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Abstract: To bridge the translational gap between recent discoveries of distinct molecular phenotypes
of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to
develop strategies and tools informing and improving the clinical decision process. Radiomics and
machine learning approaches can offer non-invasive whole tumor analytics for clinical imaging
data-based classification. The retrospective study assessed baseline computed tomography (CT) from
207 patients with proven pancreatic ductal adenocarcinoma (PDAC). Following expert level manual
annotation, Pyradiomics was used for the extraction of 1474 radiomic features. The molecular tumor
subtype was defined by immunohistochemical staining for KRT81 and HNF1a as quasi-mesenchymal
(QM) vs. non-quasi-mesenchymal (non-QM). A Random Forest machine learning algorithm was
developed to predict the molecular subtype from the radiomic features. The algorithm was then
applied to an independent cohort of histopathologically unclassifiable tumors with distinct clinical
outcomes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC (area
under the receiver operating characteristic curve) of 0.84 ± 0.05, 0.92 ± 0.01 and 0.93 ± 0.01,
respectively. The median overall survival for predicted QM and non-QM tumors was 16.1 and
20.9 months, respectively, log-rank-test p = 0.02, harzard ratio (HR) 1.59. The application of
the algorithm to histopathologically unclassifiable tumors revealed two groups with significantly
different survival (8.9 and 39.8 months, log-rank-test p < 0.001, HR 4.33). The machine learning-based
analysis of preoperative (CT) imaging allows the prediction of molecular PDAC subtypes highly
relevant for patient survival, allowing advanced pre-operative patient stratification for precision
medicine applications.
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1. Introduction

In pancreatic ductal adenocarcinoma (PDAC), several lines of evidence suggest the existence of
distinct subtypes with prognostic and predictive relevance. For example, Breast Cancer Gene (BRCA) 1/2
mutations have been identified in a subgroup of PDAC, and these patients exhibit an improved therapy
response to the poly (ADP-ribose) polymerase (PARP) inhibitor Olaparib [1]. The majority of PDAC
can be classified into two distinct subtypes based on transcriptome profiling and immunohistochemical
staining of cytokeratin-81 (KRT81) and hepatocyte nuclear factor-1A (HNF1a) [2–4]: a so-called
non-quasi-mesenchymal (non-QM), i.e., classical, epithelial KRT81-/HNF1a-subtype exhibiting slightly
improved survival and therapy response, notably to the FOLFIRINOX regimen, while not responding
as well to gemcitabine-based treatment. The so-called quasi-mesenchymal (QM), basal-like or
KRT81+/HNF1a- subtype has a dismal overall survival and resistance towards virtually all currently
employed therapy regimens. However, the QM subtype does exhibit a superior response to gemcitabine
in comparison to the non-QM subtype [5]. These findings support differential treatment of patients
based on individual molecular tumor make-up. Hitherto this has proven infeasible in clinical routine
because of individual tumor heterogeneity and the immanent sampling errors of biopsy and lack of
clinically suitable and sufficiently robust transcriptomic assays.

Recent developments in machine learning (ML)-based medical image analysis such as Radiomics
provide encouraging examples of molecular phenotyping from imaging data. For instance, the
non-invasive genetic profiling of lung carcinoma has been recently demonstrated [6], and imaging
biomarkers have recently been shown to outperform the risk metrics defined in the current WHO
classification of gliomas [7].

We recently reported on machine-learning approaches for the prediction of molecular subtypes and
survival risk in PDAC patients from pre-operative magnetic resonance imaging (MRI) [8,9]. We noted
that limited availability of MR imaging data, overall reduced image quality and the less-quantitative
and unstandardized nature of MRI pose barriers to algorithm development and generalization.

To enhance clinical translation, we extend our previous results to computed tomography (CT)
by training and validating an algorithm capable of discriminating between the QM and the non-QM
subtypes of PDAC with high performance based on pre-operative CT imaging in a therapy-naïve
surgical cohort of PDAC patients. We next applied this algorithm to histopathologically so-called
unclassifiable, KRT81+/HNF1a+ tumors resulting in significant separation of overall survival time,
suggesting identification of clinically distinct subgroups not identified by traditional histology.

