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Abstract— Motion planners for autonomous vehicles must
obtain feasible trajectories in real-time regardless of the com-
plexity of traffic conditions. Planning approaches that discretize
the search space may perform sufficiently in general driving
situations, however, they inherently struggle in critical situations
with small solution spaces. To address this problem, we prune
the search space of a sampling-based motion planner using
reachable sets, i.e., sets of states that the ego vehicle can reach
without collision. By only creating samples within the collision-
free reachable sets, we can drastically reduce the number of
required samples and thus the computation time of the planner
to find a feasible trajectory, especially in critical situations. The
benefits of our novel concept are demonstrated using scenarios
from the CommonRoad benchmark suite.

I. INTRODUCTION

Motion planners are a crucial component within the soft-
ware system of self-driving vehicles. The development of
motion planning algorithms is subject to a wide range of
requirements, including safety, robustness, and strict real-
time capabilities. Discretization-based planning approaches
often fail to meet those requirements when the criticality
of the driving situation suddenly increases. Due to the dis-
cretization, the planner may not be able to swiftly detect nar-
row passages and generate feasible motions in safety-critical
situations. Set-based reachability analysis combined with
optimization-based planning techniques has shown promising
results in terms of handling such complex maneuvers [1].
Particularly, the ability of reachable sets to efficiently detect
narrow solution spaces in arbitrary traffic scenarios was
demonstrated. In this work, we exploit reachability analysis
to improve the performance of a sampling-based motion
planner by constraining the sampling space using the bounds
of the reachable sets (see Fig. 1).

A. Related Work

Discretization-Based ~ Motion  Planning:  Various
motion-planning techniques have been explored in the
past; in-depth overviews are provided in [2], [3]. In this
work, we focus on discretization-based approaches. Rapidly
exploring random trees [4], [5] generate trajectories by
randomly sampling and connecting states toward a goal
area. State lattices [6]-[9] generate trajectory sets by
connecting an initial state with several intermediate goal
states that are typically chosen as vertices in a fixed grid.
In [8], jerk-optimal trajectories are computed by sampling
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(b) Adaptive sampling using reachable sets.

Fig. 1. Example scenario showing the ego vehicle trying to evade a static
obstacle while following a given reference route. (a) A naive sampling
approach, which uses fixed intervals for each sampled state leads to a large
number of non-drivable trajectories. (b) Our approach uses reachable sets
(grey rectangles) to identify the narrow passageway and adapts the intervals
for each sampled state according to the bounds of the reachable sets.

the terminal states of the trajectories within fixed intervals
around a reference path (e.g., the lane centerline) and using
quintic polynomials to generate a uniformly latticed set
of trajectories (see Fig. 1a). A major drawback of lattice
planners is their limited set of motions due to the constraint
that partial motions must end in the vertices of the fixed
grid [10]. Hence, exhaustive sampling of the state space
may be required to retain reactive properties [3], which
leads to an increased computational time of the planner.
Several previous works have addressed this issue: Gu et al.
[11], [12] propose a two-stage planning scheme, which first
generates a coarse trajectory via a desired action sequence
[11] or via optimization [12], followed by obtaining a fine
local trajectory by sampling around the coarse trajectory.
However, both approaches are limited to handling static
obstacles and the optimization routine potentially leads to
jittering in the reference path [13]. Similarly, [14]-[17]
optimize a reference path for a subsequent sampling-based
planner. Yet, these approaches mainly focus on adapting the
reference path to unstructured road geometry or the presence
of static obstacles, i.e., they do not consider the dynamic
environment. The authors of [18] construct adaptive search
spaces for sampling the trajectories based on the reachable
space of the vehicle and the shape of the road, but without
considering obstacles. In [19], the lattice is adapted to
human driving behavior by learning sampling intervals from
recorded lane change trajectories. However, this approach is



tailored to a specific maneuver and also does not consider
any obstacles.

Reachable Sets for Trajectory Planning: Several appli-
cations of set-based reachability analysis for motion planning
have been proposed in previous works. In [20], an online
verification method is presented which checks whether a tra-
jectory is collision-free by considering all possible motions
of dynamic obstacles. In [21], [22], reachability analysis is
exploited to compute the drivable area of an autonomous
vehicle and determine the non-existence of actions. An
application to a path planning problem is shown in [23],
where the exploration process of a rapidly exploring random
tree is guided via reachable sets. Most recent works focus
on combining reachability analysis with convex optimization
techniques for planning intended motions [1] as well as fail-
safe trajectories [24], [25]. Particularly, these approaches use
reachable sets to obtain convex solution spaces and collision
avoidance constraints for the optimization problem. Thereby,
the application of set-based techniques has yielded promising
results regarding the performance and computation time of
the trajectory planner, especially in complex scenarios with
constricted solution spaces.

