed
budget of samples compared to crude arlo. One of the most commonly used variance reduction
methods is the IS method. Let h be a density, such that h (u) > 0 whenever G (u) ≤ 0. Then, one
can rewrite Eq. (6.2)

p =

∫

Rd

I(G (u) ≤ 0)

ω(u)︷ ︸︸ ︷
ϕd (u)

h (u)
h (u) du = Eh [I(G(U) ≤ 0)ω(U)] , (6.6)

which leads to the (unbiased) importance sampling estimator

p̂IS =
1

n

n∑

k=1

I[G(uk) ≤ 0]ω(uk), uk
i.i.d.∼ h. (6.7)

The efficiency of IS depends intimately on the choice of the IS density h and numerous techniques
to construct it have been put forward. There exists an optimal importance density h∗ in the sense
that it leads to V[p̂IS] = 0:

h∗ (u) =
1

p
I[G (u) ≤ 0]ϕd (u) . (6.8)

While this result is not immediately useful in estimating p as it requires knowledge of p, it can be
used to guide the selection of a suitable IS function h.
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The SIS method proposed in [62] selects the IS density sequentially starting from a known dis-
tribution h0 that is easy to sample from. It relies on a sequence of distributions {hi (u)}Mi=0,

hi (u) =
ηi (u)

pi
, i = 1, . . . ,M, (6.9)

where {ηi (u)}Mi=0 are non-normalized versions of {hi (u)}Mi=0 and {pi}Mi=0 are the respective normal-
izing constants. The goal is to arrive at hM , which is sufficiently close to h∗ based on some criterion,
and perform importance sampling with hM . To this end, it is necessary to estimate pM and obtain
samples from hM . Based on the likelihood ratio of two succeeding non-normalized distributions
ωi (u) = ηi (u) /ηi−1 (u), we have

si =
pi
pi−1

=

∫

Rd

ηi (u)

ηi−1 (u)
hi−1 (u) du = Ehi−1

[ωi (u)] . (6.10)

Therefore, an estimate of pM is given by

p̂M =

M∏

i=1

ŝi with ŝi =
1

n

n∑

k=1

ωi

(
uk
)
, uk

i.i.d.∼ hi−1. (6.11)

Samples from hi can be obtained using Markov Chain Monte Carlo (MCMC) methods given sam-
ples from hi−1. More precisely, [62] proposes a resample-move scheme in which Markov chain seeds
are obtained as samples from hi−1 that are then reweighted (resampled with weights) according to
ωi (u). In this way, the seed samples are already approximately distributed according to the sta-
tionary distribution of the Markov chain hi and long burn-in periods can be avoided. We adopt an
adaptive conditional MCMC sampler (aCS) to perform the move step due to its robust performance
in high-dimensional settings. Details can be found in [62].

The hi are chosen as smooth approximations of h∗ using the standard-normal CDF Φ(·) (compare
Fig. 6.1):

hi (u) =
1

pi
Φ

(
−G (u)

σi

)
ϕd (u) =

1

pi
ηi (u) , (6.12)

where pi = Eϕd
[Φ(−G(U)/σi)] is a normalizing constant and σi is the smoothing parameter. Pre-

scribing σ0 > σ1 > · · · > σM ensures that the sequence {hi (u)}Mi=0 approaches h∗. In each level, to
avoid degeneration of the weights ωi (meaning ωi assuming values close to 0 at all current samples),
hi−1 (u) and hi (u) cannot be too different in the sense that they share no support regions on which
both have considerable probability mass. This is avoided by prescribing an upper bound for the
estimated coefficient of variation of the weights δ̂w,i = ĈOV[ωi(U)], which provides a criterion for
determining σi:

σi = arg min
σ∈[0,σi−1]

(
δ̂ω,i(σ)− δtarget

)2
. (6.13)

[62] recommends δtarget = 1.5. The algorithm terminates when hi is close enough to h∗ in the sense
that

ĈOV
[
h∗(U)

hi(U)

]
= ĈOV

[
ϕd(U)I(G(U) ≤ 0)

ϕd(U)Φ(−G(U)/σi)

]
= ĈOV

[
I(G(U) ≤ 0)

Φ(−G (u) /σi)

]
≤ δtarget. (6.14)

The final estimate of P(F) reads

p̂SIS = p̂M Êϕd

[
I(G(U) ≤ 0)

ηM (U)

]
=

(
M∏

i=1

ŝi

)
1

n

n∑

k=1

I(G(uk) ≤ 0)

Φ(−G(uk)/σM )
, uk

i.i.d.∼ hM . (6.15)

Alg. 6 summarizes the complete SIS-aCS procedure.
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Safe Domain Failure

'd

h2

h1

h3

Domain

Figure 6.1: Smooth approximations to the indicator function I(g(u) ≤ 0) (left) and importance
densities hi (u) ∝ Φ (−G (u) /σi)ϕd (u) based on this approximation (right).

6.4 Partial least squares-based polynomial chaos expansions

6.4.1 Polynomial Chaos Expansions

Polynomial chaos expansions (PCEs) are a tool for forward modelling the relationship between an
input X and an output Y = Y(X). With H, we denote the Hilbert space of functions that are
square-integrable with respect to fX , i.e., {v : EfX [v(X)2] < ∞}. H admits an inner product of
two functions v, w ∈ H:

〈v, w〉H = EfX(x)[v(X)w(X)] =

∫

Rd

v(x)w(x)fX(x)dx. (6.16)

Let {vj(X), j ∈ N} be a complete and orthonormal basis of H so that 〈vj , v`〉H = δj` and let Y ∈ H.
Then,

Y(X) =
∞∑

j=0

bjvj(X), (6.17)

where the coefficients bj are defined by projecting Y on the basis:

bj = 〈Y, vj〉H, j ∈ N. (6.18)

Since Y ∈ H, the truncation

Ŷn(X) =

n∑

j=0

bjvj(X) (6.19)

asymptotically converges to Y as n → ∞ in the mean square sense. [88] demonstrates how to
construct complete orthonormal bases of H as polynomial families for various standard input dis-
tribution types. In particular, if FX(x) = Φd(x), where Φd denotes the d-variate independent
standard-normal CDF, the tensorized, normalized probabilist’s Hermite polynomials

Ψk(U) =

d∏

i=1

ψkj (Uj) (6.20)
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Algorithm 6 SIS-aCS [62]

1: Input LSF G (u), target CoV δtarget, samples per level n, input dimension d, burn-in period b,
max. iterations imax

2:
3: Set i = 0, σ0 =∞, h0 (u) = ϕd (u)

4: Sample U0 = {uk, k = 1, . . . , n} ∈ Rn×d . uk
i.i.d.∼ h0 (u)

5: Compute G0 = G(U0) ∈ Rn×1

6: for i← 1, imax do
7: i← i+ 1
8: Compute σi according to Eq. (6.13)
9: Compute weights ωi = {Φ [−Gi−1/σi] /Φ [−Gi−1/σi−1] , k = 1, . . . , n} ∈ Rn×1

10: Compute ŝi according to Eq. (6.11).
11: Ui−1 ← draw weighted resample from Ui−1 with weights ωi . sample with replacement
12: (Ui,Gi) = MCMC-aCS(Ui−1,Gi−1,b) . Details on MCMC-aCS in [62]
13: if Eq. (6.14) then
14: break
15: Set M ← i

16: Estimate failure probability p̂SIS =
(∏M

i=1 ŝi

)
1
n

∑n
k=1

I(Gk
M≤0)

Φ(−Gk
M/σM)

. Eq. (6.15)

17: return UM ,GM , p̂SIS.

form a complete orthonormal basis of H. {ψj(U), j ∈ N} are the univariate, normalized (proba-
bilist’s) Hermite polynomials and k = (k1, . . . , kd) ∈ Nd. By means of the isoprobabilistic transfor-
mation T : X → U introduced in the previous section, we define PCEs in standard-normal space
for the remainder of the paper. The PCE of maximum total order p reads

Ŷp(U) =
∑

|k|≤p
bkΨk(U). (6.21)

The total number of basis functions in the PCE, P , depends on the input dimension d and the
maximum total polynomial order p:

P =

(
d+ p

p

)
. (6.22)

The projection in Eq. (6.18) can be transformed into an equivalent ordinary least squares (OLS)
problem [7]. PCEs become computationally intractable if d is large, i.e., they cannot be used for
problems with high-dimensional input due to the sheer number of basis functions and correspond-
ing coefficients. In particular, the computation is rendered infeasible by the necessary number of
operations to compute the set of P multi-indices and the necessary number of model evaluations to
obtain meaningful estimates of the coefficients. Solution strategies to overcome these limitations (at
least partially) include a hyperbolic truncation of the index set (this means to replace the condition
on the `1-norm in Eq. (6.21), |k| ≤ p, with one on a general `q-norm of |k|α = (

∑d
i=1 p

q
i )

1/q ≤ p with
q < 1) or enforcing a maximum interaction order (i.e., a maximum number of non-zero entries in
k) [10]. These approaches result in more parsimonious models and allow for PCEs to be applied in
higher-dimensional problems, however do so at the cost of decreased model expressivity. Sparsity-
inducing solvers have been proposed to relax the dimensionality constraint imposed by the size of
the regression problem. Approaches may be based on a variety of solvers for the `1-regularized least
squares problem such as least-angle regression (LARS) that is used for PCEs in [9], compressive
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sensing [89] and orthogonal matching pursuit [63, 77, 20] as well as sparse Bayesian learning meth-
ods [76, 36, 70, 79]. For a comprehensive overview, the reader is referred to the recent literature
review and benchmark study [52, 51].

6.4.2 Basis adaptation via partial least squares

In order to obtain a parsimonious yet expressive model, we turn to low-dimensional model repre-
sentations rather than sparse solutions to the full-dimensional model. To achieve this, the PCE
representation is rotated onto a new basis defined by the variables Z = QTU , where Q ∈ Rd×d and
QTQ = I, with I denoting the identity matrix. This has first been proposed in [75]. The PCE with
respect to the novel basis reads

ŶQ
p (U) =

∑

|k|≤p
akΨk(Z) =

∑

|k|≤p
akΨk

(
QTU

)
. (6.23)

With U a standard-normal random vector and Q an orthogonal matrix, Z is a standard-normal
random vector. Therefore, both original and transformed input space possess the same PCE basis,
namely the probabilist’s Hermite polynomials. Merely, a new set of coefficients ak enters the formu-
lation in the adapted basis. The columns of Q define linear combinations of the original input. We
seek to choose Q such that most of the relevant information to construct an accurate surrogate Y is
captured in the first m directions, where m < d leads to dimensionality reduction. We retain only
these first m columns of Q in the matrix Qm and define a corresponding PCE of reduced dimension
as

ŶQm
p (U) =

∑

|k|≤p
akΨk

(
QT
mU

)
, (6.24)

where k ∈ Nm. [75] computes the basis adaptation Qm by evaluating first- or second-order PCE co-
efficients only with a sparse-grid numerical quadrature. [78] couples this approach with compressive
sensing to simultaneously identify Qm and the PCE coefficients in the subspace. In [60], we show
that important directions can be identified efficiently based on a set of original function evaluations
via partial least squares (PLS).

PLS establishes a linear relationship between variables U and Y based on nE observations of both
quantities [86]. By UE ∈ RnE×d, we denote the matrix of nE observations of U and by YE ∈ RnE×1

we denote the corresponding vector of scalar responses. PLS sequentially identifies m latent com-
ponents {tj}mj=1, where tj ∈ RnE×1 such that they have maximum covariance with YE . After
determining each tj , PLS assumes a linear relationship between tj and YE and evaluates the cor-
responding coefficient aj of tj by OLS. After each iteration, the matrices UE and YE are deflated
by the contribution of the j-th PLS-component. Components are extracted until a certain error
criterion is met, which can be formulated, e.g., through the norm of the residual response vector or
via cross-validation. Dimensionality-reducing regression methods such als PLS-based regression are
known to shrink the regression coefficients towards zero to produce biased estimates in exchange for
reducing the estimator variances (bias-variance-tradeoff). In this way, these dimensionality-reducing
methods are able to produce smaller overall mean squared estimation errors. (see, e.g., [17] for PLS).

The nonlinear version of PLS in turn relaxes the assumption of a linear relationship between la-
tent component and the response. A number of nonlinear PLS algorithms have been proposed [68].
Here we employ the approach of Refs. [85, 4] that introduces an additional loop into the algorithm

138



Chapter 6. Sequential, active learning of low-dimensional model representations for reliability
analysis

for running a Newton-Raphson procedure iterating between the current latent component and the
response. Ultimately, we are interested in computing the orthogonal transformation matrix Qm in
Eq. (6.24). PLS produces two different matrices R and W that are suitable to this end, which mo-
tivates two different flavors of PLS-PCE. In PLS-PCE-R as proposed in [60] (see Subsection 6.4.3),
each nonlinear relationship between the {tj}mj=1 and the response is modelled as a univariate PCE.
The coefficients of these univarate PCEs are computed simultaneously with the latent structure and
the resulting model is a sum of univariate PCEs. Alternatively, the univariate PCEs are discarded
after the PLS-PCE algorithm terminates and a multivariate (sparse) PCE is constructed in the
subspace formed by the so-called weights {wj}mj=1 leading to PLS-PCE-W (see Subsection 6.4.4).

6.4.3 PLS-PCE-R

PLS-PCE-R identifies m latent components and for each component, it returns the direction rj
and the univariate PCE along this direction. The univariate PCEs are defined by their polynomial
orders {qj}mj=1 and the associated coefficient vectors {aj}mj=1. The polynomial order is identified with
leave-one-out cross validation [15]. For each (j-th) latent component, the nonlinear PLS iteration is
repeated for different polynomial orders and qj is chosen as the order minimizing the leave-one-out
error. The PLS-PCE-R model reads

Ŷ(u) = â0 +
m∑

j=1

(
â
qj
j

)T
ψqj

[
rT
j (u− µU)

]
, (6.25)

where â0 = Ê[Y], ψqj (U) is a vector function assembling the evaluations of the one-dimensional
Hermite polynomials up to order qj and µU is the columnwise sample mean of UE . The model
structure is illustrated in Fig. 6.2. The PLS directions rj can be evaluated in terms of the PLS
weights wj and loads pj through the following recursive relation [32]

r1 = w1

rj = wj − rj−1

(
pT
j−1wj

)
.

(6.26)

R = [r1, . . . , rm] ∈ Rd×m is a matrix collecting all PLS directions. R is not necessarily orthogonal,
i.e., in general RTR 6= I. However, in [60] it is shown that RTR ≈ I when nE is large and UT

EUE is
diagonal, which is the case if UE is drawn from ϕd. In this case, Eq. (6.25) is equivalent to a PCE
of the form Eq. (6.24), where only main effects in the latent components are considered.

6.4.4 PLS-PCE-W

PLS-PCE-W defines W as basis of the subspace rather than R, where W = [w1, . . . ,wm] ∈ Rd×m.
Within linear PLS, the columns of W form an orthogonal basis. Within nonlinear PLS, the Newton-
Raphson step may introduce deviations from orthogonality, which are however negligible in all tested
examples. The univariate PCEs obtained through the Newton-Raphson step will be optimal with
respect to R, not W. Thus, in PLS-PCE-W these univariate polynomials are discarded once W is
identified and a multivariate (sparse) PCE is constructed in the subspace defined by W using least-
angle regression and a hyperbolic truncation scheme for the multivariate PCE basis as proposed
by [9]. In this way PLS-PCE-W achieves more flexibility compared to PLS-PCE-R by including
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interactions of the latent components in exchange for a departure from optimality in the match
between latent component and surrogate model. In analogy to Eq. (6.24), the PLS-PCE-W model
reads

Ŷ(u) = â0 +
∑

k∈α
âkΨk

[
WT (u− µU)

]
, (6.27)

where α ∈ NP×d is the multi-index set, which indicates the polynomial orders of the d univariate
polynomials in each of the P multivariate polynomials as obtained with LARS. Both PLS-PCE-R
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Figure 6.2: Structure of two different PLS-PCE models, where ΨW
j = Ψαj as defined in Eq. (6.27)

and ΨR
j = (â

qj
j )Tψqj as seen from Eq. (6.25). Essential differences exist in the choice of the reduced

space basis (layer 2) and the modelling of cross-terms when mapping from reduced to feature space
(layers 2 & 3) with PLS-PCE-W (b).

and PLS-PCE-W are summarized in Alg. 7. In the following, we will use the PLS-PCE-W model as
we observed a superior performance for this model compared to PLS-PCE-R models in the context
of the proposed approach.

6.5 Learning PLS-PCE models in each SIS level

6.5.1 The sequential subspace importance sampler

We recently proposed to reconstruct low-dimensional PLS-PCE-W models in each level of SIS to im-
prove the tractability of high-dimensional reliability analysis with computationally expensive models
[59]. We term this approach sequential subspace importance sampling or SSIS. The efficiency of SIS
benefits from surrogate modelling through a considerable reduction of required model evaluations.
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Algorithm 7 PCE-driven PLS algorithm [60]
1: Input Input matrix UE and output vector YE , maximum polynomial order p
2:
3: Set E = UE − µU, F = YE − µY, εw = 10−3, εy = 10−3, j = 1
4: repeat
5: Compute weight w0

j = ETF/‖ETF‖
6: for q ← 1, p do
7: Set wq

j = w0
j

8: repeat
9: Compute score tqj = Ewq

j

10: Fit a 1D PCE of order q âqj ← fit
[
F = (aqj)

Tψq(t
q
j) + ε

]

11: Set M̂q
j(t) = (âqj)

Tψq(t
q
j)(t)

12: Compute the error e = F− (âqj)
Tψq(t

q
j)

13: Compute ∆wq
j = (ATA)−1ATe with A = ∇w(âqj)

Tψq(Ew)
14: Set wq

j ← wq
j + ∆wq

j

15: Normalize wq
j ← wq

j/‖w
q
j‖

16: until ‖∆wq
j‖ is smaller than εw

17: Evaluate the relative leave-one-out error εqLOO as in [9]
18: Set {qj , âqjj ,w

qj
j } as the triple {q, âqj ,w

q
j} with the smallest εqLOO

19: Compute score: tqjj = Ew
qj
j

20: Compute load: pqjj = ETt
qj
j /((t

qj
j )Tt

qj
j )

21: Deflate: E← E− tqjj (p
qj
j )T, F← F− (â

qj
j )Tψqj (t

qj
j )

22: j ← j + 1
23: until change in ‖F‖ is smaller than εy
24: Compute R = [r1, r2, . . . , rm] according to Eq. (6.26) . For the R-based version of PLS-PCE
25: Build Ŷ(u) according to Eq. (6.25)
26: Gather W = [w1,w2, . . . ,wm] . For the W -based version of PLS-PCE
27: Build Ŷ(u) according to Eq. (6.27) and [9]
28: return R/W, Ŷ(u)

141



6.5. Learning PLS-PCE models in each SIS level

The PLS-PCE model alone, being a global surrogate model, is a relatively limited tool for reliability
analysis. Combining it with SIS provides the means to sequentially move the training set towards
relevant regions in the input space and thereby renders difficult reliability problems accessible to
surrogate modelling. At the i-th SSIS level, a new local training set is sampled from the current
importance density hi through a resampling step on the N available samples from hi. The new local
training set is appended to the global training set comprising earlier designs from levels 1 through
i − 1. Based on the updated global training set, a new PLS-PCE model is constructed and SIS is
rerun for i+ 1 levels from h0 to obtain samples for the next local training set. Due to this restart,
it is sensible to let previously used local training sets remain in the global training set such that the
i-th surrogate model accurately predicts the LSF output along the entire path of samples moving
from the nominal distribution h0 to hi. The restart itself incurs no additional LSF evaluations and
serves to stabilize the method: Without restart, the computation of σi+1 according to Eq. (6.13)
is based on two different surrogate models: the most recent model constructed in level i appears
in the numerator of the sample CoV of the weights and the model constructed in level i − 1 ap-
pears in the denominator. These models may however be too different from one another to admit a
solution in Eq. (6.13), i.e., to achieve the prescribed CoV δtarget between two subsequent IS densities.

In an additional step, before propagating the intermediate importance density to the next level
of the SSIS algorithm, we introduce AL. This ensures a prescribed surrogate model accuracy in
regions of high probability mass of the current sampling density. In turn, this refined surrogate
model is used to propagate samples to the next level. When the underlying SIS algorithm reaches
convergence, a final AL procedure, performed over samples of the final importance density, ensures
that the probability of failure is estimated with a surrogate model that captures the failure hyper-
surface well. This approach is termed adaptive sequential subspace importance sampling or ASSIS.

Active learning has emerged in the late 1980s as a subfield of machine learning [73] and was known
in the statistical theory of regression as optimal experimental design since the early 1970s [27]. At
its heart is the idea that supervised learning algorithms can perform better if allowed to choose
their training data. We consider a ’pool-based sampling’ variant of active learning, in which a large
pool of unlabeled data points are made available to the algorithm. Within SIS, one has n samples
from hi available in the i-th level. The algorithm then selects nadd points that are labeled (i.e. for
which the LSF is evaluated) and added to the training set based on a measure of information gain.
This measure typically takes the form of a learning function L that is maximized over the sample
pool to perform selection. The learning function employed in the context of SSIS is discussed in
Subsection 6.5.2.

