
Build Your Own Reachability Analyzer

with CORA

Matthias ALTHOFF a,1

a Technische Universität München, 85748 Garching, Germany

Abstract. The COntinuous Reachability Analyzer (CORA) is a collection of MAT-

LAB classes for the formal verification of cyber-physical systems using reacha-

bility analysis. This tutorial presents various vector and matrix set representations

and operations on them, as well as reachability algorithms of various dynamic sys-

tem classes. CORA is designed so that set representations can be exchanged with-

out having to modify the code for reachability analysis. Since CORA is written in

MATLAB, the installation and use is platform-independent. We demonstrate how

easily CORA can be used by coding our own reachability analyzer based on CORA

classes. Also, we demonstrate how to load SpaceEx files and how one can use al-

ready integrated reachability analysis approaches in CORA.

Keywords. Reachability analysis, formal verification, continuous systems, hybrid

systems, CORA.

1. Introduction

The COntinuous Reachability Analyzer (CORA)2 is a MATLAB toolbox for prototyp-

ical design of algorithms for reachability analysis. The toolbox is designed for vari-

ous kinds of systems with purely continuous dynamics (linear systems, nonlinear sys-

tems, differential-algebraic systems, parameter-varying systems, etc.) and hybrid dynam-

ics combining the aforementioned continuous dynamics with discrete dynamics. Let us

denote the continuous part of the solution of a hybrid system for a given initial discrete

state by χ(t;x0,u(·), p), where t ∈ R is the time, x0 ∈ Rn is the continuous initial state,

u(t) ∈ Rm is the system input at t, u(·) is the input trajectory, and p ∈ Rp is a parameter

vector. The continuous reachable set at time t = r can be defined for a set of initial states

X0, a set of input values U (t), and a set of parameter values P , as

R
e(r) =

{

χ(r;x0,u(·), p) ∈ Rn
∣
∣x0 ∈ X0,∀t : u(t) ∈ U (t), p ∈ P

}

.

In its current version, CORA solely supports over-approximative computation of reach-

able sets since (a) exact reachable sets cannot be computed for most system classes [10]

and (b) over-approximative computations qualify for formal verification. Thus, CORA

computes over-approximations for particular points in time R(t) ⊇ R
e(t) and for time

intervals: R([t0, t f]) =
⋃

t∈[t0,t f]
R(t).

CORA enables one to construct one’s own reachable set computation in a relatively short

amount of time. This is achieved by the following design choices:

• CORA is built for MATLAB, which is a script-based programming environment.

Since the code does not have to be compiled, one can stop the program at any time

and directly see the current values of variables. This makes it especially easy to

understand the workings of the code and to debug new code.

1Corresponding Author: Matthias Althoff, Technische Universität München, 85748 Garching, Germany;

E-mail: althoff@in.tum.de.
2https://www6.in.tum.de/Main/SoftwareCORA

https://www6.in.tum.de/Main/SoftwareCORA

12 Build Your Own Reachability Analyzer with CORA

• CORA is an object-oriented toolbox that uses modularity, operator overloading,

inheritance, and information hiding. One can safely use existing classes and just

adapt classes one is interested in without redesigning the whole code. Operator

overloading makes it possible to write formulas that look almost identical to the

ones derived in scientific papers and thus reduce programming errors. Most of the

information for each class is hidden and is not relevant to users of the toolbox.

Most classes use identical methods so that set representations and dynamic systems

can be effortlessly replaced.

• CORA interfaces with the established toolbox MPT3, which is also written in

MATLAB. Results of CORA can be easily transferred to this toolbox and vice

versa. We are currently supporting version 2 and 3 of the MPT.

Of course, it is also possible to use CORA as it is to conduct reachability analysis.

Please be aware of the fact that outcomes of reachability analysis heavily depend on

the chosen parameters for the analysis. Improper choice of parameters can result in

an unacceptable over-approximation although reasonable results could be achieved

by using appropriate parameters. Thus, self-tuning of the parameters for reachability

analysis is investigated as part of future work.

Since this tutorial focuses on the presentation of the capabilities of CORA, no other tools

for reachability analysis of continuous and hybrid systems are reviewed. A list of related

tools is presented in [3–5].

2. Set Operations

Efficient set operations are crucial for efficient reachability analysis. We will start with

intervals as one of the simplest set representations and finish with polynomial zonotopes,

which are a non-convex set representation.

2.1. Intervals

A real-valued interval [x] = [x,x] = {x ∈ R|x ≤ x ≤ x} is a connected subset of R and

can be specified by a left bound x ∈ R and right bound x ∈ R, where x ≤ x. A detailed

description of how intervals are treated in CORA can be found in [4]. This class has a lot

of methods, and almost all operators and functions defined in MATLAB can be applied

to intervals, such as abs, cos, power, etc.

1 I1 = interval([0; -1], [3; 1]); % create interval I1

2 I2 = interval([-1; -1.5], [1; -0.5]); % create interval I2

3 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

4

5 %% basic set operations

6 r = rad(I1) % obtain and display radius of I1

7 is_intersecting = isIntersecting(I1, Z1) % Z1 intersecting I1?

8 I3 = I1 & I2; % computes the intersection of I1 and I2

9 c = mid(I3) % returns and displays the center of I3

10

11 figure; hold on

12 plot(I1); % plot I1

13 plot(I2); % plot I2

14 plotFilled(I3,[1 2],[.6 .6 .6],’EdgeColor’,’none’); % plot I3

15

16 %% mathematical functions

17 A_inf = [-1 -1; 0.5 -2]; % specify infimum

18 A_sup = [1 2; 1 -1]; % specify supremum

3http://control.ee.ethz.ch/~mpt/2/

http://control.ee.ethz.ch/~mpt/2/

Matthias Althoff 13

19 A = interval(A_inf, A_sup); % generate matrix

20 B_inf = [0 -1; 0 1]; % specify infimum

21 B_sup = [1 3; 0.5 1.2]; % specify supremum

22 B = interval(B_inf, B_sup); % generate matrix

23

24 A+B % addition

25 A*B % multiplication

26 A.*B % pointwise multiplication

27 A/interval(1,2) % division

28 A./B % pointwise division

29 A^3 % power function

30 sin(A) % sine function

31 sin(A(1,1)) + A(1,1)^2 - A(1,1)*B(1,1) % scalar combination of functions

32 sin(A) + A^2 - A*B % matrix combination of functions

2.2. Zonotopes

A zonotope is a point-symmetric set parameterized by a center c ∈ Rn and generators

g(i) ∈ Rn:

Z =
{

c+
p

∑
i=1

βig
(i)
∣
∣
∣βi ∈ [−1,1]

}

. (1)

We write in short Z =(c,g(1), . . . ,g(p)). A zonotope can be interpreted as the Minkowski

addition of line segments l(i) = [−1,1]g(i) and is visualized step-by-step in a two-

dimensional vector space in Fig. 1. Zonotopes are a compact way of representing sets

in high dimensions. More importantly, operations required for reachability analysis,

such as linear maps M ⊗ Z := {Mz|z ∈ Z } (M ∈ Rq×n) and Minkowski addition

Z1 ⊕Z2 := {z1 + z2|z1 ∈ Z1,z2 ∈ Z2} can be computed efficiently and exactly, and

others such as convex hull computation can be tightly over-approximated [8].

