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Abstract 

  

Genome-wide association studies have recently reported over 230 multiple sclerosis (MS) 

risk loci. In MS-related research, however, ways are still being sought to translate the 

genetic associations into functional, biological mechanisms. In this thesis, the task of 

studying MS etiology was tackled from two points of view: through the lens of animal 

models for MS and by examining the influence of MS-associated genetic variants on gene 

expression levels in individuals diagnosed with MS. 

 

Firstly, the two currently used murine models for MS, namely the MOG-induced 

experimental autoimmune encephalomyelitis (EAE) model and the spontaneous 

opticospinal EAE (OSE) model were compared, and their relationship to human MS risk 

genes and T cell biology was examined. It was observed that the changes in gene expression 

in OSE mice were more prominent, with stronger signals from the adaptive immune system 

than when using the MOG-EAE model. In addition, the overrepresentation of human MS 

risk genes was more extensive among transcripts differentially expressed when the OSE 

model was used, especially in TH1 cells. Therefore, when studying the functional role of 

MS risk genes and pathways during disease onset and their interaction with the 

environment, the spontaneous OSE might constitute a better model of human MS than the 

MOG-EAE. 

 

Secondly, a workflow has been proposed with the aim to identify biological pathways 

mediating the effect of genetic variation in the early stage of the disease. The multi-level 

workflow enabled the comparison of groups of MS patients differing in their genetic 

background, with differential network analysis as the centerpiece of the analysis. By 

accounting for inter-individual variation due to clinical, demographic, and epidemiological 

factors, as well as for different cell type proportions present in the whole blood, it was 

possible to examine whether the variation left in the data was explainable by the genetic 

background. In the sample of KKNMS patients, it was observed that the exclusive effect 

of a single MS-associated variant had a comparatively low influence on gene expression 

levels. The gene expression variation in gene co-expression modules estimated from the 

immune-system-related genes was weakly explained by the genetic variants. In most 

comparisons, module structure was highly preserved between the groups. However, 

methods estimating conditional independence between genes were able to propose a 

potentially interesting result. The differential connectivity analysis of networks estimated 

based on Gaussian graphical models suggests the involvement of the rs6689470 genetic 

variant associated with MS risk in the actin-dependent cytoskeleton reorganization, a 

process important in B cell activation, in the early stages of MS. If this pathway were 

hampered in MS patients carrying the risk allele, the changed regulation of this biological 

unit could possibly lead to aberrant B cell activation resulting in evasion of self-reactive T 

cells into the periphery and potentially into the CNS. However, the involvement of 

rs6689470 variant in immune system regulation in the early stage of the disease needs to 

be further validated in an independent sample of MS patients. 
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Zusammenfassung 

 

Vor kurzem sind in genomweiten Assoziationsstudien über 230 mit Multiple Sklerose (MS) 

assozierte Risikogenorte gefunden worden. Die MS-orientierte Forschung entwickelt, wie 

andere Gebiet der Forschung auch, weitere neuartige Methoden, damit wir die gefundenen 

genetischen Assoziationen im Kontext funktionaler biologischer Mechanismen erklären 

können. In dieser Arbeit wurde die Aufgabe, die MS-Ätiologie zu untersuchen, aus zwei 

Blickwinkeln angegangen: Als erstes wurden die Tiermodelle für MS erforscht und als 

zweites wurde der Einfluss der MS-assoziierten genetischen Varianten auf die 

Genexpression von Patienten mit MS Diagnose geprüft. 
 

Zunächst wurden die beiden derzeit verwendeten Mausmodelle für MS, nämlich die MOG-

induzierte experimentelle Enzephalomyelitis (EAE) und die spontane opticospinale EAE 

(OSE), verglichen und ihre Beziehung zu menschlichen MS-Risikogenen und der T-Zell-

Biologie untersucht. Es wurde beobachtet, dass die Änderungen in Genexpression in OSE 

Mäuse prominenter waren, mit stärkeren Signalen des adaptiven Immunsystems als im 

MOG-EAE Model. Darüber hinaus war die Überrepräsentation von menschlichen MS-

Risikogenen unter den in der OSE differenziell exprimierten Transkripten, insbesondere in 

TH1-Zellen, größer. Daher könnte die spontane OSE bei der Untersuchung der 

funktionellen Rolle von MS-Risikogenen und -Wegen während des Krankheitsausbruchs 

und ihrer Interaktion mit der Umwelt ein besseres Modell der menschlichen MS darstellen 

als die MOG-EAE. 
 

Zweitens wurde in dieser Dissertation ein Arbeitsablauf vorgeschlagen mit dem Ziel der 

Identifikation der biologischen Pathways, die die Wirkung der genetischen Variation auf 

die MS Suszeptibilität während des Frühstadiums der Krankheit vermitteln. Der 

mehrstufige Arbeitsablauf ermöglicht den Gruppenvergleich von MS Patienten mit 

unterschiedlichem genetischem Hintergrund. Durch die Berücksichtigung 

interindividueller Variationen aufgrund klinischer, demographischer und 

epidemiologischer Faktoren sowie unterschiedlicher Zelltyp-Anteile im Vollblut konnte 

untersucht werden, ob die in den Daten verbliebene Variation durch den genetischen 

Hintergrund erklärbar ist. In der Stichprobe der KKNMS-Patienten zeigen die Individuen 

robuste Genexpressionsniveaus, meist unabhängig von MS-assoziierten Varianten. Die 

Genexpressionsvariation in den aus den immunsystembezogenen Genen geschätzten 

Koexpressionsmodulen wurde nur in geringem Maße durch die genetischen Varianten 

erklärt, und in den meisten Vergleichen war die Modulstruktur zwischen den Gruppen in 

hohem Maße erhalten.  
 

Allerdings konnten Methoden, die die bedingte Unabhängigkeit zwischen den Genen 

schätzen, ein möglicherweise interessantes Ergebnis identifizieren. Die differenzielle 

Konnektivitätsanalyse von Netzwerken, die auf der Basis von Gaußschen graphischen 

Modellen geschätzt wurden, legt die Beteiligung der genetischen Variante rs6689470 an 

der aktinabhängigen Reorganisation des Zytoskeletts nahe, einem Prozess, der für die 

Aktivierung der B-Zellen in den frühen Stadien der MS wichtig ist.  
 

Wenn dieser Signalweg bei MS-Patienten, die das Risiko-Allel tragen, gestört ist, könnte 

die veränderte Regulation dieser biologischen Einheit zu B-Zell-Aktivierung aberranter Art 

führen, die zu einem Ausweichen von selbstreaktiven T-Zellen in die Peripherie und 

möglicherweise in das ZNS führt. Die Beteiligung der Variante rs6689470 an der 
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Regulation des Immunsystems im Frühstadium der Erkrankung muss allerdings in einer 

unabhängigen Stichprobe von MS-Patienten weiter validiert werden.  
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1.1 Introduction to multiple sclerosis 

Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system 

(CNS) resulting in increased disability in affected individuals (Thompson et al., 2018). MS 

is a complex disease where the coalescent effects of genetics, environment, and epigenetics 

confer the susceptibility to the disease. According to monozygotic twin studies, 

approximately 30% of MS risk can be attributed to genetics, thus making the disease 

partially heritable (Dyment, Dessa Sadnovich, & Ebers, 1997). MS follows the “common 

disease/common variant” model in which the common human disorders are caused by a set 

of common alleles, that is, alleles with a high allele frequency in the population 

(O’Gorman, Lin, Stankovich, & Broadley, 2013). This implies that many genetic variants 

have small contributions to the disease susceptibility, but their cumulative impact shapes 

the disease emergence, with the HLA-DRB1*15:01 allele constituting the strongest genetic 

risk for MS (Patsopoulos, 2018). 

 

1.2 Pathology, disease phenotypes, and MS treatment  

During MS development, the inflammation process results in lesions in the CNS, which are 

present in the white and grey matter, brain stem, spinal cord, and optic nerve (Reich, 

Lucchinetti, & Calabresi, 2018). Lesions can usually be detected on a magnetic resonance 

imaging (MRI) scan. The tissue is attacked by the cells of adaptive and innate immune 

system, directed to the myelin surrounding neurons, resulting in demyelination. 

Demyelination impairs the transduction of nerve signals, which, if affecting the optic nerve, 

causes problems with sight, which is often one of the first symptoms prior to developing 

MS (Ebers, 1985). Development of MS has different courses. In 85% of young adults it 

starts with a single episode, i.e., clinically isolated syndrome (CIS) of the optic nerve, brain 

stem, or spinal cord (D. Miller, Barkhof, Montalban, Thompson, & Filippi, 2005). Three 

clinical subtypes of the disease have been defined: relapsing-remitting MS (RRMS), in 

which patients experience discrete repeated attacks followed by remissions, secondary 

progressive MS (SPMS), which is a secondary phase of RRMS in which deficits develop 

continuously without relapse, and the primary progressive MS (PPMS), in which the 

disease develops steadily from the onset. Clinical onsets of MS are distinguished based on 

the phenotype (tissue lesions, relapse, progression, atrophy) observed on the MRI scan 

(Thompson et al., 2018). Diagnosis is further supported by the cerebrospinal fluid (CSF) 

analysis in which the oligoclonal bands, unique antibodies produced in the CSF, probably 

by the  B cells of the immune system (Reich et al., 2018), can be detected. The clinical 

course is important for selecting the optimal treatment. Effective therapies have been 

developed for RRMS, which affects 85-90% of MS patients, and partially effective for 

PPMS and SPMS. Due to important insights of B cell importance in MS development, B 

cell-aimed treatments have been developed. One example is ocrelizumab, a humanized 

monoclonal antibody directed at the CD20 molecule on the B cell surface, which has been 

effectively used to prevent relapses and (silent) progression in RRMS and PPMS patients. 

Ocrelizumab is one of the many disease modifying treatments (DMT), which reshape the 

course of MS by modulation of the immune function (Hauser & Cree, 2020).  
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1.3 Epidemiology and environmental risk factors 

When looking at the gender distribution of MS patients in the population, one can observe 

that the majority of MS patients are women, with gender ratios in most of the European 

studies ranging from 1.1:1 to 3:1 (Kingwell et al., 2013). Average age of developing the 

disease is 30 years (Kimura, 2020). MS affects more than 2,3 million people worldwide 

(Thompson et al., 2018), with latitude positively correlated with MS risk (higher MS 

incidence further away from the equator). Distance from the equator indicates the 

potentially important role of the sun exposure. Ascherio and the colleagues (Ascherio et 

al., 2014) have suggested the importance of vitamin D supplementing in the early treatment 

of MS and other studies exploring the relationship between vitamin D-associated SNPs and 

risk for MS supported the importance of vitamin D on MS susceptibility (Mokry et al., 

2015; Rhead et al., 2016). Epstein-Barr virus (EBV) infection is another important 

environmental factor associated with MS. This virus increases the probability of 

subsequently developing the disease threefold, in an age-dependent manner (Levin et al., 

2005). It has been suggested that the EBV infection can mediate the autoreactive T cell 

response in the CNS in a twofold manner: the EBV-infected B cells can activate aberrant 

T cell response in the periphery, and stimulate the T cell autoreactivity in the CNS 

afterwards  (Bar-Or et al., 2020). Other viral infections have also been suggested to interfere 

with mechanisms which normally limit T cell autoreactivity (Reich et al., 2018). 

Additionally, smoking and obesity interact with genetic factors as well, thereby increasing 

the MS risk (Hedström et al., 2014, 2011).  

   

1.4 Hallmarks of immune response in MS patients 

Immune cells reside in low concentration in the CNS of healthy individuals where they 

exert mostly surveilling functions. However, in patients with CNS inflammation, the 

concentration of immune cells is increased manyfold. In an MRI study, researchers reported 

finding of CD4+ T cells, macrophages, B cells/plasma cells, and dendrocytes in the brain 

lesions of MS patients (Absinta, Sati, & Reich, 2016). The transport of activated 

lymphocytes from the periphery to the CNS parenchyma is facilitated by the more 

permeable blood-brain-barrier (BBB) observed in the MS patients (Chase Huizar, Raphael, 

& Forsthuber, 2020). Traditionally, T cells were considered the main drivers of human MS. 

The development of T cells starts in thymus, where these cells differentiate and go through 

positive and negative selection. First, CD4+CD8+ T cells recognizing the complex 

consisting of MHC and the peptide are selected in the thymus cortex. This process is called 

positive selection. In the process, cells correspondingly differentiate into CD4- and CD8-

single positive T cells. Next, in the medulla of the thymus, these cells interact with antigen 

presenting cells (APCs), e.g., the medullary thymic epithelial cells or the dendritic cells, 

whereby the most of the T cells recognizing the self-peptide-MHC complexes, i.e., the 

autoreactive T cells, are removed. Some of the autoreactive T cells are additionally going 

through the agonist selection. In the agonist selection, the autoreactive CD4 T cells 

differentiate into regulatory T cells (Treg), expressing the Foxp3. The role of such Foxp3+ 

Treg cells is to control the peripheral immune tolerance (Takaba & Takayanagi, 2017). It 

has recently been shown that  B cells residing in thymus also contribute to T cell selection. 

It is therefore possible that they influence a T cell repertoire which will react with 

autoantibodies of the CNS (Jelcic et al., 2018).  
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Initially, CD4+ T cells were considered responsible for MS emergence, because of the MHC 

class II restriction and because of their role in experimental autoimmune encephalomyelitis 

(EAE) induction, a commonly used animal model for MS. CD4+ T cells are activated after 

the contact with MHC class II molecules on APCs. After the activation, they can 

differentiate into TH1 and TH2 cells, but also into TH17 cells (Seder & Ahmed, 2003). 

Furthermore, the TH17 cells have also been found in the blood and the brains of patients 

with MS. TH1 and TH17 cells have been shown to be involved in different autoimmune 

diseases, e.g., MS, and may drive different immunopathologies (Damsker, Hansen, & 

Caspi, 2010). However, the depletion of CD4+ T cells in MS patients did not improve the 

relapse rates in MS patients (Van Oosten et al., 1997). On the other hand, the depletion of 

both CD4+ T cells and the CD8+ T cells, together with an anti-CD52 monoclonal antibody 

led to successful reduction in relapses and new lesions (Paolillo et al., 1999). Thereby, the 

importance of CD8+ T cells in MS has emerged. Contrary to CD4+ T cells, CD8+ T cells  

mostly recognize antigens presented by MHC class I molecules (Wong & Pamer, 2003). 

The implications of T cells in MS pathology have further been supported by GWAS, where 

for example IL7R and IL2RA genes, important in T cell differentiation and their expansion 

and apoptosis, were found to be associated with MS risk (J.A. Hollenbach & Oksenberg, 

2016; Maier, Lowe, Cooper, Downes, & Anderson, 2009).  

 

Both the adaptive and innate arms of the immune system play important roles in disease 

development. The adaptive immune system response includes T cells and B cells. In MS 

patients, defects in peripheral regulatory immune cell populations (e.g., Foxp3+ Treg) 

promote differentiation of naïve T cells to pathogenic, creating autoreactive T cells. 

Increased frequency of interferon (IFN)-𝛾-secreting Treg cells has also been observed in 

comparison to healthy individuals (Axisa & Hafler, 2016), leading to a lower suppression 

of immune response. Therefore, the defense against autoimmune response in MS patients 

is weakened, and autoreactive T cells can proliferate, extravasate, and attack the myelin 

sheath in the CNS. The proliferation of the autoreactive T cells is further supported by the 

B cell activity. B cells express the receptors of the major histocompatibility complex 

(MHC) on their surface which present the processed myelin to CD8+ and CD4+  T cells 

thereby activating them. In addition, co-stimulatory molecules on the surface of B cells 

help promote the activation of pro-inflammatory T cells (Sabatino, Pröbstel, & Zamvil, 

2019). The secretion of pro-inflammatory cytokines is another B cell function facilitating 

the expansion of the immune response. The mechanism of ocrelizumab is based on 

depleting the B cells expressing the CD20 molecule. As a consequence of this specific 

depletion, the supply of B cells from the periphery to the CNS is interrupted, B and T cell 

interaction is reduced as well as the secretion of the pro-inflammatory cytokines (Hauser 

& Cree, 2020). Due to ample important functions of B cells which have recently emerged, 

MS is no longer viewed as a primarily T-cell driven disease.  

 

Furthermore, the cells of the innate immune system response, like macrophages and 

microglia also play important roles in supporting the autoimmune response. Macrophages 

secrete cytokines promoting the inflammatory response of T cells and B cells thereby 

mediating the destruction of the myelin sheath which surrounds axons. The role of natural 

killer (NK) cells and dendritic cells has also emerged recently (IMSGC, 2019b). Microglia, 

cells populating the CNS, are involved in myelin phagocytosis, in T cell antigen 

presentation and release of proinflammatory cytokines in active CNS lesions (Lassmann, 

Van Horssen, & Mahad, 2012).  
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1.5 Animal models for MS  

Studying a complex disease has been supported by the creation of apt animal modes, such 

as mouse models. The first attempt to induce an inflammation process similar to the one 

happening in human MS, was described as early as 1933. Rivers and the colleagues (Rivers, 

Sprunt and Berry, 1933) injected monkeys with brain matter and observed brain 

inflammation of similar patterns as in active MS lesions. This paper marked the start of 

experimental autoimmune encephalomyelitis (EAE), after which researchers created 

various versions of EAE in different animal species. However, MS has variable clinical 

and pathological characteristics, the course of the disease in a patient is subject to change 

with disease progression. Neither one of the tested EAE models managed to recapitulate 

complex disease profiles observed in humans. Nonetheless, the importance of EAE is 

unquestionable in terms of studying cellular and molecular pathways, because many of the 

studied pathways were later found to be relevant for human MS as well. This also enables 

to test the potential medical treatments for MS, even though EAE cannot fully represent 

human MS in this aspect (Ben-nun et al., 2014). Many disease modifying treatments 

(DMTs) for MS were identified and all DMTs have been tested in animals suffering from 

EAE, such as IFN-𝛽 formulations, glatimer acetate (GA), natalizumab, ocrelizumab, and 

others (Glatigny & Bettelli, 2018). Very recently, a process of neddylation, analogous to 

ubiquitination, has been studied in mice suffering from EAE. Researchers observed that the 

inhibition of neddylation led to decreased EAE severity and suggested neddylation as a 

new therapeutic target (Kim et al., 2021).  

 

1.5.1 Induced and spontaneous EAE models in mice 

With the emerging role of genetics in MS susceptibility, it is important to reassess the two 

currently used EAE models, the MOG-induced EAE, in which the disease is triggered by 

active induction, and the spontaneous EAE model, e.g., the opticospinal EAE (OSE). In 

actively induced EAE, the disease emerges after injecting myelin-derived antigens, such as 

myelin oligodendrocyte glycoprotein (MOG). The disease develops rapidly, contrary to the 

human MS (Krishnamoorthy, Holz, & Wekerle, 2007) . On the other hand, spontaneously 

induced EAE, e.g., the OSE, develops in transgenic mice expressing a T cell receptor 

(TCR) which recognizes the MOG  peptide. These mice also carry B cells with MOG-

specific receptors (Glatigny & Bettelli, 2018). The double transgenic nature therefore 

allows the B and T cell interaction on several levels to produce the disease 

(Krishnamoorthy, Lassmann, Wekerle, & Holz, 2006). The OSE mice develop a disorder 

similar to neuromyelitis optica, a variant of MS where lesions are present in the optic nerve 

and the spinal cord only, omitting the cerebrum and cerebellum (Jarius et al., 2020; 

O’Riordan et al., 1996). 

 

1.5.2 Roles of TH1 and TH17 cells in EAE development 

It has been well known that myelin-reactive T cells with TH1 phenotype can induce EAE, 

as well as to support the inflammatory response by secreting the IFN-𝛾, a cytokine which 

activates macrophages (Merrill et al., 1992). However, the role of TH1 cells remains 

controversial, because some studies suggest that IFN-𝛾 and TH1 are crucial for EAE 

development, while other research showed that mice not expressing the IFN-𝛾 can become 

more susceptible to EAE (Ferber et al., 1996), therefore stating that the IFN-𝛾 is not crucial 

for EAE induction. Naïve T cells stimulated with tumor growth factor 𝛽 (TGF- 𝛽) and IL-
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6 will differentiate into another type of T cells, the TH17 cells, which have also 

demonstrated their pathogenicity, that is, the potency to induce the EAE (Grifka-Walk, 

Lalor, & Segal, 2013). Both TH1 and TH17 can induce EAE by transfer, but the mechanisms 

of disease induction differ due to different spectrum of produced cytokines (Jäger, 

Dardalhon, Sobel, Bettelli, & Kuchroo, 2009). These knowledges together suggested that 

the heterogeneity of lesions present in patients with MS could be a consequence of different 

autoreactive T cell subtypes. Due to the important roles of T cells in MS emergence 

(described in the previous paragraphs), some of which were also suggested by GWAS 

(IMSGC, 2013, 2019b), it would be important to decipher which of the EAE models can 

better capture the role of TH1 and TH17 cells.  

 

1.6 Genetic influence on MS susceptibility 

Genome wide associations studies (GWAS) have revealed over 230 genome-wide loci 

associated with MS risk (IMSGC, 2019a). Most of the loci map to the highly polymorphic 

MHC region, coding for human leukocyte antigen (HLA) genes. There are two major 

classes of HLA genes, the class I and class II. Both classes code for the molecules on the 

cell surface, included in adaptive immune response. These molecules participate in antigen 

internalization, processing, and presentation of the peptides to T cells (Jill A. Hollenbach 

& Oksenberg, 2015). The classical class I HLA molecules (HLA-A, HLA-B, and HLA-C) 

are found on all cells with nucleus and they present peptides to the CD8+ T cells. These 

peptides are mostly derived from endogenous proteins (e.g., viral peptides). On the other 

hand, the classical class II HLA molecules, HLA-DR, HLA-DQ, and HLA-DP are found 

on APCs like B cells, dendritic cells, and macrophages and they present peptides to CD4+ 

T cells (Jill A. Hollenbach & Oksenberg, 2015). The non-classical class II genes, the DM 

and DO, are involved in the peptide binding groove editing, influencing the binding and 

the release of the peptides (Welsh & Sadegh-Nasseri, 2020). Wucherpfennig and Sethi 

(Wucherpfennig & Sethi, 2011) suggested that the high level of polymorphisms in MHC 

region is one of the main factors linking the HLA genes to human diseases. The 

polymorphisms affecting the structure of the peptide binding groove might play the key 

role in deciding which self-peptides will be presented to T cells, therefore either promoting 

or preventing the autoimmune response (Wucherpfennig & Sethi, 2011). 