The probability of failure estimator for SSIS/ASSIS is analogous to Eq. (6.15) with the difference
that SIS is performed with an LSF approximation Ĝ that is based on the final surrogate model:

p̂ =

(
M∏

i=1

ŝi

)
1

n

n∑

k=1

I(Ĝ
(
uk
)
≤ 0)ϕd

(
uk
)

ηM (uk)
, uk

i.i.d.∼ hM . (6.28)

The ratio of normalizing constants {ŝi}Mi=1 are estimated as

ŝi =
1

n

n∑

k=1

ω̂i

(
uk
)

=
1

n

n∑

k=1

Φ(−Ĝ
(
uk
)
/σi)

Φ(−Ĝ (uk) /σi−1)
, uk

i.i.d.∼ hi. (6.29)
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The SSIS/ASSIS algorithms are stopped based on a similar criterion as for SIS given in Eq. (6.14):

ĈOV

[
I(Ĝ(U) ≤ 0)

Φ(−Ĝ (U) /σi)

]
≤ δtarget. (6.30)

Fig. 6.3 depicts flow diagrams of the SSIS and ASSIS algorithms.

6.5.2 Active learning of low-dimensional model representations

In the context of SSIS, the learning function L should express the prediction uncertainty at each
sample of the current IS density for a given PLS-PCE-W surrogate. This prediction uncertainty is
due to the estimation of both the subspace and the surrogate model with a finite-sized training set.
We describe this uncertainty with the variance of the LSF based on the surrogate model conditional
on u, V[Ĝ|U = u]. Note that, whenever the distribution with respect to which E[·] or V[·] are
evaluated is not made explicit as a subscript, it is implicitly assumed as the distribution of the
argument. For example, V[Ĝ|U = u] = Vf

Ĝ|u
[Ĝ|U = u].

Let ξ0 = a ∈ RP×1 and ξj = wj ∈ Rd×1, j = 1, . . . ,m, such that ξ = [ξT
0 , ξ

T
1 . . . , ξ

T
m]T ∈ R(md+P )×1

is the collection of all md + P model parameters. Further, let ξ? denote their corresponding point
estimates returned by Alg. 7. The first-order expansion of V̂[Ĝ|u] around ξ? reads

σ̂2
Ĝ

(u) = V̂[Ĝ|u] ≈
[
∂Ĝ

∂ξ

]T

ξ=ξ?

Σ̂ξξ

[
∂Ĝ

∂ξ

]

ξ=ξ?

, (6.31)

where Σ̂ξξ is an estimate of the parameter covariance matrix. Next, we neglect the pairwise cross-
covariance of PCE coefficients a and the subspace components wj and consider

σ̂2
Ĝ

(u) = V̂[Ĝ|u] ≈
m∑

j=0

[
∂Ĝ(u, ξ)

∂ξj

]T

ξj=ξ?j

Σ̂ξjξj

[
∂Ĝ(u, ξ)

∂ξj

]

ξj=ξ?

(6.32)

This significantly reduces the number of Σξξ-entries that have to be estimated, namely from P 2 +
2Pmd + m2d2 to P 2 + md2. More importantly, the coefficients of the PCE, ξ0, are obtained with
linear regression while the subspace, {ξj}mj=1, is obtained in the inner loop of Alg. 7 with nonlinear
regression. Due to this sequential estimation of the {ξj}mj=0, there is no straightforward way of
obtaining an estimate of the full covariance matrix. In particular, we are not aware of such an
estimate for the parameters of nonlinear PLS. Hence, this simplification is not only convenient but
also necessary in practice. We do observe, however, that the off-diagonal elements of the estimated
component-wise cross-covariance matrices Σ̂ξjξj are several orders of magnitude smaller compared
to the the main diagonal elements. This indicates that the model uncertainty estimate is dominated
by parameter variances. In fact, in a more radical approach that remains unexplored in this work,
one may consider parameter variances only (i.e., only P+md entries of the full covariance matrix are
retained). Such an approach is, e.g., used in [65]. Under some regularity conditions, the estimator
ξ∗j is consistent [87] and converges in distribution to a multivariate Gaussian distribution with mean
ξj and covariance Σξjξj . In analogy with linear regression, an estimate of Σξjξj is given through

Σ̂ξjξj = σ̂2
ε

(
AT
j Aj

)−1 (6.33)
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with

Aj =

[
∂Ŷ(u, ξ)

∂ξj

]

ξ=ξ?

u=UE

∈ RnE×d and σ̂2
ε =

1

nE −md− P

nE∑

k=1

[
Yk
E − Ŷ(Uk

E)
]2
. (6.34)

σ̂2
ε is the standard estimator for the error variance of the surrogate model. Aj is the gradient of

the surrogate model Y with respect to the model parameters evaluated at each of the nE points in
the training set UE . A0 is merely the design matrix and does not require the computation of any
derivatives. Note that computing the gradients {Aj}mj=0 does not require any model evaluations.
For j = 0, it is

∂Ŷ(u, ξ)

∂ξ0
=
[
Ψi

(
WT (u− µU)

)]P−1

i=1
with W = [ξ1, ξ2, . . . , ξm] . (6.35)

For j > 0 and recalling z = WT(u− µU), we have

∂Ψk(z)

∂ξj
=

∂

∂wj
Ψk(WT(u− µU))

= (u− µU)
∂Ψk(zj)

∂zj

= (u− µU)




m∏

i=1
i 6=j

ψki(w
T
i u)



∂ψkj (w

T
j u)

∂zj

= (u− µU)




m∏

i=1
i 6=j

ψki(w
T
i u)



√
kjψkj−1(wT

j u).

(6.36)

In the last equality, we have used the following expression for derivatives of univariate normalized
Hermite polynomials:

dψn(x)

dx
=
√
nψn−1(x). (6.37)

∂Ŷ(u, ξ)/∂ξj for j > 0 follows as

∂Ŷ(u, ξ)

∂ξj
=
∂Ŷ(z)

∂wj
=
∑

k∈α
âk
∂Ψk(z)

∂ξj
, j > 0. (6.38)

The partial derivative ∂Ĝ/∂ξj in Eq. (6.32) can be evaluated using the chain rule of differentiation,
which yields

∂Ĝ

∂ξj
=
∂Ĝ

∂Ŷ
∂Ŷ
∂ξj

. (6.39)

The first term on the right-hand side is typically easy to compute and often equals ±1 (the sign is
irrelevant as the gradient enters the quadratic form in Eq. (6.32)) if the LSF returns the difference
between the model output and a prescribed threshold. In this case, the first factor on the right-hand
side of Eq. (6.39) drops out. If, however, the LSF is not continuously differentiable with respect to
the model, we may construct a surrogate model of G directly by using a training set containing LSF
evaluations rather than model evaluations in Alg. 7. The second term on the right-hand side can be
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obtained reusing the gradients from the Aj in Eq. (6.34) that — in this case — are not evaluated
at the training set and thus are functions of u.

When setting up the learning function, there is a distinction to be made between an intermedi-
ate SIS level and the final SIS level: In the intermediate level, the goal is to accurately estimate
the ratios of normalizing constants and to propagate the samples to the next level. In the final
level, the goal is to build the probability of failure estimator and thus to accurately approximate the
true limit-state hypersurface. With this in mind, the learning functions for adapting the surrogate
models in levels i = 1, . . . ,M , and after the final level are readily stated as

LG (u) =

{
σ
Ĝ

(u), intermediate SIS level
σ
Ĝ

(u)/|Ĝ(u)|, after final SIS level.
(6.40)

After the final level, SIS has converged and we are using samples from the final biasing density hM
to refit a surrogate model that captures the failure hypersurface well. The learning function in this
case is defined in the spirit of the learning function put forward in [22]. The denominator penalizes
samples whose image under Ĝ is far away from 0 assuming that therefore they are themselves far
away from the failure hypersurface. Such samples are unlikely to be misclassified as safe if located in
the failure domain or vice versa. In all previous levels of SIS, there is no failure hypersurface to be
approximated but only importance weights and the resulting ratio of normalizing constants. Here,
the denominator in the learning function is dropped as there is no benefit to penalizing samples with
large absolute image values under Ĝ.

In each AL iteration, the pool is searched for one or several points maximizing L (u). If nadd > 1 new
points are added per AL iteration, the current sample pool is transformed to the low-dimensional
subspace defined by W in order to identify nadd clusters (e.g., with k-means). Clustering in the
subspace circumvents the performance deterioration most clustering methods experience in high di-
mensions [41]. The point maximising Eq. (6.40) in each cluster is added to the training set. In this
way, the algorithm avoids a local concentration of the training set in a single region and is also able
to handle problems with multiple disconnected failure domains as long as these are contained in the
subspace.

The active learning is terminated based on the maximum local standard deviation relative to the
target average in the intermediate levels or based on the relative change of the probability of failure
estimate after the final level:




max
k=1,...,n

(
σ
Ĝ

(uk)

Ê[Ĝ(U)]

)
≤ εAL, intermediate SIS level

p̂−p̂last
p̂ ≤ εAL, after final SIS level



 , (6.41)

where appropriate choices for εAL lie in [10−2, 10−1]. p̂ and p̂last denote the probability of failure
estimate based on the current and the last training set within the AL loop. The probability of
failure is estimated with a surrogate model-based run of SIS-aCS in each AL iteration. This causes
no additional cost in terms of original model evaluations and ensures a reliable evaluation of the
criterion even for extremely small failure probabilities. The active learning procedure is detailed in
Alg. 8 and the complete method is detailed in Alg. 9.

6.6 Numerical experiments
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Algorithm 8 Active Learning
1: Input LSF G (u), AL error level εAL, # of AL clusters nadd, Polynomial order p, training set
{UE ,GE},Sample pool Upool

2:
3: while true do . Active learning loop
4: Run [W, Ĝ] = PLS-PCE(UE ,GE , p, ′W′) . Alg. 7
5: if Eq. (6.41) then
6: break
7: Identify nadd clusters among UpoolW . Clustering performed in the subspace defined by W
8: for each cluster do
9: Ucluster = {u ∈ Upool : u ∈ cluster}

10: Evaluate u? = argmax[L(Ucluster)] according to Eqs. (6.32) to (6.34), (6.39) and (6.40).
11: Append UE ← [UE ,u?]
12: Append GE ← [GE , G(u?)]
13: Remove u? from Upool

14: return UE , GE , Ĝ.

Algorithm 9 ASSIS (with PLS-PCE-W)

1: Input LSF G (u), Target CoV δtarget, Samples per level n, Input dimension d, training set size
nE , AL error level εAL, # of AL clusters nadd, Polynomial order p,

2:
3: Set i = 0, σi =∞, hi (u) = ϕd (u)
4: Initialize UE = [·], GE = [·]
5: Sample U0 = {uk}nk=1 ∈ Rn×d . uk

i.i.d.∼ hi (u)
6: while true do . Sequential importance sampling loop
7: i← i+ 1

8: Sample Utmp = {uk}nEk=1 ∈ RnE×d . uk
i.i.d.∼ hi (u)

9: Compute Gtmp = G(Utmp) ∈ RnE×1

10: Append UE ← [UE ,Utmp]
11: Append GE ← [GE ,Gtmp]
12: if i > 1 then
13: Run Ĝ = PLS-PCE(UE ,GE , p, ′W′) . Alg. 7
14: Run Ui−1,Gi−1 = SIS-aCS(Ĝ, δtarget, n, d, i− 1) . Alg. 6
15: Run UE ,GE , Ĝ = Active Learning(G (u), εAL, nadd, p, UE ,GE , Ui−1) . Alg. 8
16: Compute Gi−1 = Ĝ(Ui−1) ∈ Rn×1

17: Compute σi according to Eq. (6.13)
18: Compute ω̂i and ŝi according to Eq. (6.29)
19: Ui−1,Gi−1 ← resample from Ui−1,Gi−1 with weights ω̂i(Ui−1) . sample with replacement
20: Run Ui,Gi = SIS-aCS(Ui−1,Gi−1) . Perform a single MCMC step
21: if Eq. (6.30) then
22: Set M ← i
23: Run UE ,GE , Ĝ = Active Learning(G (u), εAL, nadd, p, UE ,GE , Ui−1) . Alg. 8
24: break
25: Run (UM ,GM , p̂ASSIS) = SIS-aCS(ĜM , δtarget, n, d,M) . Alg. 6
26: return M,UM ,GM , p̂ASSIS.
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provide δtarget, n, b, d, p, nE
set i = 1
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Figure 6.3: Comparison of SIS-PLS-PCE with (right) and without (left) active learning.

6.6.1 Error measures

In the following, we examine a series of examples of low to high input dimensionality characterized
by varying degrees of nonlinearity of the LSF and varying number of disconnected failure regions.
The computational cost of each approach is measured with the total number of required calls to the
underlying computational model. The accuracy of the estimator is measured in terms of relative
bias and CoV

relative Bias =
p− E[p̂]

p
(6.42)

CoV =

√
V[p̂]

E[p̂]
, (6.43)

where p is the known exact probability of failure or a reference solution computed with a large
number of samples as reported in the corresponding references in Tab. 6.1. Further, we compute
the relative root mean squared error (RMSE) of the probability of any failure estimate p̂, which
combines bias and variability of the estimator as

relative RMSE =

√
E[(p− p̂)2]

p2
=

√
relative Bias2 +

(
E[p̂]

p

)2

CoV2 (6.44)

The expectation and variance operators in the above equations are approximated by repeating each
analysis 100 times. Additionally, the relative estimation error is defined as

relative error =
p̂

p
. (6.45)

6.6.2 Low- and medium-dimensional examples

The subspace importance sampler is designed to tackle high-dimensional problems, yet its perfor-
mance should not deteriorate as the problem dimension decreases. We first investigate its perfor-
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Table 6.1: Low- to medium-dimensional investigated benchmark problems.

Problem Failure probability Inputs Input Variables Properties References

Hat 1.037 · 10−4 2 standard-normal Strongly nonlinear [71]

Cantilever 3.94 · 10−6 2 Gaussian Strongly nonlinear [6]

4-Branch 5.60 · 10−9 2 standard-normal Multiple failure regions; [6, 82]

(acc. to [6]) extremely rare event

Borehole 1 · 10−5 8 Log-normal, Strongly nonlinear, No underlying [1]

(276.7 m3

year ) Uniform low-dimensional structure

Truss 1.6 · 10−3 10 Log-normal, mildly nonlinear [44]

(0.12m) Gumbel

Rare Truss 1.02 · 10−8 10 Log-normal, Extremely rare event; [44]

(0.18m) Gumbel nonlinear (modified)

Quadratic 6.62 · 10−6 10 standard-normal Strongly nonlinear; Underlying [25, 81]

(κ = 5) low-dimensional structure

Quadratic 6.62 · 10−6 100 standard-normal Strongly nonlinear; Underlying [25, 81]

(κ = 5) low-dimensional structure

mance in eight examplatory problems with dimension 2 ≤ d ≤ 100. We demonstrate how both
SSIS and ASSIS cope with multiple failure domains, strong nonlinearities and extremely small tar-
get failure probabilities. In the interest of brevity, the examples are listed in Tab. 6.1 along with
the problem dimension, target probability of failure and key characteristics of the problem. The
references provided in Tab. 6.1 may be consulted for detailed descriptions of the problem setups.

We solve the example problems with SIS-aCS with n = 2 · 103 samples per level and a burn-in
period of b = 5 samples within each MCMC chain. As suggested in [62], we choose δtarget = 1.5
for the exit criterion Eq. (6.14) for SIS-aCS as well as our surrogate-based samplers. We compare
this reference to SSIS and ASSIS for which we use an initial sample size of nE = 5d. All underlying
PLS-PCE-W models are computed with a maximum number of subspace directions of m = 10 and
a maximum total polynomial degree of |q|`q ≤ 7, where q = 0.75. To achieve a fair comparison
between ASSIS and SSIS, we first run ASSIS and then SSIS with nE for the latter chosen such that
both methods use an approximately equal number of LSF evaluations. For both SSIS and ASSIS, we
choose n = 104 with a burn-in period of b = 30. For ASSIS, we set εAL = 0.1. Within SSIS/ASSIS
many samples per level and long burn-in periods are affordable as sampling is performed with the
surrogate model. For ASSIS we select nadd = 1 unless prior knowledge of the problem structure
suggests otherwise (the only exception in the set of examples considered here is the 4-branch function
for which we select nadd = 4 as it features four relevant failure regions in the input space). Fig. 6.4
displays the performance of SIS, SSIS and ASSIS for the examples in Tab. 6.1 in terms of the error
measures defined in Eqs. (6.42) to (6.44) and the total number of LSF evaluations (with the original
model).

For all showcased examples, ASSIS yields equally or more accurate estimates compared to SSIS
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Figure 6.4: Low- and medium-dimensional examples: accuracy and cost comparison. Cost error
bars include ± 2 standard deviations.

at equal cost. It also either matches or outperforms SIS at significantly reduced costs. Except for
the easiest problems, i.e., those featuring well-behaved (truss) or low-dimensional (2D hat) LSFs
associated with comparatively large failure probabilities, the in-level adaptivity of ASSIS leads to
significant bias correction (Fig. 6.4, bottom right) and variance reduction (Fig. 6.4, top right).

[62] discusses the choice of the MCMC sampler for SIS and find that aCS as employed here is
outperformed by a Gaussian mixture proposal in low-dimensional problems, while the latter is the
preferred choice as the problem dimension grows. Our method is designed for the solution of high-
dimensional reliability problems and we thus consistently use aCS.

Comparing the truss and the rare truss models, the additional number of SIS levels required in
the solution of the latter evidently leads to a deterioration of the SSIS estimate (Fig. 6.4, top left).
This is due to single runs (less than 10 %) among the 100 repetitions in which the sampled training
sets lead to extreme outliers in the failure probability estimates (Fig. 6.5). While this effect vanishes
when increasing the number of samples in the training set, ASSIS offers a more cost-effective alter-
native to avoid such outliers by actively learning an informative augmentation of adverse training
sets. In this way, subspace identification and surrogate modelling errors cannot propagate and accu-
mulate across the levels of SIS as they are controlled by the AL procedure. In fact, the phenomenon
of rather rare but all the more severe outliers deteriorating the error mean and variability is a prob-
lem SSIS is facing not only in the rare truss example but also in the cantilever and both quadratic
examples. Conversely, it is seen that in the 4-branch example, SSIS consistently and considerably
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overestimates the probability of failure while ASSIS captures the probability of failure rather well.

The two quadratic LSF models with 10 and 100 input dimensions demonstrate how the required
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Figure 6.5: Low- and medium-dimensional examples: violin plots of the relative error along with
means, inter-quartile ranges (IQR) and outliers. For the sake of clarity, kernel density estimates are
computed after excluding outliers based on the relative distance to the data median.

number of LSF evaluations depends on the problem dimension in both surrogate-based approaches.
This is due to the fact that the PLS-PCE model requires at least d (often more) samples to identify
a suitable subspace. Thus, as described above, we choose nE as a multiple of d. Since the surrogate-
free version of SIS-aCS does not possess such a dependence on a problem dimension at all, the ratio
of computational cost associated with SIS and ASSIS decreases as d increases. This observation also
indicates that if d grows large enough, SIS-aCS will outperform any surrogate-based approach. This
is expected for cases with d = O(105) and above; therefore, this observation is of little practical
relevance for most engineering models, where ASSIS will likely be the most cost-effective choice.

6.6.3 High-dimensional example: Steel plate

We consider a modified version of the example given in [81, 50], which consists of a low-carbon steel
plate of length 0.32 m, width 0.32 m, thickness t = 0.01 m, and a hole of radius 0.02 m located at
the center. The Poisson ratio is set to ν = 0.29 and the density of the plate is ρ = 7850 kg/m3.
The horizontal and vertical displacements are constrained at the left edge. The plate is subjected
to a random surface load that acts on the right narrow plate side. The load is modelled as a
log-normal random variable with mean µq = 60 MPa and σq = 12 MPa. The Young’s modulus
E(x, y) is considered uncertain and spatially variable. It is described by a homogeneous random
field with lognormal marginal distribution, mean value µE = 2 × 105 MPa and standard deviation
σE = 3 × 104 MPa. The autocorrelation function of the underlying Gaussian field lnE is modeled
by the isotropic exponential model

ρlnE(∆x,∆y) = exp

{
−
√

∆x2 + ∆y2

lE

}
(6.46)
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Figure 6.6: Left: FE-mesh of 2D-plate model with control node of the first principal stress σ1 .

with correlation length llnE = 0.04m. The Gaussian random field lnE is discretized by a Karhunen-
Loève-expansion (KLE) with dE = 868, which yields a mean error variance of 7.5% and reads

E(x, y) = exp

{
µlnE + σlnE

dE∑

i=1

√
λEi ϕ

E
i (x, y)ξi

}
. (6.47)

µlnE and σlnE are the parameters of the log-normal marginal distribution of E, {λqi , ϕEi } are the
eigenpairs of the correlation kernel in Eq. (6.46) and ξ ∈ Rd×1 is a standard-normal random vector.
The most influential eigenfunctions (based on a global output-oriented sensitivity analysis of the
plate model performed in [23]) are shown in Fig. 6.6 on the right.