2. Experimental Section

The study was designed as a retrospective cohort study. The STROBE checklist [10] and patient
recruitment flowchart are included in the Supplementary Materials. Institutional review board
approval was obtained for the study, waiving the requirement for individual informed consent. All
analyses were carried out in accordance with pertinent laws and regulations and in conformity with
the Helsinki Declaration. The study was approved by the Ethics Committee of the Technical University
of Munich, School of Medicine (Protocol Number 180/17S; date of approval: 9 May 2017).

Participants were screened for eligibility based on a search of the hospital picture archiving system
(PACS) for portal-venous-phase CT scans (70 s post injection of iodinated contrast media) including
the pancreatic region from October 2006 to March 2019. A total of 237 candidates were confirmed
eligible based on histologically ascertained pancreatic adenocarcinoma. Of these, 30 were excluded
from the analysis due to insufficient technical quality of the CT scan (including motion artifacts and
significant beam hardening due to nearby foreign materials), pre-existing malignant disease or any
previous therapy, including chemotherapy, or loss to follow-up earlier than 2 weeks post-operatively.



J. Clin. Med. 2020, 9, 724 3 of 9

The 207 resulting patients were separated into two subcohorts: cohort A, including the patients
whose immunohistochemical assessment resulted in an unequivocal classification as QM or non-QM
(n = 181), and cohort B, including the patients with histopathologically unclassifiable double positive
(KRT81+/HNF1a+) tumors (n = 26), as described below.

The patients underwent computed tomography on the following CT scanner models: Siemens
Somatom Definition (n = 87, 64-row, Siemens Healthineers, Erlangen, Germany), Philips iCT (n = 79,
256-row, Philips Healthcare, Best, The Netherlands), Philips IQON Spectral CT (n = 41, 64-row, Philips
Healthcare, Best, The Netherlands). Clinical data collection and follow-up were handled by the
departments of surgery and gastrointestinal oncology at our institution and ended on the 31st of March,
2019. The clinical variables collected were: Age, Sex, pTNM according to UICC 6th edition (pT: tumor
stage, pN: nodal status, M: metastasis), R (resection margin), G (tumor grading), first-line adjuvant
chemotherapy regimen, baseline CA19-9 (carbohydrate antigen 19-9), baseline CEA (carcinoembryonic
antigen), tumor location (head/ body vs. tail) and overall survival.

Tumors were segmented independently under standardized conditions by two experts with 3-
and 5-year experience in abdominal radiology, quality-controlled or corrected by a third expert with
8 years of experience in abdominal radiology and pancreatic imaging. After a period of two weeks, 20
randomly selected datasets from the three groups were sampled, randomly shuffled and presented to
the same observers for re-segmentation. Segmentation was performed using the segmentation tool
ITK-SNAP [11]. Radiomic features were extracted using PyRadiomics [12] using the settings detailed
in the Supplementary Materials and normalized to the (0,1) interval. In total, 1474 radiomic features
were extracted. Of these, features with missing values, all-null values, zero variance, features unstable
to between-observer segmentation or to segmentation and re-segmentation (based on an intra-class
correlation coefficient [13] below 0.9) were eliminated from the analysis. The remaining 161 features
were normalized by tumor volume (calculated by PyRadiomics as mesh volume) as suggested by [14].
A Random Forest machine-learning algorithm [15] was used to model the features using the settings
detailed in the Supplementary Materials with target labels of QM (KRT81+/HNF1a-) or non-QM
(KRT81-/HNF1a- or KRT81-/HNF1a+). To alleviate class imbalance, per-sample weighting inversely
proportional to the class population was applied. The classification performance with respect to the
labels was assessed using sensitivity, specificity and ROC-AUC (area under the receiver operating
characteristic curve) metrics using five-fold shuffle-split cross-validation with a test sample fraction of
0.3. Feature importance was assessed by reduction in Gini impurity [16] for each of the five folds and the
average feature importance and standard deviation are reported. The algorithm achieving the highest
ROC-AUC in cross-validation was applied to the cohort of unclassifiable PDAC, and the resulting
predicted labels used as inputs for successive survival modelling. A technical evaluation of the study
according to the recently published RSNA criteria [17] can be found in the Supplementary Materials.

