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Abstract

In control of electrical drives, actuating the physical systems in order to minimize losses or
to track a specific reference is the ultimate goal. In most applications, the knowledge of the
system parameters is essential for the precise and dynamic control of the closed-loop system,
especially for the system under the model-based control. However, parameters may vary during
the operation. Additionally, several disturbances and uncertainties can still be noticed in the
drive system. The challenge to motivate the work of this thesis prescribes its two parts: the first
part addresses the parameter identification problem within the framework of the electrical drive,
while the second part of this thesis concerns the optimization of the control performance.

On the basis of the introduction to the main components of an electrical drive system, we
firstly study the offline parameter identification procedures for it, where the electrical param-
eters of the machine and the distorted voltage caused by the inverter are primarily discussed.
The offline determined results are suitable for the implementation at the start-up or for the drive
system with relatively low control requirements. However, the parameter variation problem
can not be completely tackled by implementing the offline determined parameters, since the
affecting factors of the parameter variation are complex, diverse and the offline measurements
have limited capability to describe these highly nonlinear, multidimensional characteristics. As
a promising solution, the online parameter identification methods have been proposed to obtain
the real-time value of the parameters of interest. Prior to the identification, the parameter iden-
tifiability of the PMSM drive system is analysed based on the local observability theory for the
nonlinear system. Subsequently, the state-of-the-art online estimation methods and the auspi-
cious moving horizon estimator are introduced, where the principles and the implementations
are explicitly given. A comprehensive comparison among the aforementioned methods is car-
ried out based on the experimental results regarding different testing scenarios. The comparing
results are then summarized in terms of various aspects, namely the computational burden, the
identification accuracy, the robustness, the speed of convergence and the memory allocation.
Furthermore, as it is addressed previously, the distorted voltage of the inverter significantly af-
fects the identification results. Therefore, an online parameter estimation framework including
the inverter distortion is proposed, where the dual Kalman filter and extended Kalman filter
have been deployed for the verification. A considerable improvement in terms of the accuracy
can be observed by implementing the proposed scheme.

In the second part of this thesis, the main focus is the optimization of the model-based pre-
dictive control (MPC) under the existence of the disturbances and the uncertainties, where both
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the continuous-control-set MPC (CCS-MPC) and the finite-control-set MPC (FCS-MPC) are
discussed. As the name suggests, one of the main drawbacks of the MPC is its sensitivity to
the model accuracy, which has a larger impact on the CCS-MPC than on the FCS-MPC. In
this thesis, the effects of the model uncertainties and the disturbances on the CCS-MPC and
the FCS-MPC are individually studied via simulations and experiments. In the context of the
CCS-MPC, a novel robust control scheme is proposed, where the disturbance observer is in-
tegrated into the design of the controller. The closed-loop stability is studied and proved to
be input-to-state stable, if several prerequisites are satisfied, which known to the author is the
first proof for such a control framework. The effectiveness of the proposed control scheme is
verified under various test scenarios. The experimental results demonstrate its superior perfor-
mance over the conventional CCS-MPC. In the framework of the FCS-MPC, one of the mainly
raised concerns is the computational burden of the control with a long prediction horizon, which
can be reduced by employing the sphere decoding algorithm. After observing the matrices of
the surface-mounted PMSM, a formulation of the FCS-MPC in the stationary reference frame
is proposed to further reduce the computational burden for the SPMSM. Different to the CCS-
MPC, FCS-MPC inherits the discrete nature of the inverter. Therefore, the model uncertainty
and the disturbance do not necessarily lead to the non-optimal solution of the controller. A
probability study is carried out to show the impacts of the parameter variation. Moreover, the
discrete constraint of the FCS-MPC impedes the analytical analysis of the parameter variation
effects. Thus, they are quantified with the help of simulations. It can be concluded from the
investigations that the FCS-MPC is also affected by the parameter mismatch problem. Analo-
gously to the CCS-MPC, a control scheme considering the system uncertainties and the distur-
bances is developed to improve the control performance of the FCS-MPC, where a disturbance
observer is employed. The proposed control approach is then verified and compared with the
conventional FCS-MPC under several testing cases. It outperforms the conventional FCS-MPC
in all cases regarding the tracking accuracy and in most cases regarding the total demand distor-
tion. However, the deployment of the disturbance observer can only eliminate the steady-state
offset. The harmonics still exist in the drive system and degrade the control performance. This
thesis focuses on the harmonics caused by the inverter. Nonetheless, the methods are generally
formulated and can be modified, applied to eliminate harmonics resulted from the other sources.
As discussed previously, the influence of the inverter can be eliminated by employing the afore-
mentioned parameter estimation scheme. However, after examining the observability of the
system including both the inverter nonlinear effect and the model uncertainty, it is impossible
to estimate them simultaneously. Therefore, they need to be treated separately. The steady-state
error is then compensated by the implementation of the disturbance observer, while the harmon-
ics are eliminated by employing the fractional-repetitive-control based method. The proposed
fractional-repetitive-control based compensation method is adaptive to the machine speed and
can be easily implemented. It is furthermore compared with the state-of-the-art methodologies
and shows its capability to deal with the harmonics. Furthermore, it can also improve the system
robustness against parameter mismatch to a certain level.
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Zusammenfassung

Bei der Regelung von elektrischen Antrieben geht das um die Verlustminimierung oder die
Erreichung eines gewünschten Sollwertes. In den meisten Anwendungen benötigt man für die
präzise und dynamische Regelung die Parameter der Regelstrecke — dies gilt auch für die mod-
ellbasierte Regelung. Allerdings können die Parameter während des Betriebs variieren. Außer-
dem können noch unterschiedliche Störungen und Unsicherheiten im Antriebssystem auftreten.
Die Aufgabe, die diese Doktorarbeit motiviert, besteht aus zwei Bestandteilen: Der erste Teil
behandelt das Problem der Parameteridentifikation innerhalb des elektrischen Antriebs während
des Betriebs, während der zweite Teil sich mit der Optimierung des Reglers beschäftigt.

Ausgehend von der Einführung in die Hauptbestandteile eines elektrischen Antriebssys-
tems werden zunächst die Offline-Parameter-Identifikationsverfahren für elektrische Antriebe
betrachtet — mit besonderem Augenmerk auf die elektrischen Parameter der Maschine und
die durch den Umrichter verursachte verzerrte Spannung. Offline ermittelten Parameter
eignen sich für die Inbetriebnahme eines Antriebssystems oder für Antriebssysteme mit rel-
ativ niedriger Anforderung. Dieses Konzept kann allerdings das Problem der Parameterän-
derung nicht vollständig durch die Implementierung der offline ermittelten Parametern lösen,
da die Parameter von komplexen und vielfältigen Faktoren beeinflusst sind und die Offline-
Messungen nur begrenzt in der Lage sind, diese hochgradig nichtlinearen, mehrdimension-
alen Eigenschaften zu beschreiben. Als vielversprechende Lösungen werden die Online-
Parameteridentifikationsmethoden vorgeschlagen, um die aktuelle Werte der betreffenden Pa-
rameter zu erhalten. Die modernsten Online-Schätzverfahren sowie der neuartige Moving
Horizon Estimator werden nach Analyse der Parameteridentifizierbarkeit vorgestellt: in Details
erläutert und in Anwendung gezeigt. Ein umfassender Vergleich zwischen den theoretischen
Ansätzen und den Realitäten wird anhand der experimentellen Ergebnisse bezüglich unter-
schiedlicher Testszenarien durchgeführt. Die Vergleichsergebnisse werden dann in Bezug
auf unterschiedliche Aspekte zusammengefasst, in Hinblick auf den Rechenaufwand, die
Genauigkeit, die Robustheit, die Konvergenzgeschwindigkeit und die Speicherbelegung. Die
bereits erwähnten Identifikationsergebnisse werden von der verzerrten Spannung des Wechsel-
richters erheblich beeinträchtigt. Daher wird ein Online-Parameterschätzverfahren vorgestellt,
das die Wechselrichterverzerrung berücksichtigt — hierzu wurden das duale Kalman Filter
und das erweiterte Kalman Filter eingesetzt. Durch das vorgeschlagene Schema kann eine
beträchtliche Verbesserung hinsichtlich der Genauigkeit erzielt werden.

Als zweiter Beitrag werden in dieser Dissertation Optimierungen der modellbasierten prädik-
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tiven Regelung (MPC) unter der Berücksichtigung von Störungen und Ungenauigkeiten betra-
chtet, wobei sowohl die Continuous-Control-Set-MPC (CCS-MPC) als auch die Finite-Control-
Set-MPC (FCS-MPC) behandelt werden. Wie der Name schon andeutet, ist einer der Haupt-
nachteile der MPC die Empfindlichkeit gegenüber der Genauigkeit der Parameter, die bei der
CCS-MPC größere Auswirkung hat als bei der FCS-MPC. In dieser Dissertation werden die
Auswirkung der Modellungenauigkeiten und der Störungen auf die CCS-MPC und die FCS-
MPC jeweils anhand der Simulationen und Experimenten untersucht. Im Kontext der CCS-
MPC wird ein neuartiges robustes Regelungsschema vorgeschlagen, bei dem der Störungs-
beobachter integriert ist. Die Stabilität des geschlossenen Regelkreises wird untersucht. Es
wird nachgewiesen, dass das System bei Erfüllung einiger Voraussetzungen Input-to-State sta-
bil ist. Die Funktion des vorgeschlagenen Regelungsschemas wird unter unterschiedlichen
Szenarien überprüft. Die experimentellen Ergebnisse demonstrieren eine gegenüber der kon-
ventionellen CCS-MPC verbesserte Funktionsfähigkeit. Bei Anwendung der FCS-MPC ist
eines der Hauptschwierigkeit die Rechenbelastung des Prozessors mit einem langen Prädik-
tionshorizont — diese könnte durch den Einsatz des Sphere-Decoding-Algorithmus reduziert
werden. Außerdem wird nach Betrachtung aus der Matrizen des Modells der oberflächenmon-
tierten PMSM eine Formulierung der FCS-MPC im stationären Bezugssystem vorgeschlagen,
um den Rechenaufwand für die SPMSM weiter zu reduzieren. Im Unterschied zur CCS-
MPC übernimmt die FCS-MPC die diskrete Eigenschaft des Umrichters. Daher führen die
Modellungenauigkeit und die Störung nicht unbedingt zu einer sub-optimalen Lösung des Re-
glers. Mit Hilfe einer Wahrscheinlichkeitsbetrachtung werden die Auswirkungen der Parame-
terveränderung verdeutlicht. Das diskrete Verhalten der FCS-MPC erschwert die analytische
Beschreibung der Auswirkung der Parameterveränderungen. Deshalb werden diese mit Hilfe
von Simulationen untersucht und quantifiziert. Aus den Untersuchungen lässt sich schlussfol-
gern, dass die FCS-MPC ebenfalls von Parameterabweichungen beeinflusst wird. Analog zur
CCS-MPC wird ein Regelverfahren entworfen, das die Systemungenauigkeiten und die Störun-
gen in Betracht zieht, um die Regelungsverfahren der FCS-MPC zu verbessern — hierbei wird
ein Störungsbeobachter eingesetzt. Das vorgeschlagene Regelungskonzept wird anschließend
verifiziert und mit meheren Testszenarien mit der konventionellen FCS-MPC in mehreren Test-
fällen verglichen. Es übertrifft die konventionelle FCS-MPC in allen Fällen hinsichtlich der
Regelungsgenauigkeit und in den meisten Fällen hinsichtlich der Oberschwingungen. Ein
zusätzliche Störungsbeobachters kann jedoch nur den stationären Offset eliminieren. Ober-
schwingungen existieren nach wie vor im Antriebssystem und beeinflussen das Regelverhal-
ten. Diese Dissertation konzentriert sich auf die durch den Umrichter verursachten Ober-
schwingungen. Dennoch sind die Methoden allgemein formuliert und können so modifiziert
und angewendet werden, um die von anderen Quellen stammende Oberschwingungen zu un-
tersuchen. Wie bereits erklärt, kann der Einfluss des Umrichters durch die Verwendung des
oben beschriebenen Parameterschätzungsschemas kompensiert werden. Die Beobachtbarkeit
des Systems stellt dar, dass man nicht gleichzeitig den nichtlinearen Effekt des Umrichters
und die Modellungenauigkeiten schätzen kann. Deswegen müssen sie separat behandelt wer-
den. Der stationäre Fehler wird dann durch die Implementierung des Störungsbeobachters
ausgeglichen, während die Oberschwingungen durch den Einsatz der auf einer Fractional-
Repetitive-Regelung basierenden Methode eliminiert werden. Die vorgestellte Kompensation-
smethode ist an die Maschinendrehzahl anpassbar und kann einfach implementiert werden.
Außerdem wird sie mit dem Stand der Technik verglichen. Sie stellt die Möglichkeit her-
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aus, die Oberschwingungen zu minimieren. Die Robustheit des Systems gegenüber Parame-
terfehlanpassungen kann mit der vorgeschlagenen Methode deutlich verbessern.
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CHAPTER 1

Introduction

The electrical drive system is widely utilized in a large number of industrial and domestic ap-
plications, such as transportation systems (electric vehicles and trains), home appliances (air
conditioners and heat pumps) and industrial utilizations (fans and pumps). It is complex, non-
linear and typically assembled with three major parts, namely the electrical machine, the power
electronic converter and the control system.

In general, the electrical machines can be categorized into two groups: direct current (DC)
machines and alternating current (AC) machines. Even though the DC machines, thanks to the
separation of field and torque production, require a relatively low complexity for the control
system, they have been gradually replaced by the AC machines nowadays. Comparing to the
DC machines, the AC machines can achieve higher speed and has lower maintenance effort as
well as longer life expectancy [1].

As the actuator of the electrical drive systems, the power converters actuate the command
from the control system and deliver the energy to the electrical machine. As a result of the
discrete nature of the power converters, only discrete-valued outputs can be produced. In par-
ticular, a voltage source inverter (VSI) is utilized for delivering the energy to the AC machines,
which is consisted by power electronic devices, e.g. insulated gate bipolar transistor (IGBT) and
metal oxide semiconductor field effect transistor (MOSFET). Many topologies are available to
realize the energy transfer, for example the two-level VSI, the multi-level VSI and the modular
multi-level inverter, among which the two-level VSI, because of its simplicity of the topology
and simpleness to control, is mostly applied in a wide range of industries. The inverter is fed by
a DC link, which can provide and absorb electric energy. The DC link is typically connected to
a larger system, e.g. a power grid or a distributed DC source, and realized by a DC-link capac-
itor. The voltage command delivered to the inverter is computed by the control system, which
ensures that the electrical drive system actuates as expected. The utilization of microprocessors
enables the fully digital implementation of the control methods. Moreover, the technology ad-
vances have facilitated an increase in the availability of the computational resources in the last
few decades. Thanks to this development, applications over a large range of domain are able
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to deploy advanced control methods for complex systems and various control targets, which
realizes precise and dynamic control for diverse systems.

1.1 Background and Motivation

The control of the electrical drive systems are tasked with the guarantee for the operational
safety and the fulfilment of the performance expectations. Generally speaking, the following
requirements on the controller design need to be considered [2]:

• Control accuracy: the error between the reference and the controlled variables should
be minimized.

• Dynamic response: the control loop has fast dynamics for the reference tracking and has
the ability of disturbance rejection.

• Harmonics: the discrete nature of the power converters provokes harmonics in the con-
trol loop, which is normally evaluated with the metrics such as the total harmonic dis-
tortion (THD) and the total demand distortion (TDD). The harmonic content is normally
restricted by specified standards.

• System constraints: the constraints of the plant, e.g. the current and speed limitation,
and of the actuator, such as the maximum voltage and current, must be included.

• Efficiency: the control methods should guarantee high efficiency of the converter as well
as of the machine.

• Applicability: the control methods need to maintain the control performance over a wide
range of operating area.

• Complexity: the complexity of the control methods is tolerable for the hardware re-
sources with only limited computational power.

One of the most popular control methods in the industrial applications is the field oriented
control (FOC), which controls the electrical machines in a cascaded manner and realizes the
control with the linear proportional-integral-derivative (PID) controller. The classic FOC is
easy to implement and has low computational burden. Nonetheless, the constraints in the elec-
trical drive system, the discrete nature of the inverter and many other nonlinearities in the system
degrades the performance of the FOC. Moreover, in the framework of the cascaded control, the
inner control loop is required to be much faster than the outer loop, which limits the bandwidth
of the controller and impedes the design of the control parameters. In order to tackle these
drawbacks, more sophisticated control approaches have been proposed. One of the promis-
ing methods is the model predictive control (MPC), which formulates the control problem as
an optimization problem and includes the constraints into the problem formulation. Regard-
ing various control objects, the application of MPC can be roughly sorted into three groups:
model predictive current control (MPCC), model predictive speed control (MPSC) and model
predictive torque control (MPTC). In terms of the constraints on the control voltage, MPC
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can be categorized into continuous-control-set model predictive control (CCS-MPC) and finite-
control-set model predictive control (FCS-MPC), where CCS-MPC delivers the control voltage
as a continuous value and FCS-MPC outputs directly the switching signals.

However, an accurate, dynamic and stable design of the control further requires the capability
to understand and manipulate the individual elements within the electrical drive systems. In
many applications, the values from the data sheets of the manufacturers are employed as the
baseline of the drive system. However, since the accurate parameter values of the electrical
machine over the whole operating range are essential for the control performance, the standstill
frequency response (SSFR) test is normally conducted before the start-up. It has become the
standard method for identifying the machines, where the response on the test signal with a single
frequency is evaluated. Nonetheless, the identified parameters are time-varying and affected by
numerous factors, such as the temperature and the saturation effect. Moreover, in almost all
the practical applications, the uncertainty exists in the model of the electrical drive system,
which may come from various sources, for example unmodelled system elements and external
disturbances. The combination of the observer and the model-based control method yields
a powerful and versatile framework for advanced control. The system states as well as the
parameters are adapted based on the measurements, which further benefits the controller in a
way that the prediction accuracy as well as the control performance is improved.

1.2 Outline and Contributions

This thesis consists of three main parts. In the first part, the background material that is essential
to this thesis is introduced. The second part concentrates on the offline as well as the online
identification methods for the electrical drive system. This is followed by the third part, which
lays the focus on optimizing the predictive control methods under the existence of uncertainties
and disturbances.

Part I: Preliminaries The permanent-magnet synchronous machine drive system comprises
mainly three components, namely the PMSM, the inverter and the control system. In Chapter 2,
a brief introduction to the PMSM is given, including the construction as well as the mathemati-
cal modeling of the PMSM. Several assumptions are deployed to simplify the establishment of
its three-phase mathematical model. It can be further simplified and transformed into the two-
axis system, of which two different reference frames, i.e. the stationary reference frame and the
rotating reference frame can be employed depending on the application field. As the actuator
in the drive system, VSI is furthermore discussed. The basic mathematical definitions relevant
for the optimization problems are reviewed, which is followed by the overview on the state-of-
the-art control strategies for the PMSM drive system. The uncertainties and the disturbances
existing in the drive system are summarized as a closure of this part.

Part II: Parameter identification Part II of this thesis concentrates on the parameter identifi-
cation for the PMSM drive system. Firstly, the observability of the PMSM electrical parameters
is analyzed. The local observability theory is employed to achieve this goal. Subsequently,
the offline determination procedures for the PMSM parameters are developed, where both the
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linear and nonlinear flux linkage interpretation are investigated. In order to complete the com-
putational results from the discrete measurement points, an appropriate interpolation method is
required. The most applied interpolation methods are introduced and employed to complete the
results of offline determined parameters as a smoothed map. Besides the offline determination
procedures, the estimation methods with current injection can also be applied to identify all
electrical parameters of PMSM. In this thesis, the square-wave-form and the sinusoidal-wave-
form current are applied. The amplitude as well as the frequency of the injected current is
determined by the simulations. Related experiments are furthermore conducted to compare and
justify the estimation performance. However, the offline determination procedures are normally
time-consuming and may increase the instrument costs as well as the implementation com-
plexity. Although, the current injection method can proceed during the operation, the injected
current may result in the current distortion and the torque pulsation problem. Thus, the online
parameter estimation method is proposed as a more proper solution for the real-time parameter
identification. Five methods are explicitly studied in this work, namely model reference adap-
tive system (MRAS), recursive least squares (RLS), extended Kalman filter (EKF), unscented
Kalman filter (UKF) and moving horizon estimator (MHE). Their theoretical foundations are
parsed at first. Subsequently, the aforementioned methods are implemented on an embedded
system to estimate the identifiable parameter combinations for PMSM. The corresponding ex-
perimental results are shown and compared in terms of various aspects. Furthermore, the former
investigation shows that the voltage distortion caused by the VSI affects the estimation results.
Therefore, a dual-EKF-based estimator and a EKF-based estimator are deployed for the param-
eter estimation considering the influence of the VSI, of which the distorted voltage is included
as an extended term into the system model. One of the attractiveness of the dual EKF is that the
parameter filter can be deactivated. This characteristic provides the possibility of the computa-
tional burden reduction and the memory release.

Part III: Controller optimization In Part III, we leave the realm of the parameter estimation
problem and investigate the control problems considering the model uncertainties and the dis-
turbances. Chapter 4 elaborates the framework of the continuous-control-set model predictive
control, including the formulation of the optimization problem and the computation, implemen-
tation for the real-time applications. To eliminate the impacts of the model uncertainties and
the disturbances, an observer-based robust control strategy is proposed. This proposal is uni-
fying formulated and can be applied to any AC drive system. Moreover, the stability of the
closed loop is furthermore analyzed by employing the input-to-state stability theory, which can
be analogously mapped onto other drive systems. The impacts of the parameter mismatches on
the control performance of the CCS-MPC are investigated via experiments and subsequently
quantified. The effectiveness of the proposed solution is verified with different testing scenar-
ios, where disparate uncertainties and disturbances are discussed. The FCS-MPC also suffers
from the effects of system uncertainties and disturbances. In Chapter 5, the basic concepts of
the FCS-MPC are firstly given. The establishment of the optimization problem and the cor-
responding solving methods are furthermore introduced. Instead of applying the exhaustive
enumeration method, the sphere decoding algorithm is employed to reduce the online compu-
tational burden and enable a long-horizon prediction during the operation. A formulation of the
FCS-MPC for SPMSM on the stationary reference frame can further reduce the computational
burden by allocating a large portion of the matrix computation to offline preparation. On the
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contrary to the CCS-MPC, the model uncertainties and disturbances do not necessarily affect the
solution of the FCS-MPC, which can be traced back to the mixed-integer characteristic of the
underlying optimization problem associating with the FCS-MPC. The simulations on the prob-
ability of acquiring the optimal solutions under the existence of the parameter mismatches are
carried out to justify this statement. An incremental MHE is applied as the disturbance observer
to improve the tracking ability and system stability. Nonetheless, the disturbance observer has
limited bandwidth and filter effects. Therefore, the periodic disturbances remain in the PMSM
drive system, even though the disturbance observer is implemented. In Chapter 6, the topic of
attenuation of the periodic disturbance is investigated, where the main effort lies on compensat-
ing the distorted voltage caused by the VSI. The state-of-the-art approaches for eliminating the
disturbances caused by the VSI are reviewed and explained. Then, a novel approach based on
the fractional repetitive control is proposed to compensate the distorted voltage. The proposed
compensation method tackles the problem of shifted high control gains at the target frequency,
which is caused by the fractional ratio between the target frequency and the sampling frequency
and often encountered during the implementation on a digital control platform. Since the target
frequency varies with the fundamental frequency of the PMSM, the compensating values adapts
to the eventual motor speed. In order to limit the control gain and improve the system stability,
a moving average filter is furthermore deployed. The compensation performance is determined
by investigating the individual parameters via simulations and experiments, while the stabil-
ity of the overall system is guaranteed through theoretical analysis. The proposed method is
furthermore verified with experiments, of which the results are furthermore compared with the
state-of-the-art approaches for the distorted voltage compensation. More experimental investi-
gations are also provided regarding the performance evaluation of the proposed method at the
steady state and during the transient.

Concluding remarks of this thesis are given in Chapter 7, where an outlook to the possible
future works derived from this thesis is also presented.
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CHAPTER 2

Permanent Magnet Synchronous Machine Drive
System

This chapter lays theoretical foundations for the further analysis and development of this thesis.
In this chapter, the composition of the permanent magnet synchronous machine drive system are
introduced, namely the permanent magnet synchronous machine, the inverter and the controller.
A general structure of the electrical drive system can be represented by the Fig. 2.1.

Controller Modulator System

Observer

yr u y

x̂y

Figure 2.1: Typical control structure in the field of power electronics and electrical drives.

Depending on the control methods, the modulator is optional for the drive system, which
translates the voltage commands from the control system into the switching commands for the
semiconductor switches. The most applied modulation methods are the carrier-based pulse
width modulator (PWM) and the space vector modulator (SVM). The controller denotes the
control unit, where the design and the computation of the control, the planning for realizing
a specified task or minimizing the losses take place. The control approaches are normally
implemented on an embedded computing platform such as microcontrollers and reconfigurable
hardware, where field-programmable gate array (FPGA) and programmable logic controller
(PLC) are mostly used in practice, respectively. The system in Fig. 2.1 represents the plant to be
controlled, which can be the electric machines or the combination of the power electronics and
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the electric machines. Considering different types of machines, the observer can be required
by the electrical drives. For example, the flux observer is mandatory for the control of the
induction machine, since the flux can not be directly measured but is essential for the precise
control. Furthermore, some control methods also employ the observer to improve the control
performance.

2.1 Permanent Magnet Synchronous Machine

In this thesis, the drive system with the permanent-magnet synchronous machine (PMSM) is
investigated. The PMSM gained popularity with the development of permanent magnets, espe-
cially the rare-earth magnets, e.g. the Neodymium (NeFeB) and the Samarium-Cobalt (SmCo)
magnets. The implementation of the permanent magnets enables a compact construction of the
rotor. It also leads to the advantages such as high efficiency and high torque density of PMSM.
In this section, the construction of the PMSM, including the stator and rotor, is firstly intro-
duced. Subsequently, the PMSM modeling is established in different reference frames. For
the PMSM drive system, two reference frames are normally deployed, namely the stationary
reference frame and the rotating reference frame. Once the reference frame is determined, the
electrical drive system can be modelled correspondingly. At last, the formulation for describing
the mechanical system is also given.

2.1.1 Construction of PMSM

2.1.1.1 Stator

The stator of a PMSM, which is also called armature, is made of thin laminations of highly
permeable steel aiming to reduce the core losses [3]. The air-gap flux density is limited by the
saturation of the stator core. In particular, the peak flux density is limited by the width of the
teeth, while the stator back determines the maximum total flux. The armature windings are
constructed in the stator slots and symmetrically distributed so that the flux linkage produced
by the stator current is allocated as sinusoidally as possible. There are two main categories of
the construction of armature windings, the distributed windings and the concentrated windings.
Details about the difference between them can be found in [4]. The three-phase windings are
exactly alike in shape as well as in form and can be connected as a star (Y) form or as a delta
(∆) form. They are displaced from each other by an electrical angle of 120° and repeated np

times along the circumference, where np ∈ Z+ denotes the number of pole pairs.

2.1.1.2 Rotor

Considering the way how magnets are installed into the rotor, PMSM can be basically divided
into surface permanent-magnet synchronous machine (SPMSM) and interior permanent-magnet
synchronous machine (IPMSM). As the name suggests, the magnets of SPMSM are mounted
directly onto/into the rotor surface. There are in general two types of SPMSM, surface-mounted
permanent magnet synchronous machine and surface-insert permanent magnet synchronous
machine. Their constructions are shown in Fig. 2.2. A surface-mounted PMSM, e. g. in
Fig. 2.2a, has a magnetically isotropic rotor and is typically not suitable for field-weakening. A
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surface-inset PMSM, e.g. in Fig. 2.2b has high saliency ratio, where the saliency ratio indicates
the difference in magnetic paths between with and without magnets. The saliency effect, which
indicates the saliency ratio, can be neglected in the surface-mounted PMSM [5]. The saliency is
also an indicator of magnetic interaction and reluctance torque production capabilities. More-
over, the air-gap flux density is distributed smoothly in surface-mounted PMSM. The torque
ripples are therefore small [6].

(a) (b)

Figure 2.2: General structure of SPMSMs. (a) Surface-mounted permanent magnet synchronous machine. (b)
Surface-inset permanent magnet synchronous machine.

Different from SPMSM, IPMSM integrates magnets in the interior of the rotor, of which
the typical structures are presented in Fig. 2.3. The magnets are therefore physically protected
by the rotor. In these machines, the saliency cannot be neglected. This characteristic enables
IPMSM to produce reluctance torque even in the field-weakening operation region. Therefore,
IPMSMs are usually employed for a higher speed operation than SPMSMs. IPMSM in Fig. 2.3a
is magnetized tangentially, with alternating directions, where the interior permanent magnets
act as flux barriers and therefore can achieve high saliency ratio. The IPMSM in Fig. 2.3b is
magnetized radially, which can benefit the PMSM for achieving high air-gap induction or for
employing weaker, cheaper magnets.

In general, the surface-mounted PMSM configuration is popular in many application do-
mains, because it is easy to manufacture and has low production costs. A more detailed dis-
cussion over IPMSM and SPMSM lies beyond the scope of this thesis. The comprehensive
comparison between SPMSM and IPMSM has been conducted in researches such as [7, 8].

(a) (b)

Figure 2.3: General structure of IPMSMs. (a) Interior permanent magnet synchronous machine. (b) Interior
permanent magnet synchronous machine (with circumferential orientation).

The permanent magnet flux linkage is important for the induced magnetic flux of PMSM
and has the ability to sustain its own magnetic flux within a magnetic field excited by external
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sources [9]. It supports the magnetic flux passing from rotor to stator through the air gap.
The permanent magnet flux linkage reflects the characteristic of the permanent magnet, which
means that its value is determined by the magnet material, the shape and the attached magnetic
circuit. Therefore, it is mainly affected by the temperature and the ageing effect [9].

2.1.2 PMSM Modeling
PMSM has been intensively studied in many works, such as [10] and [11]. In most PMSM drive
systems, the linearised equations with constant parameters are applied for modeling the current
loop dynamics. Nonetheless, the nonlinear model of PMSM that includes the self-inductance
and meanwhile the cross-inductance has also been implemented for some applications [12].
Normally, only the fundamental model is applied for the most applications, where the modeling
of harmonics is ignored. In practice, the PMSMs are considerably complicated, therefore sev-
eral assumptions are normally accepted in order to simplify the physical system of the PMSM
and to establish a relatively reasonable, acceptable mathematical model. These assumptions are
shown in the following:

• The machine induced magnetic field is sinusoidal.

• The eddy current and the hysteresis losses are negligible.

• The armature windings are symmetrically constructed and the influence from winding
head is neglected.

• The saturation effect will be taken into account in the parameter variations.

The PMSM is then simplified as a symmetrical three-phase system, which is shown in Fig. 2.4.
The phase voltages, ua, ub and uc , are obtained by subtracting the zero voltage u0 from the

Rs, a

Rs, b

Rs, c

Ψ̇a

Ψ̇b
u0

Ψ̇c

ia

ua

uab

Figure 2.4: Three-phase system of the PMSM.

terminal voltage ua0, ub0 and uc0 , respectively. It can be given asuaub
uc

 =

ua0

ub0

uc0

− u0 I , (2.1)

where I ∈ R3×1 is a three-dimensional vector of all ones. The zero voltage u0 represents the
voltage between the neutral point of the electric machine and the neutral potential of the drive
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system [4]. Furthermore, the phase voltage consists of two parts, the resistance voltage drop
caused by the phase resistance Rs and the by flux linkage induced voltage, which is denoted by
Ψ̇abc [13]. Therefore, the phase voltage uabc = (ua, ub, uc)

T can be calculated by

uabc = Rs iabc +
d

d t
Ψabc , (2.2)

where iabc = (ia, ib, ic)
T is the phase current and Ψabc = (Ψa, Ψb, Ψc)

T denotes the total flux
linkage associated with the corresponding phase. In order to simplify the analysis and the con-
trol of the three-phase system described in (2.2), the equation is normally further transformed
into a two-axis orthogonal reference frame.

2.1.2.1 Reference Frames

The reference frame, which is also called the coordinate system, can be chosen for the trans-
formation from the three-phase system to the two-axis system. A general presentation of the
reference frame transformation is shown in Fig. 2.5. An arbitrary vector z can be regarded

A

B
z

θ

Figure 2.5: General reference frame representation and transformation. z is an arbitrary vector. Two different
reference frames are represented as A in red and as B in blue.

as a vector in the coordinate system A and also in the coordinate system B, as it is shown in
Fig. 2.5. The transformation from the reference frame A to the reference frame B is realized
by rotating the quantity with the relative angle θ. The angle can be computed by integrating
the relative speed or directly obtained from the corresponding measurement. The mathematical
interpretation for a general manner of the transformation is given by

zB = zA · e−jθ . (2.3)

2.1.2.2 Stationary Reference Frame

In general, there are two different orthogonal reference frames for the control of PMSM drive
systems, i.e. the stationary and the rotating reference frame, as it is shown in Fig. 2.6.

The stationary reference frame is also called αβ0 reference frame, where the α-axis, β-
axis and 0-axis are perpendicular to each other. The vector zabc in the three-phase system is
transformed into the stationary reference frame with the so-called Clarke transformation Tαβ0

via
zS = Tαβ0 · zabc , (2.4)
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α

β

d
q

a

b

c

θe

ωe

Rotor

Stator

Figure 2.6: Visualization of the reference frame representations and the transformation for the PMSM. Black
dashed line denotes the three-phase reference frame. Red solid line denotes αβ domain. Green solid line represents
the rotating dq domain, which rotates with the rotor angular speed.

where zS denotes the quantity in the stationary reference frame and

Tαβ0 = AT ·

1 −1
2
−1

2

0
√

3
2
−
√

3
2

1
2

1
2

1
2

 . (2.5)

AT is a coefficient indicating the principle of the transformation, which is equal to 2/3 in the
case of the amplitude-invariant principle and is

√
2/3 with the power-invariant principle. The

amplitude-invariant principle retains the amplitude of the currents and the voltages, e.g. the
magnitude of the current vector is equivalent to the amplitude of the phase current. The power-
invariant principle scales the magnitude of the current vector, which becomes 1.5 times of the
phase current amplitude, while the energy and the power can be directly computed from the
vectorial quantities and remain unchanged.

The transformed quantity zS rotates with the angular velocity ωe in the plane spanned by the
two orthogonal coordinates (αβ domain). Moreover, under the assumption that the three-phase
system is balanced, the zero system of PMSM can be neglected. The transformation in (2.4) is
then simplified as

zS = Tαβ · zabc , (2.6)

with

Tαβ = AT ·
[

1 −1
2
−1

2

0
√

3
2
−
√

3
2

]
. (2.7)

The simplified Clarke transformation in (2.6) is more often used than (2.4). The inverse matrix
of Tαβ0 and the pseudo-inverse of Tαβ are denoted by T−1

αβ0 and T−1
αβ , respectively. The voltage

equation of PMSM in (2.2) is then transformed into the stationary reference frame as

uS = Rs i
S +

d
dt

ΨS , (2.8)
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where uS = (uα, uβ)T , iS = (iα, iβ)T and ΨS = (Ψα, Ψβ)T . Rs represents the phase
resistance, since the armature windings of three phases are assumed to be identical.

2.1.2.3 Rotating Reference Frame

The rotating reference frame employs the rotor rotating frame as the reference, which is shown
in Fig. 2.6 in green. More specifically, the reference domain rotates with the rotor angular
speed ωe. The transformation from the three-phase system to the rotor reference frame is called
Park transformation or dq transformation. The dq transformation maps the vector zabc from the
three-phase system to the vector zR in the dq reference frame via the following equation:

zR = AT ·

 cos(θe) cos(θe − 2π
3

) cos(θe + 2π
3

)

− sin(θe) − sin(θe − 2π
3

) − sin(θe + 2π
3

)
1
2

1
2

1
2

 · zabc = Tdq0 · zabc , (2.9)

where θe denotes the rotor position. Moreover, the vector in the dq reference frame can be
derived from the αβ reference frame with

zR = zS · e−jθe . (2.10)

Analogously to Clarke transformation, the 0-component can be omitted in the dq reference
frame, which leads to the reduced Park transformation with the transforming matrix Tdq given
as

Tdq =

[
cos(θe) cos(θe − 2π

3
) cos(θe + 2π

3
)

− sin(θe) − sin(θe − 2π
3

) − sin(θe + 2π
3

)

]
. (2.11)

The corresponding inverse matrix of Tdq0 and the pseudo-inverse of Tdq are denoted by T−1
dq0

and T−1
dq , respectively.

With the relationship given in (2.10), the voltage equation in (2.8) can be transformed into
the dq reference frame by substituting the relationship (2.10) into (2.8) as

uR · ejθe = Rs i
R · ejθe +

d
d t

(ΨR · ejθe)

= Rs i
R · ejθe +

d
d t

ΨR · ejθe + jωe ·ΨR · ejθe ,
(2.12)

which can be more compactly written as

uR = Rs i
R +

d
d t

ΨR + jωe ·ΨR , (2.13)

where uR = (ud, uq)
T , iR = (id, iq)

T and ΨR = (Ψd, Ψq)
T . Equation (2.13) can also be

written as the most applied formulation:

ud = Rs id +
d

d t
Ψd − ωeΨq ,

uq = Rs iq +
d

d t
Ψq + ωeΨd .

(2.14)

The main advantage of transforming the quantities into the rotating reference frame is that the
transformation simplifies the sinusoidal time-varying currents and voltages to complex num-
bers, i.e. DC signals. The computation for the control system is meanwhile simplified. The
inverse transformation can be performed afterwards to recover the actual three-phase values.
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2.1.2.4 Electrical System

The electrical system of the PMSM is successfully formulated and derived in different reference
frames. The formulations are given in (2.2), (2.8) and (2.13). They can be used for describing
the steady state as well as the transient behavior of the machine. However, in many cases, it
is necessary to replace the flux linkage Ψ by corresponding currents and inductances. The pa-
rameters of the two-axis model, especially the inductances, vary nonlinearly with the operating
conditions, which is primarily a result of the saturation and cross-saturation effects [12]. The
saturation effect refers to the effect that the current saturates the magnetic material on the same
axis, while the cross-saturation effect denotes the effect that the current causes the variation
of the flux on the other axis. More related information can be found in Section 2.4. A gen-
eral function describing the relationship between flux and current in d- and q-axis can be given
as [14] [

Ψd

Ψq

]
=

[
ldd(id) ldq(id, iq)

lqd(id, iq) lqq(iq)

] [
id

iq

]
+

[
Ψm

0

]
, (2.15)

where ldd and lqq denote the self-inductance in d- and q-axis, respectively. They are solely
dependent on the own current. On the other hand, ldq(id, iq) and lqd(id, iq) represent the cross-
coupling inductances, which are caused by the other current. In summary, the self-inductance
is only related to the current of the same axis and the cross-coupling inductance depend on both
currents. In some works, the self-inductance is considered as a function of both id and iq [15].
Then, different inductances are introduced to interpret the nonlinearities of the fluxes. A general
formulation of the PMSM electrical system with inductances, where the fluxes of the voltage
equation in (2.14) is substituted by the inductances, can be written as

[
ud

uq

]
=

[
Rs −ωe Lq
ωe Ld Rs

] [
id

iq

]
+

[
Ldd Ldq

Lqd Lqq

] 
d

d t
id

d
d t
iq

+

 d
d t

Ψm

ωe Ψm

 , (2.16)

where Ld and Lq are the so-called absolute inductance, which corresponds to the linearised
model of the flux in the latter section. Ldd, Lqq, Ldq and Lqd denote the differential inductances,
which describe the partial derivatives of the flux linkages, of which the definition is given by

Ldd =
∂Ψd

∂id
, Ldq =

∂Ψd

∂iq
, Lqq =

∂Ψq

∂iq
, Lqd =

∂Ψq

∂id
. (2.17)

Ldd and Lqq denote the same characteristics of the flux linkage as the absolute inductance. Ldq
and Lqd are the measures to represent the influence of the cross-coupling for PMSM. From a
mathematical perspective, the absolute inductance corresponds to the gradient of the flux maps,
while the differential inductance complies with the partial derivative of the function at individual
operating point. It is worth mentioning that in the general model in (2.16), the permanent
magnet flux linkage Ψm is also time-varying. Therefore, the term Ψ̇m can not be omitted in the
equation (2.16).

Although the general model in (2.16) is preferred to precisely describe the global relationship
between the flux and the current, deploying it will significantly increase the complexity of the
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analysis and the design of the control system for PMSM. Furthermore, the determination of the
nonlinear model characteristics is sophisticated and requires certain laboratory setups as well as
measuring procedures, as introduced in [16–18]. Therefore, the linearised PMSM model is more
commonly applied in practice, which simplifies the function that describing the relationship
between the flux and the current in (2.15) and approximates the PMSM behaviour locally with
a linear function as [

Ψd

Ψq

]
=

[
Ld 0

0 Lq

] [
id

iq

]
+

[
Ψm

0

]
. (2.18)

The permanent magnet flux linkage Ψm, which aligned with the d-axis, is also regarded as con-
stant in the linearised model (2.18). As a result, the voltage equation in (2.16) can be simplified
as [

ud

uq

]
=

[
Rs −ωe Lq
ωe Ld Rs

] [
id

iq

]
+

[
Ld 0

0 Lq

] [
d

d tid
d

d tiq

]
+

[
0

ωe Ψm

]
. (2.19)

2.1.2.5 Mechanical System

The mechanical differential equations tie the electrical system of PMSM with the mechanical
system. The mechanical angular speed can be calculated with

d
d t

ωm =
1

J
· (T e − T r) , (2.20)

where T r is the resistive torque, which including the friction of the shaft and the load torque Tl.
J is the inertia of the system and T e denotes the inertial torque, which can be computed with
the electrical quantities by

T e =
3

2
np · ={Ψ∗ · i} , (2.21)

where np denotes the number of the pole pairs. The electrical rotor speed can be given by

ωe = np ωm . (2.22)

Subsequently, the operating principles of the inverter is introduced.

2.2 Inverter

2.2.1 Introduction
An inverter in the drive system serves as a link between the power grid and the associated mo-
tors. In Fig. 2.7, a two-level inverter with DC-link is connected to the motor. Conventionally, the
inverter consists of six controllable switches or solid-state valves [19]. Two switches connected
to the same phase are called the leg of the inverter. In Fig. 2.7, the switches are represented as
IGBTs with anti-parallel diodes. Another prominent example of the active switch is the MOS-
FET. The controllable switches conducts or blocks the current flow depending on the control
signals. More specifically, a positive current between the collector (C) and emitter (E) of IGBT
is conducted or blocked if a control signal applied to the gate (G). The corresponding status of
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Udc

2

Udc

2

N

S1
D1

S4
D4

a

S2
D2

S5
D5

b

S3
D3

S6
D6

c Motor

Figure 2.7: PMSM drive system with a three-phase two-level VSI.

the switches is called on or off. Each of the six switches can either be on or off, which leads to
26 combinations of the switching patterns. However, some of them are fatal for the devices, e.g.
turn on the both switches of the same leg will cause short circuit. Some are not really contribut-
ing, such as the scenario when the resulting voltage relies on the current direction. In order to
guarantee a safe operation of the inverter, two switches of a leg are conversely commanded, i.e.
if the switch of the upper leg is on, then the one of the lower leg is off and vice versa. It is
sufficient to analyze the current paths of a leg for further discussion. The conclusions about the
other legs can be readily deduced from this analysis. Fig. 2.8 shows the possible transitions of
the switching on a leg, where the current flow path regarding the current direction and the states
of the switch S1 are shown.

(a) (b) (c) (d) (e) (f)

Figure 2.8: The flow path of the phase current regarding the current direction as well as the states of the switches
S1 and S4. i in red denotes the positive phase current, while the green one represents the negative phase current.
(a) S1 is on, S4 is off. (b) S1 is off, S4 is on. (c) S1 is off, S4 is off. (d) S1 is on, S4 is off. (e) S1 is off, S4 is on.
(f) S1 is off, S4 is off.

• For the situation, where S1 is on and S4 is off, the positive current flows from the upper
DC-link rail through the upper switch (in Fig. 2.8a) and the negative current flows through
the upper freewheeling diode (in Fig. 2.8d).

• For the situation, where S1 is off and S4 is on, the positive current flows through the lower
freewheeling diode (in Fig. 2.8b) and the negative current flows through the lower switch
(in Fig. 2.8e).

• For the situation, where both switches are off, the positive current flows through the
lower freewheeling diode (in Fig. 2.8c) and the negative current flows through the upper
freewheeling diode (in Fig. 2.8f).
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As a result, the VSI has in total 23 switching states. The switching state as well as the voltage
level of a leg can be then represented with v ∈ V, where V can be given as

V := {0, 1} . (2.23)

The set V is the constraint set for each phase of a two-level inverter. The values 0 and 1 cor-
respond to the applied voltage for uaN , ubN and ucN , which denote −Udc

2
and Udc

2
, respectively.