 

The DRB1*15:01 allele of the class II DRB1 gene constitutes the strongest risk for MS, 

with odds ratio (OR) of 7 or more in homozygous high risk carriers, and between 3.5 and 

5 in heterozygotes (Baranzini & Oksenberg, 2017). The association between the 

DRB1*15:01 allele and expression of DRB1 gene has been shown before (Alcina et al., 

2012). Alcina and the colleagues (Alcina et al., 2012) suggest that the higher expression of 

class II HLA genes could contribute to higher number of HLA heterodimers exposed on 

the cell surface. As a consequence, this could promote stronger activation signals for T 

cells, contributing to the inflammatory response. Furthermore, a study comparing 

expression levels of genes in the brain tissue between the groups of MS patients carrying 

the  DRB1*15:01 allele and those not carrying the allele showed that the variant influenced 

the expression of nine genes, including the DRB1 and IL18R1, the interleukin receptor (Enz 

et al., 2020).  

 

The first genetic variants discovered outside of the MHC region were found in genes IL2RA 

and IL7RA (IMSGC, 2007), both of which code for receptor subunits found on immune 

cells, e.g., on T cells. Many polymorphisms in genes with immunological functions like 



 

  

8 

CXCR5 (C-X-C motif chemokine receptor 5; IMSGC, 2007) or TNFRSF1A (tumor necrosis 

factor receptor) were also found to be associated with MS (IMSGC, 2007). A large 

proportion of MS-associated variants is located in the noncoding regions of the genome, 

some even distant from any gene (Baranzini & Oksenberg, 2017), thus making it harder to 

explain the background of their association with MS. 

 

It has been several decades since the first HLA genes associated with MS have been found, 

but their role in disease pathology still remains ambiguous, even though studies with many 

thousands of individuals have been performed (Baranzini & Oksenberg, 2017). One way 

to functionally annotate GWAS findings is to examine the effect of variants on expression 

levels of gene in the proximity of the variant, that is, to find the expression quantitative trait 

loci (eQTL). But, such SNP-gene associations never act alone, they are a part of the bigger 

system and probably have further downstream effects. Several gene ontology and network 

analyses of MS associated variants were performed revealing an overrepresentation of 

immune-cell associated genes, and in particular those which are T cell-associated (IMSGC, 

2013, 2019a; IMSGC & WTCCC, 2011; Patsopoulos & De Bakker, 2011), thereby 

showing the potential of network based approaches in studying a complex disease like MS 

as well as underlining the complexity of the immune response producing the disease.  
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2 | Gene Expression in Spontaneous Experimental 
Autoimmune Encephalomyelitis is Linked to Human 
Multiple Sclerosis Risk Genes 

 

This chapter describes the work published in the journal Frontiers in Immunology, section 

Multiple Sclerosis and Neuroimmunology, in September 2020 (Faber et al., 2020). I am the 

shared first author of the publication.  
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2.1 Research questions 

The importance of genetic component in human MS has become prominent in the past 20 

years, which calls for a reassessment of the currently used mouse models for studying 

human MS. Can we find significant enrichments of human MS risk genes in genes specific 

for either actively induced or spontaneously developing EAE? Which of the two models, 

the spontaneous opticospinal EAE or the MOG-induced EAE models human MS more 

faithfully? What is the scope of gene expression differences in TH1 and TH17 cell specific 

transcripts in both EAE models? 

 

2.2 Motivation 

Mouse models are commonly used to study the pathophysiology of human diseases, 

including MS. Both actively and spontaneously induced EAE models are valuable animal 

representatives of human MS, yet translation of EAE research to mechanisms of MS in 

humans remains controversial. At the moment, there are no experimental models covering 

the complete spectrum of clinical, pathological, and immune characteristics of MS. In the 

context of this thesis, the gene expression of EAE mice for which EAE was actively 

induced by injecting the MOG35-55 peptide was compared to double transgenic mice 

developing the EAE spontaneously, in order to examine the potential discrepancies. 

Comparing the role of TH cells in both models as well as finding the extent of the overlap 

between human MS risk genes and the differentially expressed genes could indicate which 

of the two models resembles human MS better.  
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2.3 Background 

Animal models enable the research of human autoimmune disorders and are of paramount 

importance especially when the human tissue is not available or hard to extract, like, for 

example, brain tissue in MS research. Yet, it is still not clear whether mouse models for 

human diseases can adequately mirror complex disorders like the human MS, for which 

both the environmental and the genetic component contribute to disease susceptibility. The 

mouse models should ideally develop the disorder spontaneously and correctly represent at 

least part of the disease characteristics (Krishnamoorthy et al., 2007). In this project, we 

wanted to compare the MOG-induced EAE to opticospinal EAE (OSE). Differential 

expression analysis and pathway overrepresentation analysis were employed with the aim 

of investigating the following two major aspects: First, to understand the relationship 

between human MS and EAE models better, it was examined to which extent two currently 

used murine models resemble the immune system processes important in human MS. 

Second, the differential expression of TH-cell specific transcripts was investigated in 

actively induced EAE and OSE. Finally, the scope of overrepresentation of human MS risk 

genes in both models was explored via enrichment tests and permutation analysis. 

 

2.3.1 Exploring the scope of gene expression variability in the data  

A common way to explore differences in gene expression between groups of interest is to 

apply linear models for microarray data (limma). This approach is implemented in the 

limma package in R (Ritchie et al., 2015). The method enables the analysis of gene 

expression data as a whole, not just by pairwise gene comparisons. Such methodology has 

been proven advantageous especially in a small sample data setting because it facilitates 

borrowing information across genes, therefore resulting in more stable estimates of 

variance (Smyth 2004).  

 

Following the paper from Smyth (Smyth 2004), the gene expression data is represented as 

a numerical matrix where rows of the matrix are individual transcripts’ gene expression 

levels and columns are the samples. To be able to fit the linear model, a design matrix D is 

created, representing the distribution of different transcripts across the groups. Next, the 

matrix of contrasts C provides information on which groups we want to compare. We 

assume that  

 

 𝐸[𝑦𝑔] = 𝐷𝛼𝑔 (2.1) 

 

where 𝑦𝑔 contains gene expression data for the gene g, D is the design matrix and 𝛼𝑔 is the 

vector of the coefficients. By fitting the model to the response for each gene, coefficient 

estimators �̃�𝑔 and an estimator 𝑠𝑔
2 of the standard deviation 𝜎𝑔

2 are calculated as 

 

 𝑣𝑎𝑟(�̃�𝑔) = 𝑉𝑔𝑠𝑔
2 (2.2) 
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where 𝑉𝑔 is the unscaled covariance matrix not depending on 𝑠𝑔
2. From the linear model and 

the contrast matrix C, we obtain the 𝛽𝑔, that is, the contrast estimator 

 

  𝛽𝑔 = C𝑇�̃�𝑔 (2.3) 

with estimated covariance matrices 

 

 𝑣𝑎𝑟(𝛽𝑔) = 𝐶𝑇𝑉𝑔𝐶𝑠𝑔
2 . (2.4) 

 

Next, we test which of the contrast estimators are different than zero, that is, whether the 

expression of the gene g is significantly different for the given contrast. To assess the 

difference in gene expression, the empirical Bayes approach is applied. The empirical 

Bayes approach enables borrowing information across genes, which results in more precise 

estimates of gene expression variance. Gene expression variance is moderated in the 

following way. First, the average variance of all genes on the array is calculated and it 

constitutes the prior variance. Next, expression variance is calculated for each gene, i.e., 

the posterior variance. The posterior variance of each gene is then shrunken towards the 

average value to increase the variance estimation precision, yielding the �̃�𝑔. The moderated 

t statistic is calculated by using the shrunken variance values: 

 

 �̃�𝑔𝑗 =  
�̂�𝑔𝑗

�̃�𝑔√𝑣𝑔𝑗

  (2.5) 

 

where �̂�𝑔𝑗 is the estimated contrast coefficient for gene g and 𝑣𝑔𝑗 is jth diagonal element 

of 𝐶𝑇𝑉𝑔𝐶. In other words, √𝑣𝑔𝑗 is the unscaled standard deviation of the jth contrast for 

gene g. Moderated t statistics follows t-distribution on 𝑓0 + 𝑓𝑗 degrees of freedom, where 

extra degrees of freedom 𝑓0 are added due to the extra information borrowed from the 

whole gene set for inference about each individual gene. Therefore, the corresponding p 

values can be obtained as well, which enables ranking genes according to the scope of their 

differential gene expression.  

 

2.3.2 Overrepresentation analysis  

Over-representation analysis (ORA) is the first-generation approach to the functional 

analysis of microarray gene expression data. The method enables a statistical evaluation of 

gene set enrichment in a given pathway. Statistical evaluation is employed via the 

hypergeometric test (or Fisher’s exact test), where the degree of enrichment is calculated 

as a probability indicating that certain genes in the gene set are detected more often than 

expected by chance. The probability is given by 

 

 

 
𝑝 = 1 − ∑

(𝑀
𝑖

)(𝑁−𝑀
𝑛−𝑖

)

(𝑁
𝑖
)

𝑘−1

𝑖=0

 

 

(2.6) 
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where N is the gene universe (genes in the background distribution), M is the number of 

genes within that distribution which are annotated to the GO node of interest, n is the size 

of our list of interest and k is the number of genes in that list annotated to the node (Boyle 

et al., 2004). 

  



 

  

15 

2.4 Materials and methods 

This section presents and describes the Materials and Methods relating to and published 

in the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020). 

 

2.4.1 Materials 

2.4.1.1 Mice 

The study used mice with the C57BL/6 background which were bred in the animal facilities 

of the Max Planck Institute of Biochemistry and Neurobiology, Martinsried, Germany. 

These mice lineages were either genetically manipulated, producing the double-transgenic 

2D2 (TCRMOG) × IgHMOG OSE mice, or immunized subcutaneously with MOG peptide 

consisting of 35-55 amino acids. For the analysis of EAE models, only female mice were 

used. The standard 5-point scale (Krishnamoorthy et al., 2006; S. D. Miller, Karpus, & 

Davidson, 2010) was used to score the clinical signs of EAE in mice: 0: healthy animal; 1: 

animal with a flaccid tail; 2: animal with impaired righting reflex and/or gait; 3: animal 

with one paralyzed hind leg; 4: animal with both hind legs paralyzed; 5: moribund animal 

or death of the animal after preceding clinical disease. Following the ethically approved 

protocol from the animal welfare committee of the government of Upper Bavaria, animals 

were sacrificed when they reached the score 4. 

 

2.4.1.2  T cell differentiation 

The spleen from four OSE mice (mixed gender) was used to extract the T cells. T cells 

were then polarized in vitro as described in the research paper by Domingues and the 

colleagues (Domingues et al., 2010). In summary, four batches of four mice were used to 

isolate erythrocyte-lysed spleen cells. To generate the TH1 cells, cells were cultured in the 

presence of a MOG peptide (amino acids 1-125), IL-12, IL-1, and anti-IL-4. Additionally, 

the IL-2 was added after three days. Cells were cultured in the presence of a MOG peptide 

(amino acids 1-125), TGF-𝛽1, IL-6, IL-23, anti-IL-4, and anti-IFN-𝛾. The IL-23 was added 

to the culture after three days, generating the TH17 cells. Both types of cells were re-

stimulated after six days and harvested after nine and 12 days. Naïve TH0 cells were 

harvested on day 0. Flow cytometry, ELISA, and quantitative real-time PCR were used to 

determine the success of polarization.  

 

2.4.1.3 Microarrays 

The RNA from the spinal cord of healthy and diseased EAE mice was analyzed on the 

Sentrix BeadChip ArrayMouseWG-6 v2 (Illumina, San Diego, USA). Four chips (24 

samples, four per experimental group) were hybridized. The RNA from the TH cells was 

analyzed on the Sentrix BeadChip Array MouseWG-6 v1.1 (Illumina, San Diego, USA). 

Altogether, three chips were used (18 samples from four separate experiments: 4 × TH0, 7 

× TH1, 7 × TH17). Samples and chips from both experiments, that is, the spinal cord and the 

spleen, were processed in parallel. All microarrays fulfilled Illumina’s recommendations 

for quality control (QC). Further QC was done in R v3.2.2 (R Core Team, 2020).  

 

Bead summary gene expression data for the EAE models analysis was loaded using the 

beadarray package (Dunning, Smith, Ritchie, & Tavare, 2007), normalized and 
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transformed with the help of lumi (Du, Kibbe, & Lin, 2008) and vsn packages (Huber, Von 

Heydebreck, Sültmann, Poustka, & Vingron, 2002). Probes with a detection p value > 0.05 

in >10% of the samples were removed. The illuminaMousev2.db package enabled filtering 

out probes based on their annotated quality. Probes annotated as “no match” or “bad” were 

removed. After the QC, the dataset consisted of 21,483 transcripts. For the TH cells analysis, 

the limma package (Ritchie et al., 2015) was used to load the summary data. The data was 

processed as described previously, with the illuminaMousev1p1.db package used to filter 

out probes based on their annotated quality. After the procedure, 17,858 transcripts 

remained.  
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2.4.2 Methods 

2.4.2.1 k-means clustering  

k-means is a method for unsupervised clustering, for which the number of clusters needs 

to be specified before the run. Cluster centers are assigned randomly in the first run, and in 

the following runs, the data point is clustered with its nearest mean, thereby minimizing 

the within-cluster variance (Macqueen, 1967). The kmeans function in R was employed to 

capture the variance of four clusters in the data, representing the healthy mice (OSE0, CFA, 

and WT), the mice with the OSE score 1 (OSE1), OSE score 4 (OSE4), and MOG 4 (MOG4). 

The clustering was run for one-hundred independent times, and for each run, cluster centers 

were assigned randomly. 

 

2.4.2.2 Differential gene expression 

To explore the gene expression differences between spontaneous and induced EAE, six 

mouse types (with four mice each) were examined: the wildtype (WT); healthy OSE 

controls (OSE0); OSE mice with disease score 1 (OSE1); OSE mice with disease score 4 

(OSE4). These are followed by the MOG EAE control mice, which are healthy mice 

injected with complete Freund’s adjuvant but not with a MOG peptide (CFA); and lastly, 

the MOG35-55  EAE mice with disease score 4 (MOG4), which are the C57BL/6 wildtype 

mice injected with adjuvant and the MOG35-55 peptide. The six mouse types were used to 

build a design matrix for the differential expression analysis. Four chips were used to 

measure the gene expression, and each chip contained one sample per mouse type. To 

account for the random effects due to sample positioning on the chip, chip labels were 

added to the linear model via the duplicateCorrelation function from the limma package. 

By fitting the linear models and applying the moderated t-tests, the following  five contrasts 

were compared: MOG4-CFA, CFA-WT, OSE4-OSE0, OSE1-OSE0, and OSE4-WT. For the 

TH cell analysis, the data from day 9 of the three cell types was used to create a design 

matrix: naïve TH0, TH1 and TH17. Four mouse pools were included as random effects in 

the model. The difference in gene expression was analyzed in two contrasts: TH1 vs. TH0 

and TH17 vs. TH0. 

 

2.4.2.3 Overrepresentation analysis  

ORA was applied on differentially expressed sets of genes when comparing EAE models 

and genes differentially expressed in the TH cell comparison. The analyses were conducted 

using the WebGestalt v2019 package in R (Y. Liao, Wang, Jaehnig, Shi, & Zhang, 2019), 

with genome protein-coding genes as a background. For this purpose, DE transcripts were 

uniquely mapped to Entrez IDs. The hypergeometric test was used to determine the 

significance levels, and Benjamini-Hochberg FDR was used to account for multiple testing 

(Benjamini & Hochberg, 1995).  

 

2.4.2.4 Enrichment tests – permutation analysis 

In order to explore in which sets of differentially expressed genes of EAE models we find 

an enrichment of, e.g., MS susceptibility genes or TH-specific genes, enrichment tests in R 

were implemented as described hereafter. For each tested group, differentially expressed 

transcripts were mapped to unique set of Entrez IDs. In the first step, the number of 
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differentially expressed genes was determined, and the random set of genes of the same 

size was selected. In the second step, the test set was selected, which comprised either MS 

susceptibility genes or TH-specific genes. Then the overlap between the genes in the 

random set and the test set was determined. Random gene set shuffling was repeated 

100,000 times. Enrichment p-value was calculated by counting the number of times the 

overlap between the random set of genes and the test set was equal to or bigger than the 

overlap between differentially expressed genes and test set, and dividing by the number of 

permutations. When testing for the enrichment of human MS susceptibility genes, the most 

recent list of such genes was used. IMSGC Consortium (IMSGC, 2019b) published a list 

of 558 MS susceptibility genes outside of the MHC region (Supplementary Table 18 of the 

cited paper). Genes CTB-50L17.10, RP11-345J4.5, JAZF1-AS1, ZEB1-AS1, GATA3- AS1, 

SSTR5-AS1, and RPL34-AS1 were excluded from the list, leaving 551 putative MS 

susceptibility genes described in the IMSGC publication. 
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2.5 Results 

This section presents and describes the Results published in the research paper by Faber, 

Kurtoic, and the colleagues (Faber et al., 2020). 

 

2.5.1 Disease-relevant gene expression changes successfully identified by k-means 
clustering 

Gene expression profiles of the total spine cord samples from two EAE models, OSE and 

MOG35-55 EAE, were compared. In OSE mice, the autoimmune response in the CNS 

manifested itself predominantly in the lumbar part of the spinal cord. MOG35-55 peptide was 

injected in C57BL/6 wildtype animals, thereby actively inducing the EAE. The gene 

expression variation patterns between the healthy (OSE0, CFA, and WT) and the diseased 

(OSE score 1 (OSE1), OSE score 4 (OSE4), and MOG 4 (MOG4)) animals were examined 

by analyzing the first two principal components (PCs) of gene expression data. The two 

PCs showed clear separation between healthy and diseased animals, with healthy mice 

clustering together (Figure 2.1 A). More variation in gene expression levels was observed 

in OSE4 mice than in MOG4 mice. This reflects the spontaneous nature of the OSE 

development, while the course of EAE in MOG-induced animals is usually more 

stereotypic (Krishnamoorthy et al., 2006). To further support these findings, the 

unsupervised k-means clustering was run with one-hundred different random starting 

centers. In 97 out of 100 replications, healthy and diseased animals were put into different 

clusters (Table 2.1, Figure 2.1 A). The first two PCs were employed to visualize the cluster 

distribution. In the most frequent cluster solution (34/100),  all healthy mice were clustered 

in cluster 1, OSE1 animals were grouped in cluster 2, all OSE4 animals in cluster 3, while 

cluster 4 comprised of the rest of the animals.  

 
Table 2.1 Frequencies of six different cluster solutions after 100 k-means runs and whether healthy mice were 

clustered apart from the diseased mice.  

 Figure source: the supplement of the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020) 

 

Clustering solution 
Frequency (out of 100 

runs) 

Healthy and diseased 

animals clustered apart 

Solution 1 34 TRUE 

Solution 2 30 TRUE 

Solution 3 22 TRUE 

Solution 4 10 TRUE 

Solution 5 3 FALSE 

Solution 6 1 TRUE 

 

 

2.5.2 OSE mice exert more prominent gene expression changes 

To examine gene expression differences between OSE and MOG EAE mice, five contrasts 

were introduced: OSE1-OSE0, OSE4-OSE0, MOG4-CFA and the two control contrast CFA-

WT and OSE0-WT (Figure 2.1 B). There were no differentially expressed transcripts in the 

control contrast CFA-WT. Transcript mapping to the T cell receptor alpha chain (Tcra) 

was the only transcript differentially expressed between the OSE0 and WT mice, and was 

also upregulated in all the other contrasts, except for the contrast CFA-WT. There were 
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more significantly differentially expressed transcripts between OSE4  and OSE0 mice (n = 

5,555) than between MOG4 and CFA (n = 3,182). The expression of altogether 864 

transcripts differed significantly between MOG4  and OSE4  animals (Figure 2.1 B). 

Furthermore, in OSE4-OSE0 contrast only, there were 4.88 × more transcripts differentially 

expressed when compared to the MOG4 -CFA contrast (Figure 2.1 B). More prominent 

global gene expression changes were observed within OSE4-OSE0 contrast than in OSE1-

OSE0 (binomial test: p value = 1.4 × 10−65 for all transcripts, p value = 9.9 × 10−119 for 

transcripts differentially expressed in both contrasts, Figure 2.1 C) or MOG4-CFA (p value 

= 5.8 × 10−3 for all, p value = 2.7 × 10−221 for differentially expressed transcripts, Figure 

2.1 D).  
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Figure 2.1 Differential expression analysis of OSE and MOG EAE animal models.  

Figure from the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020). 

