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Abstract: We prove the lower semicontinuity of functionals of the form∫
Ω

V(α) d|Eu| ,

with respect to the weak converge of α in W1,γ(Ω), γ > 1, and the weak* convergence of u in BD(Ω),
where Ω ⊂ Rn. These functional arise in the variational modelling of linearised elasto-plasticity
coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static
evolutions. This is the first result achieved for subcritical exponents γ < n.
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1. Introduction

Plasticity and damage play a fundamental role in material modelling for the phenomenological
description of the inelastic behaviour of solids in response to applied forces. The former accounts
for permanent residual deformations that persist after complete unloading and originates from the
movement and the accumulation of dislocations at the microscale; the latter affects the elastic response
of the material and is the result of formation of microcracks and microvoids.

The coupling between plasticity and damage goes far beyond the mere theoretical interest and in
fact turns out to be an effective and flexible tool that allows for the modelling of a whole spectrum
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of failure phenomena such as nucleation of cracks, cohesive fracture [4], and fatigue under cyclic
loading (see [32, Section 3.6] or [35, Section 7.5]). These models have also attracted the attention
of the mathematical community, and many recent contributions have been brought to the study of
evolutionary models featuring coupling between plasticity and damage. In the quasi-static setting we
mention [18,20,22] for the case of perfect plasticity and [19] for a strain-gradient plasticity model; the
case of hardening for plasticity is treated in [13,46, 48], while in [47] the possible presence of damage
healing is taken into account. We additionally refer to [37] for the study of finite-strain plasticity with
damage, to [27] for perfect plasticity in viscoelastic solids in the dynamical setting, and to [45] for
thermo-viscoplasticity.

The mathematical analysis on these models is not only restricted to the proof of existence of
evolutions. Motivated by the discussions in [4], in [18, 20] it is pointed out how the interplay between
plasticity and damage leads to a mathematical formulation of the fatigue phenomenon, crucial in the
description of the material behaviour under cycling loading (see also [3] for fatigue in a variational
model without plasticity). In the static setting, the strict relation between damage models with
plasticity and cohesive fracture models is shown in [24] through a phase-field Γ-convergence analysis
in the spirit of Ambrosio-Tortorelli [10, 16,33] (cf. also [6,17] for other phase-field approximations of
cohesive energies). The previous considerations and the model presented in [1] have led in [21] to the
analysis of a quasi-static evolution for a cohesive fracture model with fatigue (we also refer
to [11, 15, 26, 41] for different cohesive fracture models).

In this paper we are concerned with a lower semicontinuity problem that arises in the variational
modelling of small-strain plasticity coupled with damage. In order to present the main result in this
paper, we introduce some notation for damage model coupled with plasticity.

For all the details about the mathematical formulation of small-strain plasticity, we refer to [23].
Here we recall that the linearised strain Eu, that is the symmetrised (spatial) gradient of the
displacement u : Ω → Rn, is decomposed as the sum Eu = e + p. The elastic strain e is the only term
which counts for the stored elastic energy and belongs to L2(Ω;Mn×n

sym); the plastic strain p is the
variable responsible for the plastic dissipation, it describes the deformations permanent after the
unloading phase, and belongs to the spaceMb(Ω;Mn×n

D ) of bounded Radon measure with values in the
space of trace-free symmetric matrices Mn×n

D . The plastic dissipation can be described according to
the theory of rate-independent systems [40] in terms of the so-called plastic dissipation potential, a
prototypical example being given in the Von Mises theory by

V
∫
Ω

d|p| , (1.1)

where V is a material constant and |p| denotes the total variation of the measure p with respect to the
Euclidean (or Frobenius) norm on matrices. The constant V in (1.1) is the radius of the ball where
the trace-free part of the stress is constrained to lie during the evolution. (This constraint set, whose
boundary is referred to as the yield surface, is in more general models a convex compact set in the
space of trace-free symmetric matrices.)

In presence of damage, the constraint set additionally depends on the damage variable α : Ω →

[0, 1] and the plastic dissipation potential becomes accordingly

H(α, p) :=
∫
Ω

V(α(x)) d|p|(x) , (1.2)
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where V : [0, 1]→ [m,M] is a continuous and nondecreasing function with m > 0. The dependence of
V on α is one of the peculiar features of these coupled models. In gradient damage models [34,42,43],
a gradient term in the energy of the type∫

Ω

|∇α|γ dx , γ > 1 ,

provides, for configurations with finite energy, a control on α in W1,γ(Ω). We remark that the
functional H in (1.2) is well defined for α ∈ W1,γ(Ω), γ > 1, and for p = Eu − e with u ∈ BD(Ω) and
e ∈ L2(Ω;Mn×n

sym). Indeed, any α ∈ W1,γ(Ω) admits a precise representative α̃ defined (and uniquely
determined) up to a set of γ-capacity zero, which has in particular Hn−1-measure zero and thus it is
|p|-negligible. For more details we refer to see Section 2.

In this work we study the lower semicontinuity of the dissipation potential in (1.2). Before
explaining in detail our result, we present some recent developments related to this problem.