Udc denotes the DC link voltage. As it is shown in Fig. 2.4, the neutral point potential is given
by u0. Therefore, the phase voltage can be derived as

ux =
Udc
2

(2 vx − 1)− u0 , (2.24)

where the subscript x denotes an arbitrary phase of the three phases, i.e. x ∈ {a, b, c}. Consid-
ering the relationship between the phase voltage ua and uaN as

uaN = ua + u0N , (2.25)

and the assumption that
ia0 + ib0 + ic0 = 0 , (2.26)

The phase voltage vector uabc = (ua, ub, uc)
T is then derived from (uaN , ubN , ucN)T , and can

be written as uaub
uc

 =
1

3

 2 −1 −1

−1 2 −1

−1 −1 2


uaNubN
ucN

 . (2.27)

The voltage vector uabc can be furthermore transformed into the αβ domain with the Clarke
transformation in (2.6). The resulting possible voltage vectors uαβ = (uα, uβ)T spans a
hexagon, which is shown in Fig. 2.9. Therefore, the switching state vectors in αβ reference

α

β

v100

v110v010

v011

v001 v101

v000

v111

Figure 2.9: Switching states in the αβ domain, which span a hexagon.
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frame vαβ can be denoted as a vector in the set Sv, i.e. vαβ ∈ Sv, where

Sv :=

{ [
0

0

]
︸︷︷︸
v000

,

[
2
3

0

]
︸︷︷︸
v100

,

[
1
3
1√
3

]
︸ ︷︷ ︸
v110

,

[
−1

3
1√
3

]
︸ ︷︷ ︸
v010

,

[
−2

3

0

]
︸ ︷︷ ︸
v011

,

[
−1

3

− 1√
3

]
︸ ︷︷ ︸
v001

,

[
1
3

− 1√
3

]
︸ ︷︷ ︸
v101

}
. (2.28)

The sphere spanned by the vectors in Sv, as shown in Fig. 2.9, can be defined by Su := conv Sv,
where conv denotes the convex hull operator [20]. Thus, Su can be given as

Su =

{
uαβ ∈ R2×1

∣∣∣∣
[√

3
2

0 −
√

3
2
−
√

3
2

0
√

3
2

1
2

1 1
2

−1
2
−1 −1

2

]T
uαβ ≤

Udc√
3

}
. (2.29)

2.2.2 Actuation Scheme
The inverter requires a direct gating signal to actuate the voltage command from the controller.
Depending on the control methods, a modulator is optional for the electrical drive systems,
which is however required when a duty cycle is generated from the controller. Mostly deployed
modulation schemes are PWM and SVM. Besides, some alternative modulation schemes have
also been proposed regarding specific applications with different topologies, power levels and
requirements on switching frequency and dynamic response [21–23]. However, regardless of
the actuation scheme, the discrete nature of the inverter introduces undesired harmonics into the
electrical drive system.

2.2.2.1 Direct Actuation

Some control methods compute directly the gating signal for the inverter, i.e. the output signal
satisfies V. Therefore, the modulator is omitted for the direct actuation scheme. The switching
signals is uniquely defined by v ∈ {0, 1}3. A typical strategy for choosing the optimal switch-
ing signals is to minimize on the one hand the tracking error, on the other hand the overall
switching transitions. The direct actuation strategies are normally employed for the medium-
and high-voltage drives in order to reduce the switching losses, since the losses of these drives
are dominated by the switching losses whereas the ripples of the controlled ripples, e.g. cur-
rents, are less relevant [2].

2.2.2.2 Modulation Schemes

Besides the direct actuation, the actuation through modulator is widely applied in industry, since
the dominance of the PI controllers emphasizes the application of a modulator to translate the
real-valued voltage command into the switching signals. The modulator is normally applied in
the low-voltage drives, of which the switching frequency is relatively constant and in general
higher than the direct control strategies.

2.2.2.2.1 Pulse Width Modulation PWM translates the real-valued voltage command u∗x
of the phase x into a discrete switching signal by intersecting the duty cycle with a triangular
or sawtooth carrier signal [19] and generating pulses of fixed amplitude, variable width [24].
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Therefore, PWM is also called the carrier-based PWM. As it is shown in Fig. 2.7, an inverter
produces discrete voltages of the values Udc

2
and −Udc

2
. The first step of PWM is to scale the

voltage command by half of the DC-link voltage, which yields

ū∗x =
ux

Udc/2
. (2.30)

The magnitude of the modulating signal ū∗x is referred as the modulation index and defined by

m = Ū∗x , (2.31)

where Ū∗x is the magnitude of the scaled voltage ū∗x , i.e. Ū∗x := |max ū∗x|. Three working
regions are defined for the modulation index m [19]:

• m ∈ [0, 1]: linear modulation region.

• m ∈ [1, 2/
√

3]: extended linear modulation region. The injection of the harmonic and its
multiples is required.

• m ∈ [2/
√

3, mmax]: overmodulation region. Relatively high harmonics are injected. The
voltage as well as the current quality decreases. mmax with a value of 4/π denotes the
six-step operation, which fully uses the available DC-link voltage but further worsens the
voltage as well as the current quality.

For the two-level inverter, the typical realization of the PWM is shown in Fig. 2.10, where a
triangular carrier signal is employed [25]. The carrier signal is defined by the carrier frequency

t0

t0

S1

1

t0

S4

1

Figure 2.10: PWM generating principle with a sinusoidal reference and a triangular carrier signal.

fc that is normally much higher than the fundamental frequency. As it is indicated in Fig. 2.10,
the upper switch will be on, if the reference voltage is greater than the carrier signal, and vice
versa. The principle of PWM can be realized either by analog implementation or by digital
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implementation. However, the control precision and reliability of the analog implementation
are less satisfying because of the complex circuit structure as well as the varying parameters of
the analog devices. Therefore, the digital implementation is mostly adopted nowadays. Readers
can refer to [25] for deeper explanation and analysis about the PWM.

2.2.2.2.2 Space Vector Modulation Fig. 2.9 demonstrates the switching vectors in the αβ
domain, which divide the sphere Su into six sectors. Instead of comparing the reference voltage
to the carrier signal as in PWM, SVM chooses switching vectors based on the location of the
reference voltage in the αβ reference frame.

α

β

v100

v110

v̄100

v̄110

uαβ

Figure 2.11: SVM generating principle with a reference voltage vectoruαβ in the sector consisting of the switching
vectors v100 and v110.

In Fig. 2.11, an example for applying SVM is presented, of which the reference voltage
vector uαβ lies in the sector consisting of the two adjacent switching vectors v100 and v110.
The reference voltage uαβ is then synthesized by combing the two adjacent active switching
vectors v100, v110 and one or two of the passive vectors v000, v111. There are several alternatives
of SVM regarding different requirements on current quality and computational burden. The
computational principle of the SVM is briefly introduced as follows. The active time of v000,
v111 and the passive vectors are defined as t1, t2 and t0, respectively. Since the t1 and t2 in one
switching period Tc are proportional to the length of the corresponding vectors v̄100 and v̄110 ,
the active times can be computed as [26]

t1 =
‖v̄100‖
‖v100‖

Tc , t2 =
‖v̄110‖
‖v100‖

Tc , t0 = Tc − t1 − t2 . (2.32)

The reference voltage uαβ can be rewritten as a combination of v100, v110 and the passive
vectors as

uαβ = v̄100 + v̄110 =
t1
Tc
· v100 +

t2
Tc
· v110 +

t0
Tc
· (v000 or v111) . (2.33)

The reference voltage vector uαβ can be represented in the phasor form as uαβ = ‖uαβ‖∠θu,
where ‖uαβ‖ and θu are the amplitude and the angle of uαβ , respectively. The relationship be-
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tween uαβ and v000, v111 can be derived by means of the Fig. 2.11 and the law of trigonometric
function in the following

‖uαβ‖ · sin
(π

3
− θu

)
= ‖v̄100‖ sin

π

3
,

‖uαβ‖ · sin
π

3
= ‖v̄110‖ sin

π

3
.

(2.34)

Substitute (2.34) into (2.32), the active times can be obtained as

t1 =
2√
3
Tcm sin

(π
3
− θu

)
, t2 =

2√
3
Tcm sin θu , (2.35)

where m is the modulation index. Higher value of m leads to the overmodulation, where (2.35)
is no longer valid. In order to reduce the number of commutation and switching losses, a state
sequence with adjacent successive states is preferred. Only one commutation should occur
during the state change of the switching vectors. The generated duty cycles of the three phases
via symmetric SVM regarding different modulation index are shown in Fig. 2.12.

(a) m = 1 (b) m = 2/
√

3 (c) m = π/4

Figure 2.12: The duty cycle of three-phases via symmetric SVM regarding different modulation index m. The
duty cycles of the phase a, b and c are denoted with red, green and blue, respectively.

2.2.2.2.3 Optimized Pulse Patterns The intuition of the optimized pulse patterns (OPP) is
to find the optimal switching angles and switch positions in a fundamental period and allocates
the computational burden offline [24]. The concept of OPP was widely adopted in 1970s for
the slow switched power semiconductors [25]. Nowadays the main goal of applying OPP is to
achieve the optimization criterion, e.g. minimizing the THD, since the current harmonics cause
considerable losses in the machine. The pulse patterns are calculated offline over the operating
range of the machine and stored in a look-up table for the online searching. For details regarding
OPP, readers can refer to [24].

2.3 Control of Electrical Drive Systems

This section firstly overviews the theoretical foundations of the control and optimization prob-
lem. The control problem of the electrical drive systems denotes high complexity and subjects to
multiple objectives. As stated in Section 1.1, there are many requirements for the performance
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of the controller, which need to be considered during the controller design. Subsequently, an
introduction to the state-of-the-art control strategies for the electrical drive system is presented.
The system model as well as the system constraint in the context of PMSM drive system control
is furthermore presented.

2.3.1 Prerequisite
An optimization problem consists of a cost function J(x) and a constraint set X. Solving the
optimization problem is to find a feasible solution that minimizes the cost function J(x). The
feasible solution with the minimum cost is defined as a minimizer x∗. The solution is called
feasible if the constraint is satisfied. In this section, several basic convex optimization prob-
lems as well as one special case related to the direct control of the power electronics is intro-
duced. Subsequently, the Lagrangian duality and Karush-Kuhn-Tucker optimality conditions
are also briefly discussed. However, the systems in real applications are normally complicated
and demonstrate the nonlinear characteristics, which leads to a formulation of the nonlinear
optimization problem.

2.3.1.1 Convex Optimization Problems

Convex optimization belongs to the mathematical optimization and has received considerable
attention due to its theoretical and practical properties. Besides the well-established theoreti-
cal foundations, the convex optimization problems arising in the practical applications can be
solved efficiently with numerous maturely developed solvers. Its definition is given in the fol-
lowing.

Definition 2.1 (Convex set [20])
A set S is convex if for any two points x1, x2 ∈ S, all convex combinations of them also lie in
the set S, i.e.

(1− θ)x1 + θ x2 ∈ S, ∀θ ∈ [0, 1], ∀x1, x2 ∈ S . (2.36)

A significant characteristic of convex optimization problems is the equivalence of any local
minimizer and the global minimizer. Some relevant convex optimization problems to this thesis
are introduced as follows. Readers can refer to [20] for deeper explanation and analysis.

2.3.1.1.1 Linear Programming The simplest and mostly implemented convex optimization
problem is the linear programming (LP), which describes the problem with linear affine cost
functions and constraints. The general formulation of a LP can be given as

min cTx+ d

s. t. Gx ≤ h
Ax = b ,

(2.37)

where x ∈ Rn is the variable vector. c ∈ Rn, h ∈ Rm and b ∈ Rm are given vectors.
G ∈ Rm×n and A ∈ Rm×n are given matrices. d is a scalar, which does not affect the feasible
set. The feasible set of the problem in (2.37) is a polyhedron, where the linear cost function is
minimized.
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2.3.1.1.2 Quadratic Programming A quadratic programming (QP) has a quadratic cost
function and subjects to affine constraints. The standard QP is defined as

min
1

2
xT Qx+ cTx+ d

s. t. Gx ≤ h
Ax = b ,

(2.38)

where Q = Q′ ∈ Rn×n, c ∈ Rn. The constant d can be omitted if only the optimizer is
interested. Obviously, the quadratic programming is an extension or a generalization of the
linear programming, where the matrix Q = 0 in quadratic programming will lead to a linear
programming. An widely applied example of the quadratic programming is the so-called linear-
least-squares problem, where Q is symmetric positive definite and d is omitted. QP can be
solved by using the interior point method [27], the active set [28] and the gradient methods [29].

2.3.1.1.3 Mixed-Integer Quadratic Programming One of the goals in this work is to im-
prove the robustness as well as the performance of the direct current control, which is mainly
related to the direct control of the inverter under the consideration of motor dynamics. This op-
timization problem is often referred as the mixed-integer programming (MIP), which includes
the integer variables as the optimization variable and contains a discrete feasible set. Solving
MIPs imposes a substantial computational burden on the computing hardware. The problem is
generally non-deterministic polynomial-time hard (NP-hard), of which the solution time grows
exponentially with the number of integer optimization variables [30]. More specifically, the
problem invoked in this work is called mixed-integer quadratic programming (MIQP), which is
necessarily to be introduced here. Besides, it is also a special case of QP. Generally, the MIQP
can be formulated as

min
xc,xb

1

2
xT Qx+ cT x+ d

s. t. Gc xc +Gb xb ≤ h
Ac xc +Ab xb = b

xc ∈ Rnc , xb ∈ {0, 1}nb

x = [xc, xb]
T ,

(2.39)

where Q ≥ 0 ∈ R(nc+nb)×(nc+nb). nc and nb are the dimension number of continuous and
integer variable, respectively. The problem is a mixed integer linear program (MILP), ifQ = 0.
The constant term d is often omitted, since it has no influence on the optimizer. The most
direct method to solve a MIQP is to enumerate all the possible integer values of the integer
variable xb and solve the corresponding QPs, which aggregates 2nb possibilities. This method
is widely utilized in the direct current control with a short prediction horizon. However, by
using this method, the solving of MIQP becomes NP hard, which means that in worst case the
computational burden grows exponentially with the number of binary variables. In [31], several
efficient algorithms are introduced and applied for solving the MIQP, such as branch-and-bound
method, decomposition method, cutting-plane method and logic-based method.
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2.3.1.2 Lagrangian Duality

Duality is essential for solving the optimization problem. It provides optimality certificates
and has been studied in various directions. In this thesis, the Lagrangian duality is introduced,
which is widely applied for the convex optimization problems [20]. In general, the optimization
problem can be expressed as

min
x

J (x)

s. t. gi (x) ≤ 0, i = 1, ..., m

hj(x) = 0, j = 1, ..., n ,

(2.40)

where J(x) : Rn → R is the cost function, gi(x) : Rn → R is the inequality constraint func-
tions and hj(x) denotes the equality constraint functions, i.e. hj(x) = aTj x − bj . The La-
grangian function of (2.40) is defined as

L(x, λ, ν) = J(x) +
m∑
i=1

λi gi(x) +
n∑
i=1

νi hi(x) , (2.41)

where λ and ν are referred as Lagrange multipliers or dual multiplier vectors. The correlated
Lagrangian dual problem is given as [20]

max
λ,ν

d (λ, ν)

s. t. λ � 0 ,
(2.42)

where
d(λ, ν) = min

x
L(x, λ, ν) , (2.43)

which gives a lower bound on the optimal value of the primal optimization problem in (2.40).
Since the cost function to be maximized is concave and the constraint is convex, the Lagrangian
dual problem in (2.43) is a convex optimization problem.

2.3.1.3 Karush-Kuhn-Tucker conditions

Assume all equations in the optimization problem (2.40) are differentiable, then the gradient of
L(x, λ∗, ν∗) vanishes at x = x∗. Therefore, for any optimization problem that strong duality
holds, the triplet (x, λ, ν) can only be optimal if the following set conditions are satisfied,

∇J(x∗) +
m∑
i=1

λ∗i ∇gi(x∗) +
n∑
i=1

ν∗∇hi(x∗) = 0,

gi(x
∗) ≤ 0, i = 1, 2, · · · , m ,

hi(x
∗) = 0, i = 1, 2, · · · , n ,
λ∗i ≥ 0, i = 1, 2, · · · , m ,

λ∗i gi(x
∗) = 0, i = 1, 2, · · · , m ,

(2.44)

which are also known as Karush-Kuhn-Tucker (KKT) optimality conditions. The KKT con-
ditions are the first order necessary conditions for optimality of the constrained optimization
problem (2.40). They are also the necessary and sufficient optimality conditions for the QPs.
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2.3.1.4 Nonlinear Optimization Problem

If the cost function or some of the constraints are nonlinear, then the optimization problem is
called a nonlinear programming (NLP) problem. The general nonlinear optimization problem
can be difficult to solve, even if the cost functions and the constraints are smooth. However,
with the help of efficient numerical solving techniques, such as multiple shooting, a good local
optima or even the global optimum can be obtained. Depending on the requirement about the
convergent rate and the robustness, the available memory resource, the adequate computing
methods can be determined.

In this work, the NLP is solved with Newton type methods, which use the first- or second-
order derivatives for the solution. The reference [32] has given an elaborate overview for solv-
ing a NLP. The Newton’s methods can be classified into two families: sequential quadratic
programming (SQP) type methods and interior point (IP) type methods. In this thesis, we will
only cover the SQP methods. SQP is a general technique for finding the local optimum of the
original problem by iteratively linearizing the NLP at the current step. It applies in every iter-
ation a Newton step to the KKT system of the NLP. Therefore, it demonstrates a fast rate of
convergence. More details can be found in Section 3.5.4.

2.3.2 Control Strategies

Many control methods have been proposed to realize the precise control of electrical drives. The
most commonly used control methods for the electrical drive systems can be roughly sorted into
the scalar-based control and the vector-based control. The scalar-based control method utilizes
the steady-state model of the PMSM and computes the magnitude as well as the frequency of
the command voltage accordingly. The vector-based control schemes are established based on
the dynamic model of the machine and therefore enable a fast transient during the change of
the reference or the occurrence of the disturbances. They can be further divided into two sub-
categories, i.e. the field oriented control and the predictive control. FOC was developed in the
1970s [34], which decouples the control for the air-gap flux and the electromagnetic torque. As
its name suggests, FOC aligns the reference frame with the flux linkage and decoupled the sys-
tem. However, because of the reference transformation, an encoder or an observer is required
for obtaining the rotor position. The principle of the predictive control is to predict the system
behavior in the future via deploying the model of the system. The predictions are then used to
compute the command signal based on the predefined optimizing criterion. According to differ-
ent optimizing criteria, the predictive control for the electrical drive system can be commonly
classified into deadbeat control, hysteresis-based control, trajectory-based control and model
predictive control [33]. The hysteresis-based control defines the boundaries of the controlled
variables. The trajectory-based control actuates the command in such a way that the controlled
variables follow the predefined trajectory. The deadbeat control minimizes the tracking error
for the next time instant. Thanks to the development of the numerical optimization and ad-
vances in the computational power of microcontrollers, more complex control strategies from
the predictive control category have received more attentions in the recent years. In MPC, a cost
function regarding the predefined criteria is formulated within the prediction horizon Np, which
is then optimized under the consideration of the associating constraints. Therefore, MPC offers
a more flexible framework for the control purpose. It is also worth mentioning that the deadbeat
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control can be considered as a special case of MPC, where the cost function includes only the
reference tracking within one prediction step and the constraints are omitted. The individual
control method is introduced in the following.

2.3.2.1 V/f Control

The V/f control is based on the current dynamics of the machine in the steady state, which is
short for Volts/Hertz. It is the most applied and simplest control scheme for the drive control.
The control scheme is in general a feed-forward controller and has no feedback mechanism.
The current loop of a PMSM in steady state is simplified from (2.13) and omits the differential
term, which can be given by

uR = Rs i
R + jωe ·ΨR . (2.45)

It can be observed from (2.45) that the resistive voltage drop can be ignored, if the speed ωe is
high enough. Then the output voltage of the current controller is proportional to the rotor an-
gular speed. At low speed, the voltage drop on the stator resistance is a considerable term and
may become comparable to the back electromotive force in the current dynamics, an additional
voltage is applied to compensate the resistive part. The simpleness of V/f control on the other
hand comes with drawbacks [37]. One of them is the instability of the system after exceeding
a certain frequency. Damper windings are constructed with the rotor to assure the synchro-
nization of the rotor to the electrical frequency, which would limit the design of the PMSM.
Moreover, the control method delivers a relatively poor dynamic performance and further limits
its application. Besides, it provides deficient fault protection mechanism against stall detection
and over-currents.

2.3.2.2 FOC

In this thesis, the term FOC denotes the control realized with the PID control strategy. The
PID controller is widely used in almost all industrial applications. As the name suggests, the
PID control consists of a proportional, an integral and a derivative part, which belongs to linear
control strategy. The overall control output of the PID controller in the continuous-time domain
is given as

u = KP e+ KI

∫
e dt+ KD

d
dt
e , (2.46)

where e denotes the tracking error between the reference y∗ and the measurement y, i.e. e =
y∗ − y. However, because of the limitation on the output control value u as well as the anti-
windup strategy, which is normally implemented for the integral term of the PID control to
improve the stability of the closed-loop system, the PID controller may demonstrates nonlinear
effects for the overall control loop. The tuning of the coefficients KP , KI and KD is normally
based on the system model of the drive system. Nonetheless, they can also be designed with-
out any knowledge of the system. FOC can deliver high steady state control precision and is
carried out with fixed switching frequency. However, its dynamic performance is in general
unsatisfactory. Furthermore, the control bandwidth of FOC is limited.
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2.3.2.3 Hysteresis-Based Control

The principle of the hysteresis-based control is to constrain the controlled variables within the
boundaries of a hysteresis area. Therefore, the hysteresis control is also called bang-bang con-
troller. No modulator is necessary in the hysteresis-based control. However, the hysteresis-
based controller requires very high sampling rates to avoid the violation of the boundary and
to achieve an acceptable control performance. In [38], the hysteresis-based predictive current
controller was proposed. The block diagram of this proposal is shown in Fig. 2.13 [38]. The
hysteresis area is defined by a circle, which evaluates whether the error between the reference
value and the actual value is acceptable or not. A crossover of the boundary line actives the com-
putation of the next switching state. The switching state vector that minimizes the switching
frequency is selected [38]. Other optimization criteria can be likewise chosen for the hysteresis-
based control, e.g. low current distortion and low electromagnetic inferences [33]. Moreover,
the error boundary rotates with the reference value, as it is shown in Fig. 2.13.

Re

Im

i∗s

is

ωs

dis
dt

Figure 2.13: Principle of the hysteresis-based control.

2.3.2.4 Trajectory-Based Control

The trajectory-based control directly computes the command value to force the controlled vari-
ables to travel along the predefined trajectory. In Fig. 2.14, an example of the trajectory-based
control from [39] is shown, where it is applied to the direct speed control problem. The parabo-
las in Fig. 2.17 are computed by classifying the switching states into three groups, i.e. torque
increasing, slowly torque decreasing and rapidly torque decreasing, and investigating the re-
lationship between e and a with the consideration of the system dynamics, where e denotes
the tracking error of the speed and a represents the acceleration. The initial state is given as
ek/ak. The adjacent state ek+1/ak+1 is reached by choosing the switching state Sk, which is the
torque increasing voltage vector. Analogously, the states at k + 2 and subsequently at k + 3 are
achieved by choosing the switching states Sk+1 and Sk+2, respectively. Then the tracking error
e is controlled within the hysteresis band defined by −Hy and Hy.

Nonetheless, the calculation of the trajectories requires a foreknowledge of the system. More-
over, the switching frequency is limited.
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e = ω − ωref

a = ω̇

−Hy Hy

ek/ak

Sk

ek+1/ak+1

ek+2/ak+2

ek+3/ak+3Sk+1

Sk+2

Figure 2.14: Principle of the trajectory-based control.

2.3.2.5 Deadbeat Control

The deadbeat control proceeds based on the system model and computes the command signals
with the intuition of reaching the reference value at the next time instant. An example of the
deadbeat control is shown in Fig. 2.15. Ideally the controlled value can reach the reference at the
next time instant, which contributes to the advantage of the deadbeat control, i.e. fast dynamic
response. However, because of the model uncertainties and disturbances in the system, the
deadbeat control may exhibit steady-state errors, ripples or even cause instability of the closed-
loop system.

k k + 1

i∗

i

v

Figure 2.15: Principle of the deadbeat control.

2.3.2.6 Model Predictive Control

Model predictive control (MPC) has been a topic of research and application for several decades.
It was originally introduced in the process industry [40]. MPC has received widespread atten-
tion both in academia and industry because of its capability of satisfying constraints and fast
dynamic response. In [38] the possibility of applying MPC in the domain of power electronics
was presented. The computational issues of solving the MPC problem and the obstacle of con-
structing parametric solutions have restricted the application of MPC in practice, especially for
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complex systems and sophisticated control problems. However, thanks to the vast developments
in numerical optimization and the advances in the computational power of microprocessors,
MPC has been studied and applied as a promising control strategy for various power electron-
ics and electrical drive systems [41, 42]. MPC solves a constrained finite time optimal control
(CFTOC) problem at each sampling time instant, i.e. it uses the model of the system to predict
the system behaviour of the controlled system states over Np steps in the future and computes
the problem based on certain criteria. Moreover, MPC provides the possibility of including the
system constraints into the optimization problem. The optimizing criteria are designed as a cost
function for the optimization. Np is called the prediction horizon for the optimization problem.
Nonetheless, MPC implements only the first element of the solution sequence, i.e. the optimal
control sequence, into the plant. Subsequently, at the next time instant, the CFTOC is computed
with the most recent measurements over the shifted horizon. This control policy is called the
receding horizon policy, which introduces dynamic control input into the system. Its working
methodology is shown in Fig. 2.16, where Np denotes the prediction horizon and Nu represents
the control horizon.

Past Future

Reference

k k + 1 k +Nu k +Np

k + 1 k + 1 +Nu k + 1 +Np

u(k)

u(k + 1)

y(k + i|k)

y(k + 1 + i|k + 1)

Figure 2.16: The principle of the model predictive control with receding horizon policy.

Depending on the optimizer of the control problem, MPC for the power electronics and the
electrical drives can be roughly divided into two groups: continuous-control-set model predic-
tive control (CCS-MPC) and finite-control-set model predictive control (FCS-MPC). CCS-MPC
considers the control voltage as a continuous quantity. Therefore, a modulator is mandatory for
the CCS-MPC to actuate the voltage command and delivers switching signals to the inverter. On
the contrary to that, FCS-MPC directly considers the discrete nature of the power electronics
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and includes it into the control problem. Therefore, the modulator is omitted in the context of
FCS-MPC. Because that FSC-MPC directly computes the switching signals for the converter,
it is also called the direct MPC. Among numerous FCS-MPC variants, the prediction horizon
is commonly set to one [2], because a long prediction horizon is believed to cause explosion of
the number of solutions, which further increases the computational burden.

2.3.3 Control Structure

Fig. 2.17 shows a classical cascaded control structure for the indirect control of the electrical
drive system via the aforementioned vector-based control methods [43]. This structure decom-
poses the stator current of PMSM into the field-generating component and torque-generating
component, which simplifies the control problem to almost identical as the operation with
the DC machine. Firstly, the measurements of the three-phase stator currents are carried out.
Nonetheless, only currents of two phases (normally ia and ib) are measured in practice, since
the sum of the currents of three phases is zero. By applying the Clarke transformation Tαβ
in (2.7), the three-phase currents are transformed into the αβ coordinates. Subsequently, the
Park transformation Tdq in (2.11) is applied to further transform the currents into the dq refer-
ence frame, where the measured (with encoder) or estimated rotor angle is deployed. The outer
loop of the cascaded control is the speed loop, which generates the torque reference T ∗ and
subsequently the current references i∗. The current reference generator can be realized with
simple proportional-integral (PI) technique or the efficiency optimizing strategies, e.g. maxi-
mum torque per ampere (MTPA) concept. The current reference is then delivered to the current
controller, where the control task can be accomplished by the control methods introduced in the
former section. The output command voltage from the current controller is then transformed
back into the three-phase reference frame via the pseudo inverse of the Park transformation and
of the Clarke transformation. This continuous-valued voltage command u∗abc passes through the
modulator, e.g. with the aforementioned PWM and SVM, and are translated into the discrete-
valued switching states Sabc, which are then forwarded to the power inverter.
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VSIModulatorTransform

Transform
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Processing
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Sabcu∗
abcT ∗ i∗ u∗
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Figure 2.17: General control structure of vector-based control for PMSM.
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2.3.4 System Model
As it is stated previously, the system model for the current control can be chosen either in the
αβ reference frame or in the dq reference frame. Depending on the control input, the control
input of the system model can be the continuous-valued voltage command u or the switching
signals of three-phases v. However, they can be generally formulated into the state-space form
and discretized with a selected method.

2.3.4.1 Continuous-Time Model

A linear time-invariant system is characterized by differential equations, which can be com-
pactly reformulated into the state-space form as

d
d t
x(t) = Ac x(t) + Bc u(t) ,

y(t) = Cc x(t) + Dc u(t) ,
(2.47)

where x denotes the state vector, u denotes the input vector and y denote the output vector.
Ac is the state or system matrix, Bc is the input matrix, Cc is the output matrix and Dc is the
feedthrough matrix. The state-space formulation exhibits a convenient and compact manner to
model and analyze the system with multiple inputs and outputs.

2.3.4.2 Discrete-Time Model

The continuous system needs to be discretized, in order to realize the implementation of the
control algorithms on digital control systems. For a linear system in (2.47), the general formu-
lation of the discretized state space with a constant sampling time Ts can be written as

xk+1 = Axk + Buk ,

yk = C xk + Duk ,
(2.48)

where k denotes the current time step. The discrete-time system (2.48) is restricted to change
its state variables at the sampling instant t = k Ts.

2.3.4.3 Discretization Methods

The discretization of a continuous system can be realized with many methods, which can be
selected according to the requirements of the discretization accuracy and the available compu-
tational resources.

2.3.4.3.1 Exact Discritization The most accurate discretization method is the so-called ex-
act discretizaion, which is given as

A = eAc Ts , B =
( ∫ Ts

0

eAc τdτ
)
Bc . (2.49)

The output matrixCc and the feedthrough matrixDc are given same as the continuous form by

C = Cc , D = Dc . (2.50)
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Although the exact discretization offers an exact solution to the differential equations, the in-
formation of inter-sampling behaviour is still lost by the discretization. Moreover, for nonlinear
system, it is difficult to derive the exact solution.

2.3.4.3.2 Euler Discretization As the simplest discretization method, the Euler’s method
is most commonly applied in practice. Euler’s method is based on a truncated Taylor series
expansion and approximates the ordinary differential equations in a first-order manner. Regard-
ing the computation procedure of the differentiation, Euler’s method can be roughly divided
into two different methods, namely the Euler-forward discretization and the Euler-backward
discretization. The forward Euler discretization approximates the differentiation at t = k Ts
with

d
d t
x(t) ≈ x(k + 1)− x(k)

Ts
. (2.51)

The implicit analogue of the forward Euler discretization method is the backward Euler dis-
cretization, which approximates the differentiation with

d
d t
x(t) ≈ x(k)− x(k − 1)

Ts
. (2.52)

The backward Euler discretization is numerically more stable than the forward Euler discretiza-
tion. But it is more time-consuming and not always available. Therefore, the forward Euler
method is mostly applied, which transforms the continuous-time system in (2.47) into the dis-
crete form via

A = I + Ac Ts, B = Bc Ts . (2.53)

The output matrix Cc and the feedthrough matrix Dc still remain unchanged for deriving the
matrices for the discrete-time system, i.e.

C = Cc , D = Dc . (2.54)

2.3.4.3.3 High-Order Discretization Besides the aforementioned discretization methods,
methods such as Heun’s method, Runge-Kutta methods provide higher-order discretization.
Therefore, comparing to the Euler’s method, they can approximate the differentiation more
accurately and correct to a higher-order term in the Taylor series expansion. More details about
the high-order discretization can be found in [44]. Nonetheless, the forward Euler discretization
is sufficient enough for short sampling intervals of up to several tens of microseconds [24].
Therefore, it is deployed for the rest of this work.

2.3.5 System Constraints
A physical system is always limited by certain constraints, which guarantee the safe operation
of the system. The electrical drive system is also no exception. There are many limits need to
be considered in the electrical drive system, e.g. the limitation of the DC-link voltage and the
limitation from the inverter as well as from the machine. However, the most restrictive limits
are imposed by the DC-link voltage, the applied modulation method and the maximum allowed
current of the machine as well as of the inverter [45]. Moreover, for the direct control, the
voltage limitation is not a continuous space, but a set comprised by the discrete values.
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2.3.5.1 Current Limit

The magnitude of the stator current is limited considering that only a restricted amount of heat
can be produced during the operation, which is mainly determined by the maximum operating
temperature and given as the maximum allowed current of the machine Imax. The maximum
allowed current is then represented in the two-axis reference frame, i.e. αβ reference frame or
dq reference frame, as a circle centered at the origin and with a radius of Imax. Therefore, the
current vector is constraint by the current limit and can be written as

i ∈ I := {i ∈ R2| ‖i‖ ≤ Imax}, (2.55)

where i denotes the current vector in either αβ reference frame or dq reference frame. The tran-
sient violation of the current constraint is actually acceptable, since the thermal time constants
are much larger than the electric ones.

2.3.5.2 Voltage Limit

Another operation limit that needs to be considered is the maximum output voltage provided by
the DC-link. As it is introduced previously, the output voltage of the inverter is a function of the
DC-link voltage Udc. For the indirect control problem, the voltage limit is given in (2.29), i.e.

uαβ ∈ U :=

{
uαβ ∈ R2×1
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}
. (2.56)

For the direct control problem, the control variable is the switching states. Therefore, the voltage
limit becomes integer-valued input constraint as in (2.23), i.e.

uabc ∈ V3 . (2.57)

The constraints resulted from the physical nature of the system, e.g. U and V, can not be
violated. Therefore, they are called hard constraints. On the contrary, the constraints that are
established to guarantee the safe operation of the system, e.g. the current limit I, can be violated
bearing the risk of failure. Thus, they are denoted as soft constraints.

2.4 Uncertainties and Disturbances in Drive System

The AC machine drive system is complicated and intrinsically nonlinear, as presented previ-
ously. It contains various uncertainties and disturbances, which include both low-frequency
components, such as the back EMF and the parameter variation phenomenon, and the high-
frequency components, for example the disturbances induced by the VSI nonlinearities and flux
harmonics. Thus, one of the essential tasks for realizing the precise control of the drive system
is to reject the various external disturbances and improve the system robustness under the ex-
istence of various uncertainties. In this section, the two main sources of the disturbances and
the uncertainties, i.e. the parameter variation and the VSI nonlinear effects, are explained and
analyzed. Furthermore, the other uncertainties and disturbances are also introduced, such as the
digital delay and the flux harmonics. Their impacts can be concluded as causing a degradation
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of the control performance and invoking instability of the closed-loop system. The deteriora-
tion of the control performance can be denoted by steady-state errors and periodic disturbances.
The static error, which is mainly caused by the parameter variation during the operation or the
other slow varying disturbances in the drive system, affects the control accuracy. The periodic
disturbances degrades the control performance, e.g. fluctuation in the current control loop as
well as in the speed control loop, toque pulsation and more losses. Moreover, authors in [46]
addressed the detection of performance degradation from an incipient stage can substantially
reduce the unscheduled downtime as well as the repairing cost, and further increase the produc-
tion efficiency.

2.4.1 Parameter Variation
A precise knowledge of the machine parameters is required for the control system design
[47, 48], condition monitoring and fault detection. As it is indicated in [49], the machine con-
dition variation can cause lower efficiency, worse current regulation performance and disturbed
speed control. Besides, the machine electrical parameters are frequently used as an indicator of
the machine conditions. In the following, the parameter variation problem is comprehensively
analyzed. The factors causing the parameter variation are elaborated.

2.4.1.1 Temperature

The main external affecting factor of the parameter variation is the temperature. It has a great
influence on both electrical and magnetic properties of the material. However, in many drive
systems, the temperature sensor is omitted considering the fact that it will increase the manu-
facturing cost as well as the maintenance expenses. Furthermore, most modern drives apply the
PWM to produce the voltage, which can cause electrical noise and may affect the accuracy of
the dynamically measured temperature. The variation of the thermal condition can be caused by
the external environment and the machine itself. As it is explained in [50], there are many fac-
tors contributing to the increase of the temperature in the PMSM, but the main internal sources
can be concluded as the PM eddy current loss, the PM hysteresis loss, the copper loss and the
aluminium loss. Besides, the mechanical losses on account of the friction in the bearings may
associate the internal sources. The impacts of the temperature on the individual components are
further analyzed in following.

2.4.1.1.1 Stator Resistance The relationship between the stator resistance and the tempera-
ture can be simplified as the thermal behaviour of the copper, since the most electrical machines
are constructed with copper windings. The general formulation of the resistance in conductors
can be given as a function of the temperature in the following

Rs(T ) = R0

(
1 + α (T − T0)

)
, (2.58)

where R0 is the resistance at the room temperature T0 and α is the temperature coefficient
of the material. The temperature coefficient α is given as αCu = 0.004 041 °C−1 for copper
conductors and αAl = 0.004 308 °C−1 for aluminum conductors. Normally, T0 is considered as
20 °C. PMSM usually have an operating temperature range of 100 °C. The resistance consisting
of copper conductors can vary under the thermal effects by 40% (with αCu = 0.004 041 °C−1).
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2.4.1.1.2 Permanent Magnet Flux Linkage The permanent magnet flux linkage is also
temperature dependent [51]. Its temperature coefficient, which can roughly describe the thermal
characteristics of the magnet, can be provided by the permanent magnet manufacturers. The
function of the permanent magnet flux linkage to the temperature can be written similarly to
(2.58) and given as

Ψm(T ) = Ψm, 0
(
1 + β (T − T0)

)
, (2.59)

where Ψm, 0 is the permanent magnet flux linkage value at the room temperature T0 , T is the
rotor temperature and β is the thermal coefficient of the permanent magnets. Neodymium Iron
Boron (NdFeB) and Samarium Cobalt (SmCo) magnets are the most popular commercialized
permanent magnet materials for constructing PMSMs. They have a temperature coefficient of
β = −0.11 %/°C and β = −0.03 %/°C, respectively. Besides, most permanent magnet materi-
als have an approximate Curie temperature, which indicates the temperature causing permanent
demagnetization [9]. Therefore, an operation of PMSMs above the Curie temperature should be
avoided. In general, the influence of the temperature on the permanent magnets can be sorted
into three main categories: the permanent change of the magnetic material, the irreversible
change and the reversible change. They are further explained in following [9]:

• The permanent change: the change persist even if the magnet is fully remagnetized.

• The irreversible change: the change persist even after the cause has been removed. But
the original demagnetization curve can be restored by remagnetizing the magnet.

• The reversible change: the change is reversible. For example, the field weakening, which
enables the motor to run in the high-speed area (above the basic speed area).

2.4.1.1.3 Inductance The temperature changes also influence the inductances of the PMSM,
since the temperature affects characteristics of the magnetic material and further causes a change
of the inductances.

2.4.1.2 Saturation Effect

The saturation effect is considered as the primary affecting factor for the inductances and de-
scribes the characteristic parameters of ferromagnetic as well as ferrimagnetic materials. It
indicates the state, from which the applied external magnetic field increases the magnetiza-
tion of the material slowly and the magnetization remains nearly constant. A typical saturation
curve can be described as a function between the current and the corresponding flux linkage,
which is demonstratively presented in Fig. 2.18, where the points P1 and P2 are selected as two
representative points for further specification. L1 and L2 denote their gradient, respectively.

In PMSM machines, the magnetic characteristic of the magnetic paths associated with the
d- and the q-axis are different. The magnetic flux linkage in the d-axis includes the perma-
nent magnet flux linkage. Therefore, a certain level of magnetic field is already built by the
permanent magnet even before the machine is excited, as it is shown at P2 in Fig. 2.18. The
corresponding inductance is approximated as the gradient L2. As a result, a zero or negative
current is normally applied in the d-axis. In comparison to the d-axis, the magnetic flux linkage
in q-axis can be considered within the linear region in Fig. 2.18, which is represented with the
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Figure 2.18: Saturation effect of the flux linkage.

point P1 and denoted by the gradient L1. Furthermore, because of the saturation effect, the d-
axis inductance of permanent magnet synchronous machines is considered to vary more slowly
than the q-axis inductance.

2.4.1.3 Other Causes

Besides the aforementioned main causes, the parameters of the PMSM drive system can be
furthermore affected by the following factors:

• Aging Effect There are two main types of magnetic aging, namely structural aging and
thermally activated magnetization processes [52]. For example, the permanent magnets
loose a small fraction of their remanence each decade [52].

• Oxidation All types of rare earth magnet are vulnerable to oxidation, dominated by the
corrosion on the surface. The oxidation causes a permanent metallurgical change in their
structure [9]. The oxidized surface layer possesses a lower intrinsic coercivity, which
accelerates demagnetization of this region, especially for the thin magnet.

• Pressure The pressure will cause a undesirable structural change, which will further af-
fects the parameters in the drive system.

2.4.2 Influence from Inverter

In most applications, the command voltage of the current controller is employed as the terminal
voltage of the machine, since the terminal voltage is normally unavailable during the operation.
However, due to the nonlinearities of the VSI, the terminal voltage of the machine differs from
the commanded output voltage. However, the distorted voltage has a great influence on the con-
trol as well as on the estimation performance of the PMSM. In this section, the nonlinear effects
of the VSI are firstly comprehensively analyzed. Then, the nonlinearities are approximated in
order to simplify its inclusion into the estimation model and furthermore the compensation of
the distorted voltage.
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2.4.2.1 Analysis of the Nonlinearities

One of the main problems accompanying the real inverters in the AC machine drive systems
is the error voltage between the command voltage given by the controller and the real output
voltage of the inverter [53,54]. It is affected by several factors, the DC-link voltage, the inserted
dead-time and the nonlinear properties of the power inverter. The nonlinear characteristics of the
inverter consist of the turn-on/-off time of the power switches, the voltage drops on the switches
as well as on the freewheeling diodes and the parasitic effects. One of the several issues caused
by the inverter nonlinearities is the zero-clamping phenomenon, which occurs during the dead
time at the small-current region (normally near zero). However, because of the applied gross
compensation for the distorted voltage in practice, the undercompensation or the overcompen-
sation often occurs, which would further elevate the significance of the current clamping [55].
In order to realize an accurate compensation of the distorted voltage, the sophisticated analysis
is firstly required, which is elaborated in the following.

2.4.2.1.1 Voltage Drops Firstly, the analysis on the voltage drops across the power devices
is carried out. The voltage drops of power devices, including the forward voltage drop of the
active switch Uce and the voltage drop of the anti-parallel diode Ud , are relatively small but
still not negligible [56]. The current pathway of a phase leg is shown in Fig. 2.8. The current
flows through S1 or D4 if the current ia > 0, while the current flows through S4 or D1 if the
phase current ia is negative. The voltage drops are related to the conducting current i and can be
approximated as a linear function of i , as indicated in [57]. The approximation of the voltage
drop is composed of a threshold voltage and an equivalent on-state slope resistance as

Uce = Uce, th +Rce · |i| ,
Ud = Ud, th +Rd · |i| ,

(2.60)

where Uce, th, Rce are the threshold voltage and the equivalent resistance of the active switch,
respectively. Accordingly, Ud, th and Rd denote the threshold voltage and equivalent resistance
of the anti-parallel diode, respectively. They are normally available in the data sheets. The
distorted voltage caused by the voltage drops is additionally related to the current direction, i.e.
the voltage drop reduces the output voltage when the current is positive and boosts the output
voltage when the phase current is negative. More specifically, the error voltage induced by the
voltage drops, which is denoted by ue, 1 := u∗aN − uaN , can be approximately given as [57]

ue, 1 =

{
Uce · d+ Ud · (1− d) , for ia > 0 ,

−Uce · (1− d)− Ud · d , for ia < 0 ,
(2.61)

where d is the duty cycle.

2.4.2.1.2 Turn-on/-off Times Besides the voltage drops, the power devices demonstrate
non-ideal switching behaviours with the so-called turn-on and turn-off times. The turn-on time
Ton is the actual turn-on time and established as the sum of the turn-on delay and the rising
time. Correspondingly, the turn-off time Toff is the real turn-off time and defined as the amount
of turn-off delay and the falling time. A schematic presentation of the real switching behaviour
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of the active switch is shown in Fig. 2.19. The voltage uS1 denotes the voltage on the switch
S1 and the red solid line denotes the gating signal of S1. t1 denotes the turn-on delay and t2
is the rising time. t3 and t4 represent the turn-off delay and the falling time, respectively. The

Figure 2.19: Schematic presentation of the switching transient with the consideration of turn-on/-off times.

turn-on and turn-off delay are mostly determined by the threshold voltage and the time constant
regarding the equivalent circuit of the gate-source (MOSFET) or gate-emitter (IGBT) terminal,
while the rising and falling time are associated with the DC-link voltage, the characteristics of
the parasitic elements and the phase current [58, 59]. In terms of the effects from the parasitic
elements, we can roughly divided them into the effect from the parasitic capacitance and the
one from the parasitic inductance.

The parasitic capacitance is a capacitor-like behaviour in power devices, which is resulted
from the packaging and the electrical wiring [60]. There are in general two types of parasitic
capacitance, the input capacitance that causes the time delay during the switching, and the
output capacitance, which affects the rising as well as the falling edge of the output voltage
during commutation. They will be charged and discharged during the turn-on and the turn-off
of the switches. In Fig. 2.20, the influence of the output capacitance on the output voltage at
different levels of phase currents are shown. If the time to charge or discharge the equivalent
output capacitance is smaller than the Tdead, i.e. the absolute value of the phase current is
sufficiently large, the commutation will be finished within the dead time, which is shown in
Fig. 2.20a. On the contrary, if the absolute value of the phase current is too small to fully
charge/discharge the parasitic capacitance, the commutation will be forced to conduct after the
switching, as presented in Fig. 2.20b.

Analogously to the parasitic capacitances, the output voltage of the inverter is also affected
by the parasitic inductances. The switching transient can be simplified and approximated as
a resistor-inductor-capacitor (RLC) circuit, which is a second-order switching circuit and nor-
mally underdamped. Therefore, hard switching may cause a voltage overshoot or even the
oscillation. In order to tackle this problem, a snubber circuit is typically deployed to convert the
output equivalent circuit into a third-order circuit, i.e. from underdamped to critically damped
or overdamped [59]. A simulation is carried out to demonstrate the effectiveness of the snubber
circuit. The simulation results of the step response of the equivalent output circuits are shown
in Fig. 2.21. The red solid line and the blue solid line denote the step response of the transfer
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(a) (b)

Figure 2.20: The output voltage at different current level with ia < 0. The red solid line illustrates the real
transition of uaN . (a) represents the scenario, where the absolute value of ia is relatively large and (b) denotes the
situation, at which the absolute value of ia is relatively small.

function without and with snubber circuit, respectively. As it is shown in Fig. 2.21, the snubber

Figure 2.21: Demonstration of the comparison of the voltage on the switches during the turning off with and
without snubber circuit, where the red solid line and the blue solid line denote the step response of the transfer
function without and with snubber circuit, respectively.

circuit has suppressed the oscillation phenomenon with a significant reduction of the voltage
overshoot. However, an overshoot of the phase voltage can still be observed based on the RLC
model, which needs to be considered as part of the distorted voltage. The error voltage evoked
by the turn-on/-off time can be approximately written as

ue, 2 =


−Udc

2
· Toff − Ton

Tc
, for ia > 0 ,

Udc
2
· Toff − Ton

Tc
, for ia < 0 .