(A) The first two principal components (PCs) of gene expression data grouped by k-means clustering (the most frequent 

cluster solution, 34/100). In 97 out of 100 runs, all WT, OSE0, and CFA mice were grouped in a separate cluster from 

the diseased animals. PC – principal component; SD – standard deviations. (B) Venn diagram visualizing the number of 

differentially expressed transcripts in five analyzed contrasts. (C, D) OSE4 mice showed stronger fold changes of gene 

expression levels than (C) OSE1 and (D) MOG4 mice, each compared to its control (OSE0 and CFA, respectively).  On 

the plots, for each group, the top 10 differentially expressed genes with Entrez IDs are labelled. For some genes, there 

were two probes hitting the gene and both were present in the top 10 differentially expressed transcripts. In such cases, 

both of the probes were plotted, but the gene name itself was counted once. Group-color legend: differentially expressed 

in OSE1 only (light magenta), differentially expressed in OSE4 only (dark magenta), differentially expressed in MOG4 

only (red), differentially expressed in (C) both OSE1 and OSE4 or (D) both MOG4 and OSE4 (brown; with higher 

expression levels observed for OSE4).  

 

2.5.3 OSE-related genes especially enriched in immune system processes  

In order to further describe the expression changes in the two EAE models, ORA was 

applied on the differentially expressed transcripts (Supplementary Table 3 in the paper by 

Faber, Kurtoic, and the colleagues (Faber et al., 2020)) divided into groups, which was 

presented in the Table 2.2 (Figure 2.2).  
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Table 2.2 Description and abbreviations of groups representing differentially expressed transcripts. 

Group description Abbreviation 

transcripts differentially expressed for 

both contrasts OSE4-OSE0 and MOG4-

CFA, but not in the two control contrasts 

OSE0-WT or CFA-WT. 

common disease transcripts (CDT) 

differentially expressed  for the OSE4-

OSE0 contrast, but not for the MOG4-CFA 

or the control contrasts 

OSE4-specific transcripts (OSE4sp) 

differentially expressed in OSE1-OSE0 but 

not in the control contrasts 
OSE1-expressed transcripts (OSE1ex) 

differentially expressed for MOG4-CFA, 

but not for OSE4-OSE0 or the control 

contrasts 

MOG4-specific transcripts (MOG4sp) 

 

For the CDT set, 1,379 redundant GO biological processes remained significant after 

adjusting for multiple testing. Gene sets immune response, regulation of immune system 

process, and T cell activation were among top associated terms (adjusted p value < 2 × 10-

16, Figure 2.2). These processes were also significant in the OSE4sp (adjusted p value ≤ 3.5 

× 10-2), together with other immune system related terms. On the other hand, no immune 

system related process was significant for MOG4sp. Hence, the gene expression changes 

of the immune system were more strongly triggered in the OSE model than in the MOG-

induced EAE.  

 

2.5.4 Mice with mild disease score of 1 show activation of adaptive immune system 

As already mentioned, mice developing OSE exert a slower clinical disease course with 

more variability between animals, unlike MOG EAE mice, which develop the disease more 

rapidly (Krishnamoorthy et al., 2007). For that reason, the OSE poses a good model to 

study the disease at different stages. Mice with a mild disease score of 1 (OSE1) were 

compared to OSE0 mice, and 34 transcripts were found to be differentially expressed in 

specifically OSE1 animals, and not in any other contrast. However, no significant GO 

biological processes were associated with the 34 transcripts (OSE1-specific transcripts 

(OSE1sp)), which are potentially representative of changes happening in the early stage of 

the disease. Nonetheless, it was observed that the transcripts differentially regulated in the 

OSE1  and OSE4 showed the same direction of regulation compared to OSE0 (binomial test 

p value = 4.36 × 10-252, 95% CI 0.995-1.0, Supplementary Table 3 in the paper by Faber, 

Kurtoic, and the colleagues (Faber et al., 2020)). Furthermore, for transcripts differentially 

expressed in OSE1-OSE0 but not in the control contrasts (OSE1-expressed transcripts 

(OSE1ex), Table 2.2) and association with 805 GO terms was detected, after correcting for 

multiple testing. The three GO terms previously highlighted were present among them 

(adjusted p value  <  2 × 10-16, Figure 2.2). Interestingly, gene sets B cell mediated immunity 

and antigen processing and presentation were significantly overrepresented in both CDT 

gene set and OSE1ex, a finding potentially revealing a role of B cells also in mildly affected 

OSE mice.  
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Figure 2.2  The GO enrichment analysis of differentially expressed genes. 

Figure source: the supplement of the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020)  

Plots show top 40 GO terms which are descendants of the term Immune System Process associated with differentially 

expressed transcripts grouped in the following groups (A) CDT, (B) OSE4sp, (C) OSE1ex. There were no GO terms that 

are descendants of the term Immune System Process significantly overrepresented for the group MOG4sp. The -

log10(FDR) is estimated from the hypergeometric test via the ORA analyses. Bars of the plot are colored corresponding 

to the -log10(FDR). Darker color corresponds to the lower FDR value. The descriptions of group abbreviations are found 

in Table 2.2. 

 
2.5.5 Overrepresentation of MS susceptibility genes among transcripts expressed in 
OSE 

There have been over 230 MS-associated genetic variants identified via GWA studies 

(Andlauer et al., 2016; IMSGC, 2019b). Recently, a genetic association study using the 

genetic data from over 47,000 MS cases and over 68,000 healthy individuals was 

performed (IMSGC, 2019b). In the study, the functional impact of uncovered variants was 

evaluated in-depth, presenting a list of 551 putative human MS susceptibility candidate 

genes. In the data set analyzed in this work, gene expression from 499 transcripts mapping 

to 265 genes was available. PCA was conducted on these transcripts, where first component 

explained 75.7% of the variance in expression of these transcripts. Therefore, first PC was 

used to analyze whether the expression of MS susceptibility genes was increased in the 

EAE models. It was observed that the first PC was significantly higher in all diseased 

groups than in controls. Therefore, the levels of MS-associated genes were highly 

expressed in EAE, with highest levels observed in OSE4 mice (Figure 2.3 A, 
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Supplementary Table 6 in the paper by Faber, Kurtoic, and the colleagues (Faber et al., 

2020)). To further support this, individual MS risk genes, e.g.,  H2-Ab1, Cd52, and Cd86 

(Andlauer et al., 2016; IMSGC, 2019b) were analyzed, together with the putative MS-

associated genes like Cd74. All of them were among transcripts exerting the lowest 

differential expression p values and significantly upregulated in all diseased mouse types, 

namely the OSE1, OSE4, and MOG4 (Figure 2.1 C-D, Figure 2.3 B-D, Supplementary Table 

5 in the paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020)). Additionally, 

differentially expressed genes from sets CDT, OSE4sp, and OSE1ex were significantly 

enriched for MS risk genes, while genes in the MOG4sp set did not show such enrichment 

(Table 2.3). Hence, in comparison to the MOG induced EAE model, the OSE model might 

be more closely connected to the human MS etiology. 

 

 

 

 
Figure 2.3 MS risk genes show a higher expression in diseased EAE mice, particularly in the OSE.  

Figure source: the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020)  

(A) First PC of gene expression levels of MS risk genes. Diseased animals exert higher MS risk gene expression levels. 

Examples of expression levels of three putative MS risk genes, H2-Ab1, Cd52, and Cd86. (B-D) Significantly higher gene 

expression levels of all three MS risk genes were observed in diseased mice, with strongest effect for OSE4 animals. PC 

= principal component (y-axis unit: standard deviations); Significance levels: *** adjusted p value < 0.001. 
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Table 2.3 Enrichments of MS susceptibility genes.  

Table source: the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020)  

The 265 MS risk genes present in the data were tested for enrichment via permutation analysis. Enrichment p values 

were computed based on 100,000 permutations and adjusted for multiple testing via the Holm-Bonferroni correction. 

Significant results are presented in bold font (adj. p value < 0.05). The descriptions of the DE transcript groups can be 

found in Table 2.2. DE = differentially expressed; WT = wildtype; adj. p-value = adjusted p value.  

 

DE transcript group DE genes Overlapping genes p value adj. p value 

CDT 2014 68 <1×10-5 <4×10-5 

OSE4sp 2362 68 4.4×10-4 8.8×10-4 

MOG4sp 469 11 3.2×10-1 3.2×10-1 

OSE1ex 693 34 1.0×10-5 4.0×10-5 

 

2.5.6 Gene expression of transcripts specific for TH1 cells is more prominent in OSE 
mice 

With TH cell differentiation pathway being highlighted as a crucial pathway involved in 

MS etiology (IMSGC & WTCCC, 2011), the relationship between gene expression 

changes in EAE models and TH cell differentiation was further examined. T cells from the 

spleen of OSE mice were in vitro polarized. The gene expression of TH1 and TH17 cells 

was compared to the gene expression of naïve TH0 cells. There were 8 × more transcripts 

differentially expressed specifically in TH1 than in TH17 cells (Figure 2.4 A). All transcripts 

differentially expressed in TH1 and TH17 cells were regulated in the same direction.  

 

Differential expression analysis revealed 1,080 transcripts significantly differentially 

expressed in TH1 cells and 145 transcripts in TH17 cells. It was further examined whether 

the TH1-  and TH17-specific transcripts are more strongly expressed in diseased mice than 

in controls. The PCA was applied on the sets TH1- and TH17-specific transcripts, in which 

case the first component explained 49.6% and 68.6% of the variance, respectively. In both 

cases, the PC1 was significantly higher in all diseased groups than in the controls, with the 

difference being most prominent in OSE4 animals (Figure 2.4 B-C, Supplementary Table 

7 in the paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020)). Signature 

molecules for TH1 cells were examined as well, and Tbx21 (T-bet) was significantly 

upregulated in all diseased mice. In OSE4 mice, Ifng was upregulated as well (Figure 2.4 

D, Supplementary Table 8 in the paper by Faber, Kurtoic, and the colleagues (Faber et al., 

2020)). The same analysis was performed for marker molecules of TH17 cells, where only 

Il17f was upregulated in OSE4. In addition, Rorc and Il17a were tested. However, none of 

them were differentially expressed (Figure 2.4 E, Supplementary Table 8 in the paper by 

Faber, Kurtoic, and the colleagues (Faber et al., 2020)).   
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Furthermore, the gene expression of TH1 and TH17 specific transcripts was examined in 

CDT, OSE4sp, OSE1ex, and MOG4sp gene sets. After adjusting for multiple hypothesis 

testing, the transcripts specific for CDT, OSE4sp, and OSE1ex groups were significantly 

enriched for both TH1 and TH17-specific transcripts (Table 2.4). In the MOG4sp gene set, 

the sizes of the overlaps were lower and significant for TH1-specific transcripts only. These 

data indicate that TH cell-mediated immune responses associated with MS seem to be more 

prominent in OSE than in MOG-induced model. 
 

Table 2.4 Examining the extent of overlap between TH-specific transcripts and four gene sets, namely the CDT, 

OSE4sp, OSE1ex, and MOG4sp. 

Table source: the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020)  

P values were computed based on 100,000 permutations. Enrichments significant after the Holm-Bonferroni multiple 

testing correction for eight tests are presented in bold font (adjusted p-value < 0.05). The descriptions of the DE transcript 

groups can be found in Table 2.2. DE = differentially expressed; WT = wildtype. 

 

DE transcript group DE genes Cell type Overlapping genes p value 
adj. p 

value 

CDT 2014 
TH1 150 <1×10-5 <8×10-5 

TH17 28 2.0×10-2 4.0×10-2 

OSE4sp 2362 
TH1 195 <1×10-5 <8×10-5 

TH17 36 2.0×10-3 8.0×10-3 

MOG4sp 469 
TH1 35 1.1×10-2 3.3×10-2 

TH17 7 9.8×10-2 9.8×10-2 

OSE1ex 693 
TH1 61 2.0×10-5 1.2×10-4 

TH17 16 1.0×10-3 5.0×10-3 

 

Next, it was explored whether EAE-associated genes differentially expressed in TH1 or 

TH17 cells were related to human MS. Each of the four gene sets was intersected with both 

TH1 and TH17-specific genes, generating altogether eight additional gene sets. Pathway 

analyses revealed that pathways involved in immune response were overrepresented for 

CDT, OSE4sp, and OSE1ex genes intersected with TH1-specific genes (Figure 2.5). For the 

sets representing intersects with TH17-specific genes no terms were found. The same result 

was observed for intersection between MOG4sp gene set and TH1-specific genes.  
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Figure 2.4 TH1 and TH17 specific genes show higher expression in disease EAE mice, especially in OSE4.  

Figure source: the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020) 

(A) Venn diagram showing the number of differentially expressed genes in two contrasts, TH1-TH0 and TH17-TH0. Here, 

up- and downregulated transcripts were analyzed separately, and transcripts differentially expressed in opposing 

directions are therefore included in the counts. PCA was run on the transcripts differentially expressed in TH1 (B) and 

TH17 cells (C). In diseased mice levels of T-cell-specific transcripts were higher (Supplementary Table 7 in the paper by 

Faber, Kurtoic, and the colleagues (Faber et al., 2020)). Gene expression of TH1 signature molecule Tbx21 (D) was 

significantly higher in diseased mice. On the other hand, when signature molecules for TH17 were analyzed, only Il17f 

showed differential expression, an effect present in OSE4 mice only. Significance levels: * adjusted p <0.05, ** adjusted  

p <0.01, *** adjusted  p <0.001. 
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Lastly, the enrichment of MS risk genes was examined in the eight lists. After correcting 

for multiple testing, the CDT and OSE1ex genes differentially expressed in TH1 cells were 

significantly enriched for the MS risk genes (p value < 7 × 10-4, Table 2.5). The enrichments 

for OSE4sp, TH17-specific gene sets and MOG4sp were not considered significant after the 

multiple testing procedure. In conclusion, gene expression changes observed in OSE model 

include risk genes for human MS, an effect observed especially in TH1 cells. In MOG-

induced EAE, the effect was of a much smaller scope. 

 

 
Figure 2.5 The GO enrichment analysis of differentially expressed transcript groups intersected with TH1-specific 

transcripts.  

Figure source: the supplement of the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020) 

The plots show the top 40 overrepresented GO terms that are descendants of the term Immune System Process for the 

transcript groups (A) CDT intersected with TH1-specific genes, (B) OSE4sp intersected with TH1-specific genes, (C) 

OSE1ex intersected with TH1-specific genes. Note that no GO terms were significantly overrepresented for any TH17-

specific or MOG4sp genes. The descriptions of the DE transcript groups can be found in Table 2.2. The -log10(FDR) 

from hypergeometric tests is shown on the x-axis and used for coloring the plots (darker colors represent lower FDRs). 
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Table 2.5 Enrichment of the putative MS risk genes among TH cell-specific transcripts. 

Table source: the research paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020)  

The p values are estimated based on 100,000 permutations. Results significant after applying the Holm-Bonferroni 

method for multiple hypothesis testing (0.05/8) are presented in bold font (adjusted p value < 0.05). The descriptions of 

the DE transcript groups can be found in Table 2.2. DE = differentially expressed; WT = wildtype. 

 

DE transcript 

group 

Cell 

type 

EAE TH cell 

list size 

Overlapping 

genes 
p-value 

adj. p-

value 

CDT 
TH1 150 10 6.5×10-4 5.2×10-3 

TH17 30 3 2.1×10-2 1.1×10-1 

OSE4sp 
TH1 215 10 9.7×10-3 5.8×10-2 

TH17 41 3 4.7×10-2 1.6×10-1 

MOG4sp 
TH1 37 1 5.1×10-1 5.1×10-1 

TH17 7 1 1.3×10-1 2.6×10-1 

OSE1ex 
TH1 60 6 1.1×10-3 7.7×10-3 

TH17 16 2 3.9×10-2 1.6×10-1 
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3 | A differential network approach to explore the 
influence of genetic variation on gene expression in the 
early stages of multiple sclerosis 
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3.1 Research question  

Over 230 genomic loci associated with multiple sclerosis susceptibility have been 

identified in genome-wide association studies. However, we still lack the knowledge about 

the underlying biology of these genetic effects. In this work, it was hypothesized that 

genetic variation influences the regulation in gene co-expression networks. Contrasting 

such networks might provide deeper insights into fundamental differences between 

subgroups of MS patients and help identify patterns in the development of the disease. 

 

3.2 Motivation 

The translation of genome wide association studies into functionally relevant biology poses 

a tedious task. The differential network approach is considered a promising tool in that 

aspect because it enables the analysis of interactions between genes. Gaussian graphical 

models, which represent a method for sparse graph estimation estimating the conditional 

dependence between variables, has already shown promising results in metabolomics 

(Krumsiek, Suhre, Illig, Adamski, & Theis, 2011; Trinh Do et al., 2014), breast cancer 

research (Dobra et al., 2004), as well as in transcriptomics (de la Fuente, Bing, Hoeschele, 

& Mendes, 2004; Schäfer & Strimmer, 2005c). When studying the gene expression data, 

the method enables finding directly associated gene expression profiles, which might be 

crucial in detecting pathways mediating the effect of genetic variation on disease 

development. It is important to discern the mechanisms of genetic influence on gene 

expression in the early stages of the disease in order to better understand the disease 

etiology as well as to develop a more personalized route for MS diagnosis and treatment. 

The workflow for the differential network analysis presented in this work can be employed 

to analyze other complex diseases as well, and, for example, compare cases and controls or 

gene expression data from treated and untreated individuals in order to find differences in 

pathway regulation. 
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3.3 Finding patterns in gene expression data 

In this work, the effect of genetic variation on gene expression data from MS patients was 

investigated, with all the patients in the early stages of the disease or diagnosed with 

clinically isolated syndrome (CIS). Groups of patients differing in their genetic background 

were contrasted using different approaches, with major interest in differential network 

analysis (Figure 3.1). MS-associated variants included in this study were preselected based 

on the previous GWAS (Andlauer et al., 2016), and patients were split into groups, 

depending on whether they carry the risk variant or not. Groups were compared on four 

different levels (Figure 3.1). First, differential gene expression was applied to grasp the 

scope of potential genetic effect on gene expression profiles. Additional layer of 

information can be added by performing the expression quantitative loci (eQTL) analysis, 

which is used to examine the impact of genetic variants on adjacent and nonadjacent gene 

expression. As an intermediate step, Pearson’s correlation matrices were calculated for 

each group to examine the variation in pure correlation. Finally, the weighted gene co-

expression network analysis (WGCNA) and the Gaussian graphical model (GGM) were 

employed to examine the effect of genetic variation on gene co-expression networks with 

the aim of identifying biologically meaningful subunits mediating the influence of genetic 

variation on the disease. 

 

 
Figure 3.1 Representation of the analysis workflow in four steps.  

For each MS-associated variant analyzed, patients were divided into two groups to explore the variant influence on  gene 

expression. Carriers = dosage > 0.5; non-carriers = dosage <= 0.5. DEA = differential gene expression analysis, 

WGCNA = weighted gene co-expression analysis, GGM = Gaussian graphical model.  The figure was created with the 

Keynote application on MacBook Pro.  
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3.3.1 Introduction to networks – biological networks 

The information in our body flows from the source of the trigger through the chain of 

chemical reactions and never stops moving. Therefore, our body system can be described 

as a network where each trigger and each response have a certain role and position. Such 

network is complex and dynamic, because there are various types of triggers and responses, 

which constantly intertwine. We can explore metabolic reactions, protein-protein 

interactions, interactions between genes, interactions between single nucleotide 

polymorphisms (SNPs), etc. However, the basic structure of all networks remains 

unchanged regardless of the matter being studied. Each network consists of nodes and links 

between the nodes. A graphical representation of a network is called a graph in 

mathematical terms. In a graph, an edge is drawn between the two nodes if two nodes are 

associated (Barabási & Oltvai, 2004). Measures of associations vary, a commonly used one 

being Pearson’s correlation and its variations. A network is further characterized by node 

degree or node connectivity – the number of connections a node in a network has formed 

with other nodes. For example, in a random network, the node degree follows the Poisson 

distribution, where all nodes have approximately the same number of edges. On the other 

hand, scale free networks are defined by a power law distribution where most of the nodes 

have very few connections and a small proportion of nodes forming a high number of 

connections holds the network together. Therefore, in such networks, there is no typical 

node which could be used to characterize the rest of the nodes (Barabási & Oltvai, 2004), 

i.e., no characteristic scale to describe the node degree values (Ravasz, Somera, Mongru, 

Oltvai, & Barabási, 2002). The power law distribution is defined as 

  

 𝑃(𝑘)~ 𝑘−𝛾  (3.1) 

  
 

where k stands for the number of connections of a node and P(k) is the probability of a node 

having k connections. In networks free of scale, new nodes are added to already established 

subnetworks, a property observed in biological networks as well. Thus, biological networks 

are considered scale free. This is a very interesting observation, because scale free networks 

show tolerance against errors while being vulnerable to deletions (B. Zhang & Horvath, 

2005). That is, removal of a small number of important nodes may be detrimental to the 

network structure. Studying biological processes in the context of graphs represents an 

important tool to explore changes in the system, both prominent and subtle.  

 

Biological networks are commonly estimated from gene expression data, because genes 

involved in the same biological pathway are either controlled by the same transcription 

factor or functionally related otherwise, and therefore have similar expression levels. These 

are the hallmarks of the guilt-by-association principle (Wolfe, Kohane, & Butte, 2005). In 

this work, gene co-expression networks were estimated using whole blood gene expression 

data from MS patients. Whole blood is commonly used as a proxy for studying disorders 

of the central nervous system (Wittenberg, Greene, Vértes, Drevets, & Bullmore, 2020), 

due to the correlation in gene transcription between human blood and the CNS.  