0 1 2

0

1

2

c

l(1)

(a) c⊕ l(1)
−1 0 1 2 3

−1

0

1

2

3

c

l(1) l(2)

(b) c⊕ l(1) ⊕ l(2)
−2 0 2 4

−1

0

1

2

3

c

l(1) l(2)

l(3)

(c) c⊕ . . .⊕ l(3)

Figure 1. Step-by-step construction of a zonotope.

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

3 A = [0.5 1; 1 0.5]; % numerical matrix A

4

5 %% set operations

6 Z3 = Z1 + Z2; % Minkowski addition

7 Z4 = A*Z3; % linear map

8

9 figure; hold on

10 plot(Z1,[1 2],’b’); % plot Z1 in blue

11 plot(Z2,[1 2],’g’); % plot Z2 in green

12 plot(Z3,[1 2],’r’); % plot Z3 in red

13 plot(Z4,[1 2],’k’); % plot Z4 in black

14

15 %% conversion to other set representations

16 P = polytope(Z4) % convert to and display halfspace representation

17 I = interval(Z4) % convert to and display interval

18

19 figure; hold on

14 Build Your Own Reachability Analyzer with CORA

20 plot(Z4); % plot Z4

21 plot(I,[1 2],’g’); % plot intervalhull in green

2.3. Zonotope Bundles

A disadvantage of zonotopes is that they are not closed under intersection, i.e., the inter-

section of two zonotopes does not return a zonotope in general. In order to overcome this

disadvantage, zonotope bundles are introduced in [6]. Given a finite set of zonotopes Zi,

a zonotope bundle is Z ∩ =
⋂s

i=1 Zi, i.e., the intersection of zonotopes Zi. Note that the

intersection is not computed, but the zonotopes Zi are stored in a list, which we write as

Z
∩ = {Z1, . . . ,Zs}

∩.

1 Z{1} = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1;

2 Z{2} = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2;

3 Zb = zonotopeBundle(Z); % instantiate zonotope bundle from Z1, Z2

4 vol = volume(Zb) % compute and display volume of zonotope bundle

5

6 figure; hold on

7 plot(Z{1}); % plot Z1

8 plot(Z{2}); % plot Z2

9 plotFilled(Zb,[1 2],[.675 .675 .675],’EdgeColor’,’none’); % plot Zb in gray

10

11 % zonotope bundles are closed under intersections, but Minkowski addition

12 % is no longer exact

13

14 %% Example 1

15 % convert to polytopes

16 Pb = polytope(Zb);

17 P1 = polytope(Z{1});

18

19 % compute exact Minkowski addition

20 Pres = Pb + P1;

21

22 % compute over-approximate addition

23 Zres = Zb + Z{1};

24

25 % compare results

26 figure; hold on

27 plot(Pres); % plot Pres

28 plotFilled(Zres,[1 2],[.675 .675 .675],’EdgeColor’,’none’); % plot Zres

29

30 %% Example 2

31 % generate new zonotopes

32 Z{1} = zonotope([0 0.5 1 2; 0 0.5 2 1]);

33 Z{2} = zonotope([0 3 -0.7; 0 3 0.7]);

34

35 Zadd = zonotope([0 2 0; 0 0 1]); % create zonotope to be added;

36 Padd = polytope(Zadd); % convert zonotope to polytope

37

38 Zbundle = zonotopeBundle(Z); % create zonotope bundle

39 Pmpt = polytope(Zbundle); % convert zonotope to polytope

40

41 P_final = Pmpt + Padd; % compute exact Minkowski addition for polytopes

42 Zbundle_final = Zbundle + Zadd; % compute overapprox. Minkowski addition

43

44 %plot results

45 figure; hold on

46 plot(Zbundle_final); % plot Zbundle_final

47 plotFilled(P_final,[1 2],[.675 .675 .675],’EdgeColor’,’none’);% plot P_final

Matthias Althoff 15

2.4. Constrained Zonotopes

An extension of zonotopes described in Sec. 2.2 are constrained zonotopes, which are in-

troduced in [11]. A constrained zonotope is defined as a zonotope with additional equal-

ity constraints on the factors βi:

Zc =
{

c+Gβ
∣
∣
∣‖β‖∞ ≤ 1,Aβ = b

}

, (2)

where c ∈ Rn is the zonotope center, G ∈ Rn×p is the zonotope generator matrix and

β ∈ Rp is the vector of zonotope factors. The equality constraints are parametrized by

the matrix A ∈ Rq×p and the vector b ∈ Rq. Constrained zonotopes are able to describe

arbitrary polytopes, and are therefore a more general set representation than zonotopes.

The main advantage compared to a polytope representation using inequality constraints

is that constrained zonotopes inherit the excellent scaling properties of zonotopes for in-

creasing state space dimensions, since constrained zonotopes are also based on a gener-

ator representation for sets.

1 Z{1} = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1;

2 Z{2} = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2;

3 Zb = zonotopeBundle(Z); % instantiate zonotope bundle from Z1, Z2

4 Zc = conZonotope(Zb); % convert to constrained zonotope

5

6 figure; hold on

7 plot(Z{1}); % plot Z1

8 plot(Z{2}); % plot Z2

9 plotFilled(Zc,[1 2],[.675 .675 .675],’EdgeColor’,’none’); % plot gray Zb

10

11 % constr. zonotopes are closed under intersection and Minkowski addition

12

13 %% Example 1

14 % convert to polytopes

15 Pc = mptPolytope(Zc);

16 P1 = polytope(Z{1});

17

18 % compute Minkowski addition for polytopes

19 Pres = Pc + P1;

20

21 % compute Minkowski addition for constrained zonotopes

22 Zres = Zc + Z{1};

23

24 % compare results

25 figure; hold on

26 plot(Pres); % plot P

27 plotFilled(Zres,[1 2],[.675 .675 .675],’EdgeColor’,’none’); % plot Zres

28

29 %% Example 2

30 % generate new zonotopes

31 Z{1} = zonotope([0 0.5 1 2; 0 0.5 2 1]);

32 Z{2} = zonotope([0 3 -0.7; 0 3 0.7]);

33

34 Zadd = zonotope([0 2 0; 0 0 1]); % create zonotope to be added;

35 Padd = polytope(Zadd); % convert zonotope to polytope

36

37 Zb = zonotopeBundle(Z); % create zonotope bundle

38 Zc = conZonotope(Zb); % convert to constrained zonotope

39 P = mptPolytope(Zc); % convert zonotope to polytope

40

41 P_final = P + Padd; % compute Minkowski addition for polytopes

42 Zc_final = Zc + Zadd; % compute Minkowski addition for zonotopes

43

44 %plot results

45 figure; hold on

16 Build Your Own Reachability Analyzer with CORA

46 plot(Zc_final); % plot Zbundle_final

47 plotFilled(P_final,[1 2],[.675 .675 .675],’EdgeColor’,’none’);%plot P_final

2.5. Polynomial Zonotopes

Zonotopes are a very efficient representation for reachability analysis of linear systems