(2.62)

2.4.2.1.3 Dead-Time Effect As it is explained previously, the switching behaviour of the
VSI in practice is non-ideal and actuates a gate signal with turn-on/-off times. Thus, a time
delay is required, which is called the dead-time or interlock time and denoted by Tdead in this
thesis. The insertion of this time delay can prevent the simultaneous conduction of two power
devices on the same phase leg (e.g. S1 and S4) and ensure a reliable current switchover. During
the dead time, both switches on the same leg are switched off and the current flows through the
corresponding diode, as shown in Fig. 2.8. The voltage error caused by the dead-time can be
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approximated as

ue, 3 =


Udc
2
· Tdead
Tc

, for ia > 0 ,

−Udc
2
· Tdead
Tc

, for ia < 0 .

(2.63)

Even though the dead time is in general very short and essential to guarantee a safe operation
of the inverter, it deteriorates the output voltage and degrades the motor performance, especially
at the low-current region. If the current is crossing the zero during the dead time, it will clamp
to zero and stay there for the rest of the dead time [61].

2.4.2.1.4 Summary The aforementioned factors compose the voltage distortion of the VSI
output voltage. They are summarized and shown in Fig. 2.22, where the switching transients
including the nonlinear effects are shown in two cases, i.e. with the positive and the negative
current. The voltage distortion caused by the dead-time and the voltage drops has the opposite
phase with the phase current, while the distortion caused by the switching time, the parasitic
effects is in phase with the current.

In Fig. 2.22, Tc denotes the switching period. Furthermore, the practical behaviour of the
switches is investigated with the experiments. The experimental measurements of uS1 were
conducted with various current levels and the turn-off signal is given to the gate at t = 0 s. The
experimental results are shown in Fig. 2.23.

In Fig. 2.23, the turn-off behaviour of S1 in practice is shown, which also represents the
falling edge of the output voltage for the phase a. The turn-off signal is commanded to the
switch S1 at t = 0 s. It can be concluded from Fig. 2.23 that the current level has a great impact
on the switching behaviour. More explicitly, a higher phase current can significantly reduce the
switching time. The voltage at ia = 0 A stays low until around t = 2.4 s, which denotes the
turn-on of the lower switch S4.

2.4.2.2 Approximation of the Nonlinearities

The nonlinear effects are complicated for their inclusion into the design of the controller or the
compensation, since they are time variant and depend on the working points. In order to tackle
this problem, the nonlinear effects are simplified and approximated in the following. Firstly,
the error caused by the dead time, the turn-on time and the turn-off time can be approximately
calculated as

• Positive current:
T+
a, e = T ∗a − T+

a = Tdead + Ton − Toff . (2.64)

• Negative current:
T−a, e = T ∗a − T−a = −(Tdead + Ton − Toff ) . (2.65)

T ∗a and Ta, r denote the active time of the ideal switch and of the real switch, respectively. T+
a, e

and T−a, e represent the time difference between the active time and the ideal time at the positive
current and the negative current, respectively. The error active time from (2.64) and (2.65) can
be concluded into a function and is given as

Ta, e = T ∗a − Ta, r = sgn(ia)(Tdead + Ton − Toff ) , (2.66)



2.4. UNCERTAINTIES AND DISTURBANCES IN DRIVE SYSTEM 43

Figure 2.22: Illustration for the nonlinearities of the switch S1. (a) represents the ideal gating pulse signals. (b)
shows the insertion of the dead time into the ideal gating pulse signals. (c) demonstrates the actual output voltage
with the positive current, i.e. ia > 0. (d) demonstrates the actual output voltage with the negative current, i.e.
ia < 0.

Figure 2.23: Experimental measurements of uS1 at various current levels.
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where sgn(ia) is the sign function and defined as:

sgn(ia) =

1, ia > 0 ,

−1, ia < 0 .
(2.67)

It can be observed from the Fig. 2.22 that the average terminal voltage including VSI nonlin-
earties over one PWM step can be given as follows [62]

uaN = (Udc − Uce + Ud)(
Ta, r
Tc
− 1

2
)− 1

2
(Uce + Ud)sgn(ia) . (2.68)

Substitute the approximation of the voltage drops in (2.60) into the terminal voltage formulation
in (2.68), it can be obtained that

uaN = (Udc − Uce + Ud)(
Ta, r
Tc
− 1

2
)− 1

2
(Uce, th + Ud, th)sgn(ia)−

1

2
(Rce +Rd) ia . (2.69)

Similar results can be derived for ubN and ucN . With the relationship in (2.27), ua can be further
derived as

ua =(Udc − Uce + Ud)
2Ta, r − Tb, r − Tc, r

3Tc

− 1

6
(Uce, th + Ud, th)

[
2 sgn(ia)− sgn(ib)− sgn(ic)

]
− 1

2
(Rce +Rd) ia .

(2.70)

On the other hand, the ideal phase voltage u∗a is computed with

u∗a = Udc
2T ∗a − T ∗b − T ∗c

3Tc
. (2.71)

Subtract (2.70) from (2.71) the distorted voltage caused by the VSI nonlinearities is then given
by

∆ua = u∗a − ua
= Ad

[
2 sgn(ia)− sgn(ib)− sgn(ic)

]
+ (Uce − Ud)

2T ∗a − T ∗b − T ∗c
3Tc

+
Rce +Rd

2
ia ,

(2.72)
where the intermediate parameter Ad is defined as

Ad = (Udc − Uce + Ud)
Tdead + Ton − Toff

3Tc
+
Uce, th + Ud, th

6
. (2.73)

As a result, the distorted voltage of uabc can be given as

∆ua

∆ub

∆uc

 = Ad

 2 −1 −1

−1 2 −1

−1 −1 2


sgn(ia)

sgn(ib)

sgn(ic)

+
Uce − Ud

3Tc

 2 −1 −1

−1 2 −1

−1 −1 2


T
∗
a

T ∗b
T ∗c

+
Rce +Rd

2

iaib
ic


(2.74)

= Ad

 2 −1 −1

−1 2 −1

−1 −1 2


sgn(ia)

sgn(ib)

sgn(ic)

+
Uce − Ud
Udc

u
∗
a

u∗b
u∗c

+
Rce +Rd

2

iaib
ic

 .
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where u∗a, u
∗
b and u∗c denote the commanded voltage of the phase a, b and c, respectively. Fur-

thermore, (2.74) can be transformed into the dq reference frame with the aid of the Park trans-
formation Tdq and its pseudo inverse T−1

dq as [63]

[
∆ud

∆uq

]
= Tdq

∆ua

∆ub

∆uc


= 3Ad Tdq sgn

(
T−1
dq

[
id

iq

])
+

Uce − Ud
Udc

[
u∗d
u∗q

]
+
Rce +Rd

2

[
id

iq

] (2.75)

In (2.75), the second and the third term are straightforward. The first term can be explicitly
explained by the Table 2.1, which shows the relationship between the signs of the phase currents
as well as the electrical angle and the distorted voltage of VSI. In the Table 2.1, A′d := 4Ad and

State θe + θi sgn(ia) sgn(ib) sgn(ic) ∆ud,1 ∆uq,1

1 (−π
6
, π

6
] 1 -1 -1 A′d cos(θe) −A′d sin(θe)

2 (π
6
, π

2
] 1 1 -1 A′d cos(θe − π

3
) −A′d sin(θe − π

3
)

3 (π
2
, 5π

6
] -1 1 -1 A′d cos(θe − 2π

3
) −A′d sin(θe − 2π

3
)

4 (5π
6
, 7π

6
] -1 1 1 A′d cos(θe − π) −A′d sin(θe − π)

5 (7π
6
, 3π

2
] -1 -1 1 A′d cos(θe − 4π

3
) −A′d sin(θe − 4π

3
)

6 (3π
2
, 11π

6
] 1 -1 1 A′d cos(θe − 5π

3
) −A′d sin(θe − 5π

3
)

Table 2.1: The distorted voltage of the VSI ∆u in (2.75) as a function of electrical angle θe, where ∆ud,1 and
∆uq,1 denote the first term of (2.75).

θi denotes the angle of the current in dq reference frame. It can be concluded from the Table 2.1
that the first term of distorted voltage [∆ud, ∆uq] rotates discontinuously with electrical angle
θe and its trajectory is a hexagon [64].

In order to illustrate the waveform of the error voltage ∆u, a simulation has been carried
out and the corresponding results are shown in Fig. 2.24, which demonstrates the waveform of
the ∆u and its relationship with the electrical angle θe under the id = 0 control, i.e. θi = π

2
.

Fig. 2.24 shows that the distorted voltage caused by the VSI is periodic and related to the
electrical angle as well as the present current vector. Furthermore, in the simplified model in
(2.74) and (2.75), the amplitude of the distorted voltage Ad is considered as a constant, which
varies in practice depending on the operating points and environmental conditions.

2.4.3 Other Uncertainties and Disturbances
Besides the aforementioned two sources of uncertainties and disturbances, i.e. the parameter
variation and the nonlinearities of the VSI, there are many other uncertainties and disturbances



46 CHAPTER 2. PERMANENT MAGNET SYNCHRONOUS MACHINE DRIVE SYSTEM

Time

Figure 2.24: Ideal distorted voltages with a constant Udead in the rotor reference frame, where the red solid line
represents the distorted voltage in d-axis, the blue solid line denotes the distorted voltage in q-axis and the green
dotted line is θe .

in the PMSM drive system, which also affect the control performance as well as the motor
condition.

2.4.3.1 Digital Delay

The modern control approaches are commonly implemented on a digital control platform, where
the controller computes the command signals based on the measurements from the most recent
time instant. Particularly for the sophisticated control methods, such as MPC, a large number
of computations need to be completed. It may lead to a considerable time delay between the
acquisition of the measurement at the sampling instant and the actuation of the manipulated
command value to the drive system. Moreover, the assumption of a constant reference value
can also cause a delay effect for the predictive control. In general, the references are assumed
to be constant within the prediction horizon, which is valid under the circumstances that the
real reference is constant or the sampling time is relatively small. However, for some control
scenarios, e.g. the current control in αβ reference frame, as well as the control during the
transitions, the delay effects are emphasized.

Compensation of the digital delay has been covered in several works, such as [65, 66]. For
the digital-delay effect resulted from the discrete nature of the digital platform, a prediction
based on the current measurements need to be carried out, which is then employed for the
computation of the manipulated command values. On the other hand, the digital delay effects
from the varying reference value can be compensated by extrapolating the references.

2.4.3.2 Cogging Torque

The cogging torque is produced by the magnetic interaction between the permanent magnets and
the stator slots. It refers to the circumferential component of the attractive force that attempts
to maintain the alignment between the stator teeth and the permanent magnets [67]. Therefore,
the cogging torque depends on the position, the number of magnetic poles and the number of
teeth on the stator. Its impact is especially prominent in the low-speed region and even exists
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in a from power source disconnected system [68]. As it is given in [69], the resultant cogging
torque Tct can be written as a Fourier series as

Tct =
∞∑

i=1,2,3,···
Tct, i sin(iNm θe) , (2.76)

where Nm denotes the least common multiples between the slots number and the pole pairs, θe
denotes the electrical angle and Tct, i is the amplitude of the i-th harmonic.

2.4.3.3 Flux Harmonics

In the real PMSMs, a perfect sinusoidal flux density distribution is difficult to be built in the air
gap. The developed flux linkage between the permanent magnet and the stator currents consists
of the harmonics of the order 5, 7, 11 and higher [70]. In the dq reference frame, they appear as
6-th, 12-th and the multiples of 6-th harmonic, which can then be denoted as [70, 71]

Ψd =
∞∑
i=0

Ψdh, i cos(6i θe) ,Ψq =
∞∑
i=1

Ψqh, i cos(6i θe) , (2.77)

where Ψdh, i and Ψqh, i are the amplitudes of the 6i-th order harmonic flux in d- and q-axis,
respectively. The flux harmonics further affect the control performance of the electrical drive
system. For example, they can generate 6i-th periodic ripples on the electromagnetic torque
as well as on the speed. Moreover, in the current control loop, the flux harmonics induce the
harmonics in the back EMF and further influence the current quality.

2.4.3.4 Measurement Errors

Measurement errors can be referred to as current measurement errors and position measurement
errors. The current measurement error is analyzed firstly. Normally the current measurement
procedure includes a sampling mechanism, a low-pass filter and an A/D converter, where the
sampling is finished by the current sensors, the low-pass filter and the A/D converter transform
the transduced voltage signals into the digital values. The error that exists in the current mea-
surement procedure can be classified into the offset error and the scaling error [72]. The offset
error is resulted from an unbalanced supply voltage of the current sensor and the analogue de-
vices in the measurement path. Another error is the scaling error, which is generated during the
process of the scaling from the current sensor to the A/D converter and the calibration from the
A/D converter to the current controller [72]. Without loss of generality, the acquired current
value neglecting the nonideal factors in the filter and the A/D converter can be given as [71]

ī =
Rsr

RsN
i+

uov − uoN

r RsN
, (2.78)

where ī and i denotes the measured value and the real value of the current, respectively. Rsr is
the sampling resistance. uov is the offset voltage applied for the polarity conversion. RsN and uoN

denote the nominal value of the sample resistance and the offset voltage, respectively. r is the
transducer ratio of the current sensor. It can be observed from (2.78), the current measurement
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error is mainly affected by two factors, the deviation of uov − uoN and the varying sampling
resistance Rsr. As a result, the offset error causes a current ripple oscillating at the fundamental
frequency and the scaling error induces a current ripple oscillating at the frequency of twice of
the fundamental frequency [71].

Analogously, the position measurement can also be erroneous and further affect the perfor-
mance of the drive system. The most applied position sensors are resolver, absolute encoder
and incremental encoder, which can be selected regarding different requirements, for example,
robustness, price and accuracy. Similar to the current measurement error, the position measure-
ment error can be categorized into the offset error, the harmonic error and the phase shift error.
More details can be found in works such as [73].

2.4.3.5 Phase Unbalancing

In a three-phase motor, the phase characteristics, e.g. the resistances, should be as balanced as
possible. However, due to the corrosion, contamination or other problems mentioned in 2.4.1,
the phase unbalancing occurs frequently during the operation of the PMSM. It generates the
negative sequence voltages and currents that may impair the motor efficiency and deteriorates
its performance. Furthermore, it can result in an unbalancing heating of the stator, which may
further cause the excessive thermal stress and increase the impedance unbalance.

2.4.3.6 Noise

In most applications, the process as well as the measurement noise is assumed to be white.
However, in reality the most encountered noise is the coloured noise. The coloured pro-
cess/measurement noise is denoted as wc and vc, respectively. Their propagation can be given
as

wc
k+1 = Aww

c
k + Bwwk ,

vck+1 = Avv
c
k + Bvvk ,

(2.79)

where wk and vk are the zero-mean white noise with the covariance matrices Q and R, re-
spectively. They are uncorrelated. The colored noise can be comprised into the state space and
modelled as a new state as

E[wc
k+1w

c T
k ] = AwE[wc

kw
c T
k ] ,

E[vck+1v
c T
k ] = AvE[vckv

c T
k ] .

(2.80)

2.4.3.7 External Disturbances

In addition to the aforementioned uncertainties and disturbances in the PMSM drive system,
the system is also affected by the external disturbances, such as the load torque and the friction
torque. The load torque is considered as one of the most severe external disturbances of the drive
system, since the coupling of the load motor and the drive motor is a nonideal rigid body and
the add of a load torque may cause the mechanical resonance [74]. Other mechanical factors,
such as the friction torque [75] and torsional vibrations [76], are also unavoidable in the servo
systems.
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2.4.4 Impacts
The uncertainties and the disturbances of the electrical drive system have multiple impacts on
the system. On the one hand, they can impinge on the control performance of the control meth-
ods. On the other hand, they may affect the motor condition. The impacts from the parameter
mismatch are investigated and presented in details as follows.

2.4.4.1 Impacts on the Control Performance

Different control methods can be applied to the current control of the PMSM drive system.
However, the uncertainties as well as the disturbances influence the control performance in
various way and to different extent. For example, the parameter mismatch has less effects on
the FOC than on the model-based methods. It changes the dynamic behaviour of the FOC
method, while it can result in a steady-state error or even instability for the model-based control
methods. The impacts of the parameter mismatches are analyzed in the following.

2.4.4.1.1 Impacts on the Reference Generator Based on the torque reference and the mea-
surement of the rotor speed, the current reference vector i∗ is generated in the reference gen-
erator. The current reference is then delivered into the current controller. The reference is
generated based on several criteria. Firstly, the measurements are checked to determine the
existence of a suitable reference, e.g. the speed is restricted by the maximum speed. Then, the
operation strategy is determined, namely MTPA, maximum current, field weakening and max-
imum torque per voltage (MTPV). The algorithm to generate the reference current is shown in
Algorithm 2.1 [77].

Algorithm 2.1 MTPX
Input T ∗, ωe
Output i∗

if ωe ≤ ωA then
MTPA

else
if ωe ≤ ωV then

if T ∗ ≤ TU then
EU := {i ∈ R2| ‖u(i)‖2 ≤ U2

max}
else

EI := {i ∈ R2| ‖i‖2 ≤ I2
max}

end if
else

if T ∗ ≤ TV then
EU

else
MTPV

end if
end if

end if
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The sets EU and EI are the voltage and the current limitation, respectively. Moreover, ωA
is the maximally feasible MTPA angular velocity for the given torque reference and ωV is the
constant MTPV cut-in angular velocity, which is computed from the maximum current and the
maximum voltage. TU denotes the maximally feasible field weakening torque and TV denotes
the MTPV cut-in torque. They are determined by the electrical angular velocity, as given in [77].
Firstly, the measurements and the torque reference are delivered as input into the algorithm
MTPX in Algorithm 2.1. The feasibility of the current reference will be examined based on the
input. Then the rotor speed ωe is compared with the two offline determined speeds ωA and ωV
and the torque reference T ∗ is compared with the TU and TV . The mechanism to generate the
current reference i∗ is then selected accordingly.

A simulation about the impact of the parameter variation on the reference generator, more
specifically on the MTPX stated in the Algorithm 2.1, has been carried out. The corresponding
results are shown in Fig. 2.25, where the isotorque loci based on the constant inductance value
and the inductance as a nonlinear function of the currents are compared.

-1.6

-1.2

-1.2

-0.8

-0.8

-0.8

-0.8

-0.4
-0.4

-0.4

-0.4

0 0 0 0

0.4
0.4

0.4

0.4
0.8

0.8

0.8

0.8

1.2

1.2

1.6

Figure 2.25: PMSM characteristics in the state-space with isotorque loci. The MTPA trajectory, which is offline
computed with the constant inductance values, is denoted by the blue. It is derived from the isotorque loci in
green. The isotorque loci computed from the real inductance map, which is nonlinear and a function of currents,
are presented in red. The yellow circle presents the current limit EI .

The Fig. 2.25 shows that the parameter mismatch of the inductances can cause an obvious de-
viation from the real isotorque loci, i.e. the difference between the read solid line and the green
solid line. In some applications, the model based on the offline parameters, i.e. the constant in-
ductances, can be improved by deploying correcting factors, which provides an approximation
for the global nonlinear model and improves the model accuracy locally [78].

2.4.4.1.2 Impacts on the FOC The most applied control method for the PMSM electrical
drive system is the FOC (with PI technique). Although FOC is less sensitive to the param-
eter variation problem than MPC, its performance can also be affected. The PI technique is
implemented in the dq reference frame, of which the transfer function can be generally given as

GPI = Kp +Ki
1

s
. (2.81)
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Depending on the design criterion, the magnitude optimum (to obtain a largest possible band-
width) or the symmetric optimum technique (examine both the input and disturbance trans-
fer function) [79] can be deployed to determine the coefficients of the FOC. Particularly, the
closed-loop control system designed with the magnitude optimum technique only optimizes the
closed-loop transfer function between the reference input and the controlled variable. The exis-
tence of disturbances may change the system behaviour. The coefficients of FOC are designed
based on the parameters and via the pole-zero cancellation principle, which no longer holds.
Therefore, the disturbances may deteriorate the control performance. Since the controller is
designed based on the classical linear control theory, the impacts of the parameter mismatch
can be evaluated with the localization of the system poles.

The pole-zero maps showing the influence of the parameter mismatches, i.e. from the vari-
ation of the stator resistance and of the inductances, are illustrated in Fig. 2.26, where the
closed-loop stability under the parameter variation is furthermore denoted. The transfer func-

(a) (b)

Figure 2.26: Discrete pole-zero map of the FOC current controller at a sampling frequency of 10 kHz. (a) Simula-
tion results of the resistance value variation, where rp = 50% is denoted in blue, rp = 100% is denoted in red and
rp = 150% is denoted in yellow. (b) Simulation results of the inductance value variation.

tion for the open loop of the current control in the d-axis can be simplified by eliminating the
interdependent term relating to the q-axis current and is given as

Gi, d =
1

sLd +Rs
, (2.82)

where the coupling term of the current loop is excluded from the transfer function and assumed
that it can be compensated afterwards. The transfer function of the current control in q-axis can
be analogously formulated. Therefore, the analysis focuses on the d-axis. Besides the PMSM
current loop of d-axis, a digital delay is furthermore included into the open loop function, which
is selected as two sampling time period and given as a first order time lag system. The param-
eter mismatch is simulated by changing the parameter values of the PMSM current model and
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quantified by a ratio rp , which is defined by

rp =
pm
pc
× 100% , (2.83)

where pm is the parameter value deployed in the current model of PMSM and pc is the value
of the parameter employed in the controller. As it is presented in Fig. 2.26, the variation of the
inductance may have a great impact on the closed-loop stability, which can be explained by the
position of the inductance in the transfer function in (2.82). However, the pole-zero maps reveal
that the poles remains within the unit circle. Thus, the FOC stabilizes the system even under the
parameter mismatches. The variation of the inductance shifts the poles away or closer to the real
axis, which indicates that the damping behaviour of the PI controller is changed. The variation
of the resistance, as it is shown in Fig. 2.26a, has slight influence on the pole placement.

2.4.4.1.3 Impacts on the Predictive Control In this work, two predictive control methods
are investigated, i.e. CCS-MPC and FCS-MPC. The deadbeat control is also included and
regarded as a special case of the CCS-MPC. The predictive current control methods are all
set up based on the system model and have proven to be effective as well as powerful for
the control of systems with accurate models and small disturbances. However, if the model
uncertainties and the external disturbances are not ignorable, the performance of the predictive
control can deteriorate or even the system may exhibit instability. MPC gains robustness from a
long prediction horizon, but the obvious error can still be noted for the reference tracking under
the impact of the model uncertainties and the disturbances. In order to analyze the impacts of
the parameter-mismatch phenomenon, let us recall the simplified nominal current prediction
model in dq reference frame, which is given as

[
ud

uq

]
=

[
Rs −ωe Lq
ωe Ld Rs

] [
id

iq

]
+

[
Ld 0

0 Lq

] 
d

d t
id

d
d t
iq

+

[
0

ωe Ψm

]
. (2.84)

The current prediction model of the real PMSM including the parameter variation effect is given
by

[
ud −∆upd
uq −∆upq

]
=

[
Rs −ωe Lq
ωe Ld Rs

] [
id

iq

]
+

[
Ld 0

0 Lq

] 
d

d t
id

d
d t
iq

+

[
0

ωe Ψm

]
, (2.85)

where ∆upd and ∆upq denote the error voltage caused by the parameter variation and can be
represented as

∆upd = ∆Rs id + ∆Ld
d

d t
id −∆Lq ωe iq ,

∆upq = ∆Rs iq + ∆Lq
d

d t
iq + ∆Ld ωe id + ∆Ψm ωe .

(2.86)

The simulation results as well as the experimental results to quantify the impacts of the param-
eter mismatch are given in details in the Chapter 4 and the Chapter 5.
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2.4.4.2 Impacts on the Motor Condition

The PMSM has been moreover applied in mission- and safety-critical systems, such as military
and medical systems. A reliable operation and timely maintenance is essential for these appli-
cation domains. Therefore, a novel condition monitoring method is necessary for identifying
the degradation at its incipient stage, which can substantially reduce the maintenance cost as
well as the machine downtime [46]. The impacts of the uncertainties and disturbances on the
motor condition are shown in the following.

2.4.4.2.1 Magnetic Faults The permanent magnet is the most critical component in the
PMSM. As explained in Section 2.4.1, various reasons can cause the irreversible demagneti-
zation of the permanent magnet, e.g. the thermal stress [51], the oxidation and the unbalanced
load. The demagnetization can further lead to a reduction of the efficiency, poor performance
and even a motor fault [46]. On the one hand, the demagnetization causes higher copper losses
for the motor operated at a given torque, which heats the motor, reduces the efficiency and sta-
bility. On the other hand, the demagnetization disturbs the air-gap flux distribution. It further
causes magnetic pull and current harmonics. They are responsible for bearing erosion, rotor
bending as well as vibration and acoustic noise, respectively.

2.4.4.2.2 Electrical Faults The disturbances and uncertainties in the electrical drive sys-
tems can cause the stator winding insulation failures. The materials used for the insulation in
electric machines are related to the deterioration from a combination of thermal overloading and
cycling, voltage stresses on the insulating material and mechanical stresses, etc. Nonetheless,
the thermal stresses account for the main reason for the degradation of the stator winding insu-
lation. The disturbances and uncertainties induce more losses and increase the thermal stresses
on the stator windings. Moreover, the implementation of the VSI introduces transient voltages
with a high slope rate, which further adds the electrical stresses at the machine terminals. It is
the main reason of the electrical stresses and provokes the insulation degradation.

2.5 Summary

In this chapter, the basic concepts of the permanent magnet synchronous machine drive sys-
tem are introduced, including the main components of the permanent magnet synchronous ma-
chine, the inverter as well as its operating principle and the control of the drive system. The
drive system in practice is much more complex and contains many nonlinear effects, which can
be simplified and approximated under several assumptions. The mathematical models of the
PMSM in the continuous-time domain are furthermore presented, both in the stationary refer-
ence frame and the rotating reference frame. They are further discretized with the preselected
discretization methods, which is determined based on the requirement for the model accuracy
and the availability of the computational resources. The working principle of the inverter as
well as the relevant actuation schemes are presented. The switching commands for the inverter
can be directly computed by the control algorithm or modulated through the corresponding
modulator, where the PWM, the SVM and the OPP are introduced. Furthermore, the control
of the electrical drive system is systematically established. The fundamental concepts of the



54 CHAPTER 2. PERMANENT MAGNET SYNCHRONOUS MACHINE DRIVE SYSTEM

optimization problem are given, which are followed by the classical control approaches of the
electric drive system. Subsequently, the control structure of the most applied cascaded control
is illustrated and introduced. The system model and the constraints involved in the electric drive
system are furthermore presented. In the end, the uncertainties and the disturbances that exist in
the electrical drive system are explicitly introduced, especially the parameter variations and the
nonlinear effects of the VSI. Their impacts on the control performance and the motor conditions
are further investigated and analyzed. These foundations play an essential role for the further
studies and development of this thesis.
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Part II

PARAMETER IDENTIFICATION
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CHAPTER 3

Parameter Determination and Estimation

In this chapter, the observability of the PMSM is firstly examined, where the persistent ex-
citement is absent. Then, the offline determination procedures regarding the parameters of the
simplified model and those of the general model for the PMSM are investigated. The VSI non-
linearities are furthermore quantified via the measurements, where two methods for the offline
determination of the error voltage that is resulted from the nonlinear effects are introduced. As it
is mentioned in the previous chapter, the nonlinear effects are affected by several factors. There-
fore, their impacts are validated through the experiments. However, the offline determination
of the parameters may require extra hardware and sophisticated determination procedure. The
online identification can be regarded as an alternative for obtaining the parameters in real time,
which can be realized with or without current injection. The current injection can be expected as
a persistent excitement and overcomes the rank deficient problem of the PMSM parameter iden-
tification. Thus, the associated methods are capable to simultaneously identify all the electrical
parameters of the simplified model, while the methods without current injection can estimate up
to two electrical parameters at the same time. Moreover, several online identification methods
are studied and compared via the experimental results. Conclusions about the advantages as
well as the disadvantages can be drawn in terms of various criteria, which can be further served
as a reference for choosing a proper observer under different circumstances. Furthermore, the
influence of the VSI nonlinearities on the identification results is shown. A promising method
based on the dual extended Kalman filter (DEKF) is proposed, in which the nonlinear effects of
the VSI is included and identified. Its effectiveness is verified via experimental investigations.

3.1 Introduction

The parameters of a system can be directly solved from sufficient equations. Ignoring the dis-
turbance, the parameter estimation problem is an inverse problem, which can be directly solved
in the linear system and requires solving approaches in the nonlinear system. The parameters
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can also be treated as the system states, which transforms the parameter estimation problem into
a state estimation problem. As it is analyzed in the previous chapter, there exist multiple distur-
bances and noises in practice. Different from the discrete linear system presented in (2.48), a
more general and practical system model includes moreover the state or the process disturbance
w(k) and the measurement, output disturbance v(k), which can be then given as

xk+1 = Axk + Buk +wk ,

yk = C xk + vk ,
(3.1)

where w(k) denotes the unmodelled uncertainties, modeling errors and process variations and
v(k) represents sensor errors, disturbances and modeling errors of the outputs. The matrix
D in the general formulation (2.48) is omitted. The parameter estimation as well as the state
estimation problem can be defined in different representations regarding the deployment of the
available measurements.

Definition 3.1 (State Estimation [80])
Given a sequence of measurements Ym = [yT0 , y

T
1 , · · · , yTm]T for the system in (3.1), the

state estimation problem describes a retrieving procedure of state xk from Ym. The estimation
problem is called a filtering problem if k = m, a prediction problem if k > m and a smoothing
problem if k < m.

In general, the parameter estimation methods can be roughly classified into two categories,
i.e. offline and online parameter estimation. The offline estimation methods, as its name sug-
gests, are carried out offline before the operation of the motor or at the start-up. There are
several variants. The first one is to compute the parameters from the motor construction data,
which is the most straightforward way to obtain the motor parameters. The motor construction
data can be the geometrical and material data. It is relatively accurate, since the parameters are
acquired from the physical data. However, it is computationally expensive, since the compu-
tation is based on field calculation methods, e.g. the finite element method [81]. The second
option is to conduct the standstill frequency response (SSFR) test, where the response on a
test signal with a certain signal frequency is evaluated. It has become a standard method for
identifying synchronous machines [16]. Extensions and improvements of SSFR are moreover
given in [82], [83], to name but a few. The last variant is to perform the time-domain mo-
tor measurements and adjust the parameters to reconstruct the measurements, which requires
a simplification of the motor models [84]. However, the electrical drive system is complex,
nonlinear and time-variant. The parameters may vary during the operation, as it is clarified in
Chapter 2, and solely the accurate motor parameters can not guarantee a satisfactory control
performance. Moreover, an accurate offline determination of the motor parameters may require
sophisticated measuring procedures. Even though the self-commissioning procedure can be de-
ployed for automatically determining the parameters, additional instruments may be required
and the implementation complexity is increased. Thus, the online parameter estimation method
is a more proper solution for identifying the actual parameters in real time. In this chapter, five
online estimation methods are covered, namely the recursive least squares, the model reference
adaptive system, the extended Kalman filter, the unscented Kalman filter and the moving hori-
zon estimator. They are implemented and compared for the parameter estimation problem of
the PMSM. The corresponding analysis and the subsequent experimental results are compared
in terms of different metrics.
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However, most of the previous studies ignore the influence of the voltage source inverter
nonlinearities, which has been introduced in Chapter 2. To compensate the VSI nonlinearities,
several methods have been proposed. Authors in [62] suggested to compensate the nonlineari-
ties with the results from offline experimental measurements. Nonetheless, the switching times
and the voltage drops vary with operating conditions. Authors in [85] proposed an online aver-
aging technique including a feedforward and a feedback loop to adjust the compensation. But
this method still needs offline measurements to set up a look-up table. Authors in [86] applied
a disturbance observer to observe the output voltage errors and fed the error back to voltage
references in order to compensate the dead-time effects. Reference [87] also used a disturbance
observer to identify the disturbance voltage in q-axis, which was further applied to compensate
the error voltage caused by the dead time. Reference [88] utilized a simple vector operator,
which consists of the inner and outer products of the rotor flux linkage increment and the unit
back electromotive force, to estimate the disturbance voltage. In [89], the reference voltage in
d-axis and low pass filters are used to calculate the distorted voltage for the id = 0 control of
the PMSM. In this chapter, the VSI nonlinearity is included into the system model of the esti-
mation problem and regarded as a system state of PMSM. EKF and DEKF are investigated for
the online estimation problem of the PMSM electrical parameters and the VSI nonlinearities.
Comparisons between the proposed methods and EKF without VSI nonlinearity compensation
have been furthermore carried out on an industrial embedded system with various scenarios.

3.2 Observability Analysis

The observability is concerned with the feasibility of reconstructing system states from the
measurements of the previous times, which are constrained within a finite period of time. The
most straightforward methodology for the observability analysis is to algebraically evaluate the
estimated quantities from the machine model equations [90]. However, the results obtained can
not be easily adopted for the similar problems, e.g. for other types of machines. Moreover, the
to be estimated values, for example the electrical parameters and the rotor speed, vary much
more slowly than the currents and are normally regarded as a constant during one sampling
period. Under this assumption, the to be estimated parameters can be considered as the system
states and then included into the system model, which furthermore transforms the underlying
linear time-variant (LTV) system into a nonlinear time-invariant (NTI) system. The global
observability analysis for NTI system is difficult to carry out [91]. One possible approach is to
linearise the system model in a certain subspace, where a linear system observability analysis
can be conducted accordingly [92]. Nonetheless, this approach is therefore localized in the
certain subspace and loses the general observability for the entire state trajectories. Another
possibility is to apply a local observability analysis to the nonlinear system [93]. The main
advantage of this concept is that the observability analysis becomes a relatively simple algebraic
problem.

3.2.1 Observability for Nonlinear System
The local observability for a nonlinear system is briefly introduced as follows.
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Definition 3.2 (Lie Derivative [93])
Let f : Rn → Rn be a vector field in Rn, and h : Rn → R be a smooth scalar function. Then,
the Lie derivative of h with respect to f is

Lfh = ∇hf =
∂h

∂x
f =

n∑
i=1

∂h

∂xi
fi , (3.2)

where f = [f1, f2, · · · , fn]T and x = [x1, x2, · · · , xn]T .

Theorem 3.1 (Local Observability [93])
For a nonlinear system described by the system equation ẋ = f(x, u) and the measurement
equation y = h(x), if n linearly independent vectors can be found within O at a state x0 ∈ X,
then the system is locally observable at state x0, where O is the Jacobian of O at x0 and O
denotes the Lie derivative vector of h with respect to f , i.e.

O =
∂L

∂x

∣∣∣
x0

, (3.3)

with L = [L0
fh, L1

fh, · · · , Lnfh], where Lkfh denotes the k-th order Lie derivative.

By applying the local observability theorem in Theorem 3.1, the examination of observability
for nonlinear system is transformed into a rank examination problem of the observability matrix
O.

3.2.2 Observability of PMSM

The to be estimated parameters are the stator resistance Rs , inductances of d- as well as of
q-axis and the permanent magnet flux linkage Ψm . Revisit the analysis about the parameter
variations in Section 2.4.1, it can be concluded that the variations of the stator resistance and
the permanent magnet flux linkage are much slower than the current dynamics, since they are
mainly affected by the temperature. The inductances of d- and q-axis are related to the currents,
and we assume that they can be regarded as constant within one sampling period, in order to
simplify the analysis. Moreover, a state is most likely observable for fast variation if a slow
variation is observable [91]. Thus, the observability matrix O for examining the nonlinear
system with x = [id, iq, Rs, Ld, Lq, Ψm] is derived from O = ∂L

∂x
, where

L =



L0
fh

L1
fh

L2
fh

L3
fh

L4
fh

L5
fh


, f =



−Rs

Ld
id +

Lq
Ld
· ωe · iq +

ud
Ld

−Rs

Lq
iq −

Ld
Lq
· ωe · id +

uq
Lq
− Ψm

Lq
ωe

0

0

0

0


, h =

[
id

iq

]
. (3.4)
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More specifically, the observability matrix O ∈ R12×6 can be expanded regarding to x as

O =



∂L0fh1
∂id

∂L0fh1
∂iq

∂L0fh1
∂Rs

∂L0fh1
∂Ld

∂L0fh1
∂Lq

∂L0fh1
∂Ψm

∂L0fh2
∂id

∂L0fh2
∂iq

∂L0fh2
∂Rs

∂L0fh2
∂Ld

∂L0fh2
∂Lq

∂L0fh2
∂Ψm

∂L1fh1
∂id

∂L1fh1
∂iq

∂L1fh1
∂Rs

∂L1fh1
∂Ld

∂L1fh1
∂Lq

∂L1fh1
∂Ψm

∂L1fh2
∂id

∂L1fh2
∂iq

∂L1fh2
∂Rs

∂L1fh2
∂Ld

∂L1fh2
∂Lq

∂L1fh2
∂Ψm

...
...

...
...

...
...

∂L5fh1
∂id

∂L5fh1
∂iq

∂L5fh1
∂Rs

∂L5fh1
∂Ld

∂L5fh1
∂Lq

∂L5fh1
∂Ψm

∂L5fh2
∂id

∂L5fh2
∂iq

∂L5fh2
∂Rs

∂L5fh2
∂Ld

∂L5fh2
∂Lq

∂L5fh2
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. (3.5)

According to the Theorem 3.1, the system is weakly locally observable, if rank{O} = 6. This
condition can be examined with a matrix constructed by any six rows ofO [94]. We choose the
first six rows of the matrix O and define it as O1 ∈ R6×6 for verification, which can be given as

O1 =



1 0 0 0 0 0

0 1 0 0 0 0

−Rs

Ld

Lq
Ld
ωe − id

Ld
− 1

Ld
f1

ωe
Ld
iq 0

−Ld
Lq
ωe −Rs

Lq
− iq
Lq

−ωe
Lq
id − 1

Lq
f2 −ωe

Lq
Rs

2

L2
d

− ω2
e −RsLq

L2
d

− Rsωe
Ld

Ω1 Ω2 −Rsωe
L2
d

iq −
ω2
e

Ld
RsLd
L2
q

+
Rsωe
Lq

Rs
2

L2
q

− ω2
e Ω3

Rsωe
L2
q

id Ω4
Rsωe
L2
q


, (3.6)

with

Ω1 =
2Rs

L2
d

id −
Lq
L2
d

ωeiq −
ud
L2
d

− ωe
Ld
iq , Ω2 =

2Rs

L2
d

f1 −
Lq
L2
d

ωef2 −
ω2
e

Ld
id ,

Ω3 =
2Rs

L2
q

iq +
ωe
Lq
id +

Ld
L2
q

ωeid −
uq
L2
q

+
ωe
L2
q

Ψm , Ω4 =
2Rs

L2
q

f2 +
Ld
L2
q

ωef1 −
ω2
e

Lq
iq .

There are several predefined conditions for the identification problem of PMSM. On the one
hand, no additional sensor is required, which means only the available measurements can be
used, i.e. the currents of d-, q- axis and the rotor position. On the other hand, the conclusions
of the observability should be globally applicable, i.e. valid for both at the steady state and dur-
ing the transitions. For the identification problem, the steady state is the worst-case scenario.
Therefore, the rank ofO1 at steady state will be assessed. It can be obtained that the rank ofO1

at steady state is four, which means that up to two parameters can be identified simultaneously
without a persistent excitement. In order to find out the observable parameter combinations, the
sub-matrices of O1 regarding various parameter combinations are evaluated. The observability
matrix of the parameter combination [Rs, Ld] is defined as O1, 1. Analogously, the observ-
ability matrices of parameter combinations of [Rs, Ld], [Rs, Lq], [Rs, Ψm], [Ld, Lq], [Ld, Ψm],
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[Lq, Ψm] are defined as O1, 2, · · · , O1, 6, respectively. Their determinant is calculated and can
be given as

|O1,1| = ωe i
2
d − iq f1 , |O1,2| =

Rs ωe
L2
d

id iq − Ω1 ωe iq ,

|O1,3| = −
Rs ωe
L2
q

id , |O1,4| =
Rs ω

2
e

L2
d Lq

id iq +
Ω2

Lq
f2 ,

|O1,5| = 0 , |O1,6| = −
Rs

2 ω2
e

L2
d L

2
q

iq +
ω2
e

Ld
Ω4 .

(3.7)

Based on the results in (3.7), several conclusions can be drawn.

• Ld and Ψm can not be simultaneously identified at the steady state.

• For many applications of PMSM, the direct current id is fixed to zero with the aim of
minimizing the machine loss. However, this control method furthermore restricts the
observability of copious parameter combinations, i.e. [Rs, Ld], [Rs, Ψm] and [Ld, Lq].

• The operating points of PMSM have also great influence on the observability. More
specifically, the motor speed ωe can determine the observability. All parameter combina-
tions become unobservable at ωe = 0.

However, the conclusions drawn above are based on two conditions: no additional sensors and
no persistent excitement. The four electrical parameters can be simultaneously observable, as
long as the persistent transition takes place.

3.3 Offline Determination of Parameters

The offline approaches follow the measuring procedure and compute the corresponding param-
eters with the measurements. Normally, look-up tables or interpolating functions are built to
serve the online application of the estimates. They are easy to implement, but the determination
procedure is time consuming, since the whole working area needs to be covered. However,
the measuring and determining procedures can also be completed by the self-commissioning
process, where the procedures run automatically and the computational results are then saved
as a look-up table or interpolated as a function. Traditionally, short-circuit and/or low-voltage
tests are carried out to capture the machine characteristics, such as the transient as well as sub-
transient reactances and time constants. However, the SSFR test has become an alternative to
the aforementioned tests [16]. It can be performed at a relatively modest expense, poses a low
probability of the risk to the motor and requires low effort for the test setup. In the follow-
ing, the offline procedures regarding determining individual electrical parameters as well as the
distorted voltage caused by the VSI nonlinearities are introduced.

3.3.1 Stator Resistance
The stator resistance Rs is a relevant quantity for the operation of the electrical machines. For
example, in traction applications, despite the torque control is required, the torque at the motor
shaft is often not measured, which not only is for the purpose of cost savings in the purchase, but
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also denotes a significant reduction for maintenance and a lower susceptibility to faults. Thus, in
order to realize highly precise control, the torque needs to be derived from the available signals,
which is then given by the equation in (2.21). The flux map that is considered as a function
of the currents can be obtained by the introduced procedure or deploying the substitution of
the inductance-like functions, i.e. the explicit nonlinear function in (2.15) or the approximated
linear function in (2.18). The details about the determination procedure are shown in Section
3.3.2. Moreover, the stator resistance is relevant for the determination of the flux maps. Further-
more, the precise acquisition of the stator resistance is also important for the sensorless control
methods, especially for the low-speed region [95]. A lower rotor speed of the PMSM results in
a smaller value of the induced voltage, which furthermore increases the relevance of the stator
resistance accuracy.

In general, the stator resistance Rs can be identified with various methods. The most straight-
forward method is to directly measure the resistance of each phase and compute the average
value of the measurements. However, the to be identified motor is normally implemented in the
electrical drive system and connected to other components of the drive system, which impedes
the direct measurements of the stator resistance. Another option for identifying the stator resis-
tance is to inject testing signals in d- and q-axis and evaluate the voltage as well as the current
response [96]. Normally, a DC current is injected, either into the terminal or into the neutral
point of the star-connected machine with a capacitor bank. In this thesis, the former method is
implemented for the offline stator resistance determination. To obtain an accurate value, several
voltage values are applied in d-axis and the computational results are averaged. To take the
possible asymmetries of the motor into account, different angle points are evaluated. It is worth
mentioning that because of the nonlinearities of the inverter, the voltage command of the cur-
rent controller is not equivalent to the terminal voltage of the motor. The distorted voltage can
be either compensated by the offline measured values of VSI nonlinearities or approximated as
a linear function under the assumption that the error voltage resulted from the VSI nonlinear
effects increase linearly with the current. If the distorted voltage can be directly compensated,
the value of the command voltage is applied. Otherwise, the stator resistance is computed via

Rs =
ud, 1 − ud, 2
id, 1 − id, 2

, (3.8)

where ud, 1 and id, 1 denote the average voltage and current in the d-axis at the steady state of
the first operating point, respectively. Analogously, ud, 2 and id, 2 denote the average voltage and
current of the d-axis of the second operating point. The identification results for the PMSMs in
Section B.1.3 are shown in Table 3.1.

Table 3.1: Identification results of the stator resistance for the PMSMs

Description PMSM I PMSM II
Data Sheet Value 4.2 Ω 6.5 Ω
Measured Value 4.35 Ω 6.25 Ω



64 CHAPTER 3. PARAMETER DETERMINATION AND ESTIMATION

3.3.2 Inductances
As mentioned in Section 2.1.2.4, various inductances can be defined in the context of differ-
ent machine models. They can be applied for different usages, e.g. the absolute inductances
is important for the FOC to calculate the command voltage [10], the absolute as well as the
differential inductances are both necessary for the sensorless control [14] and the reference
generator [97]. Since the most applications employ the inductance in the dq reference frame,
the identification of the inductances is carried out in this reference.