 

Two approaches will be employed to analyze the influence of MS-associated variants on 

gene co-regulation: the WGCNA and the GGM. The major difference between the two is 

that the GGMs account for the effect of other genes on pairwise gene associations via 

conditional independence approach. In that way, two genes have a (partial) correlation 

different than zero if they are conditionally dependent after the effects of other genes in the 



 

  

36 

network have been removed. The WGCNA, on the other hand, estimates the data driven 

soft threshold which removes spurious pairwise correlations between genes and in that way 

finds clusters of interconnected genes, exerting similar functions in the cell. 
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3.3.1.1 Weighted gene co-expression network analysis (WGCNA) 

The WGCNA enables analysis of gene co-expression networks by finding highly correlated 

subnetworks – modules. It has been shown that genes which cluster tightly within the 

module exert similar functions in the cell (Fuller et al., 2007). Following Langfelder and 

Horvath (Langfelder & Horvath, 2008), a correlation network was constructed on the basis 

of Pearson’s correlation between expression levels of genes in the gene set. Let X be an 

𝑛 ×  𝑚 matrix, where row indices correspond to network nodes (i = 1, …, n) and the 

column indices (j = 1, …, m) correspond to sample measurements 

 

 
𝑋 = [𝑥𝑖𝑗] =  (

𝑥1

𝑥2

…
𝑥𝑛

 ). 

 

(3.2) 

A network module is a set of rows of X which are highly associated. To detect such 

substructures, the adjacency matrix aij needs to be determined. The adjacency matrix fully 

specifies the network, and its elements take the values [0,1]. First, an intermediate matrix 

describing co-expression similarity sij  is defined as an absolute value of the Pearson’s 

correlation coefficient 

 

 𝑠𝑖𝑗 = | 𝑐𝑜𝑟(𝑥𝑖 , 𝑥𝑗)| . (3.3) 

 

 

By applying the threshold, we transform the intermediate matrix into the adjacency matrix. 

The cut off can be selected by applying either hard or soft thresholding. Hard thresholding 

introduces 𝜏 such that 

 

 
𝑎𝑖𝑗 = {

1  if s𝑖𝑗 ≥ 𝜏;

    0   otherwise.
 

  
(3.4) 

 

 

In that case, two genes are linked (aij = 1) if their absolute correlation exceeds the hard 

threshold 𝜏. Adjacency matrices with such binary elements are representative of 

unweighted networks. However, to be able to reflect the continuous nature of the co-

expression information, an adjacency matrix needs to be able to take continuous values 

between 0 and 1 as well. This is achieved by raising the co-expression similarity to a power 

𝛽 

 

 𝑎𝑖𝑗 = 𝑠𝑖𝑗
𝛽

.  (3.5) 

 

Hence, in weighted networks, 0 ≤ 𝑎𝑖𝑗 ≤ 1. The selection of hard and soft threshold can be 

guided by following the scale free criterion, i.e., finding such a cut off to satisfy the Eq. 

(3.5). Once the adjacency matrix is calculated, the network is defined (Langfelder & 

Horvath, 2008). The next step is to detect highly correlated network substructures – 

modules. Among other approaches, the topological overlap measure (TOM) can be 

employed (Langfelder & Horvath, 2008). The TOM enables examining gene pairs in the 

context of the network as a whole, not as an isolated quantity, as is the case when 
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calculating the adjacency matrix. Genes are described as highly topologically similar if 

they connect to the same groups of other genes in the network. Application of the TOM 

results in a similarity matrix Ω = [ω𝑖𝑗] whereby each input describes the strength of 

topological overlap for each gene pair 

 

 ω𝑖𝑗 =  
𝑙𝑖𝑗 + 𝑎𝑖𝑗

min{𝑘𝑖, 𝑘𝑗} + 1 − 𝑎𝑖𝑗

  (3.6) 

 

where 𝑙𝑖𝑗 =  ∑ 𝑎𝑖𝑢𝑎𝑢𝑗𝑢 , and 𝑘𝑖 =  ∑ 𝑎𝑖𝑢𝑢  denotes the connectivity of the node i. ω𝑖𝑗 is 

defined on the interval [0, 1], whereby ω𝑖𝑗 = 1 if the node with fewer connections satisfies 

the following conditions: (i) neighbors of two nodes completely overlap and (ii) the two 

nodes are connected. ω𝑖𝑗 = 0 if two nodes i and j do not share neighbors and are not 

connected (B. Zhang & Horvath, 2005). Next, the dissimilarity matrix is calculated 

 

 𝑑𝑖𝑗
𝜔 = 1 − 𝜔𝑖𝑗.  (3.7) 

 

The dissimilarity matrix d is used as a distance matrix for hierarchical clustering. The 

results of the hierarchical clustering can be visualized by a dendrogram where tree branches 

correspond to modules, i.e., groups of genes showing high topological overlap. 

Traditionally, the dendrograms are cut on a fixed height, whereby the user defines the 

height of the cutting point. The challenge here is selecting the cutting point in the tree. One 

alternative to fixed branch height cut is the dynamic tree cut method (Langfelder, Zhang, 

& Horvath, 2009).  Dynamic cut tree method is based on analyzing the shape of the 

branches on the dendrogram. A series of cluster decompositions and combinations is run 

to find the stable number of clusters. Dendrogram heights and reference heights 𝑙𝑚, 𝑙𝑢 and 

𝑙𝑑 are defined. First, the tree is cut on the height 𝑙𝑚, which is typically very high, resulting 

in a small number of big clusters. The dendrogram of each cluster is further cut separately, 

according to the reference heights. If new clusters are created during the process, the 

algorithm is repeated. The procedure is run until no new clusters appear. The resulting 

modules can be finally processed by merging those which still show high degree of 

correlation. The variation of each module can be summarized by calculating the module 

eigengene (ME), which is the first principal component of gene expression matrix of a 

given module. MEs can then be used as module representatives and the correlation with 

phenotypic traits can be explored. In such a way, the multiple testing problem is greatly 

alleviated.  

 

3.3.1.1.1 Module preservation 

Module preservation is a procedure of comparing module topology between the reference 

and the test group (Langfelder, Luo, Oldham, & Horvath, 2011). If we have strong evidence 

that the topology of the module is preserved between the reference and the test network, 

we can say that the respective module does not show group-specific network 

characteristics. Depending on the question, applying such technique can help in finding 

modules which distinguish different conditions, e.g., the human brain and blood tissue (Cai 

et al., 2010) or human and mouse brains (J. A. Miller, Horvath, & Geschwind, 2010).  

Network statistics which reflect the potential module preservation are as follows: density-

based preservation statistics, separability-based and connectivity-based. Density-based 

preservation statistics determine whether module nodes remain highly connected in the test 

network, while separability-based statistics determine whether network modules remain 
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separated from another in the test network (Langfelder et al., 2011). Furthermore, according 

to the paper by Langfelder and the colleagues (Langfelder et al., 2011), density-based 

statistics outperform the separability-based approaches in discriminating module 

preservation. Connectivity-based preservation statistics compare the node connectivity 

pattern of the two networks of interest. When calculating different preservation statistics, 

the results often don’t fully match, and it is therefore useful to aggregate different module 

preservation statistics into a summarized preservation statistics, the Zsummary 

 

 𝑍𝑠𝑢𝑚𝑚𝑎𝑟𝑦 =  
𝑍𝑑𝑒𝑛𝑠𝑖𝑡𝑦  +  𝑍𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦

2
. (3.8) 

 

A higher Zsummary statistics suggests that we have stronger evidence that our module is group 

specific. Langfelder and the colleagues (Langfelder et al., 2011) hence suggest the 

following scale to describe the strength of Zsummary statistics: if Zsummary > 10, there is strong 

evidence that the module is preserved; if 2 <  Zsummary<10 the evidence is weak to moderate 

and if Zsummary < 2, there is no evidence that the module is preserved. 

 

3.3.1.2 Gaussian graphical model (GGM) 

Genes could be weakly correlated in terms of the Pearson’s correlation, but highly related 

on the partial correlation level, for which the influence of other genes in the gene set is 

taken into account (Dobra et al., 2004). The approach employed in this work was the 

Gaussian graphical models (GGM) (Schäfer and Strimmer, 2005a), a specific graph-based 

method that explores the conditional independency between each pair of genes in a dataset. 

This method reveals direct interactions between genes based on their partial correlation, 

thereby removing potentially spurious connections between genes. The GGM has already 

shown good performance in inferring meaningful sub-networks originating from yeast gene 

expression data (de la Fuente et al., 2004). Furthermore, networks were inferred from breast 

cancer gene expression data providing evidence that genes with crucial roles in tumor 

growth and transcription factors form high number of direct connections (Schäfer & 

Strimmer, 2005b).  

 

3.3.1.2.1 Estimation of partial correlation coefficients in a small sample setting 

Obtaining a stable estimate of the covariance matrix precedes the partial correlation 

estimation and poses a problem in a big data setting. According to the standard graphical 

theory (Whittaker, 1990), the matrix of partial correlations �̃� = (�̃�𝑖𝑗) is related to the 

inverse of the covariance matrix Σ. The standard graphical theory cannot be applied in a 

“small n, big p” data setting, where n is the number of samples and p the number of 

predictors.  In bioinformatics, the accurate and reliable estimate of the  population 

covariance matrix is obtained using maximum likelihood where the covariance matrix 𝑆𝑀𝐿 

is estimated (Schäfer & Strimmer, 2005b). Further following the paper by Schäfer and 

Strimmer (Schäfer & Strimmer, 2005b), the entries of such matrices are defined as 

 

 𝑠𝑖𝑗 =
1

𝑛 − 1
∑(𝑥𝑘𝑖 − 𝑥�̅�)(𝑥𝑘𝑗 − 𝑥�̅�)

𝑛

𝑘=1

  (3.9) 

 

where 
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 𝑥�̅� =  
1

𝑛
∑ 𝑥𝑘𝑖

𝑛

𝑘=1

  (3.10) 

 

with k being the k-th observation of the variable Xi. Such data often suffers from a n<<p 

problem, whereby the number of predictors tremendously surpasses the number of samples. 

This also creates an issue with the empirical covariance matrix estimation, resulting in an 

ill-posed matrix which cannot be inverted. Such matrix is also a very poor estimate of the 

true population covariance matrix (Schäfer & Strimmer, 2005a). Schäfer and Strimmer 

(Schäfer and Strimmer, 2005b) further applied the Ledoit-Wolf lemma (Ledoit & Wolf, 

2003) to combat this problem and also implemented their approach in the GeneNet package 

in R.  The Ledoit-Wolf theorem enables the shrinkage of the covariance matrix by 

estimating the shrinkage parameter in an analytic way. Therefore, a regularized estimate of 

covariance matrix is obtained, which is well-posed. Following this, the estimated 

covariance matrix Σ̂ can be inverted. Through the intermediate matrix Ω̂, partial 

correlations are obtained 

 

 �̃�𝑖𝑗 = �̃̂�𝑖𝑗 = − 
�̂�𝑖𝑗

√�̂�𝑖𝑖 �̂�𝑗𝑗

  (3.11) 

 

where 

 
Ω̂ = (�̂�𝑖𝑗) = Σ̂−1 

 
(3.12) 

Once the partial correlation matrix is estimated, the proportion of null edges needs to be 

estimated as well. Based on the research from Schäfer and Strimmer (Schäfer and 

Strimmer, 2005a), the distribution of the observed partial correlations �̃� across edges is 

modelled as a mixture  

 

 𝑓(�̃�) = 𝜂0𝑓0(�̃� ; κ) + (1 − 𝜂0)𝑓𝐴(�̃� ). (3.13) 

 

Here, 𝑓0 is the null distribution, 𝜂0 is the unknown proportion of the indirect edges (“null 

edges”), 𝑓𝐴 is the distribution of observed partial correlations assigned to the actually 

existing edges. The characteristics of the null distribution are given in the paper by 

Hotelling in 1953 (Hotelling, 1953). Local false discovery rates (fdr) are then calculated as 

follows: 

 

 𝑝(𝑛𝑢𝑙𝑙 𝑒𝑑𝑔𝑒|�̃�) = 𝑓𝑑𝑟(�̃�) =  
�̂�0𝑓0(�̃�; 𝜅)

 𝑓(�̃�)
  (3.14) 

 

That is, the posterior probability that an edge is null given the value of �̃�. Therefore, for 

each pairwise partial correlation, posterior probabilities, and the local fdr are calculated, 

which can be the basis to select direct edges in the gene set. Such associations might be left 

undiscovered by using pure Pearson’s correlation and may indeed reflect important 

biological relationships. 
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3.3.2 The differential network approach 

The differential network analysis provides formal statistical tests to explore the change in 

network structure between the two conditions of interest (Gill, Datta, & Datta, 2010). In 

the following paragraphs, the aspects of connectivity analysis of pathway-based GGM 

networks will be introduced.  

 

3.3.2.1 GGM-based differential network analyses  

In the previous research, GGM-based networks were compared by, for example, examining 

the partial correlation of an edge or connectivity patterns of the nodes in a network. Zannas 

and the colleagues (Zannas et al., 2019) inferred pathway-based GGM network and showed 

that the signaling in the NF-𝜅B pathway is promoted by the expression changes of FKBP5 

gene, coding for a stress-responsive molecule (Zannas et al., 2019). In another example, 

the Gaussian graphical model was used to develop an approach which directly estimates 

the differential network. The approach includes rigorous statistical tests to determine the 

difference of conditional independence between two conditions (He et al., 2019). 

Furthermore, the analysis of connectivity profiles in pathway-specific GGM networks have 

been applied as well. For example, the analysis of connectivity of the Signal NOTCH1 

pathway in mice has shown that the Kat2b gene has an important role in the craniofacial 

development in mice. In neuroblastoma tumor samples, the comparison of connectivity 

profiles between the gene expression of clinically high-risk (HR) neuroblastoma patients 

and that of non HR neuroblastoma patients showed that weaker connectivity of proto-

oncogene SRC leads to metastatic behavior in HR patients (Grimes, Potter, & Datta, 2019).  

 

3.3.2.2 Differential network approach examining node connectivity 

Node connectivity or the node degree is the sum of all connections of a node in a network. 

The degree reflects the role of the gene, where functionally more important genes tend to 

have more connections. Therefore, by inspecting the connectivity of nodes in two different 

conditions, one could detect important changes in network regulation. Nodes with a 

substantial change in connectivity are suspected to have an important role in the disease 

phenotype. Exploring node connectivity in addition to differential gene expression has 

revealed genes which were overlooked when differential expression was studied alone 

(Leonardson et al., 2009; Reverter et al., 2006). This indeed makes sense, because 

regulatory function of a gene can change even without the change in gene’s expression. A 

mutation or a post-translational modification can lead to altered gene function, thereby 

changing expression of other interacting genes (de la Fuente, 2010).  

 

A very important feature when employing the GGM as a network estimator is a clear 

distinction between direct and indirect edges. One can use the following criteria to 

distinguish between the two types of edges: the partial correlation coefficient, the posterior 

probability of an edge being direct, or a q value (FDR adjusted p value). Each of the 

measures is edge specific, i.e., unique for each gene pair in the analyzed network. However, 

none of the mentioned measures enables incorporating the knowledge of the pathway 

structure in the purpose of constructing a prior. The incorporation of a good quality prior 

in the analysis can be crucial, if such a prior does exist. In this work, it was decided to select 

direct edges in the networks by using the Bayesian approach to hypothesis testing, which 
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involves the incorporation of prior knowledge when estimating the number of direct edges 

in a pathway. The approach will be explained in the next paragraphs. 

 

3.3.2.2.1 Bayes factor: incorporating informative prior to select direct edges in a network 

One can assume that there is a higher probability that genes in a pathway-based network 

should form more direct connections, than those in a network consisting of a random set of 

genes, simply because we know that those genes are already annotated to exert a similar 

function. A statistical approach one can use to incorporate such prior knowledge is the 

Bayesian approach to hypothesis testing. In the context of this project, we are comparing 

two Gaussian graphical models. Both models consist of a certain set of parameters, among 

which is the partial correlation. In the simpler model (M0), this correlation is estimated to 

be zero. On the other hand, in the more complex model (M1), the correlation coefficient is 

different than zero. In other words, the simpler model describes an indirect edge between 

two nodes, while the complex model describes a direct edge.  

Following Kass and Raftery (Kass and Raftery, 1995), we begin with the data D, assumed 

to have risen under M0  or M1, with two probability densities pr(D | M0) or pr(D | M1). The 

a priori probabilities are given as pr(M1) and pr(M0) = 1 – pr(M1). Hence, the a posteriori 

probabilities are defined as pr(M0 | D) and pr( M1 | D). That is, every prior gets transformed 

into a posterior after observing the data. Further, based on the Bayes theorem it follows 

 

 𝑝𝑟(𝑀𝑘 |𝐷) =  
𝑝𝑟(𝐷 |𝑀𝑘) 𝑝𝑟(𝑀𝑘)

𝑝𝑟(𝐷 |𝑀0) 𝑝𝑟(𝑀0) + 𝑝𝑟(𝐷 | 𝑀1)𝑝𝑟(𝑀1)
 (3.15) 

 

where k = (1, 2), so that 

 

 
𝑝𝑟(𝑀0|𝐷)

𝑝𝑟(𝑀1|𝐷)
=

𝑝𝑟(𝐷 | 𝑀1)

𝑝𝑟(𝐷 | 𝑀0)
 × 

𝑝𝑟(𝑀1)

𝑝𝑟(𝑀0)
  (3.16) 

 

Equation 3.16 explains the transformation of the prior beliefs about the model to posterior 

beliefs, by incorporating the predictive updating factor – the Bayes factor (BF) 

 

 𝐵𝐹10 =  
𝑝𝑟(𝐷 | 𝑀1)

𝑝𝑟(𝐷 | 𝑀0)
 . (3.17) 

 

Thus, the Bayes factor represents the ratio between posterior and prior odds of a model. It 

is the summary of the evidence provided by the data concerning one scientific model or 

theory (Kass & Raftery, 1995). In this specific example, the B10 is weighing the evidence 

against the null model. This is what “10” stands for, it denotes which model is in the 

numerator versus the denominator. There is a consensus regarding Bayes factor 

categorization, presented in Table 3.1. 
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Table 3.1 Bayes factor categorization (adjusted from Kass and Raftery, 1995). 

log10(BF10) BF10 Evidence against M0 

0 to 1/2  1 to 3.2 Anecdotal 

1/2 to 1 3.2 to 10 Substantial 

1 to 2 10 to 100 Strong 

> 2 > 100 Decisive 

 

 

We can use the Bayes factor categorization to evaluate the strength of the evidence that an 

edge is direct in a pathway-specific GGM network. The GGM provides us with a posterior 

probability that an edge is direct based on the estimated model. It is then straightforward to 

calculate the prior probability 

 

 𝑝𝑟(𝐷|𝑀0) = 1 − 𝑝𝑟(𝐷|𝑀1). (3.18) 

  

From there, the Bayes factor follows 

 

 𝐵𝐹10 =
𝑝𝑟(𝐷 | 𝑀1)

𝑝𝑟(𝐷 | 𝑀0)
=  

𝑝𝑟(𝐷 | 𝑀1)

1−𝑝𝑟(𝐷 | 𝑀1)
. (3.19) 

 

In that way, for each edge in the gene set, a corresponding BF is calculated. The strength 

of the BF corresponds to the strength of evidence in favor of M1 , that is, in favor of an edge 

being direct.  

 

A widely used frequentists approach to hypothesis testing relies on p values to determine 

whether one has enough evidence to reject the null model or null hypothesis, depending on 

the context. In this approach, a p value of 0.05 denotes that if we reject the null hypothesis, 

we would make a type I error in 5% of the times (that is, reject the null hypothesis when it 

is actually true). The corresponding BF to the 0.05 p value is ≈ 3 (10-1/2), meaning that we 

have 3 times stronger evidence for M1. Down the same line, the BF of 10 corresponds to 

the p value of 0.01 (Jeffreys, 1961). Targeted levels of evidence are researcher-defined 

(Kass & Raftery, 1995).  
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3.4 Materials and methods 

3.4.1 Materials 

3.4.1.1 The KKNMS cohort 

German Competence Network Multiple Sclerosis (Krankheitsbezogene Kompetenznetz 

Multiple Sclerose, KKNMS) is an interdisciplinary network focused on improving MS 

diagnostics, treatment and patient care, as well as providing a better understanding of the 

underlying genetic effects. The KKNMS cohort consists of 1,019 patients diagnosed with 

clinically isolated syndrome (CIS) or an early-stage MS, in which patients are followed-up 

longitudinally. The KKNMS cohort study inclusion criteria are: at least 18 years of age, 

clinically isolated syndrome within the past 6 months or early relapsing-remitting MS 

(RRMS) for at most 2 years after initial symptoms and no previous long-term treatment for 

MS (Johnen et al., 2019; von Bismarck et al., 2018).  

In this research project,  patients data at the baseline was examined, that is, their first visit 

to the hospital. After the QC, the gene expression data was available for 399 individuals. 

Among these 399 individuals, 317 individuals were genotyped for single nucleotide 

polymorphisms. Three individuals were excluded due to treatment that was still ongoing 

when the blood samples were collected, therefore affecting the gene expression too heavily. 

Table 3.2 summarizes the characteristics of a subset of KKNMS patients analyzed in this 

thesis. Most of the 314 individuals are females (68.5%), corresponding to the overall gender 

distribution of MS patients in the population. A small group of patients received the disease 

modifying treatment (DMT) at the time of the blood draw. The effects of DMT and other 

treatments on gene expression were accounted for in the regression analysis, as explained 

in the Methods section (3.4.2.2 Calculation of residual sum of squares). Nine percent of the 

patients were experiencing an active infection at the time of the blood draw, and nearly half 

of the patients had an ongoing relapse.  
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Table 3.2 Descriptive statistics, treatment information, and clinical characteristics of patients in the subset of 

patients from the KKNMS cohort analyzed in this work. 

DMT = disease modifying treatment. 

