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Abstract: Efficient and reliable mobility pattern identification is essential for transport planning
research. In order to infer mobility patterns, however, a large amount of spatiotemporal data is
needed, which is not always available. Hence, location-based social networks (LBSNs) have received
considerable attention as a potential data provider. The aim of this study is to investigate the
possibility of using several different auxiliary information sources for venue popularity modeling
and provide an alternative venue popularity measuring approach. Initially, data from widely used
services, such as Google Maps, Yelp and OpenStreetMap (OSM), are used to model venue popularity.
To estimate hourly venue occupancy, two different classes of model are used, including linear
regression with lasso regularization and gradient boosted regression (GBR). The predictions are made
based on venue-related parameters (e.g., rating, comments) and locational properties (e.g., stores,
hotels, attractions). Results show that the prediction can be improved using GBR with a logarithmic
transformation of the dependent variables. To investigate the quality of social media-based models by
obtaining WiFi-based ground truth data, a microcontroller setup is developed to measure the actual
number of people attending venues using WiFi presence detection, demonstrating that the similarity
between the results of WiFi data collection and Google “Popular Times” is relatively promising.
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1. Introduction

The popularization of social media due to recent progress in broadband networks and mobile
device technology has brought about enhanced interest in location-based services for the travel demand
modeling domain and transport planning. Location-based services and their integration within social
media (e.g., Facebook, Twitter, Foursquare) have contributed to the advent of “location-based social
networking” (LBSN), providing accurate location and trip purposes to connected users of the same
platform. Such data can potentially deal with the drawbacks of conventional data sources used
for mobility pattern inference (e.g., travel surveys and GPS or phone signal traces), such as cost of
collection, privacy issues and missing data [1,2]. The major advantage of LBSN in travel demand
modeling is that each geographical trace is coupled with its trip purpose, i.e., a “check-in” at a specific
bar indicates a recreational visit, while a trace at a university mostly reflects an educational activity.
The vast majority of studies on the exploitation of LBSN have used Twitter and Foursquare, e.g., [1,3,4].
However, traces are often accompanied by a systematic temporal error and there is a temporal and
spatial bias in the appearance of digital traces for venue visits [5].
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Scellato et al. [6] carried out comprehensive research to investigate the spatial characteristics of the
social networks arising among users of different popular LBSNs: Brightkite, Foursquare and Gowalla.
The results showed that LBSNs can provide universal spatial features across them, irrespective of the
service, its number of users or the adopted sampling approach. Muhammad et al. [7] have attempted
to explore the LBSN data to analyze gender-based check-in behavior during weekdays and weekends
by focusing on the most popular Chinese local social network site, Sina Weibo, with their research
area defined as Guangzhou, China. The findings indicated that female users are more inclined to use
Weibo compared to male users during the weekdays. Nevertheless, both male and female users follow
roughly the same check-in trend during the weekend.

Google “Popular Times” [8] provide information on when a venue is mostly visited, live waiting
time, as well as average visit duration, based on aggregated and undisclosed data from users who
have opted to share their geotrace using their mobile devices. Such information could potentially
improve real-time demand estimation for transportation planning applications, thus enhancing traffic
management around hotspots. Nevertheless, to date, “Popular Times” have not yet been widely
utilized for transport planning purposes but rather for high-level descriptive impacts on traffic [9].

Venue popularity modeling is a trending topic in the literature which has recently attracted
considerable attention. The aim of this paper is to (i) exploit several data sources including Yelp,
Google Maps, OpenStreetMap (OSM), as well as population and workplace information for venue
popularity modeling and (ii) overcome the drawbacks of aggregated geo-locating data by providing an
alternative measuring methodology based on cost-efficient WiFi microcontrollers.

The potential of using geospatial information to the advantage of users was highlighted by
Meeks and Dasgupta [10], evaluating the use of information for decision-makers and users of systems.
Geospatial data have become widely available through open-source platforms (e.g., OSM) and social
media and have been used in a wide variety of venue-related research since then.