B. Contributions

Inspired by the works of [1], [24], we present a concept
for improving the performance of a sampling-based motion
planner using set-based reachability analysis. In contrast to
existing work, our approach is not tailored to a specific
maneuver or limited to static obstacles. Furthermore, we
are able to alleviate the dependence of the sampling-based
planner on the quality of a reference path. Our concept
determines the collision-free drivable area using reachability
analysis and derives the intervals for sampling in the position
and velocity domain from the bounds of the reachable sets.
Thus, our planner is able to adapt its sampling technique to
the dynamically changing environment, which increases the
efficiency and performance of the planner as demonstrated
by our numerical experiments. In particular, we significantly
improve the computation time of the planner by reducing the
number of required samples in scenarios with small solution
spaces, which are inherently challenging for discretization-
based approaches. We evaluate our concept using scenar-
ios from the CommonRoad [26] benchmark platform and
demonstrate the benefits of our concept compared to a
standard approach that uses fixed sampling intervals.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the necessary preliminaries for our
work. Sec. III describes our proposed concept for adapting
the sampling intervals for a motion planner using reachable
sets. We present the results of our experiments in Sec. IV
and provide concluding remarks in Sec. V.

II. PRELIMINARIES

In this section, we present some notations and definitions
regarding reachability analysis and motion planning, which
are necessary for our work.

Fig. 2. Curvilinear coordinate system aligned with a reference path I'.

A. Notations

Let us introduce the index k£ € Ny as a discrete time step
corresponding to a continuous time t; = kAt, with a fixed
time increment At € RT. We use ko and ks to refer to
the initial and final time step, respectively. Let us further
introduce the set of admissible states X} C R™= and the set
of admissible inputs U, C R™ for any dynamical system
Zp+1 = f(xp, up), where 2 € X represents the state and
up € U the input. We adhere to the notations [ and O to
refer to the lower and upper bounds of the possible values
of a variable [, respectively.

B. Definitions

Definition 1 (Curvilinear Coordinate System [27]). We use a
curvilinear coordinate system that is aligned with a reference
path T : R — R2, which is typically given by a route planner
(see Fig. 2). Any position (z,y)T in the global Cartesian
frame will be described by the arc length s along I' and the
orthogonal deviation d to T'(s).

We denote the occupancy of the ego vehicle by Q(x) C
R? and the occupancy of all surrounding obstacles by O, C
R2. We can then define the set of forbidden states as Fj =

Definition 2 (Reachable Set). Let us specify the initial
reachable set as Ry, = Xy, with Xy, being the set of
possible initial states. Then, the reachable set Rpyyi is
defined as the set of states that can be reached from the
previous reachable set Ry without intersecting with Fi1,
ie.,

Rk+1 = {(EkJrl c Xk+1 | dx, € Rk,Eluk cUy :
Tr1 = f(@h, uk) A Th1 & Frar}

In this work, Ry, refers to an accurate approximation of
the exact reachable set, since the computation of the exact
reachable set is often too expensive for complex models [28].
For the final verification of the solution, however, an over-
approximation is used [20].

Definition 3 (Projection Operator). We define the projection
operator proj : X — R™, which maps every state x € X
to the elements specified by [1.

Definition 4 (Drivable Area). The drivable area D), C R>
contains all collision-free positions which the ego-vehicle can



reach and is defined as the projection of the reachable set
onto the position domain, i.e., Dy, = projs q)(Ry).

Since the drivable area can be disconnected due to ob-
stacles in the environment, we introduce connected sets
Cip € Dy, n € Ny, which contain the connected components
of the drivable area at each time step k.

Definition 5 (Driving Corridor [1]). A driving corridor
C(-) = (Crys---,Cx;) is a temporal sequence of connected
sets Cr, C Dy,.

Multiple driving corridors may exist, which correspond
to different homotopy classes, i.e., sets of trajectories that
can be deformed into each other without intersecting with
obstacles [29]. In other words, multiple possible maneuvers
of the ego vehicle might exist, e.g., evading or braking in
front of an obstacle [1].