 

Variable Sample 

N 314 

Demographics 

Age, mean (SD) 34.3 (9.1) 

Gender, N (%) 215 (68.5) 

DMT 

Glatiramer acetate, N  3 

Interferon Beta, N  3 

Other treatment 

Vitamin-D, N 13 

Analgesics, N 20 

Anti-histamines, N 7 

Mesalazin, N 3 

Budesonide, N 2 

Cortisol, N 42 

Clinical status  

Active infection, N 9 

Current relapse, N 44 

 

3.4.1.2 Microarrays 

Gene expression from the whole blood of MS patients was measured on Illumina 

HumanHT-12v4 Expression BeadChip. The data was loaded using the beadarray package 

(Dunning et al., 2007). The QC was performed in R v3.2.1. (R Core Team, 2020) using the 

packages vsn and lumi (Du et al., 2008; Huber et al., 2002). Probes showing detection p 

value less than 0.05 in more than 10% of the samples, probes that could not be mapped to 

a known transcript, or those that were identified as cross-hybridizing by the Re-Annotator 

pipeline (Arloth, Bader, Röh, & Altmann, 2015), were removed. Probes were mapped to 

unique Entrez identifiers (Entrez ID). For gene co-expression analysis, transcripts were 

further collapsed to the gene level, that is, each transcript mapped to exactly one HGNC 

gene symbol. Collapsing was based on the highest mean expression approach, i.e., among 

multiple probes hitting the same gene, the probe with the highest gene expression mean 

was selected. This left 13,442 transcripts in the dataset from 314 individuals. For 

differential expression and eQTL analysis, the collapsing step was skipped, therefore 

leaving 19,420 transcripts. In order to identify technical batch effects, the PCA was run on 

the gene expression data. Next, the first two PCs were correlated with amplification round, 

amplification plate, and amplification plate column and row, as well as expression chip, as 

described in the research paper by Andlauer and the colleagues (Andlauer et al., 2016). The 

expression data were adjusted using the ComBat package (Johnson, Li, & Rabinovic, 

2007).  

 

3.4.1.3 Genotype data 

Patients were genotyped on Illumina OmniExpress BeadChips. SNPs were imputed using 

the 1000 Genomes Phase 3 reference panel, whereas HLA alleles were imputed using the 

T1DGC reference panel. 19 variants associated with MS were analyzed in this research 
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project, based on a previous research study, in which MS-associated variants and alleles 

were determined in the GWA study (Andlauer et al., 2016).  This included four allelic 

changes in the MHC region and 15 minor frequency alleles of SNPs outside of MHC region 

(Table 3.3). 
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3.4.2 Methods 

3.4.2.1 Study design 

In order to examine the influence of an MS-associated variant on gene expression in MS 

patients, patients were split into groups pertaining their variant carrier status, based on their 

dosage data. Dosage data represent transformed posterior genotype probabilities which 

come from genotype imputation. Dosage is a continuous variable, with values ranging from 

0 to 2. In this work, the dominant association model was used to split patients into groups 

of variant carriers and non-carriers. In the dominant model, heterozygous individuals and 

individuals carrying two copies of the risk allele (homozygous individuals) were grouped 

together (Bae, Perls, Steinberg, & Sebastiani, 2015). The following thresholds for dosage 

data were introduced: if a patient had a dosage lower than or equal to 0.5, the patient was 

labelled as a noncarrier of the respective MS-associated variant. If for an individual the 

dosage above 0.5 was estimated, the person was considered a variant carrier. The Table 3.3 

summarizes the group sizes depending on the variant, as well as the related odds ratios. 

Odds ratios as well as (minor) allele frequencies ((M)AF) were calculated in a bigger 

sample comprising of KKNMS patients and six other samples of MS patients, all recruited 

across Germany (Andlauer et al., 2016). In the paper by Andlauer and the colleagues 

(Andlauer et al., 2016), altogether 16 SNPs outside of MHC and seven MHC variants were 

presented. The reasons why some of them weren’t included in the analyses of this work are 

the following. First, the rs3104373 variant outside of the MHC region is the proxy SNP for 

the HLA-DRB1*15:01 allele. Second, the three HLA alleles, namely the HLA-B*38:01, 

HLA-DRB1*13:03, and HLA-DRB1*08:01 have allele frequencies < 5%, and the groups 

of patients carrying the allele would be too small, not providing enough power for complex 

network analyses.   
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Table 3.3 19 MS-associated variants analyzed in this work, their related odds ratios, and group sizes.  

Odds ratios as well as (minor) allele frequencies ((M)AFs) were calculated in a bigger sample comprising of KKNMS 

patients and six other samples of MS patients, all recruited across Germany (Andlauer et al., 2016). MA = MS-associated 

variant and it’s minor allele; Gene = (the associated) locus gene name; OR = odds ratio for developing MS if an 

individual carries the MS risk variant; (M)AF = (minor) allele frequency; Carriers = patients from the KKNMS cohort 

sample (314 individuals) with dosage data > 0.5; Noncarriers = patients from the KKNMS cohort sample (314 

individuals) with dosage data <= 0.5. 

 

Genomic variation Gene OR (M)AF Carriers Noncarriers 

HLA allele 

HLA-A*02:01 HLA-A 0.68 28.6 107 207 

HLA-DPB1*03:01 HLA-DPB1 1.33 10.3 74 240 

HLA-DRB1*03:01 HLA-DRB1 1.29 12.2 77 237 

HLA-DRB1*15:01 HLA-DRB1 2.85 14.8 158 156 

Variants outside of MHC region (MA) 

rs10797431 (T) MMEL1 0.85 34.0 155 159 

rs1800693 (C) TNFRSF1A 1.17 42.2 225 89 

rs1891621 (G) intergenic 0.87 46.4 219 95 

rs2182410 (T) IL2RA 0.83 38.1 161 153 

rs2300747 (G) CD58 0.75 12.3 55 259 

rs2681424 (C) CD86 0.86 49.7 220 94 

rs2812197 (T) DLEU1 0.85 38.3 179 135 

rs2836425 (T) ERG 1.25 12.4 92 222 

rs34286592 (T) MAZ 1.22 14.2 97 217 

rs4364506 (A) L3MBTL3 0.86 26.1 150 164 

rs4925166 (T) SHMT1 0.86 34.4 166 148 

rs6498168 (T) CLEC16A 1.22 35.4 187 127 

rs6689470 (A) EVI5 1.22 14.3  106 208 

rs6859219 (A) ANKRD55 0.85 22.1 113 201 

rs7535818 (G) RGS1 0.76 19.0 84 230 

 

3.4.2.2 Calculation of residual sum of squares 

By adjusting for the known sources of variance in our data, we are making sure that data 

stratification or differences we may find in our analysis are not due to factors we were able 

to adjust for. That is, we do the best we can to enable that the potential results mirror the 

contrasts we are interested in exploring, in this case, the different genetic background. One 

way of adjusting for known sources of variance is by fitting a linear model and then using 

the resulting residuals for the further data analysis. Residuals, that is, the residual sum of 

squares, represent the variation left unexplained after removing the sources of known 

variation via regression (James, Witten, Hastie, & Tibshirani, 2000). Following Chapter 3, 

Section 3.1.1. in the book An Introduction to Statistical Learning (James et al., 2000), a 

multivariate linear model was applied  

 

 𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖 (3.20) 

 

where Y is a dependent variable (or a response), 𝛽0 is the intercept and 𝛽𝑗 is the slope 

coefficient of the independent variable (covariate, predictor) 𝑋𝑗, and 𝜖 is the random error 

term. We interpret 𝛽𝑗 as the average effect on Y of a one unit increase in 𝑋𝑗, holding other 
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predictors fixed. The coefficients are estimated by minimizing the residual sum of squares, 

that is, the difference between observed values 𝑦𝑖  and fitted values �̂�𝑖 

 

 𝑅𝑆𝑆 =  ∑ (𝑦𝑖 − 𝑛
𝑖=1 �̂�𝑖). (3.21) 

 

In the KKNMS dataset, the expression level for each of the 13,442 probes was corrected 

with a set of twenty-seven covariates. Ten variables were dummy coded (0/1) and they 

referred to whether the patient was taking a DMT at the time of the blood draw (glatiramer 

acetate or interferon beta (IFN)), cortisol, budesonide, mesalazin, analgesics, vitamin-D or 

anti-histamines. It was further adjusted for an active infection and a current relapse as well 

(Table 3.2). Next, it was adjusted for the population structure by including eight 

components from the multi-dimensional scaling (MDS) analysis, as well as for the cell 

proportions in the gene expression data. Cell proportions of seven cell types were estimated 

using the CellCode package (Chikina, Zaslavsky, & Sealfon, 2015). The cell-type specific 

variation in gene expression was estimated for neutrophils, T-cells, monocytes, B-cells, 

natural killer (NK) cells, megakaryocytes, and erythrocytes. Lastly, adjustment for the age 

and gender differences was performed. As described above, twenty-seven variables were 

added as covariates in the multivariate linear model to explain the gene expression for each 

transcript in the data set separately. Model diagnostics was examined in the following way. 

First, principal component analysis (PCA) was applied on log2 transformed gene 

expression data to reduce the dimensionality of the data. The first four principal 

components (PCs) explained roughly 39% of the overall variance in the data and they were 

used as representatives of the variation of data to test whether the model is stable. Hence, 

four models were fitted for each of the four selected PCs. By inspecting the residuals plot, 

Q-Q plot, variance inflation factor (vif), and the squared vif it was concluded that the data 

meets regression assumptions well with randomly distributed error and that there are no 

influential cases (outliers) in the dataset. The analysis of the variance inflation in variables 

was employed via the car package (Fox & Weisberg, 2020) and it showed no collinearity 

among covariates. The model with preselected covariates was fitted for each transcript 

separately. The residual sum of squares was obtained from each regression and used for 

further analyses.  

 

3.4.2.3 Subsetting transcripts in WGCNA and GGM analysis 

In both WGCNA and GGM analysis, transcripts were subsetted depending on the interest 

and type of the analysis. According to the authors of the WGCNA method, it is advisable 

to create a meaningful subset of genes in your data set to perform the network analysis. 

That is, running the analysis on all the genes from microarray could impede the analysis 

because of too much noise (Langfelder & Horvath, 2017).Therefore, it was decided to focus 

on immune system related genes, knowing that MS is mainly an immune-system driven 

disorder (IMSGC & WTCCC, 2011; International Multiple Sclerosis Genetics Consortium 

(IMSGC) et al., 2013). The AmiGO online tool (Carbon et al., 2009) was used to extract a 

list of all members of the Gene Ontology (GO) term “immune system process”(Ashburner 

et al., 2000; The Gene Ontology Consortium, 2020). Next, the gene2go list was used to 

extract all GO terms associated with each gene name in the data set. The gene2go list is a 

part of The National Center for Biotechnology Information (NCBI) database. By using the 

two lists, it was possible to subset transcripts in the KKNMS data set, therefore creating a 

list of immune system related transcripts. The list contains 2171 transcripts uniquely 

mapping to Entrez IDs. The WGCNA was therefore used to examine the influence of the 
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19 MS-associated variants on gene-gene interactions between 2171 immune system related 

transcripts. 

On the other hand, the GGM analysis was applied in a pathway-based manner. The 

reasoning was the following. Inference of a big network where the number of variables 

(13,442 transcripts) exceeds the number of individuals (anywhere between 55 and 240, 

Table 3.3) would potentially lead to a poor association estimate due to a low power and 

therefore, high probability of committing a type II error (high number of false negatives). 

Hence, it was decided that the transcripts should be split into meaningful subunits. The data 

were first preprocessed in a way to only contain transcripts uniquely mapping to Entrez 

IDs, which left 13,442 transcripts in the data set. Afterwards, the KEGGREST package in 

R was used to divide genes into pathways according to the KEGG database (version August 

2020, Kanehisa, Furumichi, Sato, Ishiguro-Watanabe, & Tanabe, 2020). Pathways 

containing less than ten genes were removed from the analysis because getting a stable 

estimate of GGM on such a small matrix was not possible. The subsetting resulted in 307 

KEGG pathways, covering 5370 transcripts uniquely mapping to Entrez IDs. The smallest 

pathway in the data set contained 10 genes, whereas the biggest pathway consisted of 386 

genes. To explore the extent of gene overlap between pathways, for each pathway the 

average number of genes it shares with the remaining 306 pathways was calculated. The 

average number of shared genes was further divided by pathway size to get a more 

standardized degree of overlap which does not depend on the size of the pathway (Figure 

3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 The average overlap in gene names for 307 KEGG pathways covering 

5370 unique Entrez IDs in the KKNMS data set. 

 Each bar in the plot represents one of the 307 analyzed pathways. The height of the bar 

indicates the percentage of how  many genes on average is shared between the pathway 

and the rest of the pathways. 
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3.4.2.4 Grouped Benjamini-Hochberg (GBH) approach to control for the false discovery rate 
(FDR) in the data with group structure 

When performing the cis-eQTL analysis and the enrichment tests for genes in modules to 

find associated GO terms, the grouped Benjamini-Hochberg (GBH) approach (Hu, Zhao, 

& Zhou, 2010) was used to control and adjust the FDR. The GBH approach enables 

including prior information of natural group structure among hypotheses, present when, for 

example, performing eQTL analysis for several SNPs in parallel. It has been previously 

discussed in the research paper by Efron (Efron, 2008) that ignoring the group structure 

naturally present in the data during the correction for the multiple hypothesis testing can 

lead to “overly conservative or overly liberal conclusions” (Hu et al., 2010). 

 

Following the paper by Hu and the colleagues (Hu et al., 2010), let 𝐼𝑔 be the index set of 

the gth group and 𝐼𝑁 index set of all the hypotheses which satisfies 

 

 𝐼𝑁 =  ⋃ 𝐼𝑔 =  ⋃ (𝐼𝑔,0 ⋃ 𝐼𝑔,1)

𝐾

𝑔=1

𝐾

𝑔=1

 (3.22) 

 

where 𝐼𝑔,0 =  {𝑖 ∈  𝐼𝑔 ∶ 𝐻𝑖 𝑖𝑠 𝑡𝑟𝑢𝑒} and 𝐼𝑔,1 =  {𝑖 ∈  𝐼𝑔 ∶ 𝐻𝑖 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒}, with 𝑛𝑔,0 = |𝐼𝑔,0| 

and  𝑛𝑔,1 = 𝑛𝑔 − 𝑛𝑔,0. It further follows that the proportion of null hypotheses in the group 

is defined as 𝜋𝑔,0 =
𝑛𝑔,0

𝑛𝑔
  and the proportion of discoveries as 𝜋𝑔,1 =

𝑛𝑔,1

𝑛𝑔
. The overall 

proportion of null hypothesis, 𝜋0, is then defined as 

 

 
 

 𝜋0 =  
1

𝑁
 ∑ 𝑛𝑔 𝜋𝐾

𝑔=1 𝑔,0
. 

(3.23) 

 

 

In the next paragraphs, a so-called “oracle case” is introduced, where the proportion of null 

hypotheses in a group is bound between 0 and 1, that is, 𝜋0,𝑔  ∈ [0, 1]. 

 

The GBH procedure for the oracle case is as follows. 

 

1. For each p-value in a group g, weighted p-values 𝑃𝑔,𝑖
𝑤   are calculated following 

 

 𝑃𝑔,𝑖
𝑤 =  

𝜋𝑔,0

𝜋𝑔,1
 ×  𝑃𝑔,𝑖 (3.24) 

 

where 𝜋1,𝑔 is the proportion of discoveries in the group, and 𝜋1,𝑔 =  1 −  𝜋0,𝑔.  If 

𝜋0,𝑔 = 0, then 𝑃𝑔,𝑖
𝑤 =  ∞. If 𝜋0,𝑔 = 0 for all the hypotheses, stop. Otherwise, 

proceed with the next step. 

 

2. Take all the weighted p-values across all tests N, and order them in ascending order 

so that the first p-value in the list is the lowest one, 𝑃(1)
𝑤  ≤ ⋯  ≤ 𝑃(𝑁)

𝑤 .  

 

3. Finally, get the number of null hypotheses to be rejected 
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 𝑘 = max {𝑖 ∶ 𝑃(𝑖)
𝑤  ≤  

𝑖 × 𝛼𝑤

𝑁
}. (3.25) 

 

Here, k is the maximum over i for which this inequality is true, and  𝛼𝑤 =  
𝛼

1− 𝜋0
. 

The proportion of null hypotheses in the group 𝜋𝑔,0 will be estimated by employing the 

two-stage (TST) method (Benjamini, Krieger, & Yekutieli, 2006), which is an adaptive BH 

procedure enabling finite-sample FDR control for independent p-values. First, the BH 

procedure at level 𝛼′ =  
𝛼

1+𝛼
 is applied on all p-values within each group. The number of 

rejections 𝑟𝑔,1 is thereby estimated. The TST estimator 𝛾𝑔
𝑇𝑆𝑇 of 𝜋𝑔,0 is then computed by 

calculating the following ratio 

 

  𝛾𝑔
𝑇𝑆𝑇 =  

𝑛𝑔−𝑟𝑔,1

𝑛𝑔
.  (3.26) 

 

The GBH approach is then employed at level 𝛼′  with  𝜋𝑔,0  replaced by  𝛾𝑔
𝑇𝑆𝑇, to  estimate 

the k (Hu et al., 2010). 

 

3.4.2.5 Differential expression analysis 

Gene expression levels between the carriers and noncarriers were compared for each of the 

19 MS-associated variants separately. Important clinical differences, the population 

structure, gender, age and cell composition were accounted for using the linear model 

where log2 expression values for each of the 19420 probes were corrected and residuals 

were used to test for differentially expressed genes. The scope of gene expression 

difference in noncarriers in comparison to the carriers of the respective variant was 

explored using the limma package (Smyth, Michaud, & Scott, 2005). The p values resulting 

from group comparisons were adjusted using the Holm method (Holm, 1979). The 

Bonferroni method (Dunn, 1961) was employed to account for the number of independent 

tests, therefore, the 5%-significance level was adjusted to 0.05/19 = 0.00263.  

 

3.4.2.6 eQTL analysis in the KKNMS data set 

The eQTL analysis enabled exploring potential functional associations between SNPs and 

genes. Among 19 MS-associated variants, four allelic variations inside the MHC region 

were excluded due to a complex linkage disequilibrium (LD) structure and high SNP 

frequency (Lam, Shen, Tay, & Ren, 2017). For the remaining 15 SNPs, cis-eQTL analysis 

was run in the following manner. First, a subset of probes in close proximity to each SNP 

was selected. Probes mapping to genes 500,000 base pairs (bp) up- and down-stream from 

the respected variant were tested for association. The log2 transformed gene expression 

data was used to test for associations. The linear model included important clinical 

differences, the population structure, gender, age and cell composition, as well as the SNP 

dosage data of the tested SNP. Each transcript was tested separately. The rate of false 

discoveries was controlled by applying the GBH and TST approaches explained in the 

earlier paragraphs. The approach yielded weighted p values adjusted for the proportion of 

null hypotheses in the SNP (𝜋𝑔,0), for which the corresponding thresholds were estimated, 

based on the weighted p value index i and the adjusted alpha significance level 𝛼𝑤. 
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3.4.2.7 Differences in Pearson’s correlation patterns 

Groups of interest were also compared by examining the differences in Pearson’s 

correlation between gene expression levels. Pearson’s correlation is a measure of linear 

association between variables. The correlation pattern between genes can be subject to 

change, even if the expression level of a gene does not significantly differ between the two 

states. This could be the result of a mutation in the coding region of a gene, which affects 

a certain gene’s function without altering its expression level (de la Fuente, 2010). 

Therefore, by contrasting gene correlation matrices between two states of interest, such 

distortions could potentially be found. When comparing gene expression correlation 

between two groups of interest, Pearson’s correlation matrix was calculated, where each 

correlation coefficient rxy  represents Pearson’s correlation between the expression levels of 

two probes, x and y. However, Pearson’s correlation coefficients are defined on the [-1,1] 

interval, and the sample distribution of highly correlated values is skewed, with variance 

and skewness dependent on the value of underlying correlation in the population (ρ). 

Following Myers and Sirois (Myers & Sirois, 2014) the distribution of the correlation 

coefficients can be approximately normalized by applying the Fisher’s Z-transformation 

(Fisher, 1921) 

 

 𝑍𝑟 =
1

2
×  ln (

1+𝑟

1−𝑟
). (3.27) 

 

The standard error is defined as 

 

 𝑆𝐸 =  
1

√𝑁 − 3
 (3.28) 

which is independent of the correlation coefficient. Using the following formula to 

calculate the test statistic 

 

 

𝑧 =  
𝑍𝑟𝑥 − 𝑍𝑟𝑦

√
1

(𝑁𝑥 − 3) + (𝑁𝑦 − 3)

  
(3.29) 

 

one can easily compute a matrix of differences in normalized Pearson’s correlation 

coefficients and obtain a p value to infer the significance of the observed difference.  

 

Pearson’s correlation matrices were computed using the cor function from the WGCNA 

package which enables fast correlation matrix computing (Langfelder & Horvath, 2012). 

The correlation was calculated on the data corrected for known sources of variance, i.e., 

the residual sum of squares. The variant-specific noncarriers correlation matrix NCvariant 

was subtracted from the carriers correlation matrix Cvariant to infer the variant-specific 

difference matrix (Eq. (3.30)).  

 

 𝑁𝐶𝑣𝑎𝑟𝑖𝑎𝑛𝑡 − 𝐶𝑣𝑎𝑟𝑖𝑎𝑛𝑡 =  (

𝑛𝑐11 − 𝑐11 ⋯ 𝑛𝑐1𝑗 − 𝑐1𝑗

⋮ ⋱ ⋮
𝑛𝑐𝑖1 − 𝑐𝑖1 ⋯ 𝑛𝑐𝑖𝑗 − 𝑐𝑖𝑗

) (3.30) 
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Fisher’s Z-transformation was implemented in R to obtain the matrix of z-scores, that is, 

the normalized correlation differences for each of the 19 MS-associated SNPs. The 

corresponding two-sided p values were computed using the pnorm function. The resulting 

p values were corrected on two levels. Firstly, the Holm method was used to account for 

the number of tests executed on the SNP level, with p.adjust function in R. Secondly, the 

Bonferroni method was employed to adjust the significance for the number of MS-

associated variants, aiming for a significance level of 5% after correction.  