[8] and of nonlinear systems that can be well abstracted by linear differential inclusions

[1]. However, more advanced techniques, such as in [2], abstract more accurately to

nonlinear difference inclusions. As a consequence, linear maps of reachable sets are

replaced by nonlinear maps. Zonotopes are not closed under nonlinear maps and are not

particularly good at over-approximating them. For this reason, polynomial zonotopes are

introduced in [2]. Polynomial zonotopes are a new non-convex set representation and can

be efficiently stored and manipulated. The new representation shares many similarities

with Taylor models [9] and is a generalization of zonotopes. Please note that a zonotope

cannot be represented by a Taylor model.

Given a starting point c ∈ Rn, multi-indexed generators f ([i], j,k,...,m) ∈ Rn, and single-

indexed generators g(i) ∈Rn, a polynomial zonotope is defined as

PZ =
{

c+
p

∑
j=1

β j f ([1], j)+
p

∑
j=1

p

∑
k= j

β jβk f ([2], j,k)+ . . .+ (3)

p

∑
j=1

p

∑
k= j

. . .

p

∑
m=l

β jβk . . .βm
︸ ︷︷ ︸

η factors

f ([η], j,k,...,m)+
q

∑
i=1

γig
(i)
∣
∣
∣βi,γi ∈ [−1,1]

}

.

The scalars βi are called dependent factors, since changing their values does not only

affect the multiplication with one generator, but with other generators too. On the other

hand, the scalars γi only affect the multiplication with one generator, so they are called

independent factors. The number of dependent factors is p, the number of independent

factors is q, and the polynomial order η is the maximum power of the scalar factors βi.

The order of a polynomial zonotope is defined as the number of generators ξ divided by

the dimension, which is ρ = ξ
n

. For a concise notation and later derivations, we introduce

the matrices

E [i] = [f ([i],1,1,...,1)
︸ ︷︷ ︸

=:e([i],1)

. . . f ([i],p,p,...,p)
︸ ︷︷ ︸

=:e([i],p)

] (all indices are the same value),

F [i] = [f ([i],1,1,...,1,2) f ([i],1,1,...,1,3) . . . f ([i],1,1,...,1,p)

f ([i],1,1,...,2,2) f ([i],1,1,...,2,3) . . . f ([i],1,1,...,2,p)

f ([i],1,1,...,3,3) . . .] (not all indices are the same value),

G = [g(1) . . . g(q)],

and E =
[

E [1] . . . E [η]
]
, F =

[

F [2] . . . F [η]
]

(F [i] is only defined for i ≥ 2). Note that the

indices in F [i] are ascending due to the nested summations in (2.5). In short form, a

polynomial zonotope is written as PZ = (c,E,F,G).

For a given polynomial order i, the total number of generators in E [i] and F [i] is derived

using the number
(

p+i−1
i

)
of combinations of the scalar factors β with replacement (i.e.,

the same factor can be used again). Adding the numbers for all polynomial orders and

adding the number of independent generators q, results in ξ = ∑
η
i=1

(
p+i−1

i

)
+ q gen-

erators, which is in O(pη) with respect to p. The non-convex shape of a polynomial

zonotope with polynomial order 2 is shown in Fig. 2.

1 c = [0;0]; % starting point

2 E1 = diag([-1,0.5]); % generators of factors with identical indices

Matthias Althoff 17

x1

x 2

polynomial zonotope

PZ = (0,E,F,G)

sample

E [1] =

[
−1 0

0 0.5

]

E [2] =

[
1 1

0.5 0.3

]

F [2] =

[
−0.5

1

]

G =

[
0.3

0.3

]

3

2

1

0

−1

0 2 4

Figure 2. Over-approximative plot of a polynomial zonotope as specified in the figure. Random samples of

possible values demonstrate the accuracy of the over-approximative plot.

3 E2 = [1 1; 0.5 0.3]; % generators of factors with identical indices

4 F = [-0.5; 1]; % generators of factors with different indices

5 G = [0.3; 0.3]; % independent generators

6

7 qZ = quadZonotope(c,E1,E2,F,G); % instantiate quadratic zonotope

8 Z = zonotope(qZ) % over-approximate by a zonotope

9

10 figure; hold on

11 plot(Z); % plot Z

12 plotFilled(qZ,[1 2],7,[],[.6 .6 .6],’EdgeColor’,’none’); % plot qZ

2.6. Further Set Representations

These set representations are also implemented in CORA, but not covered in this tutorial:

• affine representations

• capsules

• ellipsoids

• halfspaces

• polytopes

• probabilistic zonotopes

• Taylor models

• zoo (mixture of presentations)

3. Linear Discrete-Time Systems

One of the simplest problems in reachability analysis is to compute the reachable set of

a linear discrete time system

x(tk+1) = Ax(tk)+ u(tk),

where x(0) ∈ X0 ⊂ Rn, u(tk) ∈ U ⊂Rm, and A ∈Rn×n. The reachable set R(tk) can be

trivially computed as

R(tk+1) = AR(tk)+ u(tk),

where R(0) = X0. Since the representation size of the reachable set grows with each

iteration, we additionally have to reduce the size of the reachable set in each iteration.

18 Build Your Own Reachability Analyzer with CORA

1 function Rcont = tutorial_reachLinDiscrete(A,B,options)

2

3 % Input to be added

4 Uadd = B*options.U;

5

6 % Initialize reachable set

7 Rnext = options.R0;

8

9 %time period

10 tVec = options.tStart:options.timeStep:options.tFinal;

11

12 % init Rcont

13 Rcont = cell(length(tVec)-1,1);

14

15 % loop over all reachability steps

16 for i = 2:length(tVec)

17

18 % order reduction

19 Rcont{i-1} = reduce(Rnext,options.reductionTechnique,...

20 options.zonotopeOrder);

21 %compute next reachable set

22 Rnext = A*Rnext + Uadd;

23 end

It remains to specify the system and plot the results

1 % system matrix

2 A = [0.95 -0.15 0 0 0;...

3 0.15 0.95 0 0 0; ...

4 0 0 0.9 0.05 0; ...

5 0 0 -0.05 0.9 0; ...