3.3.2.1 Interpolation Methods

The flux maps Ψd(id, iq), Ψq(id, iq) and the further derived inductances are computed from
the measurements of limited working points. It may cause problems at the intermediate points
between two measured working points. Therefore, the interpolation methods significantly affect
the computational results. They determine the way of generating the intermediate values. The
most applied interpolation methods are the linear interpolation, the polynomial interpolation
and the spline interpolation. In order to explain the principle of each method, an example with
random points is employed, which is shown in Fig. 3.1a.

3.3.2.1.1 Piecewise Constant Interpolation The most straightforward and simplest way is
to deploy the value from the nearest points, which is called piecewise constant interpolation and
shown in Fig. 3.1b. Thanks to its simpleness, it can be used for high dimensional interpolation.
However, a step is generated between two points, which introduces discontinuous derivatives
and furthermore causes problem in the control applications.

3.3.2.1.2 Linear Interpolation One of the simplest interpolation methods is the linear in-
terpolation, which is shown in Fig. 3.1c. It can be generally formulated as follows

y = a0 + a1 · x , (3.9)

where a1 is the slope of two adjacent points. The linear interpolation reduces the discontinuity
provoked in piecewise constant interpolation and constrains it within a certain range. It is also
simple and quick, but it has limited precision.

3.3.2.1.3 Polynomial Interpolation The polynomial interpolation is a more general form
of the linear interpolation, which can be given as

y = a0 + a1 · x+ · · · + an · xn , (3.10)

where n ∈ Z denotes the degree of the polynomial function. It is worth mentioning that the
degree of the polynomial function n is always smaller than the number of the available data
points. In Fig. 3.1d and Fig. 3.1e, a third degree polynomial and a sixth degree polynomial
are employed for the interpolation, respectively. The third degree polynomial interpolation is
much more accurate than the linear interpolation function. Nonetheless, the inaccuracy can be
observed at several points. On the contrary, the sixth degree polynomial function adequately
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describes the raw data and provides more precise results than the third degree polynomial in-
terpolation. Moreover, since the interpolation is a polynomial, it is infinitely differentiable.
However, a higher accuracy on the other hand means higher computational burden. Another
disadvantage associating with the high-degree polynomial interpolation is that it tends to oscil-
late, especially when the points are not in a smooth sequence [98].

3.3.2.1.4 Spline Interpolation Another relatively precise interpolation method is the spline
interpolation, where low-degree function (higher than first-degree) polynomials are formulated
between each two adjacent points and the polynomial functions with smooth conjunctions are
chosen. Normally, a third degree polynomial is employed. As it is shown in Fig. 3.1f, a high
accuracy can be achieved through the spline interpolation.
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Figure 3.1: Demonstrations of the various interpolation methods. (a) represents the raw data points. (b) denotes
the simple piecewise constant interpolation. (c) gives the results of the linear interpolation. (d) and (e) are the
interpolation results via the polynomial interpolation methods of a third degree polynomial and a sixth degree
polynomial, respectively. (f) demonstrates the interpolation results with the spline interpolation method.

However, besides the accuracy, the computational burden needs to be considered during the
interpolating process. The piecewise constant interpolation requires least computational ex-
penses, since only the interval of present value needs to be determined. A higher precision
brings higher computational burdens as well as higher memory requirements. Therefore, the
choice of the interpolation methods depends on the available computational resource and the
requirement of the accuracy. The interpolated measurement results are afterwards implemented
for the control system synthesis. It is usually helpful if the interpolated curves can omit any
discontinuities in the function itself or even in the derivatives, since the discontinuities may
deteriorate the control performance [99]. Thus, the cubic spline interpolation (third order) is
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implemented in this thesis to approximate the intervals between two adjacent points.

3.3.2.2 Flux Linkage

Recall the voltage equation in (2.14), the flux can be computed at the steady state with Ψ̇ = 0.
Then the flux linkage Ψd and Ψq can be obtained with the equation given in the following

Ψd(id, iq) =
uq(id, iq)−Rs iq

ωe
,

Ψq(id, iq) =
ud(id, iq)−Rs id

ωe
.

(3.11)

The individual operating points over the space of (id, iq) is measured to obtain the flux map.
An adequate rotor speed is chosen, in order to guarantee the feasibility of (3.11). For each op-
erating points, the corresponding voltages ud, uq and the real rotor speed ωe are recorded. As it
is indicated in (3.11), the stator resistance is essential for the identification of the inductances.
However, as revealed in Section 2.4.1, the resistance is mainly influenced by the temperature.
During the flux determination procedure, the current is injected for a short time, which mean-
while is long enough to reach the steady state. Furthermore, a temperature sensor is mounted
on the motor and monitors the motor temperature, which is used for the adjustment of the stator
resistance by deploying (2.58) with the temperature coefficient αCu = 0.004 041 °C−1 for the
copper conductors. The measuring procedure is introduced as follows.

Procedure 3.1 (Flux Map Determination)
1. The current control loop of the to be identified motor need to be tuned so that any working

points (id, iq) can be reached. The load motor is controlled under constant speed and
robust against various load conditions.

2. The motor rotates within mid-speed region, in order to avoid the dominance of the VSI
nonlinear effects at the low-speed area and the speed-related effects, e.g. the iron loss, at
high speed.

3. The measurements, i.e. the rotor speed ωm and the current of d- as well as q-axis, voltage
commands u∗d , u∗q and the motor temperature T , are collected and saved.

4. After the measurements are completed, they are evaluated. The flux map is furthermore
computed via (3.11).

The aforementioned determining procedure are carried out for the determination of the flux
maps for the two PMSMs described by the Table B.2 and the Table B.3. The stator resistances
Rs are obtained through the method described in previous section. The test benches for the flux
map determination share the same basic structure. The to be identified motor is connected to
an inverter and coupled with a PMSM as the load motor. Both motors as well as the inverters
are controlled by the IndraDrive Cs (from Bosch Rexroth AG), which is an industrial embed-
ded system equipped with a microprocessor from Renesas (SH7750R). At the beginning of the
measurement, a constant speed is selected and realized by the load machine. The choice of the
rotor speed affects the accuracy of the identified flux map and furthermore the inductances. If a
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relatively low speed is chosen, the nonlinear effects of the inverter can have a great impact on
the measurement. The compensation of the nonlinearities can be performed with sophisticated
measurements introduced in Section 3.3.4 or online compensated method proposed in Section
3.6. If a high speed is chosen, the electro-motive force (EMF) term of the voltage equation
is relatively large, while the nonlinear effect of the VSI has less contribution to the terminal
voltage and is less relevant for the identification accuracy. Regarding this perspective, the high-
est possible speed for the measuring is desirable. However, a high speed test can have some
speed-dependent disturbances, e.g. the iron losses, for the identification. Therefore, a speed of
approximately half the rated speed is selected for the determination procedure. The experimen-
tal results of two PMSMs, i.e. PMSM I in Table B.2 and PMSM II in Table B.3, are shown in
Fig. 3.2 and Fig. 3.3, respectively. Once the determination of the flux map is completed, the
determination procedure of the inductances can be further carried out.

(a) (b)

Figure 3.2: The flux linkage maps Ψd and Ψq as functions of id, iq for the PMSM I in Table B.2.

(a) (b)

Figure 3.3: The flux linkage maps Ψd and Ψq as functions of id, iq for the PMSM II in Table B.3.

3.3.2.3 Absolute Inductance

The inductance can be correspondingly derived on the basis of the flux maps. The flux maps in
Fig. 3.2 and Fig. 3.3 is obtained via the procedure described in Procedure 3.1. Therefore, the
steady-state equation is investigated. The absolute inductance can be then computed with the
determination results of the flux linkage and via the following formulations:

Ld =
Ψd, i −Ψd, 0

id
,

Lq =
Ψq, i −Ψq, 0

iq
,

(3.12)
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where Ψd, i and Ψq, i denote an arbitrary measurement point on the flux map Ψd(id, iq) and
Ψq(id, iq), respectively. Ψd,0 represent the values of the flux map Ψd with id = 0. Analogously,
Ψq,0 represent the values of the flux map Ψq with iq = 0.

Procedure 3.2 (Absolute Inductance Determination)
1. Compute the absolute inductances Ld as well as Lq by means of the formulas in (3.12).

2. The computational results from the previous step are smoothed via the methods men-
tioned in Section 3.3.2.1.

The computational results after the step 1 in Procedure 3.2 derived from the flux maps presented
in Fig. 3.2 is shown in Fig. 3.4. It can be observed from Fig. 3.4 that the discontinuity mostly

(a) (b)

Figure 3.4: The computational results after the step 1 in Procedure 3.2 derived from the flux map shown in Fig. 3.2
for the PMSM I.

appears around the id = 0 and iq = 0, as well as at the edge of the flux map. Thus, the
interpolation is necessary for the derivation of the absolute inductance from the flux maps. The
results of the PMSM I after the interpolation with the spline interpolation method is shown in
Fig. 3.5. It can be concluded from the Fig. 3.5 that the absolute inductance in the d-axis, i.e.

(a) (b)

Figure 3.5: The derived and interpolated absolute inductance map from the flux map shown in Fig. 3.2 for the
PMSM I.

Ld, of PMSM I is always smaller than Lq and decreases further with positive field current id.
The derived and interpolated results of the PMSM II after the absolute inductance determination
procedure in Procedure 3.2 is shown in Fig. 3.6. The analogous conclusion can be drawn from
the results presented in Fig. 3.6.
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(a) (b)

Figure 3.6: The determined absolute inductance map from the flux map shown in Fig. 3.3 for the PMSM II.

3.3.2.4 Differential Inductance

The differential inductance, defined in (2.17), is solely relevant for the operation of PMSM if
the current is changing, i.e. during the transient. Therefore, the determination of the differ-
ential inductance requires a dynamic operation to create transitions for the measurement. A
promising approach is to inject an additional high frequency test current into the PMSM at an
arbitrary working point [100, 101]. The differential inductance can be computed from the volt-
age and current values of the corresponding frequency. As previously mentioned, the voltage
equation can be written with the differential inductance as (2.16). The identification procedure
is conducted at standstill of the PMSM, i.e. ωe = 0, and the permanent magnet flux linkage is
regarded as a constant during the identification procedure, i.e. Ψ̇m = 0. Therefore, the voltage
equation can be simplifies during the identification procedure as

[
ud

uq

]
= Rs

[
id

iq

]
+

[
Ldd Ldq

Lqd Lqq

] 
d

d t
id

d
d t
iq

 . (3.13)

In order to obtain the differential inductance map for all working points, the identification pro-
cedure on individual working point consisting of id and iq is conducted. Subsequently, the high
frequency signal with a relatively small amplitude is injected into the constant currents. The
voltage equation in (3.13) is then rewritten as [101]

[
ud + ud, hf

uq + uq, hf

]
= Rs

[
id + id, hf

iq + iq, hf

]
+

[
Ldd Ldq

Lqd Lqq

] 
d

d t
id +

d
d t
id, hf

d
d t
iq +

d
d t
iq, hf

 , (3.14)

where the subscript hf denotes the component of the high frequency. Moreover, it can be
given that d

d ti = 0 for the steady state. In order to obtain the differential inductances, the high
frequency signal is firstly injected into the d-axis current. Therefore, it can be given that

ud + ud, hf = Rs (id + id, hf ) + Ldd
d

d t
id, hf . (3.15)

The aforementioned equation (3.15) can be divided into the constant and high-frequency part. In
order to achieve this goal, an adequate filter is implemented, e.g. the Goertzel algorithm [102],
the band-pass filter [103] and the neural network [104], to separate the DC part and high-
frequency part of the signals. In this thesis, the Goertzel algorithm is employed, of which the
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functions are similar to the fast Fourier transform (FFT) but analyze only the selected frequency.
In contrast to FFT, which is computationally expensive and difficult for the real-time compu-
tation, the Goetzel algorithm has relatively lower computational cost. However, the Goetzel
algorithm also has disadvantages. On the one hand, it can only be applied to the steady state
problem and causes a phase shift if the amplitude or the phase of the to be filtered signal varies.
Nonetheless, the phase and amplitude of the determination process are constant. Therefore,
there is no phase shift for the determination process. On the other hand, the ratio between the
sampling frequency and the frequency of the to be filtered signal needs to be an integer [105].
As a result, the selected frequency of the injected signal should satisfy this requirement. In
latter chapter, the filter for fractional ratio is introduced.

The voltage equation of d-axis can be further separated as

ud = Rs id ,

ud, hf = Rs id, hf + Ldd
d

d t
id, hf .

(3.16)

The high-frequency component is generated as a sinusoidal signal. Therefore, the high-
frequency component of (3.16) can be rewritten as

ud, hf = Rs id, hf + jωhf Ldd id, hf , (3.17)

where ωhf denotes the frequency of the injected high frequency current. As a result, the differ-
ential inductance Ldd can be derived from (3.17) by

Ldd =
1

ωhf

√
u2
d, hf

i2d, hf
−R2

s . (3.18)

Subsequently, the similar procedure is applied in q-axis, i.e. the high frequency current is
injected in iq and the voltage equation of uq is reformulated. The differential equation of Lqq
can be computed with

Lqq =
1

ωhf

√
u2
q, hf

i2q, hf
−R2

s . (3.19)

For the cross-coupling differential inductance Ldq, a current of q-axis is given and the voltage
equation of ud is applied. The high frequency term is then given as

ud, hf = Ldq
d

d t
iq, hf . (3.20)

Analogously to the aforementioned computation procedure, the cross-coupling inductance Ldq
can be given as

Ldq =
ud, hf

ωhf iq, hf
. (3.21)

In the similar manner, the cross-coupling inductance Lqd can be computed by

Lqd =
uq, hf

ωhf id, hf
. (3.22)
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In principle, it is also possible to inject a testing voltage instead of a testing current for the
evaluation process. The corresponding voltage equation consists of the DC term and the high-
frequency term. If a testing voltage is injected, the voltage equation for the high-frequency part
is then given as [

ud,hf

uq,hf

]
= Rs

[
id,hf

iq,hf

]
+

[
Ldd Ldq

Lqd Lqq

] 
d

d t
id,hf

d
d t
iq,hf

 . (3.23)

Even though it is assumed that Ldq = Lqd, there are still three variables remained for solving
out of two equations in (3.23). Therefore, the injection of the testing current provokes more
accurate results. The desired characteristics of the differential inductances are determined at
each operating point within the operation range. The identification procedure is summarized in
the following.

Procedure 3.3 (Differential Inductance Determination)
1. The current control loop of the to be identified motor need to be so tuned that any working

point consisting of arbitrary current pair (id, iq) can be reached. The load motor stays at
standstill and is firmly locked.

2. A high frequency signal with a relatively small amplitude and the predetermined fre-
quency is injected into the d-axis current id.

3. The measurements, i.e. currents of d- as well as q-axis, the voltage commands and the
motor temperature T , are collected and saved.

4. A high frequency signal with a relatively small amplitude and the predetermined fre-
quency is injected into the q-axis current iq.

5. The measurements, i.e. currents of d- as well as q-axis, the voltage commands and the
motor temperature T , are collected and saved.

6. The differential inductance can be computed via (3.18), (3.19), (3.21) and (3.22).

During the identification procedure, the temperature of the motor should be kept constant, so
that the impact from the variation of the resistance can be ignored. Otherwise, the temperature
model of the stator resistance and the actual temperature need to be considered. The aforemen-
tioned determination procedure is applied to both PMSM I and PMSM II. The experimental
results of self differential inductances Ldd and Lqq as well as the cross-coupling differential
inductances Ldq and Lqd for the PMSM I are shown in Fig. 3.7 and Fig. 3.8, respectively.

It can be observed from the figures that the absolute inductances Ld , Lq have similar surface
development to the differential inductances Ldd , Lqq. The cross-coupling differential induc-
tances Ldq and Lqd are much smaller than them. Moreover, Ldq and Lqd are symmetric and can
hardly differ from each other. In the context of different control requirements and computational
resources, the corresponding inductance map can be deployed.
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(a) (b)

Figure 3.7: The determined self differential inductance maps, i.e. Ldd and Lqq, for the PMSM I.

(a) (b)

Figure 3.8: The determined cross-coupling differential inductance maps, i.e. Ldq and Lqd, for the PMSM I.

(a) (b)

Figure 3.9: The determined self differential inductance maps, i.e. Ldd and Lqq , for the PMSM II.

(a) (b)

Figure 3.10: The determined cross-coupling differential inductance maps, i.e. Ldq and Lqd, for the PMSM II.
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3.3.3 Permanent Magnet Flux Linkage

The permanent magnet flux linkage Ψm, as the name suggests, relates to the flux linkage excited
by the permanent magnet. Depends on the machine type, different operating strategies for the
PMSM are implemented. For example, it is possible that the flux of the permanent magnets in
the surface-inserted PMSM is completely absorbed by the surrounding iron and therefore the
machine can be operated under the field weakening, while the surface-mounted PMSM faces a
much higher danger of an irreversible demagnetization at a comparable field-weakening opera-
tion. For identifying the permanent magnet flux linkage Ψm , the linearised voltage equation in
(2.19), more specifically the equation of q-axis, is deployed, since the permanent magnet flux
linkage Ψm only related to the quantities in q-axis. Conventionally, a no-load test is carried out
to determine the EMF. The to be identified motor is driven under a constant speed. The effective
value of the terminal voltage and the motor speed are measured and then used for calculation of
the permanent magnet flux linkage Ψm by

Ψm =

√
2

3

Ul
ωe

, (3.24)

where Ul denotes the effective value of the line voltage. The coefficient
√

2/
√

3 is derived
under the assumption that the terminal voltage is sinusoidal. Another possibility is to identify
the permanent magnet flux linkage Ψm with a procedure that is analogously to the identification
procedure of the stator resistance Rs in Section 3.3.1. The principle of the stator resistance
identification is to create two current states and compute the difference of the voltages as well
as the currents to alleviate the influence of the disturbances. This intuition can also be applied
to identify the permanent magnet flux linkage Ψm . For some applications, for example the
traction applications, the identification can be realized online, since the variation of iq may
happen during the operation. It is worth mentioning that different from the identification of Rs ,
Ψm can not be determined at the standstill, which can be simply concluded from the voltage
equation of uq that the zero speed excludes the term Ψm from the equation. The permanent
magnet flux linkage Ψm can be computed from two different working points by [105]

Ψm =
1

ω̄e

[
uq, 1 + uq, 2

2
−Rs

iq, 1 + iq, 2
2

− ω̄e L̄d
id, 1 + id, 2

2

]
, (3.25)

where

ω̄e =
ωe, 1 + ωe, 2

2
,

L̄d =
1

ωe

uq, 1 − uq, 2
id, 1 − id, 2

.
(3.26)

The computational method presented in (3.25) corresponds to the averaging of the two alter-
nated operating points, which are generated by injecting a predetermined test signal. The afore-
mentioned procedure is subsequently applied for the PMSM I and PMSM II. The identification
results are accordingly listed in Table 3.2.

It is worth mentioning that the flux maps from the former section can be directly deployed
for obtaining the values of the permanent magnet flux linkage.
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Table 3.2: Identification results of the permanent magnet flux linkage for the PMSMs

Description PMSM I PMSM II
Data Sheet Value 0.1108 Wb 0.212 Wb
Measured Value 0.114 Wb 0.212 Wb

3.3.4 VSI Nonlinearities
Besides the parameters of the motors, the inverter of the drive system also requires identifi-
cation, since the voltage command is distorted by the nonlinear effects of the inverter and the
terminal voltage of the motor is normally not directly measurable. The most simple way to in-
clude the VSI nonlinearities is to carry out an approximation from the values of the data sheet.
However, the data from manufacturer is difficult to approximate. On the one hand, multiple seg-
ments are required for accurately interpreting the characteristics of the VSI. On the other hand,
a complex function for the deployment will increase the computational cost of the compensa-
tion mechanism. Nonetheless, the simplified approximation, as it is shown previously, can not
guarantee the accuracy of the compensation. Furthermore, the variability during the production
is also noteworthy and the characteristics of the inverter are not always available. Therefore,
the offline determination of the VSI nonlinearities is still desired for the precise control of the
PMSM drive system.

In general, the most applied offline methods for determining the nonlinearities of VSI are:

1. Direct measuring the terminal voltage and computing the voltage error as a function of
the phase current. The function is then implemented into the drive system as a look-up
table.

2. Deriving the nonlinearities with the aid of the motor parameters.

3. Approximating the nonlinearities via identifying the individual components (characteris-
tics of semiconductors) [59].

Considering the complexity of the engaged experimental facilities, the direct measuring method
and the derivation with the help of the motor parameters are preferred. Many developers of the
drive system conduct offline measurements and feed the results back into the system to com-
pensate the distorted voltage. The choice of the method normally depends on the budget as well
as the available experimental facilities. The first engaged method is determining the nonlinear
effect with the help of the motor parameters. The determination procedure is described in the
following.

Procedure 3.4 (VSI Nonlinearities Determination Method I)
• Define the maximum value and the rising as well as the falling slope of the test voltage.

• Gradually deliver the command voltage in the d-axis, of which the step voltage is deter-
mined by the slope and the maximum voltage. The voltage of the q-axis keeps constant
at zero.

• Measure the current and save the measurements as well as the voltage commands.
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• Compute the error voltage.

The procedure is conducted at standstill. After obtaining the current id and the voltage ud, the
error voltage can be computed as

∆u = Ūx, i − Īx, iRs , (3.27)

where Ūx, i denotes the phase voltage at the measuring point i of the phase x and Īx, i represents
the averaged phase current at the measuring point i of the phase x. Īx, i is computed as the mean
value of the currents from both the rising and falling slope, where the same voltage command
is applied. The experimental as well as the computational results are shown in Fig. 3.11.

Time (s)

(a) (b)

Figure 3.11: The measurement and computational results of implementing the VSI nonlinearities determination
method I. (a) shows the measured phase current in solid blue and the command phase voltage in solid red. (b)
denotes the computational results of the VSI nonlinearities via the determination method I.

Another method is the direct measuring method, which substrates the output voltage from
the real measured voltage. The output voltage uxN can be measured by applying a resistor-
capacitor (RC) circuit or computed by the multiplication of the corresponding duty cycle and
the DC-link voltage. In this work, the output voltage is measured by deploying a RC circuit,
where R = 20 kΩ and C = 10 nF. Its cutoff frequency is therefore 795 Hz. The determination
method II is stated in the following.

Procedure 3.5 (VSI Nonlinearities Determination Method II)
• Define the maximum value and the rising as well as the falling slope of the test voltage.

• Gradually deliver the command voltage to the d-axis, which is determined by the slope
and the maximum voltage. The voltage of the q-axis keeps constant at zero.

• Measure the current and the voltage.

• Compute the error voltage.

With the aforementioned procedure, the measurements are conducted accordingly. The corre-
sponding experimental and computational results are shown in Fig. 3.12. It can be concluded
from Fig. 3.11 and Fig. 3.12 that the identified error voltage ∆u from both methods are similar,
although small differences can be observed. The error voltage increases with the rise of the
phase current. However, the rate of the growing decreases as the phase current increases. The
identification of the VSI nonlinearities is important for the control and normally conducted once
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Figure 3.12: The measurement and computation results of implementing the VSI nonlinearities determination
method II. (a) shows the measured phase current in solid blue and the measured phase voltage in solid red. (b)
denotes the computational results of the VSI nonlinearities determination method II.

before the operation of the PMSM. But the nonlinear effects can be affected by multiple fac-
tors. In the following, the possible affecting factors are elaborated. The related measurements
are carried out to present their relationships.

3.3.4.1 Affecting Factors

3.3.4.1.1 Output Parasitic Capacitance As introduced in Section 2.4.2, the VSI introduces
nonlinear effects at the machine terminal and causes voltage distortions. The nonlinear phe-
nomenon is complex and difficult to quantify. Even though the offline identification methods
can be applied to determine the distorted voltage, it can be influenced by many factors. In this
section, several experiments have been carried out to study the affecting factors for the nonlin-
earities. Fig. 3.13 demonstrates the influence of the equivalent output parasitic capacitance on
the error voltage, which further affects the switching behaviour of the inverter. As presented
in Fig. 3.13, the increase of the equivalent output parasitic capacitance would decelerate the
development of the error voltage [60].

ia

∆ua

Cout

Figure 3.13: Influence of the equivalent output parasitic capacitance on distorted voltage.

3.3.4.1.2 Phase Current Measurements have been conducted to investigate the influence
of the current level on the switching behaviour. The corresponding experimental results at
the room temperature (around 25 °C) are shown in Fig. 3.14, where the turn-on and turn-off
behaviour are separately established. Td denotes the delay time at turn-on or turn-off, Tr denotes
the rising time and Ton represents the sum of the turn-on delay and rising time. Tf denotes the
falling time and Toff is defined as the sum of turn-off delay and the falling time. As it is justified
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in Section 2.4.2, the turn-on and turn-off delay are associated with the threshold voltage and the
time constant of the gate-emitter (gate-source) terminal. The rising and falling time are mostly
affected by the bus voltage, the parasitic-element effects and the phase current [106].

(a) (b)

Figure 3.14: Influence of the current level on the switching behaviour. (a) represents the influence of the current
on the turn-on behaviour and (b) demonstrates the impact of the current on the turn-off behaviour.

It can be noted from Fig. 3.14 that in comparison to the turn-off time, the turn-on time is less
affected by the current level. However, an increase of the turn-on time can still be observed
as the current grows. The turn-off time is heavily influenced by the current value, where the
turn-off delay and the falling time both show a significant change at i = 2 A. Afterwards, the
falling time continuously decreases as the current increases, while the turn-off delay is relatively
steady. It can be explained by the fact that the falling time is caused by the parasitic-element
and therefore more sensitive to the current.

3.3.4.1.3 Cable Length Besides the influence from the current level, the effect of the cable
length is also investigated. In practice, a power cable of an arbitrary length is utilized to connect
the inverter and the motor. However, because of the impedance of the cable, which is normally
related to its characteristics, e.g. length and diameter, the terminal voltage is also affected by the
cable. It is in general difficult to quantify its effects [107]. Normally, the connector between the
inverter and the motor is already determined and the choice of the cable is also limited. Thus,
the most relevant factor is the cable length. In Fig. 3.15, two cable lengths of 75 m and 5 m are
compared at different switching frequency, namely 4 kHz and 8 kHz.

(a) (b)

Figure 3.15: Influence of the cable length on the error voltage ∆u. (a) represents the error voltage with a switching
frequency of 4 kHz and (b) represents the error voltage with a switching frequency of 8 kHz.

The measurement results in Fig. 3.15 show that a longer cable (i.e. 75 m in our case) can
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cause a nonlinear behaviour at the low current level, while a shorter cable inherits the identified
approximation in Section 3.3.4. At a switching frequency of 4 kHz, the crossing point of the
error voltage of the 75 m cable and the 5 m cable appears at around i = 15 A, while at a higher
switching frequency (8 kHz) the crossing point shifts and appears at a larger current (around
i = 23 A). The crossing points denote that the longer cable causes larger error voltage at a
higher current level beyond the crossing point. It can be moreover concluded that the switching
frequency can also have influence on the error voltage, which is discussed thereafter.

3.3.4.1.4 Switching Frequency The cable resistance is precalculated and denoted asRc . In
Fig. 3.16, three different switching frequencies are compared, namely 4 kHz, 8 kHz and 16 kHz.

(a) (b)

Figure 3.16: Influence of the switching frequency on the error voltage ∆u. The cable resistance is precalculated and
denotes as Rc. (a) shows the error voltage with a DC-link voltage of 750 V and Rc = 36 Ω and (b) demonstrates
the error voltage with a DC-link voltage of 750 V and Rc = 280 Ω.

It can be concluded from Fig. 3.16 that a higher switching frequency induces a larger error
voltage. Moreover, an increase of the cable resistance will benefit the voltage realization, i.e. a
larger cable resistance results in a smaller error voltage at the same current level and the same
DC-link voltage.

3.3.4.1.5 DC-Link Voltage Furthermore, the impact from the DC-linkage voltage is inves-
tigated. In Fig. 3.17, measurement results of the distorted voltage under two different DC-link
voltage, i.e. 560 V and 750 V, are compared.

(a) (b) (c)

Figure 3.17: Influence of the DC-link voltage on the error voltage ∆u. (a) represents the error voltage with a
switching frequency of 4 kHz, (b) represents the error voltage with a switching frequency of 8 kHz, (c) shows the
error voltage with a switching frequency of 16 kHz.
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At a relatively lower switching frequency, i.e. 4 kHz in Fig. 3.17a, the difference of the
distorted voltage resulted from the DC-linkage voltage is smaller than that at a higher switching
frequency, which means the DC-link voltage has more significant impact on the error voltage
at the high switching frequency. At the same current and the same switching frequency, an
increase of the DC-link voltage will cause an increment of the distorted voltage ∆u.

3.3.4.1.6 Temperature The characteristics of the inverter are also affected by the tempera-
ture. Manufactures normally provide the data sheet of the switching characteristics at various
temperatures. The measurements of the error voltage at different temperatures, namely the room
temperature, 50 °C and 60 °C, have been carried out. The results are presented in Fig. 3.18.

Figure 3.18: Influence of the temperature on the error voltage ∆u. The legend Room denotes a room temperature
around 25 °C.

It can be observed from Fig. 3.18 that at low current level (smaller than 20 A), a lower tem-
perature induces a larger error voltage, while at high current level a higher temperature causes
a larger error voltage.

3.4 Parameter Estimation with Current Injection

The aforementioned offline determination methods are simple and have lower computational
burden. But the offline results have limited capability to capture the real-time behaviour of
the electrical parameters, such as the variation caused by the temperature. Moreover, the ex-
plicit realization of the offline determination procedures may increase the cost for experimental
facilities. Even though the measuring and determining procedures can be completed by the self-
commissioning method, which significantly reduces the complexity and the consumed time of
the proceedings, extra hardware may still be required and the higher level control mechanism
is mandatory. Therefore, the online estimation methods are more suitable for identifying the
PMSM in real time and applying the identified results for the precise control. In Section 3.2,
the rank deficient problem of the parameter estimation for PMSM is described. In order to
achieve the goal of simultaneously estimating all the electrical parameters, a persistent exci-
tation is requested, which can be realized by injecting a varying current. In this section, two
methods associating with the current injection are presented, i.e. the square-wave current in-
jection and the sinusoidal current injection. The current is injected on the d-axis, since it has
less impact on the torque production, especially for the PMSM with low reluctance, e.g. the
surface-mounted PMSM [49].
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3.4.1 Current Injection with Square Wave Form
The principle of the square-wave current injection is shown in Fig. 3.19, where the reference of
the current and the real trajectory of the current are illustratively presented. The quantities of
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Figure 3.19: The principle of the square-wave injection method. The reference current is shown in red solid line
and the real current trajectory is represented in blue solid line.

the PMSM at different operating points, e.g. in Fig. 3.19 at t = t1 and t = t2, are measured
and applied to computation of the electrical parameters for the PMSM. The measurements are
collected once after the PMSM reaches the steady state, which is defined by that the d-current
stays around a new value beyond a certain time period. Therefore, the excitation frequency is
chosen to be much lower than the electrical dynamics of the machine in order that the current
can reach the steady state at the individual current value. The averaged values of the measure-
ments are subsequently utilized to estimate the electrical parameters. Substitute the available
quantities into the linearised voltage equation in the dq reference frame, which is given in (2.19),
the corresponding equation set for computing the electrical parameters are shown as

ud(t1) = Rs id(t1)− ωe(t1)iq(t1)Lq ,

ud(t2) = Rs id(t2)− ωe(t2) iq(t2)Lq ,

uq(t1) = Rs iq(t1) + ωe(t1) id(t1)Ld + ωe(t1) Ψm ,

uq(t2) = Rs iq(t2) + ωe(t2) id(t2)Ld + ωe(t2) Ψm ,

(3.28)

where the differential term of the current is omitted, since the steady state of the PMSM is
investigated. It can be noticed from (3.28) that the q-axis inductance Lq can only be estimated
from the voltage equation of the d-axis. Analogously, the permanent magnet flux linkage Ψm

and the d-axis inductance Ld can solely be derived from the voltage equation of the q-axis. The
stator resistance is required in all equations. The most straightforward strategy to solve (3.28)
is to group the two equations of ud for solving Rs, Lq and the two equations of uq for solving
Ld, Ψm. However, if the changing rate of the parameters is taken into consideration, i.e. the
inductances vary with the currents, while the stator resistance as well as the permanent magnet
flux linkage varies at a much slower rate (variation dominated by the temperature), an approach
to separate different updating rate is preferable. A separation of the estimation for different
changing rates may reduce the computational burden, since the estimation for parameters of
a slower updating rate can be deactivated after their steady state is achieved. However, the
computational burden is higher during the transient and the stability can not be guaranteed.
Therefore, in this thesis, the computation strategy for estimating the parameter combinations
[Rs, Lq]

T and [Ld, Ψm]T is chosen. A flow chart to demonstrate the identification strategy is
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shown in Fig. 3.20.

ud(t1) = Rs id(t1) − ωe(t1)iq(t1)Lq

ud(t2) = Rs id(t2) − ωe(t2) iq(t2)Lq

uq(t1) = Rs iq(t1) + ωe(t1) id(t1)Ld + ωe(t1) Ψm

uq(t2) = Rs iq(t2) + ωe(t2) id(t2)Ld + ωe(t2) Ψm

ud

id, iq, ωe

Lq

Rs

uq

Ld

Ψm

Figure 3.20: The computation mechanism of the current injection method with the square-wave current.

The injected current is defined by the predetermined frequency and amplitude. The injected
perturbation is a compromise between the effectiveness of the injected current and the current
quality of the PMSM. On the one hand, the injected current has to be as small as possible to
minimize the resulted ripples for the motor current as well as for the torque. On the other hand,
the injected current has to be large enough to provoke different operating points of the machine.
Besides, the frequency of the injected current should satisfy two contradictory requirements,
i.e. the frequency should be low enough for the real current to reach the steady state and be high
enough to track the parameter variation.

3.4.2 Current Injection with Sinusoidal Wave Form

The square-wave current injection method is simple and has low computational burden. How-
ever, as indicated in [108], the square-wave current injection method is infeasible during the
transient. Besides, it converges slowly, since only one value set is collected at each current
value. Therefore, the sinusoidal current injection was proposed to overcome these drawbacks.
A schematic presentation of the sinusoidal current injection method is shown in Fig. 3.21.
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Figure 3.21: The principle of the sinusoidal wave injection method. The reference current is shown in red solid line
and the sampled current value at each time instant is represented in blue solid line. The yellow solid line denotes
the gradient at the sampling instant t = t1 and the green solid line represents the numerically computed gradient
via the forward Euler discretization.
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Instead of collecting the information from the steady state, this method creates transients,
from which the to be identified parameters are derived accordingly. The equation set for the
computation of the identification are given as

ud(t1) = Rs id(t1) + Ld
d

d t
id(t1)− ωe(t1) iq(t1)Lq ,

ud(t2) = Rs id(t2) + Ld
d

d t
id(t2)− ωe(t2) iq(t2)Lq ,

uq(t1) = Rs iq(t1) + Lq
d

d t
iq(t1) + ωe(t1) id(t1)Ld + ωe(t1) Ψm ,

uq(t1) = Rs iq(t2) + Lq
d

d t
iq(t2) + ωe(t2) id(t2)Ld + ωe(t2) Ψm .

(3.29)

Moreover, different from the square-wave current injection method, the electrical parameters
are coupled in (3.29), which is resulted from the differential terms. The computation of the to
be identified parameters need to be carried out with the four equations in (3.29) simultaneously.
Because that the equations in (3.29) are valid as an approximation for any time instant, a dis-
tortion of the sinusoidal current may have little influence on the identification results. However,
the computation of the derivatives becomes critical. As it is shown in Fig. 3.21, the gradient
at the time instant t1 can be computed in a digital control system with the aforementioned for-
ward Euler approximation and represented by s2, which differs from the real gradient at the
time instant t1 denoted by s1. Moreover, the computation of the derivatives is sensitive to the
measurement noise. In order to tackle these problems, a moving average filter is applied, which
integrates the both sides of equations in (3.29) within half period of the sinusoidal signal [108].
As a result, we can have

ūd(t1) = R̄s īd(t1) + L̄d
¯̇id(t1)− ωe iq(t1) L̄q ,

ūd(t2) = R̄s īd(t2) + L̄d
¯̇id(t2)− ωe iq(t2) L̄q ,

ūq(t1) = R̄s īq(t1) + L̄q
¯̇iq(t1) + ωe id(t1) L̄d + ω̄e(t1) Ψ̄m ,

ūq(t2) = R̄s īq(t2) + L̄q
¯̇iq(t2) + ωe id(t2) L̄d + ω̄e(t2) Ψ̄m ,

(3.30)

where the overline in equation (3.30) denotes the output of the moving average filter for each
individual term. The moving average filter for the discrete sequential signal can be given as

x̄(t1) =
1

N

N−1∑
i=0

x(t1 − i)Tsi , (3.31)

where N is the ratio between the half period of the injected sinusoidal signal and the sampling
period Tsi of the estimator. Analogously to the square-wave current injection method, the am-
plitude as well as the frequency of the injected current has a great impact on the estimation
results and the control performance. The design parameters are then determined with the help
of simulations.
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3.4.3 Simulation Results

The aforementioned equations are solved with the recursive least squares method. The details
about the RLS are given in Section 3.5.2. In order to find the adequate parameters for the
injected current, several simulations are carried out considering various design parameter com-
binations. The description of the parameter combinations is given in Table 3.3. The injected
current is determined by the amplitude Ain and the frequency fin. The sinusoidal wave cur-
rent has one more tuning parameter, i.e. the sampling rate Nsi, which is defined as the ratio
between the sampling frequency of the estimator and the frequency of the injected current. It
is worth mentioning that the sampling frequency of the estimator fsi is lower than the sam-
pling frequency of the digital control system fs, through which the computational burden can
be significantly reduced. Moreover, the sampling of the estimator can be regarded as a down-
sampling of the system with the sampling time Ts. The motor parameters of the PMSM II in
Table B.3 is employed for the simulations.

Case� ωe P0 λ Square Sinusoidal
rad/s (rpm) Ain (A) fin (Hz) Ain (A) fin(Hz) Nsi

1 200 (1910) 1 0.9 0.072 10 0.072 10 40
2 200 (1910) 1 0.7 0.072 10 0.072 10 40
3 200 (1910) 1 0.5 0.072 10 0.072 10 40
4 200 (1910) 0.1 0.9 0.072 10 0.072 10 40
5 200 (1910) 10 0.9 0.072 10 0.072 10 40
6 100 (955) 1 0.9 0.072 10 0.072 10 40
7 50 (477) 1 0.9 0.072 10 0.072 10 40
8 200 (1910) 1 0.9 0.144 10 0.144 10 40
9 200 (1910) 1 0.9 0.288 10 0.288 10 40
10 200 (1910) 1 0.9 0.72 10 0.72 10 40
11 200 (1910) 1 0.9 0.072 5 0.072 5 40
12 200 (1910) 1 0.9 0.072 20 0.072 20 40
13 200 (1910) 1 0.9 - - 0.072 10 20
14 200 (1910) 1 0.9 - - 0.072 10 80
15 200 (1910) 1 0.9 - - 0.072 10 120

Table 3.3: Description of the cases designed to determine the parameters of the injected current and the solving
method.

The tuning parameters in Table 3.3 are explained in the following. P0 is the initial matrix
of the RLS (selected as diagonal matrix) and λ denotes the forgetting factor for the recursive
mechanism. The initial value for all testing cases is set to zero. The motor speed for estimation
is chosen within the middle-speed range. The simulation of the Case � 1 described in Table
3.3 is conducted for both methods. The simulation results are shown in Fig. 3.22. It can be ob-
served from Fig. 3.22 that the sinusoidal wave current injection method delivers more accurate
identification results. Moreover, it converges much faster than the square-wave current injection
method. For the purpose of compactness, the rest of the simulation results are summarized as
two extracted metrics, i.e. the accuracy and the rate of convergence. The accuracy is evalu-
ated by the absolute error between the estimations and the real values, which is then presented
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Figure 3.22: Simulation results of the Case� 1 described in Table 3.3, where the reference values are denoted in
red and the estimated values are shown in solid blue. (a) shows the simulation results with the square-wave current
injection method. (b) represents the simulation results with the sinusoidal wave current injection method.

as a percentage of the corresponding real value. The rate of convergence is given as the time
duration from the start of the estimation until the achievement of the end value. The extracted
information is summarized and demonstrated in Fig. 3.23 for the square-wave current injection
method and in Fig. 3.24 for the sinusoidal wave current injection method.

Several conclusions can be drawn from the simulation results in Fig. 3.23 and Fig. 3.24. First
of all, it can be observed that the convergent speed of the sinusoidal wave current injection
method is overall much faster than that of the square wave current injection method, which can
be explained by the fact that more computations are carried out within one period of the injected
sinusoidal current. However, the sinusoidal wave current injection method establishes the esti-
mation problem on a four-dimensional variable basis, while the square wave current injection
method handles two two-dimensional variable systems. Therefore, the sinusoidal wave current
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injection method expects more computational cost. The first three cases focus on evaluating
the influence of the forgetting factor λ on the estimation results. It has impacts on the rate of
convergence of the square-wave current injection method and affects the accuracy as well as the
rate of convergence of the sinusoidal wave current injection method. The initial matrix P0 has
no impact on the accuracy, but affects the rate of convergence for both methods, i.e. a higher
value of P0 will reduce the convergent time. The choice of the motor speed has slight influence
on the estimation accuracy of both methods. From the comparison among cases 8-10, it can be
concluded that a larger amplitude of the injected current can accelerate the convergent speed.
However, more fluctuation can be observed if a larger current is injected. An increase of the
injected current frequency can significantly improve the rate of convergence, which can be clar-
ified by that the increase of the injected current frequency indicates a growth of the updating
rate for the estimation.
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Figure 3.23: Simulation results of various test cases for the square-wave current injection method. (a) shows the
absolute error between the estimated value and the real value, which is shown as a percentage of the real value. (b)
denotes the time of convergence.
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Figure 3.24: Simulation results of various test cases for the sinusoidal wave current injection method. (a) shows
the absolute error between the estimated value and the real value, which is shown as a percentage of the real value.
(b) denotes the time of convergence.



86 CHAPTER 3. PARAMETER DETERMINATION AND ESTIMATION

3.4.4 Experimental Evaluation

Based on the simulation results, the parameters for the injected current as well as for the RLS are
determined. The injected current is then selected with fin = 10 Hz and Ain = 0.144 A for both
the sinusoidal current and the square-wave current. These two methods are then implemented
on the test bench described in Appendix B.1. In order to demonstrate the influence of the
error voltage induced by the VSI nonlinearities, a comparison between the identification results
with and without the compensation of the VSI nonlinearities is conducted. The identification
method including the compensation of the VSI nonlinearities is denoted in yellow and the one
without the compensation is denoted in blue in the following figures. The experimental results
for PMSM I are shown in Fig. 3.25 - Fig. 3.28.

(a) (b)

Figure 3.25: Experimental results of estimating Ψm by applying the square wave and the sinusoidal wave current
injection methods for PMSM I. The identification method including the compensation of the VSI nonlinearities is
denoted in yellow and the one without the compensation is denoted in blue. The reference value is represented by
red. (a) denotes the identification results of the sinusoidal wave current injection method and (b) shows the results
of the square-wave current injection method.

(a) (b)

Figure 3.26: Experimental results of estimating Rs by applying the square wave and the sinusoidal wave current
injection methods for PMSM I. (a) denotes the identification results of the sinusoidal wave current injection method
and (b) shows the results of the square-wave current injection method.

It can be observed from the estimation results that the VSI nonlinearities have a great impact
on the estimation of almost all the electrical parameters, i.e. Rs, Ψm and Lq. More specifically,
the error of estimating Ψm with the sinusoidal current injection method and compensation of the
distorted voltage is around 2% of the real value, while it is around 7% without compensation.
Analogously, if the VSI nonlinear effects are taken into consideration, the estimation error of
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(a) (b)

Figure 3.27: Experimental results of estimating Ld by applying the square wave and the sinusoidal wave current
injection methods for PMSM I. (a) denotes the identification results of the sinusoidal wave current injection method
and (b) shows the results of the square wave current injection method.

(a) (b)

Figure 3.28: Experimental results of estimating Lq by applying the square wave and the sinusoidal wave current
injection methods for PMSM I. (a) denotes the identification results of the sinusoidal wave current injection method
and (b) shows the results of the square wave current injection method.

Rs and Lq is around 10% and 12%, respectively, while the errors without compensation are
more than 50% and 60%, respectively. Moreover, it is worth mentioning that the estimation
results with the square-wave current injection method is in general more accurate than that of
sinusoidal current injection method, i.e. the results are less fluctuated and demonstrate smaller
errors. Nonetheless, this conclusion is in contrast to the conclusions from the simulation results,
which may result from that higher noise content and disturbances are expected in the practical
implementation. However, the converging speed of the sinusoidal current injection method is
much faster than that of the square-wave current injection method, which can be also noticed
from the simulation results.

The parameter estimations for the PMSM II with the two current injection methods are fur-
thermore conducted. The corresponding results are shown in Fig. 3.29 - Fig. 3.32.

Similar conclusions to the experimental results of the PMSM I can be drawn from the esti-
mation results of the PMSM II. On the one hand, the square-wave current injection method can
provide more accurate identification results. On the other hand, the sinusoidal current injection
method reaches the end value faster than the other one. Regarding the impacts of the inverter,
the error of estimating Ψm with the sinusoidal current injection method and the compensation
of the distorted voltage is limited by 1%, while it is around 5% without compensation. The
estimation error of Rs considering the VSI is around 10%, which increases to more than 50%
of the nominal value when the compensation is omitted. The results of estimating Lq with the
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(a) (b)

Figure 3.29: Experimental results of estimating Ψm by applying the square wave and the sinusoidal wave current
injection methods for PMSM II. (a) denotes the identification results of the sinusoidal wave current injection
method and (b) shows the results of the square wave current injection method.

(a) (b)

Figure 3.30: Experimental results of estimating Rs by applying the square wave and the sinusoidal wave current
injection methods for PMSM II. (a) denotes the identification results of the sinusoidal wave current injection
method and (b) shows the results of the square wave current injection method.