The stress (σ(x, y) = [σx(x, y), σy(x, y), τxy(x, y)]T ), strain (ε(x, y) = [εx(x, y), εy(x, y), γxy(x, y)]T )
and displacement (u(x, y) = [ux(x, y), uy(x, y)]T ) fields of the plate are given through elasticity the-
ory, namely the Cauchy-Navier equations [38]. Given the configuration of the plate, the model can
be simplified under the plane stress hypothesis, which yields

G(x, y)∇2u(x, y) +
E(x, y)

2(1− ν)
∇(∇ · u(x, y)) + b = 0. (6.48)

Therein, G(x, y) := E(x, y)/(2(1 + ν)) is the shear modulus, and b = [bx, by]
T is the vector of

body forces acting on the plate. Eq. (6.48) is discretized with a finite-element method. That is,
the spatial domain of the plate is discretized into 282 eight-noded quadrilateral elements, as shown
in Fig. 6.6. In a grid independence study, the plate’s probability of failure was found to slightly
increase with decreasing mesh element size, which is likely due to the reduction of averaging effects
when integrating higher-order KL-terms. However, for the purpose of testing ASSIS, the model is
sufficiently accurate and features two important properties: 1. It possesses a low-dimensional struc-
ture that can be exploited with dimensionality-reducing surrogates. 2. It is truly high-dimensional
in the sense that the solution does not only depend on a small subset of the input variables (i.e., the
low-dimensional structure is not a trivial subspace of the original input space). The LSF is defined
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Table 6.2: Accuracy and cost of SIS, SSIS & ASSIS for the plate example based on 100 repetitions of
the analysis. The reference pref = 4.23·10−6 is computed with 100 repeated runs of subset simulation
with 104 samples per level with CoV = 0.0119 for the mean estimate.

Method E[p] relative RMSE CoV relative bias avg. # LSF evaluations

SIS-aCS 3.88 · 10−6 0.576 0.625 0.083 17000

SSIS 3.99 · 10−6 0.061 0.021 0.058 1300

ASSIS 4.10 · 10−6 0.036 0.021 0.030 1318

by means of a threshold for the the first principal plane stress

σ1 = 0.5(σx + σy) +
√

[0.5(σx + σy)]2 + τ2
xy

evaluated at node 11 (see green marker Fig. 6.6, left). Node 11 indicates a location where maximum
plane stresses occur frequently in this example. The LSF reads

g(U) = σthreshold − σ1(U), (6.49)

where σthreshold = 450 MPa. The target probability of failure is determined to p = 4.23 · 10−6 with
CoV = 0.0119 as the average of 100 repeated runs of subset simulation [3] with 104 samples per level.

SIS-aCS is run with n = 2 · 103 samples per level and a burn-in period of b = 5 samples within
each MCMC chain. SSIS and ASSIS are run with n = 105 samples per SIS level, a burn-in period
b = 30 and an AL threshold of εAL = 0.1. In the first level nE = 900 and in each additional level
only nE = 100 samples are added in the initial sampling phase. Tab. 6.2 lists the average estimated
probabilities of failure along with error measures and average number of required LSF evaluations.
It is seen that both SSIS and ASSIS alleviate computational cost by more than an order of magni-
tude while at the same time reducing the relative RMSE by at least an order of magnitude. The
decomposition of the RMSE in CoV and relative bias reveals that this is mostly due to variance
reduction as SIS-aCS already yields a small bias.

A parameter study of important ’tweakable’ parameters of ASSIS is depicted in Fig. 6.7. Pa-
rameters that are not subject to a parametric study are chosen as above, with the exception of
n = 104 instead of n = 105. The estimation error and computational cost of ASSIS are analyzed
for varying AL thresholds εAL, number of samples in the training set nE , the number of samples per
SIS level n and the target CoV δtarget used for the SIS procedure. The scaling of 10% between the
initial training set and all subsequent training samples is kept constant.

The parameters εAL and nE describe the behaviour of the surrogate modelling and active learn-
ing procedures while n and δtarget describe SIS itself. Fig. 6.7 shows that increasing the target
coefficient of variation leads to a reduced number of levels in the SIS procedure, which is directly
associated with a reduction in computational cost. The reduction is relatively small here as most
of the samples are added in the first level. By design, the number of required samples remains
unaffected by varying the number of samples per SIS level, while the estimation error depends re-
ciprocally on it. Conversely, and also by design, the computational cost depends monotonically
on the choice of nE . If a majority of the used original LSF evaluations are added during an AL
procedure, this relationship may be nonlinear. For the plate example, however, the initially drawn
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Figure 6.7: Steel plate reliability using ASSIS: parameter influence studies. Top: Error measures as
defined in Eqs. (6.42) to (6.44) for ASSIS (green lines w/ markers). Bottom: Computational cost
in terms of total number of limit-state function evaluations with the true computational model (left
y-axis; black solid lines with diamond markers) and number of SIS levels to convergence (right y-axis;
blue star markers). Top left: CoV of a subset simulation reference run with n = 104 samples per
level (red triangle marker). Bottom left: total number of required limit-state function evaluations
of a subset simulation reference run with n = 104 samples per level (red triangle marker).

training samples at each level makes up for the majority of used original LSF evaluations, hence
the linear dependency. The estimation errors decrease slightly with increasing training set size,
although the effect is limited as high accuracy is already achieved with the first training set of the
lowest investigated size.The fact that the subspace does not change significantly with increasing SIS
level leaves little to be learned by adding more LSF evaluations to the training set. This is also the
reason for the competitive performance of SSIS in this example. The estimation errors (as well as
the computational cost in this case) remain unaffected by varying AL thresholds εAL, which is in
line with the observation that a large fraction of the computational budget is spent on sampling the
initial training set rather than the AL-based training set augmentation.

6.7 Concluding remarks

This paper proposes a method for the cost-efficient solution of high-dimensional reliability problems.
We build on a recently introduced dimensionality reducing surrogate modelling technique termed
partial least squares-driven polynomial chaos expansion (PLS-PCE) [60] and previous work, in which
we use PLS-PCE surrogates to reconstruct biasing densities within a sequential importance sampling
scheme [59] (sequential subspace importance sampling: SSIS). We refine this approach by devising
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an active learning procedure in each SIS level, which serves to effectively control the estimation er-
ror introduced by the surrogate-based importance density reconstructions. The learning procedure,
i.e., the selection of new points for the training set , is driven by an estimate of both the subspace
and surrogate model estimation error. This criterion can be generally used in polynomial chaos
expansion-based active learning procedures.

We showcase the performance of SSIS and ASSIS in nine example applications with input dimen-
sionality ranging from d = 2 to 869. The examples feature different typical caveats for reliability
methods such as multiple failure domains, strongly nonlinear limit-state functions and extremely
small target probabilities of failure. Depending on the example, we achieve a cost reduction of one
to over two orders of magnitude with ASSIS compared to the reference method (sequential impor-
tance sampling with the original model) at equal or lower estimation errors. It is shown that SSIS is
susceptible to the randomness of the initial training set occasionally producing outliers if the train-
ing set is adverse. The active learning procedure (ASSIS) remedies this drawback and stabilizes the
estimator by augmenting potentially adverse training sets with informative additional samples.

The million dollar question, as with any surrogate model, is on the method’s ability to general-
ize. Certainly, there exist examples that do not possess a suitable linear subspace as required by
PLS-PCE modelling. Further, cases of model misspecification may arise if the computational model
cannot be represented with PCEs (e.g., if it is a rational function). Then, the probability of failure
estimate produced by ASSIS will be neither consistent nor unbiased. However, by means of coupling
PLS-PCE with sequential importance sampling, both requirements are relaxed somewhat as only
a locally accurate surrogate model is required to propagate samples from one intermediate biasing
density to the next. Hence, ASSIS can still be expected to perform well if the computational model
may be represented in terms of a sequence of local linear subspaces on which the model can be ap-
proximated well with polynomials. Relaxing the orthogonality or even the linearity assumption on
the latent space transformation likely bears potential to improve the performance of dimensionality-
reduced PCEs. Doing so will require methods to track the appropriate PCE basis upon determining
the law of the transformed input random vector (as these will not be standard-normal if the latent
space transformation is no longer subject to the orthogonality constraint).
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Abstract

In many contexts, it is of interest to assess the impact of selected parameters on the failure probability
of a physical system. To this end, one can perform conditional reliability analysis, in which the
probability of failure becomes a function of these parameters. Computing conditional reliability
requires recomputing failure probabilities for a sample sequence of the parameters, which strongly
increases the already high computational cost of conventional reliability analysis. We alleviate these
costs by reusing information from previous reliability computations in each subsequent reliability
analysis of the sequence. The method is designed using two variants of importance sampling and
performs information transfer by reusing importance densities from previous reliability analyses in
the current one. We put forward a criterion for selecting the most informative importance densities,
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which is robust with respect to the input space dimension, and use a recently proposed density
mixture model for constructing effective importance densities in high dimensions. The method
controls the estimator coefficient of variation to achieve a prescribed accuracy. We demonstrate its
performance by means of two engineering examples featuring a number of pitfall features such as
strong non-linearity, high dimensionality and small failure probabilities (10−5 to 10−9).

7.1 Introduction

In order to accurately predict model behaviour with confidence, it is vital to account for uncertainties
influencing the model and its output. Reliability analysis is concerned with quantifying the extremal
behaviour of a model under uncertainty by computing its probability of failure, i.e., the probability of
an unacceptable model response. Often it is of interest to repeatedly perform the analysis on a series
of parametrised reliability problems. Such situations arise in reliability-based design optimization
(RBDO), where the parametrisation is given by the design parameters, or whenever it is desirable
to separate the model inputs into two categories. Hereafter, we refer to these categories as type A
and type B. One example of such a separation is in reducible (epistemic) and irreducible (aleatory)
uncertainty [22, 36, 23, 25, 13]. The general goal of separating inputs in this way is to establish
a distinct relationship between type B variables and the probability of failure conditional on type
B variables. By conditioning the probability of failure on type B variables, one obtains a measure
for the influence of these variables on the probability of failure. In general, the concept applies to
any target that can be cast in terms of an expected value. Such a formulation is useful in many
contexts — it may, e.g., be used to provide estimates of credibility bounds, dispersion measures or
the distribution of the probability of failure conditional on type B variables thus quantifying lack
of knowledge/confidence caused by these variables. It gives rise to global sensitivity measures of
the conditional failure probability with respect to the type B variables (e.g., Sobol’ indices [16])
and facilitates the computation of the partial value of (im-)perfect information for eliciting optimal
decisions based on conditional failure probabilities [37]. We have demonstrated how to construct
surrogate models mapping the type B-variables to the conditional probability of failure to obtain
global sensitivity measures at significantly reduced computational cost [16].

Conventional reliability analysis is a challenging task as failure probabilities are typically associated
with rare events [14, 33] and thus assume small values. Simultaneously, it has received considerable
attention due to its relevance to engineering and financial applications. Structural reliability meth-
ods (SRM) can be categorized into approximation-based methods, such as the first- (FORM) and
second-order reliability method (SORM) [12] and sampling-based methods (importance sampling [8,
20, 1], sequential importance sampling [5, 43], subset simulation [3], cross-entropy importance sam-
pling [50, 31, 32], line-sampling [26, 30], multi-level Monte Carlo (MC) [51] and multi-fidelity MC
[44]). Conditional reliability analysis is considerably more expensive compared to its conventional
counterpart as it requires the solution of a sequence of reliability problems rather than a single one.
A number of sampling approaches have been developed for computing the probability of multiple
correlated failure events efficiently. Ref. [27] introduces parallel subset simulation to estimate failure
probabilities of several failure events simultaneously by defining a principle variable that is correlated
with each failure event. In Refs. [34, 4] subset simulation is applied to a parallel system with each
system component representing one reliability problem in the sequence. The corresponding failure
probabilities can be estimated based on the failure probability of the system and the conditional
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samples from each subset. Refs. [27, 34, 4] are efficient if all considered failure events are strongly
correlated, but will encounter difficulties if there are failure events occurring in the sequence that
are not correlated with any of the other events. This implies that these methods are not suited for
conditional reliability analysis if the number of type B-samples is large and/or if the type B-samples
contribute a large fraction of variability to the conditional probability of failure, since in either case,
the probability of disjunct failure events in the sequence is considerable. Ref. [35] proposes a method
for robust optimization problems, i.e., design optimization under probabilistic constraints that in-
clude the mean and variance of the model response. Control variates are used to recycle information
stemming from the previous optimizer iteration to accelerate the MC constraint computation in each
optimization step (but the first). The design parameters, which parametrize the model and which
change in each design iteration, can be viewed as a deterministic counterpart to type B-variables (see
Subsection 7.3.2). The same is true for RBDO, where the design optimization is carried out under
constraints on system reliability rather than response moments. Ref. [5] proposes bridge importance
sampling to solve RBDO: importance densities of reliability computations at previous steps in the
design optimization are used to initialize a bridging step towards the current optimal importance
density. Suitable density candidates are identified based on a heuristic that has inspired an ear-
lier approach to conditional reliability analysis [17] as well as this contribution (Subsection 7.3.3).
Ref. [10] proposes to solve RBDO with importance sampling where information from previous design
iterations is incorporated in the choice of the importance density of the current reliability problem.

Here, we propose a method for solving the conditional reliability problem in high dimensions ef-
ficiently through information reuse. In Section 7.2, we briefly recap conventional reliability analysis
and popular solution approaches before formally introducing the conditional reliability problem in
Section 7.3. We then discuss our approach to information reuse that consists of a selection strat-
egy for informative importance densities and two importance samplers (mixed and controlled) that
serve to exploit the selected densities in the current reliability estimate. In Section 7.4, we present
comprehensive investigations of the method’s performance in two engineering examples and provide
a detailed discussion of the results. Conclusions are given in Section 7.5.

7.2 Conventional reliability analysis

In this section, we set up the reliability problem formulation and discuss well-etablished approaches
to its solution. In the second part, we discuss the cross-entropy method (CE) [50, 49] and a recently
introduced improved version thereof (iCE) [42].

7.2.1 Problem Statement

Consider a system that is modelled by Y : DΘ → R with d-dimensional random input vector
Θ : Ω → DΘ ⊆ Rd, where Ω is the sample space of Θ. FΘ is the joint cumulative distribution
function (CDF) of Θ. Y maps to the system response Y = Y(θ) with the model input θ ∈ DΘ.
Based on the response Y , unacceptable system states are defined by means of the limit-state function
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LSF g̃(Y ). Defining g(θ) = g̃ ◦ Y(θ) and introducing the convention

g(θ) =

{
≤ 0,Failure

> 0,Safety,

the failure event of the system is defined as F = {θ ∈ DΘ : g(θ) ≤ 0}. The probability of failure is
given by [14]

P = P(F) =

∫

DΘ

I[g(θ) ≤ 0]f(θ)dθ = E [I(g(Θ) ≤ 0)] , (7.1)

where f is the joint probability density function (PDF) of Θ and the indicator function I[·] equals
1 if true and 0 otherwise. Without loss of generality, one may formulate an equivalent reliability
problem with respect to the standard-normal probability space using the random vector U : Ω→ Rd.
Given an isoprobabilistic transformation T : DΘ → Rd, such that U = T (Θ) [48] and defining
G = g(T−1(U)), one can write Eq. (7.1) as

P =

∫

Rd

I[G(u) ≤ 0]ϕd(u)du = E [I(G(U) ≤ 0)] , (7.2)

where ϕd denotes the d-dimensional independent standard-normal PDF.

7.2.2 Standard MC

The standard MC estimate of the integral in Eq. (7.2) reads

p̂MC =
1

n

n∑

k=1

I[G(uk) ≤ 0], uk
i.i.d.∼ ϕd.

This estimate is unbiased and has coefficient of variation (CoV)

δMC =

√
1− P
nP

.

Its costs in terms of g-evaluations (= n) are independent of the model dimension d. If P � 1, δMC

scales approximately inversely with the square root of the failure probability and n becomes large
for small values of P . Namely, for a target δ0, at least n0 evaluations of G are required, where

n0 =
1− P
δ2

0P
.

Thus, while independent of the model input dimension, the standard MC estimate is not suited for
estimating rare events if evaluating Y is not cheap.

7.2.3 Importance sampling

One of the most commonly used techniques to alleviate the above restriction on the sample size
while achieving a prescribed CoV is the importance sampling (IS) method. Let h be a density, such

163



7.2. Conventional reliability analysis

that h(u) > 0 whenever G(u) ≤ 0. Then, we can rewrite Eq. (7.1)

P =

∫

Rd

I(G(u) ≤ 0)

w(u)︷ ︸︸ ︷
ϕd(u)

h(u)
h(u)du = Eh [I(G(U) ≤ 0)w(U)] , (7.3)

where h is termed the importance, auxiliary, instrumental or biasing density and w is the likelihood
ratio or IS weight. In the context of importance sampling, ϕd is often referred to as the nominal
density. The corresponding estimate of the probability of failure is given by

p̂IS =
1

n

n∑

k=1

I[G(uk) ≤ 0]w(uk), uk
i.i.d.∼ h. (7.4)

p̂IS is an unbiased estimate of P and its variance is

V[p̂IS] =
1

n
Vh[I[G(U) ≤ 0]w(U)].

Estimating the above based on a set of samples drawn from h, we obtain an estimate for the CoV
of p̂IS as

δ̂IS =
1

p̂IS

√√√√ 1

n(n− 1)

n∑

k=1

(I[G(uk) ≤ 0]w(uk)− p̂IS)2, uk
i.i.d.∼ h. (7.5)

There exists an optimal importance density h∗ such that V[p̂IS] = 0:

h∗(u) =
1

P
I[G(u) ≤ 0]ϕd(u). (7.6)

Note, that h∗ requires knowledge of the target quantity P . Thus it cannot be used immediately
to compute the integral in Eq. (7.3). However, it gives rise to a variety of approaches that aim at
approximating h∗ by propagating a sequence of distributions from ϕd towards h∗, e.g., via conditional
sampling using Markov Chain Monte Carlo [20, 43] or through fitting parametric density models [8,
50, 49].

7.2.4 The iCE method (iCE)

Here, we discuss a recently proposed version of sequential importance sampling that is based on
the classical CE method proposed in Ref. [49] and has been demonstrated to work well in high
dimensions [42]. Consider a parametric version of the importance density h(u,v), which is defined
by the parameter vector v ∈ V. The parameter space V contains v0, where h(u,v0) = ϕd(u). The
standard CE method aims at minimizing the Kullback-Leibler (KL) divergence DKL(h∗(u)||h(u,v))
between h∗(u) and h(u,v) over the parameter space V, which is defined as [50]

DKL(h∗(u)||h(u,v)) = Eh∗
[
ln

(
h∗(u)

h(u,v)

)]

Eq. (7.6)
=

1

P
Eϕd

[I[G(u) ≤ 0] ln(h∗(u))]− 1

P
Eϕd

[I[G(u) ≤ 0]h(u,v)].