To address bias associated with clinical covariates, cross-tabulations and multivariate Cox
proportional hazards testing were performed. Univariate overall survival was modelled using the
Kaplan Meier method including any censorship. The chi-squared-test was used for cross-tabulations,
Students t-test for continuous variables and the log-rank-test for survival comparisons. A two-sided
significance level of p < 0.05 was chosen.

Histopathological staining and immunohistochemical workup were performed by application of
surrogate markers to determine the molecular subtype of PDAC based on the previously established
immunohistochemical protocol described in [3]. Briefly, 2 µm sections were stained for KRT81 and
HNF1a, and tumors were categorized into either one of three classes based on a cut-off value of 30%
for tumor cell positivity/negativity: KRT81+/HNF1a- tumors were designated QM, KRT81-/HNF1a-
and KRT81-/HNF1a+ tumors were grouped as non-QM. KRT81+/HNF1a+ tumors were designated
double positive, i.e., unclassifiable. Classification was performed separately by two expert pathologists
with 8 and 12 years of experience and quality-controlled or corrected by a third pathologist with 18
years of experience. Exemplary micro-photographs of the immunohistochemical stains alongside
representative CT images can be found in Figure 1.
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Figure 1. CT images of a patient with a QM (A) and a non-QM (B) PDAC in the pancreatic head 

(arrow). Window level 36 Hounsfield-Unit width 350 Hounsfield-Unit in both cases. Micro-

photographs of representative immunohistochemical specimens of a HNF1a-/KRT81+ (QM) tumor 

(C), a HNF1a-/KRT81- (non-QM) tumor (D), a HNF1a+/KRT81- (non-QM) tumor (E) and a 

HNF1a+/KRT81+ (unclassifiable) tumor (F). Scale bar 50 µm. HNF/KRT immunostainings left/right in 

each subfigure, respectively. 

3. Results 

In total, 207 patients were included in the study, 181 in the training/cross-validation cohort A 

and 26 in the testing cohort B. A schematic representation of the cohorts can be found in Figure 2. 

 

Figure 2. In total, 207 patients were included in the study. Among them, 181 patients in cohort A with 

confirmed QM and non-QM tumors served as the training and cross-validation data, and 45 patients 

in cohort B with unclassifiable tumors were used for model testing. 

To assess relevant clinical covariates and confounders, clinical parameter evaluation and cross-

tabulations were performed to assess the associated parameter distributions. These are found in Table 1.  

Figure 1. CT images of a patient with a QM (A) and a non-QM (B) PDAC in the pancreatic head (arrow).
Window level 36 Hounsfield-Unit width 350 Hounsfield-Unit in both cases. Micro-photographs of
representative immunohistochemical specimens of a HNF1a-/KRT81+ (QM) tumor (C), a HNF1a-/KRT81-
(non-QM) tumor (D), a HNF1a+/KRT81- (non-QM) tumor (E) and a HNF1a+/KRT81+ (unclassifiable)
tumor (F). Scale bar 50 µm. HNF/KRT immunostainings left/right in each subfigure, respectively.

3. Results

In total, 207 patients were included in the study, 181 in the training/cross-validation cohort A and
26 in the testing cohort B. A schematic representation of the cohorts can be found in Figure 2.
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Figure 2. In total, 207 patients were included in the study. Among them, 181 patients in cohort A with
confirmed QM and non-QM tumors served as the training and cross-validation data, and 45 patients in
cohort B with unclassifiable tumors were used for model testing.

To assess relevant clinical covariates and confounders, clinical parameter evaluation and
cross-tabulations were performed to assess the associated parameter distributions. These are found in
Table 1.
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Table 1. Clinical parameters and cross-tabulation results for the QM, non-QM and unclassifiable
cohorts. Abbreviations: pT: tumor T-stage, pN: nodal status, M: metastasis, G: histopathological
grading, R: resection margins (All UICC 6th ed.), CA19-9 and CEA: Carbohydrate Antigen 19-9 and
Carcinoembryonic Antigen, N.A.: Not available. Statistical tests used: 1: Chi-Squared-Test, 2: one-way
ANOVA, 3: Log-Rank-Test. N.S.: Not significant at the two-sided level of p < 0.05.