The case γ > n has been studied in [18] under very general assumptions on the plastic dissipation
potential. There it is proven that functionals of the form∫

Ω

H
(
α(x),

dp
d|p|

(x)
)

d|p|(x) ,

with
H convex, continuous, and positively one-homogeneous in the second variable

are lower semicontinuous with respect to the weak convergence of α in W1,γ(Ω) and the weak*
convergence of p inMb(Ω;Mn×n

sym). The proof follows from Reshetnyak’s semicontinuity theorem after
observing that W1,γ(Ω) is compactly embedded in C(Ω) for γ > n. This result is the starting point for
the proof of the existence of quasi-static evolutions [18, Theorem 4.3]. Unfortunately, for n ≥ 2 the
condition γ > n precludes the application of the existence result to the case where α belongs to the
Hilbert space H1(Ω), often preferred in the mechanical community [2, 5, 7, 38, 39, 42, 43].

The lower semicontinuity result has been generalised in [22] to the critical case γ = n for plastic
dissipation potentials of the type ∫

Ω

V(α(x))H
( dp

d|p|
(x)

)
d|p|(x) ,

with H convex and positively one-homogeneous. In spite of the failure of the compact embedding
of W1,n(Ω) in C(Ω), the lower semicontinuity result still holds true. The proof in [22] is based on
a concentration-compactness argument in the spirit of [36], that permits to identify the dimension of
the support of limits of the measures αkEuk for αk converging weakly in W1,n(Ω) and uk converging
weakly* in BD(Ω). However, the technique in [22] does not apply to the case γ < n, as shown
in [22, Example 3.1].

In the present work we prove a lower semicontinuity result that applies for every γ > 1 in the special
case where the plastic dissipation potential is given by (1.2), i.e., when H is given by the Euclidean
(or Frobenius) norm, assuming V lower semicontinuous. We assume Ω bounded, which is usually the
case in the applications to Mechanics. The result can be generalized to the case of unbounded open
sets with minor modifications.
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Theorem 1.1. Let Ω be an open bounded subset of Rn, let V : R → [0,+∞] be lower semicontinuous,
let γ > 1, and let H be the functional defined in (1.2). Assume that αk ⇀ α in W1,γ(Ω) and uk

∗
⇀ u in

BD(Ω). Then
H(α,Eu) ≤ lim inf

k→∞
H(αk,Euk) . (1.3)

In Theorem 3.3 below we show how Theorem 1.1 implies the lower semicontinuity of H with
respect to the weak convergence of αk in W1,γ(Ω) and the weak* convergence of pk under the additional
assumptions that Euk = ek+pk, uk converge weakly∗ in BD(Ω), and ek converge strongly in L2(Ω;Mn×n

sym).
This lower semicontinuity result would suffice to prove the existence of quasi-static evolutions for the
gradient damage models coupled with small-strain plasticity, provided one knows a priori that the
elastic strains ek corresponding to the discrete-time approximations of the evolution converge strongly
in L2(Ω;Mn×n

sym) (see Remark 3.4). Obtaining such an a priori strong convergence is possible in the case
of perfect plasticity without damage [28], but unfortunately it seems a task out of reach in the presence
of damage.

The proof of Theorem 1.1 is based on a slicing and localisation argument first introduced in [25].
This relies on the following formula for the Euclidean norm of a symmetric n×n matrix A:

|A|2 = sup
(ξ1,...,ξn)

n∑
i=1

|Aξi · ξi|2,

where the supremum is taken over all orthonormal bases (ξ1, . . . , ξn) of Rn. We stress that one could
conclude the semicontinuity of H only knowing the convergence (even weak) of ek along almost any
slice. Unfortunately, this is not guaranteed if ek converge only weakly in L2(Ω;Mn×n

sym) and this is the
reason why the assumption strong convergence of ek is needed for our proof.

2. Notation and preliminaries

2.1. Notation

Throughout the paper we assume that n ≥ 2. The Lebesgue measure in Rn is denoted by Ln, while
H s is the s-dimensional Hausdorff measure.

The space of n×n symmetric matrices is denoted by Mn×n
sym; it is endowed with the euclidean scalar

product A : B := tr (ABT ), and the corresponding euclidean norm |A| := (A : A)1/2. The symmetrised
tensor product a � b of two vectors a, b ∈ Rn is the symmetric matrix with components (aib j + a jbi)/2.

2.2. Measures

Let Ω be an open set in Rn. The space of bounded Rm-valued Radon measures is denoted by
Mb(Ω;Rm). This space can be regarded as the dual of the space C0(Ω;Rm) of Rm-valued continuous
functions on Ω vanishing on ∂Ω. The notion of weak* convergence inMb(Ω;Rm) refers to this duality.
Moreover, we denote byM+

b (Ω) the space of non-negative bounded Radon measures. If f ∈ L1(Ω;Rm),
we shall always identify the bounded Radon measure fLn with the function f .

Let us consider a lower semicontinuous function H : Ω×Rm → [0,+∞], positively 1-homogeneous
and convex in the second variable and let us consider the functional defined in accordance to the theory
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of convex functions of measures∫
Ω

H
(
x,

dµ
d|µ|

(x)
)

d|µ|(x) , for µ ∈ Mb(Ω;Rm) ,

where dµ/ d|µ| is the Radon-Nikodym derivative of µ with respect to its total variation |µ|.
We recall the classical Reshetnyak’s Lower Semicontinuity Theorem [44]. For a proof we refer

to [9, Theorem 2.38].