(a) (b)

Figure 3.31: Experimental results of estimating Ld by applying the square wave and the sinusoidal wave current
injection methods for PMSM II. (a) denotes the identification results of the sinusoidal wave current injection
method and (b) shows the results of the square wave current injection method.
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(a) (b)

Figure 3.32: Experimental results of estimating Lq by applying the square wave and the sinusoidal wave current
injection methods for PMSM II. (a) denotes the identification results of the sinusoidal wave current injection
method and (b) shows the results of the square wave current injection method.

compensation is still erroneous, which is around 50%. However, the estimation results of Lq
without compensation is even more inaccurate, i.e. with an error of more than 110% of the
nominal value.

In order to better analyze the experimental results shown above, the estimation of the param-
eters is derived from the simplified PMSM model and the values of the estimated parameters
are determined such that a set of equations in (3.28) and in (3.29) is satisfied. During the current
injection estimation procedure, it is assumed that the injected current has slight impact on the
working points, i.e. the inductances Ld and Lq are constant. They can be given as

L̂d =
uq − R̂s iq − ωe Ψ̂m

ωe id
, (3.32)

where uq = u∗q −∆uq. The superscript x̂ denotes the estimated quantities.

L̂q = −ud − R̂s id
ωe iq

, (3.33)

where ud = u∗d −∆ud . Furthermore, the small signal analysis is applied for further investiga-
tion. Then, the formulation of L̂d in (3.32) can be further derived as

dL̂d =
∂L̂d

∂R̂s
dR̂s +

∂L̂d

∂Ψ̂m
dΨ̂m +

∂L̂d
∂uq

duq . (3.34)

The equation for Lq can be similarly obtained. Substitute (3.32) into (3.34), it can be given that

dL̂d = − iq
ωe id

dR̂s −
1

id
dΨ̂m +

1

ωe id
duq . (3.35)

Analogously, the sensitivity equation of L̂q can be derived from (3.33) as

dL̂q =
id
ωe iq

dR̂s −
1

ωe iq
dud . (3.36)

The inductances Ld and Lq can be affected by the estimation error of R̂s. Ld is moreover
affected by the estimation of Ψm and the accuracy of the compensation, while Lq is influenced
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by the accuracy of the compensation. For the conventional FOC of SPMSM, a id = 0 control
is deployed. The amplitude of the injected current is also small. Thus, the term related to
the estimation results of the permanent magnet flux linkage Ψm in (3.35) may have significant
impact on the estimation of Ld. Similar to that, the impact of the estimation of Rs as well as the
compensation of the distorted voltage becomes more significant as the id approaches 0 A. On
the contrary, the term related to R̂s in (3.36) may have relatively small impact on the estimation
of Lq.

Several conclusions can be drawn from the experimental results above. Firstly, because of the
deployed machine model for the estimation, the square-wave current injection provides more
stable and accurate results at the steady operation of the PMSM. The sinusoidal current injection
method is more severely disturbed by the measurement noise as well as the voltage distortion.
The results from the square-wave current injection method can be regarded as a filtered results
of the sinusoidal current injection method, if the injected currents have a comparable amplitude
and frequency. Furthermore, it can be observed from the experimental results that the Ld is not
really affected by the distorted voltage, which contradicts the analysis above that the distorted
voltage will also affect the estimation of Ld. However, it may be resulted from that the impact
of the distorted voltage is projected onto R̂s and Ψ̂m . The estimated parameter values show
difference to the nominal parameter values, which can be explained by that the measurement of
the speed and the currents may contain noises and bias. Especially the noises, as demonstrated
in Section 2.4, may appear coloured in real applications and therefore affect the estimation
results. Moreover, even though the injected current has small amplitudes, it can still affect
the actual inductance values, since the inductance is sensitive to the current value, as shown
in Section 3.3.2. Besides, it can be noted that the influence from the VSI nonlinear effect is
significant. The compensation of the VSI nonlinearities effectively improves the accuracy of
the estimation results.

3.5 Online Parameter Estimation

It has been presented previously that the current injection methods can solve the rank deficient
problem of the parameter identification for PMSM. However, the current injection, both the
square-wave current injection and the sinusoidal-wave current injection, will cause the pulsation
in the current loop as well as in the speed control loop. Furthermore, in many applications
only the parameters of interest are required for the estimation. Therefore, the online parameter
estimation methods are proposed and deployed for online estimating the parameters. They
are based on the current dynamics and require no persistent excitement. As analyzed at the
beginning of this chapter, up to two electrical parameters can be identified simultaneously, if no
persistent excitement is applied. The two parameters can be chosen arbitrarily. However, the
conditions for the feasibility need to be satisfied, which are studied in Section 3.2.

The following works are regarded as classifiers for the most used online estimators. Re-
cursive least squares (RLS) is one of the most popular online parameter estimators and has
been widely applied because of its simpleness for implementation and the low computational
cost. RLS is designed to minimize the weighted linear least square function. As it is indicated
in [109], the main drawbacks of RLS are the slow tracking capability and the high prediction
error. In [110], a RLS-based online parameter identification method was proposed to improve



3.5. ONLINE PARAMETER ESTIMATION 91

the performance of sensorless control of PMSMs. However, the identified parameters differ
from the actual values, which may result from the fact that the nonlinearities in PMSM are
excluded. Reference [111] applied RLS as an online resistance estimator and employed the
offline identified q-axis inductance, in order to improve the accuracy of the position estimation
of the interior PMSM at low speed. Model reference adaptive system (MRAS) is also one of
the attractive methods for the online estimation problem. In MRAS, the ideal system model
is deployed as the adjustable model, where the identified parameters from an adaptive mech-
anism are fed back to the adjustable model. The adaptive mechanism is so designed that the
error between the most recent measurement and the output of the adjustable model is elimi-
nated. Owing to the straightforward implementation and the low computational burden, MRAS
is widely applied for the sensorless control of machines, which can be regarded as a variant of
the online parameter estimation problem. Reference [112] utilized an improved MRAS for sen-
sorless control of induction motor drives. Authors in [113] implemented MRAS for sensorless
control of PMSM and deployed an extended Kalman filter to eliminate the effect from the vari-
ation of the permanent magnet flux linkage. Reference [114] applied a novel MRAS approach
for the identification of inductances in PMSMs. [115] proposed a MRAS-based estimator to
simultaneously estimate the stator resistance and the speed of an induction motor. Thanks
to the increasing computational power of the embedded control hardware, more complex al-
gorithms, such as methods from the Kalman-filter family and the moving horizon estimator
(MHE), have gained more attentions for the online parameter estimation problem. Extended
Kalman filter (EKF) is an extension of the Kalman filter to the nonlinear systems, which lin-
earises the nonlinear propagation function at the current step to predict the system states as well
as the covariance and applies the newest measurement to correct the predictions. It has been
deployed in many domains. Reference [116] applied EKF to identify the rotor flux linkage of
the PMSM in real time. Authors in [117] proposed a symmetric strong tracking EKF to improve
the performance of the sensorless control for induction motors. Reference [118] applied EKF
for estimating the rotor speed, the rotor/stator flux and the stator currents to improve the per-
formance of the sensorless finite-state predictive torque control. Another promising estimator
belonging to the Kalman-filter family is the unscented Kalman filter (UKF), which was pro-
posed in [119] to deal with the drawbacks of EKF, e.g. instability due to the linearisation and
biased estimates [120]. Instead of linearising the nonlinear model of the system, UKF uses a set
of deterministic samples to approximate the nonlinearity of the system, which can better capture
the true mean and the real covariance than EKF [121]. Reference [122] proposed a square-root
UKF for the sensorless control of induction motor drives, which aims to improve the low-speed
performance and to reduce the computational errors of the UKF. Authors in [123] applied UKF
for the nonlinear state estimation and concluded that the UKF is better than EKF considering
both robustness and the speed of convergence. It is worth mentioning that EKF and UKF have
also been used in electrical systems as a diagnosing mechanism as mentioned in [124–126].
Besides the aforementioned methods, the optimization-problem based method, MHE, has been
recently widely utilized in various applications, such as the towed cable system [127], the state
of charge estimation for Li-Ion batteries [128] and the sensorless control [129,130], because of
its high dynamic performance and the ability to handle constraints. MHE was firstly proposed
in [131] and generally formulated in [132]. Reference [129] has concluded from simulations
that MHE has superior performance than MRAS and EKF in the sensorless control applica-
tion and demonstrated the real-time feasibility on an industrial digital signal processor (DSP).
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Some authors moreover proposed data-driven estimators to solve the estimation problem, such
as partial swarm optimization [133] and neural network [134]. They will not be discussed in
this thesis.

In the following, the estimation of the parameter combination comprising the stator resistance
Rs and the permanent magnet flux linkage Ψm is selected as an example to investigate the online
estimation methods and conduct the corresponding comparisons, since the offline measurement
results of them are comparably accurate. The other parameter combinations can be estimated
by adjusting the system model accordingly, as long as the related identifiability matrix has full
rank, as shown in Section 3.2.

3.5.1 Model Reference Adaptive System

3.5.1.1 Introduction

MRAS implemented for the parameter estimation of PMSM is firstly proposed by [135], where
the stator resistance and the magnitude of the flux linkage are simultaneously estimated un-
der the assumption of the constant stator inductance. The general concept behind MRAS is to
compare the output of two models that both describe the dynamics of the same variables but in
different manners. The error of the outputs is then computed and fed into the adaptive mecha-
nism, which adjusts the model to minimize this error. The block diagram of the MRAS is shown
in Fig. 3.33.

Plant

Adaptive
Mechanism

input +

−

e

Adjustable
Model

Figure 3.33: Block diagram of the model reference adaptive system.

The adaptive system is so designed that the variations in the operating conditions can be
compensated with the basic structure and the explicit measurement, which can further improve
the system performance. As shown in Fig. 3.33, the desired performance of the system is
represented by the mathematical model of the adjustable model, while the real behaviour of the
system is measured. The adjustable model is then modified if its behaviour differs from the
real plant. The modification can be finished either by adjusting the parameters of the adjustable
model or by generating an additional compensation signal. In the domain of the parameter
estimation problem, the first solution is employed.
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3.5.1.2 System Analysis

Recall the current dynamic of PMSM in the dq reference frame, which can be compactly written
as

d
dt
i = Ai+Bu+E , (3.37)

where

A =

 −
Rs

Ld

ωe Lq
Ld

−ωe Ld
Lq

−Rs

Lq

 , B =


1

Ld
0

0
1

Lq

 , E =

 0

−Ψm ωe
Lq

 . (3.38)

The corresponding adjustable estimator can be given as

d
dt
î = Â î+Bu+ Ê +G (î− i) , (3.39)

where .̂ denotes the observed varaibles and G is the observer gain. G is selected in order to
assign poles of the current observer at the specified locations on the complex plane [135]. An
convincing gain is chosen as

G = kG ·

 −
Rs

Ld

ωe Lq
Ld

−ωe Ld
Lq

−Rs

Lq

 , (3.40)

where kG = k − 1 such that the poles of the closed-loop observer are k-times (k ≥ 0) of those
from the PMSM. Moreover, the error dynamic guarantees the stability of the adaptive system.

3.5.1.3 Design of Adaptive Mechanism

As aforementioned, MRAS comprises an adjustable model and an adaptive mechanism. In
order to estimate Rs and Ψm, the adjustable model is selected as (3.39) and the reference model
is given as (3.37). The corresponding error dynamic is given by subtracting (3.39) from (3.37)
and can be written as

d
dt
e = (A+G) e+ (A− Â) î+ (E − Ê)

= (A+G)e+ ζ ,
(3.41)

where e denotes the error between measurements and the predicted currents. ζ is a nonlinear
time-varying term and defined as ζ := (A−Â) î+(E−Ê) . Therefore, the error system consists
of a linear time invariant forward term and a nonlinear feedback term [135]. In general, two
main theories can be applied for the design of the adaptive mechanism, i.e. the hyperstability of
a system by employing the Popov’s integral inequality [136] and the Lyapunov stability theory
[115, 136]. In this work, the adaptive mechanism is designed to guarantee the hyperstability.
The hyperstability is guaranteed under two conditions:

• The linear time invariant forward block is strictly positive real.
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• The nonlinear feedback block satisfies Popov’s hyperstability criterion.

Based on these two conditions, the adaptive mechanism can be designed. The first condition is
satisfied, since the diagonal element of the matrix A +G is negative and the forward transfer
matrix is strictly positive real. The Popov’s hyperstability inequality is given as [137]∫ t1

0

eT ζ dt ≤ δ2, ∀t1 ≥ 0 , (3.42)

where δ2 denotes a finite positive constant. Furthermore, the term eT ζ can be expanded as

eT ζ = eT



−Rs − R̂s

Ld
0

0 −Rs − R̂s

Lq

 î+

 0

−Ψm − Ψ̂m

Lq
ωe


 . (3.43)

Furthermore, (3.43) is equivalent to the equation set as

∫ t1

0

eT


−Rs − R̂s

Ld
0

0 −Rs − R̂s

Lq

 î dt ≤ δ2
1 ,

∫ t1

0

eT

 0

−Ψm − Ψ̂m

Lq
ωe

 dt ≤ δ2
2 , (3.44)

where δ2
1 and δ2

2 are finite positive constants. As a result, the stator resistance Rs and the
permanent magnet flux linkage Ψm are estimated by integrating the error-related functions with

R̂s =

∫ t

0

ΥR(e) dτ + R̂s(0) , Ψ̂m =

∫ t

0

ΥΨ(e) dτ + Ψ̂m(0) , (3.45)

where Υ(e) is an adaptive function of the error e. R̂s(0) and Ψ̂m(0) denote the initial guess of
the estimated Rs and Ψm. Rs and Ψm can be estimated by integrating the corresponding terms
given in (3.44). Furthermore, in order to improve the estimation performance, the adaptive
mechanisms are designed as a PI-form estimator [135], which are shown in the following

R̂s = −
(
kPR +

kIR

s

) (
ed

îd
Ld

+ eq
îq
Lq

)
, Ψ̂m = −

(
kPΨ +

kIΨ

s

)
(ed ωe) . (3.46)

It is worth mentioning that in practice a stochastic environment is normally involved. There-
fore, high gains in the adaptive loop may exacerbate the influence of the noises.

3.5.1.4 System Stability

The design of the adaptive mechanism is introduced in the former section. The stability of the
closed-loop system is studied in the following. The necessary condition of a stable system in
the state-space formulation is that the eigenvalues of the system matrix are stable [86]. The
error dynamic is given in (3.41). The corresponding system matrix is then given as

Ae = kA . (3.47)
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The corresponding eigenvalues λ1,2 are calculated from the equation

λ2 + kRs(
1

Ld
+

1

Lq
)λ+

k2Rs
2

LdLq
+ k2ω2

e = 0 . (3.48)

After solving the (3.48), the eigenvalues are given as

λ1,2 =
−kRs(

1
Ld

+ 1
Lq

)±
√
k2Rs

2( 1
Ld

+ 1
Lq

)2 − 4(k
2Rs2
LdLq

+ k2ω2
e)

2
. (3.49)

One of the eigenvalues is obviously negative, the other one satisfies

λ2 =

−k Rs

(
1

Ld
+

1

Lq

)
+

√
k2Rs

2

(
1
Ld

+
1

Lq

)2

− 4

(
k2Rs

2

LdLq
+ k2 ω2

e

)
2

<

−k Rs

(
1

Ld
+

1

Lq

)
+ k Rs

∣∣∣∣ 1

Ld
− 1

Lq

∣∣∣∣
2

< 0 .

(3.50)

Therefore, the closed-loop system is stable.

3.5.2 Recursive Least Squares

3.5.2.1 Introduction

The method of least squares (LS) was the first method of formulating an optimal estimation from
noisy measurements [138]. The RLS method is developed from the LS method. The principle
of them is to minimize the squared error between the measured data and their predictions. The
main difference between LS and RLS algorithm is that the former one collects a sequence of
measurements from the output and the input for the execution of the algorithm, contrarily the
latter one executes the algorithm recursively. Therefore, the RLS method allocates less memory
comparing to LS. Because of its simplicity, RLS algorithm is pertinent for the online parameter
identification and has been applied to the parameter estimation problem in enormous areas.
References [110, 111, 139] employed RLS as an efficient method for the parameter estimation
of motors. In [140], RLS was implemented as the estimator for the Lithium-Ion batteries.
Furthermore, it was utilised for the underwater robotic vehicles in [141]. The LS and RLS
share the same characteristic that they compromise the convergence speed of the estimations
and the filtering effect.

3.5.2.2 Principles

The LS algorithm is firstly introduced. It is set up for a system defined as

y = ϕTθ + v , (3.51)

where y, ϕ and θ denote the system output, the system matrix and the parameters to be esti-
mated, respectively. v denotes the measurement noise. LS method proceeds for the purpose of
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minimizing the objective function J over a certain time horizon [k−Ne+1, k−Ne+2, . . . , k],
where Ne denotes the estimation horizon. The objective function J is defined by

J :=
k∑

i=k−Ne+1

∥∥∥yi −ϕTi θ̂∥∥∥2

, (3.52)

where the subscript i denotes the measurement and the system matrix at the time step i within
the estimation horizon, i.e. i = k − Ne + 1, k − Ne + 2, . . . , k. The estimated parameters θ̂
are the minimizing arguments of J and formulated as [138]

θ̂ = arg min
θ
J . (3.53)

The solution of (3.53) is given according to [138] as

θ̂k = (ΦT
kΦk)

−1ΦT
kYk , (3.54)

where Φk := (ϕk−Ne+1, ϕk−Ne+2, . . . , ϕk)
T and Yk := (yTk−Ne+1, y

T
k−Ne+2, . . . , y

T
k )T . Ap-

parently, Φk and Yk can be derived from the sequences of the last step Φk−1 and Yk−1 by

Φk =

[
Φk−1

ϕTk

]
, Yk =

[
Yk−1

yk

]
. (3.55)

By substituting (3.55) into (3.54), θ̂k can be expressed as a function of θ̂k−1, which can be given
as

θ̂k = θ̂k−1 + (ΦT
k Φk)

−1ϕk

(
yk −ϕTk θ̂k−1

)
. (3.56)

Since the inversion of matrix ΦT
k Φk has a high computational cost, the solution from θ̂k−1 with

(3.56) has to be further simplified. Firstly, we define a new matrix as Pk := (ΦT
k Φk)

−1. Then
Pk can be derived from Pk−1 as

Pk = (P−1
k−1 +ϕkϕ

T
k )−1 . (3.57)

Furthermore, it can be given that

Pk = Pk−1 − Pk−1ϕk
(
ϕTk Pk−1ϕk + I

)−1
ϕk Pk−1 . (3.58)

Therefore, the RLS algorithm can be written as solving the following matrices [142]

θ̂k = θ̂k−1 +Kk

(
yk −ϕTk θ̂k−1

)
,

Kk = Pk−1ϕk
(
ϕTkPk−1ϕk + I

)−1
,

Pk = (I −Kkϕ
T
k )Pk−1 .

(3.59)

As a result of the aforementioned computation sequence, the measurements of different time
steps have the same impacts on the estimation results. However, considering the variation of the
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estimated parameters, the algorithm needs to be modified aiming to encompass more informa-
tion from the more recent measurements, i.e. to reduce the influence from the past information.
The modified RLS algorithm introduces a factor λ into the objective function J as

J =
k∑

i=k−Ne+1

λk−i
∥∥yi −ϕTi θ∥∥2

. (3.60)

The factor λ is called the forgetting factor or the weighting factor that satisfies 0 < λ < 1. Then
the modified RLS algorithm can be formulated as

θ̂k = θ̂k−1 +Kk

(
yk −ϕTk θ̂k−1

)
,

Kk = Pk−1ϕk
(
ϕTkPk−1ϕk + λI

)−1
,

Pk =
1

λ
(I −Kkϕ

T
k )Pk−1 .

(3.61)

3.5.2.3 Reformulation of RLS for PMSM

With the introduction to the RLS algorithm, the parameter identification problem of PMSM
can be formulated accordingly. However, considering different machine states, the steady-state
formulation as well as the transient formulation can be both presented.

3.5.2.3.1 Steady State The formulation of RLS for PMSM at the steady state, i.e. d
dti = 0,

is firstly shown, which is given in the following

y =

[
ud, k + Lq ωe, k iq, k

uq, k − Ld ωe, k id, k

]
, ϕT =

[
id, k 0

iq, k ωe, k

]
, θ =

[
Rs

Ψm

]
.

3.5.2.3.2 Transient Subsequently, the matrices of RLS algorithm for the PMSM during the
transient are adjusted. They are given as

y =

ud, k + Lq ωe, k iq, k −
Ld
Ts

(id, k+1 − id, k)

uq, k − Ld ωe, k id, k −
Lq
Ts

(iq, k+1 − iq, k)

 , ϕT =

[
id, k 0

iq, k ωe, k

]
, θ =

[
Rs

Ψm

]
.

As mentioned before, the steady-state formulation is simpler and more robust at noisy condi-
tions, which however is not valid during the transient.

3.5.3 Kalman Filter

3.5.3.1 Introduction

KF was firstly proposed in [143] and served as a method utilising the state-space formulation of
a linear system to calculate the recursive solution of the linear optimal filtering problem [144].
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Analogously to the RLS, the estimation via Kalman filter is derived in an optimum manner,
where a cost function is defined for incorrect estimates. The cost function should satisfy two
requirements, i.e. it is non-negative and is a non-decreasing function of the estimation error
[144]. Kalman filter (KF) provides satisfactory solutions due to the recursive nature and the
effective use of the Riccati equation. Moreover, it conducts optimization for achieving the
minimum variance of the estimation error and is asymptotically stable [145]. KF has been
applied to diverse areas, for example the space- and aircraft domain, the automotive industry,
the chemical process industry and the communication networks. The principle of the Kalman
filter is to find the optimum estimation x̂ of the state variable x according to the cost function J ,
which is defined as the mean squared error at the current time step k. However, its cost function
J is more general than that of the least squares method, where the uncertainty of the initial state
and the error of the model are furthermore considered. The principle of the Kalman filter is
conceptually introduced in the following.

Recall the system representation in (3.1) and assume the process noise wk as well as the
measurement noise vk to be additive, white and Gaussian, i.e.

E[wnw
T
k ] =

 Qk, for n = k ,

0, for n 6= k ,
E[vnv

T
k ] =

 Rk, for n = k ,

0, for n 6= k .
(3.62)

The cost function at the time step k is given as

Jk = E[(xk − x̂k)(xk − x̂k)T ] . (3.63)

The corresponding solution is derived from (3.63) with the following theorems [146, 147].

Theorem 3.2 (Principle of Orthogonality)
Let the stochastic processes xk and yk be of zero means, that is

E[xk] = E[yk] = 0 , ∀ k .

Then:

• the stochastic processes xk and yk are jointly Gaussian; or if the optimal estimate x̂k is
restricted to be a linear function of the observables and the cost function is the mean-
squared error,

• then the optimum estimate x̂k, given the observables y1,y2, ...,yk, is the orthogonal pro-
jection of xk on the space spanned by these observables.

Theorem 3.3 (Conditioned Mean Estimator)
If the stochastic processes xk and yk are jointly Gaussian, then the optimum estimate x̂ that
minimizes the mean-squared error Jk is the conditional mean estimator with

x̂ = E[xk|y1,y2, ...,yk] .

With the aforementioned theorems, the optimal solution regarding the cost function in (3.63) is
given by [146, 148, 149]

x̂k = x̂k|k−1 +Kk (yk −Ck x̂k|k−1) , (3.64)
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where x̂k|k−1 is a priori estimate of the state, which is available by means of the system model
at the time step k. Kk is the so called Kalman gain and can be formulated as

Kk = PkC
T
k [Rk +Ck PkC

T
k ]−1 , (3.65)

where
Pk+1 = Ak PkA

T
k +Qk −KkCk PkA

T
k . (3.66)

It can be observed from (3.65) and (3.66) that the computation ofKk and Pk depends solely on
the matricesA,C and noise covariance matricesR,Q. Therefore,K and P can be calculated
offline, if the noise covariance matrices R, Q can be regarded as constant. For a linear time-
invariant (LTI) system, the covariance P converges to a steady-state value, i.e. Pk = Pk+1.
Substitute (3.65) into (3.66) with a defined steady-state value P for Pk, we can have the so-
called discrete algebraic Riccati equation as

P = AP AT −AP CT [R+C P CT ]−1C P AT +Q . (3.67)

The conditions for uniqueness of the discrete algebraic Riccati equation in (3.67) are [150]:

• A is stable,

• (A, C) is observable,

• R andQ are positive definite matrices.

As it is indicated in [151] that the Kalman filter shares similarities with the RLS, i.e. xk+1 =
θk+1 = θk and y = ϕTθ + v. However, the Kalman filter shows advantage over RLS consid-
ering that the parameter changes can be easily incorporated and interpreted as the covariance
matrix with the Kalman filter.

3.5.3.2 State Augmentation

In general, there are two groups of methods addressing the Kalman filtering with model uncer-
tainties, i. e. the robust Kalman filtering and the adaptive Kalman filtering. The robust Kalman
filtering is so designed that a range of model parameters are taken into account. The Kalman
gain is computed to minimize the bound on the trace of the state error covariance instead of
the trace [152]. The adaptive Kalman filtering can be realized by the bootstrap method as well
as the augmentation method. The bootstrap method firstly estimates the parameters based on
the nominal values and the estimated parameter from the previous step is applied for estimating
the states with the stochastic approximation [153]. The augmentation method combines the to
be estimated parameters and the system states as the augmented system vector and derives the
estimation for the augmented system based on the measurements [154]. The augmented system
is normally nonlinear, even though the nominal system is a linear system. The nonlinear filter-
ing techniques, such as the extended Kalman filter, the unscented Kalman filter and the particle
filter, can be applied for such a nonlinear system and simultaneously estimate the states, pa-
rameters. Many works have studied the problem of estimating the parameters and the states by
augmenting the system state vector, e.g. [80, 155–157], to name but a few. In this thesis, the
state augmentation method is deployed. The intuition of the state augmentation is to include
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the to be estimated parameters into the state vector. The augmented state vector is denoted by a
new state vector z, which is given as

z =

[
x

p

]
. (3.68)

The to be estimated parameters are modelled as stochastic variables with

d
dt
p = vp , (3.69)

where vp is the zero mean Gaussian noise with a covariance defined asQp. The system process
noise covariance matrix is accordingly augmented as

Qz =

[
Q 0

0 Qp

]
. (3.70)

It is worth mentioning that the augmented system is normally nonlinear, even though the origi-
nal system is linear, since the to be estimated parameters may be coupled with the system states
x.

3.5.3.3 Extended Kalman Filter

Since the most systems in practice are nonlinear, the Kalman filter has been further developed
to adapt to the nonlinearity. Given the nonlinear system dynamics and the measurement data,
the EKF is used to compute the minimum variance estimate of the system state x. The principle
of the extended Kalman filter is to linearise the nonlinear equations by using the Taylor series
expansion around the Kalman filter estimates and conducting the Kalman filter estimates based
on the linearised system. Because of its capability to handle the system nonlinearity and the
acceptable computational cost, EKF has been used as the standard technique for the recursive
nonlinear estimations [144], in works such as [158–160].

EKF extends the Kalman filter through the linearisation around the most recent estimations
of the nonlinear dynamical system. It is moreover assumed that the process noise and the
measurement noise are mutually uncorrelated. Consider the nonlinear system in the discrete-
time domain represented in a general formulation as follows

xk+1 = F (xk,uk) +wk ,

yk = H(xk) + vk ,
(3.71)

where wk and vk are zero mean white Gaussian noises with covariance Q and R, respectively.
By deploying EKF, the original system stated in (3.71) is then approximated with a first-order
Taylor approximation by

F (xk,uk) ≈ F (xk−1,uk−1) + (xk − xk−1)F (xk−1) ,

H(xk) ≈ H(xk−1) + (xk − xk−1)H(xk−1) ,
(3.72)

where F := ∇xk−1
F and H := ∇xk−1

H . The calculation ∇xf denotes the Jacobian of the
function f with respect to x.
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The recursive computation of the EKF is in general same as that of the linear Kalman filter
and consists of two steps, i.e. the prediction and the update. The prediction conducts a prop-
agation by using the linear approximation of the nonlinear system. In the update procedure of
the EKF, the predictions are corrected based on the most recent measurement. However, for the
linear Kalman filter, the matrix P is equivalent to the covariance of the estimation error, which
is not valid for the extended Kalman filter, since only the first-order terms are included during
the linearisation. Therefore, P is approximately equal to the covariance of the estimation error,
if the errors caused by the linearisation are relatively small. Moreover, the state error covariance
and the Kalman gain are computed as a closed form in the linear Kalman filter, which can not
be realized with EKF. The explicit description of the EKF algorithm is shown below in Algo-
rithm 3.1. The state transition function Fk−1 is the Jacobian matrix of F (x̂k−1|k−1,uk−1) over

Algorithm 3.1 Extended Kalman Filter
Input: x̂k−1, Pk−1, uk−1, yk
Output: x̂k, Pk

Initialization:
x̂0 = E[x0] ,

P0 = E[(x0 − x̂0)(x0 − x̂0)T ] ,

Prediction:
x̂k|k−1 = F (x̂k−1|k−1, uk−1) ,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 ,

Update:
ỹk = yk − h(x̂k|k−1) ,

Sk = Hk Pk|k−1H
T
k +Rk ,

Kk = Pk|k−1H
T
k S

−1
k ,

x̂k|k = x̂k|k−1 +Kk ỹk ,

Pk|k = (I −KkHk)Pk|k−1 .

x̂k−1|k−1, which is then written as

Fk−1 = ∇x̂F (x̂k−1|k−1,uk−1) . (3.73)

Analogously,Hk is defined as
Hk = ∇x̂H(x̂k|k−1) . (3.74)

However, according to [161], EKF has several drawbacks in spite of its simplicity:

• Instability due to the linearisation around operating points and erroneous parameters.

• Expensive computation of the Jacobian matrices.

• Biased estimates.

• Difficulty of proper selection of the model covariance.



102 CHAPTER 3. PARAMETER DETERMINATION AND ESTIMATION

As it is indicated in [144], the EKF-based parameter estimation may lead to satisfying results,
but is not robust to large uncertainties in initial parameter estimate and the error covariance
matrix if the to be estimated parameter vector has a large dimension. Moreover, the estimation
results depend on the initial estimation error covariance matrix and the initial value of the to be
estimated parameters.

3.5.3.4 Unscented Kalman Filter

Since EKF contains only the first order information of the Taylor series expansions, the esti-
mations of EKF for highly nonlinear system may converge to erroneous values or even cause
instability. Furthermore, the derivation of the Jacobian matrix is nontrivial in many applica-
tions. Therefore, estimators such as the UKF and the ensemble KF containing higher order
information of Taylor series are proposed. We will just talk about the unscented Kalman filter
in this thesis. UKF was firstly proposed in [162], in which it is furthermore compared with
the extended Kalman filter for a navigation application and has shown better results than EKF.
Further studies, such as [163–165], presented a better performance of UKF over EKF in various
applications. The main superiority of UKF over EKF is that UKF has no linearisation proce-
dure for computing the covariance and the estimations. Instead of applying linearisation for
the nonlinear function, UKF uses a deterministic sampling approach and propagates through
the original nonlinear system. Therefore, UKF can deliver more accurate results than EKF.
Moreover, no explicit Jacobian or Hessian calculations are required for the UKF. It is worth
mentioning that the computational burden of the UKF is of the same order as the EKF.

The unscented Kalman filter is developed based on the so-called unscented transformation
(UT), which is a method for calculating the statics of a small set of specially selected samples
through a nonlinear transformation [163]. UT utilizes the instinct that the approximation of a
probability distribution is much easier than that of the propagation for a nonlinear system [166].
Let us assume that the mean and the covariance of the system state x are x̄ andPx, respectively.
UT forms a matrix X consisting of 2Nx+1 sigma vectorsXi with predefined weightsWi , where
Nx denotes the dimension of the state vector. They are computed through

X0 = x̄ ,

Xi =

x̄+ (
√
Nx + λ P

1
2
x )i , i = 1, 2, ..., Nx ,

x̄− (
√
Nx + λ P

1
2
x )i−Nx , i = Nx + 1, Nx + 2, ..., 2Nx ,

Wm
0 =

λ

λ+Nx

,

W c
0 =

λ

λ+Nx

+ (1− α2 + β) ,

Wm
i = W c

i =
1

2(Nx + λ)
, i = 1, 2, ..., 2Nx ,

(3.75)

where λ := α2(Nx + κ) − Nx is a scaling parameter. The coefficient α determines the spread
of the sigma points around the mean value and is commonly set to a small positive value. The
coefficient κ is also a scaling parameter, which provides one more degree of freedom to tune
the higher order moments of the approximation [163]. Furthermore, κ has the function of re-
ducing the overall prediction errors. β is the parameter incorporating the prior knowledge of the
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distribution of x. As given in [121], β has the optimal value β = 2 for Gaussian distributions.
(
√
Nx + λ P

1
2
x )i is the i-th row of the matrix square root. The sigma points are propagated

through the output function and construct a new output vector Yi by

Yi = H(Xi), i = 0, 1, ..., 2Nx . (3.76)

Furthermore, the mean and the covariance of the output y are approximated with a weighted
sample mean and covariance. The mean is computed with the weighted average of the trans-
formed points. Numerically efficient and stable methods, such as Cholesky decomposition, can
be used for the square root computation. The covariance is the weighted outer product of the
transformed points. The mean and the covariance of the new output vector are given as

ȳ =
2Nx∑
i=0

Wm
i Yi , Pyy =

2Nx∑
i=0

W c
i (Yi − ȳ)(Yi − ȳ)T . (3.77)

Analogously to the extended Kalman filter, the algorithm of UKF consists of two main parts, i.e.
the prediction and the correction. The explicit description of the algorithm is given in Algorithm
3.2.

3.5.4 Moving Horizon Estimator

3.5.4.1 Introduction

The moving horizon estimator was firstly presented in [167] as the limited memory filter. How-
ever, the exact recursive solutions for a general nonlinear system are intractable in the real-time
application, since the problem becomes infinite [168]. Therefore, approximations are required
for the nonlinear filters. Authors in [169] proposed a nonlinear unconstrained MHE in 1986.
The study in [170] extended this work and provided a systematic formulation of an optimization
problem to estimate the system states and the parameters of a nonlinear system. The optimiza-
tion problem is formulated with the past Ne measurements and aims to minimize the error
between the predicted system dynamics and the real measurements. The estimation horizon
Ne provides also a compromise between the computational burden and the estimation accuracy.
However, as author in [171] has mentioned, the moving horizon estimator is equivalent to the
extended Kalman filter as long as solely the most recent measurement is used. The stability
problem of MHE has also been intensively investigated, e.g. in [172,173] for the linear system,
in [174, 175] for the nonlinear system and in [176] for the hybrid system.

A general formulation of the MHE optimization problem at the time instant k = n+Ne − 1
is given in the following [171]

min
x,z,p,w

Jka (xn, pn) +
k∑
j=n

‖yj −H(xj, zj,pj)‖2
Vj

+
k−1∑
j=n

‖wj‖2
Wj

s. t. xj+1 = F (xj, zj,pj,uj) +wj ,

g(xj, zj,pj,uj) = 0 ,

xj ∈ Xj , zj ∈ Zj , wj ∈Wj , pj ∈ P ,

(3.78)



104 CHAPTER 3. PARAMETER DETERMINATION AND ESTIMATION

Algorithm 3.2 Unscented Kalman Filter
Input: x̂k−1, Pk−1, uk−1, yk
Output: x̂k, Pk

Initialization:
x̂0 = E[x0] ,

Px, 0 = E[(x0 − x̂0)(x0 − x̂0)T ] .

Prediction:
X k|k−1 = F (X k−1, uk−1) ,

x̂k|k−1 =
2Nx∑
i=0

Wm
i Xi, k|k−1 ,

Px, k|k−1 =
2Nx∑
i=0

W c
i (Xi, k|k−1 − x̂k|k−1)(Xi, k|k−1 − x̂k|k−1)T +Q ,

Yk|k−1 = H(X k|k−1) ,

ŷk|k−1 =
2Nx∑
i=0

Wm
i Yi, k|k−1 .

Correction:

Pykyk =
2Nx∑
i=0

W c
i [Yi, k|k−1 − ŷk|k−1][Yi, k|k−1 − ŷk|k−1]T +R ,

Pxkyk =
2Nx∑
i=0

W c
i [Xi, k|k−1 − x̂k|k−1][Yi, k|k−1 − ŷk|k−1]T ,

Kk = PxkykP
−1
ykyk

,

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) ,

Px, k = Px, k|k−1 −KkPykykK
T
k .

where Ne is the estimation horizon, x is the state vector, z is the algebraic state vector, p is
the parameter vector. X, Z, P and W are constraints on the individual vector. ‖δ‖2

V denotes
the squared weighted euclidean norms with the positive definite weighting matrix V and is
computed by δTV TV δ. Weighting matrices Vj and Wj are the square root of R−1 and Q−1,
respectively. They specify the relative contribution of each term in the cost function. For some
applications, instead of the `2 norm, the `1 norm or the Huber penalty function is employed to
improve the robustness of the estimation problem, if outliers and parameter jumps are expected.
On the one hand, the constraints is originated from the specific definitions of the variables.
On the other hand, the physical as well as the practical limitations can also contribute to the
constraints. Particularly, the constraints may increase the estimation performance by excluding
the non-physical optima in the nonlinear optimization problem, which is normally non-convex
and has several local optima [177]. Moreover, the constraints can also simplify the model. In
Fig. 3.34, the principle of the MHE is illustrated, where the estimation is carried out over the
estimation window with a finite length and formulated as an optimization problem penalizing
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Past information Estimation window

−∞ n k

Figure 3.34: Demonstration of the principle of the moving horizon estimation method.

the measurement disturbance and the process disturbance. An additional arrival cost is also
included to summarize the accumulated past information, which is denoted by the yellow point
in the Fig. 3.34. The underlying optimization problem is solved afterwards with efficient solving
methods. Subsequently, the estimation window is shifted at next time step. Meanwhile, the
arrival cost is updated. The arrival cost Jka (xn, pn) represent the accumulated past knowledge,
which is exactly computed via

Jka (xn, pn) = min
x,w

n∑
j=−∞

‖yj −H(xj, zj, pj)‖2
Vj

+
n−1∑
j=−∞

‖wj‖2
Wj

. (3.79)

The arrival cost Jka is essential for the MHE, since it provides the possibility to summarize
the past information and transform an unbounded estimation problem into a fixed-size prob-
lem. Moreover, the arrival cost strongly affects the stability of MHE [171]. However, the exact
computation of arrival cost is intractable. Therefore, a proper choice of the arrival cost approx-
imation is essential for the computational efficiency.

It can be concluded from the formulation in (3.78), MHE is a typical constrained NLP, which
can be generally formulated as

min
x

J(x)

s. t. g(x) = 0 ,

h(x) ≤ 0 .

(3.80)

A Lagrangian function is an essential tool to solve a optimization problem with constraints,
which provides an equivalent statement of the stationary points from the original optimization
problem (3.80) [178], as shown in Section 2.3. It can be given by [179]

L(x, λg, λh) = J(x) + λg g(x) + λh h(x) , (3.81)

where λg and λh are the Lagrange multipliers. Since the application discussed in this thesis
includes only the equalities as constraints, we focus on a special case of NLP, the so-called
equality constrained nonlinear programming (ENLP).
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3.5.4.2 Solving Methods

The general MHE problem is presented in (3.78), which is an optimization-based estimation
problem, more specifically a constrained NLP problem, and strongly depends on the underlying
numerical solving schemes. As it is stated in the former chapter, a MHE problem can be solved
with SQP methods. In this section, a brief introduction to the SQP is given firstly. Then, the
real-time iteration method, which has a relatively low computational cost, is explained to solve
the MHE problem in real time. Furthermore, an efficient method is shown to approximately
update the arrival cost.

The variants of SQP are introduced in the following, namely the exact Hessian variant, the
Newton-Lagrange method and the Quasi-Newton method. Moreover, a special case of Quasi-
Newton method called constrained Gauss-Newton method is also presented here, which is suit-
able for the ENLP problem.

3.5.4.2.1 Exact Hessian Variant Exact Hessian variant denotes the method calculating the
Hessian matrix of the Lagrangian function (3.81), which is represented by ∇2

xL. The cost
function is approximated up to second order Taylor series at the current iterate (xk, λg, k, λh, k)
and given as [32]

J(x) ≈ ∇xJ(xk)
Tx+

1

2
(x− xk)T ∇2

xL(xk, λg, k, λh, k) (x− xk) . (3.82)

Moreover, the constraints are also linearised with the first order Taylor series around the current
iterate as

g(x) ≈ g(xk) +∇xg(xk)(x− xk) ,
h(x) ≈ h(xk) +∇xh(xk)(x− xk) .

(3.83)

As a result, all nonlinear functions in (3.80) are linearised and can be interpreted as KKT con-
ditions of a QP [32]

min
x
∇xJ(xk)

Tx+
1

2
(x− xk)T ∇2

xL(xk, λg, k, λh, k) (x− xk)
s. t. g(xk) +∇xg(xk)(x− xk) = 0 ,

h(xk) +∇xh(xk)(x− xk) ≤ 0 .

(3.84)

By solving the QP in (3.84), we can get the next iterate (xk+1, λg, k+1, λh, k+1), where xk+1 =
xk + ∆xk. This method is expedient for a system, if the computation of its Hessian matrices is
cheap [180]. However, the Hessian matrices tend to be approximated with the inexact Hessian
or the Jacobian matrices, since the calculation of the Hessian matrices can be problematic.

3.5.4.2.2 Newton-Lagrange Method Newton-Lagrange method is normally applied for the
ENLP. According to [178], a local optimum of the ENLP can be found by solving the equalities(

∇xL(x, λg)

g(x)

)
= 0 . (3.85)

Therefore, the Lagrangian function includes only the equality constraint g(x) is given as

L(x, λg) = J(x)− λg g(x) . (3.86)
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By approximating the term∇xL(x, λg) around the current iterate (xk, λg, k, λh, k), the equal-
ities in (3.85) can be linearised as(

∇2
xJ(xk)(x− xk) +∇xJ(xk)−∇xg(xk)

T (λg − λg, k)
g(xk) +∇xg(xk)(x− xk)

)
= 0 . (3.87)

Furthermore, the equations in (3.87) can be reformulated as the KKT system as(
∇2
xJ(xk) −GT

k

Gk 0

)(
x− xk
λ− λk

)
=

(
−∇xJ(xk)

−g(xk)

)
, (3.88)

whereGk := ∇xg(xk). The system in (3.88) can be solved with a linear solver.

3.5.4.2.3 Quasi-Newton Method Different from the aforementioned methods, the Quasi-
Newton method approximates the Hessian matrix and calculates the exact Jacobian matrix of
the Lagrangian function in (3.81), which is inspired by the work in [181]. This procedure avoids
the computation of the second derivatives and denotes low computational cost.

The Quasi-Newton method calculates the approximation of the Hessian matrix, denoted by
HJ , satisfying the secant equationHJ∆x = γ, where

γ = ∇xL(xk+1, λg, k+1, λh, k+1)−∇xL(xk, λg, k+1, λh, k+1) .

Furthermore,HJ is updated utilising the BFGS method, which is given by [182]

HJ, k+1 = HJ, k +
γγT

γT∆x
− HJ, k∆x∆xTHJ, k

∆xTHJ, k∆x
. (3.89)

3.5.4.2.4 Constrained (Generalized) Gauss-Newton Method As a special case of the
Quasi-Newton method, the constrained Gauss-Newton method is applied for the problem with
a cost function consisting of the sum of squares. It can be written in a general form as

J(x) =
1

2
‖f(x)‖2

2 . (3.90)

The Hessian matrix can be approximated by the product of the Jacobian matrices at the current
iterate as

∇2
xJ(xk) ≈ ∇xf(xk)

T∇xf(xk) . (3.91)
As a result, (3.87) is then approximated as(

F T
k Fk(x− xk) + F T

k f(xk)−GT
k (λg − λg,k)

g(xk) +Gk(x− xk)

)
= 0 , (3.92)

where
Fk := ∇xf(xk) ,

Gk := ∇xg(xk) .

The corresponding KKT system can be as(
F T
k Fk −GT

k

Gk 0

)(
x− xk
λ− λk

)
=

(
−F T

k f(xk)

−g(xk)

)
, (3.93)

Since the constrained Gauss-Newton method is a special case of the Quasi-Newton method, it
shows moreover computational advantage.
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3.5.4.3 Real-Time Solution

Authors in [183] summarized the methods for solving the generic NLP. In this paper, the in-
equality constraints are omitted, since they are not really hit during the optimization and can
heavily increase the computational burden. Therefore, the optimization problem in (3.78) is
then simplified as an equality constrained NLP and solved with the generalized Gauss-Newton
method. Redefine all variables of (3.78) into a new variable zk, which is can be written as

zk :=
(
xn, wn, xn+1, wn+1, · · · , xk−1, wk−1, xk

)T
. (3.94)

As a result, the optimization problem in (3.78) can be written in a compact form as

min
zk
‖J(zk)‖2

2

s. t. F (zk) = 0 .
(3.95)

The solution of (3.95) can be transformed into solving the root finding problem of(
∇L(zk, λ)

F (zk)

)
= 0 , (3.96)

where L is the Lagrangian function and given by

L(zk, λ) := ‖J(zk)‖2
2 − λTF (zk) . (3.97)

The cost function and the equality constraint in (3.96) can be linearised using the generalized
Gaussian-Newton method around the current iteration value zik. It is then rewritten as(

(∇zJ)T∇zJ −(∇zF )T (zk)

(∇zF )T 0

)(
∆z∗k
∆λ∗k

)
=

(
−(∇zJ)TJ

−F

)
. (3.98)

The solution to equations in (3.98) denotes the increment of the next iterate, which is com-
puted with zi+1

k = zik + ∆z∗k. The problem in (3.95) is then solved with (3.98) recursively
until a pre-specified convergence criterion is satisfied. However, the conventional generalized
Gaussian-Newton method is not suitable for the real-time implementation. Instead of solving
the QP problem in (3.98) repeatedly, the real-time iteration (RTI) approach reduces the compu-
tational burden of solving the optimization problem to one single generalized Gaussian-Newton
iteration [171]. The convergence of this approach was guaranteed with an appropriate initial-
ization [184].