III. SAMPLING-BASED PLANNING WITH REACHABLE
SETS

In this section, we present our motion-planning approach.
We begin with a general overview of our method. Afterwards,
we elaborate on the computation of reachable sets and
the identification of driving corridors. Finally, we describe
how we adapt the intervals for each sampled state for our
trajectory planner from reachable sets.

A. Overview

We describe the general idea of our concept using the
scenario shown in Fig. 3, which depicts the ego vehicle
navigating around an obstacle. Our planning approach uses
a reference trajectory as input to specify a desired path and
velocity which the ego vehicle should follow. Our algorithm
then plans a trajectory for the planning horizon ¢, using a
fixed replanning time of At,.. The procedure for one planning
cycle is described below.

We begin by computing the reachable sets for all time
steps k € {ko, ..., ky} within the planning horizon to obtain
the drivable area for the planning cycle (see Fig. 3a and Sec.
III-B). Within the drivable area, we select a driving corridor
(see Def. 5). We derive sampling intervals from the reachable
sets corresponding to the selected driving corridor in order to
constrain the sampled terminal states of our trajectories (see
Fig. 3b and Sec. III-C). We determine the sampling interval
for the longitudinal motion by projecting the reachable sets
onto the longitudinal velocity domain v, since our planner
aims to follow a desired velocity specified by the reference
trajectory. The sampling interval for the lateral motion is
obtained from the projection of the drivable area onto the
lateral position domain d, as the planner should minimize
deviations from the reference path.

Since we only sample the terminal points of the trajectories
within the collision-free drivable area, the resulting trajectory
set must be checked for kinematic feasibility and collisions
[30]. The values for the kinematic constraints are taken from
[31] for a medium-sized passenger vehicle. Finally, we obtain
the optimal trajectory using a specified cost function.
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(a) Computation of a driving corridor C(-) as a sequence of connected sets
Cy.. Each grey rectangle represents a connected set Cj, within the collision-
free drivable area Dy, at different time steps k.
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(b) Extraction of sampling intervals (shown here for the lateral position
d): Each blue rectangle represents a sampling interval [d;,, dy] at different
terminal times. The terminal points of the trajectories (black dots) are only
sampled within the drivable area. The black line represents the resulting
optimal trajectory.

Fig. 3. Our concept consists of two steps: (a) Determining the collision-free
drivable area using reachability analysis. (b) Obtaining sampling intervals
from reachable sets and sampling within them.

B. Reachability Analysis and Driving Corridors

The following algorithms for computing reachable sets and
driving corridors are mainly based on [1], [21].
Reachability Analysis: For efficiency, we simplify the
vehicle dynamics for the reachable set computation using
a point-mass model in the curvilinear frame [1], with the
vehicle center as the reference point. The state vector
r = (s,vs,d,vq)T contains the longitudinal and lateral
positions (s,d)T and velocities (vs,v4)T. The input vector
u = (as,aq)T is composed of the longitudinal and lateral
accelerations, as and ag4, respectively. The system dynamics
is

LAt0 0 A2 0
0100 At 0

i1 = g0 1Az | %% T 0 1Ap uk, (1)
0001 0 At

with bounded values for the velocities and accelerations:

Vs S Vs S Vs, Vg S Vg k < Vg,

as <asp < as, ag < aqgr < aq.

We choose the bounds conservatively in order to account
for kinematic limitations of the real vehicle (e.g., maximum
drivable curvature) and effects resulting from the transfor-
mation of the vehicle dynamics to the curvilinear frame,
which are not modeled in (1). We use this approximation for
computational efficiency, since the drivability of the sampled
trajectories is checked separately in any case, as mentioned
above.

The reachable set at time step k is over-approximated as a
union of base sets R%, i € Ny, where every base set denotes
pairs of reachable positions and velocities in the curvilinear
frame. We begin with the base set Rgo and successively
carry out the following procedure (see Fig. 4a): First, we
propagate the previous base sets R forward in time using
(1). The projection of the propagated base sets R,’2",°? onto

k+1
the position domain yields the propagated drivable areas
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(a) Steps to compute the drivable area: The previous sets Di are propagated
to D71 according to the system dynamics. The set of forbidden states
Fr41 is excluded and we obtain the repartitioned sets Dy, 11
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(b) Example of a reachability graph Gr.
Fig. 4. Overview of reachability analysis based on [1], [21].