6 0 0 0 0 0.92];

7

8 % input matrix

9 B = 1;

10

11 %% set reachability options

12 options.tStart=0; %start time

13 options.tFinal=5; %final time

14 options.timeStep=0.04; %time step size for reachable set computation

15 options.R0=zonotope([ones(length(A),1),0.1*eye(length(A))]); %initial set

16 options.reductionTechnique=’girard’; %technique for order reduction

17 options.zonotopeOrder=200; %zonotope order

18 options.U=zonotope([zeros(5,1),0.02*diag([0.1, 0.3, 0.1, 0.3, 0.3])]);

19

20 % compute reachable set

21 Rcont = tutorial_reachLinDiscrete(A,B,options);

22

23 %% plot results

24 for plotRun=1:2

25 % plot different projections

26 if plotRun==1

27 projDimensions=[1 2];

28 elseif plotRun==2

29 projDimensions=[3 4];

30 end

31

32 figure;

33 hold on

34

35 %plot reachable sets

36 for i=1:length(Rcont)

37 plotFilled(Rcont{i},projDimensions,[.8 .8 .8],’EdgeColor’,’none’);

38 end

Matthias Althoff 19

39

40 %plot initial set

41 plot(options.R0,projDimensions,’b-’,’lineWidth’,2);

42

43 %label plot

44 xlabel([’x_{’,num2str(projDimensions(1)),’}’]);

45 ylabel([’x_{’,num2str(projDimensions(2)),’}’]);

46 end

47

4. Linear Continuous-Time Systems

While reachable sets can be easily computed for linear discrete time systems, one re-

quires more advanced algorithms for linear continuous time systems

ẋ(t) = Ax(t)+ u(t), (4)

where x(0)∈X0 ⊂Rn, u(t)∈U ⊂Rm, and A ∈Rn×n. Since one can apply the superpo-

sition principle to linear systems, we first compute the homogeneous solution (u(t) = 0)

followed by the particular solution (x(0) = 0).

4.1. Homogeneous Solution for Points in Time

It is well known that the homogeneous solution of (4) is

x(t) = eAtx(0),

where

eAt =
∞

∑
i=0

(At)i

i!

= I +
At

1!
+

(At)2

2!
+

(At)3

3!
+ . . .

d

dt
eAt = 0+A+ 2

At

2!
A+ 3

(At)2

3!
A+ . . .

= A(I +
At

1!
+

(At)2

2!
+ . . .) = AeAt

Test of solution:

x(t) = eAtx(0)

d

dt
x(t) =

d

dt
eAtx(0) = AeAtx(0)

︸ ︷︷ ︸

x(t)

X

How to compute the infinite series?

Answer: make it finite

eAt =
l

∑
i=0

(At)i

i!
+

∞

∑
i=l+1

(At)i

i!
︸ ︷︷ ︸

=:E

‖E‖ ≤
∞

∑
i=l+1

(‖A‖t)i

i!

20 Build Your Own Reachability Analyzer with CORA

Ratio of terms:

“2nd term”

“1st term”
=

(‖A‖t)l+2

(l + 2)!

(l + 1)!

(‖A‖t)l+1
=

‖A‖t

l + 2
=: ω

“3rd term”

“2nd term”
=

‖A‖t

l + 3
< ω

Assume ω as worst-case ratio for all terms:

‖E‖ ≤
∞

∑
i=l+1

(‖A‖t)i

i!
≤

(‖A‖t)l+1

(l + 1)!
(1+ω +ω2 +ω3 + . . .)
︸ ︷︷ ︸

= 1
1−ω for ω<1

=⇒ eAt ∈
l

∑
i=0

(At)i

i!
+ [−1,1]

︸ ︷︷ ︸




[−1,1] · · ·
.
.
. [−1,1]





(‖A‖t)l+1

(l + 1)!

1

1−ω

4.2. Homogeneous Solution for Time Intervals

x(0)

x̃(t)

x(r) = eArx(0)

x(t)

R(0)

R(r) = eAr
R(0)

x(t)

Initial state Initial set of states

Figure 3. Enclosure of a trajectory for an initial state and a set of initial states.

x̃(t) = x(0)+
t

r
(x(r)− x(0)) for t ∈ [0,r]

x(t)− x̃(t) =x(t)− x(0)−
t

r
(x(r)− x(0))

=eAtx(0)− x(0)−
t

r
(eArx(0)− x(0))

=
[

eAt − I−
t

r
(eAr − I)

]

︸ ︷︷ ︸

⊆F

x(0)

=⇒ x(t) ∈ x̃(t)+Fx(0)

Matthias Althoff 21

Insert Taylor series:

F =I+At +
(At)2

2!
+

(At)3

3!
+ . . .+E(t)− I−

t

r

(

I+Ar+
(Ar)2

2!
+ . . .+E(r)− I

)

=At +
(At)2

2!
+

(At)3

3!
+ . . .+E(t)−At−

A2rt

2!
+

A3r2t

3!
− . . .−

t

r
E(r)

=
A2(t2 − tr)

2!
+

A3(t3 − tr2)

3!
+ . . .+E(t)−

t

r
E(r)

=
l

∑
i=2

Ai(t i − tri−1)

i!
+E(t)−

t

r
E(r)

What is the bound for γ(t) := t i − tri−1 for t ∈ [0,r]?

d

dt
(t i − tri−1) = it i−1 − ri−1 = 0

t i−1 =
1

i
ri−1

t = i
−1
i−1 r

d2

dt2
γ(t) =

d

dt
it i−1 − ri−1 = i(i− 1)t i−2

> 0

Thus, γ(t) is a convex function and thus we obtain the minimum from above as tmin =

i
−1
i−1 r. Inserting tmin results in

γ(tmin) = i−
i

i−1 ri − i−
1

i−1 rri−1 =
(

i−
i

i−1 − i−
1

i−1

)

︸ ︷︷ ︸

1

i
i

i−1

−
1

i
1

i−1
︸ ︷︷ ︸

<0

ri

︸︷︷︸

>0

< 0

Since the function is concave, the maximum is to be found at the boundaries (t = 0,

t = r):

γ(0) = 0, γ(r) = ri − rri−1 = 0

=⇒∀t ∈ [0,r] : γ(t) ∈ [i−
i

i−1 − i−
1

i−1 ,0]ri

It remains to bound E(t)− t
r
E(r) for t ∈ [0,r], where E(t) ∈ [−1,1]n×nφ(t).

φ(t) is monotonically increasing

=⇒∀t ∈ [0,r] : φ(t) ∈ [0,1]φ(r)

=⇒∀t ∈ [0,r] : φ(t)−
t

r
φ(r) ∈ [0,1]φ(r)− [0,1]φ(r) = [−1,1]φ(r)

=⇒∀t ∈ [0,r] : E(t)−
t

r
E(r) ∈ [−1,1]φ(r)

Final result:

F =
l

∑
i=2

[i−
i

i−1 − i−
1

i−1 ,0]ri Ai

i!
+[−1,1]

(‖A‖r)l+1

(l + 1)!