3.5.4.4 Approximation of the Arrival Cost

As described afore, the arrival cost includes all the prior information and plays an important
role for stabilizing the MHE. It works analogously to the terminal cost in the MPC problem,
which limits the MHE problem to a fixed-size problem [185]. However, an exact computation
of the arrival cost is intractable. There are several techniques to approximate the arrival cost.
One alternative is to use the first-order Taylor expansion around the past estimations. The other
possibility is to use a particle filter and the MHE smoothing to update the arrival cost [186].
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In this thesis, we approximate the arrival cost as a quadratic term by implementing the method
presented in [171]. The arrival cost is then transformed into a recursive procedure. Consider
the arrival cost over the increased interval [n − 1, n] and assume that the solution x̄n from the
last interval is already obtained. Then it can be seen that

Jka (xn, pn) ≈ const +

∥∥∥∥∥xn − x̄npn − p̄n

∥∥∥∥∥
2

Pn

, (3.99)

where x̄n, p̄n denotes the initial state of the MHE problem and Pn is the weighting matrix of
the arrival cost. They are derived by shifting the horizon from n− 1 to n and summarizing the
information within this one step. Apparently, the constant part of Jka (xn, pn) has no impact
on the optimization. Then, the arrival cost over the estimation window [n+ 1, k + 1] can be
calculated from the solution of MHE problem of the previous interval [n, k] by substituting the
linearised system dynamic and the linearised output function into the new quadratic function as

Jk+1
a (xn+1,pn+1) ≈ const +

∥∥∥∥∥xn+1 − x̄n+1

pn+1 − p̄n+1

∥∥∥∥∥
2

Pn+1

≈ const +

∥∥∥∥∥∥∥∥∥∥∥∥

Pn

(
xn − x̄n
pn − p̄n

)
Vn(yn − h̃−Hx xn −Hp pn)

Wn

(
xn+1 − x̃−Xx xn −Xp pn

pn+1 − pn

)
∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

(3.100)

where

Hx :=
dH(n+ 1;x∗(n), p∗)

dx(n)
, x̃ := F (n+ 1;x∗(n), p∗)−Xx x

∗(n)−Xp p
∗ ,

Hp :=
dH(n+ 1;x∗(n), p∗)

dp
, h̃ := H(n+ 1;x∗(n),p∗)−Hx x

∗(n)−Hp p
∗ .

Xx :=
dF (n+ 1;x∗(n), p∗)

dx(n)
, Xp :=

dF (n+ 1;x∗(n), p∗)

dp
.

The arrival cost in (3.100) is thereby transformed into an analytically solvable optimization
problem Pa , which can be written as

Pa := min
xn,pn

∥∥∥∥∥∥∥∥∥∥∥∥

Pn

(
xn − x̄n
pn − p̄n

)
Vn(yn − h̃−Hxxn −Hppn)

Wn

(
xn+1 − x̃−Xxxn −Xppn

pn+1 − pn

)
∥∥∥∥∥∥∥∥∥∥∥∥

2

2

. (3.101)
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It can be solved by using QR-factorization [171]. As a result, the optimization problem Pa can
be compactly written as

Pa = min
xn,pn

∥∥∥∥∥∥∥∥∥
ρ1

ρ2

ρ3

+

R11 R12

0 R22

0 0



xn

pn

xn+1

pn+1


∥∥∥∥∥∥∥∥∥

2

2

=
∥∥ρ3

∥∥2

2
+

∥∥∥∥∥ρ2 +R22

(
xn+1

pn+1

)∥∥∥∥∥
2

2

.

(3.102)
The solution of (3.101) is then obtained by comparing (3.101) with (3.102) and given as

Pn+1 = R22 ,

(
x̄n+1

p̄n+1

)
= −R−1

22 ρ2 . (3.103)

It is worth mentioning that the reference [132] established the relationship between the MHE
and the Kalman filter for the nonlinear system in (3.1) as follows.

Theorem 3.4
Let the initial value of the system state x0 and the disturbanceswi, vi be uncorrelated Gaussian
sequences. Their mean value and covariance are given as x0 ∼ N (x̄0, P0), wi ∼ N (0, Q)
and vi ∼ N (0, R). If the arrival cost is chosen as the approximation

Jka (xn) =
∥∥x̂n − x̄n∥∥2

Pn
, (3.104)

where x̄n denotes the optimal MHE estimate at step n given the measurement sequence Y =
[yT0 , · · · , yTn−1] and the covariance matrix Pn is updated by the Riccati equation

Pk+1 = Q+ Fk PkA
T
k − Fk PkHT

k (Hk PkH
T
k +R)−1Hk Pk F

T
k ,

then the estimation results obtained by the MHE is for k − n = 1 equivalent to the estimation
results derived by an EKF.

It is worth mentioning that the Theorem 3.4 is also valid for all k − n ≥ 1 of the linear system.

3.5.5 Data-based Approaches
Besides the recursive nonlinear estimators, data-based approaches have been applied as the
estimators. Reference [187] presented a clustering technique to realize the online identifica-
tion of electric vehicle (EV) and hybrid electric vehicle (HEV). The author claims that this
technique can identify all electrical parameters simultaneously with a low computational com-
plexity. In [188], a neural network (NN) approach was implemented to online estimate the
electrical parameters of the nonsalient-pole PMSM. Furthermore, authors in [134] used the
same NN method to estimate the rotor flux linkage and the stator winding resistance of PMSM
with the consideration of the VSI nonlinearity. This approach was validated on several motors
and showed good performance. Reference [189] implemented NN for estimating parameters of
PMSM at the steady state. Besides aforementioned methods, the particle swarm optimization
(PSO) has been likewise widely implemented for the parameter estimations. Reference [190]
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used PSO for evaluating parameters as well as tuning the controller for the electrical motor
drives. The VSI nonlinearity was included by [191], which also simultaneously estimated all
electrical parameters. Furthermore, authors in [191] compared various PSO algorithms and
claimed that a dynamic particle swarm optimization with learning strategy has the best perfor-
mance. However, the data-based approaches are out of the scope of this work. More details can
be found in corresponding references.

3.5.6 Experimental Evaluation
In this section, the experimental results for evaluating the previously introduced methods are
presented. The Test Bench B.1 is utilized for validating the estimation methods. The compari-
son is conducted with following tests: the steady-state performance test, the speed-step test and
the load-step test. Moreover, the accuracy of the estimation results is evaluated with the abso-
lute value of the mean error and the root mean squared error (RMSE). They are represented as
the percentage of the nominal values. The tracking ability of the methods is also investigated.
The variation of the estimated parameters, i.e. the permanent magnet flux linkage Ψm and the
stator resistance Rs , is approximated by their individual temperature model. The temperature
models are introduced in Chapter 2.4, where the temperature is measured with the temperature
sensor. The PMSMs are controlled with FOC, where the coefficients of the controller are tuned
before the tests and remain unchanged during the experimental evaluation.

3.5.6.1 Steady-State Performance

The steady state performance is evaluated with the constant speed test. Two PMSMs, i.e.
PMSM I and PMSM II, were tested with various speed values. But because of the limita-
tion of space, only the results of one operating point are shown. The experimental results of the
steady-state performance are shown in Fig. 3.35 and Fig. 3.36. The initial value of all estima-
tions are set to zero. The parameters of the estimators are so tuned that the estimation results
are stable and comparatively satisfying.

(a) (b)

Figure 3.35: Experimental results of the PMSM I: the constant-speed profile. The PMSM run at 1000 rpm. (a)
shows the estimated permanent flux linkage Ψ̂m. (b) presents the estimated stator resistance R̂s.

Fig. 3.35 shows the experimental results of the PMSM I. It can be noted that the RLS is
the fastest one converging from zero to the end value. EKF, UKF and MHE have almost the
same rate of convergence. At identifying the resistance, RLS shows conspicuous overshoot
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at the beginning of the identification procedure, but converges very fast, while MRAS is the
slowest one. Moreover, a nonlinear trajectory of the estimated resistance can be observed from
MRAS, which is probably caused by the nonlinearity of the adaptive mechanism. A noticeable
steady-state offset can be observed from RLS. The estimation results of RLS and MRAS are
more disturbed than the other three methods. On the contrary, RLS has the least noisy results at
identifying the permanent magnet flux linkage. At the beginning of estimating Ψm , MRAS has
an overshoot of about 20% of the nominal value, while the other four methods steadily converge
to the end value.

(a) (b)

Figure 3.36: Experimental results of the PMSM II: the constant-speed profile. The PMSM run at 1000 rpm. (a)
shows the estimated permanent flux linkage Ψ̂m. (b) demonstrates the estimated stator resistance R̂s.

Another steady-state performance test was conducted with the PMSM II. The corresponding
results are shown in Fig. 3.36. Similar to the previous test, RLS converges the fastest. However,
at identifying Rs , RLS shows no overshoot anymore, but its steady-state offset is more evident
than the result of PMSM I, which amounts up to 4.6 % of the nominal value. EKF, UKF and
MHE have similar performance. The results of them nearly overlap with each other. Nonethe-
less, the convergent rate of UKF is slightly faster than the other two methods. At identifying
the permanent magnet flux linkage, RLS outperforms the other four methods in terms of the
rate of convergence and the accuracy. MRAS is apparently more disturbed than the other four
methods.

3.5.6.2 Performance under Speed Step

The dynamic performance under the speed changing is a criterion to evaluate the performance of
the estimator, since the speed of the PMSM may change during the operation. The performance
is assessed by applying a speed step from 500 rpm to 1000 rpm on the PMSM II at t = 0 s.
Because of the limitation of experimental facilities as well as of the space, the speed step test
was conducted only with the PMSM II, while the load step test was conducted only with the
PMSM I. The experimental results of the speed-step test are shown in Fig. 3.37, where the
transient behaviour is furthermore zoomed in and demonstrated in the figures.

It can be noted from Fig. 3.37 that for estimating Ψm , the results of MRAS are heavily
disturbed and show a conspicuous overshoot during the transient. analogous to the steady-state
test, RLS exceeds the other four estimators by showing less overshoot after the step and less
noisy result. Regarding the estimation results ofRs , MRAS, EKF, UKF and MHE reach the new
steady state within 20 ms after the speed step, while RLS needs more than 50 ms to converge.
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(a) (b)

Figure 3.37: Experimental results of the PMSM II under the test of a speed-step profile. (a) shows the estimated
permanent flux linkage Ψ̂m. (b) presents the estimated stator resistance R̂s.

MRAS surpasses EKF, UKF and MHE in terms of the stability during the transient. Moreover,
a conspicuous strike can be observed from RLS at t = 0.25 s, when the speed step was applied.
Its steady-state offset can still be noticed after the speed step. It is worth mentioning that all
estimators obtained more accurate estimations after the speed step, which can be explained by
the fact that the steady state of PMSM is the worst scenario for the parameter estimation problem
and the speed step creates a transient for the PMSM, which can be regarded as an excitement
for the current loop and provides more information of the dynamic behaviour. Particularly, the
steady-state offset of the estimated value of RLS has reduced by 50 % of the nominal value.

3.5.6.3 Performance under Torque Step

Furthermore, the algorithms are tested with a load step on PMSM I, since the addition of a
load torque occurs often during the operation of the PMSM. 50% of the rated torque was added
to the PMSM I at t = 0.25 s through the load machine that is identical to the PMSM I. The
corresponding estimation results are shown in Fig. 3.38.

(a) (b)

Figure 3.38: Experimental results of the PMSM I under the test with a load step profile. (a) presents the estimated
results of the permanent flux linkage Ψm. (b) shows the estimated results of the stator resistance Rs.

At estimating Ψm , RLS performs still the best in terms of the ripple of the results and the
transient performance. MRAS, EKF, UKF and MHE perform almost the same. At estimating
the stator resistance, the results of RLS is most disturbed and a strike can be observed from
RLS at the step occurrence. Similar to the speed-step test, RLS converges more slowly than the
other four methods. MRAS gives more overshoot and is more noisy than EKF, UKF and MHE.
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EKF outperforms slightly UKF and MHE in terms of the rate of convergence.

3.5.6.4 Evaluation of the Accuracy

The evaluation of the estimation accuracy is carried out by computing the absolute value of
the mean error and the RMSE, of which the computing formulations are given in (3.105) and
(3.106), respectively. They are presented as a percentage of the nominal values.

Mean =

∣∣∣∣∣
∑Nn

i=1(p̂− p)
Nn

· 1

p

∣∣∣∣∣ · 100% (3.105)

RMSE =

√∑Nn

i=1(p̂− p)2

Nn

· 1

p
· 100% (3.106)

where p denotes the nominal value of the to be estimated parameters and p̂ is the estimation
results. Nn represents the number of the collected measurements. The computation results are
shown in Fig. 3.39 and Fig. 3.40, where the label Test 1 denotes the PMSM I with the constant
speed, the label Test 2 denotes the PMSM I with the load step test, the label Test 3 denotes the
PMSM II with constant speed and the label Test 4 denotes the PMSM II with the speed step
profile. The measurements are collected at the steady state after the step, if a step is applied.
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Figure 3.39: Estimation errors of the permanent magnet flux linkage Ψm . (a) presents the absolute value of the
mean error that is defined in (3.105). (b) shows the RMSE computed via (3.106).

The estimation results in Fig. 3.39 provides several conclusions. At identifying Ψm, RLS
delivers as good results as EKF, UKF and MHE in most tests, except in Test 2. MRAS has the
most disturbed results fir PMSM II, while the ripple of its results for PMSM I is even smaller
than that of MHE. However, EKF, UKF and MHE still perform the best. Minor differences can
be observed among them that MHE is slightly more accurate and more robust to the noises than
the other two methods. Moreover, from Fig. 3.40, it can be concluded that RLS delivers results
with an obvious steady-state offset, nearly 3% in Test 1, over 4% in the other three test cases.
Moreover, it has the noisiest result in all tests. MRAS performs much worse than EKF, UKF
and MHE for the PMSM I, but it gives similar results regarding the ripple and the end value
accuracy to the three methods in some test cases. EKF, UKF and MHE have almost the same
performance. They can deliver the results with an error below 2.5%.
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Figure 3.40: Estimation errors of the stator resistance Rs. (a) shows the absolute value of the mean error that is
defined in (3.105). (b) demonstrates the value of RMSE that is defined in (3.106).

3.5.6.5 Tracking Ability

The performance of the individual estimation method is furthermore evaluated for the tracking
ability. As it is introduced in Chapter 2.4, the to be estimated parameters, i.e. Ψm andRs, change
mainly because of the temperature. Their variations can be simplified as a linear function of the
temperature with the corresponding temperature coefficients, which are shown in (2.58) and
(2.59). Therefore, the tracking ability test is conducted by changing the machine temperature,
which rose from the room temperature, i.e. 25 °C, to around 45 °C. The reference value of the
to be estimated parameters are computed using the simplified linear temperature models of Rs

and Ψm. The experimental results are shown in Fig. 3.41.

Time (s)

(a)
Time (s)

(b)

Figure 3.41: Experimental results of the PMSM II under temperature variation. (a) demonstrates the estimated
stator resistance R̂s. (b) presents the estimated permanent flux linkage Ψ̂m.

As it is shown in Fig. 3.41, all estimators have tracked the parameter variations. Their per-
formance is similar to the steady state performance in terms of the accuracy and the robustness
against noise.

3.5.6.6 Influence of Working Points

The working points can also have impacts on the estimation performance. Therefore, further
experiments to study the influence of the rotor speed on the estimators were conducted. The
PMSM II was engaged and controlled under various speed values ranging from 100 rpm to
2000 rpm. The measurements were collected at the steady state of diverse speed values. The
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corresponding errors regarding the evaluation criteria are computed and presented in Fig. 3.42
and Fig. 3.43 for Ψm and Rs, respectively.
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Figure 3.42: Experimental results of Ψ̂m in relation to the machine rotor speed. (a) presents the absolute value of
the mean error defined in (3.105). (b) shows the RMSE value defined in (3.106).
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Figure 3.43: Experimental results of R̂s in relation to the machine rotor speed. (a) shows the absolute value of the
mean error defined in (3.105). (b) demonstrates the RMSE defined in (3.106).

These results show that MHE outperforms the other estimators especially in the low-speed
region. EKF and UKF have analogous performance, while UKF is slightly better than EKF
in terms of the accuracy as well as the robustness against noise. The performance of MRAS
deteriorates at the low-speed area, which may result from the sensitivity of MRAS to noises.
Analogous to the former tests, RLS has delivered the biased results. In general, the speed has a
great impact on the estimation results. The estimators perform worse at the low-speed region.
This is an expected conclusion mainly because of the fact that in the low-speed region the signal-
to-noise ratio is higher and the voltage distortions caused by the converters are more evident.
Even though the error voltage caused by the nonlinear effects of the VSI is compensated, the
accuracy of the compensation is limited and other uncertainties also exists in the drive system.

3.5.6.7 Computational Effort

The computational effort is evaluated by the metric of the execution time on the Renesas micro-
processor. The execution time of each online estimation method is collected and summarized
in Table 3.4.

As it is shown in Table 3.4, MRAS has the least computational burden, since it deploys solely
the simple PI technique. RLS has more computational cost than MRAS because of the matrix
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Table 3.4: Execution time on the embedded system

Algorithm Execution time
Average Maximal Minimal

RLS 3.14 µs 9 µs 3 µs
MRAS 1.05 µs 7 µs 1 µs
EKF 14.55 µs 26 µs 13 µs
UKF 30.33 µs 41 µs 28 µs
MHE (N=5) 279.02 µs 285 µs 274 µs

computations in the algorithm. MHE has the highest computational cost with a horizon length
of five. The computational cost will be reduced if the horizon length is shortened. But due to
the computation of solving the optimization problem enclosing in the MHE, the computational
cost remains higher than the other methods.

3.5.6.8 Summary

Based on the aforementioned experimental results and the corresponding evaluating analysis,
the advantages and disadvantages of the online estimation methods are summarized. In this
thesis, five criteria are selected to represent their performance, i.e. accuracy, computational
burden, rate of the convergence, robustness and memory allocation.

3.5.6.8.1 Accuracy The accuracy is the most important criterion of the parameter estima-
tion, especially for the high precise control, since the parameter mismatch can cause steady-state
offset or even cause instability of the whole system, as shown in Chapter 2. The accuracy is
summarized based on the overall estimation results of the estimation methods in various tests.

3.5.6.8.2 Computational Burden The estimation methods are implemented on the embed-
ded systems and the computational burden is critical there, particularly for the low-budget ap-
plications. The execution time on the embedded system is taken as the indicator of the com-
putational cost. Even though the computational burden depends on the solving approaches of
the individual method, e.g. solving approaches for the matrix inversion, the execution time
measured in former section is based on the condition that the basic computations are the same.

3.5.6.8.3 Rate of the Convergence The convergent rate indicates the dynamic performance
of the estimators, especially for the dynamic and precise control of the drive system. For ex-
ample, the parameters with fast changing rate, e.g. the inductances, require a relatively fast
convergence rate, in order that the changes of the parameters can be tracked accurately.

3.5.6.8.4 Robustness In practical applications, many uncertainties and disturbances can be
expected during the identification procedure. Therefore, the capability of the estimator to de-
liver accurate results under the existence of the disturbances and uncertainties is essential for its
performance in practice.
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3.5.6.8.5 Memory Allocation The memory required for an algorithm is determined by the
nature of the data, i.e. structure or sparsity and the implementation of the algorithm. In general,
a storage of a matrix requires a memory allocation of at least the number of non-zero elements.
The memory is critical for resource limited applications. In general, less memory allocation is
preferred.

The evaluations of all estimation methods are illustrated in a radar map regarding the indi-
vidual criterion.

Robustness

Memory

Accuracy

Execution time Convergence speed

MRAS

RLS

EKF

UKF

MHE

Figure 3.44: A summary of the characteristics of individual estimation method regarding diverse criteria.

Several remarks can be concluded from the theoretical studies as well as the experimental
results. RLS is simple to implement and has very low computational burden. But the forget-
ting factor is the only tuning parameter of the algorithm. Therefore, the implementation of
RLS is a trade-off between the robustness to noises and the dynamic performance. Besides, it
may deliver biased estimates. MRAS has simple structure, easy implementation and the lowest
computational burden among the five methods. But it works within limited bandwidth and is
sensitive to noise. Besides, the finely tuning of MRAS is time consuming and the formulation
for multiple parameters is complex. EKF, UKF and MHE show similar performance for the
online parameter estimation of PMSM. UKF and MHE are slightly better than EKF in terms
of accuracy and robustness to noises. However, the tuning of UKF is more complicated than
EKF and MHE, although suggestions about the choice of tuning parameters according to the
distribution of samples was given in [121]. MHE outperforms EKF and UKF, especially in
the low-speed region. Moreover, it shows advantages in tuning the estimator and including the
constraints. But the computational burden is much higher, which can be reduced by shortening
the estimation horizon. However, this drawback still should be taken into consideration, par-
ticularly for applications with limited computational resources. However, the nonlinearities of
converter and the inductances were approximated and incorporated into the estimation problem.
The performance of estimators may deteriorate, if the nonlinearities of converter or the other pa-
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rameters are unknown. Moreover, in the low-speed region, the estimators perform much worse
or may even fail. In general, the higher computational burden brings more accuracy, while the
computational power is limited by the hardware configuration. These results can be served as a
reference for further researches on implementing or developing online estimators.

3.6 Online Parameter Estimation Considering VSI Nonlin-
earities

The former presented online parameter estimation methods proceed with a relatively accurate
compensation of the nonlinear effects of VSI. However, on the one hand, in many applications
an accurate compensation of the VSI nonlinearities is not always available. On the other hand,
as demonstrated in former sections, the compensation of the distorted voltage caused by the
VSI nonlinear effects has a great impact on the identification results. Therefore, in this section,
an effective approach is proposed, by which the VSI nonlinear effect and the parameters can be
identified simultaneously.

3.6.1 Problem Formulation
The reference voltages are conventionally applied for the online parameter estimation problem
in VSI-fed PMSM systems. However, due to the high-frequency switching inverters, the differ-
ence between the referred voltage u∗ and the actually applied voltage u is considerable. Their
difference can be represented by ∆u, i.e. ∆u := u∗ − u, which is then simplified from (2.75)
and given by [86][

∆ud

∆ud

]
=

[
u∗d − ud
u∗q − uq

]
= Udead · Tdq(θe) [sgn(ia), sgn(ib), sgn(ic)]

T , (3.107)

where ∆ud and ∆uq are the disturbance voltages in the d- and q-axis, respectively. The term
(Fd, Fq)T is employed to represent the multiplication of the last two terms in (3.107) and can
be updated at each step. (3.107) is then compactly written as(

∆ud, ∆ud
)T

= Udead · (Fd, Fq)T . (3.108)

Udead is the approximation of the VSI nonlinearities and can be given as

Udead =
Tdead + Ton − Toff

Tc
(Udc − Uce + Ud) +

Uce − Ud
Udc

U ref +
Uce + Ud

2
, (3.109)

where Tdead, Ton and Toff are the dead time, the turn-on time and the turn-off time of the
active switches, respectively. Tcs is the carrier period of the pulse-width modulation (PWM).
Uce is the on-state voltage drop of the active switch and Ud is the forward voltage drop of the
freewheeling diode. Udc is the DC-link voltage. Uref is the reference voltage delivered from the
current controller. The second term in (3.109) is normally neglected because Udc is much larger
than Uce − Ud. Therefore, in some applications, Udead can be approximated as

Udead =
Tdead + Ton − Toff

Tc
(Udc − Uce + Ud) +

Uce + Ud
2

. (3.110)
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By substituting the Udead into the function of the parameter estimation problem, the current
model of the PMSM can be compactly rewritten as

d
d t
x = f(x,u) ,

y = h(x,u) ,
(3.111)

where u :=
(
u∗d, u

∗
q

)T , y :=
(
id, iq

)T and x :=
(
id, iq, p1, p2, Udead

)T . p1 and p2 denote two
arbitrary electrical parameters of PMSM, which satisfy the simultaneous identification condi-
tion introduced in former section. The variation of p1, p2 and Udead is assumed to be zero during
one sampling period, since the variation of parameters are much slower than that of the currents.
The extended system function f is then given as

f =


−Rs

Ld
id +

Lq
Ld
· ωe · iq +

u∗d − Udead · Fd
Ld

−Rs

Lq
iq −

Ld
Lq
· ωe · id +

u∗q − Udead · Fq
Lq

− Ψm

Lq
ωe

0

 , (3.112)

where 0 ∈ R3×1. The system disturbance as well as the measurement noise is then included
into the model and the system model is therefore reformulated and can be transformed into the
discrete-time domain, which gives

xk+1 = Fk(xk,uk) +wk ,

yk = H(xk) + vk ,
(3.113)

where wk denotes the system disturbance and vk represents the measurement noise. The func-
tion Fk is given by

Fk =



(
1− Rs, k

Ld
Ts
)
id, k +

Lq
Ld

ωe, k iq, k Ts +
u∗d, k − Udead, k · Fd, k

Ld
Ts(

1− Rs, k

Lq
Ts
)
iq, k −

Ld
Lq

ωe, k id, k Ts + (
u∗q, k − Udead, k · Fq, k

Lq
− Ψm, k

Lq
ωe, k)Ts

Rs, k

Ψm, k

Udead, k


, (3.114)

where the stator resistance and the permanent magnet flux linkage are still employed as the to
be estimated parameters.

3.6.2 EKF and DEKF based estimator

3.6.2.1 Dual Extended Kalman Filter

The dual extended Kalman filter is a further development of EKF for the simultaneous state
and parameter estimation [80]. It has two separate filters running concurrently, which divides
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the estimation problem of a nonlinear system into two separate, less strongly nonlinear prob-
lems [192]. Moreover, DEKF provides the possibility to switch off the parameter estimator,
which could consequently increase the performance of the state estimation and reduce the com-
putational burden. For the online parameter estimation problem of PMSM, two concurrent
filters are implemented, a state filter that estimates the current dynamics, and a parameter fil-
ter that estimates two electrical parameters of interest as well as the VSI nonlinearity Udead.
The working principle of DEKF is illustrated in Fig. 3.45. The system model of DEKF for the

State Filter

Parameter Filter

State Prediction State Correction

Paramter Prediction Paramter Correction

x̂k−1

x̂k|k−1

x̂k

p̂k−1

p̂k|k−1

p̂k

uk−1 yk−1

Figure 3.45: Structure of a dual extended Kalman filter.

parameter identification problem of PMSM is given as

xk+1 = Fk(xk, pk, uk) +wx, k ,

pk+1 = pk +wp, k ,

yk = H(xk) + vk ,

(3.115)

where x :=
(
id, iq

)T and p :=
(
p1, p2, Udead

)T . Analogous to EKF, each filter of DEKF
computes the results in two steps [193]. The principle of the DEKF is shown in Algorithm 3.3.
where

Fx, k−1 =
∂F (x̂k−1|k−1, p̂k|k−1,uk−1)

∂x̂
, Hx, k =

∂H(x̂k|k−1)

∂x̂
.

Furthermore, Rx = Rp, since the same output vector is used. Qx and Qp denote the covari-
ances of wx, k and wp, k, respectively. Hp, k = dH(x̂k|k−1)/dp̂ is the complete derivative of
the parameters respected to the output function. The calculation of Hp, k uses the recurrent
derivatives since the output function H is only a function of system states x. The complete
computation ofHp, k is given in (3.116).

Hp, k =
dH(x̂k|k−1)

dp̂
=
∂H(x̂k|k−1)

∂p̂
+
∂H(x̂k|k−1)

∂x̂

dx̂k|k−1

dp̂
, (3.116)

dx̂k|k−1

dp̂
=
∂F (x̂k−1|k−1, p̂k−1|k−1, uk−1)

∂p̂
+
∂F (x̂k−1|k−1, p̂k−1|k−1, uk−1)

∂x̂

dx̂k−1|k−1

dp̂
,

dx̂k−1|k−1

dp̂
=

dx̂k−1|k−2

dp̂
−Kx, k−1

dH(x̂k−1|k−2)

dp̂
.
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Algorithm 3.3 Dual Extended Kalman Filter
Input: x̂k−1, p̂k−1, Px, k−1, Pp, k−1, uk−1, yk
Output: x̂k, p̂k, Px, k, Pp, k

Initialization:
x̂0 = E[x0] ,

P0 = E[(x0 − x̂0)(x0 − x̂0)T ] ,

Prediction:
p̂k|k−1 = p̂k−1|k−1

Pp, k|k−1 = Pp, k−1|k−1 +Qp

x̂k|k−1 = F (x̂k−1|k−1, p̂k|k−1, uk−1)

Px, k|k−1 = Fx, k−1Px, k−1|k−1F
T
x, k−1 +Qx

Update:
ỹk = yk −H(x̂k|k−1)

Sk = Hx, kPx, k|k−1H
T
x, k +Rx

Kk = Px, k|k−1H
T
x, kS

−1
k

x̂k|k = x̂k|k−1 +Kk ỹk

Px, k|k = (I −KkHx, k)Px, k|k−1

Kp, k = Pp, k|k−1H
T
p, k(Hp, kPp, k|k−1H

T
p, k +Rp)

−1

Pp, k|k = (I −Kp, kHp, k)Pp, k|k−1

p̂k|k = p̂k|k−1 +Kp, k ỹk

The EKF and DEKF are then implemented on the embedded system and validated.

3.6.3 Experimental Evaluation
Same as the previous section, the permanent magnet flux linkage Ψm and the stator resistanceRs

are selected as the to be estimated parameter combination for implementing and validating the
proposed parameter estimators. The experimental results of the proposed methods are compared
with EKF without VSI-nonlinearities compensation. The superiority of proposed methods is
revealed.

3.6.3.1 Performance under Constant Speed

The first test is conducted with the PMSM running at a constant speed. The PMSM run from
the standstill until the constant speed at 1000 rpm. The initial values of the online parameter
estimators were set to zero. The measurement noise covariance R was selected as identity
matrix and the process noise covariance matrix of individual method was set as diagonal matrix
such that the diagonal elements were of an order of approximately 10% of the corresponding
actual values for the system states, since the system model is more reliable than the real-time
measurement. The process noise covariances were further refined via trial-and-error method.
The identified results of the parameters are shown in Fig. 3.46.
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(a) (b)
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Figure 3.46: Estimated parameters of PMSM with the constant speed. Offline measured value is shown in red.
EKF without VSI-nonlinearity compensation is in purple. EKF with VSI-nonlinearity consideration is presented
in green and denoted with EKFC. DEKF is shown in blue. (a) The estimated stator resistance R̂s. (b) The estimated
permanent flux linkage Ψ̂m. (c) The estimated VSI nonlinearities Ûdead.

As it is shown in Fig. 3.46, EKF without VSI nonlinearity compensation with an estimated
resistance value of 9.5428 Ω has magnificent offset at the steady state from the nominal value
4.2 Ω (4.35 Ω from the offline measurement). The estimated stator resistance of EKF with
compensation (4.6751 Ω) and the estimated value of DEKF (4.4457 Ω) are much more accurate,
where DEKF is slightly better than EKF with compensation. The convergence speeds of EKF
with compensation and DEKF are almost the same. The slight differences can be observed at the
steady state of estimation results of Ψm in Fig. 3.46, where DEKF delivers the value 0.1129 Wb,
EKF with compensation converges to 0.1155 Wb and EKF without compensation has the value
0.1138 Wb. However, EKF without compensation shows more overshoot at the beginning of the
estimations than EKF with compensation and DEKF. Furthermore, the estimated Ψ̂m of DEKF
is least noisy. It is conspicuous to be mentioned that the VSI nonlinearities has more impact on
the identification of Rs than Ψm, which can be explained by the fact that the term Ψm ωe in the
dynamic model of iq is much larger than the other terms and the voltage level of Udead is similar
to that of ud. The estimation results R̂s and Ûdead moreover contain the suppressed noises and
harmonics from current measurements. Fig. 3.46 shows that the VSI nonlinearity Udead can be
observed simultaneously with electrical parameters by implementing the proposed methods.

3.6.3.2 Performance under Speed Step

Moreover, a speed-step test was also carried out to test the transient performance of the proposed
estimators. The PMSM was given a speed step from 500 rpm to 1000 rpm at the time instant
t = 0.25 s. The estimation results are shown in Fig. 3.47. As it is shown in Fig. 3.47, EKF
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(a)

(b)

(c)

Figure 3.47: Estimated parameters of PMSM with
the speed-step profile. (a) The estimated stator re-
sistance R̂s. (b) The estimated permanent flux link-
age Ψ̂m. (c) The estimated value of the VSI nonlin-
earity Ûdead.

(a)

(b)

(c)

Figure 3.48: Estimation results for PMSM tested
with the load-step profile. (a) The estimated sta-
tor resistance R̂s. (b) The estimated permanent flux
linkage Ψ̂m. (c) The estimated VSI nonlinearity
Ûdead.

without compensation converges after the speed step within 80 ms, while the proposed EKF
with compensation and DEKF reached the new steady state within 200 ms, which may result
from the parameter tuning of the estimators. Comparing to EKF with compensation, DEKF has
less overshoot during the transient. Besides, EKF without compensation reacted faster than the
proposed methods, but the estimation result R̂s (9.4783 Ω) still lies far from the nominal value.
The actual value ofRs stays constant during the speed test, since the speed test lasts only a short
time, so that the temperature of the PMSM remains constant. Otherwise, the temperature model
should be involved. From the Fig. 3.47, it can be seen that similar to the constant speed test
the estimation results from the three estimators have just slight differences. They all converge
to the new steady state within a relatively short time. However, DEKF has the least overshoot
during the transient.
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3.6.3.3 Performance under Load Step

Furthermore, the proposed methods and EKF without VSI nonlinearity compensation were
tested with a load-step profile. 50% of the rated torque was added at t = 0.25 s to the PMSM
under test. The parameters of estimators are so selected that the element of the covariance ma-
trix respecting to the Udead is relatively larger, since the load step would cause an increase of
currents and has larger influence on the VSI nonlinearity than the electrical parameters. The
corresponding experimental results are shown in Fig. 3.48.

It can be concluded from Fig. 3.48b and Fig. 3.48c that the load step accelerates the con-
vergence speed for observing the stator resistance R̂s and VSI nonlinearity Ûdead. However,
the load step results in an even larger steady-state error of estimation results from EKF with-
out compensation. It can be elucidated by the fact that the VSI nonlinearities vary with the
operation points, especially with the currents. However, the relationship between the VSI non-
linearities and the currents is nonlinear, which has been studied in former sections. A load
step will introduce a current change and further influence the VSI nonlinearities. Moreover, the
corresponding offline measured characteristics of Ld and Lq need to be implemented into the
estimation process. The proposed two estimators are robust to the load step of the PMSM.

3.6.3.4 Estimation Accuracy

The summarization of the estimation results from the experiments are shown in Table 3.5,
Fig. 3.49 and Fig. 3.50. The results presented in Table 3.5 are the mean value of the steady-state
values after changes, i.e. the results of the speed-step test and the load-step test are collected
at the steady state after the step. Fig. 3.49 and Fig. 3.50 present the errors of the proposed
methods and EKF without compensation, where the mean error and the root-mean-square-error
are computed correspondingly and respectively presented. To visualize the errors of the estima-

Table 3.5: Mean value of the estimation results at the steady state

Rs (Ω) Ψm (Wb)

Constand speed Speed step Load step Constand speed Speed step Load step

EKF 9.5428 9.4783 13.7050 0.1133 0.1130 0.1147
EKFC 4.6751 4.3853 4.3670 0.1136 0.1145 0.1144
DEKF 4.4457 4.4936 4.4906 0.1135 0.1143 0.1143

tion methods, the absolute value of the mean error and the RMSE are computed and plotted in
Fig. 3.49 and Fig. 3.50, respectively.

The identification results of the three methods on permanent magnet flux linkage Ψm are very
similar. However, slight differences can be observed in the figures. For estimating Ψm, EKF
without compensation performs slightly better than the EKF with compensation and DEKF
considering the mean error under the constant-speed and the speed-step condition, which can
be concluded from Fig. 3.49a. The mean value of DEKF is most accurate under the load-step
condition. It is shown in Fig. 3.50a that DEKF is less disturbed than the other two methods
at the constant-peed and load-step test, while EKF with compensation performs the best at the
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(a) (b)

Figure 3.49: The absolute value of the mean error for estimated parameters. (a) The absolute mean error of the
estimated Ψm. (b) The absolute mean error of the estimated Rs.

(a) (b)

Figure 3.50: The root mean squared error (RMSE) of the estimated results. (a) The absolute mean error of the
estimated Ψm. (b) The absolute mean error of the estimated Rs.

speed-step test. It is worth mentioning that since no filter for the measured currents nor for
the measured speed was deployed, the noises and the harmonics of the speed and the current
would affect the results. Although the Kalman filter is able to weaken the influence of noises,
the ability is limited to a certain level. Therefore, the mean values of the estimated results from
the proposed methods are close to the nominal values, but fluctuations on the trajectories of
estimations can be evidently observed. An obvious improvement by implementing proposed
methods for estimating stator resistance Rs is presented in Fig. 3.49b and Fig. 3.50b. Moreover,
the estimation result of DEKF is less noisy than that of EKF with compensation, which can be
concluded from Fig. 3.50b.

3.6.3.5 Sensitivity to Initial Values

The Kalman-filter-based parameter estimators depend on the estimations from previous steps
and the extended Kalman filter linearises the system propagation function. Therefore, the initial
value of the estimators are essential for the convergence of the estimated values. In this section,
the proposed methods are tested with the same experimental data as in the constant-speed test,
but the initial guesses of parameters are altered. The initial value of the system states in esti-
mators is shown as a percentage of the nominal values and presented with various colours in
Fig. 3.51 and Fig. 3.52.

Fig. 3.51 and Fig. 3.52 show the results of EKF with compensation and dual EKF running
with six different initial guesses, which vary from 0% to 200% with an interval of 40% of the
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(a)
Time (s)

(b)

Figure 3.51: Initial value sensitivity test of EKF with compensation and dual EKF for estimating the permanent
magnet flux linkage Ψm. (a) The estimated permanent magnet flux linkage Ψ̂m by EKF with compensation for
various different initial values. (b) The estimated permanent magnet flux linkage Ψ̂m by dual EKF for various
different initial values.
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Figure 3.52: Initial value sensitivity test of EKF with compensation and dual EKF for estimating the stator resis-
tance Rs. (a) The estimated stator resistance Rs by EKF with compensation for various different initial values. (b)
The estimated stator resistance Rs by dual EKF for various different initial values.

nominal values, respectively. The estimation on Rs is more affected by the initial values than
the estimation on Ψm. The steady-state values are not affected by the initial value, but the
convergence speeds are heavily influenced, i.e. the EKF with compensation converges faster,
if the initial condition is closer to the real value. A similar phenomenon can be observed at
estimating Ψm. However, DEKF is robust to the initial value variation, which can be concluded
from the Fig. 3.51b and the Fig. 3.52b. The trajectories of estimating Rs and Ψm with various
initial values overlap with each other.

3.6.3.6 Computational Cost

The computational cost of the three estimation methods is compared based on the execution
times, i.e. the average execution time, the maximal execution time as well as the minimal
execution time. The algorithms run on a Renesas SH7750R with an internal clock 240 MHz, as
it is shown in Appendix B.1. The execution times are summarized in Table 3.6.

EKF without compensation is the fastest algorithm, since the dimension of the state vector
and of the covariance matrix in this algorithm is the least. DEKF is the slowest. Besides, the
computation ofHp, k in DEKF is complicated and the computation results need to be stored for
the next step. However, due to the features of DEKF, the parameter filter can be deactivated at
the steady state, which will significantly reduce the computational effort.
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Table 3.6: Execution time

Algorithm
Execution time

Average Maximal Minimal
EKF 18.8 µs 21 µs 18 µs
EKFC 29.1 µs 39 µs 27 µs
DEKF 32 µs 43 µs 30 µs

3.6.3.7 Conclusions

In this section two general formulations of Kalman-filter-based online parameter estimators are
proposed. By including the VSI nonlinearity as a system state into the PMSM current model,
the accuracy of estimation results was significantly improved. An obvious improvement can be
observed at identifying the stator resistance. Furthermore, the proposed methods are more ro-
bust to the noises than the conventional EKF estimator. The proposed EKF-based estimator has
less computational effort compared to the proposed DEKF-based estimator, but the convergence
speed of it is more sensitive to the initial guesses. DEKF-based estimator is robust to the initial
value of states and has better performance in terms of the quality of estimation results. More-
over, it is possible to deactivate the parameter filter of DEKF, which can significantly reduce
the computational burden.

3.7 Summary

The varying conditions of PMSM impair the performance of the controllers or even cause ma-
chine instability, which has been discussed in previous chapter. In this chapter, the observability
of the PMSM is firstly examined, where the observability matrix derived from local observabil-
ity theory for the nonlinear system is verified. Several conclusions can be drawn after the exam-
ination, e.g. the identifiability of the parameter combinations is related to the operating points,
up to two electrical parameters can be simultaneously identified if no persistence excitement is
applied. Furthermore, the offline determination procedures for the individual electrical param-
eters are introduced. The corresponding experimental results for the PMSMs in Appendix B.1
are presented and discussed. Subsequently, the methods with the current injection, which are
normally utilised at the start-up or also online, are introduced, where two variants, namely with
square-wave current injection and with sinusoidal current injection, are presented and compared
with corresponding experimental results. The square-wave current injection method can achieve
less noisy identification results, while the sinusoidal current injection method converges faster
and can capture the transient of the PMSM. Nonetheless, the current injection method may
affect the control performance of PMSM and cause pulsation. A promising way to overcome
these problems is to implement an online electrical parameter estimator. In this chapter, five
online estimation methods are presented and compared, namely RLS, MRAS, EKF, UKF and
MHE. Generally speaking, a higher computational cost can benefit the estimation results in
terms of accuracy. However, the estimation method should be selected based on the require-
ment of the accuracy and the available computational resources. Moreover, their advantages
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and disadvantages have also been concluded and summarized in this chapter. The nonlinear
effects of VSI have a great impact on the estimation results, since instead of the real terminal
voltage the command voltage is normally employed for the estimation. Therefore, an estima-
tion model including the VSI nonlinearities is investigated. Two estimators are proposed to
eliminate the influence of the VSI nonlinearities. Their effectiveness has been verified with
experimental results.
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CHAPTER 4

Continuous-Control-Set Model Predictive Control

4.1 Introduction

The utilization of predictions can achieve high-performance control, which meanwhile is able
to complete complex tasks and ensures the satisfaction of the operational constraints for various
applications. By reason that the control approaches are deployed on an embedded system and
computed in a discrete-time manner, the underlying finite-horizon predictive control problem
with the corresponding constraints creates a sequence of inputs by formulating and solving the
optimization problem Np steps into the future. The optimization problem is called constrained
finite time optimal control and Np is its prediction horizon. This control method has gained sig-
nificant popularity in the area of power electronics and electrical drives during the last decades
and has been comprehensively studied in the literature [194–196], to name but a few. The op-
timal control and the optimal estimation, e.g. the estimation procedure mentioned in previous
chapter, can be regarded as dual problems [146]. For the LTI system the Kalman filter is nor-
mally applied for estimation and the linear quadratic regulator (LQR) is used as the controller.
Both of them are propagated by the Riccati recursion. More specifically, the Riccati recursion
of LQR runs backwards and the one of Kalman filter runs forward. Many similarities can be
observed between the moving horizon estimator and the model predictive control. However, the
duality relationship between them are more complicated because of the constraints and system
dynamics. Different from the Lagrangian duality, which is introduced in Section 2.3, duality
in system theory is more vague and indicates that a estimation problem can be interpreted as a
control problem. The ultimate goal of the optimal control is to find a control law that minimizes
certain objectives over an infinite horizon, which furthermore subjects to the system model and
the constraints. Normally, the objective of the model predictive control is defined as a quadratic
function by

J(x,u) =
∞∑
k=0

‖xk‖2
Qk

+
∞∑
k=0

‖uk‖2
Rk

, (4.1)
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whereQ andR are the weighting matrices served for the objective design. In some applications,
the L1 or L∞ norm is also utilized. Analogously to the MHE, the infinite control horizon
problem can be transformed by an equivalent finite control horizon problem as

min
U

J =
N−1∑
k=0

‖xk‖2
Qk

+
N∑
j=0

‖uk‖2
Rk

+ Jt

s. t. xj+1 = F (xj, pj, uj) +wj ,

xj ∈ Xj ,

uj ∈ Uj ,

(4.2)

where Jt denotes the terminal cost. In [197], an approximation of the terminal cost Jt is pro-
posed to guarantee the asymptotic stability for the linear system without disturbances, which
assumes that the system can be controlled with a LQR afterwards. The corresponding approxi-
mated terminal cost is given as

Jt = ‖xN‖2
PN

, (4.3)

where PN denotes the solution to the corresponding LQR discrete Riccati equation. As it is
introduced in Section 2.3, the receding horizon policy is applied in MPC, where only the first
element of the optimal control input sequence is applied. At next sampling time, the underlying
CFTOC is repeatedly solved with the updated measurements over the shifted time window.

4.2 Continuous-Control-Set Model Predictive Control

Based on the fundamental knowledge of MPC, a widely applied control method, i.e. continuous-
control-set model predictive control, is introduced as follows. The CCS-MPC specifies the
constraints as convex, which include the state constraints as well as the input constraints. The
computed solutions are further fed into the modulator, which generates the switching signals
via PWM or SVM, which is introduced in Section 2.2. In this section, the classic CCS-MPC
for PMSM current control is investigated, including the set-up of the control problem, the
constraints, the solving of the optimization problem and the implementation.