(7.7)
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The first summand on the right-hand side of Eq. (7.7) is not a function of v, so that minimizing
DKL(h∗(u)||h(u,v)) can be expressed as

v∗ = arg max
v∈V

Eϕd
[I[G(U) ≤ 0] ln(h(U ,v))] (7.8)

and its sample-based approximation reads

v̂∗ = arg max
v∈V

1

n

n∑

k=1

[I[G(uk) ≤ 0] ln(h(uk,v))], uk
i.i.d.∼ ϕd. (7.9)

For fixed v, the objective function in Eq. (7.9) is equivalent to a weighted version of p̂MC . That is,
to approximate v∗ well with v̂∗, n has to be large if F is a rare event. The CE method circumvents
this problem by approaching h∗ stepwise with a sequence of parametric distributions defined by
{vi, i = 1, . . . ,m}. The failure event F is represented by a series of more probable intermediate
events {Fi, i = 1, . . . ,m} that are defined by manipulating their associated threshold ξi s.t. Fi =
{u ∈ Rd : G(u) ≤ ξi}, where ξ1 > ξ2 > · · · > ξm−1 > ξm. Starting from h(u,v0) = ϕd(u), the
threshold ξi is determined as the lower ρ-quantile of the LSF based on samples from the parametric
density associated with Fi−1, h(u,vi−1), with typical choices for the quantile value ρ = [10−2, 10−1].
The i-th parametric density is then found through minimizing the KL divergence between hi(u) and
h(u,vi), where hi(u) is the optimal importance sampling density associated with the threshold ξi.
Once all nρ new samples lie within the failure domain, i.e., G evaluated at these samples is always
negative, the algorithm is stopped. Solving Eq. (7.9) based on samples from h(u, v̂i−1) rather than
ϕd introduces the weight W (u, v̂i−1) = ϕd(u)

h(u,v̂i−1) :

v̂i = arg max
v∈V

1

n

n∑

k=1

I[G(uk) ≤ ξi] ln(h(uk,v))W (uk, v̂i−1), uk
i.i.d.∼ h(u, v̂i−1). (7.10)

Computing the new parameter set v̂i based on nρ samples in each iteration effectively leaves a
fraction of 1 − ρ (90 − 99%) of the samples unused and motivates the first of two major points
of departure of iCE from CE: Within iCE, hi is re-parametrized using a smooth approximation of
I[g ≤ 0] based on the standard-normal CDF Φ(·):

hi(u) =
1

Pi
Φ

(
−G(u)

σi

)
ϕd(u) =

1

Pi
ηi(u), (7.11)

where Pi = Eϕd
[Φ(−G(U)/σi)] is a normalizing constant and σi is a smoothing parameter. This

distribution sequence has been used to construct adaptive importance sampling-based approaches
to reliability analysis [43, 15] , reliability sensitivity analysis [39] and RBDO [5]. The CE-program
now reads

v̂i = arg max
v∈V

1

n

n∑

k=1

ln(h(uk,v))W (uk, v̂i−1), uk
i.i.d.∼ h(u, v̂i−1), (7.12)

where W (u, v̂i−1) = ηi(u)
h(u,v̂i−1) . In program Eq. (7.12), all samples available from h(u, v̂i−1) will be

used with their respective modified weight. Then, in each step, the current σi is identified such that
the sample CoV of the weights {W (uk, v̂i−1), k = 1, . . . , n}, δ̂W (σ), adheres to a target value δtarget:

σi = arg min
σ∈[0,σi−1]

(
δ̂W (σ)− δtarget

)2
. (7.13)
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δ̂W (σ) is a measure of dissimilarity between two subsequent importance densities hi and h(u, v̂i−1)
and the choice of δtarget needs to balance two conflicting targets: on the one hand, large δtarget

leads to inaccurate solutions of program Eq. (7.12) as the employed samples from h(u, v̂i−1) cannot
represent hi well. On the other hand, with small δtarget, two subsequent intermediate importance
sampling densities will be similar such that the method progresses slowly and many iterations are
required to achieve convergence. [42] suggests δtarget = 1.5, which is employed here as well. The
algorithm terminates, when the approximated and optimal importance density, hi and h∗, are suffi-
ciently close in the sense that CoV[I[G(u)]/Φ(−g(u)/σi)] ≤ δtarget with δtarget = 1.5 a typical choice
[42]. Note, that δtarget is computed with hi(u) rather than the parametric h(u, v̂i), since it is more
robust with respect to the flexibility of the parametric model. After termination, additional samples
can be drawn from the final parametric importance density to achieve a prescribed estimator CoV
according to Eq. (7.5). Alg. 10 describes the iCE procedure in detail.

Algorithm 10 The iCE method
Input LSF G(u), input space dimension d, target CoV δtarget, samples per level N
Output estimate p̂iCE, compute estimate CoV δ̂iCE, no. of levels m,

importance densities {h(u, v̂i), i = 1, . . . ,m}

1: procedure iCE(g, δtarget, N , d)
2: Set converged = false
3: Set i = 1
4: Select v̂0 . e.g., s.t. h(u, v̂0) = ϕd(u)
5: while ¬converged do
6: Sample U = {uk, k = 1, · · · , N} ∈ RN×d . uk

i.i.d.∼ h(u, v̂i−1)
7: G = G(U) ∈ RN×1

8: if CoV[I[G]/Φ(−G/σi)] ≤ δtarget then . CoV of likelihood ratio of h∗ and ηi(u)
9: Set m = i− 1

10: W = I[Gk ≤ 0]ϕd(u
k)/h(uk, v̂m) . Likelihood ratio of h∗ and h(u, v̂m)

11: Estimate the failure probability

p̂iCE = Ê(W )

12: Compute the failure probability estimate’s CoV

δ̂iCE =

√
V̂(W )

N Ê(W )2

13: Set converged = true
14: else
15: Compute σi from Eq. (7.13)
16: Compute v̂i from Eq. (7.12)
17: i = i+ 1
18: return p̂iCE, δ̂iCE, m, {h(u, v̂i), i = 1, . . . ,m}

The second point of departure of iCE from CE is given by the parametric density model choice.
When working in standard-normal space, typical choices for h(u,v) are the d-dimensional single
Gaussian density (SG) [24] or a d-dimensional Gaussian mixture (GM) [32, 24]. For the single Gaus-
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sian, Eqs. (7.10) and (7.12) can be solved analytically and for the Gaussian mixture, the solution is
identified through the expectation maximization (EM) algorithm. However, within importance sam-
pling algorithms, both models perform poorly in higher-dimensional problems (d ≥ 20). A detailed
discussion of the issue can be found in Refs. [24, 2, 29]. In Ref. [52], a von Mises-Fisher model for the
direction in U -space is proposed to remedy these issues. For the iCE method, this model is extended
by a Nakagami distribution for the radius of any point in standard-normal space, which yields the
von Mises-Fisher-Nakagami-mixture model (vMFNM) for h(u,v), where v = [m,Ω,µ,κ,α] [42].
α ∈ RK are the mixture weights of the K components, m ∈ RK and Ω ∈ RK are the shape and
spread parameters of the K Nakagami distributions and κ ∈ RK and µ ∈ RK×d are the concen-
tration and mean direction parameters of the K von Mises-Fisher distributions. Eq. (7.12) can be
solved through a weighted expectation-maximization algorithm. The number of components in the
mixture K can be either prescribed through prior knowledge of the reliability problem (e.g., knowl-
edge of the number of disjunct failure regions) or - in moderate dimensions - identified through a
clustering algorithm such as DBSCAN [21]. For details, see [42, 24].

7.3 Conditional reliability analysis

7.3.1 Problem Statement

The interest is in computing the failure probability conditional on a dB-dimensional subset of the
input random vector Θ. Let this subset be ΘB : Ω → DB ⊆ RdB with joint CDF FB. Further
let ΘA : Ω → DA ⊆ RdA with joint CDF FA be the complement of ΘB over Θ such that we may
reorder the inputs and write Θ = [ΘA,ΘB]T . The failure probability conditional on ΘB is defined
by the integral

PF(ΘB) = P(F|ΘB) =

∫

DA

I[g(θA; ΘB) ≤ 0]f(θA|ΘB)dθA = Ef(θA|ΘB) [I(g(Θ) ≤ 0)|ΘB] . (7.14)

Using the isoprobabilistic transformation T from Subsection 7.2.1 we recast Eq. (7.14) in standard-
normal space:

PF(UB) = P(F|UB) =

∫

RdA

I[G(uA;UB) ≤ 0]ϕdA(uA)duA = E [I(G(U) ≤ 0)|UB] . (7.15)

Note that UA and UB are independent and thus we have f(uA|uB) = f(uA) = ϕdA(uA).

As mentioned before, possible applications include quantiles PF/P̄F, surrogate models P̂F(ΘB) or a
density estimate f̂(pF) of PF(ΘB). In practice, these quantities are computed based on nB samples
of PF(ΘB), {pj , j = 1, . . . , nB}, where

pj = PF(ujB) =

∫

RdA

I(G(uA,u
j
B) ≤ 0)ϕdA(uA)duA, ujB

i.i.d.∼ ϕdB , j = 1, . . . , nB. (7.16)

The computational cost associated with this setting can be considerably higher than that of a con-
ventional reliability analysis as nB dA-dimensional reliability problems of form Eq. (7.14) have to be
solved instead of a single one. Fig. 7.1 illustrates the estimation of conditional failure probabilities
with iCE and the associated parametric importance densities constructed in the process. Therein,
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RdA with joint CDF FA be the complement of ⇥B over ⇥ such that we may reorder the inputs and write
⇥ = [⇥A,⇥B ]T . The failure probability conditional on ⇥B is defined by the integral

PF(⇥B) = P(F|⇥B) =

Z

DA

I[g(✓A;⇥B)  0]f(✓A|⇥B)d✓A = Ef(✓A|⇥B) [I(g(⇥)  0)|⇥B ] . (14)

Using the isoprobabilistic transformation T from Section 2.1 we recast Eq. (14) in standard-normal space:

PF(UB) = P(F|UB) =

Z

RdA

I[G(uA; UB)  0]'dA
(uA)duA = E [I(G(U)  0)|UB ] . (15)

Note that UA and UB are independent and thus we have f(uA|uB) = f(uA) = 'dA
(uA).

As mentioned before, possible applications include quantiles PF/P̄F, surrogate models bPF(⇥B) or a den-

sity estimate bf(pF) of PF(⇥B). In practice, these quantities are computed based on nB samples of PF(⇥B),
{pj , j = 1, . . . , nB}, where

pj = PF(uj
B) =

Z

RdA

I(G(uA, uj
B)  0)'dA

(uA)duA, uj
B

i.i.d.⇠ 'dB
, j = 1, . . . , nB . (16)

The computational cost associated with this setting can be considerably higher than that of a conventional
reliability analysis as nB dA-dimensional reliability problems of form (14) have to be solved instead of a
single one. Figure 1 illustrates the estimation of conditional failure probabilities with iCE and the associ-
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Figure 1: Illustration of iCE densities: h(uA; vj
i ) is the importance density used at the i-th iCE step in the j-th conditional

reliability problem in standard-normal space. Intermediate densities at equal iCE-steps i associated with di↵erent conditional
reliability problems j tend to look identical in this illustration but are generally not. An exception is the nominal density '(uA),
which is identical for each problem.

ated parametric importance densities constructed in the process. Therein, vj
i is the parameter vector of the

parametric importance density constructed in the i-th step of the j-th iCE run (i.e., the run solving the j-th
reliability problem). The parameter vector v now receives a superscript to identify the reliability problem to
which it belongs while its subscript indicates the associated iCE step.

7

Figure 7.1: Illustration of iCE densities: h(uA;vji ) is the importance density used at the i-th iCE
step in the j-th conditional reliability problem in standard-normal space. Intermediate densities at
equal iCE-steps i associated with different conditional reliability problems j tend to look identical in
this illustration but are generally not. An exception is the nominal density ϕ(uA), which is identical
for each problem.

vji is the parameter vector of the parametric importance density constructed in the i-th step of the
j-th iCE run (i.e., the run solving the j-th reliability problem). The parameter vector v now receives
a superscript to identify the reliability problem to which it belongs while its subscript indicates the
associated iCE step.

The main contribution of this paper is an algorithm that efficiently solves the sequence of con-
ditional reliability problems given in Eq. (7.16). The connection of this problem sequence to a
conceptually similar one arising in RBDO is discussed in the following subsection. Our framework is
based on the iCE method for conventional reliability analysis. The basic idea is to reuse information
from - or more precisely: densities constructed in - past problems to alleviate the computational
cost in the current estimation. The two key tasks of such an algorithm are the identification of
suitable biasing densities amongst solved reliability computations on the one hand, and the efficient
integration of these densities in the estimation of the current conditional failure probability on the
other hand. Identification and integration are addressed in Subsection 7.3.3 and Subsection 7.3.4,
respectively.

7.3.2 Connection to RBDO

Reliability-based design optimization (RBDO) may be defined as the minimization of a deterministic
cost function under constraints on the failure probability given the system design. To this end, the
design is parametrized by means of a set of design variables. Then, a problem similar to Eq. (7.16)
arises as the failure probability of the system has to be evaluated repeatedly and conditional on sev-
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eral points in the design space. In such case, θjB would represent the design variables’ values in the
j-th iteration of the RBDO program. Due to this similarity, information reuse is also interesting for
solving RBDO problems and has been put forward in this context in Ref. [10]. There, an influence
hypersphere around each ΘB-sample in DB is defined to identify suitable previously constructed
importance densities. An important difference to conditional reliability estimation is the fact that
values of ΘB are not based on randomly sampling from f(θB) but are inherently ordered as they
are generated by an optimisation procedure. While this can significantly simplify the source iden-
tification task discussed in Subsection 7.3.3, it incurs the additional cost of computing gradients of
the model with respect to ΘB. `2-distance-based information reuse in DB is a promising approach
as long as the design space dimension remains moderate. [17] use a nearest neighbour search to
identify such an ordering based on the `2-distance amongst ΘB-samples in DB. However, in our
experience, such a heuristic for the proximity of reliability problems is not robust if either g is not
sufficiently well-behaved (e.g., not sufficiently linear in θB) or the dimension of DB is large. In the
latter case, the heuristic will suffer from the concentration of distance in high dimensions [6].

7.3.3 Source selection

We reuse information by identifying parametric importance densities constructed for previous con-
ditional reliability problems in the sequence in Eq. (7.16) that are, in some sense, well-suited to es-
timate the current conditional failure probability. Thus, each parameter set {vji , i = 1, . . . ,mj , j =
1, . . . , nB} is stored in a candidate pool during the computation of the j-th problem, with mj denot-
ing the number of steps in the iCE method solving the j-th reliability problem. Within importance
sampling, the fitness of an importance density for a given reliability problem can be characterized in
terms of its proximity to the optimal importance density, e.g., in terms of an f -divergence measure.
In brief, an f -divergence Df (p|q) measures dissimilarity between distributions with PDFs p and q
as the expected value of the likelihood ratio p/q weighted with a function f : Df (p|q) = Eq[f(p/q)].
Different choices of f lead to different divergence measures such as the squared Hellinger distance
(f(s) = 2(1−√s)) or the Kullback-Leibler-divergence (f(s) = s log s).

Mode search according to Beaurepaire et al.

Estimating Df (p||q), with p the target density and q any density in the candidate pool, requires a
considerable amount of LSF evaluations per candidate density for source identification only (in ad-
dition to the estimation cost). Instead, Ref. [5] proposes a heuristic to reduce the identification cost
to a single LSF evaluation per candidate density in the context of RBDO. There, the failure proba-
bility is re-evaluated with sequential importance sampling conditional on various design parameter
values provided by an optimization sequence. The heuristic is based on evaluating the current (`-th)
LSF G(uA,u

`
B) at the mode ūji of each stored parametric density. The fittest importance density

amongst all available candidates is identified as the one whose mode evaluation is closest to 0:

[I`, J`] = arg min
i=1,...,mj ,
j=1,...,nB

|G(ūji ,u
`
B)|, (7.17)

i.e., the importance density of the `-th reliability problem is selected as the importance density
constructed at the I`-th step of the J`-th conditional reliability problem.
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Extension for mixtures and the CE-framework

In this work, we extend the idea presented in Ref. [5] by identifying multiple potentially suitable can-
didate densities and combining them into a mixture. Instead of identifying a single density amongst
the members of the candidate pool, we evaluate the current LSF at the mode of each candidate
density to identify a mixture density. The weight αji of the candidate density constructed in the i-th
iCE step of the j-th reliability problem is computed as the inverse absolute value of the LSF at the
density mode whereby the weights are normalized so that they sum to unity. Mixture components
whose weights fall below a threshold value (we choose the threshold as 0.01) are eliminated from
the mixture to prevent dilution of the mixtures. The source identification procedure for mixtures

(a) (b) (c)

(d) (e) (f)

Figure 7.2: Step-wise illustration of the mode search algorithm (top left to bottom right). The
perspective is obtained by a projection of Fig. 7.1 along the UB-axis. (a) Candidate densities
(importance densities from reliability problems 1 and 3) along with LSF of current reliability problem
(problem 2) are depicted. (b) The modes of the candidate densities are identified. (c) + (d) The
LSF of the current problem is evaluated at these modes. (e) The normalized reciprokes of the mode
evaluations form the mixture weights. (f) The importance density mixture for the current problem
is computed.

is detailed in Alg. 11, which returns the importance mixture qα = αTq for each reliability problem
but the first. q is the vector of all retained candidates in the current mixture and α is the vector
of associated mixture weights. Fig. 7.2 illustrates the algorithm in one dimension (dA = 1). The
candidate density modes can be computed exactly without additional LSF evaluations due to their
parametric nature.
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Algorithm 11 Mode-based source identification
Input current conditional LSF G(uA,u

`
B), candidate modes ūji , candidate densities h(uA;vji )

Output number of mixture components M , mixture coefficients α, mixture densities q

1: procedure Source-ID(G,ūji ,h(uA;vji ))
2: Compute mode evaluations ḡji = G(ūji ,u

`
B) . i ∈ 1, 2, . . . ,mj , j ∈ 1, 2, . . . , `− 1

3: Compute mixture coefficients aji =
1/ḡji∑`−1

j=1

∑mj
i=1 1/ḡji

4: Initialize α, q
5: for all aji do . Gather tuples identifying important candidates
6: if aji > 0.01 then
7: Add: α← aji , q ← h(uA;vji )
8:
9: Renormalize mixture coefficients α = α/‖α‖1 ∈ [0.01, 1]M×1 .
M =

∑`−1
j=1

∑mj

i=1 I(aji > 0.01)
10: return M ,α, q

7.3.4 Information reuse for iCE: mixture-based and controlled importance sam-
pling

Once the mixture qα is identified, it can be used for importance sampling. The mixture-based
importance sampling (M-IS) estimate of p` reads

p̂`MIS =
n∑

k=1

ϕdA(ukA)

qα(ukA)
I[G(ukA,u

`
B) ≤ 0], ukA

i.i.d.∼ qα. (7.18)

The M-IS estimate’s CoV is found in the same way as that of the previously discussed standard IS
estimate, i.e.,

δ̂`MIS =
1

p̂`MIS

√√√√ 1

n2

n∑

k=1

(
ϕdA(ukA)

qα(ukA)
I[G(ukA,u

`
B) ≤ 0]− p̂`MIS

)2

. (7.19)

The M-IS is one of two IS estimates employed in this work. The second IS estimate results from
the application of a variance reduction technique to the M-IS estimate and is known as controlled
importance sampling (C-IS) [38]. The C-IS estimate can be viewed as a control variates analogue for
probability densities. The classical control variates method is a variance reduction technique that
may be applied to unbiased estimators µ̂ of E[f(X)], where X is a random vector with CDF FX
[50]. The idea is to use a random vector of dC control variates C that is correlated with µ̂ and has
known mean c = E[C] to construct a new unbiased estimate with lower variance compared to µ̂ as:

µ̂β = µ̂+ βT(C − c).

β is found by minimizing V[µ̂β], which yields [50]

βopt = Σ−1
C σµ̂C ,

where ΣC is the covariance matrix of C and σµ̂C is the dC-dimensional vector of covariances between
the components of C and µ̂. The minimal variance reads

V[µ̂βopt ] = V[µ̂]− σT
µ̂CΣ−1

C σµ̂C ,
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where σT
µ̂CΣ−1

C σµ̂C ≥ 0, with the expression becoming 0 only if σµ̂C = 0, i.e., if µ and C are
uncorrelated. That is, control variates are based on exploiting knowledge about a quantity that
is correlated with the estimation target, where the larger the correlation, the larger the variance
reduction.

Ref. [38] introduces a second mixture qβ of control densities with coefficients β into the M-IS esti-
mate and add a correction term to preserve its unbiasedness (corresponding to βTc above). Ref. [38]
states that, ideally, for the M-IS sampler these densities are the ones that constitute the importance
mixture qβ (namely, q). The C-IS estimate reads:

p̂`CIS =
n∑

k=1

ϕdA(ukA)I[G(ukA,u
`
B) ≤ 0]− qβ(ukA)

qα(ukA)
+ ‖β‖1, (7.20)

where qβ = βTq. The second summand is the correction term that preserves unbiasedness. Since qβ
is a density and thus ingrates to 1, we have Eqα [βiqi/qα] = βi ∀ i ∈ 1, 2, . . . ,M . Optimal variance
reduction can be achieved by minimizing the variance of the C-IS estimate jointly over the additional
free coefficients β and its associated estimate p̂`CIS(β). The estimate’s variance can be computed
based on the sample from qα as

(σ̂`CIS)2 =
1

n

n∑

k=1

(
ϕdA(ukA)I[G(ukA,u

`
B) ≤ 0]− qβ(ukA)

qα(ukA)
+ ‖β‖1 − p̂`CIS

)2

. (7.21)

Following Ref. [38], minimizing Eq. (7.21) can be cast as a multiple linear regression of the model
Y (u) = cTZ(u) with the extended coefficient vector c = [p̂`CIS,β

T ]T and

Y (u) = ϕdA(u)I[G(u,u`B) ≤ 0]/qα(u)

Z(u) = [1, q1(u)/qα(u)− 1, q2(u)/qα(u)− 1, . . . , qM (u)/qα(u)− 1]T .