1

1−ω

4.3. Input Solution

The derivation of the input solution is more complicated so that we just provide the result:

22 Build Your Own Reachability Analyzer with CORA

R
p(r) =

l

∑
i=0

(
Ai ri+1

(i+ 1)!
U

)

+E(r)rU

4.4. Realization in CORA

We specify the system similarly to the one for discrete time:

1 %% set reachability options

2 options.tStart=0; %start time

3 options.tFinal=5; %final time

4 options.R0=zonotope([ones(5,1),0.1*eye(5)]); %initial set

5

6 options.timeStep=0.04; %time step size for reachable set computation

7 options.taylorTerms=4; %number of taylor terms for reachable sets

8 options.zonotopeOrder=200; %zonotope order

9 options.originContained=0; %specify whether input set contains origin

10 options.reductionTechnique=’girard’; %specify order reduction method

11

12 uTrans=[1; 0; 0; 0.5; -0.5];

13 options.uTrans=uTrans; %center of input set

14 options.U=0.5*zonotope([zeros(5,1),diag([0.2, 0.5, 0.2, 0.5, 0.5])]);

15

16 %% set simulation options

17 simOptions.tStart=0; %start time

18 simOptions.tFinal=5; %final time

19 simOptions.R0=zonotope([ones(5,1),0.1*eye(5)]);

20

21 simOptions.uTrans=[1; 0; 0; 0.5; -0.5]; %center of input set

22 simOptions.U=0.5*zonotope([zeros(5,1),diag([0.2, 0.5, 0.2, 0.5, 0.5])]);

23

24 %% specify continuous dynamics

25 A=[-1 -4 0 0 0; 4 -1 0 0 0; 0 0 -3 1 0; 0 0 -1 -3 0; 0 0 0 0 -2];

26 B=1;

27 fiveDimSys=linearSys(’fiveDimSys’,A,B); %initialize system

28

29

30 %% compute reachable set using zonotopes

31 tic

32 Rcont = reach(fiveDimSys, options);

33 tComp = toc;

34 disp([’computation time of reachable set: ’,num2str(tComp)]);

35

36 %% create random simulations

37 runs = 60;

38 fractionVertices = 0.5;

39 fractionInputVertices = 0.5;

40 inputChanges = 6;

41 simRes = simulate_random(fiveDimSys, simOptions, runs, ...

42 fractionVertices, fractionInputVertices, inputChanges);

43

44 %% plot results

45 for plotRun=1:2

46 % plot different projections

47 if plotRun==1

48 projDim=[1 2];

49 elseif plotRun==2

50 projDim=[3 4];

51 end

52

53 figure;

54 hold on

Matthias Althoff 23

55

56 %plot reachable sets

57 for i=1:length(Rcont)

58 plotFilled(Rcont{i},projDim,[.8 .8 .8],’EdgeColor’,’none’);

59 end

60

61 %plot initial set

62 plot(options.R0,projDim,’w-’,’lineWidth’,2);

63

64 %plot simulation results

65 for i=1:length(simRes.t)

66 plot(simRes.x{i}(:,projDim(1)),simRes.x{i}(:,projDim(2)),’k’);

67 end

68

69 %label plot

70 xlabel([’x_{’,num2str(projDim(1)),’}’]);

71 ylabel([’x_{’,num2str(projDim(2)),’}’]);

72 end

5. Loading Models from SpaceEx

To load SpaceEx models (stored as XML files) into CORA, one only has to execute a

simple command:

spaceex2cora(’model.xml’);

This command creates a CORA model in /models/SpaceExConverted under a folder

with the identical name as the SpaceEx model. If the SpaceEx model contains nonlinear

differential equations, additional dynamics files are stored in the same folder. Below, we

present as an example the converted model of the bouncing ball model from SpaceEx:

1 function HA = bball(~)

2

3

4 %% Generated on 07-Aug-2018

5

6 %---------------Automaton created from Component ’system’------------------

7

8 %% Interface Specification:

9 % This section clarifies the meaning of state & input dimensions

10 % by showing their mapping to SpaceEx variable names.

11

12 % Component 1 (system.ball):

13 % state x := [x; v]

14 % input u := [uDummy]

15

16 %-------------------------Component system.ball----------------------------

17

18 %-----------------------------State always---------------------------------

19

20 %% equation:

21 % x’ == v & v’ == -g

22 dynA = ...

23 [0,1;0,0];

24 dynB = ...

25 [0;0];

26 dync = ...

27 [0;-1];

28 dynamics = linearSys(’linearSys’, dynA, dynB, dync);

29

24 Build Your Own Reachability Analyzer with CORA

30 %% equation:

31 % x >= 0

32 invA = ...

33 [-1,0];

34 invb = ...

35 [-0];

36 invOpt = struct(’A’, invA, ’b’, invb);

37 inv = mptPolytope(invOpt);

38

39 trans = {};

40 %% equation:

41 % v’ := -c*v

42 resetA = ...

43 [1,0;0,-0.75];

44 resetb = ...

45 [0;0];

46 reset = struct(’A’, resetA, ’b’, resetb);

47

48 %% equation:

49 % x <= eps & v < 0

50 guardA = ...

51 [1,0;0,1];

52 guardb = ...

53 [-0;-0];

54 guardOpt = struct(’A’, guardA, ’b’, guardb);

55 guard = mptPolytope(guardOpt);

56

57 trans{1} = transition(guard, reset, 1, ’dummy’, ’names’);

58

59 loc{1} = location(’S1’,1, inv, trans, dynamics);

60

61

62

63 HA = hybridAutomaton(loc);

64

65

66 end

At the beginning of each automatically created model, we list the state and inputs so

that the created models can be interpreted more easily using the variable names from the

SpaceEx model. These variable names are later replaced by the state vector x and the

input vector u to make use of matrix multiplications in MATLAB for improved efficiency.

Next, the dynamic equations, guard sets, invariants, transitions, and locations are created.

How to obtain SpaceEx models?

• Use the SpaceEx model editor: spaceex.imag.fr/download-6

• Convert Simulink models to SpaceEx: github.com/nikos-kekatos/SL2SX

6. Nonlinear Systems

So far, reachable sets of linear continuous systems have been presented. Although a fairly

large group of dynamic systems can be described by linear continuous systems, the ex-

tension to nonlinear continuous systems is an important step for the analysis of more

complex systems. The analysis of nonlinear systems is much more complicated since

many valuable properties are no longer valid. One of them is the superposition prin-

ciple, which allows the homogeneous and the inhomogeneous solution to be obtained

separately. Another is that reachable sets of linear systems can be computed by a lin-

ear map. This makes it possible to exploit that geometric representations such as ellip-

soids, zonotopes, and polytopes are closed under linear transformations, i.e., they are

http://spaceex.imag.fr/download-6
https://github.com/nikos-kekatos/SL2SX

Matthias Althoff 25

again mapped to ellipsoids, zonotopes and polytopes, respectively. In CORA, reacha-

bility analysis of nonlinear systems is based on abstraction. We present abstraction by

linear systems as presented in [1, Section 3.4] and by polynomial systems as presented

in [2]. Since the abstraction causes additional errors, the abstraction errors are deter-

mined in an over-approximative way and added as an additional uncertain input so that

an over-approximative computation is ensured.