For example, Kisilevich et al. [11] used OSM data for predicting hotel room prices and hotel values.
Based on information on location, places of interest (museums, landmarks, restaurants and bars in
the vicinity etc.) and hotel and business characteristics, the authors developed an easily extendable
decision support tool for hotel brokers and demonstrated that the most influential parameter for
determining the value of a hotel room was the proximity of the hotel to the city center. On the same
principle, Wang et al. [12] investigated the effect of Foursquare “check-ins” and Yelp reviews and
price ranges on venue success and failure. These two location and social services were combined with
business features (e.g., number of direct competitors in the vicinity, number of special promotions of
business and competitors) in order to identify business failures of restaurants in New York. The authors
used a plethora of machine learning approaches, such as neural networks (NNs), k-nearest neighbors
(k-NN) and binary logit, and concluded that the odds of failure of a restaurant are closely linked with
the number of check-ins at that particular restaurant and the number of check-ins in nearby places
of interest.

Geospatial information and LSBN data are often used in shared mobility studies [5,13,14] and
mainly in estimating demands, flows or travel behavior purposes [15–19]. However, there remains a
paucity of evidence on the utilization of LBSN for venue popularity and recommendation.

With regard to venue popularity, Wang et al. [12] analyzed the influence of Foursquare
check-ins on business failure. Several features from Yelp and Foursquare were studied, including
business features (e.g., price range, rating, the number of direct competitors within a certain area,
the number of special promotions of business and competitors within a certain area) and check-in data
(e.g., average daily check-ins of business and neighbors, growth rate). They showed that the increase
in a restaurant’s average daily check-in rate and the number of days on which the growth rate has
increased are associated with a significant decrease in the odds of failure. They also found that rating
was positively correlated with failure, which can be attributed to higher business costs and therefore
lower profit margins. Interaction between rating and the number of competitors within an area was
also significant. Li et al. [4] explored three venue characteristics: venue profile information, venue
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category and venue age. The main findings indicated that the popularity of older venues is higher
than newer ones (with some exceptions); the most mentioned venues belong to the food category;
the transport category (e.g., airports) has the highest amount of check-ins. More recently, Yang and
Durarte [20] investigated the influence of Foursquare check-ins on the popularity of a venue, as well as
the spatiotemporal relationship between venues in Barcelona, Spain, and highlighted the importance
of using WiFi sensors to identify the density of venue popularity. Moreover, with point of interest (POI)
data as an approximation of places in cities, Liu et al. [21] developed representation learning models to
explore place niche patterns, generating two main outputs: distributed representations for place niche
by POI category (e.g., restaurant, museum, park) in a latent vector space and conditional probabilities
of POI appearance of each place type in the proximity of a focal POI. With case studies using Yelp data
for four U.S. cities, they showed that some POI categories have more unique surroundings than others.
Van Weerdenburg et al. [22] also proposed a method to extract leisure activity potentials from web
data on urban space using semantic topic models. Finally, based on geolocated webtexts and place
tags, three supervised multi-label machine learning strategies were tested to estimate whether a given
type of leisure activity is afforded or not.

On the other hand, research on venue recommendation systems is usually concerned with
developing prediction mechanisms of venue attractiveness according to user’s preferences, as well
as time and location restrictions [23,24]. Noulas et al. [25] suggested several mobility features, e.g.,
popularity (the total number of venue check-ins), geographic distance, rank distance, activity and place
transitions for venue prediction, and outlined that popularity and distance are the most important
factors for venue decision.