D};”"°P. In order to compute the collision-free drivable area,

we determine the set of forbidden states Fj; by considering
static occupancies and the predicted occupancies of dynamic
obstacles at time step k+1. Then, Fj1 is excluded from the
propagated drivable areas, which results in the collision-free
drivable areas D;, 1+ Afterwards, the corresponding base sets
Ri 4, are determined by computing the reachable velocities
for the drivable areas Di i1 Thus, we have obtained all
collision-free configurations which the ego-vehicle can reach
at time step k + 1. The spatiotemporal information of the
reachability analysis is stored in a directed graph Gr (see
Fig. 4b). Therein, a node is constructed for each individual
base set R, 41- An edge in G implies that the corresponding
base sets are reachable over one time step (e.g., Ri 11 1s
reachable from R}, in Fig. 4b).

Driving Corridors: We aim to select a driving corridor
(see Def. 5) from the drivable area using the approach
proposed in [1]. We begin by identifying the connected sets
C,?f, n € Ny within the union of drivable areas D,if at the
final time step k¢ of the planning horizon and determine
the driving corridor by traversing the reachability graph Gz
backwards in time. Using this approach we are able to
eliminate those sets that do not have a descendant in Gp
from the driving corridor, i.e., we exclude sets which would
collide in future time steps within the planning horizon. In
Gr, we first determine the parent sets Difl for all Dé eCy.
Next, we identify the connected sets C;" ;, m € Ny within
the union of parent sets. Thus, we obtain all connected parent
sets C* ; from which the connected set C;’ can be reached.
This procedure is repeated backwards in time for all time
steps k € {ko,...,ks} of the planning cycle. Since multiple
driving corridors may exist, we select the driving corridor
with the largest cumulative drivable area for planning, as
proposed in [32].

C. Obtaining Sampling Intervals from Reachable Sets

After computing a driving corridor C(-), we aim to obtain
sampling intervals for our motion planner. The terminal
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Fig. 5. For a sampled longitudinal trajectory (blue), we determine the

drivable areas ’D,i which overlap with the end position s. In this example,
we identify two connected sets within the union of D'fc and select C ]1’5, since

it is closer to the reference path. The obtained sampling interval [d}, , Ei]
for the lateral position d is highlighted in blue.

times of the end states are uniformly distributed within a
predefined interval, i.e., tierminal € [Estart 5 Ck f}. Subsequently,
the procedure for computing the longitudinal and lateral
sampling intervals for a given terminal time is described.

Longitudinal Velocity Intervals: Let k be the discrete
time step corresponding to the selected terminal time. We
then extract the connected set C; from the driving corridor
C(-). The connected set contains several drivable areas D} €
Ck, © € Ny, for which we determine the corresponding reach-
able sets R%. We then compute the lower and upper bounds
of the longitudinal velocity, v’ , and 52 > respectively, for
each base set using 1

vl = inf { proj, (R})}, ., = sup { proj, (R})}.
Consequently, the sampling interval [ysﬁk,ﬁ&k] for the
longitudinal velocity is obtained by selecting the mini-

mum/maximum values of the individual bounds of the base
sets, i.e.,

Vs = m}n(ﬂi7k)v Vs,k = m;dx(@i,k)-

Lateral Position Intervals: We compute a sampling
interval for the lateral position dj of the terminal state for
each sampled longitudinal trajectory. Fig. 5 shows the pro-
cedure for determining this interval for a given longitudinal
trajectory. First, we determine all sets D} that overlap with
the longitudinal end position sy, i.e., sx € proj,(Di) must
hold. Afterwards, we obtain the connected components C}}
within those sets. Multiple connected sets may exist when
there are several homotopy classes, e.g., multiple passing
sides around an obstacle. Since our motion planner aims
to minimize the lateral deviation from the desired reference
path, we select the connected set C;; with the closest lateral
bound to the reference path. Finally, we obtain the sampling
interval [d;,, dy,] for the lateral position by

di = inf { projy(C;")},  di = sup { proju(C;")}.
Thereby, the superscript s indicates that the corresponding
variable [1? is determined for a specific longitudinal position.
D. Sampling within the Intervals

In this work, we employ a simple approach by uniformly
distributing the samples within the intervals. The number of



samples is determined by the step size between the samples
for each interval. We start with a default step size for
the intervals of the terminal times Ziemina, the longitudinal
velocity v, and the lateral position d. If the planner cannot
determine a feasible trajectory, we successively bisect the
step size for each interval, i.e., we double the number of
samples per interval until a feasible trajectory is found. To
bisect the intervals, we set a maximum number of iterations;
consequently, the number of sampled trajectories is limited
by a maximum number Np,. If no feasible trajectory can
be obtained using the maximum number of samples, our
planning algorithm aborts.