6.1. Main Principle

General nonlinear continuous systems with uncertain parameters and Lipschitz continu-

ity are considered. In analogy to the previous linear systems, the initial state x(0) can

take values from a set X0 ⊂ Rn and the input u takes values from a set U ⊂ Rm. The

evolution of the state x is defined by the following differential equation:

ẋ(t) = f (x(t),u(t)), x(0) ∈ X0 ⊂ Rn
, u(t) ∈ U ⊂ Rm

,

where u(t) and f (x(t),u(t)) are assumed to be globally Lipschitz continuous so that the

Taylor expansion for the state and the input can always be computed, a condition required

for the abstraction.

➀

➁

➂

➃

➄

➅

➆

Initial set: R(0) = X0, time step: k = 1

Compute system abstraction (linear/polynomial)

Obtain required abstraction errors L̄ heuristically

Compute Rabstract(τk) of ẋ(t) ∈ f abstract (x(t),u(t))⊕ L̄

Compute L based on Rabstract(τk)

L ⊆ L̄ ? Enlarge L̄

Compute R(τk) of ẋ(t) ∈ f abstract (x(t),u(t))⊕L

Cancellation of redundant reachable sets

Next initial set: R(tk+1), time step: k := k+ 1

Yes

No

Figure 4. Computation of reachable sets – overview.

A brief visualization of the overall concept for computing the reachable set is shown in

Fig. 4. As in the previous approaches, the reachable set is computed iteratively for time

intervals t ∈ τk = [k r,(k+1)r] where k ∈N+. The procedure for computing the reachable

sets of the consecutive time intervals is as follows:

➀ The nonlinear system ẋ(t) = f (x(t),u(t)) is either abstracted to a linear system, or

after introducing z = [xT , uT]T , to a polynomial system of the form

ẋi = f abstract(x,u) =wi +
1

1!

o

∑
j=1

Ci jz j(t)+
1

2!

o

∑
j=1

o

∑
k=1

Di jkz j(t)zk(t)

+
1

3!

o

∑
j=1

o

∑
k=1

o

∑
l=1

Ei jklz j(t)zk(t)zl(t)+ . . .

(5)

The set of abstraction errors L ensures that f (x,u) ∈ f abstract (x,u)⊕L , which

allows the reachable set to be computed in an over-approximative way.

➁ Next, the set of required abstraction errors L̄ is obtained heuristically.

26 Build Your Own Reachability Analyzer with CORA

➂ The reachable set Rabstract(τk) of ẋ(t) ∈ f abstract (x(t),u(t))⊕ L̄ is computed.

➃ The set of abstraction errors L is computed based on the reachable set Rabstract(τk).

➄ When L * L̄ , the abstraction error is not admissible, requiring the assumption

L̄ to be enlarged. If several enlargements are not successful, one has to split the

reachable set and continue with one more partial reachable set from then on.

➅ If L ⊆ L̄ , the abstraction error is accepted and the reachable set is obtained by

using the tighter abstraction error: ẋ(t) ∈ f abstract (x(t),u(t))⊕L .

➆ It remains to increase the time step (k := k+1) and cancel redundant reachable sets

that are already covered by previously computed reachable sets. This decreases the

number of reachable sets that have to be considered in the next time interval.

The necessity of splitting reachable sets is indicated in the workspace outputs using the

keyword split.

6.2. Quadrotor Example

We study the dynamics of a quadrotor as derived in [7, eq. (16) - (19)]. Let us first

introduce the variables required to describe the model: The inertial (north) position x1,

the inertial (east) position x2, the altitude x3, the longitudinal velocity x4, the lateral

velocity x5, the vertical velocity x6, the roll angle x7, the pitch angle x8, the yaw angle x9,

the roll rate x10, the pitch rate x11, and the yaw rate x12. We further require the following

parameters: gravity constant g = 9.81 [m/s2], radius of center mass R = 0.1 [m], distance

of motors to center mass l = 0.5 [m], motor mass Mrotor = 0.1 [kg], center mass M = 1

[kg], and total mass m = M+ 4Mrotor.

From the above parameters we can compute the moments of inertia as

Jx =
2

5
M R2 + 2 l2 Mrotor,

Jy =Jx,

Jz =
2

5
M R2 + 4 l2 Mrotor.

Finally, we can write the set of ordinary differential equations for the quadrotor according

to [7, eq. (16) - (19)]:







ẋ1 = cos(x8)cos(x9)x4 +
(

sin(x7)sin(x8)cos(x9)− cos(x7)sin(x9)
)

x5

+
(

cos(x7)sin(x8)cos(x9)+ sin(x7)sin(x9)
)

x6

ẋ2 = cos(x8)sin(x9)x4 +
(

sin(x7)sin(x8)sin(x9)+ cos(x7)cos(x9)
)

x5

+
(

cos(x7)sin(x8)sin(x9)− sin(x7)cos(x9)
)

x6

ẋ3 = sin(x8)x4 − sin(x7)cos(x8)x5 − cos(x7)cos(x8)x6

ẋ4 = x12x5 − x11x6 − gsin(x8)
ẋ5 = x10x6 − x12x4 + gcos(x8)sin(x7)
ẋ6 = x11x4 − x10x5 + gcos(x8)cos(x7)−

F
m

ẋ7 = x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12

ẋ8 = cos(x7)x11 − sin(x7)x12

ẋ9 = sin(x7)
cos(x8)

x11 +
cos(x7)
cos(x8)

x12

ẋ10 =
Jy−Jz

Jx
x11x12 +

1
Jx

τφ

ẋ11 =
Jz−Jx

Jy
x10x12 +

1
Jy

τθ

ẋ12 =
Jx−Jy

Jz
x10x11 +

1
Jz

τψ

Matthias Althoff 27

To check interesting control specifications, we stabilize the quadrotor using simple PD

controllers for height, roll, and pitch. The inputs to the controller are the desired values

for height, roll, and pitch u1, u2, and u3, respectively. The equations of the controllers are

F = mg− 10(x3− u1)+ 3x6 (height control),
τφ = −(x7 − u2)− x10 (roll control),
τθ = −(x8 − u3)− x11 (pitch control).

We leave the heading uncontrolled so that we set τψ = 0.