 

3.4.2.8 Gene co-expression analysis in the KKNMS data set 

Gene co-expression networks in the KKNMS data set were built using two methods: the 

WGCNA, which builds weighted gene co-expression networks using Pearson’s correlation, 

and the GGM, a method to estimate sparse covariance matrix to unveil the direct 

connections between genes. The former approach was data driven, that is, genes were 

grouped in modules based on their correlation patterns. The GGM approach was applied 

on genes which were previously grouped in pathways based on KEGG database (Kanehisa 

et al., 2020). 

 

3.4.2.8.1 Estimating the gene co-expression modules via the WGCNA 

Genetic variation underlying the MS etiology probably affects multiple genes that share the 

similar functionality or are regulated in a similar way. The weighted gene co-expression 

network analysis (WGCNA) was used to find clusters of highly connected genes in a data-

driven fashion (Langfelder & Horvath, 2008). The analysis was run using the WGCNA 

(v1.66) package in R. The WGCNA method uses Pearson’s correlation to distinguish 

blocks of genes that show a significantly higher correlation pattern than the other genes, 

usually uncovering groups that share a similar biological function. The blocks of highly 

correlated genes are called modules. All genes which did not show strong connectivity 

patterns were considered a part of an unassigned group of genes - the grey module. 

Considering prior information on biological pathways underlying the MS etiology, the gene 

expression data was subsetted to contain 2171 immune system related genes. We tested for 

a specific module-genotype association in two ways. First, a data-driven approach was 

applied where gene expression of all 314 patients and 2171 immune-related genes was used 

to construct highly connected modules. The expression variation of genes from a certain 

module was summarized by their first principal component, the module eigenvector. The 

module eigenvectors were tested for association with 19 MS-associated variants, 

potentially revealing the biological subunits affected by a specific variant. In the second 

approach, group-specific modules were built (MS-associated variant carriers and MS-

associated variant non-carriers) and module preservation was compared depending on the 

carrier status. The analysis was run for each variant separately. The statistic summarizing 

the preservation level is the Zsummary statistic (Langfelder et al., 2011). We were testing 

against the null hypothesis that there is no difference in the structure of the tested module 

between the reference and the test group. The bigger the Z statistic, the more preserved the 

module from a reference set is, when compared to the test set. For a Z value bigger than 

10, we say that there is strong evidence for module structure preservation. For a Z value 

between 2 and 10, there is medium to weak evidence of the preservation of the module 

structure. Lastly, a Z value lower than 2 characterizes a module with very weak to no 

evidence of preservation, suggesting that there are topological differences between the 

groups.  
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Furthermore, to examine whether genes in the modules exert any biological function, 

modules were biologically annotated using the GOstats package in R (v2.48.0), which 

performs the overrepresentation analysis (ORA). Genes were submitted as unique Entrez 

IDs, and 2171 Entrez IDs were used as gene universe for the analysis. The hypergeometric 

test was applied to test for the significance of the hits. The rate of false discoveries was 

controlled by applying the GBH and TST approaches explained earlier. The approach 

yielded weighted p values adjusted for the proportion of null hypotheses in the group 𝜋𝑔,0, 

for which corresponding thresholds are estimated, based on the weighted p value index i 

and adjusted alpha significance level 𝛼𝑤. 

 

3.4.2.8.2 Estimating pathway-specific sparse graphs with GGM  

The Gaussian graphical models (GGM) (Schäfer & Strimmer, 2005b) approach was 

employed to estimate partial correlations between gene expression levels in the KKNMS 

dataset. It is a specific graph-based method that explores conditional independency between 

each pair of genes in a dataset, i.e., it distinguishes direct interactions between genes from 

indirect ones. The ggm.estimate.pcor function from the GeneNet  R package (v1.2.13) with 

the method static was applied to estimate the partial correlations between the transcripts. 

The method estimated a gene expression data-based graph, in which each node represented 

a transcript and each edge a direct association between the genes. First, genes were divided 

into pathways based on the KEGG data base (version August 2020, Kanehisa et al., 2020) 

in the following way. From the KKNMS data set, 5400 unique Entrez IDs were matched 

in the KEGG, spanning 326 pathways. Pathway sizes ranged from 1 to 386.  It was decided 

to analyze pathways with at least 10 genes according to the previous similar study (Grimes 

et al., 2019) and given the fact that GGM reported errors with pathways having less than 7 

genes. In the end, 307 pathways were selected, with sizes ranging from 10 to 386, and 

covering 5370 unique Entrez IDs. This enabled direct pin-pointing to an annotated 

biological subunit that was subject to change due to genetic variance, if such change 

existed. For each pathway, the GGM was estimated and then compared between the two 

groups, the MS-associated variant carriers and the MS-associated variant non-carriers, for 

each of the 19 analyzed variants separately. Differences in partial correlations in the same 

pathway between the two groups were inspected using two approaches, the sum and the 

max. To infer the global differences in gene expression correlation between the groups on 

a pathway level, all correlation coefficients for a pathway within the group were summed 

up. Then, the absolute difference in correlations between the two groups was obtained, 

yielding an empirical global measure of difference (the sum). On the other hand, 

examination of edge-specific effects was conducted by finding the biggest absolute 

difference in partial correlations between the groups in each pathway as a representative of 

pathway-level discrepancy, resulting in an empirical edge-specific measure of difference 

(the max). 

 

To assess the significance of both empirical measures, namely the sum and the max, 

permutation tests were run in a way that genotype information was first shuffled 1000 times 

for each variant, and the two empirical measures were calculated for each pathway in each 

of the 1000 runs. Let v be the vector with elements representing the pathway-specific 

empirical measures calculated after shuffling the group labels of one variant for n times 

 

 𝑣 = {𝑣1, 𝑣2 , … , 𝑣𝑛} (3.31) 
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where n stands for the number of permutations. For each element of v, we check if the 

element is bigger or equal than the original empirical measure calculated earlier for that 

pathway 

 

 𝐼𝑣𝑖
=  {

1, 𝑣𝑖 ≥ 𝑞
0, 𝑣𝑖 < 𝑞

 , 𝑖 = 1, … , 𝑛 (3.32) 

 

where I is the indicator function defined on the set v. The elements of 𝐼𝑣𝑖
 are summed and 

divided through by the number of permutations n 

 

 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 p 𝑣𝑎𝑙𝑢𝑒 =  
∑ 𝐼𝑣𝑖

𝑛
𝑖=1

𝑛
 (3.33) 

 

resulting in the permutation p value which represents the average number of permuted 

measures bigger or equal than the original measure. To account for multiple hypothesis 

testing on a pathway level, p values were corrected using the Holm method (Holm, 1979). 

The nominal significance of 5% was adjusted due to 19 simultaneously performed 

independent tests, i.e., the number of tested SNPs. The Holm adjusted p values below a 

0.00263 threshold were considered significant. For pathways showing statistical 

significance after 1000 permutations, genotypes were additionally shuffled 100,000 times, 

yielding a more precise posterior distribution of the two empirical measures of the network 

differentiality. Permutation p values from 100,000 permutations were again first corrected 

using the Holm method, with p.adjust function and the number of comparisons set to 307. 

Accordingly, the Bonferroni method was employed to adjust for the number of tested 

variants (19). 

 

3.4.2.8.3 Difference in node connectivity between two pathway-specific networks 

In order to investigate the connectivity patterns in a pathway-based network, Gaussian 

graphical models estimated in the previous analysis step were further analyzed. However, 

when examining connectivity, a focus was shifted from all the edges in a pathway, and 

towards direct edges only. The Bayes factor was used to select direct edges in a pathway-

specific GGM network. For each edge, the Bayes factor was calculated based on the 

posterior probability that an edge is direct, that is, probability that the partial correlation 

between the two genes is different than zero (Eq. (3.16)). Direct edges were selected by 

applying a threshold on each edge-specific Bayes factor. Based on the Table 3.1, the 

targeted level of evidence was selected to be the geometric mean of the substantial evidence 

against the M0 category. Each edge with a Bayes factor equal to or bigger than 5.6 was 

considered direct. Once the edge-specific Bayes factor was calculated, nodes with direct 

connections were selected. Based on previous research on gene connectivity (Yang et al., 

2014; J. Zhang et al., 2016), the top 5% of nodes with the highest connectivity in all 

pathways were further analyzed . 

 

Therefore, by following the common guidelines on the Bayes factor cut off, it was possible 

to select direct edges and analyze node connectivity profiles in the data. For each edge in a 

pathway, g - 1 different Bayes factors were calculated, g being the number of genes in that 

pathway in the KKNMS data set. The Bayes factor was calculated using data from patients 

carrying the variant and patients not carrying the variant separately. Hence, two different 

Bayes factors were joint to each edge in the pathway for each variant. In the analysis of this 

setting, where groups of variant carriers and noncarriers are contrasted, there are altogether 
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38 groups among 19 MS-associated variants, consisting of different individuals 

combinations, based on their genotype. The connectivity was further calculated with two 

referencing directions: by selecting direct edges in the carrier group of a pathway and 

comparing their connectivity in the noncarrier group and by selecting direct edges in the 

noncarrier group of a pathway and comparing the connectivity of those nodes to their 

connectivity in the carrier group. To calculate the difference in connectivity (DC), the 

connectivity of a node in the reference group was subtracted from a connectivity of a node 

in the test group. The permutation analysis was run to infer the statistical significance of 

each gene’s DC in the following way. All nodes with three or more direct edges were 

analyzed on a 1000 permutation level. Nodes which passed the multiple hypothesis 

threshold after 1000 permutations were analyzed on a 10,000 permutations level. Only 

genes which passed the 10,000 permutation multiple hypothesis testing threshold were 

analyzed on a 100,000 permutations level. The intermediate step of running 10,000 

permutations prior to running the 100,000 permutations was implemented to combat 

memory issues and computational time (Figure 3.3). The assumption was that the number 

of pathways which will need 100,000 permutations run will be cut down after the 10,000 

permutations.  

 

 
Figure 3.3 Differential connectivity analysis workflow. 

 Entity is a node in a pathway-specific GGM network of one group (carriers or noncarriers of a variant). The workflow 

is created with Keynote application.  

 

Each permutation run resulted in a permutation p value for each edge. Permutation p value 

was calculated by dividing the number of times a shuffled genotype group resulted in a DC 

bigger or equal to the true DC. This number was then divided by the number of 

permutations (the number of times a genotype was shuffled). To account for the multiple 

testing, the Holm method for multiple testing adjustment (Holm, 1979) was used to account 
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for the number of pathways tested within the same group, then the Bonferroni method 

(Dunn, 1961) was applied to account for the number of tested MS-associated variants (19). 

 

3.4.3 Graphical visualizations  

Figures in the thesis were created using the ggplot package in R (Wickham, 2016), if not 

stated otherwise below the figures.  
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3.5 Results 

3.5.1 Data preprocessing: removing known sources of variation 

As explained in the Methods section (3.4.2.2 Calculation of residual sum of squares), the 

gene expression data was corrected via the multivariate linear regression and the resulting 

residual sum of squares (estimated transcript expression values versus the observed values) 

was used in the further analyses. To inspect whether twenty-seven known sources of 

variation were successfully regressed out, the PCA was first run on the log2 transformed 

expression values and tested for association with 27 variables. Next, the PCA was applied 

on the residuals and the association between the residual sums of square and the 27 

variables was tested again. Figure 3.4 shows correlation patterns before (left) and after 

(right) adjusting for covariates. 

 

3.5.2 Differential gene expression analysis reveals subtle differences between 
groups of variants 

Gene expression profiles between groups of MS patients differing in their genetic 

background were compared. Moderated t-tests were applied to examine how many of 

19,420 tested transcripts show differences in gene expression among 19 contrasts. 

Contrasts were designed to test the gene expression change relative to the carriers group. 

  

Figure 3.4 Correlation pattern between the first ten PCs of the gene expression data and twenty-seven covariates, 

before (left) and after regression (right). Darker colors indicate stronger correlation coefficients. The plots were 

created using the corrplot package in R (Wei & Simko, 2021).  
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For four alleles in the MHC region it was observed that the allelic RNA expression levels 

were influenced by its variant (Table 3.4, Figure 3.5). A strong log fold change (log(FC)) 

was observed for the HLA-DRB1 locus, where HLA-DRB1*15:01 allele carriers were 

found to have markedly higher expression of two probes mapping to HLA-DRB1 gene 

(ILMN_1697499 log(FC)=-6.6, adj. p value 1.63 × 10-118; ILMN_1715169 log(FC)=-3.5, 

adj. p value 1.83 × 10-39). The gene expression of the HLA-DQA gene was found to be 

significantly different between groups of the HLA-DRB1*03:01 carriers and noncarriers 

(ILMN_1808405 log(FC)=0.64, adj. p value 1.02 × 10-5; ILMN_3249667 log(FC)=0.59, 

adj. p value 1.60 × 10-3). MS patients carrying the HLA-DRB1*15:01 variant showed 

significantly higher HLA-DRA gene expression levels (log(FC)=-0.18, adj. p value 2.32 × 

10-3) than the patients not carrying the respective variant (Figure 3.5). Similarly, it was 

observed that the carriers of the HLA-A*02:01 allele showed significantly higher gene 

expression for the HLA-A locus (log(FC)=-0.11, adj. p value 2.83 × 10-4).  

 

Furthermore, there were two variants outside of the MHC region for which we found 

potential influence on the gene expression profiles (Table 3.4, Figure 3.5). The gene 

expression of the SHMT1 locus was higher in patients not carrying the rs4925166 variant 

(log(FC)=0.52, adj. p value 1.77 × 10-14). The same effect was observed for the association 

between the MMEL1 gene and the rs1079743 variant (log(FC)=0.26, adj. p value 2.01 × 

10-4). 
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3.5.3 eQTL analyses  

Dosage data from 15 MS-associated variants outside of the MHC region was tested for 

linear associations with log2 transformed gene expression of probes in a multivariate linear 

model. The p values from the regression were adjusted for the multiple hypothesis testing 

by applying the GBH procedure, with the TST approach employed to estimate the 

proportion of null hypotheses within the group (SNP). The results of eQTL analysis across 

15 tested variants in the KKNMS sample are presented in the Table 3.5, and found 

associations represent already annotated eQTLs (Andlauer et al., 2016). 

  

Figure 3.5 Gene expression of probes differentially expressed between groups of MS-associated variants.  

The differences in gene expression levels of transcripts differentially expressed between variant groups, statistically 

significant after adjusting for multiple testing. The fold change differences were estimated via limma analyses (Table 3.4). 
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Table 3.5 Detected eQTL associations for SNPs outside of MHC region. 

 Probes mapping to 500,000 bp up- and down-stream of a given SNP were included in the analysis. Association was 

considered significant if the w-p value was smaller or equal to the threshold. P value = p value from the regression; w-

p value = weighted p value corrected for the proportion of null hypotheses in a group, estimated from the GBH procedure; 

threshold – p value index-based threshold, estimated from GBH and TST procedure; index = order of the p value across 

all groups.  

 

Variant IlluminaID Gene p value w-p value threshold index 

rs4925166 ILMN_1811933 SHMT1 
8.035×10-

27 
2.089×10-25 0.00029 1 

rs10797431 ILMN_1718488 MMEL1 
2.286×10-

10 
3.887×10-9 0.00059 2 

rs4364506 ILMN_1727495 L3MBTL3 4.377×10-7 4.377×10-6 0.00088 3 

rs6859219 ILMN_2341724 ANKRD55 1.509×10-6 1.207×10-5 0.00118 4 

rs1800693 ILMN_1685005 TNFRSF1A 5.563×10-6 0.0001 0.00147 5 

rs6859219 ILMN_1798947 ANKRD55 3.167×10-5 0.0002 0.00177 6 

 

3.5.4 DHRS13 – UBOX5 gene pair showed a significant difference in Pearson’s 
correlation between groups of the rs2836425 variant 

For each variant, two Pearson’s correlation matrices were calculated – one on the data from 

the variant noncarriers (NCvariant) and the other based on the data from the variant carriers 

(Cvariant). Each matrix represented the correlation for the 90,336,961 different gene pair 

combinations of 13442 genes. Next, the Pearson’s correlation matrices were subtracted 

between groups of variants resulting in 19 matrices representing the degree of variant-

related differences (following Eq. (3.30)). Differences were further standardized as 

explained in the Methods section, which enabled inferring the p values for each of the 

respective differences. After adjusting for the multiple hypothesis testing, one gene pair 

resulted in a significant difference in the correlation between groups of the rs2836425 

variant. The rest of the differences did not sustain the multiple testing correction, steps of 

which were explained in the Methods section (3.4.2.7 Differences in Pearson’s correlation 

patterns). The measured difference in the correlation between the transcript mapping to 

DHRS13 gene, coding for a dehydrogenase, and the transcript mapping to UBOX5, coding 

for proteins involved in ubiquitination pathway, was statistically significant. With 

rnoncarriers= 0.388 and rcarriers= -0.435, the measured difference diff = 0.822 was standardized 

via Fisher transformation, yielding the Z = 6.961 (p-value = 3.38 × 10-12, adjusted p value 

= 3.05 × 10-4). Next, all standardized differences for the rs2836425 variant were plotted 

(Figure 3.6). The difference of the DHRS13-UBOX5 gene pair was the strongest difference 

among all tested differences and is located in the tail of the distribution.  
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3.5.5 Module variance weakly explained by different genetic background 

The WGCNA was applied on the residuals from the gene expression data of 2171 probes 

and 314 patients. Scale free topology criteria was satisfied with a soft threshold (power) of 

3 (Figure 3.7). The determined power was used to estimate the topological overlap matrix 

(TOM) from the expression data.  

Figure 3.6 Distribution of standardized Pearson's correlation differences for all gene pairs 

between the patients carrying the rs2836425 variant and variant noncarriers. 

 The differences are calculated by comparing the correlations among 90336961 gene pairs 

between the rs2836425 variant noncarriers and carriers. The dashed vertical line represents 

the standardized difference in correlation for the gene pair DHRS13-UBOX5 (Z = 6.961). The 

difference was statistically significant after the multiple hypothesis testing (p value 3.38 × 10-

12, adjusted p value 3.05 × 10-4). 
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Figure 3.7 Determining the soft thresholding power satisfying the scale-free criteria.   

(A) The analysis of scale independence for various soft thresholding powers (𝛽). (B) Mean connectivity distribution 

depending on the power level. (C) Examining the linear relationship between log10(k) and log10(p(k)) for the selected 

power of 3. Plots were created with the scaleFreePlot function from the WGCNA package in R (Langfelder & Horvath, 

2008).  

 

The hierarchical cluster analysis with average linkage criteria was performed on the TOM-

based dissimilarity matrix. Next, the resulting dendrogram was cut at the lowest level 

(dpSplit=3), yielding eleven modules. Finally, the Pearson’s correlation between modules 

was calculated and modules with r > 0.8 were merged. Most of the genes (1273/2171) were 

grouped into one of the ten resulting modules, while for the rest (898/2171) no significant 

association with other genes was found and they were labelled as grey (Figure 3.8). 

Gene expression variance in modules was summarized with the PCA. For each module the 

first principal component represented the module eigengene (ME), i.e., the direction of the 

variance in gene expression of a given module. The dosage data from the variants was 

correlated with the MEs to explore the influence of genetic risk factors on module gene 

expression variance. For each correlation coefficient, the t value was calculated enabling p 

value estimation based on the Student distribution. Correlation coefficients from all 

comparisons followed a normal distribution (Shapiro normality test, W = 0.993, p value = 

0.463), with a mean of -0.0008, therefore providing negligible evidence for genotype-

specific gene expression variation in the modules (Figure 3.9). 
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Figure 3.8 Dendrogram branches clustered into ten modules based on the TOM dissimilarity matrix from 314 MS 

patients. 

Each of the 2171 input genes has an associated color, corresponding to the module it was assigned to. Genes exerting 

low correlation with other genes are labelled grey. The plot was created using the plotDendroAndColors function from 

the WGCNA package in R (Langfelder & Horvath, 2008). 
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Figure 3.9 Correlation between module eigengenes (MEs) and dosage data from 19 MS-associated variants.  

Correlation coefficients are presented in the first row of each cell. The p values for a certain correlation coefficient are 

given in the brackets in the second row (not adjusted for multiple testing). The grey module consists of unassigned genes. 

Stronger red or blue color corresponds to stronger associations. The plot was created with the labeledHeatMap package 

from the WGCNA package in R (Langfelder & Horvath, 2008). 
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3.5.6 Highly preserved module structure between the groups of MS patients 

Next, gene co-expression modules were estimated for variant carriers and noncarriers for 

each MS-associated variant separately, using data from 2171 residuals. Scale-free topology 

criteria was satisfied with a soft threshold (power) of 3 for most of the variant groups, with 

the power being 4 only for the carriers of the rs7535818 SNP. After estimating the TOM, 

the TOM-based dissimilarity matrix was used for hierarchical clustering, with average 

linkage criteria. The dynamic tree cut approach resulted in four different sets of modules 

depending on the height where the dendrogram was cut. Split-2 was selected for module 

preservation analysis because it resulted in a moderate number of modules (ten) in each 

group (Figure 3.10). Next, module preservation was examined in the following way. 

Modules were compared in two directions. First, the module from the carriers group was 

considered as a reference structure and it was examined whether a similar structure exists 

in the data from noncarriers of a given SNP, in order to investigate the degree of module 

preservation structure in carriers. Then the reference and test group were flipped and 

module preservation analysis was repeated to examine the scope of preservation of the 

module structure in the noncarriers.  

Figure 3.10 Number of found modules for each dendrogram cut height (“split”), per SNP and per group.  

The dendrogram obtained from hierarchical clustering of genes based on their interconnectedness after applying the 

WGCNA was cut on four different heights resulting in four splits. Split-0 was the least deep split (nearest to the main 

branching start) and split-3 is the deepest split (farthest from the main branching start). The WGCNA was run for each 

group of each analyzed MS-associated variant (19). Split-2 was selected for module preservation analysis.  