In the domains of venue popularity and recommendation, data collection is usually carried out
with video recognition systems, as well as wireless sensing such as WiFi and Bluetooth. For example,
Abrishami et al. [26] collected data with WiFi monitoring devices in over 100 places in the USA and
used it to predict actual foot traffic for the next 168 h (week). Data from past traffic observations were
used to predict future states. Bluetooth was utilized by Yoshimura et al. [27] to analyze museum
visitors’ behavioral patterns. However, the main drawback of this approach was the detection of only
mobile devices with Bluetooth turned on, which could lead to possible biases in the results, as only 8.2%
of visitors had activated this function. In the paper of Nunes et al. [28], the authors used WiFi tracking
technology to analyze tourist mobility patterns. In this research, authors had ground truth data from
tourist authorities and were able to correlate it with sensor data and, for certain places, with Google
“Popular Times”. Their results showed that there is a strong correlation between ground truth and
sensor data, as well as quite a high correlation between sensor data and Google “Popular Times”.

Understanding human check-in behavior within a city and crowd dynamics in urban environments
using social media check-ins is essential for several applications, such as urban planning, activity
analysis, traffic prediction and location-based services [29]. Up until now, researchers have mainly
developed travel demand models based on traditional travel surveys, which are expensive and can
lead to issues such as short survey duration, high respondent burden and small sampling rates.
By contrast, emerging data collection methods can support researchers to leverage state-of-the-art
machine learning methods with a large amount of mobility data for extracting daily check-in behavior
and latent mobility patterns. The main aim of this research is to investigate the quality of location-based
social media data, especially Google “Popular Times” data, by obtaining WiFi-based ground truth data,
Indeed, the capability of Google “Popular Times” data in modeling venue popularity is quantified by
comparing them with WiFi device presence detection. To achieve this goal, this paper contains two
main analyses: firstly, using geospatial properties of venues to predict their popularity, represented by
Google “Popular Times” data; secondly, quantifying whether Google “Popular Times” data are a good
measure of venue popularity by leveraging data collected from WiFi devices.

In summary, LBSNs have attracted significant attention in mobility studies and venue-related
research. What remains unclear, however, is how to use Google “Popular Times” with WiFi sensors
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to identify venue popularity and recommendation. This combination forms the motivation for the
present research and will be investigated in order to overcome the aforementioned limitations.

This research is designed to evaluate the possibility of using several information sources, including
Google “Popular Times” and venue catalogues such as Yelp, as well as OpenStreetMap (OSM) data,
for estimating venue popularity. Initially, data from the above-mentioned data sources are used
to model venue popularity. In order to estimate hourly venue occupancy, two different classes of
models are employed, including linear regression with lasso regularization and gradient boosted
regression (GBR). Since Google “Popular Times” data can merely represent relative venue attendance,
a cost-effective WiFi microcontroller setup is developed and tested to measure the actual number of
people attending a particular venue using WiFi device presence detection. Finally, our real-world tests
in Munich, Germany, demonstrate a promising similarity between the results of WiFi data collection
and Google “Popular Times”.

The remainder of this paper is organized as follows: Section 2 presents the methodology, followed
by Section 3 encompassing the modeling process. Section 4 includes a discussion of venue popularity
measuring. Finally, Section 5 draws conclusions and provides insights for further research.

2. Methodology

As Figure 1 shows, the present research was comprised of two main parts, including venue
popularity modeling and venue popularity measuring, which are described in the forthcoming sections.
Nowadays, several novel sources of information with an unprecedented volume, termed “big data”,
are being leveraged to supplement or substitute traditional survey data to extend human travel
behavior research. This can provide a tremendous opportunity to revolutionize the transportation
field due to the considerable data volume collected on the real-time location and dynamics of users.
Accordingly, in the first part of the study, we used OSM data and data from Yelp and Google Places
to generate independent variables and to predict hourly relative popularity indices obtained from
Google’s “Popular Times” data, based on gradient boosted regression and linear regression with lasso
feature selection. In the second part of the paper, we compare the “Popular Times” index data with
WiFi-based crowding measurements obtained in a handful of venues.
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2.1. Research Area

Real-world tests were conducted in Munich, which is the capital and the most populated city
in the German state of Bavaria, with a population of around 1.5 million (https://www.muenchen.de/

rathaus/Stadtinfos/Statistik/Bev-lkerung.html), and the third largest city in Germany. Regarding the
study area, we considered the central point of activities in the city (with the majority of them related to
food), located quite close to Marienplatz (https://www.muenchen.de/sehenswuerdigkeiten/orte/120347.
html), Karlsplatz (Stachus) (https://www.muenchen.de/sehenswuerdigkeiten/orte/120328.html) and
Hauptbahnhof (https://en.wikipedia.org/wiki/M%C3%BCnchen_Hauptbahnhof) (main train station),
which are also in the city center and historical center.