The task is to change the height from 0 [m] to 1 [m] within 5 [s]. A goal region

[0.98,1.02] of the height x3 has to be reached within 5 [s] and the height has to stay below

1.4 for all times. After 1 [s] the height should stay above 0.9 [m]. The initial position of

the quadrotor is uncertain in all directions within [−0.4,0.4] [m] and also the velocity is

uncertain within [−0.4,0.4] [m/s] for all directions. All other values are initialized as 0.

The MATLAB code that implements the simulation and reachability analysis of the

quadrotor example is:

1 %% set options

2 options.tStart=0; %start time

3 options.tFinal=5; %final time

4 options.x0=zeros(12,1); %initial state for simulation

5 options.R0=zonotope([options.x0,0.4*diag([ones(6,1); zeros(6,1)])]);

6 options.timeStep=0.1; %time step size for reachable set computation

7 options.taylorTerms=4; %number of taylor terms for reachable sets

8 options.zonotopeOrder=50; %zonotope order

9 options.intermediateOrder=5;

10 options.reductionTechnique=’girard’;

11 options.errorOrder=1;

12 options.polytopeOrder=2; %polytope order

13 options.reductionInterval=1e3;

14 options.maxError = 1*ones(12,1);

15 options.originContained = 0;

16 options.advancedLinErrorComp = 0;

17 options.tensorOrder = 2;

18 options.uTrans = [1;0;0];

19 options.U = zonotope([0;0;0]); %input for reachability analysis

20

21 %% specify continuous dynamics

22 quadrocopter = nonlinearSys(12,3,@quadrocopterControlledEq,options);

23

24 %% compute reachable set

25 tic

26 Rcont = reach(quadrocopter, options);

27 tComp = toc;

28 disp([’computation time of reachable set: ’,num2str(tComp)]);

29

30 %% create random simulations

31 runs = 60;

32 fractionVertices = 0.5;

33 fractionInputVertices = 0.5;

34 inputChanges = 6;

35 simRes = simulate_random(quadrocopter, options, runs, ...

36 fractionVertices, fractionInputVertices, inputChanges);

37

38 %% plot results

39 figure;

40 hold on

41

42 %plot time elapse

43 for i=1:length(Rcont)

44 %get Uout

45 Uout1 = interval(project(Rcont{i}{1},3));

28 Build Your Own Reachability Analyzer with CORA

46 %obtain times

47 t1 = (i-1)*options.timeStep;

48 t2 = i*options.timeStep;

49 %generate plot areas as interval hulls

50 IH = interval([t1; infimum(Uout1)], [t2; supremum(Uout1)]);

51

52 plotFilled(IH,[1 2],[.75 .75 .75],’EdgeColor’,’none’);

53 end

54

55 %plot simulation results

56 for i=1:(length(simRes.t))

57 plot(simRes.t{i},simRes.x{i}(:,3),’Color’,0*[1 1 1]);

58 end

59

60 %label plot

61 box on

62 xlabel(’t’);

63 ylabel(’altitude x_3’);

64 axis([0,5,-0.5,1.5]);

The reachable set and the simulation are plotted in Fig. 5 for a time horizon of t f = 5.

0 2 4

t

-0.5

0

0.5

1

1.5

a
lt
it
u

d
e

 x
3

Figure 5. Illustration of the reachable set of the quadrotor. The black box shows the initial set and the black

line shows the simulated trajectory.

7. Hybrid Systems

In CORA, hybrid systems are modeled by hybrid automata. Besides a continuous state

x, there also exists a discrete state v for hybrid systems. The continuous initial state

may take values within continuous sets while only a single initial discrete state is as-

sumed without loss of generality4. The switching of the continuous dynamics is triggered

by guard sets. Jumps in the continuous state are considered after the discrete state has

changed. One of the most intuitive examples where jumps in the continuous state can

occur is the bouncing ball example (see Sec. 7.2), where the velocity of the ball changes

instantaneously when hitting the ground.

4In the case of several initial discrete states, the reachability analysis can be performed for each discrete state

separately.

Matthias Althoff 29

7.1. Hybrid Automata

The formal definition of the hybrid automaton is similarly defined as in [12]. The main

difference is the consideration of uncertain parameters and the restrictions on jumps and

guard sets. A hybrid automaton HA = (V ,v0,X , X 0,U ,P,inv,T,g,h,f), as it is

considered in CORA, consists of:

• the finite set of locations V = {v1, . . . ,vξ} with an initial location v0 ∈ V .

• the continuous state space X ⊆ Rn and the set of initial continuous states X 0

such that X 0 ⊆ inv(v0).

• the continuous input space U ⊆ Rm.

• the parameter space P ⊆ Rp.

• the mapping5 inv: V → 2X , which assigns an invariant inv(v) ⊆ X to each

location v.

• the set of discrete transitions T ⊆ V ×V . A transition from vi ∈ V to v j ∈ V is

denoted by (vi,v j).

• the guard function g : T → 2X , which associates a guard set g((vi,v j)) for each

transition from vi to v j, where g((vi,v j))∩inv(vi) 6= /0.

• the jump function h : T×X → X , which returns the next continuous state when

a transition is taken.

• the flow function f : V ×X ×U ×P → Rn, which defines a continuous vector

field for the time derivative of x: ẋ = f(v,x,u, p).

The invariants inv(v) and the guard sets g((vi,v j)) are modeled by polytopes. The jump

function is restricted to a linear map

x′ = K(vi ,v j) x+ l(vi,v j), (6)

where x′ denotes the state after the transition is taken and K(vi ,v j) ∈Rn×n, l(vi ,v j) ∈Rn are

specific for a transition (vi,v j). The input sets Uv are modeled by zonotopes and are also

dependent on the location v. Note that in order to use the results from reachability anal-

ysis of nonlinear systems, the input u(t) is assumed to be locally Lipschitz continuous.

The set of parameters Pv can also be chosen differently for each location v.

The evolution of the hybrid automaton is described informally as follows. Starting from

an initial location v(0) = v0 and an initial state x(0) ∈ X 0, the continuous state evolves

according to the flow function that is assigned to each location v. If the continuous state

is within a guard set, the corresponding transition can be taken and has to be taken if the

state would otherwise leave the invariant inv(v). When the transition from the previous

location vi to the next location v j is taken, the system state is updated according to the

jump function and the continuous evolution within the next invariant.

Because the reachability of discrete states is simply a question of determining if the

continuous reachable set hits certain guard sets, the focus of CORA is on the continu-

ous reachable sets. Clearly, as for the continuous systems, the reachable set of the hy-

brid system has to be over-approximated in order to verify the safety of the system. An

illustration of a reachable set of a hybrid automaton is given in Fig. 6.