 



 

  

71 

For each analysis, the Zsummary statistics was obtained. In both analyses, modules mostly 

exerted strong evidence of structure preservation (Zsummary > 10, Figure 3.11). There were 

eight modules with Zsummary statistic lower than 10, potentially indicating the that there 

could exist reference group-specific structure. However, most of them still incline towards 

the “strong evidence of preservation” category (Zsummary closer to 10). For one module 

among the eight with lower Z scores, the association with the GO term was still significant 

(Table 3.6) after correcting for multiple testing following the grouped Benjamini-Hochberg 

(GBH) approach (Hu et al., 2010). Genes comprising the pink module estimated from 

patients carrying the rs6498168 variant were associated with neutrophil degranulation GO 

term (weighted p value 1.2977 × 10-13). The rs6498168 variant is located in the CLEC16A 

gene (C-Type Lectin Domain Containing 16A), a gene coding for the regulator of 

mitochondrial autophagy.  

 

 

  

Figure 3.11 Module preservation statistics for each variant and the respective group, for both reference groups.  

On the left plot, the preservation statistic Zsummar is presented for each SNP and its modules estimated for the MS patients 

carrying the listed variant. On the right plot, data from MS patients not carrying the variant was used as a reference 

group. Zsummary statistics are presented in an additive scale for each SNP, e.g., the blue module of HLA-A*02:01 carriers 

has a Zsummary of 14.3, and the red module a Zsummary of 19.7 and so on. The two vertical lines on the plots label the region 

where there is low to moderate evidence of module preservation between the reference group (specified in the title of the 

plot) and the test group. The higher the Zsummary, the stronger the evidence for module preservation between the groups. 
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3.5.7 Subtle group-specific differences in partial correlations between genes in 
pathway-based GGM networks 

Prior to GGM network estimation, genes were divided into biological pathways using the 

KEGG database, as described in the Methods section. GGMs were estimated per pathway, 

for each variant group. The resulting models provided coefficients of pairwise partial 

correlations between genes, as well as corresponding p values and posterior probabilities 

of an edge being direct under the given GGM. The differential network analysis was 

employed per pathway, as explained in the Method section.  In summary, pairwise partial 

correlations were subtracted between the two groups, resulting in a vector of correlation 

differences between groups of carriers and noncarriers of a given variant. Two measures 

were introduced to enable exploring the differences. First, for each variant, absolute 

pathway-specific differences were summed, creating the global measure of the difference, 

the sum. The second approach was to inspect the highest difference in partial correlations 

for a given pathway between groups of variant carriers and noncarriers, representing the 

max measure.  Permutation analysis was employed to infer whether any of the described 

measures corresponds to an extremely rare event or if they are also highly likely to occur 

by chance. After 1000 permutation analysis, in which genotype group labels were shuffled 

1000 times, the permutation p values from analyzing the sum measure were mostly high (p 

value minimum 0.001, median 0.494; Figure 3.12 A). The sum measure in this analysis 

setting did not show significant differences in pathway correlation in any of the groups, for 

any of the pathways after the multiple hypothesis adjusting (adjusted p value minimum 

0.307, median 1).  On the other hand, when edges with the highest difference in partial 

correlation for the given pathway were analyzed, the permutation p value distribution (p 

value minimum 0 (<0.001) , median 0.484; Figure 3.12 B) contained p values which were 

considered significant after the multiple testing correction. For nine pathways, the original 

highest difference in partial correlation (the max) was always bigger than the difference 

calculated in the permuted groups, resulting in the permutation p value of <0.001 (Figure 

3.13, A-H). Such result was observed for altogether five MS-associated variants, the HLA-

A*02:01, HLA-DRB1*03:01, rs7535818,  rs1891621, and rs4364506 respectively (Table 

3.7). On the 1000 permutation level, the GSTM1-GSTM4 gene pair exerted a statistically 

significant difference in partial correlation between groups of the rs7535818 variant 

carriers and noncarriers in four different pathways. Protein products of GSTM1 and GSTM4 

genes are cytoplasmic glutathione transferases of the mu class, important in detoxification 

pathways of drugs, environment toxins and similar, corresponding to the KEGG pathway 

annotations in Table 3.7. 
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Carriers and noncarriers of the HLA-A*02:01 variant showed a statistically different partial 

correlation between KLC2 and MAP3K10 genes in pathway related to Huntington disease. 

KLC2 gene codes for a light chain kinesin, involved in the cellular motor function. 

MAP3K10 is a mitogen activated protein kinase-kinase, important in signal transduction. 

In the acute myeloid leukemia (AML) pathway, partial correlation between transcriptional 

factor CEBPE and transcriptional co-repressor RUNX1T1 was significantly different 

between the groups of HLA-DRB1*03:01 carriers and noncarriers. When groups of 

rs1891621 were analyzed, the highest difference in partial correlation in TH17 cell 

differentiation pathway was detected between the IL2RG gene, coding for a signaling 

component of many interleukin receptors and MAPK10, another mitogen activated protein 

kinase-kinase. This difference was always higher than the difference calculated using 

permuted group labels. The analysis of the groups of the rs4364506 variant suggested a 

different partial correlation between genes involved in activation of vitamin K, VKORC1 

and VKORC1, in the corresponding KEGG pathway (Table 3.7). 

To get a more precise p value estimate for the max measure in nine pathways, genotypes 

were shuffled additional 100,000 times. After the multiple testing correction, none of the p 

values sustained the multiple testing adjustment (Table 3.7, Figure 3.13 I-O).  

 

  

Figure 3.12 Permutation p value distribution after the analysis of 1000 permutations.  

(A) Permutation p values from all variants, across all pathways testing the significance of the original sum measure. 

(B) The resulting p values from 1000 genotype shuffling of all variants testing the statistical significance of the original 

max measure across all tested pathways.  
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Figure 3.13 Posterior distributions of partial correlation differences in gene pairs which passed the multiple testing 

correction after analysis of 1000 permutations. 

 Graphs A-H show 1000 differences from 1000 permutation analysis. Each curve represents the posterior distribution of 

the partial correlation difference for the given pathway-specific edge, estimated from permutation runs. The MS-

associated variant and corresponding gene pairs are given in the title of the facets. Corresponding distributions resulting 

from 100,000 permutations are shown on graphs I-P. Vertical lines represent the difference calculated between the 

original group setting and line colors indicate eight separate partial correlations, each specific for an MS-associated 

variant, gene pair, and the pathway. 
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3.5.8 Gene connectivity analysis of pathway-based GGM networks suggests that 
rs6689470 variant might influence the dynamics of the hsa05416 pathway 

Pathway-specific networks estimated via the GGM were further analyzed in the context of 

node connectivity. In the GGM, for each of the 307 pathways, 38 different networks were 

built (one for each variant group). This resulted in 843,068 different entities, which are 

network-specific nodes whose characteristics depend on a gene set (pathway) and a sample 

(group). Node connectivity profiles were compared between 19 sets of networks from 

carriers and 19 sets of networks from noncarriers, which are the two reference groups. In 

the context of conditional independence analysis, the node degree was declared zero if the 

entity didn’t have any direct connections in that pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.14 Node degree distribution in the data.  

For each entity, it was checked how many direct connections it established, based on GGM 

probabilities via Bayes factor calculation. An entity is a network-specific node whose 

characteristics depend on a gene set (pathway) and a sample (group). The Bayes factor was 

calculated using data from patients carrying the variant and the patients not carrying the 

variant separately, therefore introducing two reference groups for each pathway, that is, for 

each node. The node degree of zero describes the edges with estimated Bayes factors < 5.6, 

therefore, having no direct edges. 
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Most of the entities in networks estimated from both reference groups did not establish any 

direct connections (90,5% for carriers and 89,1% in noncarriers). The rest of the nodes 

established at least one direct connection in both carriers and noncarriers (40042 and 45917, 

respectively). Among nodes with direct connections, the majority formed only one or two 

direct connections in both reference groups (96,4% in carriers and 96,8% in noncarriers). 

The highest achieved node degree was nine in the carriers reference group and eight among 

noncarriers (Figure 3.14). It was decided to analyze nodes with at least three direct 

connections for two reasons. First, nodes with a larger number of connections are more 

likely to represent genes exerting important roles in a pathway. And second, by selecting 

nodes with at least three direct connections, we came the closest to meeting the top 5% 

criteria often used in the research, as already mentioned in the Introduction section. This 

left 1440 entities sharing 671 unique gene names from 141 pathways in the carriers 

reference group and 1453 nodes covering 559 unique gene names from 156 pathways in 

the noncarriers reference group, including all 19 variants. For both groups, the differential 

analysis was run as described in the Methods section. Based on the 1000 permutations, for 

31 nodes among the noncarriers, the analysis resulted in less than 0.01% probability 

(permutation p value 0) of observing such an extreme difference in connectivity compared 

to the same node in the carriers group, given that the null hypothesis is true. In carriers, 

there were 57 such nodes (Figure 3.15 A). Together, for 86 nodes, spanning 45 different 

pathways a significant result was observed. However, for each of the 86 nodes, the 

estimated permutation p value was zero (<0.001), hence, a deeper level of permutation 

testing was needed to infer a more precise p value. The groups were shuffled for additional 

10,000 times and the permutation analysis was run. The difference in connectivity for most 

of the nodes did not reach a statistical significance after 10,000 permutations (Figure 3.15 

B). However, ten nodes, spanning seven different pathways still exerted statistical 

significance, with a permutation p value < 0.0001. Pathway-based networks estimated from 

the data from patients carrying one of the four variants still suggested potential regulation 

rewiring. There were six nodes in four different pathways with significantly more direct 

connections in carriers, based on the analysis of 10,000 permutations. A similar result was 

observed in pathway-based networks of four pathways in noncarriers, where the degree of 

four nodes was significantly higher than the degree of the same entity in carriers (Figure 

3.15 B).  

Altogether ten entities, six from the carriers’ data and four from networks estimated based 

on the data from noncarriers, were further tested on a 100,000 permutation level in order 

to obtain a more precise p value estimate.  
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3.5.8.1 HLA-DOB and ACTB genes exert significantly stronger connectivity profiles in 
rs6689470 carriers 

Based on the analysis of 100,000 permutations, nodes representing transcripts mapping to 

the ACTB and HLA-DOB genes from the hsa05416 pathway formed significantly more 

direct connections in a network estimated on the data coming from patients carrying the 

rs6689470 variant when compared to the network of the same pathway estimated on the 

data from patients not carrying the variant (adj. p values 0.001 and 0.002, respectively; 

Table 3.8). The hsa05416 pathway consists of altogether 60 genes in the KEGG database. 

In the KKNMS data set, 48 genes were matched. The pathway has been annotated to play 

Figure 3.15 Analysis of differential connectivity: number of entities with statistically significant difference in 

connectivity between groups of a variant, depending on the reference group. 

 (A) Altogether 31 entities from noncarriers and 57 entities from carriers were found significant, based on 1000 

permutation results. (B) These entities were further tested on a 10,000 permutation level, where most of the tested nodes 

did not reach statistical significance.  
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an important role in viral myocarditis, a cardiac disease by which the myocardium is injured 

and subject to inflammation. The disorder can be caused by direct cytopathic effects of a 

virus and also by the autoimmune response triggered by the viral infection (Esfandiarei & 

McManus, 2008).  

 

In the network of the hsa05416 pathway estimated from 208 patients not carrying the 

variant nodes ACTB and HLA-DOB did not form direct connections with any among 48 

genes comprising the pathway in the KKNMS data set. On the other hand, they achieved a 

markedly high degree in the network obtained from the gene expression data of 106 MS 

patients carrying the variant (6 and 3, respectively; Figure 3.16). The ACTB gene codes for 

one of the six highly conserved actin proteins, the building units of filaments, some of 

which comprise cell’s cytoskeleton. In viral myocarditis emergence, actin gets rearranged 

upon receiving upstream signals, enabling virus particle entry into the cell (Yajima & 

Knowlton, 2009). HLA-DOB is the beta chain protein coded by HLA class II HLA-DOB 

gene. Together with the alpha chain (DOA), they build the HLA-DO heterodimer immersed 

in the membrane of intracellular vesicles in B cells and in a subset of thymic medullary 

epithelium, a microenvironment important for the tolerance induction of T cells (Welsh & 

Sadegh-Nasseri, 2020). Additionally, the HLA-DPA1, another class II MHC gene, was just 

above the Bonferroni adjusted threshold, also exerting stronger connectivity patterns in the 

viral myocarditis pathway (Table 3.8).  
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3.5.8.1.1 ACTB and HLA-DOB seem to exert strong connectivity profile specific to 
hsa05416 pathway 

 

To explore the connectivity profiles of the two genes in other pathways estimated from the 

data of rs6689470 carriers and noncarriers, it was first ascertained in how many other 

pathways do these genes appear. ACTB is found in 28 other pathways in the data set (out 

of 307), while HLA-DOB appears in 23 pathways, both excluding the hsa05416. Their 

degree was then examined by looking into the number of direct connections they formed 

in the networks of those pathways. The ACTB gene formed direct connections in four 

pathways, one direct connection in each of the four. The HLA-DOB formed direct 

connections in two more pathways, one in the hsa05164 network and two direct 

connections in the hsa05168 (Table 3.9). None of the entities in other pathways were tested 

in the permutation analysis because they didn’t achieve the critical number of direct 

connections (3). 
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Figure 3.16 GGM-based sparse graphs of the hsa05416 pathway estimated from the gene expression data of MS 

patients carrying the rs6689470 variant (A) and patients not carrying the variant (B).  

(A) In patients carrying the MS-associated variant, the network consists of nodes forming more direct connections than 

the (B) network of noncarriers. Nodes colored orange represent genes whose number of direct connections is significantly 

different when the two networks are contrasted, based on analysis of 100,000 permutations. Their direct connections are 

represented by the dashed, orange edges. Graphs were created with network (Butts, 2008) and ggnet (Briatte, 2020) 

packages in R. The distances between the nodes in the network and the length of edges are random.  
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4 | Discussion 

 

The analysis of a complex disease such as multiple sclerosis bares manyfold challenges. 

Our body systems belong within the big ecosystem and have to function in the midst of its 

web of influences. There are factors like genetic inheritance, environment, and epigenetics 

which intertwine in somewhat random ways and model our susceptibility to the disease. 

By finding important associations between genetic polymorphisms and the disease itself, 

we can solve at least one part of the equation which would then lead to a better 

understanding of disease pathogenetics. In this thesis, MS pathogenetics was investigated 

in two separate projects. Firstly, in murine models for MS, using which evidence is 

presented that the spontaneously induced EAE mirrors the role of human MS risk variants 

more faithfully than MOG-induced EAE. Secondly, the direct effect of MS-associated 

variants on regulation in gene co-expression networks from MS patients was examined, 

suggesting the potential involvement of the rs6689470 variant during early stages of MS. 

In this work, it is suggested that this variant might influence a more coordinate regulation 

of proteins involved in T cell egress from thymus into the CNS as well as a strongly 

synchronized activation of autoimmune response, when compared to MS patients not 

carrying the variant. 

  



  

  

88 

 

  



  

  

89 

4.1 Human MS risk variants associated with gene expression changes in OSE 

This section discusses the analysis and the results published in and related to the research 

paper by Faber, Kurtoic, and the colleagues (Faber et al., 2020). 

 

Mouse models of human MS are used to explore the pathogenesis of the disease and to 

develop novel treatments for patients suffering from MS. But, it is still not fully clear 

whether currently used EAE models can mirror such complex disease as is MS, where 

genetics and the environment shape the disease susceptibility. It was therefore interesting 

and of high value to explore to which extent do OSE and MOG-induced EAE reflect the 

etiology of MS, as well as the involvement of genetics in disease pathogenesis. 

 

In comparison to MOG EAE, mice developing the EAE spontaneously experience gene 

expression changes closely linked to immune pathways, potentially indicating more 

complexity in disease induction as well. Previous research has already observed B and T 

cell cooperation in OSE, a process important in MS pathophysiology (Lehmann Horn, 

Kronsbein, & Weber, 2013; Molnarfi et al., 2013). Transcripts specific for OSE were 

enriched for both human MS risk genes and TH cell specific transcripts. OSE-specific 

transcripts showed an overrepresentation of immune-specific gene sets. Nonetheless, genes 

specific for both OSE and MOG EAE indicate that both models faithfully recapitulate 

critical functional pathways of MS, for example the role of antigen presentation and CD4+ 

T cells in the immunopathogenesis of MS (Moutsianas et al., 2015; Patsopoulos et al., 

2013). Furthermore, the transcripts mapping to the H2-Eb1 and H2-Ab1 genes, homologs 

of the HLA-DRB5 and HLA-DQB1 genes, were one of the mostly differentially expressed 

probes. The alleles HLA-DRB*01:01 and HLA-DQB1*06:02 are part of the DR15-DQ6 

haplotype and are strongly associated with MS. These alleles are in strong linkage 

disequilibrium with the HLA-DRB1*15:01, for which the involvement in B and T cell 

interaction in the brain has been found, leading to the activation and growth of autoreactive 

CD4+ T cells (Jelcic et al., 2018). The cooperation of B and T cells has also been proven 

important in the OSE development (Molnarfi et al., 2013).  

 

These results show that the EAE, especially the OSE, represents a beneficial model for 

studying the role of genetics in MS susceptibility. Previous research findings support this 

claim. For example, in a humanized EAE, where the TCR recognizes the human myelin 

binding protein, risk variants in the MHC region, including the major risk variant, HLA-

DRB1*15:01, were successfully replicated (Gregersen et al., 2006). Furthermore, risk loci 

linked to TH cell differentiation are found to be conserved between humans and mice, and 

are implicated in both MS and the EAE (Blankenhorn et al., 2011). In an adoptive transfer 

EAE study, MS risk genes were found to be differentially regulated in pathogenic CD4+ T 

cells, thereby underlining the role of MS risk genes in EAE pathophysiology (Hoppmann 

et al., 2015).  

 

In this work, the pivotal role of lymphocyte activation in EAE induction has been 

highlighted, and the role of TH1 and TH17 cells has been further examined. Their function 

in CNS autoimmunity has been hotly debated (Hiltensperger & Korn, 2018). When 

comparing the T cells from the spleen of four OSE mice, the number of TH1-specific 

transcripts was higher than that of TH17. A high TH1/TH17 ratio is indicative of a lesion 

distribution pattern, where the spinal cord is primarily affected, a case observed for both 

EAE models (Domingues et al., 2010; Stromnes, Cerretti, Liggitt, Harris, & Goverman, 

2008).  
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Genes overlapping between CDT and OSE1ex gene sets and TH1-specific transcripts were 

significantly enriched in MS risk genes (Table 2.5). TH17-specific transcripts did not show 

such enrichments. In the OSE4sp gene set, MS risk genes were enriched in TH1 cells at only 

a nominal significance (unadjusted p value = 0.0097). The GO overrepresentation analyses 

revealed that immune-related biological processes like the positive regulation of T cell 

proliferation were significant for TH1-specific genes in the OSE4sp set. On the other hand, 

in the MOG4sp gene set, TH1-specific genes were not enriched in MS risk genes (unadjusted 

p value = 0.51), and there were no GO terms associated with TH1-specific MOG4sp genes. 

These findings suggest that, in the context of TH1-related immune responses, the OSE 

model might be more closely linked to human MS risk genes than MOG EAE is. The 

relevance of TH17 cells is still not completely comprehended, because TH17 cells can shift 

toward the TH1 phenotype in EAE. Therefore, the TH1 markers analyzed in this study may, 

to a certain extent, actually represent the expression of former TH17 cells. 

 

In this work, it was observed that most genes differentially expressed in OSE1 mice exert 

the same pattern in severely affected OSE4 mice, with the same direction of regulation.  

Therefore, many factors active in severe EAE are also involved during the mild stage or, 

potentially, early disease course. As already mentioned before, the OSE develops more 

gradually than the MOG-induced EAE, which also makes it more similar to human MS. 

Studying the stages of OSE, especially the mild stage, might provide an interesting model 

for defining the initial triggers of MS, given that the  factors determining the onset and the 

course of MS are largely unknown (Krishnamoorthy et al., 2006). 

 

However, the gene expression analysis of the two EAE models suffers from several 

limitations. Microarrays covered only part of the murine transcriptome, therefore limiting 

the number of MS risk genes which could be analyzed. Next, the statistical power of the 

analysis is hampered by the small sample size. Lastly, the initial phases of EAE are hard to 

define, because the disease develops quickly. Here, mild OSE was representing the early 

disease stage, but it cannot be said with certainty whether these mice would develop a more 

severe EAE in the future.  
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4.2 The exclusive effect of each of the 19 analyzed MS-associated variants on 
gene expression in MS patients appears to be subtle 

A common way of exploring the relationship between genetic polymorphisms and gene 

expression levels have been the eQTL analyses which test the influence of phenotype-

associated variants (detected by GWAS) on gene expression and can give insight on 

putatively causal genes. These analyses, however, cannot provide us with insights about 

mechanisms underlying the association between the SNP and the disease.  In the subset of 

MS patients in the KKNMS cohort, the eQTL analysis confirmed already known eQTL 

effects (Table 3.5, Andlauer et al., 2016s). The associations between the rest of the known 

variants outside of the MHC region were not detected in this sample. This could be due to 

a lower quality of probes mapping to corresponding genes, therefore excluding the probe 

from the analysis or simply due to a lack of power. The differential expression analysis 

resulted in similar signals. Groups of variants mostly showed similar levels of gene 

expression, suggesting that variants alone do not exert strong influence on gene expression 

in this sample of MS patients. For variants rs4925166 and rs10797431, the previous eQTL 

study found associations with the loci TOP3A and MMEL1, respectively (Andlauer et al., 

2016). Furthermore, in this work, the differential expression analysis showed that patients 

not carrying the variant exert significantly different expression levels of those loci when 

compared to patients carrying the variant (Table 3.4). Four probes mapping to HLA genes 

were differentially expressed between groups of HLA-DRB1*15:01 and HLA-

DRB1*03:01 carriers and noncarriers (Table 3.4). In previous research, where peripheral 

blood mononuclear cells and umbilical cord blood cells from healthy individuals were 

subject to RNA-Seq analysis, it has been shown that the gene expression of HLA loci 

indeed depends on the genetic variants occupying the locus (Yamamoto et al., 2020).  