4.2.1 Control Problem
The control problem of the current control for a PMSM can be formulated in the dq reference
frame as well as in the αβ reference frame. In this section, the formulation in the dq reference
frame is introduced, since it has been deployed in most applications. The objective of the
current control problem is to manipulate the three-phase voltage of the PMSM such that the
stator currents precisely track the predefined reference values. The reference value for the
inner loop, i.e. the current control loop, is determined normally by the outer control loops, if a
cascaded control structure is deployed. Meanwhile, the output voltage is restricted by penalizing
the voltage value with a weighting factor. The current controller predicts the system behaviour
based on the system model given in the Section 4.2.2 and the most recent measurements of the
current. The optimization problem is so designed that the object function, the system model
and the constraints are included. A special case of the CCS-MPC is the so-called deadbeat
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control, where the prediction horizon is limited to one and the constraints of the optimization
problem are omitted. Moreover, the penalization on the control input voltage is also disregarded.
Therefore, the deadbeat control can realize zero steady-state error under the condition that the
investigated system model is error-free. Furthermore, it has the advantages such like minimum
rise time and minimum settling time. However, the control input voltage is relatively high
without the corresponding penalization.

4.2.2 System Model
The conventional CCS-MPC for PMSM is set up in the dq reference frame, in order to simplify
the control problem. Recall the system model of the current control loop in the continuous-time
domain can be obtained as

[
d
dtid
d
dtiq

]
=

 −Rs

Ld

Lq
Ld

ωe

−Ld
Lq

ωe,k −Rs

Lq


[
id

iq

]
+


1

Ld
0

0
Ts

Lq

[ud
uq

]
+

 0

−Ψm

Lq
ωe

 . (4.4)

The continuous model in (4.4) can be further discretized via the methods mentioned in Section
2.3.4.2. In this thesis, the Euler method is deployed, since the sampling frequency is relatively
high and the discrete-time model via the Euler method is usually sufficiently accurate [24]. The
discrete model of the current loop for PMSM in (4.4) at t = k Ts can be given as

[
id, k+1

iq, k+1

]
=

 1− Rs

Ld
Ts

Lq
Ld

ωe, k Ts

−Ld
Lq

ωe, k Ts 1− Rs

Lq
Ts


[
id, k

iq, k

]
+


Ts

Ld
0

0
Ts

Lq


[
ud, k

uq, k

]
+

 0

−Ψm

Lq
ωe, k Ts


(4.5)

For the purpose of compactness, the discrete-time system model is written as

xk+1 = Ak xk +Bk uk +Ek

yk = Ck xk
(4.6)

where x = [id, iq]
T , u = [ud, uq]

T and y = [id, iq]
T .

4.2.3 Optimization Problem
The current control problem with CCS-MPC at the time step k can be generally regarded as
a tracking problem and mapped into the cost function. Including the system constraints, the
resulting optimization problem for the current control Pc is then given in the following

min
Uk

J =

k+Np−1∑
j=k

‖yr − C xj+1‖2
Q +

k+Np−1∑
j=k

‖uj‖2
R

s. t. xj+1 = Aj xj +Bj uj +Ej , j = k, k + 1 · · · , k +Np − 1 ,

xj ∈ Xj ,

uj ∈ Uj ,

(4.7)
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where yr denotes the target reference. Np is the prediction horizon. The first term of the cost
function quadratically penalizes the prediction error over the prediction horizon. The second
term penalizes the output effort. Q and R are weighting matrices that adjust the trade-off
between the tracking accuracy and the output voltage. Xj and Uj , which denote the constraints
on the system states and the control inputs respectively, are omitted, since they are not really
violated during the simulation and the experiment. The computation result with a given initial
state xk is a control sequence Uk := [uTk , u

T
k+1, . . . , u

T
k+Np−1]T , i.e.

Uk := arg min
Uk

J ,

s. t. xj+1 = Aj xj +Bj uj +Ej , j = k, k + 1 · · · , k +Np − 1 .
(4.8)

By employing the receding horizon policy the first element of Uk, i.e. uk, will be applied to
the system. As a special case of MPC, the deadbeat control omits the system states limitation
Xj and the constraint on the control inputs Uj in (4.7). Moreover the penalization on control
input is also excluded. Therefore, the deadbeat control has the advantage of simpleness as well
as low computational burden at the sacrifice of the stability and the control performance.

The optimal control voltage is obtained by solving the optimization problem Pc in (4.7). The
solution depends on the the most recent measurement, the previous solution and the eventual
current reference. Normally, the current reference value is regarded as constant over the predic-
tion horizon.

4.2.4 Implementation
After the optimization problem Pc in (4.7) is designed, it is then implemented on the digital
control platform to realize the control of the PMSM drive system. As introduced previously,
there are many efficient numerical methods to solve the optimization problem. The solving
of the problem Pc is relatively simple, since the constraints except the system dynamics are
omitted. The propagation of the system state x at the time step j can be given as a function of
initial values xk and the control sequence U as follows

xj+1 = Aj+1−k xk + [Aj−kB, · · · , B] U +

j−k∑
i=0

AiE . (4.9)

Let Y denote the sequence of the outputs over the prediction horizon Np from the step k, i.e.
Y := [yTk+1, · · · , yTk+Np

]T . It can be written as

Y = Πxn + Λ U + Σ + Ω ε̂n , (4.10)

where

Π =


CA

CA2

...
CANp

 , Λ =


CB 0 . . . 0

CAB CB
. . . 0

...
... . . . ...

CANp−1B CANp−2B . . . CB

 ,Σ =


CE

CAE +CE
...∑Np−1

i=0 CAiE

 .

(4.11)
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By substituting (4.10) into the cost function J , the solution to the CFTOC problem Pc can be
obtained by solving the root finding problem as

∇UJ = 0 . (4.12)

The solution U can be simply obtained as

U = (ΛT QΛ +R)−1 ΛT Q (Yr −Πxk −Σ) , (4.13)

where Q := INp ⊗Q, R := INp ⊗R and Yr := INp ⊗ yr. Symbol ⊗ denotes the Kronecker
product of two matrices. By deploying the receding horizon policy, the control voltage is given
as

uk = [1, 0, · · · , 0] U . (4.14)

The control voltage uk is then delivered to the modulator and further transformed as the switch-
ing signals for the inverter. Besides the aforementioned real-time solution of the optimization
problem Pc , the multi-parametric programming [198] can be applied. It solves the optimization
problem Pc offline and therefore transforms the online solving of the optimization problem into
a online searching problem. The multi-parametric programming divides the parameter spaces
into several convex polytopes, in which a individual piecewise affine control law is contained.
However, the offline calculation time and the number of polytopes increase exponentially with
the prediction horizon by applying the multi-parametric programming.

4.3 Robust Continuous Control Set MPC

As mentioned previously, the parameter of PMSM drive system is time-varying and diverse
disturbances can be encountered during the operation, which deteriorates the performance of
the PMSM drive system or even causes instability. For instance, the stator resistance as well
as the permanent magnet flux linkage changes with the variation of the temperature and the
inductances are related to the currents. More details have been demonstrated in Chapter 2.4.
All parameters can have impact on the control performance. However, the identification of all
parameters may increase the computational burden significantly. As concluded in [68], various
external disturbances, such as the load torque and the measurement errors, are crucial for the
control of PMSMs. Moreover, the digital delay is inevitable in the real-time control [199, 200].
The digital delay has a great impact on the control accuracy, especially for the drive system sam-
pled with a relatively low sampling frequency. On the one hand, over- and under-compensation
may introduce more errors. On the other hand, the accurate compensation of the digital delay
requires additional measurements. In order to tackle these problems, many researches have
been carried out to improve the stability and the performance of MPC under the parameter
variations and the existence of disturbances. Authors in [201] considered the worst case of the
corresponding CFTOC problem and solved the minimization problem with the prerequisite of
the worst control condition of the plant, which can be obtained by computing the maximiza-
tion problem. Therefore, this method is also called min-max MPC. It is designed in order that
the controller can maintain stability and meet the specified performance requirement under the
existence of disturbances and uncertainties. It means that the controller synthesis must satisfy
the given specifications for all possible uncertainty realizations [202]. Other than the min-max
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MPC, the satisfaction of the controller synthesis under all possible circumstances can be real-
ized by bounding the disturbance within certain functions or constants [202, 203]. In [203], a
Lyapunov-based MPC was proposed, where the stability of PMSM drive system is guaranteed
via the additional Lyapunov-function-based constraint. Furthermore, authors in [202] improved
its performance by considering the dead time and adjusting the Lyapunov function accordingly.
The robust control strategies are comparatively conservative and have to more or less sacri-
fice the nominal performance so that the overall robustness can be guaranteed. Even though
methods are proposed to adjust the control Lyapunov function in real operation [202], which
aims to relax their conservatism, the computational burden of the robust control strategies is
still one of the main concerns [204]. Besides the robust MPC, other modification of the con-
troller can be also implemented to deal with the disturbances and uncertainties. In [204, 205],
an integral mechanism was employed to eliminate the constant or slowly varying disturbance.
Besides the direct modification of the controller, the deployment of a disturbance observer can
improve the stability as well as the control performance. As indicated in [68], the disturbance
estimation and attenuation methods, which can be regarded as a trade-off between the dynamic
response and the robustness, provide a promising performance. Many works have implemented
disturbance observers to deal with the model uncertainties and the external disturbances. Ref-
erence [206] applied an extended state observer for the speed regulation problem of PMSM.
Reference [207] employed the fuzzy approach as the torque observer. The selection of the dis-
turbance observers depends on the requirements of the application and the available computa-
tional resources. Various disturbance observers have been studied and implemented, the reduced
order disturbance observer [208], the proportional disturbance observer [209], the adaptive dis-
turbance observer [63,210], the recursive-least-square-based disturbance observer [211] and the
neural-network-based disturbance observer [48], to name but a few.

4.3.1 Control Problem
In order to tackle the aforementioned problems, a generalized observer-based robust control
strategy is proposed for the predictive current control of PMSM, aiming to eliminate the influ-
ence of the parameter variation and the external disturbances and to track the given reference
precisely. The lumped disturbance is estimated by the extended state observer, which is fur-
ther fed into the current controller with the augmented system model. The control voltage is
then computed based on the augmented system model. The overall robust control strategy is
illustrated in Fig. 4.1. The robust predictive current control (RPCC) in Fig. 4.1 denotes the
observer-based robust control strategy for the current control of the PMSM drive system. The
output voltage is given as u∗ and the terminal voltage of the PMSM is denoted by u. Their
difference, i.e. the error voltage, is denoted by ∆u and defined as ∆u = u∗ − u. The system
model for the controller as well as for the observer is augmented with the lumped disturbances.
The controller predicts the system states based on the estimated values of the current as well as
of the disturbance and minimizes the control objectives.

4.3.2 System Model
Different from the model deployed in the predictive current control by CCS-MPC in Section 4.2,
the robust predictive current control strategy employs the augmented model including the term
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Figure 4.1: The block diagram of the robust CCS-MPC for the PMSM.

of the disturbances. The conventional CCS-MPC utilizes the system model in (4.5) with the
command voltage u∗ as the control input, since the terminal voltage is normally not measured
and is different from the command voltage u∗. However, because of the parameter mismatches
and the disturbances, the real model of PMSM differs from the ideal model in (4.5). Therefore,
the nominal system in (4.5) can be augmented with a lumped disturbance as

[
id, k+1

iq, k+1

]
=

 1− Rs

Ld
Ts

Lq
Ld

ωe, k Ts

−Ld
Lq

ωe, k Ts 1− Rs

Lq
Ts

[id, k
iq, k

]
+


Ts

Ld
0

0
Ts

Lq

[u∗d, k
u∗q, k

]
+

 0

−Ψm

Lq
ωe, k Ts

+

[
εd, k

εq, k

]
,

(4.15)
where εd, k and εq, k denote the disturbance and unmodeled uncertainties in d- and q-axis, re-
spectively. The system model in (4.15) can be compactly written as

xk+1 = Ak xk +Bk u
∗
k +Ek + εk , (4.16)

where εk := [εd, k, εq, k]
T includes the effects resulted from the parameter variation and the

non-periodic disturbances. As it is shown in (4.16), the disturbance term ε is similar to the term
E for the current control, since they are regarded as constant for the system state x at the next
time instant.

In order to estimate the disturbances, the augmented system in (4.16) is extended with two
more system states, i.e. εk, of which the dynamics can be given as εd, k+1 = εd, k and εq, k+1 =
εq, k. Subsequently, the augmented system can be extended and rewritten as(

x̂k+1

ε̂k+1

)
=

(
Ak I

0 I

)(
x̂k

ε̂k

)
+

(
Bk

0

)
u∗k +

(
Ek

0

)
, (4.17)

which can be compactly reformulated as(
x̂k+1

ε̂k+1

)
= Aa

k

(
x̂k

ε̂k

)
+Ba

k u
∗
k +Ea

k . (4.18)

The system model in (4.16) is then employed for the CCS-MPC and the system model in (4.18)
is used for the estimation.
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4.3.3 Optimization Problem
The estimation can be realized with the methods mentioned in Chapter 3. After obtaining the
estimation results of the disturbance term ε̂ and the system state x̂, the CFTOC problem in
(4.2) can be reformulated by replacing the nominal system xj+1 = Ajxj + Bjuj + Ej with
the augmented system xj+1 = Akxj +Bju

∗
j + Ej + εj in (4.16), which propagates with the

initial value xk = x̂k and εk = ε̂k. The CFTOC problem Pr for the proposed robust control
strategy can be written by modifying the optimization problem Pc in (4.2) as

min
U

k+Np−1∑
j=k

‖yr −C xj+1‖2
Q + ‖uj‖2

R

s. t. xj+1 = Axj +Bu∗j +E + εj , j = k, k + 1 · · · , k +Np − 1 .

(4.19)

Analogously to the CFTOC problem Pc , the computation result with a given initial state xk is
a control sequence Uk := [u∗Tk , u∗Tk+1, . . . , u

∗T
k+Np−1]T , i.e.

U := arg min
Uk

J

s. t. xj+1 = Aj xj +Bj u
∗
j +Ej + εj , j = k, k + 1 · · · , k +Np − 1 .

(4.20)

After obtaining the control sequence Uk, the receding horizon policy is applied and the first
element of the sequence is deployed.

4.3.4 Implementation
The propagation of the system state x at the time step j can be given as a function of the initial
values xk = x̂k, εk = ε̂k and the control sequence Uk as follows

xj+1 = Aj+1−k x̂n + [Aj−kB, · · · , B] Uk +

j−k∑
i=0

AiE +

j−k∑
i=0

Ai I ε̂k . (4.21)

The sequence of the outputs over the prediction horizon Np from the step k can be reformulated
as

Y = Π x̂k + Λ Uk + Σ + Ω ε̂k . (4.22)

Then, the optimization problem Pr can be analogously solved with the root finding method.
The solution is given as

Uk = (ΛTQΛ +R)−1ΛTQ(Yr −Π x̂k −Σ−Ω ε̂k) , (4.23)

where the intermediate matrices Π, Λ and Σ are same as (4.11) and Ω is given as

Ω =


CI

CAI +CI
...∑Np−1

i=0 CAi I

 . (4.24)

Analogously, only the first element of the control sequence is then delivered to the modulator.
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4.3.5 Stability Analysis
Applying the observer with the extended system model and the current controller to the PMSM
drive system constructs a closed loop system. The stability of the whole control structure need
to be examined, since the observer error can deteriorate the closed-loop stability. Prior to the
examination of the output-feedback nonlinear model predictive control (NMPC), several defi-
nition need to be introduced.

Definition 4.1 (Asymptotic Stable [212])
Consider a LTI system given as

xk+1 = Axk ,

yk = C xk .
(4.25)

The system is asymptotically stable, i.e. x → 0, if and only if any eigenvalue λ of the matrix
A satisfies |λ| < 1.

Definition 4.2 (K-function [212])
A function α(·) is a K-function if it is continuous, strictly increasing and α(0) = 0.

Definition 4.3 (K∞-function [212])
A function γ(·) is a K∞-function if it is a K-function and γ(s)→ +∞ as s→ +∞.

Definition 4.4 (KL-function [212])
A function β(·, ·) : R× Z → R is a KL-function if for each fixed t ≥ 0, β(·, t) is of class K,
for each fixed s ≥ 0, β(s, ·) is decreasing. Moreover β(s, t)→ 0 as t→∞.

Consider a to be controlled system is nonlinear time invariant and can be written in the discrete
domain-time as

xk+1 = f(xk, uk, dk, wk) , (4.26)

where x and u denote the system state and control input, respectively. d and w represent the
external disturbances and the model mismatches, respectively. The system output is given as

yk = h(xk, uk) .

The following assumptions about the system are stated before the analysis.

Assumption 4.1 ( [212])
• System (4.26) has an equilibrium point at the origin, i.e. f(0, 0, 0, 0) = 0

• The system state x and the control input u satisfy the constraint Z, i.e. (xk, uk) ∈ Z,
where Z ⊂ RNx+Nu is closed and contains the origin in its interior.

• The model uncertainty w is given as wk = wη, k η(xk, uk) for all k ≥ 0, where η is a
known function that is continuous and contains the origin in its interior. wη, k is exogenous
signal and satisfies wη, k ∈Wη, where Wη is a compact set.

• The disturbance d fulfils d ∈ D for all k ≥ 0, where D is a known compact set and
contains the origin.

• The system state is measurable at each sampling instant.
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If the system is controlled by a certain control law uk = κ(xk), then the closed-loop system can
be given as

xk+1 = fκ(xk, dk, wk) , (4.27)

where fκ(xk, dk, wk) := f(xk, κ(xk), dk, wk). The nominal system without the disturbances
d and the model mismatches w is given as f̄κ(x) := f̄(x, κ(x)). The state at the time instant k,
which has an initial value of x0 and the control input u = κ(x), is denoted as φκ(k, x0, d, w)
for the real system and φ̄κ(k, x0) := φκ(k, x0, 0, 0) for the nominal system. d is the sequence
of the disturbances and is given as d := [d0, d1, · · · ]. Analogously, w is defined as w :=
[w0, w1, · · · ].

Definition 4.5 (Lyapunov Function [212])
A function J : Rn → R is a Lyapunov function of the nominal system x̄k+1 = fκ(x̄k) if there
are three K∞-functions, γ1, γ2, γ3 such that γ1(|x|) ≤ J(x) ≤ γ2(|x|) and J(f̄κ(x)) − J(x) ≤
γ3(|x|).

Definition 4.6 (Asymptotically Stable [212])
The nominal system with the controller u = κ(x), i.e. x̄k+1 = f̄κ(κ(x)) is globally asymptoti-
cally stable, if there exists a KL-function β such that |φ̄κ(i, x0)| ≤ β(|x0|, i).

Definition 4.7 (Input to State Stable [212])
The nominal system with the controller u = κ(x), i.e. x̄k+1 = f̄κ(κ(x)) is globally input-to-
state stable if there exist a KL-function β and a K-function α such that for all initial state x0

and the sequence of the disturbance d,

|φ̄κ(i, x0, d)| ≤ β(|x0|, i) + α(‖di−1‖) .

It is worth mentioning that the input-to-state stability of a system comprises the nominal system
stability and the uniformly bounded uncertainties.

Definition 4.8 (Input-to-State practically Stable [212])
Suppose Assumption 4.1 is satisfied for system (4.26). The system (4.26) is said to be input-
to-state practical stable in a set Xr with respect to d if Xr is a robust positively invariant set for
the system (4.26) and there are a K function α, a KL function β and a constant c ≥ 0 such that

φκ(i, x0, d, w) ≤ β(|x0|, i) + α(‖di−1‖) + c , (4.28)

for all x0 ∈ Xr, where Xr includes the origin as an interior point.

The stability analysis of the state-feedback NMPC have been intensively studied in the liter-
atures such as [197, 212], which is based on the assumption that the states of the system are
measurable. However, the integration of an observer into the control loop impedes the analysis
of the closed-loop stability. Several works have been conducted to evaluate the system stability
with an observer. Reference [213] employed a fast high-gain observer to obtain the stabil-
ity for a robust NMPC with vanishing perturbations. The non-vanishing model mismatches
were included in [214], where the controller was designed in the discrete-time domain. In this
thesis, the nonlinear system with the model mismatches and the disturbances is considered.
The corresponding system dynamic is given in (4.16) and can be compactly represented by
xk+1 = F (xk, uk, εk), where ε ∈ E and E is a compact set.
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Assumption 4.2
The initial observer error is bounded by a positive constant ε0, i.e. |x̂0 − x0| ≤ ε0.

The cost function at the step k of the CFTOC problem Pr in (4.19) is a function of xk, εk and
Uk. It can be then written as J(xk, Uk, εk). The difference of two adjacent cost functions can
be decomposed as

J(xk+1)− J(xk) = J(F (xk, uk, εk))− J(xk)

=J(F (x̂k uk, ε̂k))− J(x̂k) + J(x̂k) + J(F (xk uk, εk))− J(xk)− J(F (x̂k uk, ε̂k)) ,
(4.29)

where F (xk, uk, εk) = Ak xk +Bk uk +Ek + εk, which is asymptotically stable. Therefore
there is a K-function α1 that

J(F (x̂k uk, ε̂k))− J(x̂k) ≤ −α1(|x̂k|) , (4.30)

where the K-function is defined in [212]. Moreover as it is indicated in [212], there exists a
K-function α2 that satisfies

J(x̂k)− J(xk) ≤ α2(|x̂k − xk|) . (4.31)

Since ε contains the model uncertainties, the system propagation function in (4.16) is uniform
continuous in ε for all x ∈ X and u ∈ U, K-functions α3 and α4 can be found to satisfy

J(F (xk, uk, εk))− J(F (x̂k, uk, ε̂k)) ≤ α2(|F (xk, uk, εk)− F (x̂k, uk, ε̂k)|)
≤ α2 ◦ (α3(|x̂k − xk|) + α4(|ε̂k − εk|)) ,

(4.32)

where α2◦α3(·) := α2(α3(·)). Substitute (4.30), (4.31) and (4.32) into (4.29), it can be obtained
that

J(F (xk, uk, εk))− J(xk) ≤ −α1(|x̂k|) + α2(|x̂k − xk|) + α2 ◦ (α3(|x̂k − xk|) + α4(|εk|)) .
(4.33)

The closed-loop system need to be robustly stable for the initial state of the observer with |x̂0−
x0| ≤ ε0 and the propagations, i.e. |x̂k − xk| ≤ ε̄ + αo(‖εk−1‖), where ε̄ is a positive constant
and αo is a K-function. They are defined to guarantee that the behaviour of the estimation error
ek = xk − x̂k satisfies

|ek| ≤ a |e0| b−k + αo(‖εk−1‖) , (4.34)

when |e0| ≤ ε0, where a, ε0 are positive constants and b > 1.
Then, the closed-loop system is input-to-state stable with the bounded initial observer error

ε0, i.e. |x̂0 − x0| ≤ ε0 and ε0 is a positive constant, and the disturbance set E with ε ∈ E is
sufficient small. The first condition is guaranteed by the design of the arrival cost in MHE [175]
and the proper choose of initial values of EKF [215]. Moreover, the cost function need to be a
Lyapunov function for the closed-loop nominal system.

4.4 Simulation Results

Simulations aiming to investigate the impacts of the parameter mismatches on the CCS-MPC
have been conducted. The weighting factor R in Pr is omitted and the prediction horizon Np
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is chosen as one for comparing the proposed RPCC with the conventional deadbeat control.
The ratio indicating the parameter mismatch is represented with the coefficient rp defined as a
percentage of the nominal parameter value, i.e.

rp =
pc
pm
× 100% , (4.35)

where pc is the value of the parameter applied in the controller and pm is the nominal value of
the motor parameter. In the subsequent investigations, the value of the parameters in the current
control is modified accordingly for the purpose of verifying the control performance under the
parameter mismatch. Moreover, various parameter variations with different load conditions, i.e.
0%, 50% and 100% of the rated torque, are assessed. The mean error of the control performance
is computed as

ei =
‖i− i∗‖2

IN
, (4.36)

where i∗ denotes the current reference vector given in the dq domain. The black dots in the
following figures demonstrate the actual computed error ei, while the surface are fitted with the
spline interpolation that introduced in Section. 3.3.2.1.

4.4.1 The Impact from the Stator Resistance
Firstly, the simulation is conducted to study the impact from the parameter mismatch of the
stator resistance Rs . The parameter varies from 50% to 150% of the nominal value, with a 10%
of the nominal value as the step. The load condition changes from 0% to 100% with a step 10%
of the rated torque. The tracking error ei defined in (4.36) of the simulation results are shown
in Fig. 4.2.

(a) (b)

Figure 4.2: The steady state error ei caused by the parameter mismatch of Rs for the CCS-MPC with Np = 1 in
(a) and with Np = 5 in (b).

As it is shown in Fig. 4.2, the influence of Rs is roughly symmetric for the deadbeat control
regarding the rate of the parameter variation. Moreover, a higher load will lead to a higher
control error under the parameter variation of Rs. For the CCS-MPC with a longer prediction
horizon, the error is unsymmetrical in terms of the variation rate. The reduction of the stator
resistance will cause more tracking error than its increase. Regarding the influence of the load
condition, the conclusion is similar to the deadbeat control, i.e. the variation of the stator
resistance will cause a higher control error at a higher load condition. Therefore, for both the
deadbeat control and the CCS-MPC with Np = 5, the largest resulted error appears at the
full-load condition.
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4.4.2 The Impact from the Inductance

The influence of the inductances is simulated. The corresponding simulation results to inves-
tigate the parameter variation of Ld and Lq are shown in Fig. 4.3 and in Fig. 4.4, respectively.

(a) (b)

Figure 4.3: The steady state error ei caused by the parameter mismatch of Ld for the CCS-MPC with Np = 1 in
(a) and with Np = 5 in (b).

Several conclusions can be drawn from the simulation results. Fig. 4.3 shows that a reduction
of Ld value has a larger impact on the tracking performance than its increase, i.e. it can cause
larger tracking error. The impact of the parameter mismatch from Ld is slightly affected by the
load condition. These conclusions can be applied for both deadbeat control and the CCS-MPC
with a prediction horizon of Np = 5.

(a) (b)

Figure 4.4: The steady state error ei caused by the parameter mismatch of Lq for the CCS-MPC with Np = 1 in
(a) and with Np = 5 in (b).

The effects from the parameter mismatch of Lq differs from those of Ld. Fig. 4.4 shows that
the load torque has a great impact on the error current ei caused by the parameter mismatch of
Lq , i.e. a higher load torque causes a higher error. The effects of the Lq variation is symmetric
regarding to rp . There are few differences between the influences of the parameter Lq variation
on the deadbeat control and on the CCS-MPC.

4.4.3 The Impact from the Permanent Magnet Flux Linkage

The impact of the permanent magnet flux linkage is simulated and the corresponding simulation
results are shown in Fig. 4.5.

It can be concluded from the Fig. 4.5 that the impact from the permanent magnet flux linkage
is symmetrical regarding the rate of the variation, which is valid for both the deadbeat control
and the CCS-MPC. The load has little impact on the tracking error. Furthermore, comparing
to the other three electrical parameters, the permanent magnet flux linkage induces the largest
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(a) (b)

Figure 4.5: The steady state error ei caused by the parameter mismatch of Ψm for the CCS-MPC with Np = 1 in
(a) and with Np = 5 in (b).

tracking error under the same rate of parameter variation and the same load condition. It may be
resulted from that the term related to the permanent magnet flux linkage in (4.5) can be regarded
as a constant disturbance, which directly causes the offset for the control result if it is not
perfectly compensated, while the other three parameters are related to the system characteristics
and have more effects on the system behaviours, such as the system stability and the system
dynamics.

It is worth mentioning that the parameter variation of the aforementioned electrical param-
eters can cause more tracking errors for the CCS-MPC than for the deadbeat control, which
can be explained by the fact that the error of the model is accumulated as the prediction grows.
Therefore, a larger tracking error can be observed under the control of the CCS-MPC as the
prediction horizon increases.

4.5 Experimental Results

The proposed observer-based robust predictive current control strategy was implemented on a
dSPACE real-time system that described in Appendix B.2. Several experimental scenarios are
designed. The corresponding experiments have been carried out to investigate the behaviour of
the proposed method and to compare it with the classical predictive current control. Firstly, the
performances at the steady state with various situations of the parameter mismatches are com-
pared, namely the parameter mismatch of Rs, Ld, Lq and Ψm, for both the deadbeat control and
the CCS-MPC with a prediction horizon of three. The experiments are furthermore conducted
with the proposed robust current controller. Moreover, as it is shown in the simulations, the
load condition can affect the control performance under the parameter mismatch. Therefore,
several load conditions are investigated via experiments. Subsequently, the comparison is con-
ducted under the existence of the encoder error. The digital delay can also affect the control
performance, particularly for the embedded system with a relatively low sampling frequency.
Therefore, the control performances without digital-delay compensation and under an inaccu-
rate digital-delay compensation are furthermore investigated. At last, the conclusions can be
drawn accordingly.
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4.5.1 Comparison of the Deadbeat Control and the RPCC under the Pa-
rameter Mismatch

The experiments have been firstly conducted for the PMSM drive system controlled with the
deadbeat control method. These experiments aiming to evaluate the performance under the
parameter mismatches were carried out through the same pattern, i.e. rp reduces to 50% at
t = 2 s and increases to 200% at t = 4 s. The EKF as well as the MHE is deployed as the
disturbance observer for estimating the current and the disturbance.

4.5.1.1 Performance under the Variation of Ld

The influence from the parameter mismatch of Ld is firstly investigated. The experimental
results are shown in Fig. 4.6 for the no load condition, in Fig. 4.7 for a load of 50% of the rated
torque and in Fig. 4.8 for the full load condition.
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Figure 4.6: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Ld and no load
condition. (a) and (d) denote the experimental results with the deadbeat control. (b) and (e) are the results with the
RPCC deploying EKF. (c) and (f) represent the experimental results with the RPCC employing MHE.

Fig. 4.6 shows that from t = 4 s, i.e. the variation of Ld to rp = 200%, severe oscillation (up
to the rated current value) can be noted for the deadbeat control. More ripples can be observed
at rp = 50% than the nominal condition. On the contrary, the current loop controlled with the
robust predictive control strategy, both with the EKF and with the MHE, remains stable and
reveals accurate tracking results under the parameter variation of Ld.

Similar phenomenon can be observed with a 50% of the rated torque as the load, i.e. the
closed-loop system of the current control exhibits instability at rp = 200%, where an oscillation
with an amplitude of the rated current can be observed. Moreover, at the parameter mismatch
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Figure 4.7: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Ld and 50% of
the rated torque as the load. (a) and (d) denote the experimental results with the deadbeat control. (b) and (e) are
the results with the RPCC deploying EKF. (c) and (f) represent the experimental results with the RPCC employing
MHE.

of rp = 50%, more ripples than no load condition is noted. The RPCC with EKF as well as
MHE can both track the current reference accurately. Moreover, the system stability with the
RPCC is not affected by the variation of Ld.

The deadbeat control demonstrates analogous phenomenon at the parameter mismatch of Ld
under the full-load condition to the other load conditions. Nonetheless, at the full-load condi-
tion, higher values of the oscillated current can be noticed in Fig. 4.8. It can be concluded from
the previous experiments that the parameter mismatch of Ld changes the system characteristics
and can cause conspicuous ripples or even the system instability. However, the implementa-
tion of the robust control strategy, either with the EKF or the MHE, improves the robustness of
the closed-loop system significantly and reduces the noises as well as ripples contained in the
currents.

4.5.1.2 Performance under the Variation of Lq

Subsequently, the influence from the parameter mismatch of Lq is investigated. The experimen-
tal results under no load condition are shown in Fig. 4.9. In comparison with the experimental
results in Fig. 4.6, it can be seen that the parameter mismatch of Lq has less effect on the sys-
tem characteristics than that of Ld, i.e. the current loop can remain stable under the parameter
mismatch of Lq. However, obvious ripples can be observed. More specifically the parameter
mismatch of Lq causes a ripple up to 20% of IN in q-axis. On the contrary, the proposed RPCC
can track the reference accurately and remains stable.

Because of the limitation of the space, the transient performance of 50% load condition is
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Figure 4.8: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Ld and full load
condition. (a) and (d) denote the experimental results with the deadbeat control. (b) and (e) are the results with the
RPCC deploying EKF. (c) and (f) represent the experimental results with the RPCC employing MHE.
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Figure 4.9: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Lq and no load
condition.
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Figure 4.10: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Lq and full load
condition.

omitted. The experimental results are shown in Fig. 4.10. The reduction of Lq, i.e. rp =
50% causes a steady-state offset for id and iq, which can be noticed at the full-load condition.
Under a load of 50% of the rated torque, the deadbeat control reveals unstable behaviour when
rp = 200%. Same behaviour can be observed under the full load, where the oscillations at
rp = 200% with full load is much higher than that with 50% of the rated torque as load. It is
worth mentioning that the parameter mismatch of Ld mainly causes the oscillations in d-current,
which has an amplitude of almost the rated current, while the parameter mismatch of Lq causes
the oscillations mainly in q-axis, which may be up to 1.5 IN . Moreover, the parameter mismatch
of Ld induces the ripples in q-axis current, which can be up to 25% of the rated current. The
parameter mismatch of Lq also causes ripples in d-axis. Their amplitude depends on the load
condition. As it is shown in (4.5), the coupling between id and iq reflects the instability of one
axis on the other axis. But the induced impact is limited to a certain degree. Therefore, the
oscillation in the q-axis caused by the Ld variation remains unchanged, even though the load
condition is varied, while the oscillation in d-axis caused by the Lq variation varies with the
load condition. In general, the inductances, namely Ld and Lq, have both significant impacts on
the system characteristics and affect the closed-loop stability.

4.5.1.3 Performance under the Variation of Rs

The control performance of the deadbeat control and of the proposed RPCC is further investi-
gated under the variation of Rs. The experimental results are shown in Fig. 4.11 and Fig. 4.12.
Comparing to the experimental results of the previous scenarios, i.e. the parameter mismatches
of Ld and Lq, it can be noticed that the parameter mismatch of the stator resistance has less
impact on the deadbeat control. Neither unstable system behaviour nor obvious steady-state
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Figure 4.11: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Rs and no load
condition.
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Figure 4.12: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Rs and full load
condition.
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offset can be observed from the experimental results with no-load condition in Fig. 4.11 and
full-load condition in Fig. 4.12. However, the parameter mismatch of Rs can deteriorates the
control performance at a higher load condition, where tracking error as well as higher ripples
can be noted. In contrast, the proposed RPCC remains stable and accurate under the variation
of Rs.

4.5.1.4 Performance under the Variation of Ψm

At last, the control performance under the variation of the permanent magnet flux linkage Ψm

is investigated. The corresponding results are shown in Fig. 4.13 and Fig. 4.14. As it is shown
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Figure 4.13: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Ψm and no load
condition.

in Fig.4.13, the variation of Ψm causes an evident steady-state error for the current of q-axis. A
steady-state offset around 15% of IN at rp = 50% and an offset up to 25% of IN at rp = 200%
can be observed under the control of the conventional deadbeat control, while RPCC effectively
eliminates the influence of the parameter mismatch of Ψm. During the transient of the parameter
variation, i.e. at t = 2 s and at t = 4 s, an overshoot can be noted under the control of RPCC.
Moreover, the overshoot of iq is much higher than that of id.

An analogous steady-state offset can be observed with 50% of the rated torque as the load
and also with full-load condition. Particularly, the experimental results of the full-load condition
are shown in the Fig. 4.14. Comparing to the no-load condition, higher ripples can be noticed
with a heavier load, both in d-axis and q-axis. Conversely, the proposed RPCC eliminates the
steady-state error. Nonetheless, similar to the no-load condition, overshoots can be noted at the
transient of the parameter variation.

Several conclusions can be drawn after comparing the experimental results of the parameter
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Figure 4.14: Comparison of the deadbeat control and the RPCC under the parameter mismatch of Ψm and full load
condition.

variation of Ψm under different load conditions. Firstly, the permanent magnet flux linkage has
little effect on the system stability, but its mismatch can cause an evident tracking error for the
deadbeat control. Moreover, a higher load torque may result in a larger current ripple. The
proposed RPCC eliminates the steady-state error. However, an obvious overshoot during the
transient of the parameter variation can be noted in q-axis, if the RPCC is deployed. It may be
resulted from the tuning of the parameters for the observers, i.e. the covariance matrices of the
system noise and of the measurement noise, since the estimator is so tuned that the variation
can be tracked quickly. Therefore, the estimator is rather aggressive. It should be pointed out
that the overall performance of MHE is practically the same as that of EKF. Thus, it should
be sufficient to deploy EKF as the disturbance observer to compensate the effects from the
parameter mismatches and the disturbances as well as to improve the system robustness, the
control performance for the PMSM drive system.

4.5.1.5 Summary of the Steady-State Error

In order to better visualize the steady-state error and compare them more perceptually, the con-
trol performance is evaluated by the absolute value of the error, which is defined by employing

eid, iq =
|id, q − i∗d, q|

IN
, (4.37)

where i∗d, q denotes the current reference value given for the d-axis or the q-axis. Regarding
various parameter mismatches and load conditions, the computational results are presented in
histograms and demonstrated in Fig. 4.15 - Fig. 4.18.
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Figure 4.15: Comparison between the proposed RPCC with MHE/ EKF as the disturbance observer and the con-
ventional deadbeat control under the variation of Ld.

It can be noticed from the Fig. 4.15 that the proposed RPCC with the observers, i.e. either
EKF or MHE, outperforms the conventional deadbeat control under the variation of Ld with
and without load. The variation of Ld causes instability for the deadbeat control at rp = 200%,
which can be seen from Fig. 4.6, Fig. 4.7 and Fig. 4.8. Moreover, it evokes a steady-state error
of around 6% of the rated current. The aforementioned problems are nonetheless tackled by
implementing the RPCC strategy. The improvements generated by the two different disturbance
observers are almost the same.
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Figure 4.16: Comparison between the proposed RPCC with MHE as well as EKF as the disturbance observer and
the conventional deadbeat control under the variation of Lq .

Comparing to the variation of Ld, the variation of Lq has less influence on the closed-loop
stability. However, fierce oscillations can still be observed at rp = 200%, while the mean error
is abnormally reduced compared with the nominal situation. On the contrary, the proposed
RPCC delivers better control performance, in terms of the tracking accuracy and the system
robustness. The rate of the impact caused by the parameter mismatch of Ld depends more on
rp , i.e. the rate of the parameter variation, while the impacts evoked by the parameter mismatch
of Lq hinges more on the load condition.

The influence of the parameter mismatch of Ψm is summarized in Fig. 4.17. As given in
(4.16), Ψm in the matrix E affects the steady-state performance of the current control. An
evident steady-state offset can be found under the Ψm variation with the conventional deadbeat
control, which can amount to 20% of the rated current. The relatively small error of id at rp =
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Figure 4.17: Comparison between the proposed RPCC with MHE/ EKF as the disturbance observer and the con-
ventional deadbeat control under the variation of Ψm.

200% and no-load condition can be explained by that the error induced in iq may compensate
the original disturbances. A larger error is observed in q-axis, which is dependent on the rate of
parameter variation and the load condition.
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Figure 4.18: Comparison between the proposed RPCC with MHE/EKF as the observer and the conventional
deadbeat control under the variation of Rs.

Comparing to the other parameters, Rs has the least influence on the control performance, in
term of the mean error and the ripple, which can be observed in Fig. 4.18. The largest steady-
state error can be found at no-load condition, which is up to 2% of the rated current value.

It can be summarised that the employment of MHE and EKF into the framework of the
proposed robust predictive current control have slight difference for estimating the model un-
certainties that is resulted from the parameter variation, and also for compensating the distur-
bances. This conclusion can be explained by the fact that the rate of the parameter variation
is relatively slow and the propagation of the augmented system model for the PMSM can be
captured by the linearisation conducted by the EKF. The parameter variation of inductances
affects the system characteristics and can cause instability of the closed-loop system, while the
variation of the permanent magnet flux linkage induces an evident steady-state error, which is
dependent on the rate of the parameter variation and the load condition. The stator resistance
has the least influence on the accuracy of the tracking performance as well as the closed-loop
stability. The implementation of the proposed RPCC effectively eliminates the steady-state er-
ror and improves the closed-loop stability. More specifically, the closed-loop system reveals
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stable under the various parameter mismatches and accurately tracks the reference.

4.5.2 Comparison of the CCS-MPC and the RPCC under the Parameter
Mismatch

Moreover, the proposed RPCC is compared with the conventional CCS-MPC and the CCS-MPC
with an output compensation, which is realized by uk + B−1ε̂k. Due to the limitation of the
computational power, in some applications the implementation of the CCS-MPC is realized by
computing the explicit solution offline. Then, the solution uk is searched online from the offline
computational results and applied to the modulator. In this case, the estimated disturbance
can not be directly included into the CFTOC problem. Therefore, the compensation can only
be executed by compensating the control voltage with the term B−1ε̂k. However, it can be
predicted that the compensation of the disturbance term for the command voltage instead of
including it into the optimization problem can result in a no-optimal solution. The prediction
horizon of the conventional CCS-MPC, CCS-MPC with an output compensation and RPCC is
set to be Np = 3 in the following investigations. On the purpose of compactness, only the
dynamic response to the parameter variation of Ld and Ψm is shown in the following, since
the results of Lq is relatively similar to that of Ld and Rs has only slight influence on the
control performance. Nonetheless, the steady-state error of all kinds of parameter mismatches
are computed and summarized in histograms, analogously to the deadbeat control performance
evaluation. Since little difference between the estimating performances of EKF and MHE can be
found, as it is indicated in the previous section, the EKF is selected as the disturbance observer
for the long prediction horizon current control in the following.

4.5.2.1 Performance under the Variation of Ld

Firstly, the control performances of the conventional CCS-MPC, CCS-MPC with the compen-
sation and the proposed RPCC are investigated under the parameter variation of Ld . The exper-
imental results are shown in Fig. 4.19.

Comparing to the control performance of the deadbeat control, which is shown in Fig. 4.8,
the control of the CCS-MPC remains stable, even when the Ld changes to 200% of the nominal
value. It is worth mentioning that a small steady-state offset of iq can be observed, also at the
state without parameter mismatch, which can be explained by the fact that the parameter values
deployed in controller are directly obtained from the manufacturer’s data sheet and may differ
from the real parameter values. Moreover, the digital delay has also impact on the control per-
formance, for which the implemented digital-delay compensation may be inaccurate. However,
the implementation of the RPCC eliminates the tracking error effectively. Furthermore, little
difference can be noted between the CCS-MPC with the output compensation and the RPCC.
More specifically, RPCC is slightly better than the CCS-MPC regarding the tracking accuracy,
especially for the q current.

4.5.2.2 Performance under the Variation of Ψm

The performance evaluation of the deadbeat control indicates the significance of the parameter
mismatch of Ψm on the tracking accuracy. Its impact on the CCS-MPC is furthermore studied.
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Figure 4.19: Comparison of the proposed RPCC to the conventional CCS-MPC as well as CCS-MPC with the out-
put compensation under the parameter mismatch of Ld and full-load condition. (a) and (d) denote the experimental
results with the CCS-MPC. (b) and (e) are the currents controlled by the CCS-MPC with the output compensation.
(c) and (f) represent the experimental results with the RPCC employing EKF. The conventional CCS-MPC is de-
noted by blue, CCS-MPC with the output compensation is presented by light green and the proposed RPCC with
EKF is shown in dark green.

The corresponding experimental results are shown in Fig. 4.20.
Because that the prediction error resulting from the parameter mismatch of the permanent

magnet flux linkage accumulates as the prediction horizon grows, a larger tracking error com-
pared to the deadbeat control, which can amount around to 30% of the rated current, can be
observed under the control of CCS-MPC at the full-load condition with rp = 200%. The output
compensation for CCS-MPC can eliminates the offset to a certain level. Nonetheless, a small
steady-state error can still be noticed at rp = 200%, when the output compensation is applied.
However, as mentioned in [216], an overall optimization is required for the CCS-MPC. The
inclusion of the disturbance term into the optimization problem, as in RPCC, shows significant
improvement of the control performance in terms of the tracking accuracy. The RPCC effec-
tively cancels the steady-state error. However, both CCS-MPC with the output compensation
and RPCC reveal an overshoot at the time instant of the parameter variation, which is analogous
to the deadbeat control and may be caused by the parameter selection of the estimators.

4.5.2.3 Summary of the Steady-State Error

The absolute values of the mean errors regarding id and iq are computed, summarized in
Fig. 4.21 - Fig. 4.24.

As it is shown in Fig. 4.21, the respective errors of the currents in d-axis and q-axis show
different dependence on the load condition. However, it can be noticed that the steady-state
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Figure 4.20: Comparison among the proposed RPCC, the conventional CCS-MPC as well as CCS-MPC with
the output compensation under the parameter mismatch of Ψm and full-load condition. (a) and (d) denote the
experimental results with the deadbeat control. (b) and (e) are the currents controlled by the CCS-MPC with the
output compensation. (c) and (f) represent the experimental results with the RPCC employing EKF.
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Figure 4.21: Comparison among the proposed RPCC, the conventional CCS-MPC and the CCS-MPC with the
output compensation under the variation of Ld. The conventional CCS-MPC is denoted by blue, CCS-MPC with
the output compensation is presented by light green and the proposed RPCC with EKF is shown in dark green.



4.5. EXPERIMENTAL RESULTS 159

error amplitude, i.e. |ei|, is relatively constant regarding Tl . A reduction of Ld can cause a
larger tracking error than an increase of Ld. The output compensation improves the tracking
accuracy in the most test cases. Nonetheless, it deteriorates the control performance comparing
to the conventional CCS-MPC in some cases, e.g. id at rp = 200%, the full-load condition as
well as iq at the no-load condition. The proposed RPCC effectively eliminates the steady-state
errors.

The steady-state errors under the parameter variation of Lq are computed and summarized in
Fig. 4.22. In general, the parameter variation of Lq can induce larger steady-state errors than Ld,

0
50

100 100

50

200
0

5

·10−2

Tl (%) r p
(%

)

e i
d
(p
.u
.)

(a)

0
50

100 100

50

200
0

5

·10−2

Tl (%) r p
(%

)
e i

q
(p
.u
.)