IV. NUMERICAL EXPERIMENTS

We evaluate our approach using the sampling-based plan-
ner of [8]. This planner computes jerk-optimal trajectories
using quintic polynomials to connect the sampled terminal
states with the initial state. The optimal trajectory is se-
lected according to a cost function, which penalizes high
acceleration values for comfort as well as deviations from
the desired velocity and the reference path. We compare
the performance of our concept with a basic implementation
using fixed sampling intervals, which we subsequently refer
to as the ”standard” approach.

We first provide implementation details in Sec. IV-A.
Afterwards, we evaluate our approach using an evasive
scenario (Sec. IV-B) and a highway scenario (Sec. IV-C)
from the CommonRoad [26] benchmark platform.

A. Implementation Details

For our experiments, we set the planning horizon to 5, =
2s, i.e., ky = 20 with a time increment At = 0.1s. We set
the replanning time to At,. = 0.3s, i.e., a new planning cycle
begins at every third time step.

The sampling intervals for the standard approach are listed
in Tab. I. Therein, the velocity vgesireq 1S the scenario-specific
desired velocity and an,ax 1s the maximum deceleration from
the kinematic constraints of the vehicle. The distribution of
the samples within the intervals and the number of samples
for the standard approach are determined according to the
procedure described in Sec. III-D. The maximum number of
sampled trajectories is set to Npax = 2754.

The algorithm for computing the reachable sets is im-
plemented in C++ and the algorithms for extracting the
sampling intervals and planning are implemented in Python.
All experiments are performed on a single thread of a 1.80
GHz Intel Core™ i7-10510U CPU with 32 GB of memory.
The full videos of our experiments are attached to this paper
as supplementary material.

B. Evasive Scenario with a Static Obstacle

We first compare both approaches using the CommonRoad
scenario ZAM _Over-1_1:2018b, in which the ego vehicle
must evade a static obstacle. Additionally, we manually
design a more critical version of the scenario by enlarging the
static obstacle and reducing its distance to the initial position
of the ego vehicle by approximately 10 m. The conditions

TABLE I
FIXED SAMPLING INTERVALS FOR THE STANDARD APPROACH.

terminal state interval
ttermina] in [S] [04 B tkf]
d in [m] [—4.5, 45]

vs in [m/S] [max(o, Udesired — 0.125 tkf amax) , Udesired 1 2]

optimal
trajectory

reference

sampled
path T'

€go stacle
I obstacle trajectory

vehicle

(b) Our sampling approach with reachable sets (N = 109).

Fig. 6. Evasive maneuver in the original scenario at t3 = 0.3s.

are subsequently referred to as the “original” and “critical”
scenario.

Fig. 6 depicts the results of the second planning cycle
at t3 = 0.3s for the original scenario. We can see that
the standard sampling approach (Fig. 6a) needs to sam-
ple a larger number N of trajectories compared to our
approach to find a feasible evasive maneuver. Since the
standard approach generates the lateral terminal state of the
trajectories in the predefined interval (Tab. I), the planner
must increase the sampling density in order to detect the
narrow passageway around the obstacle. Our approach on
the other hand efficiently adapts sampling intervals using
the drivable areas from the reachability analysis, resulting
in generated trajectories that are mostly constrained to the
narrow passageway. Since reachable sets are particularly well
suited to detect small and convoluted solution spaces [1],
[24], we are able to mitigate the drawbacks of our sampling-
based planner in such driving situations.

The critical scenario is particularly challenging, because
the obstacle is larger and closer to the ego vehicle. Hence, the
solution space for feasible trajectories is further reduced. Fig.
7 illustrates the planning results at ¢t3 = 0.3s. The standard
approach using fixed intervals was observed to result in an
exhaustive sampling with N = 2754 generated trajectories
(Fig. 7a). In contrast, our reachability-based sampling ap-
proach (Fig. 7b) is able to generate a valid evasive maneuver
in this planning cycle without increasing the number of
sampled trajectories compared to the original scenario. Thus,
the potential of our approach to improve the performance of
sampling-based planners becomes particularly apparent for
complex maneuvers.
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(b) Our sampling approach with reachable sets (N = 105).

Fig. 7. Evasive maneuver in the critical scenario at t3 = 0.3 s.