Theorem 2.1 (Reshetnyak’s Lower Semicontinuity Theorem). Let Ω be an open subset of Rn. Let
µk, µ ∈ Mb(Ω;Rm). If µk

∗
⇀ µ weakly* inMb(Ω;Rm), then∫

Ω

H
(
x,

dµ
d|µ|

(x)
)

d|µ|(x) ≤ lim inf
k→+∞

∫
Ω

H
(
x,

dµk

d|µk|
(x)

)
d|µk|(x) ,

for every lower semicontinuous function H : Ω×Rm → [0,+∞], positively 1-homogeneous and convex
in the second variable.

2.3. BV and BD functions

Let Ω be an open set in Rn. A function v ∈ L1(Ω) is a function of bounded variation on Ω, and
we write v ∈ BV(Ω), if Div ∈ Mb(U) for i = 1, . . . , n, where Dv = (D1v, . . . ,Dnv) is its distributional
gradient. A vector-valued function v : Ω→ Rm is BV(Ω;Rm) if v j ∈ BV(Ω) for every j = 1, . . . ,m. We
refer to [9] for a detailed treatment of BV functions.

For every u ∈ L1(Ω;Rn), we denote by Eu the Mn×n
sym-valued distribution on Ω, whose components

are given by Ei ju := 1
2 (D jui +Diu j). The space BD(Ω) of functions of bounded deformation is the space

of all u ∈ L1(Ω;Rn) such that Eu ∈ Mb(Ω;Mn×n
sym).

A sequence (uk)k converges to u weakly* in BD(Ω) if and only if uk → u strongly in L1(Ω;Rn) and
Euk

∗
⇀ Eu weakly* inMb(Ω;Mn×n

sym). We recall that for every u ∈ BD(Ω) the measure Eu vanishes on
sets ofHn−1-measure zero.

We refer to the book [49] for general properties of functions of bounded deformation and to [8] for
their fine properties.

2.4. Capacity

For the notion of capacity we refer, e.g., to [29, 30]. We recall here the definition and some
properties.

Let 1 ≤ γ < +∞ and let Ω be a bounded, open subset of Rn. For every subset B ⊂ Ω, the γ-capacity
of E in Ω is defined by

Capγ(E,Ω) := inf
{ ∫

Ω

|∇α|γ dx : α ∈ W1,γ
0 (Ω), v ≥ 1 a.e. in a neighbourhood of E

}
.

A set E ⊂ Ω has γ-capacity zero if Capγ(E,Ω) = 0 (actually, the definition does not depend on the
open set Ω containing E). A property is said to hold Capγ-quasi everywhere (abbreviated as Capγ-q.e.)
if it does not hold for a set of γ-capacity zero.
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If 1 < γ ≤ n and E has γ-capacity zero, thenH s(E) = 0 for every s > n − γ.
A function α : Ω → R is Capγ-quasicontinuous if for every ε > 0 there exists a set Eε ⊂ Ω with

Capγ(Eε,Ω) < ε such that the restriction α|Ω\Eε is continuous. Note that if γ > n, a function α is
Capγ-quasicontinous if and only if it is continuous.

Every function α ∈ W1,γ(Ω) admits a Capγ-quasicontinuous representative α̃, i.e., a
Capγ-quasicontinuous function α̃ such that α̃ = α Ln-a.e. in Ω. The Capγ-quasicontinuous
representative is essentially unique, that is, if β̃ is another Capγ-quasicontinuous representative of α,
then β̃ = α̃ Capγ-q.e. in Ω. It satisfies (see [29, Theorem 4.8.1])

lim
ρ→0

1
|Bρ(x0)|

∫
Bρ(x0)

|α(x) − α̃(x0)| dx = 0 for Capγ-q.e. x0 ∈ Ω . (2.1)

If αk → α strongly in W1,γ(Ω), then there exists a subsequence k j such that α̃k j → α̃ Capγ-q.e. in Ω.

2.5. Slicing

We give now some notation and recall some preliminary results about slicing. For more details, we
refer the reader to [8]. For every ξ ∈ Sn−1 := {x ∈ Rn : |x| = 1} and for every set B ⊂ Rn, we define

Πξ := {z ∈ Rn : z · ξ = 0} and Bξ
y := {t ∈ R : y + tξ ∈ B} for every y ∈ Πξ .

For any scalar function α : Ω → R and any vector function u : Ω → Rn, their slices αξy : Ω
ξ
y → R and

ûξy : Ω
ξ
y → R are defined by

αξy(t) := α(y + tξ) and ûξy := u(y + tξ) · ξ ,

respectively. If uk is a sequence in L1(Ω;Rn) and u ∈ L1(Ω;Rn) such that uk → u in L1(Ω;Rn), then for
every ξ ∈ Sn−1 there exists a subsequence uk j such that

(̂uk j)
ξ
y → ûξy in L1(Ωξ

y) forHn−1-a.e. y ∈ Πξ , (2.2)

by Fubini Theorem.
Let us fix ξ ∈ Sn−1. Let (µy)y∈Πξ be a family of bounded measures in Ω

ξ
y, such that for every Borel

set B ⊂ Ω the map y 7→ µy(B
ξ
y) is Borel measurable andHn−1-integrable on Πξ. Then the set function

λ(B) =

∫
Πξ

µy(Bξ
y) dHn−1(y) for all B ⊂ Ω Borel (2.3)

is a measure, and we write

λ =

∫
Πξ

µy dHn−1(y) inMb(Ω) .