2.2. Data Sources

As can be seen in Table 1, several different data sources, accessed in August 2018, were used in
this study, including Google Maps, Yelp, OpenStreetMap (OSM), Google application programming
interface (API) and government data on workplaces and population.

Table 1. List of primary data sources.

Yelp https://www.yelp.com

Google Maps https://www.google.com/maps

Google Location API https://developers.google.com/maps/documentation/
geolocation/intro

Overpass API https://wiki.openstreetmap.org/wiki/Overpass_API

OSM Dump https://www.geofabrik.de (pbf file)

Population https://www.zensus2011.de (German nationwide
census, 2011)

Workplaces https://www.muenchen.de (Munich, 2016)

Yelp: At the first step of data collection, basic data were collected based on available venues and
the Yelp website (see Figure 2). Here, it was possible to extract venue name, price level, rating, number
of reviews and venue tags and address. Extraction was made based on venue type (for example,
restaurants).
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Google Maps: Based on names and addresses from yelp.com, additional information was extracted
from Google Maps (see Figures 3 and 4), e.g., price level (available at few venues), rating, number of
reviews, “Popular Times” and opening hours.
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Google location API: Geocoding (obtaining latitude and longitude) of venues based on name and
address (this is also possible with OSM; however, results could be relatively inaccurate) was necessary
for the next project step (referencing of objects). Geocoding was conducted with a simple request to
the Google server. It was also necessary to obtain a free developer API key to make these requests.
The main drawback of Google location API is the limitation of requests for a free account.
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Referencing of objects: To assign spatial information to the venues collected in previous steps,
several procedures were implemented. OSM data were loaded with the osmread library (https:
//github.com/dezhin/osmread) to obtain only ways and nodes related to Munich area. Then, the road
graph was loaded with the osmnx library (https://github.com/gboeing/osmnx) (via the OSM API) and
projected on a map. Venue coordinates, loaded in the previous step, were used to obtain central points.
Then, the road graph was used to obtain all roads within the venue’s surrounding area. Two distances
of influence were tested, 400 and 800 m, with the former being quite common among the literature, e.g.,
see review in [13]. Road endpoints were used to construct convex hulls. All nodes, ways, population
grid cells and sum of workplace values from buildings and intersecting/within convex hulls were
added to appropriate variables. Note that, since population data were available in the form of grid
cells with an adequate spatial resolution, no disaggregation steps were needed. However, workplace
data are relatively aggregate; therefore, a disaggregation algorithm was used to distribute workplaces
among Munich administrative areas.

2.3. Data Structure

Variables were defined based on tag names from Yelp, classes and class groups of OSM and venue
type. A number of variables such as rating and reviews were combined, and some others such as
latitude and longitude were converted to proper projections. Regarding working hours, current hour
and two hours in each direction were used in order to limit collinearity (see Table 2). All Google
“Popular Times” values were assigned to dependent variables.

Table 2. Variable descriptions.

Variable Name Description

- Index

Name Name of venue

lat_conv Latitude

lon_conv Longitude

Price_index Price level from Yelp

compound_rating Weighted sum of ratings obtained from Yelp and Google Maps

total_reviews Sum of reviews at Yelp and Google Maps

* Type of amenity (e.g., cafe_fastfood)

* Tags attached (e.g., Caribbean)

roads_*
nodes_*
ways_*

OSM data on length of different classes of roads and number of
venues within prespecified area

workplaces Workplaces data within prespecified area

population Population data within prespecified area

* Working hours
(−2 h, −1 h, current hour, +1 h, +2 h)

* Venue popularity data 24 h/7 days (e.g., (‘sun’, 1))

https://github.com/dezhin/osmread
https://github.com/dezhin/osmread
https://github.com/gboeing/osmnx
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It should be noted that all the experiments in this research were implemented using the Python
programming language and several Python libraries (Table 3), as well as others included in Anaconda
(https://www.anaconda.com/download/) distribution.