 

4.2.1 Direct effects of MS-associated variants on gene expression and Pearson’s 
correlation between gene expression profiles appear to be comparatively low 

MS patients not carrying the rs2836425 variant showed a statistically significant difference 

in Pearson’s correlation between the genes DHRS13 and UBOX5, with the absolute 

difference of 0.822 (adj. p value 3.05 × 10-4). The rs2836425 variant is located in ERG 

gene, an erythroblast transformation-specific (ETS) related gene, which is a transcriptional 

regulator. The DHRS13 gene codes for the dehydrogenase 13 and the UBOX5 for proteins 

involved in the ubiquitination pathway. The ubiquitination, or the ubiquitin-proteasome 

system (UPS), is a post-translational modification where proteins are labelled to be 

degraded via the proteasome complex. Previous research has shown that the UPS is 

involved in myelin protein degradation in MS (Belogurov et al., 2014; Giordana, Richiardi, 

Trevisan, Boghi, & Palmucci, 2002). Furthermore, it has been shown that MS patients exert 

lower levels of UPS activity after treatment with IFN-beta-1b, which is correlated with 

better clinical status of patients after six month of IFN-beta-1b therapy (Minagar et al., 

2012). Interestingly, the process of neddylation, analogous to the ubiquitination, has been 

linked to T cell function regulation (Mathewson et al., 2016). Very recently it has also been 

shown that the inhibition of neddylation in mice resulted in decrease in EAE severity (Kim 

et al., 2021).  

However, to the best of my knowledge, the DHRS13 gene and UBOX5 have not been 

annotated to be functionally connected. The potential influence of the variant on the 

correlation between these two genes can either be an example of a type I error or a very 
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interesting novel finding for which additional data sets are needed in order to either support 

it or confront it.  

 

4.2.2 Immune-related modules show high preservation between the groups of MS 
patients 

Variability in gene expression levels in modules estimated on gene expression data of 2171 

immune-related genes from all 314 patients was weakly explained by MS-associated 

variants, with correlation coefficients centered around zero (Figure 3.9). The module 

preservation analysis yielded similar results, providing strong evidence of structure 

preservation between modules of different groups, with the lowest Zsummary score of 5.793, 

which still falls into the category of having moderate evidence of module preservation, 

suggesting that the modules do not show group-specific characteristics (Table 3.6). 

However, no GO term was significantly associated with this module, after correcting for 

multiple hypothesis testing via the GBH and TST procedures. The pink module estimated 

from patients carrying the rs6498168 variant was the only module in the data set with the  

Zsummary statistic below 10 and for which associated GO term was found. Most of the genes 

of the pink module (32/44) belong to the neutrophil degranulation GO term. The process 

of neutrophil degranulation is a very common process during the inflammation, whereby 

neutrophils excrete granules containing proinflammatory substances (Lacy, 2006). The 

impact of neutrophils on the immune response in MS patients is still not fully clear, but 

research does provide evidence of their emerging role in MS pathogenesis (Woodberry, 

Bouffler, Wilson, Buckland, & Brüstle, 2018). Yet, the preservation analysis of the pink 

module still yielded the Zsummary  score close to 10, and it is therefore hard to make any 

strong claims regarding the functional aspect of the rs6498168 variant in the context of MS. 

It could be that this effect is invoked by the random sampling error. The same effect should 

be further examined in an independent sample of MS patients, in order to inspect whether  

we can find stronger evidence that the rs6498168 risk variant influences the neutrophil 

degranulation pathway in MS patients.  

The reason why such a low signal was observed after performing the WGCNA might be 

due to gene space restriction. Examining genes specifically annotated to participate in the 

immune response could have a downside of restricting the gene space too much. This might 

lead to removing highly variable genes just because they are not immune-system related, 

while being a differentiating factor between the two groups with respect to the MS-

associated variant. Thus, instead of subsetting the genes based on their function, one could 

subset them based on gene expression variability between the groups, as often performed 

when analyzing gene expression data via WGCNA (Liang et al., 2018; Tang et al., 2018). 

This would potentially provide more power because the WGCNA would be run on the 

genes exerting high expression variance. Such modules would potentially also exert group 

specific structures yielding lower Zsummary scores. GO enrichment analysis of such modules 

might reveal pathways not exclusively related to the immune-system, but nonetheless 

contributing to our knowledge about mechanisms in the early stage of the disease.  

 

4.2.3  Differential network analysis shows potential in uncovering distinct patterns 
of partial correlation in GGM-based pathway networks  

In the analysis of conditional independence, a bigger subset of genes was included, with 

genes exerting more diverse roles. The Gaussian graphical model (GGM) was applied to 

gene sets annotated to have a similar function based on the KEGG database to infer sparse 
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gene co-expression networks. Comparison of variant-specific pathway-based sparse graphs 

enabled removing potentially spurious correlations between genes, reducing the 

background noise in the data. Such an approach takes the effect of other genes in the 

pathway into account, whereby removing such influences we can explore whether an 

association between two genes is direct, without mediators, or does it depend on other 

genes. The analysis revealed low variability in the partial correlation, suggesting similar 

pathway regulation, irrespective of genetic background. For five variants there was 

suggestive evidence of their influence on pathway regulation, based on 1000 permutations 

and after adjusting for multiple hypothesis testing. The edge between glutathione 

transferase genes GSTM1 and GSTM4 showed significant difference in partial correlation 

between groups of rs7535818 variant carriers and noncarriers in four different pathways, 

which is a potentially interesting finding. One would expect that if a variant influences the 

gene-gene interaction, and a certain gene pair appears in more than one pathway in the data 

set, the effect of a variant would be detectable in more than one pathway. However, this 

difference was not strong enough to sustain the deeper level of permutation, with at least 

thirty random differences (p value = 0.0003 in the hsa05200 pathway after 100,000 

permutations, Table 3.7) stronger than the original difference (Figure 3.13.). It would be 

interesting to examine this edge in a bigger sample setting, because it is possible that this 

study did not have enough power to find evidence to support the alternative hypothesis. 

 

4.2.4 Differential connectivity analysis suggests the involvement of rs6689470 MS 
risk variant in self-reactive T cells evasion into the CNS in the early stages of MS 

The exploration of the biggest difference in partial correlation in the pathway could 

potentially be a too specific analysis, and might overlook many other potentially interesting 

edges, while examining a sum of all differences in a network might be too general, in a way 

that edge-specific variation is potentially lost. The network connectivity analysis would 

enable more edges in a pathway to be analyzed, while edge specific characteristics would 

be contained.  

 

Gene connectivity patterns mostly show robustness towards the influence of MS-associated 

variants tested in the KKNMS sample. However, patients carrying the rs6689470 variant 

potentially exert patterns of higher connectivity in the network of the hsa05416 pathway 

(KEGG pathway name: Viral myocarditis) in comparison to MS patients not carrying the 

risk variant (Table 3.8). The connectivity of nodes mapping to the ACTB and HLA-DOB 

genes differed significantly between the two groups, potentially suggesting the underlying 

mechanism of the MS associated variant (adj. p values < 0.00236, Table 3.8, Table 3.9).  

 

The rs6689470 variant is located in an intron of the Gfi-1 gene, coding for a regulator of 

lymphocyte activation and development (X. Liao, Buchberg, Jenkins, & Copeland, 1995). 

The eQTL study by Andlauer and the colleagues (Andlauer et al., 2016) presented the 

association between the rs6689470 variant and gene expression changes in the EVI5 gene. 

Ecotropic viral integration site 5 protein, coded by the EVI5 gene, modulates the cell cycle 

progression, cytokinesis, and cellular membrane traffic (Zhou et al., 2016). The relationship 

of EVI5 to human MS is still unclear, and further research is needed to investigate whether 

the causal allele acts through the EVI5 or another gene. The influence of the EVI5 gene on 

the T cell function needs to be studied in more detail as well as its relationship to retroviral 

elements (Hoppenbrouwers et al., 2008).  
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4.2.4.1.1 The dynamic interaction between cytoskeleton and immune response in early 
stages of the disease might be governed by the rs6689470 variant 

 

The two genes whose connectivity was significantly different between the groups of 

patients seem to play important roles in the Viral myocarditis pathway by participating in 

the viral particle entry (actin beta) and peptide presentation on antigen presenting cells 

(HLA-DOB) (Esfandiarei & McManus, 2008). The function which HLA-DOB exerts in 

viral myocarditis is not necessarily myocarditis-specific. HLA-DOB is a beta chain protein 

coded by the HLA class II HLA-DOB gene. Together with the alpha chain (DOA), they 

build the HLA-DO heterodimer immersed in the membrane of intracellular vesicles in B 

cells and in a subset of thymic medullary epithelium, a microenvironment important for 

tolerance induction of T cells. The HLA-DO heterodimer contributes to the selection of 

immunodominant epitopes. It is blocking promotion of self-reactive T cells by binding to 

the HLA-DM molecule (Welsh & Sadegh-Nasseri, 2020). A disbalance in self-peptide 

presentation to T-cells enables self-reactive CD4 T cells to escape into the periphery. 

Furthermore, mice with a knocked-out DO gene have shown to be more susceptible to EAE 

development, producing more CD4+ T cells specifically targeting the MOG component of 

the myelin sheath (Welsh et al., 2020).  

 

The HLA-DOB established three direct connections in the hsa05416 pathway network of 

rs6689470 carriers. It formed connections with nodes corresponding to transcripts mapping 

to CD80, MYH6, and CASP8 genes (Table 3.9, and Figure 3.16). The CD80 gene is a 

putative risk gene for MS (IMSGC, 2019b), coding for a ligand present on T cells. 

Interaction between the CD80 molecule on T cells and the CD28 molecule on B cells 

constitutes a costimulatory signal for T cells, thereby activating them (Menezes et al., 

2014). The myosin heavy chain 6 (MYH6) gene, on the other hand,  codes for a protein 

comprising the cardiac muscle thick filament, important in muscle contraction (Razmara & 

Garshasbi, 2018). Lastly, the HLA-DOB is directly connected to the node represented by 

the transcript mapping to the CASP8 gene, coding for caspase-8, a protease playing a 

crucial role in inhibiting inflammatory cell death, i.e., necroptosis. In caspase-8-deficient 

conditions, the cell death pathway is activated leading to the loss of oligodendrocytes and 

demyelination. Defective caspase-8 has been found in cortical lesions of MS patients, 

therefore suggesting that the deficient enzyme might play a role in MS pathogenesis 

(Ofengeim et al., 2015). The analysis of connectivity based on conditional independence 

in a pathway-specific network has found that the regulation of HLA-DOB expression is 

associated with the expression of the CD80 gene, involved in T cell activation, the CASP-

8 gene, involved in necroptosis inhibition and the MYH6 gene, coding for a building 

element of heart muscle. Even though the MYH6 does not fully fit the MS context, we 

should not forget that the analysis puts focus on the HLA-DOB, suggesting its differential 

connectivity pattern. The role of MYH6 is probably tissue-specific, but other three genes 

(HLA-DOB, CASP-8, and CD80) do have more general roles in terms of immune system 

response regulations, which are processes important for various types of inflammation, 

including both the myocarditis and the MS. Through the lens of the hsa05416 pathway, we 

might be able to learn more about associations between the rs6689470 variant and the 

immune response in the early stages of the disease. MS patients not carrying the rs6689470 

variant might therefore be more susceptible to MS due the more strongly synchronized 

regulation of the three proteins, based on the stronger connectivity profile. The expression 

of HLA-DOB might be reduced, with the CD80 molecule being more expressed leading to 

a more prominent activation of self-reactive T cells and decreased expression of caspase-

8, resulting in more effective necroptosis in the CNS. 
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Furthermore, the differential connectivity was observed for the ACTB node, forming six 

direct connections in the patients carrying the rs6689470 variant (Table 3.8, Table 3.9, and 

Figure 3.16) and zero direct connections in the other group. The two of the nodes map to 

HLA genes, namely the HLA-C and HLA-E. The HLA-C has been described as a mediator 

of NK cell and T cell activation (Blais, Dong, & Rowland-Jones, 2011), similarly to the 

role of the HLA-E, which is also involved in NK cell activation (Rölle, Jäger, & Momburg, 

2018). Next, the CD40LG is a ligand expressed on activated CD4+ T cells, and it binds to 

the CD40 molecule on, e.g., B cells, thereby activating the immune response (Cleary, 

Fortune, Yellin, Chess, & Lederman, 1995). The ACTB node is further connected to gene 

coding for the integrin beta (ITGB2), important for cellular adhesion and the innate immune 

response (Arnaout, 1990). Interestingly, the ACTB forms a direct connection with pore 

forming protein perforin, coded by the PRF1 gene, which is found to be associated with 

MS risk in Sardinian population (Sidore et al., 2020). Lastly, the ACTB is directly 

connected to a gene coding for gamma actin (ACTG1). Together with other actins, 

including the ACTB, it plays an important role in B cell cytoskeleton reorganization upon 

contact with antigens (Welsh & Sadegh-Nasseri, 2020). The ACTB therefore might be 

mediating the immune response in close connection to cytoskeleton dynamics. In MS 

patients carrying the rs6689470 risk variant, it was observed that the connectivity pattern 

of ACTB changes, potentially promoting a stronger autoimmune response.  

 

In this work, gene expression of patients in the early stage of MS was studied. Thus, it is 

conceivable that the rs6689470 variant is involved very early on in MS development, by 

influencing the pathways related to the negative selection of T cells, closely associated with 

B activation. It could be that patients carrying the rs6689470 variant exert a higher risk for 

MS because self-reactive T cells evade the negative selection in the thymus.  On the other 

hand, the actin beta, coded by the ACTB gene, is an element of the cell cytoskeleton. During 

B cell activation, the cytoskeleton is reorganized upon the contact of the cell with the 

antigen. The cytoskeleton network plays an important role in antigen entry into the cell as 

well as its processing (Harwood & Batista, 2011). To better discern the sequence of the 

events, it is important to explore the connectivity of HLA-DOB and ACTB in healthy 

individuals as well, in order to examine the wild-type connectivity profile of these genes. 

 

4.2.5 Study highlights and limitations 

In this thesis, it is suggested that the rs6689470 variant influences interactions of HLA-

DOB and ACTB nodes in a pathway-specific network of MS patients in the early disease 

stage. Taking into account the sample size employed to examine subtle effects of MS-

associated variants with mostly moderate influence on disease risk (ORs < 2, Table 3.3), it 

could be that this study is underpowered and was unable to provide stronger evidence of 

genetic influence on actin importance in B cell antigen internalization and activation, which 

can further induce the proliferation of myelin-specific T cells. However, direct calculations 

of power would be too complex to estimate for this project, due to ample assumptions one 

made by employing the linear regression, the GGM, and the WGCNA analysis. Previous 

research has provided proofs of concept that one indeed can obtain analyses integrating 

genomics, transcriptomics, (and epigenomics) on a sample of only 70 people (Pineda et al., 

2015). Furthermore, a differential network analysis based on Gaussian graphical model 

inference was successfully performed on 58 lung adenocarcinoma samples (He et al., 

2019). 
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The study on the sample of KKNMS patients potentially only slightly opened the doors to 

examining the influence of the rs6689470 variant, as well as to investigating important 

aspects of cytoskeleton involvement in MS pathogenesis. However, this effect needs to be 

studied further in an independent population sample of MS patients, where the same 

connectivity analysis would be conducted, then providing evidence for a population-wide 

effect.  

 

A very important characteristic of this sample is its homogeneity and the treatment-naïve 

background of MS patients. MS patients comprising the sample are all Germans, i.e., with 

low underlying population structure (Table 3.2). The fact that most of the patients did not 

take any DMTs (Table 3.2), is an advantage, because the DMT can indeed alter gene 

expression levels and thereby bias the results (Nickles et al., 2013). Furthermore, all 

patients in the sample are at either early-stage MS or suffer from the CIS. Hence, this 

sample provides a window into associations potentially governing the early stages of MS. 

It is therefore imaginable that the homogeneity of the sample could contribute to unveiling 

the very subtle effects, irrespective of a potentially small sample size, such as the effect of 

rs6689470 risk variant in the early stages of MS.  

 

In this work gene expression data from whole blood was analyzed. Whole blood is a more 

convenient source to extract from individuals in comparison to, e.g., brain tissue. However, 

the correspondence in expression levels between whole blood and the brain indicates 

important differences, even though certain brain transcripts do co-express in blood (Rollins, 

Martin, Morgan, & Vawter, 2010), and whole blood is often used as a proxy for studying 

the disorders of the CNS (Wittenberg et al., 2020). It indeed makes sense to explore the 

gene expression levels in the whole blood because according to the extrinsic model for MS 

emergence, the disease is triggered on the periphery, followed by the travel of self-reactive 

T cells into the CNS (Dendrou, Fugger, & Friese, 2015). Nonetheless, whole blood is a 

mixture of many different cell types, and in MS pathogenesis, certain cell types exert 

specific roles (IMSGC, 2019a). Even though gene expression data was adjusted for the 

presence of most important cell types in the sample, there still is a certain extent of 

background noise present in the data and the signal from cell lines important in MS 

pathogenesis is diluted. A study examining the associations between gene expression levels 

in specifically B cells or T cells and MS-associated variants might provide us with more 

power to unveil B- or T-cell specific events.  

 

Furthermore, only part of the MS risk variants was analyzed in the workflow. It would be 

interesting to explore the nature of association between the rest of the MS risk variants and 

gene expression profiles of MS patients. Additionally, analyses on healthy individuals are 

needed to gain insight into the MS-unrelated levels of gene interaction, in order to inspect 

whether the connectivity in a pathway network increases due to the presence of the 

rs6689470 variant. Unfortunately, due to a lack of time, it was not possible to perform the 

analyses on the data from healthy individuals. Finally, replication analyses are needed in 

order to examine whether the results found in the KKNMS study are sample-specific or can 

we can find evidence that the association is a more general effect in the population of MS 

patients, therefore validating the results presented in this thesis. Analyzing one sample 

representing the population is not enough to enable us to draw conclusions about the 

population-wide effect. However, due to the specific characteristics of the KKNMS sample, 

it was challenging to find a corresponding sample to perform a replication analysis. The 

characteristics include early-stage MS patients who are mostly treatment naïve, with low 
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population diversity, and the availability of genotype data for the rs6689470 variant. 

Unfortunately, to this end, it was not possible to find another sample with such specifics. 
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5 | Conclusion and outlook 

 

Understanding the biology underlying the associations between genetics and human traits 

has been an engaging task. Analyses of complex diseases like MS would profit if a proper 

animal model would be found which faithfully represents the disease, enabling studying its 

etiology also in the context of disease pathogenetics. However, no animal model fully 

reflects the diversity of human diseases like MS, and each EAE model recapitulates only 

partial aspects of the disease. In this thesis, evidence is provided that spontaneously induced 

EAE is more closely linked to human MS risk genes and TH cell biology. In conclusion, in 

comparison to the MOG-induced EAE, the OSE model might represent the human MS 

more faithfully, enabling studying human MS pathogenesis and defining specific 

therapeutic targets. Additional studies are needed to examine the similarity between OSE 

and human MS genetical background in more depth.  

 

Furthermore, in this thesis a workflow has been presented to explore the influence of MS-

associated variants on gene expression from MS patients in order to gain insight into 

underlying biological mechanisms of genetic influence on disease susceptibility. It was 

observed that the gene expression profiles of patients remain robust, irrespective of their 

genetic background. However, the analyses of conditional independence suggest that the 

rs6689470 risk variant might influence cytoskeleton re-organization, which contributes to 

B cell activation. These cells can further activate self-reactive T cells, supporting the 

inflammation process in the CNS in the early stages of the disease, corresponding to the 

disease stage of MS patients in the KKNMS sample. Due to the limited sample size of this 

study, it is important to examine these effects in an independent sample of MS patients, in 

order to validate results presented in this thesis.  

 

When studying polygenic diseases such as MS, it can be difficult to capture their 

complexity. It is therefore important to employ an integrative approach which includes 

different data sources (clinical data, demographics, genetics, transcriptomics, cell 

proportions, environmental factors). The workflow presented in this thesis enables 

integration of different sources of data, coming closer to capturing the different sources of 

variability which in the end produce the disease. Furthermore, by analyzing the gene-gene 

interactions in the context of the network, we also enabled the exploration of the dynamics 

of the system, instead of a single-gene approaches, as in, e.g., traditional eQTL analyses or 

differential expression analyses. Moreover, by dividing the genes into meaningful subunits, 

such as biological pathways, computational intensity was decreased and interpretability of 

the results was increased. The application of differential network approaches, as the one 

proposed in thesis, on the gene expression data from B or T cells might provide insights 

about changes in functioning of specific cell types, which are governed by genetic variants. 

By applying such an approach on the data from patients in the early stages of the disease 

we might discern the cell-specific mechanisms which happen close to the disease onset. 

This would potentially advance the development of the drug therapy, helping thousands of 

individuals suffering from the disease and might bring us one step closer to finding the 

cure. Furthermore, by enabling data exploration on different levels (differential gene 

expression, correlation analyses, and conditional independence analyses), the workflow 

provides powerful tools to compare groups of interest in order to study complex gene-gene 

regulation patterns in other complex human diseases and to provide us with the knowledge 

about the underlying pathological processes. Such insights can be used to enable deeper 
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understanding of disease pathology, potentially leading to the advances in the medical 

treatment and to the earlier diagnosis.  
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