It can be seen that its total variation |λ| is given by

|λ| =

∫
Πξ

|µy| dHn−1(y) inMb(Ω) . (2.4)
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A function u ∈ L1(Ω;Rn) belongs to BD(Ω) if and only if for every direction ξ ∈ Sn−1 (or, equivalently,
for any ξ of the form ξi + ξ j, i, j = 1, . . . , n for a fixed basis {ξ1, . . . , ξn} of Rn)

ûξy ∈ BV(Ωξ
y) forHn−1-a.e. y ∈ Πξ and

∫
Πξ

|Dûξy|(Ω
ξ
y) dHn−1(y) < +∞ .

Moreover, if u ∈ BD(Ω) then for every ξ ∈ Sn−1 it holds that

Eu ξ · ξ =

∫
Πξ

Dûξy dHn−1(y) inMb(Ω) .

In particular, by (2.4), we have that

|Eu ξ · ξ| =
∫
Πξ

|Dûξy| dH
n−1(y) inMb(Ω) . (2.5)

Let α ∈ L1(Ω) and γ ∈ [1,∞). Then α ∈ W1,γ(Ω) if and only if for every ξ ∈ Sn−1

αξy ∈ W1,γ(Ωξ
y) forHn−1-a.e. y ∈ Πξ and

∫
Πξ

( ∫
Ω
ξ
y

|∇αξy(t)|
γ dt

)
dHn−1(y) < +∞ .

If α ∈ W1,γ(Ω) then for every ξ ∈ Sn−1 it holds that∫
Ω

|∇α · ξ|γ dx =

∫
Πξ

( ∫
Ω
ξ
y

|∇αξy(t)|
γ dt

)
dHn−1(y) . (2.6)

Moreover, (∇α · ξ)ξy = ∇α
ξ
y forHn−1-a.e. y ∈ Πξ.

Remark 2.2. Let α ∈ W1,γ(Ω). Then the slice α̃ξy of the Capγ-quasicontinuous representative α̃ of α
is the continuous representative in the equivalence class of αξy for Hn−1-a.e. y ∈ Πξ. Indeed, α̃ is the
precise representative of α in the sense of (2.1). By [9, Theorem 3.108] it follows that, for Hn−1-a.e.
y ∈ Πξ, α̃ξy is a good representative of αξy, i.e., its pointwise total variation coincides with |Dαξy|(Ω

ξ
y). We

conclude that α̃ξy is continuous by [9, Theorem 3.28].

2.6. Auxiliary results

The proof of Theorem 1.1 employs some techniques developed for the proof of [25, Theorem 4.1].
We will use the following well-known formula for the Euclidean norm of symmetric matrices (for a
proof cf., e.g., Proposition 2.3).

Proposition 2.3. For every A ∈ Mn×n
sym we have

|A| = sup
(ξ1,...,ξn)

( n∑
i=1

|Aξi · ξi|2
)1/2
,

where the supremum is taken over all orthonormal bases (ξ1, . . . , ξn) of Rn, or, equivalently, over the
columns of all rotations R ∈ O(n).

Mathematics in Engineering Volume 2, Issue 1, 101–118.



108

We recall also the following localization lemma. We refer to [14, Lemma 15.2] for its proof.

Lemma 2.4. Let Λ be a function defined on the family of open subsets of Ω, which is superadditive
on open sets with disjoint compact closure. Let λ be a positive measure on Ω, and let ϕ j, j ∈ N, be
nonnegative Borel functions such that ∫

K

ϕ j dλ ≤ Λ(A)

for every open set A ⊂ Ω, for every compact set K ⊂ A, and for every j ∈ N. Then∫
K

sup
j
ϕ j dλ ≤ Λ(A)

for every open set A ⊂ Ω and for every compact set K ⊂ A. Moreover, if A is an open set such that
Λ(A) < +∞, then∫

K

sup
j
ϕ j dλ = sup

{ r∑
j=1

∫
K j

ϕ j dλ : (K j)r
j=1 disjoint compact subsets of K, r ∈ N

}
for every compact set K ⊂ A.

3. The lower semicontinuity theorem

In this section we let Ω be an open bounded subset of Rn, n ≥ 2, V : R → [0,+∞] be lower
semicontinuous, and we fix γ > 1. The starting point of the proof of Theorem 1.1 is the following
lower bound: given a direction ξ ∈ S1, for every α ∈ W1,γ(Ω) and u ∈ BD(Ω) we have that

H(α,Eu) =

∫
Ω

V(α̃) d|Eu| ≥
∫
Ω

V(α̃) d|Eu ξ · ξ| .

In the previous formula | · | denotes the Euclidean norm (or Frobenius norm) of a matrix and α̃ is the
Capγ-quasicontinuous representative of α. Notice that the definition of H is well posed, since α̃ is
defined atHn−1-a.e. x ∈ Ω and the measure Eu does not charge sets of dimension less than n − 1.