Table 3. List of Python libraries.

Selenium Emulation of user activity in browser

Beautiful Soup Parsing of HTML and XML documents

Pandas High performance and easy to use data structures
and data analysis tools

Geopandas Extension of pandas library for work with spatial data

Osmread Reading of OpenStreetMap XML and PBF data files

Osmnx Retrieving, constructing, analyzing and visualizing
street networks

Scikit-learn Tools for data mining and data analysis

Tslearn Tools for data mining and data analysis of time series

Matplotlib Data visualization

StatsModels Estimation and evaluation of statistical models

3. Modeling

Two different classes of prediction model, including multiple linear regression with lasso and
gradient boosted regression (GBR), were tested. Moreover, the performance of models with and
without transformation was evaluated. Each model group tested comprised 168 dependent variables
(i.e., the number of hours in a week), place parameters (e.g., rating, the number of related comments,
type of service provided) and locational properties (e.g., the number of stores, hotels, attractions).
Overall, we saw that GBR (Table 4) could provide a significantly better fit for the training set in
comparison with linear regression (Table 5). Moreover, Figures 5 and 6 give information regarding
Box–Cox parameter selection for GBR and multiple linear regression models, respectively. The most
important features for all GBR models are shown in Figures 7–9. The number of features with the sum
of importance of higher than the threshold (0.6 was used here to limit their number to a manageable
level) was decreased for transformed models, declining from 51 to 35 with logarithm transformation
(Figure 8) and from 51 to 34 with Box–Cox transformation (Figure 9). Some venue features, such as
“burgers”, also achieved significant importance, especially at certain hours, e.g., early in the morning.
This might be due to an activity transition from clubs or bars to fast-food venues, which may serve
burgers and may be opened at this time. The relatively small significance of spatial features may arise
from the fact that a large number of venues with available popularity values are located close to each
other. Nonetheless, “nodes_osm_accomodation” (the variable including hotels, hostels and short term
rented apartments) was quite significant.

Table 4. Gradient boosted regression results (400 m dependent zone; median values).

No Transformation Box–Cox (λ = 0) Box–Cox (λ = −1.4)

Mean Squared Error (MSE) 119.29 0.59 0.02
R2 0.50 0.59 0.61

MSE (Coefficient of Variation [CV]) 154.16 0.76 0.03
R2 (CV) 0.34 0.45 0.47

MSE (test set) 162.34 0.70 0.02
R2 (test set) 0.33 0.47 0.49

https://www.anaconda.com/download/
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Table 5. Multiple linear regression with lasso results (400 m dependent zone; median values).

No Transformation Box–Cox (λ = 0) Box–Cox (λ = −0.2)

MSE 141.80 0.72 0.34
R2 0.42 0.46 0.46

MSE (CV) 153.89 0.78 0.39
R2 (CV) 0.34 0.43 0.43

MSE (test set) 161.83 0.75 0.38
R2 (test set) 0.32 0.45 0.45
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Box–Cox parameter selection for GBR and multiple linear regression models, respectively. The most 
important features for all GBR models are shown in Figure 7–9. The number of features with the sum 
of importance of higher than the threshold (0.6 was used here to limit their number to a manageable 
level) was decreased for transformed models, declining from 51 to 35 with logarithm transformation 
(Figure 8) and from 51 to 34 with Box–Cox transformation (Figure 9). Some venue features, such as 
“burgers”, also achieved significant importance, especially at certain hours, e.g., early in the morning. 
This might be due to an activity transition from clubs or bars to fast-food venues, which may serve 
burgers and may be opened at this time. The relatively small significance of spatial features may arise 
from the fact that a large number of venues with available popularity values are located close to each 
other. Nonetheless, “nodes_osm_accomodation” (the variable including hotels, hostels and short 
term rented apartments) was quite significant. 