7.2. Bouncing Ball Example

We demonstrate the syntax of CORA for the well-known bouncing ball example, see e.g.,

[13, Section 2.2.3]. Given is a ball in Fig. 7 with dynamics s̈ =−g, where s is the vertical

position and g is the gravity constant. After impact with the ground at s = 0, the velocity

52X is the power set of X .

30 Build Your Own Reachability Analyzer with CORA

initial set

reachable set guard sets

guard sets

jump

etc.

invariant

unsafe set

x1

x2

location v1 location v2

Figure 6. Illustration of the reachable set of a hybrid automaton.

changes to v′ =−αv (v = ṡ) with α ∈ [0,1]. The corresponding hybrid automaton can be

formalized as presented in Fig. 7.

s0

v0

g

Figure 7.: Bouncing ball.

V = {v1}
X = R+×R (ball is above ground)

U = Yc = {}
T = {(z1,z1)}
inv(z1) = {[x1,x2]

T |x1 ∈ R+
0 ,x2 ∈ R}

g
(
(z1,z1)

)
= {[x1,x2]

T |x1 = 0,x2 ∈ R−
0 }

h
(
(z1,z1),x

)
=

[
x1

−α x2

]

f(z1,x) =

[
x2

−g

]

The MATLAB code that implements the simulation and reachability analysis of the

bouncing ball example is:

1 %%set reachability options

2 options.R0 = zonotope([[1; 0], diag([0.05, 0.05])]); %initial set

3 options.startLoc = 1; %initial location

4 options.finalLoc = 0; %0: no final location

5 options.tStart = 0; %start time

6 options.tFinal = 1.7; %final time

7 options.timeStepLoc{1} = 0.05; %time step size in location 1

8 options.taylorTerms = 10; %Taylor terms for exponential matrix

9 options.zonotopeOrder = 20; %maximum zonotope order

10 options.polytopeOrder = 10; %maximum order for conversion to polytopes

11 options.reductionTechnique = ’girard’; %reduction technique

12 options.enclosureEnables = 5; %choose enclosure method(s)

13 options.originContained = 0; %origin contained in input set?

14 options.isHyperplaneMap = 0; %hyperplane maps are not used

15 options.guardIntersect = ’polytope’; %convert guards to polytopes

16 options.uLoc{1} = 0; % no inputs

17 options.Uloc{1} = zonotope(0); % no inputs

18

19

20 %% set simulation options

21 simOptions.x0 = [1; 0]; %initial state for simulation

22 simOptions.startLoc = 1; %initial location

23 simOptions.finalLoc = 0; %0: no final location

24 simOptions.tStart = 0; %start time

25 simOptions.tFinal = 1.7; %final time

26 simOptions.uLoc{1} = 0; % no inputs

27 simOptions.Uloc{1} = zonotope(0); % no inputs

28

29

Matthias Althoff 31

30 %% specify hybrid automaton

31 % converetd hybrid automaton model of the bouncing ball obtained from

32 % "spaceex2cora(bball.xml);"

33 HA = bball;

34

35 %simulate hybrid automaton

36 HA = simulate(HA,simOptions);

37

38 %compute reachable set

39 [HA] = reach(HA,options);

40

41 %% choose projection and plot

42 figure

43 hold on

44 options.projectedDimensions = [1 2];

45 options.plotType = ’b’;

46 plot(HA,’reachableSet’,options); %plot reachable set

47 plotFilled(options.R0,options.projectedDimensions,’w’,’EdgeColor’,’k’);

48 plot(HA,’simulation’,options); %plot simulation

49 axis([0,1.2,-6,4]);

The reachable set and the simulation are plotted in Fig. 8 for a time horizon of t f = 1.7.

0 0.2 0.4 0.6 0.8 1 1.2

−1.5

−1

−0.5

0

0.5

1

x1

x 2

initial set

simulated trajectory

reachable set

Figure 8. Illustration of the reachable set of the bouncing ball. The black box shows the initial set and the

black line shows the simulated trajectory.

8. Further Continuous Dynamics

These system classes are also implemented in CORA:

• Linear systems with uncertain parameters (constant parameters)

• Linear systems with uncertain parameters (time-varying parameters)

• Nonlinear systems with uncertain parameters (constant parameters)

• Nonlinear systems with uncertain parameters

• Nonlinear discrete time systems

• Differential-algebraic systems

• Parallel hybrid automata

9. Conclusions

In this tutorial, we have demonstrated how one can easily build a reachability analyzer

using CORA. Compared to other tools, one can more easily realize a reachability ana-

32 Build Your Own Reachability Analyzer with CORA

lyzer due to the use of MATLAB—a script-based language. CORA also contains basic

operations on set and the set-based evaluation of nonlinear functions, which is also use-

ful for other applications, such as set-based observers, conformance checking, controller

synthesis, and fault detection, among others. The next release of CORA will contain au-

tomatic tuning of algorithmic parameters, such as the time step size, so that it becomes

even more user-friendly.

References

[1] M. Althoff. Reachability Analysis and its Application to the Safety Assessment of

Autonomous Cars. Dissertation, Technische Universität München, 2010. http://nbn-

resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20100715-963752-1-4.

[2] M. Althoff. Reachability analysis of nonlinear systems using conservative polynomialization and non-

convex sets. In Hybrid Systems: Computation and Control, pages 173–182, 2013.

[3] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verification for

Continuous and Hybrid Systems, pages 120–151, 2015.

[4] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc. of the

3rd International Workshop on Applied Verification for Continuous and Hybrid Systems, pages 91–105,

2016.

[5] M. Althoff, D. Grebenyuk, and N. Kochdumper. Implementation of Taylor models in CORA 2018. In

Proc. of the 5th International Workshop on Applied Verification for Continuous and Hybrid Systems,

pages 145–173, 2018.

[6] M. Althoff and B. H. Krogh. Zonotope bundles for the efficient computation of reachable sets. In Proc.

of the 50th IEEE Conference on Decision and Control, pages 6814–6821, 2011.

[7] Randal Beard. Quadrotor dynamics and control rev 0.1. Technical report, Brigham Young University,

2008.

[8] A. Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid Systems: Computation

and Control, LNCS 3414, pages 291–305. Springer, 2005.

[9] J. Hoefkens, M. Berz, and K. Makino. Scientific Computing, Validated Numerics, Interval Methods,

chapter Verified High-Order Integration of DAEs and Higher-Order ODEs, pages 281–292. Springer,

2001.

[10] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computation for families of linear

vector fields. Symbolic Computation, 32:231–253, 2001.

[11] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz. Constrained zonotopes: A new tool for

set-based estimation and fault detection. Automatica, 69:126–136, 2016.

[12] O. Stursberg and B. H. Krogh. Efficient representation and computation of reachable sets for hybrid

systems. In Hybrid Systems: Computation and Control, LNCS 2623, pages 482–497. Springer, 2003.

[13] A. van der Schaft and H. Schumacher. An Introduction to Hybrid Dynamical Systems. Springer, 2000.