For this reason it is convenient to introduce the functionals Fξ, defined for every direction ξ ∈ Sn−1

as follows: For every α ∈ W1,γ(Ω), u ∈ BD(Ω), and A ⊂ Ω open, we put

Fξ(α, u; A) :=
∫
A

V(α̃) d|Eu ξ · ξ| =
∫
Πξ

( ∫
Aξy

V(α̃ξy(t)) d|Dûξy|(t)
)

dHn−1(y) . (3.1)

Notice that the second equality in the formula above follows from (2.5).
We first prove the lower semicontinuity of these functionals, and then we deduce Theorem 1.1 using

Proposition 2.3 and Lemma 2.4.

Proposition 3.1. Let ξ ∈ Sn−1 and let αk, α ∈ W1,γ(Ω), uk, u ∈ BD(Ω) be such that αk ⇀ α in W1,γ(Ω)
and uk

∗
⇀ u in BD(Ω). Then

Fξ(α, u; A) ≤ lim inf
k→∞

Fξ(αk, uk; A) (3.2)

for every open set A ⊂ Ω.
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Proof. Let ξ ∈ Sn−1, A ⊂ Ω open, αk ⇀ α in W1,γ(Ω), and uk
∗
⇀ u in BD(Ω). Let us fix ε > 0. By (2.2),

upon extracting a (not relabeled) subsequence, we deduce that, forHn−1-a.e. y ∈ Πξ,

(α̃k)ξy → α̃ξy , (̂uk)ξy → ûξy in L1(Ωξ
y) , (3.3)

and that the liminf in (3.2) (that we may assume finite) is actually a limit.
We claim that forHn−1-a.e. y ∈ Πξ∫

Aξy

V(α̃ξy) d|Dûξy| ≤ lim inf
k→∞

( ∫
Aξy

(
V((α̃k)ξy) + ε

)
d|D(̂uk)ξy| + ε

∫
Aξy

|∇(α̃k)ξy|
γ dt

)
. (3.4)

To prove the claim, we start by observing that the boundedness of αk in W1,γ(Ω) and of uk in BD(Ω)
implies

+∞ > lim inf
k→∞

[
Fξ(αk, uk; A) + ε|Eukξ · ξ|(A) + ε‖∇αk · ξ‖

γ
Lγ(A)

]
= lim inf

k→∞

∫
Πξ

( ∫
Aξy

(
V((α̃k)ξy(t)) + ε

)
d|D(̂uk)ξy|(t) + ε

∫
Aξy

|∇(α̃k)ξy(t)|
γ dt

)
dHn−1(y)

≥

∫
Πξ

lim inf
k→∞

( ∫
Aξy

(
V((α̃k)ξy(t)) + ε

)
d|D(̂uk)ξy|(t) + ε

∫
Aξy

|∇(α̃k)ξy(t)|
γ dt

)
dHn−1(y) ,

where in the equality we applied (3.1) and Fubini’s Theorem, while the last inequality follows from
Fatou’s Lemma. From the previous inequality it follows that forHn−1-a.e. y ∈ Πξ

lim inf
k→∞

( ∫
Aξy

(
V((α̃k)ξy) + ε

)
d|D(̂uk)ξy| + ε

∫
Aξy

|∇(α̃k)ξy|
γ dt

)
< +∞ . (3.5)

Moreover we remark that forHn−1-a.e. y ∈ Πξ we have that (α̃k)
ξ
y is the continuous representative in the

equivalence class of (αk)
ξ
y for every k and α̃ξy is the continuous representative in the equivalence class

of αξy.∗ Let us fix y ∈ Πξ that satisfies this last property and (3.3), (3.5). We extract a subsequence k j,
possibly depending on y, such that

lim
j→∞

( ∫
Aξy

(
V((α̃k j)

ξ
y) + ε

)
d|D(̂uk j)

ξ
y| + ε

∫
Aξy

|∇(α̃k j)
ξ
y|
γ dt

)

= lim inf
k→∞

( ∫
Aξy

(
V((α̃k)ξy) + ε

)
d|D(̂uk)ξy| + ε

∫
Aξy

|∇(α̃k)ξy|
γ dt

)
< +∞ .

(3.6)

Since ε is fixed, the sequences (̂uk j)
ξ
y and (α̃k j)

ξ
y are bounded in BV(Ωξ

y) and W1,γ(Ωξ
y), respectively.

Together with (3.3), this implies that

(α̃k j)
ξ
y ⇀ α̃ξy in W1,γ(Ωξ

y) , (̂uk j)
ξ
y
∗
⇀ ûξy in BV(Ωξ

y) .
∗Indeed, let Nk := {y ∈ Πξ : (α̃k)ξy is not the continuous representative of (αk)ξy}. By Remark 2.2 we have that Hn−1(Nk) = 0. The set

N :=
⋃

k Nk satisfies Hn−1(N) = 0 and for every y ∈ Πξ \ N we have that (α̃k)ξy is the continuous representative in the equivalence class
of (αk)ξy for every k.
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Recalling that (α̃k)
ξ
y is the continuous representative of (αk)

ξ
y for every k and α̃

ξ
y is the continuous

representative of αξy we deduce that (α̃k j)
ξ
y → α̃

ξ
y uniformly. Applying Theorem 2.1, we deduce that∫

Aξy

V(α̃ξy) d|Dûξy| ≤ lim inf
j→∞

∫
Aξy

V((α̃k j)
ξ
y) d|D(̂uk j)

ξ
y|

≤ lim inf
k→∞

[ ∫
Aξy

(V((α̃k)ξy) + ε
)

d|D(̂uk)ξy| + ε

∫
Aξy

|∇(α̃k)ξy|
γ dt

]
.