Table 4. Gradient boosted regression results (400 m dependent zone; median values). 

 No Transformation Box–Cox (𝝀 = 0) Box–Cox (𝝀 = −1.4) 
Mean Squared Error (MSE) 119.29 0.59 0.02 𝑅  0.50 0.59 0.61 

MSE (Coefficient of Variation [CV]) 154.16 0.76 0.03 𝑅  (CV) 0.34 0.45 0.47 
MSE (test set) 162.34 0.70 0.02 𝑅  (test set) 0.33 0.47 0.49 

Table 5. Multiple linear regression with lasso results (400 m dependent zone; median values). 

 No Transformation Box–Cox (𝝀 = 0) Box–Cox (𝝀 = −0.2) 
MSE 141.80 0.72 0.34 𝑅  0.42 0.46 0.46 

MSE (CV) 153.89 0.78 0.39 𝑅  (CV) 0.34 0.43 0.43 
MSE (test set) 161.83 0.75 0.38 𝑅  (test set) 0.32 0.45 0.45 
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A cross-validation method with 10 folds was used for each output (for number of trees selection
and separately for cross-validation). To reduce computational complexity, a relatively high learning
rate of 0.01 was used. After running a GBR model, residuals were tested for several problems
(see Figures A1 and A2 in Appendix A). Since GBR models are quite robust to outliers, and due to
the fact that the elimination of outliers has no influence on linear model test results, it was decided to
skip testing models without outliers. As it is clear, the prediction process could be carried out at an
appropriate level of accuracy during daytime, while we saw poor prediction during late evening and
early morning hours.
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Overall, models with transformation of dependent variables outperformed models without
transformation. As can be seen in Figure 10, delineating the differences between transformed GBR
models and models without transformation, the performance of the former in most cases was better by
a significant margin. Turning to details, we can see that GBR models with Box–Cox transformation
were slightly better than those with logarithm transformation; however, for certain hours at the end of
the week, GBR with logarithm transformation achieved better results. Moreover, regarding linear and
GBR models with Box–Cox transformation, we can see that, in some cases, GBR outperformed linear
models by a significant margin (see Figure 11). Therefore, it may be concluded that the GBR method
with Box–Cox transformation can provide the best performance among the reviewed models.
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4. Discussion of Venue Popularity Measuring

Since Google “Popular Times” data can merely represent venue shares, a microcontroller setup
was developed and tested to measure the actual number of people attending a particular venue using
WiFi device presence detection. In other words, we investigated the quality of social media-based
models by obtaining WiFi-based ground truth data. Our real-world tests show that the setup can work
well in practice.

4.1. Setup Description

A Raspberry Pi Zero W microcontroller was used, by which WiFi and a Bluetooth chip (Broadcom
bcm43430a1) were integrated with the help of a firmware patch [30]. MAC ((media access control) is
a part of the data link layer (layer 2) of the open systems interconnection (OSI) model of computer
networking that describes data transfer between system nodes (for details refer to ISO/IEC 7498-1
standard)) address was used here as a device original identifier, broadcasted periodically with other
data from probe requests (a probe request is a special frame (information block) that is sent by a
client (mobile) station to discover networks in proximity. It requests information about access point
parameters and, normally, all access points in the area respond to it (for details, refer to IEEE 802.11
standard)). The power was provided to the microcontroller through a 5000 mAh power bank that was
connected to the pwr port (#1) via micro-USB cable (see Figure 12). Operating system and necessary
scripts were installed on an SD card (#2). A mini HDMI port (#3) was also used to connect the
microcontroller to the external monitor for the initial setup. Table 6 gives information on the price of
each item.
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Table 6. The price of each item used in the microcontroller setup (2018, amazon.de).