The multiple linear regression program reads

ĉ = arg min
c∈R1×M+1

1

n

n∑

k=1

[
Y (ukA)− cTZ(ukA)

]2
, (7.22)

where β̂opt = ĉ2:M+1 and p̂`CIS(β̂opt) = ĉ1. For simplicity, p̂`CIS shall always denote the minimum
variance estimate p̂`CIS(β̂opt) and its CoV is denoted by δ̂`CIS. The latter can be computed directly
from the standard error of multiple linear regression as

δ̂`CIS =
1

p̂`CIS

√√√√ 1

n(n−M − 1)

n∑

k=1

[
Y (ukA)− ĉTZ(ukA)

]2
. (7.23)

Eqs. (7.19) and (7.23) provide the means to determine the accuracy of the two p`-estimates. In
Section 7.4, we test the efficiency and accuracy of both the M-IS and C-IS estimates against a
standard iCE run starting from the nominal distribution p. Based on Alg. 10, this baseline estimate
will have CoV δ̂iCE. Thus, the goal is to achieve δ̂MIS/CIS ≤ δiCE at lower computational cost
compared to the total cost of the iCE baseline. In iCE, δtarget is prescribed for the CoV of the
weights of the optimal IS density with respect to its current smooth approximation hi. This is

172



Chapter 7. Conditional reliability analysis in high dimensions based on controlled mixture
importance sampling and information reuse

equivalent to requiring that
√
Nδ̂iCE . δtarget. The inequality is exact if hi(u) and h(u;vi) are

equal. Hence, it is reasonable to enforce

δ̂`MIS/CIS ≤
δtarget√
N

, 2 ≤ ` ≤ nB. (7.24)

A straightforward way to ensure criterion Eq. (7.24) with as few samples as possible is to incre-
mentally add samples drawn from the importance mixture to the estimate until convergence. In
practice, we start with ∆n samples and iteratively increase the number of samples by batches of
∆n, where we set ∆n = N/100. The maximum number of samples is set to the number of samples
per level in the iCE procedure N . Convergence is likely to be achieved within N samples, if the
identified importance mixture qα is a good approximation of the optimal importance density h∗,
i.e., if CoV[h∗/qα] ≤

√
Nδtarget.

7.3.5 Preconditioning iCE

If convergence is not achieved within N samples, it is still likely that CoV[h∗/qα] ≤ CoV[h∗/ϕdA)],
such that replacing the nominal density in Alg. 10 with qα leads to a reduced number of steps
in the iCE sequence, m. To precondition iCE in this way, one may use the N samples drawn
from qα and evaluated for the M-IS/C-IS-estimate, effectively entering crefalg:ice in line 8 with v0

corresponding to the parameter set of qα. In Alg. 12, this preconditioned version of iCE is called
as preconditioned-iCE(G(uA,u

j
B), δtarget, N, dA, qα,U,G), where the three additional arguments

represent a set of samples U and the corresponding LSF evaluations G, drawn from qα. If the
preconditioned iCE step is performed, it is likely because the history of already computed conditional
reliability problems does not contain problems that are sufficiently informative with respect to the
current one. Therefore, once the current problem is solved with preconditioned iCE, the resulting
importance density h(uA;v`m`

) is added to the pool of candidate densities. In this way, the pool
grows adaptively and with each solved conditional reliability problem, it becomes more informative
for the problems left in the sequence. The final procedure is outlined in Subsection 7.3.6 by Alg. 12.

7.3.6 The computational procedure

In Alg. 12, we summarise the overall procedure to estimate a sequence of conditional reliability
problems using Alg. 10 & Alg. 11 as well as the samplers described in Eq. (7.18) or Eq. (7.20).

7.4 Numerical experiments

7.4.1 Parameter Study: sequential processing chain

In the first example, we consider a sequence of processing steps. Each step is modelled as a Possion
process and arrival of the first jump indicates finalisation of a step and triggers the subsequent step.
The arrival time of the first jump in the i-th step is distributed exponentially with rate parameter
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Algorithm 12 Importance sampling with information reuse
Input LSF G(u), input space dimension d, target CoV δtarget, sample increment ∆n,

samples per level N , a set of B-samples UB = {ujB, j = 1, · · · , nB} ∈ RdB×nB

Output conditional failure estimates p̂ ∈ [0, 1]nB×1, estimate CoVs δ̂ ∈ RnB×1, no. of levels
m ∈ NnB×1

1: procedure IS-IR(g, δtarget, N , d, UB)
2: j ← 1
3: gj(uA) = g(uA,u

j
B)

4: [p̂j , δ̂j , mj , {h(uA, v̂i), i = 1, . . . ,mj}]= iCE(gj , δtarget, N , dA) . Alg. 10
5: Add q ← {h(uA, v̂i), i = 1, . . . ,mj}
6: for j = 2, . . . , nB do
7: [M ,α, q] = Source-ID(g,ūji ,h(uA;vji )) . Alg. 11
8: qα = αTq
9: n = ∆n

10: Sample UA = {ukA, k = 1, . . . , n} ∈ Rn×dA . ukA
i.i.d.∼ qα

11: Compute G = G(UA,u
j
B) ∈ Rn×1

12: while n ≤ N do
13: With (UA,G), compute p̂jMIS/p̂

j
CIS based on Eq. (7.18)/Eq. (7.20)

14: With (UA,G), compute δ̂jMIS/δ̂
j
CIS based on Eq. (7.19)/Eq. (7.23)

15: if δ̂jMIS/CIS ≤ δtarget/
√
N then

16: break
17: else if n ≤ N then
18: Sample UA,new = {ukA,new, k = 1, . . . ,∆n} ∈ R∆n×dA . ukA,new

i.i.d.∼ qα

19: Compute Gnew = g(UA,new,u
j
B) ∈ R∆n×1

20: Add UA ← UA,new

21: Add G← Gnew

22: else if n = N and δ̂jMIS/CIS > δtarget/
√
N then

23: gj(uA) = g(uA,u
j
B)

24: [p̂j , δ̂j ,mj , h(uA, v̂
j
mj )] = preconditioned-iCE(gj , δtarget, N, dA, qα,UA,G)

25: Add q ← h(uA, v̂
j
mj )

26: return p̂,δ̂,m
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λi, which is an uncertain parameter. The goal is to estimate the probability of the total processing
time exceeding a threshold. The LSF thus reads

g(t,λ) = T −
dA∑

i=1

ti,

︸ ︷︷ ︸
∼Hypoexp(λ)

ti ∼ Exp(λi), (7.25)

where Exp denotes the exponential distribution and Hypoexp denotes the hypoexponential distri-
bution. The sum of dA independent exponential random variables with rate parameters λ ∈ RdA×1

+

is hypoexponentially distributed [7]. The exponential and hypoexponential CDF read

FExp(x;λ) = 1− e−λx ∀x ≥ 0,

FHyp(x;λ) = 1−
dA∑

i=1

e−λix
dA∏

j=1,j 6=i

λj
λj − λi

∀x ≥ 0.

With known rate parameter vector λ, the failure probability is given as

P(F|λ) = P(g(t) ≤ 0) = 1− FHyp(T ;λ). (7.26)

We let θA = t ∈ RdA×1, ΘB ∼ UdB (0, 1) ∈ RdB×1, where dB = n · dA, n ∈ N, and

1

λi
=

1

n

n·i∑

j=n·i
−n+1

θB,j , i = 1, 2, . . . , dA. (7.27)

That is, each inverse rate parameter (scale parameter) is computed as the average of n different
reducible variables. With these definitions and transforming the LSF to standard-normal space,
Eq. (7.25) reads

G(uA,uB) = T −
dA∑

i=1

F−1
Exp(Φ(uA,i);λi),

1

λi
=

1

n

n·i∑

j=n·i
−n+1

Φ(uB,j). (7.28)

We define A ∈ {0, 1}dA×dB such that λ−1 = AθB/n. A has a banded structure with elements of
the main diagonal and the first n− 1 diagonals above the main diagonal being 1 and the rest 0. An
analytical expression for PF(UB) follows from Eq. (7.26):

PF(UB) = 1− FHyp

(
T ; (AΦ(UB)/n)−1

)
. (7.29)

By inverting Eq. (7.29) one may compute Tp corresponding to the first-order approximation of a
fixed unconditional failure level p as

Tp = F−1
Hyp

(
1− p; (AΦ(E [UB])/n)−1

)
= F−1

Hyp(1− p; 2), (7.30)

where 2 denotes a dA-dimensional vector of twos. In the following application, if not stated otherwise,
dB = 100 and n = 5 such that dA = 20. The unconditional failure probability is chosen as
P(F) = 10−5 and the number of ΘB-samples as nB = 100. We use the relative root-mean-squared
error (RMSE) to measure the accuracy of a failure probability estimate p̂ conditional on θB, which
reads

e(p̂|θB) =
1

PF(θB)

√
E
[
(p̂(θB)− PF(θB))2

]
, (7.31)
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and plot the mean of e(p̂|θB) taken over the nB ΘB-samples in Fig. 7.3. The expectation in
Eq. (7.31) is computed with 100 repetitions of the analysis using the same ΘB sample set. The
proposed algorithms (M-IS & C-IS) are benchmarked against an iCE reference solution with equal
number of samples per level N = 1000 and target CoV δtarget = 1.5 for iCE, M-IS and C-IS. This
corresponds to a target CoV of the conditional failure probability estimate of approximately 0.05.
A series of parameter studies is devised to illustrate the behaviour of our algorithm depending on
the failure magnitude of the problem (P(F) - through choosing different Tp thresholds according to
Eq. (7.30)), its dimensionality in A-space (dA) and B-space (dB) and the number of conditional
reliability problems present in the sequence (nB). The estimator accuracy (mean and variance) of
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Figure 7.3: Failure probability estimation: computational cost (left) and RMSE mean including
confidence intervals (right) with varying unconditional failure probability levels.

both M-IS and C-IS-based information reuse samplers matches that of the reference solution when
varying P(F) over a wide range (10−3 and 10−9, see Fig. 7.3). The computational savings of our
information reuse samplers increase as P(F) decreases and reach > 60% saved effort at P(F) = 10−9.
This is somewhat intuitive as the number of required steps in the iCE sequence grows with decreasing
failure probability magnitude such that the savings potential rises. C-IS does not notably outperform
M-IS, i.e., the control variate effect is negligible at all investigated P(F)-values. Fig. 7.4 shows
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Figure 7.4: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale
with varying unconditional failure probability levels.

the density estimates corresponding to the P(F)-study. Both mean and confidence intervals (CI)
of the density estimates produced with M-IS/C-IS match exactly with the reference solution.,The
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confidence intervals here are again based on 100 repeated runs of iCE, M-IS and C-IS while drawing a
different sample set {θjB, j = 1, . . . , nB} in each repetition (as opposed to the plots in Fig. 7.3, which
are based on 100 repetitions given an identical sample set). That is, the CIs in Fig. 7.4 represent the
aggregation of statistical uncertainty stemming from the failure estimation (iCE/M-IS/C-IS) and the
density estimation based on nB samples. This procedure (100 repetitions at identical type B-sample
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Figure 7.5: Computational cost (left) and mean relative RMSE of conditional failure probability
estimates including confidence intervals (right) with varying number of type B-variable samples.

for cost/error analysis and 100 random draws of the type B -sample for computing PF density CIs)
is used for any following parameter study as well. The second parameter study considers the number
of type B-samples nB. There, the relative savings potential at P(F) = 10−5 amounts to 30% (this
is also evident from the first parameter study in Fig. 7.3) at all investigated sample sizes nB, while
the absolute savings scale proportionally with the total computational effort or nB (Fig. 7.5, left).
Although the relative RMSE of all failure probability estimators is independent of nB (Fig. 7.5),
PF density CIs are shrinking around the mean density estimates as nB increases (Fig. 7.6) due to
the aggregation of failure probability and density estimation uncertainty in these computations (the
uncertainty in the density estimation). As nB rises further, we expect an increase in relative savings
due to an increasingly dense population of the type B-variable space with samples. This, in turn,
will produce more correlation amongst the LSFs, which facilitates more efficient information reuse.
nB does not affect the relative RMSE of the failure probability estimates (Fig. 7.5, right). Finally,
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Figure 7.6: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale
with varying conditional sample size nB.
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we study the influence of the subspace dimensions dA and dB on the performance of our method.
Fig. 7.7 shows the progression of computational cost and RMSE as dB increases and dA = 10,
P(F) = 10−5 and nB = 100 are fixed. The corresponding conditional failure probability densities -
plotted in Fig. 7.8 - reveal a decreasing variability in PF as dB rises. This is to be expected as every
rate parameter (type A-variable) in λ is averaged over an increasing number of type B variables.
That is, the rate parameter variance - and thus also the variance of PF - scale inversely with dB.
As dB increases from 10 to 1000, the computational savings increase from 45% to > 70% while the
error (RMSE) decreases slightly due to the decreasing variability of PF. The same effect is observed
when increasing dA while keeping dB = 100 (and again dB = 100, P(F) = 10−5 and nB = 100)
constant: the variance of PF increases with rising dA (Fig. 7.10), which in turn causes a slight
increase of the relative RMSE (Fig. 7.9). Fig. 7.9 also reveals an intermediate dA regime, in which
the computational savings are relatively low (≈ 20%) due to a plateau in the computational cost
of the reference solution between dA = 10 and dA = 25. In conclusion, this study demonstrates
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Figure 7.7: Failure probability estimation: computational cost (left) and RMSE mean including
confidence intervals (right) with varying problem dimension dB.
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Figure 7.8: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale
with varying dimension dB.

the robustness of the information reuse-based M-IS/C-IS estimators with respect to the problem
dimensions in both type A & B - variables while facilitating computational savings of ≈ 25%−75%.
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Figure 7.9: Failure probability estimation: computational cost (left) and RMSE mean including
confidence intervals (right) with varying problem dimension dA.
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Figure 7.10: Conditional failure probability densities in linear (upper) and logarithmic (lower) scale
with varying dimension dA.

7.4.2 Case Study: monopile foundation in plastically behaving soil

Problem Setup

This case study is based on a finite element model for the interaction of a monopile foundation of an
offshore wind turbine (Fig. 7.11) with stiff, plastic soil. Deterministic parameters of the monopile
are its depth L = 30 m, diameter D = 6 m, wall thickness t = 0.07 m, Poisson ratio ν = 0.3 and
Young’s modulus E = 2.1 · 105 MPa. The uncertain inputs comprise the lateral load H as well as
the undrained shear strength s of the soil and hyperparameters of both quantities. The engineering
model consists of a nonlinear finite element code whose setup is described in detail in Ref. [11] and
the probabilistic model considered there has been modified following Ref. [28]: s is considered both
uncertain and increasing in mean with soil depth z. It is thus modelled by a random field with linear
mean drift along the soil depth coordinate z. Given an underlying homogeneous Gaussian random
field s̃(z,Θ)

{s̃(z) : 0 ≤ z ≤ L} ∼ N (0, σs̃),
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Figure 7.11: Wind turbine monopile foundation [11].

the non-homogeneous random field representing the shear strength of the soil can be expressed as

s(z,Θ) = s0 + s1σ
′(z) exp {s̃(z,Θ)}

= s0 + s1γz exp {s̃(z,Θ)} ,

where γ is the soil unit weight, σ′(z) = γz is the effective vertical stress, s0 is the undrained
shear strength at ground level and s1 is the drift parameter governing the mean increase of s with
increasing soil depth. s̃(z,Θ) models the intra-site variability. That is, at a given site with known
deterministic s0 and s1, it describes the inherent variability of the undrained shear strength. In
order to describe the inter-site variability, the parameters s0 and s1 are modelled probabilistically
as well. The homogeneous RF s̃ is equipped with an exponential correlation function:

ρs̃s̃(z
′, z′′) = exp

{
−2|z′ − z′′|

θs̃

}
,

with vertical soil scale of fluctuation θs̃ = 1.9m [45] and standard deviation σs̃ = 0.3 [45, 46]. We
assume the soil to be stiff and plastic according to the classification provided in Ref. [47]. There,
the specific soil weight range is given with 17 − 19kN/m3, thus we set γ = 18kN/m3. The mean
cohesion range is given with 20 − 50kN/m2 by Ref. [47] and Ref. [9] lists the mean range of the
undrained shear strength ratio su/σ′ as 0.23 − 1.4. We fit log-normal distributions for s0 and s1

by setting the 10 % and 90% quantiles of the distributions equal to the lower and upper bounds of
these ranges. The resulting parameters are detailed in Tab. 7.1 along with uncertain parameters for
the load H, namely µH and σH . The mean and CoV of the load Gumbel distribution in Tab. 7.1
are conditional on the parameters aH (location parameter) and bH (scale parameter):

µH|aH ,bH = µaH + γEµbH

δH|aH ,bH =
π√
6

µbH
µH|aH ,bH

,

where γE is the Euler-Mascheroni constant. s̃ is simulated by means of the midpoint method. That
is, the spatial domain [0, L] is discretized with n spatial elements and s̃ is represented by means of
n random variables with joint distribution N (0,Σs̃s̃). The random variables represent the random
field values at the element midpoints. Thus, the covariance matrix Σs̃s̃ is computed by evaluating

180



Chapter 7. Conditional reliability analysis in high dimensions based on controlled mixture
importance sampling and information reuse

Table 7.1: Input variable definitions of the monopile foundation.

Input Distribution Mean µ CoV δ

ξ [−] Standard-Normal 0 n.d. (Σξξ = In×n)

s0 [kPa] Log-Normal 33.7094 0.3692

s1 [kPa] Log-Normal 0.7274 0.8019

H [kN ] Gumbel µP |aH ,bH δP |aH ,bH

aH [kN ] Log-Normal 2274.97 0.2

bH [kN ] Log-Normal 225.02 0.2

σ2
s̃ρs̃s̃(z

′, z′′) at the element midpoints. The number of elements is chosen such that 95% of the
inherent RF variability is captured by the RF discretization, leading to n = 82 in this example.
Therefore, the total input dimension is d = 87. As the sampling approaches are implemented in the
standard normal space, the midpoint random variables are transformed to independent standard
normal random variables, denoted as ξ, by means of the Cholesky decomposition of Σs̃s̃. The model
output Y = Y(θ) is the maximum occurring stress in the foundation. The LSF is given by

G(u) = σcrit − Y(T−1(u)),

with T the transformation from the original input probability space DA to standard-normal space
and σcrit = 100 MPa the stress threshold, which corresponds to a system failure probability of
P(F ) = 3.6 · 10−4 (estimated with MC and δ̂MC = 0.1187). Depending on the availability of
measurements and inter-site data, the assignment of inputs to either ΘA and ΘB may vary. We
illustrate two cases, the first of which features a high-dimensional reducible space DB as we set
ΘA = [aH , bH , H]and ΘB = [s0, s1, ξ] while the second has high-dimensional DA, where ΘA = [ξ, H]
and ΘB = [s0, s1, aH , bH ].

Efficiency & Accuracy

Due to the large computational cost of a single evaluation of the monopile foundation model, we
compare single runs of M-IS/C-IS over a given type B-sample to the iCE reference, which is re-
peated 26 times over that same sample to estimate a confidence interval. For both type B-variable
configurations, we set the number of samples per iCE level to N = 500 and choose δtarget = 1.5
and nB = 100. The monopile example is well-suited to demonstrate the dependence of informa-
tion reuse-based savings potential on the partitioning of inputs in type A and type B. Figs. 7.12
and 7.13 (both: right) show that the conditional failure probabilities are computed accurately with
the information reuse estimators for both type B-variable configurations. However, while for the
configuration ΘB = [s0, s1, ξ], these results are obtained with ≈ 25% of the reference computational
cost, the second configuration ΘB = [s0, s1, aH , bH ] admits almost no savings (Figs. 7.12 and 7.13,
left). This is mostly due to the random field hyperparameters aH and bH that are present in the
second configuration and cause a large fraction of PF-variability: the conditional failure probabilities
span roughly 6 orders of magnitude in the second configuration (10−8-10−2 , Fig. 7.13, right) versus
only 2 orders of magnitude in the first (10−4-10−2, Figure Fig. 7.12, right). This high variability
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7.4. Numerical experiments
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Figure 7.12: Monopile configuration 1: computational cost (left) and conditional failure probability
estimates at ΘB samples (right) with iCE reference solution mean and 95% CI.

delays the construction of a pool of candidate densities that are relevant for information reuse. As
the number of ΘB-samples increases we expect the computational savings to increase.
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Figure 7.13: Monopile configuration 2: computational cost (left) and conditional failure probability
estimates at ΘB samples (right) with iCE reference solution mean and 95% CI.

Conditional densities and global sensitivity analysis

Based on nB = 500 (first configuration) and nB = 100 (second configuration) type B-variable
samples, we compute confidence intervals on PF (Tab. 7.2) and a kernel density estimate of its
distribution (Figs. 7.14 and 7.15, left). These are intervals of the random variable PF itself. That
means they are not measures of estimation accuracies but rather a property of the conditional ran-
dom variable. Estimation accuracy is measured by the confidence intervals of the estimator P̂F(θiB)
as depicted in Figs. 7.12 and 7.13. The number of samples per iCE level is set to N = 1000. The
intervals again demonstrate the vast increase of PF-variability in between the first to the second
type B-variable configuration. Moreover, we compute reliability-oriented variance-based sensitivity
indices according to Ref. [16]: the nB conditional failure probability samples are used to construct a
surrogate (a partial least squares-based polynomial chaos expansion [41]) of logPF(ΘB), log P̂F(ΘB).
Sobol’ and total-effect indices of log P̂F with respect to ΘB can be computed by post-processing the
surrogate model coefficients [18]. The sensitivity indices indicate that the random field drift gradient
s1 contributes by far the largest variability to PF in the first configuration while in the second, the
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load hyperparameters aH and bH dominate the random field parameters (Figs. 7.14 and 7.15, right).
We observe, that Sobol’ and total-effect indices are much closer to one another under the second
configuration indicating an absence of interaction effects. Under the first configuration, such higher-
order effects play a more prominent role, which is due to the fact that in this configuration all type
B-variables are random field-related. In other words, any pair of parameters belonging to the same
probabilistic model is likely to exhibit stronger dependencies than a pair belonging to two different
probabilistic models (here: to the random field model and the random load model). In the latter
case, the pair of parameters can only interact through the FE-model, where however first-order ef-
fects seem to be dominant. Asymptotically, the mean estimates of the conditional failure probability
provided in Tab. 7.2 will coincide with the unconditional failure probability of the system.
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Figure 7.14: Monopile configuration 1: conditional failure PDF with confidence intervals (left) and
variance-based failure sensitivity indices (right) with nB = 500.