This concludes the proof of the claim in (3.4).
Integrating (3.4) with respect to y ∈ Πξ and recalling (3.1) and (2.6), we deduce by Fatou Lemma

that

Fξ(α, u; A) ≤ lim inf
k→∞

Fξ(αk, uk; A) + ε lim sup
k→∞

|Eukξ · ξ|(A) + ε lim sup
k→∞

∫
A

|∇αk · ξ|
γ dx .

Since the sequence αk is bounded in W1,γ(Ω), uk is bounded in BD(Ω), and ε is arbitrary, the proof is
concluded. �

We are now ready to prove the main result.

Proof of Theorem 1.1. Let (ξ1, . . . , ξn) be an orthonormal basis of Rn, and let us prove first that, for
every α ∈ W1,γ(Ω), u ∈ BD(Ω), and A ⊂ Ω open, it holds( n∑

i=1

Fξi(α, u; A)2
)1/2
≤

∫
A

V(α̃) d|Eu| . (3.7)

Indeed, by Hölder’s Inequality with respect to the measure V(α̃)|Eu| we get that

Fξi(α, u; A)2 =

( ∫
A

V(α̃)
∣∣∣∣∣ dEu
d|Eu|

ξi · ξi
∣∣∣∣∣ d|Eu|

)2
≤

( ∫
A

V(α̃)
∣∣∣∣∣ dEu
d|Eu|

ξi · ξi
∣∣∣∣∣2 d|Eu|

) ∫
A

V(α̃) d|Eu| .

Summing for i = 1, . . . , n, we obtain that( n∑
i=1

Fξi(α, u; A)2
)1/2
≤

( ∫
A

V(α̃)
n∑

i=1

∣∣∣∣∣ dEu
d|Eu|

ξi · ξi
∣∣∣∣∣2 d|Eu|

)1/2( ∫
A

V(α̃) d|Eu|
)1/2

≤

∫
A

V(α̃) d|Eu| ,

and thus (3.7) is proven. Notice that in the last inequality above we have used Proposition 2.3 and the
fact that ∣∣∣∣∣ dEu

d|Eu|
(x)

∣∣∣∣∣ = 1 for |Eu|-a.e. x ∈ Ω . (3.8)
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Let αk, α ∈ W1,γ(Ω), uk, u ∈ BD(Ω) such that αk ⇀ α in W1,γ(Ω) and uk
∗
⇀ u in BD(Ω). Let us

prove (1.3). Let Λ be the function defined on every open set A ⊂ Ω by

Λ(A) := lim inf
k→∞

∫
A

V(α̃k) d|Euk| . (3.9)

Moreover, let R j be a sequence dense in O(n) and let ξ1
j , . . . , ξ

n
j be the column vectors of R j. Let us

define the vector functions ϕ j = (ϕ1
j , . . . , ϕ

n
j) by putting

ϕi
j(x) := V(α̃(x))

∣∣∣∣∣ dEu
d|Eu|

(x) ξi
j · ξ

i
j

∣∣∣∣∣ for every j ∈ N, i = 1, . . . , n, and x ∈ Ω . (3.10)

Recalling (3.1), it holds that for every j ∈ N and A ⊂ Ω open∣∣∣∣∣ ∫
A

ϕ j d|Eu|
∣∣∣∣∣ =

( n∑
i=1

( ∫
A

ϕi
j d|Eu|

)2 )1/2
=

( n∑
i=1

Fξi
j
(α, u; A)2

)1/2
. (3.11)

By Proposition 3.1, for every j ∈ N, i = 1, . . . , n, and A ⊂ Ω open, we have that

Fξi
j
(α, u; A) ≤ lim inf

k→∞
Fξi

j
(αk, uk; A) ,

and then, by the superadditivity of the liminf, it follows that( n∑
i=1

Fξi
j
(α, u; A)2

)1/2
≤ lim inf

k→∞

( n∑
i=1

Fξi
j
(αk, uk; A)2

)1/2
,

By the previous inequality, (3.7), (3.9), and (3.11) we obtain that∣∣∣∣∣ ∫
A

ϕ j d|Eu|
∣∣∣∣∣ ≤ Λ(A) . (3.12)

Using the superadditivity of Λ, we infer that∫
K

|ϕ j| d|Eu| = sup
{ r∑

h=1

∣∣∣∣∣ ∫
Bh

ϕ j d|Eu|
∣∣∣∣∣ : (Bh)r

h=1 disjoint Borel subsets of K, r ∈ N
}

= sup
{ r∑

h=1

∣∣∣∣∣ ∫
Kh

ϕ j d|Eu|
∣∣∣∣∣ : (Kh)r

h=1 disjoint compact subsets of K, r ∈ N
}

≤ sup
{ r∑

h=1

Λ(Ah) : (Ah)r
h=1 , Ah ⊂ A with disjoint compact closure, r ∈ N

}
≤ Λ(A)

for every compact set K and for every open set A such that K ⊂ A ⊂ Ω. Lemma 2.4 gives that∫
K

sup
j
|ϕ j| d|Eu| ≤ Λ(A) . (3.13)
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By (3.8), (3.10), and Proposition 2.3 we deduce that

sup
j
|ϕ j| = V(α̃)

and therefore ∫
K

V(α̃) d|Eu| ≤ Λ(A) ,

for every compact set K such that K ⊂ A. We conclude the proof by the arbitrariness of K and by
recalling the definition of Λ in (3.9). �

Remark 3.2. The proof of Theorem 1.1 also works in different settings, e.g., in the case where the
plastic potential is defined through a convex and positively one-homogeneous function H : Mn×n

sym →

[0,+∞) which satisfies

H(A)q = sup
(ξ1,...,ξn)

n∑
i=1

|Aξi · ξi|q, q ∈ (1,∞) ,

where the supremum is taken over all orthonormal bases (ξ1, . . . , ξn) of Rn. Such matrix norms H are
usually referred to as q-Schatten norm, cf. [31].