Variable QM
(n = 45)

Non-QM
(n = 136)

Unclassifiable
(n = 26) p-Value

Sex Male
Female

25 (55%)
20 (45%)

75 (55%)
61 (45%)

14 (54%)
12 (46%) 0.99 1

Age
(years)

Mean
Range

68
42–87

67
45–90

72
53–90 0.84 2

pT

T1
T2
T3
T4

1 (2%)
8 (18%)
31 (69%)
5 (11%)

3 (2%)
19 (14%)
103 (76%)

11(8%)

1(4%)
4 (15%)

18 (69%)
3 (12%)

0.97 1

pN N0
N1

13 (29%)
32 (71%)

31 (23%)
105 (77%)

5 (19%)
N1 (81%) 0.60 1

M M0
M1

39 (87%)
6 (13%)

125 (91%)
11 (8%)

25 (96%)
1 (4%) 0.36 1

G
G1
G2
G3

1 (2%)
21 (47%)
23 (51%)

6 (4%)
60 (45%)
70 (51%)

4 (15%)
13 (50%)
9 (35%)

0.11 1

R R0
R1

20 (44%)
25 (56%)

68 (50%)
68 (50%)

15 (58%)
11 (42%) 0.56 1

CA19-9
Normal
Elevated

N.A.

5 (10%)
20 (45%)
20 (45%)

22 (16%)
43 (32%)
71 (52%)

2 (8%)
5 (19%)

19 (73%)
0.11 1

CEA
Normal
Elevated

N.A.

12 (27%)
8 (18%)

25 (55%)

38 (27%)
12 (9%)

86 (64%)

3 (11%)
1(4%)
22 (85)

0.08 1

First-Line
Chemotherapy

Gemcitabine
FOLFIRINOX

Did not receive

16 (36%)
3 (7%)

26 (57%)

68 (50%)
2 (2%)

66 (48%)

12 (46%)
2 (8%)

12 (46%)
0.16 1

Median Overall
Survival (months) 9.5 16.5 14.6

- QM vs. Non-QM:
0.03 3

- Others N.S. 3

Censored No
Yes

31 (69%)
14 (31%)

97 (71%)
39 (29%)

20 (77%)
6 (23%) 0.77 1

Tumor Location Head/Body
Tail

44 (98%)
1 (2%)

133 (98%)
3 (2%)

25 (96%)
1 (4%) 0.87 1

No statistically significant difference was observed in the distribution of clinical confounding
variables between the cohorts and none of the parameters were significantly associated with overall
survival in multivariate survival modelling (Supplementary Figures S1 and S2).

In total, 1474 features were extracted from the CTs, of which 161 remained after feature engineering.
The Random Forest algorithm was trained using the five-fold cross-validation approach detailed above
on cohort A, and achieved a sensitivity of 0.84 ± 0.05, a specificity of 0.92 ± 0.01 and a ROC-AUC of
0.93 ± 0.01 for the classification of QM vs. non-QM tumors across the five folds. The ROC curves for
cohort A and the average ROC curve are shown in Figure 3.
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Figure 3. Average ROC curve (black) and 95% confidence interval (CI) (shaded blue) for the five
cross-validation folds.

Feature importance assessment was performed using the Gini impurity index, measuring the
quality of the split in each node of the random forest trees. The importance averages were averaged
across folds, and the 20 features with the highest importance are presented in Supplementary
Table S1 sorted in descending order. Among these features, several represent the spectrum
of image homogeneity/heterogeneity, notably Entropy-/Energy-, Uniformity/Non-Uniformity and
Correlation-/Variance-related features.

The trained Random Forest algorithm was applied to the previously unseen data of cohort B,
consisting of histopathologically unclassifiable “double positive” tumors. The algorithm predicted a
label of QM or non-QM for 12 and 14 out of 26 patients, respectively. Kaplan-Meier survival analysis
of these cases resulted in a highly significant separation of the two predicted cohorts, with a median
survival of 8.9 months for the predicted QM cases and of 39.8 months for the predicted non-QM cases
(log-rank-test p < 0.0001, HR 4.33, 95% CI 1.41–13.32, Figure 4).
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Figure 4. Highly significant separation of overall survival in the groups with predicted QM vs. non-QM
tumors. HR: 4.33, 95% CI 1.14–13.32, log-rank test p < 0.0001. Vertical ticks indicate censorship.