Table 7.2: PF-confidence intervals for two type B-variable configurations.

ΘB = [s0, s1, ξ] ΘB = [s0, s1, aH , bH ]

Mean 2.537 · 10−4 2.828 · 10−4

interval width lower CI upper CI lower CI upper CI

90% 1.530 · 10−4 4.812 · 10−4 7.053 · 10−7 1.457 · 10−3

95% 1.476 · 10−4 7.060 · 10−4 3.910 · 10−7 2.325 · 10−3

99% 1.444 · 10−4 2.789 · 10−3 1.308 · 10−8 8.658 · 10−3

The computed quantities help answer questions such as: ‘Is there something to gain from gath-
ering additional information on any of the type B inputs?’ And ‘If so, which parameters should we
learn and update by collecting additional information on them?’ Based on the confidence intervals,
the answer to the first question may be based on predefined maximally admissible bounds on the
interval widths or upper semi-widths (for the failure probability, naturally, the upper tail of the
distribution is the decisive one). Under the second configuration, the large target variability moti-
vates collecting additional information for uncertainty reduction, whereas, in the first configuration
the target variability is already quite low. Then, in order to decide which type B-variables require
an update one may resort to the variable ranking provided by the Sobol’ and total-effect indices
of log P̂F: for the second configuration, the load dispersion parameter bH contributes most of the
variance in log P̂F and thus should receive priority in the acquisition of additional data.
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Figure 7.15: Monopile configuration 2: conditional failure PDF with confidence intervals (left) and
variance-based failure sensitivity indices (right) with nB = 100.

7.5 Conclusion

This paper reviews conditional reliability analysis, i.e., the estimation of the probability of failure
conditional on a subset of the uncertain inputs. Such conditional probabilities of failure are functions
of the input they are conditioned upon and are useful in a multitude of contexts such as sensitivity
analysis, quantification and communication of lack of knowledge and decision analysis. The estima-
tion of conditional failure probabilities is a computationally intensive task. We present a method to
efficiently perform conditional reliability estimation by reusing information throughout the compu-
tation. Information reuse is realized through importance densities from previous computation steps
for importance sampling estimates of conditional failure probabilities. We propose a strategy for the
selection of these densities and test two importance sampling estimators that efficiently incorporate
them to reduce the estimator variance, namely: mixture importance sampling and controlled im-
portance sampling.

In two numerical examples, we find that both mixture and controlled importance sampling perform
similarly and provide up to 76% computational savings compared to a baseline method without
information reuse. A parameter study reveals the robustness of the proposed method both with
respect to the magnitude of the probability of failure (down to P(F) = 10−9) and the dimensionality
of both type A- and type B- variable spaces (scenarios with up to 200 type A-variables and 1000
type B-variables are investigated). The second example showcases the application of our method to
compute the distribution and global sensitivity indices of two differently conditioned probabilities
of failure for a wind turbine foundation model with 87 inputs. We find that the potential for com-
putational savings offered by information reuse depends on the variability contributed to PF by the
type B-variables. Increasing variability reduces correlation amongst the limit-state functions in the
reliability problem sequence and therefore the re-usability of importance densities.

In order to further increase the potential for computational savings of information reuse, surrogate
models may be used to replace the expensive engineering model at various points in the algorithm.
For example, the sequence of importance densities occurring in iCE could be based on locally re-
constructed surrogate models. Similar approaches have been used in the context of conventional
reliability analysis [40] and Bayesian updating [53].
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Abstract

In reliability analysis with numerical models, one is often interested in the sensitivity of the prob-
ability of failure estimate to changes in the model input. In the context of multi-uncertainty, one
wishes to separate the effect of different types of uncertainties. A common distinction is between
aleatory (irreducible) and epistemic (reducible) uncertainty, but more generally one can consider
any classification of the uncertain model inputs in two subgroups, type A and type B. We propose
a new sensitivity measure for the probability of failure conditional on type B inputs. On this basis,
we outline a framework for multi-uncertainty-driven reliability sensitivity analysis. A bi-level surro-
gate modelling strategy is designed to efficiently compute the new conditional reliability sensitivity
measures. In the first level, a surrogate is constructed for the model response to circumvent possibly
expensive evaluations of the numerical model. By solving a sequence of reliability problems condi-
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8.1. Introduction

tional on samples of type B random variables, we construct a level 2-surrogate for the logarithm of
the conditional probability of failure, using polynomial bases which allow to directly evaluate the
variance-based sensitivities. The new sensitivity measure and its computation are demonstrated
through two engineering examples.

8.1 Introduction

Reliability analysis is concerned with the evaluation of the probability of failure of an engineering
system. The system can be described probabilistically in terms of the input random vector Θ with
joint cumulative distribution function (CDF) FΘ and a deterministic model Y mapping each Θ to
an output Y = Y(Θ). The performance of the system can be assessed in terms of its limit-state
function g (LSF). The limit-state function defines the failure modes of a system and by convention
takes values below 0 in the failure domain, which is a subset of the entire input variable space ΩΘ.
The system probability of failure is given by [15]

P(F) = EΘ [I(g(Θ) ≤ 0)] =

∫

ΩΘ

I[g(θ) ≤ 0]πΘ(θ)dθ, (8.1)

where the indicator function I equals 1 on the failure domain {θ ∈ Ωθ : g(Θ) ≤ 0} and 0 on its
complement and πΘ is the joint probability density function (PDF) of Θ.

Standard Monte Carlo methods fail to efficiently solve Eq. (8.1) if P(F) is very small, which is
typically the case for failure probabilities. Methods which are specifically designed to solve Eq. (8.1)
for very small P(F) are referred to as structural reliability methods (SRM). SRM can be categorized
into approximation (e.g., FORM, SORM [50, 13]) and sampling methods (e.g., importance sampling
[7, 17, 23], line sampling [31], subset simulation [1] and sequential importance sampling [46, 3]),
both of which can be combined with surrogate modelling (e.g., [18, 57]).

To account for different types of uncertainties (i.e., multi-uncertainty), one may consider a seg-
mentation of the random input vector in two disjunct subsets Θ = [ΘA,ΘB]T . The variables ΘB

can be interpreted as epistemic (sometimes also termed reducible) and the variables in ΘA as aleatory
(irreducible). Irrespective of the interpretation of ΘB, we aim at explicitly quantifying its influence
on P(F). This is, for instance, useful to identify those inputs in ΘB whose uncertainty should be
reduced by means of additional data in order to increase the accuracy of the reliability analysis.

Fig. 8.1 illustrates our framework for reliability analysis and updating in the presence of multi-
uncertainty. To obtain information on the potential influence of each component of ΘB on the
reliability analysis, we consider the probability of failure conditional on ΘB [14]:

PF(θB) = P(F|ΘB = θB)

= EΘA
[I(g(ΘA,ΘB) ≤ 0)|ΘB = θB]

=

∫

ΩΘA

I[g(θA,θB) ≤ 0]πΘA|ΘB
(θA|θB)dθA. (8.2)

Note, that PF(θB) is a scalar function of the outcome of a random vector and hence is itself a
random variable. A similar way of handling uncertainty separation is presented under the term
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Figure 8.1: Framework for reliability sensitivity analysis in the presence of multi-uncertainty. The
model Y is subject to irreducible (ΘA) and reducible (ΘB) probabilistic inputs. Estimates of the
distribution of the probability of failure conditional on ΘB, π̂PF

, may be obtained through repeated
reliability analyses fixed at different θB. Thus, π̂PF

is subject to change when updating components
of ΘB. The proposed reliability sensitivities quantify the obtainable variability reduction in PF

resulting from uncertainty reduction (e.g., through Bayesian updating) in the components of ΘB.
In this way, they allow for an informed selection of data acquisition measures.

"second-order probability" in the program package Dakota [dakota_manual] and is also discussed
by other authors [14, 10].

In the literature, a variety of metrics for quantifying sensitivities with respect to different quan-
tities of interest can be found. They can be grouped according to scope (local [42] vs. global
importance [54, 6]), moment-dependence (e.g., variance-based [54, 24, 26, 52] vs. distribution-based
[6, 35]) and considered inputs (deterministic parameters [43] vs. random variables [54, 24, 26, 52]).
A comprehensive overview over global sensitivity measures is given in [25] and [51].

Most often, these measures are computed for the outcome of the numerical model. In contrast,
reliability-oriented sensitivity analysis is concerned with determining the sensitivity of the output of
a reliability analysis to the model inputs. Many approaches dedicated to reliability-oriented sensi-
tivities are concerned with determining local derivative-based sensitivity measures for deterministic
model parameters in the limit-state function [43] or deterministic distribution parameters of the in-
put [10, 59, 55, 16]. Alternatively, [2] computes failure probability histograms conditional on design
parameters (LSF or distribution parameters) by artificially considering them as random variables.
These histograms can be used to compute global sensitivity measures for the parameters. When us-
ing approximative reliability methods like FORM/SORM, reliability sensitivities are obtained from
the analysis in form of the component (or α-) values of the design point (or most probable point
of failure) [13, 36]. These can be interpreted as global, variance-based sensitivity indices of the
first-(FORM) and second-(SORM) order Taylor expansions of g around the design point [36] in
standard-normal space. Recently, [28] extended this idea to account for a mixture of several signifi-
cant points and regions along the hypersurface g = 0 by means of a Gaussian mixture (GM) model
through defining a participation factor for each of the regional design point contributions of the GM
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components. [35] compute variance-based sensitivities for the indicator function I(g ≤ 0) and show,
that this is equivalent to computing the moment-independent sensitivity measure proposed in [6] for
the probability of failure. They use a surrogate model to relax the computational cost induced by
the sampling-based sensitivity computation approach. Along the same lines, [58] also use a surro-
gate (Kriging) modelling approach when computing variance-based sensitivities for the probability
of failure conditional on uncertain distribution parameters of the input variables. [40] compute
variance-based sensitivity indices for a probability of failure conditional on distribution parameters
using importance sampling. These indices bear some similarity to the definition of sensitivity indices
used in the context of stochastic black boxes or stochastic emulators by, e.g., [38]. Here, a fraction of
the model uncertainty corresponding to ΘA is considered model-inherent or latent and thus Sobol’
indices are defined for a conditional mean, which retains only a dependence in ΘB and marginalizes
over ΘA. [38] compute Sobol’ indices for the response of such an inherently stochastic model by
constructing surrogates jointly for the model response mean and variance. Combining this idea with
that of [35] - i.e. to analyze the indicator function - yields the reliability-oriented Sobol’ indices
discussed in [58, 40]. Alternative sensitivity measures for rare event probabilities include the use of
quantiles [39] or perturbation of input densities [33] to globally quantify influence of model inputs
on rare event probabilities.

In this contribution, we introduce a reliability-oriented sensitivity measure that is based on the vari-
ance decomposition of the logarithm of the conditional probability of failure, defined in Eq. (8.2).
The proposed measure enables the quantification of the influence of the type B (reducible inputs),
which may consist of either input variables or uncertain distribution parameters thereof, on the
magnitude of the probability of failure (Fig. 8.1). To efficiently compute the proposed reliability
sensitivities, we introduce a 2-level surrogate based approach. In the first level, a surrogate of the
model response is constructed and is further used to compute the probability of failure conditional
on samples of the type B-variables. The resulting conditional probability estimates are further used
to construct a polynomial basis surrogate model of the logarithm of the conditional probability of
failure. The coefficients of the level-2 surrogate can be post-processed to compute an estimate of
the sought sensitivity indices.

The structure of the paper is as follows: In Section 8.2, the basics of global sensitivity analysis
are discussed and the new reliability sensitivity index is introduced. Section 8.3 provides an in-
troduction to polynomial basis surrogate modelling (polynomial chaos expansions (PCEs) and k
approximations (LRAs)) and their relation to global sensitivity measures. Section 8.4 outlines a
two-level framework for the surrogate-driven estimation of the novel reliability sensitivities, which
is subsequently tested on two numerical examples in Section 8.5. The studied examples consist of
a 12-dimensional elastic truss structure and a 87-dimensional wind turbine monopile foundation in
plastically behaving soil. Section 8.6 contains a discussion of the presented method and an outlook
on possible extensions and improvements of the introduced framework.

8.2 Global Reliability Sensitivity Analysis

The sensitivity measures for reliability proposed here belong to the realm of variance-based sensitivity
methods. After a brief introduction of the underlying idea of variance-based sensitivity indices, their
application within reliability analysis is discussed. We discuss the computational cost of these newly
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introduced indices when estimated with classical Monte Carlo-based (MC) approaches and thereby
motivate a surrogate-driven computational approach, which is discussed in the next section.

8.2.1 Variance-Based Sensitivity Analysis

Consider a d-dimensional standard uniform random vector U ∼ Ud(0, 1), representing the input
uncertainty of some model, and an output quantity of interest (QOI)Q = f(U), with f : [0, 1]d → R.
Variance-based sensitivity indices rely on estimating the contribution of a single (first-order index)
or a combination of the inputs U (n-th order index, n being the number of variables considered in
the combination) to the output variance of the QOI. These fractions can be found by projecting
the QOI on an orthogonal functional basis, which leads to a unique representation of f , namely the
Sobol’-Hoeffding decomposition [54]

f(U) = f0 +
d∑

i=1

fi(Ui) +
d∑

i=1

d∑

j=i+1

fij(Ui, Uj) + · · ·+ f12...d(U). (8.3)

Here, all basis functions have zero mean except for f0 = E[Q]. If Q depends on pairwise independent
inputs with arbitrary distribution with known marginal CDFs FΘi , an isoprobabilistic transformation
can be used to generalize Eq. (8.3). This transformation is given by T : Θi → FΘi(Θi), 1 ≤ i ≤ d,
and the transformed decomposition is obtained by setting U = T (Θ) in Eq. (8.3). By virtue of
the orthogonality property, the variance of f is merely the sum of the partial variances of all the
basis functions. The partial variance corresponding to a set of inputs indicated by the index set
A ⊆ {1, 2, . . . , d} is found as the variance of fA. The corresponding Sobol’ index is then defined by
the ratio

SQ,A =
V[fA]

V [f ]
. (8.4)

The Sobol’ index measures the variance fraction that originates from a particular combination of
variables exclusively without considering interaction of ΘA with Θ∼A, where ∼ denotes the com-
plement of A over the total set {1, 2, ..., d}. [24] defined the total-effect indices, which measure the
partial variances of all basis functions that include ΘA:

STQ,A =

∑
I⊇A

V[fI ]

V [f ]
. (8.5)

Alternatively, both Sobol’ and total-effect indices can be cast in terms of variances of conditional
expectations as [51]:

SQ,A =
VΘA [EΘ∼A [Q|ΘA]]

V [Q]
,

STQ,A =
EΘ∼A [VΘA [Q|Θ∼A]]

V [Q]
(8.6)

= 1− VΘ∼A [EΘA [Q|Θ∼A]]

V [Q]
.
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8.2.2 The proposed reliability sensitivity indices

In order to define variance-based sensitivities related to the reliability of a system one has to choose
Q appropriately. In reliability analysis, the QOI is the failure event F and the associated probability
of failure. Since F is defined via the indicator function of the failure domain, [35] propose to compute
importance rankings through the variance decomposition of the indicator function I(g ≤ 0). They
do so by means of a surrogate modelling technique to avoid the slow convergence of standard MC-
estimators in cases where the QOI is a rare event.
Within the multi-uncertainty setting, we propose to perform the variance decomposition of the
conditional probability of failure defined in Eq. (8.2). More precisely, we propose using

Q = logPF(ΘB), (8.7)

as the QOI, where log indicates the logarithm to the base 10. Q is a measure for the magni-
tude of the conditional probability of failure. In this way, we focus the sensitivity analysis on
possibly substantial/magnitude-altering changes in the estimate of P (ΘB). Note that in the mono-
uncertainty case, in which ΘA is empty and all uncertainty is reducible, Q takes values 0 or −∞.
This obstructs the computation of the proposed index in such case. The concepts introduced in the
following may be generalized to any QOI that can be cast in terms of the expectation of a functional
(e.g., any moment of Y ). Consider now an arbitrary subset of ΘB, which is denoted by ΘB, and its
complement Θ∼B such that ΘB = {ΘB,Θ∼B}. The novel sensitivity indices for the variable subset
ΘB are given by

SlogPF,B =
VΘB [EΘ∼B [logPF|ΘB]]

V [logPF]
, (8.8)

STlogPF,B = 1− VΘ∼B [EΘB [logPF|Θ∼B]]

V [logPF]
. (8.9)

Substituting Eq. (8.2) in the above, one arrives at the following expressions for the novel sensitivity
indices:

SlogPF,B =
VΘB [EΘ∼B [log {EΘA

[I(g ≤ 0)|ΘB]} |ΘB]]

VΘB
[log {EΘA

[I(g ≤ 0)|ΘB]}] (8.10)

STlogPF,B = 1− VΘ∼B [EΘB [log {EΘA
[I(g ≤ 0)|ΘB]} |Θ∼B]]

VΘB
[log {EΘA

[I(g ≤ 0)|ΘB]}] . (8.11)

While these expressions appear cumbersome, they exhibit key features of the new indices:

1. The variance decomposition of the total variance contributed by ΘB rather than Θ is per-
formed, which is reflected by the normalizing constants in Eqs. (8.10) and (8.11).

2. Due to the expectation EΘA
, the employed QOI is smooth on ΩΘB

. In particular, it is non-
binary as opposed to the QOI underlying the indices proposed by [35].

3. The log-transformation of the conditional probability of failure focuses the sensitivity analysis
on the probability of failure magnitude.

A key motivation for defining the sensitivity metric based on logPF is that the probability of failure
and the resulting risk estimates are typically interpreted in terms of their orders of magnitude [8,
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34]. Additionally, the distribution of PF is heavily right-skewed and its support covers multiple
orders of magnitude, as opposed to the distribution of logPF which is supported on a single order
of magnitude. This renders the estimation of the associated sensitivity indices more robust for the
log-transformed QOI.1

Given that the two measures will attribute different importance to the same variable, it is worthwile
discussing which QOI is the more appropriate choice depending on the analysis goal. If the condi-
tional PF-distributions associated with two inputs have identical mean and variance, they will be
attributed equal importance under Q = PF. Under Q = logPF this is not necessarily the case, as
the variance of logPF also depends on higher-order moments of PF, most prominently its skewness.
In particular, under Q = logPF, more heavily right-skewed distributions will have a higher impor-
tance when computing sensitivities. In other words, the variability over small failure probability
magnitudes is given more importance in this case. Such a behaviour is desirable when the goal
of the sensitivity analysis is to identify variables which contribute most to the inaccuracy of the
failure probability estimate. This is useful to, e.g., decide on which of the inputs to collect more
data or perform more measurements in order to increase the accuracy of a reliability analysis or
a reliability-based design. If, on the other hand, the analysis aims at identifying those variables
which are responsible for a large predictive failure probability, e.g. in the context of retrofitting and
fortification, one should use Q = PF rather than Q = logPF.

The proposed indices reveal connections to other global reliability sensitivity measures presented
in the literature. In particular, when decomposing the conditional probability of failure directly
instead of its log-transformation, the Sobol’ indices of the indicator function defined in [35] are re-
covered up to a constant factor (see Section 8.A). Computing Sobol’ indices of PF, that is without
the log-transformation, has been proposed in [40] for the case where ΘB consists of distributional pa-
rameters only. [58] also discuss these indices and propose to efficiently compute them using Gaussian
process surrogates.

8.2.3 Monte-Carlo estimators

This section reviews common problems when tackling reliability sensitivities with sampling meth-
ods. [26] and [52] provide Monte Carlo-estimators for the expressions in Eq. (8.6). Based on a set
of ns d-dimensional Θ-samples, ns · (d + 2)/2 model evaluations are necessary to compute them,
where ns is the samples size required by the analysis. A reasonable estimate for ns is the number of
samples required for the MC-estimation of E[Q] at a prescribed accuracy. These estimators may be
intractable if a model evaluation is computationally expensive, d is large or Q is given by a failure
event with small associated probability of failure. In the last case, intractability arises from the
required amount of samples (i.e., evaluations of the g-function) to accurately estimate E[Q]. It is in
the order of 100/P(F) when the allowed coefficient of variation of the estimator is 10%. Therefore,
when P(F) is very small, ns becomes prohibitively large.

For the proposed sensitivity indices, the computational burden would amount to a multiple of what
is needed for the computation of sensitivity indices of the indicator function of g. This is due to the
need to solve Eq. (8.2) ns ·(d+2)/2 times, which may in turn require many g-evaluations per solution.