In the remaining part of this section we show under which assumptions the technique in the proof
of Theorem 1.1 can be adapted to prove the lower semicontinuity of the plastic potentialH introduced
in (1.2). We consider here a slight generalisation, where we allow the plastic strain p to charge some
part of ∂Ω, the boundary of Ω.

Let us assume that the boundary of Ω is Lipschitz and partitioned as

∂Ω = ∂DΩ ∪ ∂NΩ ∪ N ,

with ∂DΩ and ∂NΩ relatively open, ∂DΩ ∩ ∂NΩ = ∅, Hn−1(N) = 0, and ∂DΩ , ∅. A boundary datum
w ∈ H1(Ω;Rn) will be suitably imposed on the Dirichlet boundary ∂DΩ.

We consider from now on the functional H as defined as in perfect plasticity with damage, where
it represents the plastic potential. This is defined on the class of admissible p defined as follows.
We introduce the set of admissible triples of displacement, elastic strain, and plastic strain for the
boundary datum w,

A(w) := {(u, e, p) ∈ BD(Ω)×L2(Ω;Mn×n
sym)×Mb(Ω ∪ ∂DΩ;Mn×n

D ) :

Eu = e + p in Ω , p ∂DΩ = (w − u) � νHn−1 ∂DΩ} .

A plastic strain p is admissible (for w) if it belongs to

Π(Ω) := {p ∈ Mb(Ω ∪ ∂DΩ;Mn×n
D ) : there exist u, e such that (u, e, p) ∈ A(w)} .

The functionalH is then defined on W1,γ(Ω) × Π(Ω) by

H(α, p) :=
∫

Ω∪∂DΩ

V(α̃(x)) d|p|(x) . (3.14)

We now prove the claimed lower semicontinuity result. We stress that a crucial assumption for the
validity of our proof is the strong convergence of the elastic strain. Up to our knowledge, a proof under
the sole assumption of weak convergence of the elastic strain is still missing.
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Theorem 3.3. Let Ω be an open bounded Lipschitz subset of Rn, V : R → [0,+∞] be lower
semicontinuous, and let γ > 1. Let αk, α ∈ W1,γ(Ω) and (uk, ek, pk), (u, e, p) ∈ A(w) be such that
αk ⇀ α in W1,γ(Ω), uk

∗
⇀ u in BD(Ω), and ek → e strongly in L2(Ω;Mn×n

sym). Then

H(α, p) ≤ lim inf
k→∞

H(αk, pk) .

Proof. Let Ω̃ be a smooth open set such that Ω ∪ ∂DΩ ⊂ Ω̃ and ∂Ω ∩ Ω̃ = ∂DΩ, and let us define, for
every (uk, ek, pk), (u, e, p) as in the assumptions of the theorem, the extended functions

uk :=

uk in Ω ,

w in Ω̃ \Ω ,
ek :=

ek in Ω ,

Ew in Ω̃ \Ω ,
pk :=

pk in Ω ,

0 in Ω̃ \Ω ,

and

u :=

u in Ω ,

w in Ω̃ \Ω ,
e :=

e in Ω ,

Ew in Ω̃ \Ω ,
p :=

p in Ω ,

0 in Ω̃ \Ω .

Moreover, given αk, α as in the statement, we let αk and α be W1,γ extenstions of αk and α to Ω̃,
respectively. Then Euk = ek + pk and Eu = e + p as measures in Mb(Ω̃;Mn×n

D ), uk
∗
⇀ u in BD(Ω̃),

ek → e strongly in L2(Ω̃;Mn×n
sym), and

H(αk, pk) =

∫
Ω̃

V(αk) d|pk| , H(α, p) =

∫
Ω̃

V(α) d|p| .

(Notice that the formula above makes sense for the precise representatives of αk and α, but we did not
write it explicitely not to overburden the notation.) With a slight abuse of notation, in what follows
we drop the notation (uk, ek, pk), (u, e, p), αk, α for the extended functions and we consider the triples
(uk, ek, pk), (u, e, p) and the functions αk, α as already extended to Ω̃ as described above. Moreover, we
adapt the definition of admissible triples accordingly by putting

A(w) := {(u, e, p) ∈ BD(Ω̃)×L2(Ω̃;Mn×n
sym)×Mb(Ω̃;Mn×n

D ) :

Eu = e + p in Ω̃ , u = w in Ω̃ \Ω , e = Ew in Ω̃ \Ω} .