4. Discussion

Here, we present a machine-learning algorithm capable of distinguishing between image-derived
phenotypes representative of immunohistochemically defined molecular subtypes of PDAC.
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The application of this algorithm to histopathologically unclassifiable tumors identifies two patient
groups with significantly different overall survival. We therefore hypothesize that the algorithm
is capable of re-identifying the dominant features of the QM and non-QM molecular subtypes in
CT images and that radiomics-based phenotyping may thus offer a clinically usable classification
advantageous over histopathology in the notoriously heterogenous entity of PDAC [18–20]. This notion
is reinforced by the fact that histopathological samples are by default a significant underrepresentation
of the tumor, since they are derived from a small sub-section of the tissue [21], and regions of differing
molecular subtype are likely to coexist within the same tumor [22]. The exact nature of the so-called
unclassifiable subtype might thus be presumed to represent a tumor simultaneously exposing a dual
phenotype or a transitional phenotype on a continuum between full HNF1a and KRT81 positivity,
mirrored in the intermediate survival outcome, both in our own and in previous studies [3]. A more
fine-grained analysis would benefit from a global, i.e., whole tumor quantitative analysis of KRT81
and HNF1a expression, which is currently unfeasible due to the necessity of whole tumor work-up.
Furthermore, such classification would result in small subgroup sizes, rendering the machine-learning
analysis impossible in the current study.

The potential benefit of a radiomic workflow consequently lies in volumetric whole-tumor
assessment, providing an opportunity to establish a clinically relevant phenotyping system and to
better inform precision therapy regimens, and this concept of correlating quantitative morphometric
evaluation with molecular phenotypes has been recently demonstrated for PDAC [23].

We previously presented a machine learning-algorithm capable of subtype characterization
and—by extension—patient survival, based on pre-operative diffusion weighted MRI [8,9]. Extending
this work, our current findings successfully transfer this methodology to routine CT acquisitions.
The benefits of CT include broad availability, fewer motion artifacts and high standardization.
We included CT images from several vendors, both to maximize sample size and to prompt
vendor-invariance of the algorithm [17].

The process of Radiomics is dependent on source data standardization, pre-processing and can
suffer from limited reproducibility, especially across modalities [24]. However, in our previous work
and in other authors’ work, heterogeneity-related features have been shown to be both prognostic
and among the most reproducible [25], and it is reassuring to observe features belonging to this
group, such as Entropy and Variance, re-surfacing in the current analysis. We therefore hypothesize
that heterogeneity is a distinguishing feature of QM tumors and propose further investigation and
development of specific heterogeneity imaging biomarkers.

Our study suffers from several limitations: the dataset in our study is unlikely to allow
broad generalization due to its limited size, class imbalance and retrospective mono-institutional
nature, necessitating cross-validation, which may encourage overfitting and yield overly optimistic
classification metrics. This lack of multi-institutional prospective validation and datasets of sufficient
statistical power is a notable issue with many radiomic studies [26]. Furthermore, any definition of
PDAC subtypes may suffer from label noise, and it cannot be conclusively resolved at this point, how
robustly the applied histopathological methodology can represent the transcriptome-based molecular
phenotype [22]. Nevertheless, the highly significant separation of survival in the unclassifiable tumor
subgroup observed in our study seems to support the binary classification of PDAC subtypes as
recently proposed [27].

5. Conclusions

In conclusion, our study represents an iterative evolution of previously developed methods of
radiomic phenotyping of PDAC and should be expanded and validated in larger retrospective and
prospective study settings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/3/724/s1:
Biostatistics analyses, details on the radiomic extraction process, the machine learning modelling and the radiomic
parameters, alongside technical evaluation of the study and the STROBE checklist.

http://www.mdpi.com/2077-0383/9/3/724/s1
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