1Another such transformation, which in a sense regularizes the outcome space, would be given by considering the
generalized reliability index β = −Φ−1(PF) [15] rather than PF.
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Conversely, computing the indices associated with Q = I(g ≤ 0) requires a single g-evaluation at each
sample to determine whether g ≤ 0. Therefore, the computational effort scales approximately as
the average number of g-calls necessary to solve Eq. (8.2) at constant ns (although, at convergence,
ns would likely be considerably smaller compared to the case where Q = I(g ≤ 0)). However, the
smoothness in our choice of Q is key to an entirely surrogate-driven sensitivity computation, which
facilitates the use of only a small fraction of the samples required in the sampling-based procedure.
Two types of surrogate models have been tested and are detailed in the subsequent section.

8.3 Polynomial Basis Surrogate Modelling

Let Θ be a random vector on the outcome space Rd with joint CDF FΘ whose elements are mutually
independent and Y = Y(Θ), with Y : Rd → R. If Y has finite mean-square, i.e., EΘ[Y(Θ)2] <∞,
then the function Y belongs in a Hilbert space H on which an inner product of any two functions
g, h ∈ H is defined as

〈g(θ), h(θ)〉H = EΘ[g(Θ)h(Θ)] =

∫

Rd

g(θ)h(θ)πΘ(θ)dθ, (8.12)

where πΘ(θ) is the joint PDF of Θ. g and h are orthogonal if

〈g(θ), h(θ)〉H = EΘ[g(Θ)h(Θ)] = 0. (8.13)

Note, that if g and h can be written as products of univariate functions of the components of Θ,
the following holds:

〈g(θ), h(θ)〉H =

d∏

i=1

EΘi [gi(Θi)hi(Θi)]. (8.14)

Given a complete and orthonormal basis of H, {hi(θ), i ∈ N}, Y may be expressed as a linear
combination of the basis functions:

Y = Y(Θ) =
∞∑

i=0

aihi(Θ). (8.15)

Then, since Y ∈ H, the approximation

Ŷ = Ŷ(Θ) =

m∑

i=0

aihi(Θ) (8.16)

asymptotically (m → ∞) converges to Y in the mean-square sense. For d = 1, a possible choice
of basis functions related to certain standard distribution types of πΘ are polynomial families
{ψi(θ), i = 0, ...,m}, which are identified by means of the Askey scheme [60]. This lays the foundation
for both PCEs and LRAs. They differ with respect to how the multi-dimensional base polynomi-
als are defined and how the expansion coefficients ai are determined. For d > 1, due to Eq. (8.14),
multi-dimensional basis polynomials Ψk can be easily constructed as products of the one-dimensional
canonical polynomials ψ(i)

j . Note, that in the multi-dimensional case, the additional superscript i
is used as the various inputs may have different marginal PDFs and thus the ψ(i) would represent
different polynomial families for different i.
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8.3.1 Polynomial Chaos Expansions

Given the polynomial family of the i-th input θi up to mi-th order {ψ(i)
j (θi), j = 0, . . . ,mi}, the j-th

multi-dimensional basis function reads

Ψj(θ) =
d∏

i=1

ψ(i)
αji

(θi), (8.17)

where α contains all combinations of d-dimensional index sets each assigning a polynomial order to
each input θi such that the total polynomial order |αj | =

∑d
i=1 αji ≤ p, 0 ≤ j ≤ P − 1. The number

of basis functions P is given by

P =

(
d+ p

p

)
(8.18)

and the polynomial chaos expansion (PCE) reads

ŶPCE(Θ) =
P−1∑

j=0

aj

d∏

i=1

ψ(i)
αji

(Θi). (8.19)

The coefficients a are identified through a projection of Y onto the space spanned by {Ψj , j =
0, ..., P − 1}. In this work,we evaluate a using an ordinary least-squares (OLS) approach, which
approximates the projection of Y onto the PCE basis [4]. Consider a set of ns samples X of the
input random vector Θ called the experimental design and corresponding Y-evaluations Y , where
X ∈ Rns×d and Y ∈ Rns×1. The collection E = {X,Y } is referred to as the training set. The data
matrix Ψ collects the evaluation of each of the multi-dimensional basis polynomials at each point
in X

Ψ = Ψj(x
(i)), 1 ≤ i ≤ ns, 1 ≤ j ≤ P, (8.20)

where x(i) is the i-th row ofX. The vector of all P PCE-coefficients a is then obtained by regressing
Y on Ψ which gives

a = (ΨTΨ)−1ΨTY . (8.21)

Eq. (8.18) indicates a fast growth of the OLS problem size with increasing dimension d. This
motivates the use of sparse PCE methods, which are also applied in this work. Sparse PCE reduces
P by penalizing the number of terms in the PCE through solving a regularized least-squares problem
[5]. In this way, the method elicits a minimal number of basis functions such as to best explain the
output variance.

8.3.2 Canonical Decomposition

Low-rank approximations (LRA) have been introduced originally to represent high-dimensional ten-
sors by means of lower-dimensional tensors [21]. A specific format of such approximations are
canonical decompositions, in which tensors are approximated by means of a linear combination of
products of one-dimensional tensors [22]. The idea extends to continuous spaces where a multivariate
function is approximated by a linear combination of products of univariate functions:

ŶLRA(Θ) =
r∑

j=1

aj

d∏

i=1

mi∑

k=0

zijkψ
(i)
k (Θi), 0 ≤ k ≤ mi, 1 ≤ i ≤ d. (8.22)
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Therein, an additional set of coefficients z appears, which can be efficiently determined by solving
reduced, univariate least squares problems over the directions i = 1, ..., d repeatedly (while keeping
all remaining directions constant in each step; this is often referred to as alternating least squares).
In a second step, the coefficients a are determined via OLS. A detailed description of the procedure
is given in [11] and [30]. The number of cofficients in the canonical decomposition is O((m+1) ·d ·r)
assuming a constant polynomial degree m in all dimensions. This linearity in d is remarkable and
explains the advantage this format offers over classical PCE where the coefficients grow factorially
with the dimension as described in Eq. (8.18).

8.3.3 Surrogate-Based sensitivity indices

Both PCEs and LRAs can be used to infer first-order and total sensitivity indices directly from the
computed model coefficients. Rather than searching estimates of the expressions in Eq. (8.6), the sim-
ilarity of the underlying orthogonal Sobol’ decomposition in Eq. (8.3) with Eq. (8.19) and Eq. (8.22)
is exploited and the expressions Eq. (8.4) and Eq. (8.5) can be computed directly. [56] showed that
the Sobol’ decomposition of the PCE is readily obtained by collecting any multi-dimensional orthog-
onal polynomials depending on identical variable subsets ΘA into fA(ΘA). Therefore, computing
the partial variance of the PCE model associated with a subset of variables ΘA amounts to summing
the squared coefficients of the respective multi-dimensional basis polynomials in which the elements
of ΘA occur (exclusively for Sobol’ indices and collectively for total indices). The same concept can
be applied to LRAs even though the compressed format (product) renders the evaluation somewhat
more tedious. For a given subset of the input variables denoted by the index set A, IA ∈ {0, 1}d is
a boolean index vector s.t. IAi = 0 if i /∈ A and IAi = 1 if i ∈ A. In the same way, for the j-th row
of αj , Iαj

i = 0 if αij = 0 and Iαj

i = 1 if αij > 0. Then, the PCE-based sensitivity indices read [56]:

ŜQ,A =
∑

IA=Iαj ,
1≤j≤P−1

a2
j

/ ∑

1≤j≤P−1

a2
j , ŜTQ,A =

∑

(IA)T Iαj>0,
1≤j≤P−1

a2
j

/ ∑

1≤j≤P−1

a2
j (8.23)
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and the LRA-based indices [29]:

ŜQ,A =

r∑
j=1

r∑
j′=1

ajaj′
(∏

i/∈A zij,0zij′,0
)(∏

i′∈A

(
mi∑
k=1

zi′jkzi′j′k

))

r∑
j=1

r∑
j′=1

ajaj′

((∏d
i=1

(
mi∑
k=1

zijkzij′k

))
−
(∏d

i=1 zij,0zij′,0

))

−

r∑
j=1

r∑
j′=1

ajaj′

(∏d
i=1

(
mi∑
k=1

zijkzij′k

))

r∑
j=1

r∑
j′=1

ajaj′

((∏d
i=1

(
mi∑
k=1

zijkzij′k

))
−
(∏d

i=1 zij,0zij′,0

)) , (8.24)

ŜTQ,A = 1−

r∑
j=1

r∑
j′=1

ajaj′
(∏

i∈A zij,0zij′,0
)(∏

i′ /∈A

(
mi∑
k=1

zi′jkzi′j′k

))

r∑
j=1

r∑
j′=1

ajaj′
((∏d

i=1

(∑mi
k=1 zijkzij′k

))
−
(∏d

i=1 zij,0zij′,0

))

−

r∑
j=1

r∑
j′=1

ajaj′

(∏d
i=1

(
mi∑
k=1

zijkzij′k

))

r∑
j=1

r∑
j′=1

ajaj′
((∏d

i=1

(∑mi
k=1 zijkzij′k

))
−
(∏d

i=1 zij,0zij′,0

)) . (8.25)

In summary, Eqs. (8.23) and (8.25) provide a way of computing the variance fraction in a QOI Q
caused by a subset of surrogate model inputs identified by A. One can compute the effect of the
variables in A exclusively (and call this the Sobol’ index Ŝ) or including any interactions of these
variables with the remainder of the inputs (and call this the total-effect index ŜT ).

8.4 Conditional Surrogate-Based Reliability Sensitivities

The computation of sensitivity indices via polynomial surrogates requires the QOI to be sufficiently
smooth. In particular, any attempts to obtain surrogate-based indices of the indicator function of
the failure domain I(g ≤ 0) directly in such a manner must fail due to the discontinuity in I(g ≤ 0).
However, the log-transformed conditional probability of failure is continuous in the space of ΘB so
that one may compute the proposed sensitivity indices with polynomial surrogates. To this end, we
devise a two-level surrogate modelling procedure. Building a surrogate of logPF (level 2) requires an
experimental design that consists of samples of ΘB and the associated probabilities of failure given
each of these samples. That is, one has to solve n2 reliability problems, where n2 is the experimental
design size for the final surrogate. An auxiliary (level 1) surrogate is built for the actual model Y,
based on which the reliability computations can be conducted. This approach is referred to as global
in the following. Alternatively, a local surrogate model may be constructed at each sample of ΘB for
solving its associated reliability problem. The local surrogate has lower-dimensional input compared
to the global surrogate because the input space is reduced from ΩΘ to ΩΘA

, and is therefore cheaper
to determine; however, it has to be recomputed for each ΘB-sample. This approach will be referred
to as local. Prior to construction, an isoprobabilistic transformation to an independent standard-
normal space is used, such that both PCEs and LRAs can be consistently constructed using the the
orthogonal polynomial basis with respect to the standard normal probability measure, which is the
Hermite polynomial basis [60].
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8.4.1 Level 1

On the first level, the goal is to construct a surrogate model for the original model Y(Θ), describing
the engineering system.

Global Approach

In the global approach, the model is evaluated at the level 1-experimental design, which yields
the level 1-training set E1 = {X1,Y1}, where X1 ∈ Rn1×d is drawn from πΘ and Y1 = Y(X1) ∈
Rn1×1 and n1 is the number of points in E1. The overall number of original model evaluations
is thereby limited to n1 because any subsequent computations, namely the reliability analyses,
will be run with the level 1-surrogate. In this level, any kind of surrogate modelling technique
can be utilized to run the reliability analysis. However, the quality of the reliability sensitivity
estimates mostly depends on the quality of the surrogate and the applied SRM in level 1. Thus,
tuning the method in this component will yield the most substantial improvements in estimating the
reliability indices. [18] introduced a Kriging-driven Monte-Carlo sampling approach, which enriches
the Kriging experimental design according to a learning function that favors large model uncertainty
close to the limit-state face g = 0 and [37] applied a similar idea to PCEs. A recently introduced
surrogate-driven sequential sampling approach for reliability analysis explores the failure domain
sequentially and reconstructs a surrogate model at each intermediate step in the sampling procedure
[44]. All of these approaches have been shown to substantially improve the unconditional (predictive)
reliability estimate. However, using such an active learning-strategy for the level 1-surrogate with
a learning criterion based on the unconditional LSF could lead to inaccurate representations of the
LSFs conditional on the ΘB-samples. If a set of ΘB-samples is drawn ahead of the level 1-surrogate
construction, one may consider other, more suitable learning criteria.

Local Approach

For nonlinear models, ΩΘB
may contain regions in which the conditional probability of failure

becomes either very small or very large. Global surrogate methods may fail to reconstruct the
model accurately in such regions and thereby introduce an error in the estimator of the proposed
sensitivity indices. In such case, one may instead use cheap local surrogates which are reconstructed
at each ΘB-sample. At the i-th sample θ(i)

B , the local surrogate Ŷ|θ(i)
B (ΘA) is constructed based

on a local training set E(i)
1 = {X(i)

1 ,Y
(i)

1 }, where X
(i)
1 ∼ πΘA

and Y (i)
1 = Y(X

(i)
1 ,θ

(i)
B ). The local

approach is particularly suitable if dB = dim(ΘB) is large (dB/d → 1), i.e., most variables are
reducible, since then, the resulting conditional reliability problems are low-dimensional (they are
posed on ΩΘA

, which has dimension dA = dim(ΘA) = d − dB). In such case, the local surrogates
depend on a low-dimensional input such that they can be computed using small experimental designs.
Within the local approach, standard active-learning approaches can be used at each ΘB-sample. A
more detailed discussion of computational cost depending on the variable splitting in ΘA and ΘB

is given in Subsection 8.4.4.
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Effective surrogate model dimension for input mixtures

When considering both random inputs and uncertain parameters of these inputs at the same time,
one can reduce the effective dimension of the experimental design over which to construct the level
1-surrogate. Consider a random vector Θ, where Θ2 = M , Θ3 = Σ are uncertain parameters of Θ1

which is a random variable. The probabilistic model of Θ1, through the conditional CDF FΘ1|M,Σ,
establishes an exact relationship between Θ1, M and Σ. If FΘ1|M,Σ is invertible in Θ1, the following
hierarchical sampling strategy yields a sample from Θ1 based on a sample u = [u1, u2, u3]T from the
standard-uniform distribution.

m = F−1
M (u1),

σ = F−1
Σ (u2)), (8.26)

θ1 = F−1
Θ1|M,Σ(u3|m,σ) = F−1

Θ1|M,Σ

(
u3|F−1

M (u1), F−1
Σ (u2)

)
.

Since the surrogate is constructed in standard-normal space, an isoprobabilistic transformation is
used to compute the corresponding standard-normal sample v1:

v1 = Φ−1 [FΘ1(θ1)] , (8.27)

where Φ(·) is the standard-normal CDF. Eqs. (8.27) and (8.26) facilitate the construction of a sur-
rogate model for the marginalized input space, which does not contain M and Σ anymore. This can
also be understood as eliminatingM and Σ by constructing the predictive distribution of Θ1. In this
way, the surrogate accuracy is improved through replacing what would have been an approximation
of the interaction amongst Θ1, M and Σ with their exact relationship. Instead of marginalizing
the input space, one may also work in the higher-dimensional space and obtain larger experimental
designs at no additional computational cost by sampling [Θ1,M,Σ] from iso-Θ1-surfaces, as done in
[53]. Then, the PCE will still approximate the exact relationship amongst Θ1, M and Σ, though at
considerably better accuracy through the larger training set. The predictive CDF of Θ1, FΘ1 , can
be computed via numerical integration, e.g., Monte-Carlo integration:

FΘ1(θ1) =

∞∫

−∞

∞∫

−∞

FΘ1|M,Σ(θ1|m,σ)πM (m)πΣ(σ)dmdσ

= E
[
FΘ1|M,Σ(θ1|M,Σ)

]
(8.28)

≈ 1

N

N∑

i=1

FΘ1|M,Σ(θ1|mi, σi), mi ∼ πM , σi ∼ πΣ.

8.4.2 Level 2

The level 2-surrogate l̂ogPF is based on the training set E2 = {X2,Y2}, whereX2 ∈ Rn2×dB is drawn
from πΘB

, Y2 = logPF(X2) ∈ Rn2×1 and n2 is the number of points in E2. In level 2, we focus on
polynomial basis surrogates, such that no additional (not even surrogate-model-based) sampling is
required to obtain the reliability sensitivities (Section 8.3). The level 2-surrogate model additionally
provides a cheap and approximate method for updating probability-of-failure-densities. That is,
upon obtaining posterior ΘB-samples through Bayesian updating, the associated posterior failure
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density (and its mean, the predictive reliability estimate) can be computed through the analytical
function l̂ogPF(ΘB) rather than solving a reliability problem for each of the posterior samples.
The polynomial basis in l̂ogPF is orthogonal with respect to the prior input joint density. Thus,
coefficient-based postprocessing (moments, sensitivities) of the posterior conditional probability of
failure, should be handled with great care.

8.4.3 The Framework

The analysis proceeds in the following way:

1. Elicit a variable subset of interest ΘB. Obtain n2 ΘB-samples, {θ(i)
B }1≤i≤n2 (e.g., based on

latin hypercube sampling or a low-discrepancy sequence).

2. In case ΘB comprises a mixture of inputs and uncertain parameters thereof, marginalize the
input space according to Eqs. (8.27), (8.26) and (8.28).

3. Select the global or local strategy for the level 1-surrogate.

a) Global
Sample n1 Θ-samples and evaluate the model Y at these samples. Based on these, build the
global level 1-surrogate over ΩΘ, Ŷ.
For each ΘB-sample, use a structural reliability method and the global level 1-surrogate-based
limit-state function ĝ to compute

P̂
(i)
F = EΘA

[
I(ĝ(ΘA,θ

(i)
B ) ≤ 0)

∣∣∣θ(i)
B

]
=

∫

ΩΘA

I(ĝ(θA,θ
(i)
B ) ≤ 0)πΘA|ΘB

(θA|θ(i)
B )dθA.

b) Local
For each ΘB-sample, sample n1 ΘA-samples and evaluate the model Y at these samples.
Based on these, build the local level 1-surrogate over ΩΘA

conditional on θ(i)
B , Ŷ|θ(i)

B and its
associated local limit-state function ĝi(θA) to compute Ŷ|θ(i)

B

P̂
(i)
F = EΘA

[I(ĝi(θA) ≤ 0)] =

∫

ΩΘA

I(ĝi(θA) ≤ 0)πΘA|ΘB
(θA|θ(i)

B )dθA.

4. From the set {θ(i)
B , log(P̂

(i)
F )}i=1,··· ,n2 , build the level 2-surrogate l̂ogPF(ΘB).

5. Obtain variance-based sensitivity indices of l̂ogPF by means of the model coefficients.

The procedure outlined above is also sketched in Fig. 8.2 (global) & Fig. 8.3 (local).

8.4.4 Computational cost

Fig. 8.4 shows the behaviour of computational cost in both levels when using either a global or a
local or no surrogate strategy at all in level 1. The computational cost is measured in terms of

202



Chapter 8. A framework for global reliability sensitivity analysis in the presence of
multi-uncertainty

Level 1

Y

Sample
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Evaluate
Y1 = Y(X1)
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Y2 = log P̂F (X2)
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ŜlogPF

ŜT
logPF

Figure 8.2: Flow diagram of 2-level surrogate-based conditional reliability sensitivities with global
surrogate in level 1, where the dashed boundary marks the starting point.
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Figure 8.3: Flow diagram of 2-level surrogate-based conditional reliability sensitivities with local
surrogates in level 1, where the dashed boundary marks the starting point.

number of Y-evaluations. To proceed, we make the assumption that the number of samples required
to learn a surrogate model in input dimension d is n = 2 · (d+ 1). Note that this is a rather crude
assumption and is accurate only for mildly nonlinear models Y. The number of samples required
in level 2, n2 = 2(dB + 1), is the same in all three versions, though for the global surrogate model,
this does not influence the computational cost. At fixed model dimension d, the global surrogate
modelling costs are n1,global = nglobal = 2(d+ 1), i.e., they are constant, depend only on level 1 and
the total dimension and not on dA or dB. For the local surrogate strategy, the cost in level 1 is
given by n1,local = 2(dA + 1) per ΘB-sample. The total cost thus reads nlocal = n1,local · n2. When
using no level 1-surrogate at all, n2 reliability problems are solved using the original model Y. In
order to estimate the computational cost in the surrogate-free approach, the number of required
Y-evaluations to solve a dA-dimensional reliability problem, n1,Y , has to be estimated. Therein, dA
influences which method should be used to solve the problem. Tab. 8.1 provides a qualitative rela-
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tionship between the dimensionality and computational cost of a dA-dimensional reliability problem
(n1,Y in Fig. 8.4). The total cost in this approach is computed as nY = n1,Y · n2.

Table 8.1: Examplatory cost of reliability analyses at different dA using different suited SRM.