TABLE II
PERFORMANCE COMPARISON AT TIME STEPS k € {0, 3, 6}.

standard approach our approach

scenario k N Ngse Tcls] N Ngse Tcls]
original 0 540 384 0.609 112 65 0.122
3 540 387 0.699 109 59 0.117
6 540 393 0.760 100 44 0.108
critical 0 2754 2430  4.531 504 367 0.445
3 2754 2479  4.265 105 74 0.084
6 540 370 0.605 100 46 0.094

Tab. II shows the number of sampled trajectories N and
discarded trajectories Ngisc as well as the computation time
Tc for the first three planning cycles (ie., k& € {0,3,6}),
where the scenario is most challenging. Thereby, T¢ includes
both the planning time and computation time for the reacha-
bility analysis. The evaluation shows that our approach sig-
nificantly reduces the computation time due to the decreased
number of necessary samples, which minimizes the number
of trajectory evaluations and expensive collision checks the
planner must execute.

We compare the computation time 7¢ for all planning time
steps for the original and critical scenarios in Fig. 8a and
Fig. 8b, respectively. We notice that our concept does not
significantly worsen the computation time of the planner, i.e.,
even after the vehicle has completed the evasive maneuver,
the performance of both approaches is comparable. Although
additional operations are required to obtain the reachable
sets and adapt the sampling intervals in each planning cycle,
the computational overhead to perform these operations is
mostly compensated by the reduced planning time due to
enhanced sampling. Overall, our concept tends to improve
the robustness of the planner, especially when the complexity
of the traffic situation increases.

C. Merging Scenario on a Highway

To evaluate our proposed concept in the presence of
other traffic participants, we consider a highway lane change
maneuver using the CommonRoad scenario USA_USI0I-
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(a) Original scenario.
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(b) Critical scenario.

Fig. 8. Evasive maneuver: comparison of computation times over the
planning cycles for the original scenario (a) and the critical scenario (b)
(averaged over 10 runs).

6_3_T-1:2018b, which is obtained from real traffic data in the
NGSIM dataset. We predict the motions of 29 other vehicles
in the scenario using their most likely trajectories, however,
any alternative prediction method could be applied.

Fig. 9 shows the considered scenario for selected time
steps k € {12,15,21}. The dynamic obstacles are shown at
their positions at the respective time step k. The ego vehicle
attempts to perform a single lane change into the middle
highway lane, while another vehicle simultaneously switches
to the same lane. We create a reference path that forces the
ego vehicle to merge into a tight gap between two vehicles.
This maneuver is particularly challenging, since the planner
must detect the gap and additionally determine a feasible
velocity to avoid a collision with the preceding vehicle. To
guide the lane change maneuver, we generate the reference
path I" with a simple route planner, which does not consider
any obstacles. Fig. 9a shows that the planner with a standard
sampling approach struggles to detect the narrow gap at the
beginning of the lane-change maneuver (kK = 12). Since
the solution space in the position and velocity domain is
exceedingly small, the planner requires a large number of
generated trajectories (N = 2754) to determine a feasible
merging trajectory. Our reachability-based planner (Fig. 9b),
however, is able to find a feasible motion at time step
k = 12 with only N = 120 sampled trajectories. A similar
observation can be made at the following time step k£ = 15.
Both approaches can accomplish the maneuver with the ego
vehicle merging into the desired lane at time step k£ = 21.

The computation time 7¢ for all planning time steps for
both approaches is compared in Fig. 10. It can be observed
that the computation time of the standard planner drastically
increases when the scenario becomes more critical, i.e., at
time steps k € {12,15}. The benefits of our proposed ap-
proach are particularly apparent in those time steps, because
we can significantly minimize the computation time using
our more efficient sampling technique.
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Fig. 10. Merging maneuver: comparison of computation times over the
planning cycles for the highway scenario (averaged over 10 runs).

V. CONCLUSIONS

This paper proposes a concept to combine reachable sets
with a sampling-based motion planner. We use reachability
analysis to determine the collision-free drivable area of the
ego vehicle and derive the sampling intervals from the
reachable sets. As a result, our planner can adapt its sampling
intervals to the dynamically changing environment in arbi-
trary traffic scenarios. Our experiments demonstrated that the
presented approach outperforms a standard implementation,
that samples in fixed intervals in terms of computation time
and sampling efficiency. The benefits of our concept are
particularly noticeable in complex scenarios with limited
solution spaces, which are often difficult for discretization-
based planners to handle. Future work will focus on further
enhancing the sampling procedure of our approach, for
example, by adapting the sampled terminal times of the
trajectories and by incorporating different sampling strategies
within the reachable sets.
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