We now show how to adapt the technique used in the proof of Proposition 3.1 to the present setting,
omitting some details when they are completely analogous to those in the proof of Proposition 3.1. Let
us define, for every direction ξ ∈ Sn−1, every α ∈ W1,γ(Ω), every p such that (u, e, p) ∈ A(w), and every
A ⊂ Ω open,

Gξ(α, p; A) :=
∫
A

V(α̃) d|p ξ · ξ| =
∫
A

V(α̃) d|(Eu − e) ξ · ξ|

=

∫
Πξ

∫
Aξy

V(α̃ξy(t)) d|Dûξy − (e ξ · ξ)ξy|(t) dHn−1(y)

=

∫
Πξ

∫
Aξy

V(α̃ξy(t)) d|(p ξ · ξ)ξy|(t) dHn−1(y) .

(3.15)
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The functionals Gξ will play the role of the functionals Fξ defined in (3.1). More precisely, we claim
that for every αk, α ∈ W1,γ(Ω̃), (uk, ek, pk), (u, e, p) ∈ A(w) such that αk ⇀ α in W1,γ(Ω̃), uk

∗
⇀ u in

BD(Ω̃), and ek → e strongly in L2(Ω̃;Mn×n
sym) the following inequality holds true

Gξ(α, p; A) ≤ lim inf
k→∞

Gξ(αk, pk; A) . (3.16)

To prove this, we start by extracting a (not relabeled) subsequence such that

(α̃k)ξy → α̃ξy , (̂uk)ξy → ûξy , (ek ξ · ξ)ξy → (e ξ · ξ)ξy in L1(Ω̃ξ
y) . (3.17)

Let us fix ε > 0. Since

lim inf
k→∞

[
Gξ(αk, pk; A) + ε|Euk|(A) + ε‖∇α‖Lγ(A)

]
< +∞ ,

by Fatou’s Lemma as in (3.5) we deduce that forHn−1-a.e. y ∈ Πξ

lim inf
k→∞

[ ∫
Aξy

V((α̃k)ξy) d|(pk ξ · ξ)ξy| + ε|D(̂uk)ξy|(A
ξ
y) + ε

∫
Aξy

|∇(α̃k)ξy|
γ dt

]
< +∞ .

As in (3.6), we extract a subsequence k j (possibly depending on u) such that the liminf above is actually
a limit. On this subsequence we deduce that

(α̃k j)
ξ
y → α̃ξy uniformly in Ω̃ξ

y , (̂uk j)
ξ
y
∗
⇀ ûξy in BV(Ω̃ξ

y) .

In particular, from (3.17) we obtain that

(pk ξ · ξ)ξy = D(̂uk j)
ξ
y − (ek j ξ · ξ)

ξ
y
∗
⇀ Dûξy − (e ξ · ξ)ξy = (p ξ · ξ)ξy inMb(Ω̃ξ

y) .

We stress that the strong convergence of ek to e is crucial to deduce the weak* convergence above. An
application of Theorem 2.1 yields∫

Aξy

V(α̃ξy) d|(p ξ · ξ)ξy|

≤ lim inf
j→∞

∫
Aξy

V((α̃k j)
ξ
y) d|(pk j ξ · ξ)

ξ
y|

≤ lim
j→∞

[ ∫
Aξy

V((α̃k j)
ξ
y) d|(pk j ξ · ξ)

ξ
y| + ε|D(̂uk j)

ξ
y|(A

ξ
y) + ε

∫
Aξy

|∇(α̃k j)
ξ
y|
γ dt

]

Integrating with respect to y ∈ Πξ and letting ε→ 0 we conclude the proof of (3.16).
With (3.16) at hand, the proof of the theorem follows the lines of the localisation argument already

presented in the proof of Theorem 1.1 with minor adaptations. Now, instead of (3.10), we put

ϕi
j(x) := V(α̃(x))

∣∣∣∣∣ dp
d|p|

(x) ξi
j · ξ

i
j

∣∣∣∣∣ for every j ∈ N, i = 1, . . . , n, and x ∈ Ω ,

and we use the fact that
∣∣∣ dp
d|p| (x)

∣∣∣ = 1 for |p|-a.e. x ∈ Ω, instead of (3.8).
�
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Remark 3.4. In order to prove the existence of a globally stable quasi-static evolution for a model of
perfect plasticity and gradient damage with a term ‖∇α‖γLγ , γ > 1 in the energy, it would be enough to
prove the lower semicontinuity ofH when uk

∗
⇀ u in BD(Ω) and ek ⇀ e in L2(Ω;Mn×n

sym) (only weakly).
The main difficulty in this case is that it is not true that for every ξ ∈ Sn−1 there exists a subsequence
ek j such that (3.17) holds true.

Therefore a possible strategy for the existence proof would be to find an a priori bound on ek that
guarantees the strong convergence in L2(Ω;Mn×n

sym). Since the elasticity tensor C(α) is equicoercive with
respect to α ∈ [0, 1], the strong convergence for ek would follow for instance by an uniform bound for
the stresses σk = C(αk)ek in H1

loc(Ω;Mn×n
sym). In the framework of perfect plasticity, without damage, an

a priori bound of this type for the stresses is proven in [12] and [28].

Remark 3.5. We remark that we have considered only measures p with values in Mn×n
D , since this is

the form used in perfect plasticity. Nonetheless it is possible to prove Theorem 3.3 also for p valued in
Mn×n

sym, with no modifications in the argument.
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