Problem Dimension SRM no. of required samples N

1 Bisection 4

2 FORM 10

10 Importance Sampling 100

100 Subset Simulation 10000

Fig. 8.4 (right-hand side) shows, that both the local surrogate and surrogate-free strategy yield
the highest overall computational cost when dB and dA have similar size, i.e., neither reducible nor
irreducible uncertainties dominate the model input. This is due to two counter-acting effects: on
the one hand, as the effective local surrogate model dimension equals dA, the local strategy requires
less samples per surrogate when dA is small. Similarly, if not using a surrogate at all in level 1, the
reliability analysis performed with the original model will require less model evaluations due to the
decreasing dA. On the other hand, decreasing dA implies an increasing reducible space dimension
dB. Thus, in order to build accurate level 2-surrogates, n2 needs to increase, which implies a multi-
plication of the overall number of required local surrogates/original-model-based reliability analyses.
Here, the global surrogate model seems to be the most efficient. This, however, is only true when Y
is mildly nonlinear. For models that exhibit stronger nonlinear behaviour, preserving the accuracy of
the global model may require more model evaluations than the local strategy. The required surrogate
and SRM accuracies increase as the predicitve failure probability decreases. Analyses with predic-
tive failure probabilities≤ 10−7 (potentially with conditional failure probabilities several orders of
magnitude below the predictive level) will benefit from failure-oriented enrichment in the surrogate
construction and/or choosing a suitable SRM. In many application cases, the local strategy could
be operated efficiently as the number of reducible inputs is considerably lower than the number of
irreducible inputs dB << dA.
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Figure 8.4: Comparison of global (global) vs. local (local) vs. no (Y) surrogate strategy in level 1 in
terms of computational cost (number of Y-calls) over reducible space dimension dB. Left: cost per
level, right: total cost.

8.5 Numerical examples

The novel reliability sensitivity indices are investigated and demonstrated through two applications,
namely an elastic truss of moderate dimensionality (12 dimensions) and a monopile foundation in
plastic soil involving a random field model (87 dimensions). Both examples feature both independent
input variables as well as uncertain parameters thereof. The level 1-surrogate is constructed with
LRAs which yield consistently smaller global and conditional (on failure samples) global errors. This
is in accordance with the findings of [30].

8.5.1 Elastic truss

The truss structure (Fig. 8.5) consists of 13 rods, where horizontal and diagonal rods have log-
normally distributed cross-sections A1, A2 and Young’s moduli E1, E2, respectively. The truss
sustains 6 vertical point loads P1 - P6 which are modelled as Gumbel-distributed [29, 32]. [20]
presents results for an analysis of the original elastic truss with the proposed sensitivity framework.
Here an extension of the truss model featuring hyperparameters is discussed. Namely, the parameters
aP , bP of the load Gumbel distribution are assumed uncertain and log-normally distributed. The
mean and coefficient of variation of the load Gumbel distribution in Tab. 8.2 are conditional on the
parameters aP (location parameter) and bP (scale parameter):

µP |aP ,bP = µaP + γEµbP (8.29)

δP |aP ,bP =
π√
6

µbP
µP |aP ,bP

, (8.30)

where γE is Euler’s constant. It is further assumed that all point loads share the same distribution
parameters. Tab. 8.2 summarizes the probabilistic input models.
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The limit-state function is defined by means of a threshold for the maximum vertical truss de-
flection, i.e.,

g(Θ) = ulim − umax(Θ),

where ulim = {14cm, 16cm, 18cm} are considered, which correspond to system failure probabilities of
P(F) = {6.2 ·10−3, 1 ·10−3, 1.7 ·10−4} (estimated with Monte Carlo, estimator coefficient of variation
≤ 5%). In view of the Bayesian interpretation of the variable sets ΘA (irreducible) and ΘB (data

4m 4m 4m 4m 4m 4m

2m

P1P2P3P4P5P6

umax

E1, A1

E1, A1 E2, A2
E2, A2

Figure 8.5: 2-D truss example.

available, reducible), we choose the latter to comprise quantities which are typically reducible by
means of measurements (such as material properties) or archive data (such as load hyperparameters).
Thus, we select ΘB = [E1, A1, E2, A2, aP , bP ] and ΘA = [P1, . . . , P6]. For this example, the global

Table 8.2: Input variable definitions of the elastic truss.

Quantity Distribution Mean µ CoV δ

A1 [m2] Log-Normal 2 · 10−3 0.1

A2 [m2] Log-Normal 1 · 10−3 0.1

E1, E2 [Pa] Log-Normal 2.1 · 1011 0.1

P1 - P6[N ] Gumbel µP |aP ,bP δP |aP ,bP

aP [N ] Log-Normal 46624 0.2

bP [N ] Log-Normal 3375 0.2

surrogate modelling strategy is employed, as the truss behaves only mildly nonlinear. Both level 1-
and level 2-experimental designs are obtained via latin hypercube sampling. n1 = 200 samples are
used to construct the level 1-LRA, while n2 = 1000 points are used to evaluate the level 2-surrogate.
The analysis is repeated 20 times redrawing random level 1-experimental designs which yields the
estimator statistics provided in Figs. 8.6 and 8.7. These are computed for the difference of the
surrogate-based estimator from the direct Monte-Carlo (DMC) reference solution, i.e.,

εQ = Q−QDMC . (8.31)

All reliability analyses haven been performed with the first-order reliability method (FORM). For the
reference solution, nDMC = 2 · 105 samples have been used implying the solution of 8 · 105 reliability
problems of dimension 6 (since the type B-variable space has dimension 6, see Subsection 8.2.3).
While both PCE and LRA-based approaches capture the variable importance ranking correctly,

the LRA-based approach performs slightly but consistently better in the mean compared to the
PCE-based approach. The least important variables E2, A2 are estimated with the smallest error
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ulim Mean estimates Error ε

14 cm

16 cm

18 cm

Figure 8.6: logPF first-order Sobol’ indices: mean estimates and errors (n1 = 200, n2 = 1000).

mean and variance, which, however, is due to their small true magnitude. Intuitively, estimation
accuracy and index magnitude should depend on one another reciprocally; the larger the index the
more accurate it is estimated based on a given set of samples. Indeed, relative to their respective
magnitudes, the indices of the most important indices aP and bP are estimated more accurately.
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ulim Mean estimates Error ε

14 cm

16 cm

18 cm

Figure 8.7: logPF Total-effect indices: mean estimates and errors (n1 = 200, n2 = 1000).

8.5.2 Monopile Foundation

In this example, we consider a finite element model for the interaction of a monopile foundation of
an offshore wind turbine (Fig. 8.8) with stiff, plastic soil. Deterministic parameters of the monopile
are its depth L = 30 m, diameter D = 6 m, wall thickness t = 0.07 m, Poisson ratio ν = 0.3 and
Young’s modulus E = 2.1 · 105 MPa. The uncertain inputs comprise the lateral load H as well as
the undrained shear strength s of the soil and hyperparameters of both quantities. The engineering
model setup follows [12] and the probabilistic model considered there has been modified following
[27]. s is considered both uncertain and increasing in mean with soil depth z. It is thus modelled
by a random field with linear mean drift along the soil depth coordinate z. Given an underlying
stationary Gaussian random field s̃(z,Θ)

{s̃(z) : 0 ≤ z ≤ L} ∼ N (0, σs̃),

the non-stationary random field representing the shear strength of the soil can be expressed as

s(z,Θ) = s0 + s1σ
′(z) exp {s̃(z,Θ)}

= s0 + s1γz exp {s̃(z,Θ)} ,
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Figure 8.8: Wind turbine monopile foundation [12].

where γ is the soil unit weight, σ′(z) = γz is the effective vertical stress, s0 is the undrained shear
strength at ground level and s1 is the drift parameter governing the mean increase of s with increasing
soil depth. s̃(z,Θ) models the intra-site variability. That is, at a given site with known deterministic
s0 and s1, it describes the inherent variability of the undrained shear strength. In order to describe
the inter-site uncertainty in s, the parameters s0 and s1 are modeled probabilistically as well. The
stationary RF s̃ is taken to be correlated with exponential-type

ρs̃s̃(z
′, z′′) = exp

{
−2|z′ − z′′|

θs̃

}
,

with vertical soil scale of fluctuation θs̃ = 1.9m [47] and standard deviation σs̃ = 0.3 [47, 48]. We
assume the soil to be stiff and plastic according to the classification provided in [49]. There, the
specific soil weight range is given with 17 − 19kN/m3, whence we set γ = 18kN/m3. The mean
cohesion range is given with 20− 50kN/m2 by [49] while [9] lists the mean range of the undrained
shear strength ratio su/σ′ as 0.23− 1.4. We fit log-normal distributions for s0 and s1 by setting the
10 % and 90% quantiles of the distributions equal to the lower and upper bounds of these ranges.
The resulting parameters are detailed in Tab. 8.3 along with uncertain parameters for the load H,
namely µH and σH . The mean and coefficient of variation of the load Gumbel distribution in Tab. 8.3
are conditional on the parameters aH (location parameter) and bH (scale parameter) according to
Eqs. (8.29) and (8.30). s̃ is simulated by means of the midpoint method. That is, the spatial domain
[0, L] is discretized with n spatial elements and s̃ is represented by means of n random variables
with joint distribution N (0,Σs̃s̃). The random variables represent the random field values at the
element midpoints. Thus, the covariance matrix Σs̃s̃ is computed by evaluating σ2

s̃ρs̃s̃(z
′, z′′) at the

element midpoints. The number of elements is chosen such that 95% of the inherent RF variability
is captured by the RF discretization, leading to n = 82 in this example. Therefore, the total input
dimension is d = 87. As the surrogate modeling approach requires independent inputs, the midpoint
random variables are transformed to independent standard normal random variables, denoted as ξ,
by means of the Nataf transform. The model output Y = Y(Θ) is the maximum occurring stress in
the foundation. The limit-state function is given by

g(Θ) = σcrit − Y(Θ),

where three different stress thresholds σcrit = {80 MPa, 100 MPa, 120 MPa} are considered with
corresponding system failure probabilities P(F) = {3.0 · 10−3, 3.6 · 10−4, 8.0 · 10−5} (estimated with
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Table 8.3: Input variable definitions of the monopile foundation.

Input Distribution Mean µ CoV δ

ξ [−] Standard-Normal 0 n.d. (Σξξ = In×n)

s0 [kPa] Log-Normal 33.7094 0.3692

s1 [kPa] Log-Normal 0.7274 0.8019

H [kN ] Gumbel µH|aH ,bH δH|aH ,bH

aH [kN ] Log-Normal 2274.97 0.2

bH [kN ] Log-Normal 225.02 0.2

MC and CoV = {0.0409, 0.1187, 0.2500}). For this example, we consider a scenario in which uncer-
tainties about all the input hyperparameters as well as the inherent variability of the shear strength
can be reduced through additional data, i.e., ΘB = [ξ, aH , bH , s0, s1]. This leaves the inherent
load variability as the only remaining aleatory input, i.e., ΘA = H. This example has proven
extremely challenging for common global surrogate models (polynomial basis surrogates, adaptive
kriging surrogates). Therefore, the local surrogate modelling strategy is chosen, which, in this case,
is an efficient choice since the limit-state function to be approximated at each ΘB-sample is one-
dimensional. As little as four training points are necessary per ΘB-sample. Based on the local
surrogate, the corresponding one-dimensional reliability problem can be solved using a bisection- or
Newton-procedure due to the monotonicity of the limit-state-function the same SRM is applied for
the reference solution with the original model Y). Accurate estimates of the conditional reliability
sensitivities are achieved with an overall 2000 evaluations of the limit-state-function for the second
example with the introduced framework. This is a conservative choice and satisfying accuracy may
be achieved with a considerably lower number of model evaluations as is evident from Figs. 8.11
and 8.12.

The algorithm is run 20 times redrawing level 2-experimental designs to compute errors ε arising
from exploring ΩΘB

randomly. These errors are measured against a DMC-based reference solution
according to Eq. (8.31). The reference solution is based on ns = 20000 independent samples which
yields a total of 1.64 · 106 reliability problems since dB = 86. A single reference solution (fixed σcrit)
obtained with a Matlab implementation took approximately 48 hours to complete on 10 Intel Xeon
E5-2697 v3 14-core nodes, which emphasizes the need for surrogate modelling-based estimators. In
order to assess the random field influence, the sum of all first-order indices of the elements of ξ are
reported for both the reference solution and the surrogate-based approach. This is motivated by the
impossibility of efficiently estimating a sensitivity index of order 86 with the MC-methods of [26,
52]. However, the surrogate-based estimators indicate negligible interaction of the elements of ξ (all
Sobol’ and total-effect indices are virtually identical) thus justifying this approximation.

The sensitivities depicted in Figs. 8.9 and 8.10 summarize the effect of the inherent random field
variability in the order-n-indices of the random vector ξ. The PCE and LRA level 2-surrogates
yield similar estimates for the reliability sensitivities (Figs. 8.9 and 8.10): The load dispersion pa-
rameter bH is identified as the most influential input to the monopile reliability analysis across all
investigated scenarios. The dominance of bH becomes more pronounced at higher critical stress
levels. PCE-based sensitivity estimate means are in slightly better agreement with the reference
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Figure 8.9: logPF first-order Sobol’ indices: mean estimates and errors (n1 = 4 (local), n2 = 2000).

solution than LRA-based estimates. Moreover, PCE-based estimates exhibit consistently smaller
variability resulting from the random level 2-experimental design. Error means and variabilities are
of comparable magnitude for all computed indices in this example. However, as discussed for the
truss example, indices of larger magnitude should be estimated more accurately at a given amount
of information. This is true when considering the estimation error relative to the index magnitudes.
Then, estimates of the most influential variables aH and bH exhibit comparably small variability
due to the random level 2-design of experiments while the less important variables’ estimators prove
more sensitive in this respect. In Figs. 8.11 and 8.12, the evolution of the error means and variances
at different level 2-experimental design sizes n2 are depicted. The error converges in mean and stan-
dard deviation as n2 increases. The error mean apparently is bounded from below which is likely
due to a bias in the reference solution which arises as the MC-estimates are not fully converged at
nc = 20000 independent samples. Ultimately, if a decision-maker were to choose whether to acquire
data on either of the uncertain model inputs and on which input in particular, they should choose
bH according to the introduced reliability sensitivity framework.
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Figure 8.11: Sobol’ (left column) and total-effect indices (right column) error mean vs. level 2
experimental design size n2 for PCE- (upper row) and LRA-based (lower row) at σcrit = 100 MPa.
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Figure 8.12: Sobol’ (left column) and total-effect indices (right column) error standard deviation vs.
level 2 experimental design size n2 for PCE- (upper row) and LRA-based (lower row) at σcrit = 100
MPa.

213



8.6. Concluding Remarks
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Figure 8.10: logPF Total-effect Sobol’ indices: mean estimates and errors (n1 = 4 (local), n2 = 2000).

8.6 Concluding Remarks

In this paper we describe a framework for reliability sensitivity analysis whose core is a novel,
variance-based sensitivity index tailored to reliability analysis in the presence of multi-uncertainty.
Multi-uncertainty refers to a separation of uncertain model inputs in different categories, e.g.,
aleatory and epistemic. The interest then lies in expressing the sensitivity of the probability of
failure-estimate to the epistemic inputs. We devise a flexible two-level surrogate modelling approach
which allows for a cost-efficient estimation of the proposed index. The approach relies on either build-
ing a global surrogate model over the entirety of input variables once and for all (global strategy)
or on repeatedly recomputing cheaper, lower-dimensional surrogates (local strategy). An analysis of
computational cost for both local and global surrogate modelling strategy has been carried out in
dependence on how the model input is divided in reducible and irreducible.

We demonstrate the novel approach by means of two examples. In the elastic truss example, the
sensitivity indices were estimated using a global low-rank approximation in level 1 at a total cost of
200 original model evaluations. The LRAs are more suitable for global surrogate-driven reliability
computations (level 1) compared to the PCEs, as discussed in [30]. For the geotechnical exam-
ple, namely a monopile foundation, a local surrogate modelling approach based on PCEs has been
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adopted in level 1 yielding a total cost of 8000 original model evaluations. In level 2, the sparse
PCEs perform slightly better than the LRA. Sensitivity estimates for both examples were validated
with sampling-based reference estimates showing that the important input’s indices are estimated
accurately by the method. While in this paper only two possible choices for the level 1 surrogate
are discussed, virtually any surrogate modelling technique could be applied here.

8.6.1 Discussion

The contribution of the proposed sensitivity index is threefold. First, it focusses the sensitivity
analysis on a variable subset that is of interest in the presence of multi-uncertainty and data assim-
ilation applications. Second, it represents a direct sensitivity measure for the probability of failure
magnitude as opposed to indices based on the indicator function that rank influence on the failure
hypersurface shape. Finally, the new index facilitates the entirely surrogate-driven computation
of reliability sensitivities by smoothening the indicator function discontinuity through an integral
formulation.
In accordance with intuition, estimators of sensitivity indices with small magnitude exhibit smaller
errors compared to those of large magnitude. Relative to the magnitude, the opposite is true: at
fixed amount of information (here: the level 1-training set size), the sensitivity indices with larger
magnitude are estimated more reliably. Moreover, the variable importance ranking is accurately
captured in all numerical examples.
The problem dimension, which can be handled by the approach is guided by the surrogate modelling
techniques chosen in both levels. Using an arbitrary surrogate model that is capable of addressing
high-dimensional problems in level 1 and LRAs or the recently introduced PLS-driven PCEs [45] in
level 2, it is applicable up to several thousand input variables.
At a fixed accuracy (with respect to Y-model output), the cost of the global surrogate modelling
strategy remains constant irrespective of the fraction of reducible and irreducible uncertainty in the
model input. The same is not true for the local strategy where two counteracting effects lead to the
local strategy being most efficient if either of the uncertainty types dominates the model input. The
local modelling strategy is more flexible and expected to perform well even for strongly nonlinear
models, when the global modelling strategy may deteriorate. In such case, the required number of
samples for a sufficiently accurate global surrogate model may overcompensate the strategy-based
savings the global modelling strategy offers and render the local strategy the better choice. There-
fore, the model under consideration should govern the decision which of either approach is used.
Generally, we recommend to apply the local surrogate modelling strategy when the model under
consideration exhibits significant nonlinear behaviour.

8.6.2 Outlook

The experimental design for the level 1-surrogate dominates the computational cost of the approach.
The accuracy of the overall method is controlled by the capability of the level 1-surrogate to capture
the tail behaviour of the model response and that of the level 2-surrogate to capture the second
moment of its derived response (the conditional probability of failure). Thus, the level 1-surrogate
represents the most crucial element of the framework both with respect to accuracy and computa-
tional cost. Next to the choice of surrogate, the level 1-performance would likely benefit from a more
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guided selection of experimental design points in level 1, which addresses the method’s requirement
of surrogates to remain accurate close to g = 0 rather than minimize global error measures.

Moreover, the introduced sensitivity measure may be connected to decision-oriented sensitivity anal-
ysis and in particular the concept of expected value of partial perfect information (EVPPI). It is
known that the classical first-order variance-based sensitivity measure coincides with the EVPPI for
a special decision context (with a quadratic loss function) [41]. Based on this, the proposed frame-
work may be adapted to facilitate computation of more relevant loss functions associated within
decision analysis, which in turn promotes its applicability for decision support.
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Appendices

8.A Connecting the proposed Sobol’ index to its indicator function-
based counterpart

Here, we discuss the connection of the novel sensitivity indices to the the measures proposed by
[35]. In particular, we show that the Sobol’ index of the condititonal probability of failure (without
logarithmic transformation) is identical to the Sobol’ index of the indicator function I(g ≤ 0) up to
a normalizing constant. In this case, the QOI reads

Q = PF(θB) = EΘA
[I(g(ΘA,ΘB) ≤ 0)|ΘB = θB] ,

while in [35], Q = I(g(Θ) ≤ 0) is used. Consider now an arbitrary subset of ΘB which is denoted
by ΘB and its complement Θ∼B such that ΘB = {ΘB,Θ∼B}. The Sobol’ index of Q = PF for the
variable subset ΘB is given by

SPF,B =
VΘB [EΘ∼B [EΘA

[I(g ≤ 0)|ΘB] |ΘB]]

VΘB
[EΘA

[I(g ≤ 0)|ΘB]]
,

while the Sobol’ for Q = I(g(Θ) ≤ 0) reads

SI(g≤0),B =
VΘB

[
EΘA,∼B [I(g ≤ 0)|ΘB]

]

VΘ [I(g ≤ 0)]
.
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Here, ΘA,∼B denotes the union of ΘA and Θ∼B. Then, we have

SPF,B =
1

V[PF]
VΘB

[∫

ΩΘ∼B

π(θ∼B|ΘB)

∫

ΩΘA

I(g(θA,θ∼B,ΘB) ≤ 0)π(θA|θ∼B,ΘB)dθAdθ∼B

]

=
1

V[PF]
VΘB

[∫

ΩΘA,∼B

I(g(θA,∼B,ΘB) ≤ 0)π(θA,∼B|ΘB)dθA,∼B

]

=
V[I(g ≤ 0)]

V[PF]

VΘB

[
EΘA,∼B [I(g ≤ 0)|ΘB]

]

VΘ [I(g ≤ 0)]

=
V[I(g ≤ 0)]

V[PF]
SI(g≤0),B.

The rescaling constant connecting the multi-uncertainty Sobol’ index to its indicator function-based
counterpart is the ratio of variance fractions contributed by all the input variables and the type
B-variables only. This result is somewhat intuitive as the multi-uncertainty Sobol’ index is defined
with respect to the variance contributed by the type B-variables only.
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