Item Cost, EUR

Raspberry Pi Zero W 10
Micro SD card (16 GB) 6.49

Power Bank (5000 mAh) 8.99

WiFi signal sensors can discover the signals produced from WiFi modules installed in different
mobile devices. The WiFi modules are defined based on IEEE 802.11 standard [31]. The basic unit for
data exchanged between devices is known as a frame. Several different types of frame are defined in
the standard protocol, namely beacon, acknowledgment (ACK), data and probe. Each access point
periodically sends beacon frames to show its availability. If a mobile device is connected to an access
point, information is transferred using data or ACK frames; otherwise, it sends probe frames to look
for existing access points. The information that can be detected using WiFi signal sensors includes the
following: media access control (MAC) addresses of the mobile device and the access point, frame
type, time stamp and signal strength correlated directly with the distance between WiFi sensor and
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mobile device. Accordingly, by detecting the MAC address at multiple locations over time, a person
will be tracked unless he/she turns off WiFi or switches to airplane mode [32].

4.2. Results: Google vs. WiFi

In this section, the results of WiFi data collection and Google “Popular Times” are compared
to each other. A Japanese restaurant, “Takumi”, is considered as the first case study (see Figure 13).
We see that the result of WiFi data collection is broadly similar to Google “Popular Times”; nevertheless,
a slight decline in the beginning of the operation is visible. This decline can be attributed to fluctuations
in schedules of nearby organizations; for example, as this restaurant is close to the Technical University
of Munich (TUM), changes in student activities can affect attendance. Furthermore, it is also possible to
see that the number of visitors in this restaurant is quite high for this venue type. This might be a result
of the impacts of other facilities located nearby. Nonetheless, the use of additional WiFi monitoring
devices in the area can help to clear up this question.Smart Cities 2020, 3 FOR PEER REVIEW  14 
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Another venue, “Lo Studente”, shows an ideal correlation with Google (see Figure 14), which could
be due to various factors. First of all, open architecture with several tables outside the main building
can lead to appropriate signal reception by the WiFi monitor. Secondly, no big overlapping facilities
exist in its vicinity.
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Figure 14. Venue attendance (“Lo Studente”): (a) Google vs. WiFi; (b) visitors by time of day; (c) visitors’
length of stay distributions.

The results of the remaining experiments are presented in Appendix B. Overall, the evaluation
results have a wide range of outcomes. The majority of the venues considered have a correlation
(between WiFi and Google “Popular Times”) at or higher than 0.9. However, a couple have much
lower (0.68 and 0.41) correlations. The higher end of this range provides a very good proxy for the
attendance of the venues. The lower end of this spectrum could still be valuable for a number of
applications. The presented approach provides a cheap and scalable way to monitor venue attendance,
with considerable prospects for valuable applications.
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5. Concluding Remarks

With the rapid development of information and communication technologies (ICT), a large amount
of spatiotemporal data is emerging, which can be used in transportation planning. For instance,
the penetration of social media due to recent progress in broadband networks and mobile device
technology has brought about an enhanced interest in location-based services for travel demand
modeling applications and transport planning.

As a novel data source, Google “Popular Times” can give information on when a venue is
mostly visited and live waiting time, as well as average visit duration, based on aggregated and
undisclosed data from users who have opted to share their geotrace using their mobile devices.
Such information can potentially improve real-time demand estimation for transportation planning
applications. Nevertheless, up until now, “Popular Times” have not yet been widely used for
this purpose. This research sets out to assess the possibility of using several services, including
Google “Popular Times” and venue catalogues such as Yelp, as well as OpenStreetMap (OSM) data,
for estimating venue popularity. Initially, data from the above-mentioned information sources were
used to model venue popularity. We estimate venue occupancy at an hourly resolution level using
two different classes of models, including linear regression with lasso regularization and gradient
boosted regression (GBR). The predictions were made based on venue-related parameters (e.g., rating,
comments) and locational properties (e.g., stores, hotels, attractions), showing an acceptable level of
accuracy for the busiest hours of the day. We saw that the power of prediction for both classes of
model increased with the transformation of the dependent variable. Since Google “Popular Times”
data can merely represent relative venue attendance, a cost-effective WiFi microcontroller setup was
developed and tested to measure the actual number of people attending a particular venue using
WiFi device presence detection. The capability of Google “Popular Times” data in modeling venue
popularity is quantified by comparing them with WiFi device presence detection. Our real-world tests
in Munich, Germany, corroborated that the similarity between the results of WiFi data collection and
Google “Popular Times” is relatively promising.

Following this finding, one question is which downstream analyses and inferences can be made
based on this. In particular, can an estimate/prediction of attendance of people at a venue be used to
infer their spending? Can it be used to assess public transport level of service or as a proxy for parking
availability? Can it be used for developing anti-crowding monitoring strategies for use, among others,
or mitigation of Covid-19 impacts? Could such real-time information be useful to guide consumers’
decisions about which venues to visit?

Future studies can take other factors and data sources into account which have not been involved
in the present research, e.g., Twitter, Foursquare and Facebook data, along with detailed analysis of the
contents of venue reviews. Moreover, a large scale WiFi data collection using a network of devices will
need to be undertaken to increase the level of accuracy by diminishing the overlap of signals received
from several venues located quite close to each other. Future research testing further regression and
clustering techniques on data collected from different cities across the globe during long-term periods
would be also interesting. In future investigations, it might be possible to use Bluetooth instead of
WiFi as a sensor in the RPI zero and test several different matching algorithms to detect and track a
device when it is connected to a sensor.
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Appendix B. Comparison between the Results of WiFi Data Collection and Google
“Popular Times”

Next, the experiments were performed on McDonald’s restaurant near Forstenrieder Alee.
Spikes and drops were not visible on Google’s data on this venue. There was also a considerable
decline in the sensor data compared to Google from 17 to 19 o’clock, which can be explained by the
influence of surrounding organizations, detection problems due to building configuration and the fact
that this venue has also a drive-through option, i.e., certain visitors may be filtered as passersby.
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Figure A3. Venue attendance (“McDonald’s”, Forstenrieder Alee): (a) Google vs. WiFi; (b) visitors by
time of day; (c) visitors’ length of stay distributions.
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The “Iunu” cafeteria experienced roughly a similar pattern to Google. Regarding differences in
the beginning and end of working hours, since it is located near a small park with several benches,
sensors may have captured some people resting on them.Smart Cities 2020, 3 FOR PEER REVIEW  19 
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Figure A4. Venue attendance (“Iunu”): (a) Google vs. WiFi; (b) visitors by time of day; (c) visitors’
length of stay distributions.

Our experiments on “Pizzeria da Antonio” also indicate that the results of WiFi data collection and
Google are acceptably much alike. A small drop in the beginning was because of the late start of data
capture. A peak in the middle of the day may be a result of some overlapping venues. Nonetheless,
this explanation is not robust enough with the existing data. That is, the number of visitors is relatively
low; hence, even small groups of people may have affected the results.
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Figure A5. Venue attendance (“Pizzeria da Antonio”): (a) Google vs. WiFi; (b) visitors by time of day;
(c) visitors’ length of stay distributions.

The pattern of the cafeteria “Cardamom” was also interesting. The peak in the middle of the day
in sensor data in comparison with Google “Popular Times” could be a result of an overlap of signals
from several venues which are located quite close to each other. To mitigate this problem, it would be
useful to install sensors near each venue and to define visitors of each exact one by analyzing signal
strength as well.
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Figure A6. Venue attendance (“Cardamom”): (a) Google vs. WiFi; (b) visitors by time of day; (c) visitors’
length of stay distributions.

Another example that shows a good correlation is the “Nasca” restaurant. This venue is located
on a busy street between TUM and the Theresienstrasse subway station. Hence, several passersby may
have been detected by the sensor at this place, especially in the beginning of the period.
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