(b)

Figure 4.22: Comparison of the proposed RPCC and the conventional CCS-MPC as well as CCS-MPC with output
compensation under the variation of Lq .

both in d-axis and q-axis. More specifically, Ld can induce a steady-state error of approximately
3% of the rated current, while Lq results in an error of up to 8% of the rated current. Its impact
depends on the load condition as well as the rate of the variation. The output compensation
of CCS-MPC significantly reduces the tracking error in d-axis, while it affects the tracking
performance of iq irrelevantly for the most test scenarios. On the contrary, the proposed RPCC
effectively redresses the errors of id and iq.
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Figure 4.23: Comparison of the proposed RPCC and the conventional CCS-MPC as well as CCS-MPC with output
compensation under the variation of Rs.

In Fig. 4.23, the impacts from the parameter mismatch of Rs are demonstrated. Similar
phenomenon to the deadbeat control can be noticed. The output compensation efficaciously
eliminates the tracking error of id, but reduces the error of iq only to a certain level or even
aggravates the tracking performance in some test cases. The feedforward compensation can
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only realize the suboptimum solution for the current control, while the proposed RPCC disposes
of the error and reveals the system stability, as presented in Fig. 4.23.
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Figure 4.24: Comparison of the proposed RPCC and the conventional CCS-MPC as well as CCS-MPC with output
compensation under the variation of Ψm.

From Fig. 4.24, it can be noted that the permanent magnet flux linkage Ψm can induce a
larger steady-state error for the CCS-MPC than that for the deadbeat control, which can be
explained by the fact that the permanent magnet flux linkage Ψm contributes to the offset term
of the control loop and the induced error is accumulated as the prediction horizon increases.
Therefore, the parameter mismatch of the permanent magnet flux linkage Ψm can cause larger
steady-state errors at most working points. For example, the parameter mismatch of Ψm induces
a steady-state error of more than 30% of the rated current under the control of the CCS-MPC,
which is around 25% under the deadbeat control. An output compensation can significantly
reduce the error. However, the steady-state errors can still be noticed. After employing the
RPCC, the errors are efficiently eliminated.

In summary, the CCS-MPC is more stable than the deadbeat control, while it demonstrates
larger tracking errors under the same parameter mismatches. The reason can be traced back
to the fact that the effect of the disturbance accumulates with the increase of the prediction
horizon Np. The output compensation of CCS-MPC can mitigate the impacts of the parame-
ter mismatches to a certain level. But in some cases, depending on the rate of the parameter
mismatch and the load condition, the compensation can over-/under-compensate the error and
therefore deteriorates the control performance. However, the proposed RPCC outperforms the
other two methods and minimizes the effects resulted from the parameter mismatches.

4.5.3 Performance under Encoder Error

Furthermore, the experiment of simulating the encoder error was carried out. An offset is added
to the encoder signal. The offset is arbitrary and selected as the biased value at the rotor align-
ment. Accordingly, the experimental results are shown in Fig. 4.25. The PMSM run at a
constant speed of 1500 rpm, where the proposed RPCC was activated at t = 1 s.

As it is shown in Fig. 4.25, the conventional CCS-MPC fails to track the reference under
the existence of an encoder error. An tracking error of around 130% of the rated current can
be observed in the q-axis. However, the proposed RPCC effectively compensates the encoder
error, i.e. the steady-state error has been cancelled after activating the RPCC. Moreover, it can
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Figure 4.25: Comparison between the CCS-MPC and the proposed RPCC under the encoder error. (a) represents
the measurements of id and (b) shows the results of iq .

be concluded that the proposed RPCC can be activated smoothly during the control process and
has little effect on the system stability. A small overshoot can be observed at the activation of
the RPCC, which is around 15% of the rated current. However, it can be reduced by tuning the
parameters of the disturbance observer.

4.5.4 Performance under Inaccurate Digital Delay Compensation

4.5.4.1 High Sampling Frequency

The digital delay is inevitable in the drive system. Normally 1.5Ts is compensated for the
control algorithm to eliminate the influence from the digital delay [24]. In Fig. 4.26, the ex-
perimental results of the conventional CCS-MPC without the digital delay compensation is
presented. Experimental results of CCS-MPC with a digital delay compensation of 1.5Ts and
the proposed RPCC are shown in Fig. 4.27 and Fig. 4.28, respectively. A load step of 100% of
the rated torque was added at t = 1.5 s.

(a) (b)

Figure 4.26: The experimental results of the conventional CCS-MPC without digital delay compensation, where
the legend ’NC’ denotes the corresponding measured currents.

Fig. 4.26 shows that the digital delay mainly causes the steady-state error in the d-axis. More-
over, conspicuous overshoots at the insertion of the load step can be observed both in the d- and
the q-axis, which amount to 130% of the rated current in d-axis and 110% of the rated current
in q-axis. At no-load condition, the tracking error of id accounts for around 25% of IN . It
increases to 40% of the rated current after a load of 100% rated torque is applied.

In Fig. 4.27, a compensation of 1.5Ts is applied to the PMSM drive system to realize the
digital delay compensation. It can be noticed that at the no-load condition, the steady-state
error caused by the digital delay is effectively eliminated. However, at 1.5 s, a full load is added
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(a) (b)

Figure 4.27: The experimental results of the conventional CCS-MPC with a digital delay compensation of 1.5Ts ,
where the legend ’WC’ denotes the corresponding measured currents.

to the PMSM, a tracking error around 15% of the rated current can be noted in the d-axis.
By deploying a constant digital delay compensation, the conspicuous overshoot observed in
Fig. 4.26 has been dramatically reduced to approximately 25% of IN in the d-axis and almost
fully eliminated in the q-axis.

(a) (b)

Figure 4.28: The experimental results of the proposed RPCC. The legend ’REKF’ denotes the measured currents
with RPCC, where EKF is deployed as the observer.

The proposed RPCC is also tested under the existence of the digital delay. The experimental
results are shown in Fig. 4.28. The steady-state errors, both in no-load condition and full-load
condition, are eliminated by implementing the proposed RPCC. However, it can be noticed that
an overshoot of more than 50% of IN in the d-axis is generated at the load step, which has a
relatively high amplitude but a short duration time. This may be resulted from the parameter
choice of the EKF, which is so tuned that EKF is relatively aggressive and can react to the
disturbance fast. The overshoot noted in Fig. 4.28 can be reduced by tuning the EKF parameters.

4.5.4.2 Low Sampling Frequency

The implemented discretization method in this thesis is the Euler approach. A relatively low
sampling frequency impairs the approximation of the discrete-time system to the continuous-
time system. Therefore, the digital delay is more crucial for the control with a lower sampling
frequency. CCS-MPC and RPCC are furthermore tested with a sampling time of Ts = 500 µs.
The PMSM run at 2000 rpm for this test.

With a larger sampling time and a higher speed, the digital delay is more critical for the
control performance of CCS-MPC, i.e. a larger error can be observed at the steady state. It can
be observed from Fig. 4.29 that the steady-state error of id amounts around 80% of IN with a
sampling frequency of 2 kHz and under no load, which is much higher than the error at the same
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(a) Id (b) Iq

Figure 4.29: Comparison between the CCS-MPC and the proposed RPCC with a sampling time of Ts = 500 µs.
The proposed RPCC is activated at t = 2 s

condition but with a higher sampling frequency of 10 kHz, which is 25% of the rated current. A
small bias can be noted in the q-axis, which is around 10% of IN . However, after activation of
the proposed RPCC, the errors are eliminated. It is worth mentioning that the implementation
of the RPCC also reduces the current ripples and therefore improves the current quality.

4.5.5 Summary

In this section, an observer-based robust predictive current control scheme is proposed. This
scheme is generally formulated and applicable to any AC drive system. It has been proved to
be input-to-state stable, if several prerequisites are satisfied, i.e. the cost function of the cor-
responding CFTOC problem is a Lyapunov function for the closed-loop nominal system, the
initial observer error is bounded and the system propagation function is uniformly continuous
in disturbance domain. The effectiveness of the proposed robust predictive current control is
verified with experimental results under various scenarios, i.e. the parameter mismatches, the
encoder error and the inaccurate digital compensation. The proposed control strategy can be
smoothly activated and causes slight overshoot. Therefore, it outperforms conventional predic-
tive controllers, i.e. the deadbeat control and the CCS-MPC at the steady state as well as during
the transient. Moreover, because of the filtering effect along with the EKF and MHE, high order
harmonics can be attenuated to a certain level. However, due to the limited bandwidth of the
observers, the filtering effects have less impact on the low order harmonics.

4.6 Conclusion

The basic concepts of the continuous-control-set model predictive control are firstly reviewed
in the first part of this chapter. The CCS-MPC is a powerful approach to synthesize controllers
for the constrained systems. However, the synthesis of the CCS-MPC relies on the knowledge
of the controlled system. The existence of the model uncertainties and the disturbances impairs
the control performance of the CCS-MPC or even cause instability of the closed-loop system,
which has been verified by the simulations and experiments. Unfortunately, designing a MPC
under these circumstances is challenging in general. Many paradigms, such as the robust MPC
and the stochastic MPC, have been proposed to deal with the uncertainties and the disturbances.
In this chapter, a disturbance observer is implemented to eliminate the error caused by the pa-
rameter mismatches and the disturbances. It can be regarded as a compromise between the
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dynamic performance and the robustness, which can provide satisfactory tracking performance
and has acceptable computational cost. The proposed control strategy can be extended to other
AC drive systems. The inclusion of an observer into the close-loop system affects the system be-
haviour. Therefore, the closed-loop stability is furthermore investigated, which is proved to be
input-to-state stable under the satisfaction of several conditions. The proposed robust predictive
current control scheme has shown its effectiveness against parameter mismatches and distur-
bances, such as the measurement error of the encoder and the digital delay of an embedded
system, via the implementation on the embedded system and the corresponding experimental
results. However, the low-order harmonics can not be eliminated by implementing the distur-
bance observer due to the limited bandwidth of the estimator. The attenuation of the low-order
harmonics is discussed in the Chapter. 6.
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CHAPTER 5

Finite-Control-Set Model Predictive Control

5.1 Introduction

The finite-control-set model predictive control (FCS-MPC) was proposed to inherit the discrete
nature of the inverter. Different from the continuous-control-set MPC, FCS-MPC is conceptu-
ally simple, has straightforward implementation as well as fast dynamic response and requires
less computational resources, if a short prediction horizon is applied [24]. Moreover, since
the switching signals of the inverter are directly computed through FCS-MPC, no modulator is
required in the FCS-MPC framework [2]. Because of the aforementioned advantages of FCS-
MPC, many applications have implemented it to realize the control of power converter. In [217],
the FCS-MPC was implemented for a three-phase two-level inverter. In [218], it was applied
for a three-phase neutral-point-clamped inverter and in [219] for H-Bridge inverters. Moreover,
it has been deployed for different control objects. Authors in [66] implemented the FCS-MPC
for the torque control of the induction machines. In [220], it was employed for the speed control
for the PMSM and IM and in [97] for the current control of the PMSM. In FCS-MPC, the pos-
sible switching states are taken into consideration in the optimization problem. Analogously
to CCS-MPC, the underlying optimization problem is a trade-off problem between the refer-
ence tracking and the output effort. In the FCS-MPC scheme, the penalization on the command
output is replaced by the switching effort.

One of the main drawbacks of FCS-MPC is the high computational burden of solving the
underlying optimization problem with a long prediction horizon or when the converter under
control, such as modular multi-level converter (MMC), has a large number of switching states,
since the problem is in these cases NP-hard, i.e. the computational complexity increases ex-
ponentially with the prediction horizon and the voltage level of the inverter [221]. In many
applications, the prediction horizon is consequently chosen to be one, aiming to enable the
deployment of FCS-MPC in real time. However, the multi-step FCS-MPC shows excellent
performance for example for the high-order inverter to cover the oscillation period during the
filter resonance. Therefore, many researches focusing on reducing the computational burden
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of the long horizon FCS-MPC have been carried out. In [222], the multistep FCS-MPC prob-
lem is formulated as an integer least square problem, which can be solved efficiently by using
the sphere decoding algorithm. Authors in [223] presented a variable switching point predic-
tive control method with the extended prediction horizon. It shows that the torque ripple and
the total harmonic distortion of the current are significantly reduced with a longer prediction
horizon. Besides the works focusing on the control algorithms, the efficient implementation
of FCS-MPC on real-time control platforms has also been studied. Reference [224] presented
an efficient FPGA implementation of FCS-MPC for the flying-capacitor converters and refer-
ence [225] implemented a long-horizon FCS-MPC with the sphere decoder on a FPGA. In this
chapter, the multi-step FCS-MPC for the current loop, which is also called the multi-step pre-
dictive direct current control (MPDCC), is deployed to realize the current control of the PMSM
drive system. The multi-step FCS-MPC solves the optimization problem of the current control
by reconstructing the optimization problem and applying specific solving algorithm. Then, it
employs the receding horizon policy to realize the control. This solution of the FCS-MPC dis-
tinguishes itself from other FCS-MPC methods, such as the enumeration-based FCS-MPC and
the extrapolation-based FCS-MPC.

As it is indicated in [226], the performance of FCS-MPC is also affected by the parame-
ter mismatches. In this chapter, the principle of the FCS-MPC is introduced firstly, which is
followed by the introduction to the MPDCC. The optimization problem, the associated imple-
mentation and the solving method are furthermore elaborated. Besides, the influences of the
parameter mismatch problem on the FCS-MPC are studied. An improvement of the control
performance under the parameter mismatches is proposed by deploying the disturbance ob-
server into the control scheme. Moreover, a special case of PMSM is discussed, i.e. SPMSM.
Because of the symmetry of its matrices in the state-space formulation, the MPDCC problem
can be simplified by allocating some heavy computations offline, which significantly reduces
the online computational burden. Moreover, the effectiveness of implementing the proposed ro-
bust solution is shown with the experimental results and compared with the classic FCS-MPC.
The corresponding conclusions can be drawn for both the one-step solution and the multi-step
solution.

5.2 Finite-Control-Set Model Predictive Control

5.2.1 Control Problem

The control problem of the current loop of a PMSM with the deployment of the FCS-MPC
is analogous to that of CCS-MPC. The control problem can be formulated either in the dq
reference frame or in the αβ reference frame. In this thesis, a general formulation in the dq
reference frame is firstly given, which is followed by a computational efficient solution in the
αβ reference frame for a special case of PMSM, i.e. SPMSM. The objective function includes
two terms, the penalization on the current tracking quality and the penalization on the switching
effort. Their weightings in the objective function are tuned by a tuning parameter λu, which
is appended to the term penalizing the switching effort. In [221], the key elements for the
design of the FCS-MPC are mentioned and explicitly analysed via simulations, e.g. the choice
of the norm and the tuning of the penalty. As mentioned in Chapter 4, L1-or L∞-norm can
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also be used in the objective function. L1-norm has even the computational advantage over the
most applied L2-norm. Nonetheless, on the one hand, the L1-norm can result in a performance
degradation or even cause the instability of the closed-loop system if λu 6= 0. On the other
hand, the stability is guaranteed at λu = 0, while an increase of the switching losses can be
prognosticated. Furthermore, the choice of the tuning parameter has a great impact on the
control performance. One of the most important criteria to evaluate the control performance
of FCS-MPC is the TDD or THD. Their relationships are discussed later in this section via the
simulations.

5.2.2 System Model
As it is mentioned previously in this section, the system models of the dq reference frame
and of the αβ reference frame are deployed for the further discussions. Therefore, in order
to differentiate the two system models, superscript S is employed to denote the system model
in the αβ reference frame and superscript R represents the dq reference frame. Recall the
mathematical model of the PMSM in the dq reference frame, which is given as

ud = Rs id +
dΨd

dt
− ωeΨq ,

uq = Rs iq +
dΨq

dt
+ ωeΨd ,

(5.1)

where
Ψd = Ld id + Ψm ,

Ψq = Lq iq .
(5.2)

As a result the system model of PMSM in the dq reference frame can be discretized and rewrit-
ten in the compact form as follows

xRk+1 = ARxRk +BRuRk +ER ,

yRk = CxRk ,
(5.3)

where xR := [id, iq]
T , uR := [ud, uq]

T and yR := [id, iq]
T .

By deploying the inverse Park transformation in (2.11), the system model of the current loop
in the αβ reference frame can be given as follows

[
uα

uβ

]
=

[
Rs − 2ωeLαβ ωeLα − ωeLβ
ωeLα − ωeLβ Rs + 2ωeLβα

][
iα

iβ

]
+

[
Lα Lαβ

Lβα Lβ

]
diα
dt
diβ
dt

+ ωe Ψm

[
− sin(θe)

cos(θe)

]
,

(5.4)
where

Lα = L0 + L1 cos(2θe) , Lβ = L0 − L1 cos(2θe) , Lαβ = Lβα = L1 sin(2θe) , (5.5)

and
L0 =

Ld + Lq
2

, L1 =
Ld − Lq

2
. (5.6)
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For the SPMSM, the current dynamics in (5.4) can be simplified with Ld = Lq = L0 as

[
uα

uβ

]
=

[
Rs 0

0 Rs

][
iα

iβ

]
+

[
L0 0

0 L0

]
diα
dt
diβ
dt

+ ωe Ψm

[
− sin(θe)

cos(θe)

]
. (5.7)

Analogously to the dq model presented in (5.3), the system model in the αβ reference frame is
discretized and compactly written as

xSk+1 = ASxSk +BSuSk +ES
k ,

ySk = CxSk ,
(5.8)

The vectors are defined as xS := [iα, iβ]T , uS := [uα, uβ]T and yS := [iα, iβ]T .

5.2.3 Optimization Problem
The most applied FCS-MPC for PMSM is the one-step variant, which indicates that the predic-
tion horizon is chosen as one. The values of the objective function regarding the eight possible
switching states are computed and compared. The candidate yielding the minimum cost is then
selected as the solution. For a long-horizon control problem, the computational burden of the
aforementioned enumeration solving method increases exponentially with the prediction hori-
zon. In this thesis, the sphere decoding algorithm is implemented to tackle this problem, more
specifically, to reduce the online computational cost [24].

The current control problem realized with the FCS-MPC at the time step k is formulated as
an optimization problem Pf , which can be given in the dq reference frame as [227]

min
Uk

J =

k+Np−1∑
j=k

‖yr −C xRj+1‖2
2 + λu‖uabc, j − uabc, j−1‖2

2

s. t. xRj+1 = AR xRj +BR Tdq, j uabc, j +ER ,

uabc, j ∈ V× V× V ,

(5.9)

where uabc := [ua, ub, uc]
T denotes the voltage of the three phases. The voltage constraint

V is given in (2.23) for the two-level VSI. The symbol × denotes the Cartesian product. Tdq
represents the Park transformation in (2.11). Uk denotes the control sequence and can be given
as Uk := [uTabc, k, u

T
abc, k+1, . . . , u

T
abc, k+Np−1]T , which can be denoted as

U∗k := arg min
Uk

J

s. t. xRj+1 = AR xRj +BR Tdq, j uabc, j +ER, j = k, k + 1 · · · , k +Np − 1 ,

Uk ∈ V × · · · × V .
(5.10)

where V := V × V × V. The solution of the aforementioned CFTOC problem Pf depends on
the initial state vector xk, the previously chosen switch state uabc, k−1 and the reference value.
Employing the receding horizon policy, only the first element of U∗k is applied to the VSI at
the time instant k. At the next time instant, i.e. t = k + 1, the optimization problem Pf over a
shifted prediction window from k+1 to k+Np is formulated. The solving procedure conducted
at the preceding step k is then repeated accordingly.
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5.2.4 Implementation
The most straightforward solving method for the optimization problem Pf is the exhaustive
enumeration method, where the set of admissible switching sequences Uk is enumerated and
the cost function is evaluated for each individual switching state. The procedure to conduct the
enumeration for Np = 1 is described in the following.

Algorithm 5.1 Enumeration Algorithm
Input: xk, uabc, k−1, V, Np, J∗

Output: uabc, k
for uabc,i ∈ V× V× V do

if Ji < J∗ then
uabc, k = uabc, i
J∗ = Ji

end if
end for

For a relatively long prediction horizon, all possible switching states over the horizon Np

should be evaluated, which means that the cost function needs to be evaluated 23Np times. It
is obviously impractical in real-time applications. Therefore, the sphere-decoding algorithm is
implemented in this thesis to reduce the computational burden of the long-horizon FCS-MPC.
Based on the system model in (5.9), the state vector at the sampling time instant j + 1 can be
written as a function of the initial value xRk and the control sequence Uk in the following

xj+1 = (AR)j+1−k xk + [(AR)j−k BR Tdq, k, · · · , BR Tdq, j] Uk +

j−k∑
i=0

(AR)i ER , (5.11)

where Tdq, i is computed with the corresponding rotor angle θe, i at the step i via (2.11). The
sequence of the output over the prediction horizon Np from the time step k is denoted with
Y := [yTk+1, · · · , yTk+Np

]T , which can be rewritten as

YR = ΠR xRk + ΛR Uk + ΣRER, (5.12)

where

ΠR =


CAR

C(AR)2

...
C(AR)Np

 , ΣR =


CI

CAR +CI
...

C(AR)Np−1 +C(AR)Np−2 + . . .+CI

 ,

ΛR =


CBRTdq, k 0 . . . 0

CARBRTdq, k CBRTdq, k+1 . . . 0
...

... . . . ...

C(AR)
Np−1

BRTdq, k C(AR)
Np−2

BRTdq, k+1 . . . CBRTdq, k+Np−1

 .

(5.13)
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Substitute the formulation of the output sequence Y in (5.12) into the cost function in (5.9)
yielding

J = ‖ΠR xRk + ΛR Uk + ΣRER −Yr‖2
2 + λu ‖SUk − δuabc, k−1‖2

2 (5.14)

where the matrices S and δ are given as

S =



I 0 ... 0

−I I ... 0

0 −I ... 0
...

...
...

0 0 ... I

 , δ =



I

0

0
...
0

 . (5.15)

In (5.14), xk and uabc, k−1 are already available at establishing the optimization problem Pf .
The cost function can be reformulated to separate the Uk related term and the unrelated term,
which can be established as

J = θk + 2ΘT
k Uk + ‖Uk‖2

Ht
, (5.16)

where
θk :=‖Yr −ΠR xRk −ΣRER‖2

2 + λu ‖δ uabc, k−1‖2
2 ,

Θk :=
(
(Yr −ΠS xRk −ΣRER)T ΛR − λu (δ uabc, k−1)TS

)T
,

Ht :=(ΛR)TΛR + λu S
TS .

The squared form related to Uk can be derived from (5.16) as

J = (Uk +H−1
t Θk)

THt (Uk +H−1
t Θk) + Jc(x

R
k , uabc, k−1) , (5.17)

where Jc(xRk , uabc, k−1) denotes the term only related to xRk , uabc, k−1 and can be regarded as
a constant at solving Pf . Obviously, regardless of the constraint uabc, j ∈ V × V × V, the
optimization problem Pf can be solved analogously to CCS-MPC, i.e. by solving the root
finding problem of

∇Uk
J = 0 . (5.18)

Thus, the unconstrained solution at the time step k can be given as

Uunc = −H−1
t Θk , (5.19)

which can be substituted into (5.17) and gives

J = (Uk −Uunc)
THt (Uk −Uunc) + Jc . (5.20)

The matrixHt is positive definite and symmetric, if a positive λu is applied in the cost function.
As a result, it can be decomposed with the Cholesky decomposition as

H−1H−T = H−1
t . (5.21)
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By substituting (5.21) into (5.20), the solution to the optimization problem can be written as

U∗ = arg min
Uk

‖HUk −HUunc‖2
2 , (5.22)

subject to Uk ∈ V × · · · × V .
The optimization problem Pf can be sorted into the category of the mixed-integer quadratic

programming (MIQP) problem. Branch-and-bound is a classic method for solving this prob-
lem, which is based on avoiding exploring the entire feasible set in most cases when all possible
solutions are enumerated [228]. The branching decides which subproblem to solve and the
bounding uses these subproblems to compute lower bounds of the optimal cost. The applied
sphere decoding algorithm is built on the branch-and-bound techniques, which is introduced,
explained and improved in several works, such as [229, 230]. In contrast to other algorithms,
sphere decoder restricts the search region to a certain sphere of a radius d around the given vec-
tor, which reduces the complexity of solving the optimization problem. Besides, the prospective
complexity is polynomial or often roughly cubic. The principle of the algorithm is to iteratively
evaluate the candidate switching sequences whether they lie inside the sphere consisting of the
radius ρk > 0 and the centerHUunc , i.e.

‖HUk −UH
unc‖2 ≤ ρk , (5.23)

where UH
unc = HUunc and find the lattice point Uk within the sphere. Actually, the optimal

solution U∗k is the lattice point that has the shortest Euclidean distance to the sphere center. As
previously stated, the sphere decoding algorithm adopts the notion of branch-and-band tech-
nique, where the branching is conducted by considering admissible single-phase switch states
V and bounding is realized by assessing the solutions with the predefined radius ρk of the
sphere [24].

Thanks to the characteristics of the matrix H , i.e. lower triangular, the inequality (5.23) can
be reformulated as

ρk ≥ (uH1, k − h1, 1 u1, k)
2 + (uH2, k − h2, 1 u1, k − h2, 2 u2, k)

2 + · · · , (5.24)

where uHi, k is the i-th element of UH
unc . ui, k represents the i-th element of Uk and hi, j denotes

the i-th row, j-th column of H . It is worth mentioning that the optimal solution of the integer
least square problem in (5.23) is sequentially determined. Each branch and node of the search
tree has corresponding physical meanings, where the branch denotes the two possibilities of the
switching state at corresponding node. Let the searching procedure start from the first level and
search firstly the left branch. One step after, the updated Euclidean distance ρ1 is given by

ρ2
1 := (uH1, k − h1, 1 u1, k)

2 . (5.25)

Then, the value ρ1 is compared with the sphere radius ρ0, if the condition ρ2
0 ≥ ρ2

1 holds,
the searching process continues to the next level, likewise firstly to the left side. The updated
Euclidean distance has an extra term uH2, k − h2, 1 u1, k − h2, 2 u2, k in comparison to ρ2

1 and is
formed as

ρ2
1 + (uH2, k − h2, 1 u1, k − h2, 2 u2, k)

2 . (5.26)

The distance is updated until the leaf of the search tree is reached, which can be represented by
ρ2

3 , so far the first possible switching sequence is verified. Then, the new Euclidean distance ρ2
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is defined by ρ2
3 , which denotes a new shrinking sphere compared with the one with radius ρ0 .

This methods is also known as the shrinking-radius strategy. Then, the second node of the third
level is explored, which obviously denotes a larger value compared with ρ2

3 , i.e. the right node
of third level lies out of the sphere with radius ρ . Analogously, the other nodes are beyond the
sphere defined by the radius ρ = ρ3 , i.e. these nodes denote only the non-optimal solutions. As
a result, the search tree is pruned. Because of the characteristic of the integer least-squares (ILS)
problem, the sphere decoding algorithm distinguishes itself from the conventional enumeration
algorithm, which will run through all the nodes included in the tree. Since the sphere decoding
algorithm is widely used and researched in communication field, there are various methods
for further reducing the complexity, such as the nulling canceling decoding in [231], Schnorr-
Euchner sphere decoding in [232] and [233] as well as lattice reduction method in [234], which
is based on fundamentals from [235] and LLL reduction method from [236]. Readers can
refer to these works for details. Another important parameter to be determined prior to the
optimization is the initial value of ρk , which should be large enough to ensure the existence of
the solution set and meanwhile be small enough to bound as few candidate switching sequences
a priori as possible. As it is proposed in [24], an initial radius based on the educated guess is
deployed, which is computed by shifting the most recent solution U∗k−1 and repeating the last
switching states uabc, k−1+Np−1, i.e. ρ0 = ‖HU0, k −UH

unc‖2 where

U0, k =



0 I 0 · · · 0

0 0 I
. . . ...

... . . . . . . . . . 0

0 0 · · · 0 I

0 0 · · · 0 I


U∗k−1 . (5.27)

The complete sphere decoding algorithm is shown in Algorithm 5.2.

Algorithm 5.2 Sphere Decoding Algorithm

function U∗ = SpD(i, ρ0, UH
unc, ε)

for u ∈ V do
ui, k = u
ρ2 = ‖uHi, k − hi, 1:i ui, k‖2

2 + ε2

if ρ2 ≤ ρ2
0 then

if i < 3Np then
SpD(i+ 1, ρ0, UH

unc, ε)
else

U∗ = U
ρ2

0 = ρ2

end if
end if

end for
end function
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5.3 Observer-Enhanced FCS-MPC

It has been mentioned in Section 4.3 that the parameter mismatches and the disturbances have a
great impact on the control performance. Simulations as well as experiments have been further
carried out to verify the influence from the uncertainties and disturbances on the continuous-
control-set MPC. Different from the CCS-MPC, FCS-MPC includes the discrete nature of the
VSI into the optimization problem, which impedes the analysis and the quantification of the
influences. In this section, the analysis with the aid of the simulations is carried out. How-
ever, because of the discrete characteristic of the FCS-MPC, the model uncertainties and the
disturbances not necessarily affect the solution. Therefore, the probability of the selection of
the non-optimal solution is shown via the simulations. The aforementioned MPDCC problem
is formulated in the dq reference frame, the solving of the underlying optimization problem
follows the procedure introduced in Section 5.2.4. The matrix Ht, which defines the searching
space, needs to be computed individually at each sampling instant, since the matrix ΛR contains
the Park transformations based on the current as well as the subsequent rotor position. It aggra-
vates the computational burden of FCS-MPC as the prediction horizon increases. Considering
the characteristics of SPMSM, the FCS-MPC can be formulated in the αβ reference domain,
which reduces the computational burden of the optimization problem by allocating part of the
matrices computation offline. Furthermore, the effects of the parameter mismatch on the per-
manent magnet synchronous motor drive system with the FCS-MPC as the current controller
is comprehensively simulated in this section and their quantitative assessment is also given. In
order to improve the control performance, the external disturbance is then estimated with the
moving horizon estimator and included into the current control problem. The effectiveness of
the proposed method is validated with experiments.

5.3.1 Control Problem
An observed-based robust direct current control scheme is proposed for the PMSM drive sys-
tem. In this section, the moving horizon estimator is chosen to realize the estimation of the
disturbance as well as the currents. The other estimators, such as EKF and UKF, can be imple-
mented analogously.

The control structure of the proposed observed-enhanced FCS-MPC is shown in Fig. 5.1.
The estimator is set up in the dq reference frame, while the current controller is formulated in
the αβ domain. It is worth mentioning, if instead of SPMSM a general PMSM is of interest, the
control problem formulation in the αβ reference frame has few advantage over the formulation
in dq reference frame. In this case, the FCS-MPC should be established in the dq reference
frame.

5.3.2 System Model
In the framework of the proposed observer-enhanced direct current control, two system models
are deployed, i.e. the current dynamic formulation in the dq reference frame in (5.3) and that in
the αβ reference frame in (5.8). The observer is constructed in the dq reference frame, which is
based on the fact that the state-space formulation given in (5.7) is a special case of PMSM, i.e.
SPMSM, and its matrices, e.g. ES (also AS and BS for other types of PMSM), are related to
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Figure 5.1: Whole control structure FCS PMSM

the electrical rotor position θe. Therefore, the matrices of the observer, especially for the case
of a long estimation horizon, need to be separately computed and updated at each sampling
time instant if the estimation problem is established in the αβ reference frame. As a result,
the estimation is computationally expensive and requires additional computations as well as
memories. Nonetheless, the controller is formulated in the αβ domain for the SPMSM. For
the other types of machine, of which the symmetry of the matrix is not valid, a formulation of
the current controller in the dq reference frame is recommended. Considering the system state-
space of SPMSM in (5.7), the matrix Ht required for the FCS-MPC can be then computed
offline.

5.3.3 Optimization Problem
In this section, two optimization problems are elaborated, i.e. the CFTOC problem Pf and the
MHE-based estimation problem Pe . The moving horizon estimator is implemented to estimate
the disturbance caused by the unmodelled uncertainties, e.g. the parameter mismatches and the
disturbances. The MHE is formulated in the dq reference frame and employs the incremental
computation, which is sensitive to the initial value and the parameter selections. However, it
has computational advantages over the MHE formulated in (3.78). The associating optimization
problem Pe at the time step k = n + Ne − 1 over an estimation horizon of Ne can be written
as [171]

min
x, ε

Jobs =
k∑
j=n

‖yRj −Cx̂Rj ‖2
Q +

k−1∑
j=n

‖∆ε̂Rj ‖2
R

s.t. x̂Rj+1 = ARx̂Rj +BRuRj +ER + ε̂Rj ,

ε̂Rj+1 = ε̂Rn + ∆ε̂Rj .

(5.28)

The optimization problem Pe in (5.28) is then reformulated into a matrix formulation after
substitute the system state-space formulation into the cost function. The cost function is then
rewritten as

Jobs = (YR −YR)TQ (YR − ŶR) + (∆ÊF )TR∆ÊR , (5.29)
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where YR is the sequence of the measurements, which can be written as YR := [yTn , y
T
n+1, . . . , y

T
k ]T .

∆Ê is the sequence of the disturbance increment over the estimating horizon, which can be writ-
ten as ∆Ê := [∆ε̂Tn , ∆ε̂Tn+1, . . . , ∆ε̂Tk ]T and Ŷ is the sequence of the estimation on the output
variables, which is defined as Ŷ := [ŷTn , ŷ

T
n+1, . . . , ŷ

T
k ]T . Ŷ can be further written as a func-

tion of the initial value of the estimated state x̂n, the control sequence U and the estimated
disturbance ε̂n as

ŶR = ΠR x̂Rn + ΛR UR + ΣR (ER + ε̂Rn ) + ΦR∆ÊR , (5.30)

where ΠR and ΣR share the same structure as in (5.12). ΛR and ΦR are given as

ΦR =


CI 0 . . . 0

CAR CI . . . 0
...

... . . . ...
C(AR)Ne−1 . . . . . . CI

 , ΛR =


CBR 0 . . . 0

CARBR CBR . . . 0
...

... . . . ...

C(AR)
Ne−1

BR C(AR)
Ne−2

BR . . . CBR

 .

The problem Pe can be solved by solving the root-finding problem

∇
∆ÊRJobs = 0 . (5.31)

By substituting (5.30) into (5.29) the solution of (5.31) can be derived as

∆ÊR = ((ΦR)T QΦR +R)−1(ΦR)TQ ξ (5.32)

where
ξ = Y R −ΠR x̂Rn −ΛRUR −ΣR (ER + ε̂Rn ) (5.33)

After obtaining the estimating results x̂R and ε̂R from MHE, the inverse Park transformation is
deployed to transform the quantity from the dq reference frame to the αβ reference frame. The
current control problem in (5.9) need to be reformulated into the αβ reference frame, which is
then given as

min
Uk

J =

k+Np−1∑
j=k

‖yr −C x̂Sj+1‖2
2 + λu‖uabc, j − uabc, j−1‖2

2

s. t. x̂Sj+1 = AS x̂Sj +BS Tαβ uabc, j +ES
j + ε̂Sj ,

uabc, j ∈ V× V× V .

(5.34)

5.3.4 Implementation
The solution and implementation of the problem Pf in (5.34) is given in the following. Anal-
ogously to the solving procedure for the classic FCS-MPC in (5.9), the objective function of
(5.34) can be reformulated as

J = θk + 2(Θk)
TUk + ‖Uk‖2

Ht
(5.35)
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where
θk :=‖Yr −ΠS x̂Sk −ΦS T (ER + ε̂Rk )‖2

2 + λu‖δuabc,k−1‖2
2 ,

Θk :=((Yr −ΠS x̂Sk −ΦS T (ER + ε̂Rk ))T ΛS − λu(δuabc,k−1)TS)T ,

Ht :=(ΛS)TΛS + λu S
TS ,

where Yr denotes the Np replicates of yr. The matrices S, δ are presented in (5.15). The
matrices ΠS , ΦS , ΛS and T are given in the following as

ΠS =


CAS

C(AS)2

...
C(AS)Np

 , ΦS =


CI 0 . . . 0

CAS CI . . . 0
...

... . . . ...
C(AS)Np−1 . . . . . . CI

 , T =


T−1
dq, k

T−1
dq, k+1

...
T−1
dq, k+Np−1

 ,

ΛS =


CBSTαβ 0 . . . 0

CASBSTαβ CBSTαβ . . . 0
...

... . . . ...

C(AS)
Np−1

BSTαβ . . . . . . CBSTαβ

 .

Similarly to the nominal MPDCC in [227], the solution to the optimization problem in (5.35)
can be computed via the Algorithm 5.2 and rewritten more compactly as

U∗ = arg min
Uk

‖HUk −UH
unc‖2

2 . (5.36)

It is worth mentioning that the matrices ΠS , ΦS and ΛS can be computed offline, since they are
only related to the system matrixAS , the input matrixBS , the output matrix C and the Clarke
transformation matrix Tαβ , which are time invariant. Therefore, the computation of the inter-
mediate matrices Ht and H is then allocated offline, which reduces the online computational
burden significantly. After constructing the optimization problem, the problem in (5.34) is then
solved with the Algorithm 5.2.

5.3.5 Simulation Results

5.3.5.1 Parameter Design

Firstly, the simulations to demonstrate the impact from the design parameter of the FCS-MPC
on the control performance have been carried out. The investigated system is a two-level inverter
drive system with a PMSM operated at the rated speed and the full-load condition. The sampling
frequency fs is chosen as 10 kHz. The first simulation for investigating the performance of FCS-
MPC in terms of the THD related to the switching frequencies was carried out for prediction
horizons Np = 1, 3, 5, 10. The simulation results are presented in Fig. 5.2a. The second
simulation was conducted to study the relationship between the weighting factor λu and the
switching frequencies, where the prediction horizon Np was selected of the values 1, 3, 5 and
10. The simulation results are shown in Fig. 5.2b.

It can be observed from the Fig. 5.2 that under the same switching frequencies FCS-MPC
with diverse prediction horizons delivers similar THDs. Nonetheless, differences can still be
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Figure 5.2: The impacts of the design parameters on the performance of the FCS-MPC with the prediction horizons
Np = 1, 3, 5, 10 and fs = 10 kHz.

noticed that FCS-MPC benefits from a longer prediction horizon, since a smaller THD can be
obtained with a longer prediction horizon under the same switching frequency. Moreover, the
trade-off between the penalization on the switching effort and the tracking accuracy can be
tuned by the design parameter λu. The same λu can result in different switching frequencies, if
distinct prediction horizon is applied.

5.3.5.2 Influence of Parameter Mismatch

Furthermore, several simulations have been conducted to study the effects of the parameter mis-
matches on the solutions of the problem (5.9) and the control performance of FCS-MPC. The
FCS-MPC is designed with the switching frequency around 1.5 kHz. The difference between
the solutions to the problem in (5.9) with and without the parameter mismatch of Ψm is shown in
the Fig. 5.3. In order to differ the optimization problems in (5.9) for the nominal system and the
system with the parameter mismatch, P̄f and Pf are deployed to represent them, respectively.
The unconstrained solutions Ūunc and Uunc have slight difference, as presented in Fig. 5.3. It
shows that the parameter mismatch of Ψm can result in a non-optimal solution of Uunc for the
optimization problem. The sphere determined by the Ūunc as the circle center, denoted by the
blue surface is shifted from the sphere determined by Uunc and U∗ in green. Besides, their
volumes are also unequal. This conclusion is not necessarily true for all working points of the
PMSM drive system. The optimal solution can still be obtained even under the parameter mis-
matches in some working points. In spite of the narrow difference between the unconstrained
solutions Ūunc and Uunc , the distinct final solutions, i.e. U∗ and Ū∗, are selected for Ūunc

and Uunc , as observed in Fig. 5.3. Subsequently, the probability of choosing the non-optimal
solution because of the parameter mismatch is investigated through simulations.

5.3.5.3 Probability

The mixed-integer characteristic of FCS-MPC impedes the quantification of errors caused by
the uncertainties and the disturbances. The first step to study the influence of the parameter
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Figure 5.3: Comparison of the solutions of optimization problem in (5.9) between the scenarios with and without
the parameter mismatch of Ψm. The hollow circles denote the all the switching candidates V . The filled diamonds
represent the unconstrained solution Uunc and the filled circles depict the solution U∗. The superscript .̄ denotes
the quantities in nominal system without the parameter mismatch, which is shown in blue. The quantities in the
disturbed system are presented in green.

mismatches on the solutions to the optimization problem Pf is to investigate the probability of
acquiring the optimal solutions under the existence of various parameter mismatches. In order
to study the incidence of the non-optimal solutions, simulations over the admissible region of
iα and iβ , regarding different parameter variations, have been conducted. On the one hand,
the solution of the FCS-MPC is the control sequence U∗ over the prediction horizon Np . On
the other hand, the receding horizon policy of MPC implements only the first element of the
control sequence into the plant. Therefore, the impacts of the parameter mismatches on these
two quantities, i.e. U∗ and u∗abc , are investigated. Moreover, the prediction horizon Np is an
essential design parameter for the FCS-MPC. Therefore, the probability distribution of different
prediction horizons varying from Np = 1 to Np = 10 has been evaluated. The simulations
were conducted in various operating points ranging from the no-load condition to the full-load
condition with a step of 10% of the rated torque. The results are summarized and shown in
Fig. 5.4 - Fig. 5.7.

The simulation results of rp = 50% and of rp = 200% for the FCS-MPC of choosing a
non-optimal solution U are presented in Fig. 5.4 and in Fig. 5.5, respectively.

The probability of choosing the non-optimal control sequence increases as the prediction
horizon Np grows, as observed from Fig. 5.4 and Fig. 5.5, which can be explained by the fact
that the model error accumulates over the prediction horizon. However, it can be noticed that
the probability P is not linearly related to the prediction horizon. This phenomenon is more
obvious at the parameter mismatch of Rs. Besides, at the parameter mismatch of Ls, a jump
of P can be noted at Np = 2 for the situation of rp = 50% and at Np = 3 for the situation of
rp = 200%. The dependence of the incidence probability is furthermore related to the varied
parameter. Moreover, different parameters and different rate of changes have various impacts
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Figure 5.4: Probability distribution of choosing different U to nominal condition considering various parameter
variations. (a) denotes the influence of rLs

= 50%. (b) represents the effects from Ψm with a ratio of 50%. (c)
shows the influence of rRs
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Figure 5.5: Probability distribution of choosing different U to nominal condition considering various parameter
variations. (a) denotes the influence of rLs = 200%. (b) represents the effects from Ψm with a ratio of 200%. (c)
shows the influence of rRs = 200%.

on the probability of the occurrence of the non-optimal solutions. The parameter mismatch of
Ψm reaches the P = 100% at Np = 5, while the parameter mismatch of Rs shows apparently
less impact.

However, considering the receding horizon policy employed in the FCS-MPC, only the first
element of U∗ is implemented in the current control loop, i.e. u∗abc, k . A non-optimal solution
of the control sequence U∗ is not necessarily equivalent to a non-optimal solution u∗abc, k for the
plant. Therefore, simulations regarding the probability of choosing the non-optimal solutions
u∗abc, k have been conducted. The investigation of rp = 50% and of rp = 200% for the FCS-
MPC choosing different solutions u∗abc, k are presented in Fig. 5.6 and in Fig. 5.7, respectively.

It can be observed from the Fig. 5.6 and the Fig. 5.7 that the probability of the choice of
the non-optimal switching states for the implementation as a control input into the plant is in
general heavily dependent on the varied parameters, i.e. the permanent magnet flux linkage Ψm

induces the highest probability of obtaining the non-optimal solution, which is followed by the
inductance, while the stator resistance has the least effect on the solution to the optimization
problem. This conclusion can be traced back to the impacts of the parameter mismatches on
the CCS-MPC in Chapter 4, since the unconstrained solution Uunc is equivalent to the optimal
solution of the optimization problem Pc in (4.7) under the modification of the weighting matri-
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Figure 5.6: Probability distribution of choosing different uabc to the nominal condition considering various param-
eter variations. (a) denotes the influence of rLs

= 50%. (b) represents the effects from Ψm with a ratio of 50%. (c)
shows the influence of rRs
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Figure 5.7: Probability distribution of choosing different uabc to the nominal condition considering various param-
eter variations. (a) denotes the influence of rLs

= 200%. (b) represents the effects from Ψm with a ratio of 200%.
(c) shows the influence of rRs = 200%.

ces Q and R, so that they are scalar matrices, i.e. Q = q I and R = r I, and satisfy r/q = λu.
The permanent magnet flux linkage Ψm has the most impact on the CCS-MPC, as indicated
in Section. 4.4. Its impact further reflects on the FCS-MPC. Analogously, the impact of the
stator resistance on the CCS-MPC is the least. It causes the least probability of the incidence of
the non-optimal solutions for the FCS-MPC. It is worth mentioning that the FCS-MPC is more
robust against the variation of the inductance than CCS-MPC. More specifically, FCS-MPC can
remain stable under a severe variation of the inductance.

5.3.5.4 Tracking Error

Subsequently, the tracking errors of the FCS-MPC regarding the effects of the parameter mis-
match in the PMSM are studied via the simulations. The ratio rp is applied to indicate the
scenario of the parameter mismatch. The tracking error at the steady state is quantified by the
intermediate quantity ei, which is defined in (4.36). The measured current is collected and aver-
aged at the steady state over a filtering time span. The FCS-MPC with Np = 1 and Np = 5 are
studied individually, since both designing parameters of the FCS-MPC are applied in the en-
suing experiments. Different working points are considered during the simulations. The black
dots in the figures demonstrate the actual computed error ei in the simulations, while the surface
are fitted with the spline interpolation that introduced in Section 3.3.2.1. The simulation results
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regarding the parameter Rs are shown in Fig. 5.8.

(a) (b)

Figure 5.8: The steady state error ei caused by the parameter mismatch of Rs for the MPDCC with Np = 1 in (a)
and with Np = 5 in (b).

Comparing the Fig. 5.8 to the Fig. 4.2, the continuous relationships between rp and ei as well
as between Tl and ei from the CCS-MPC are no longer valid for the FCS-MPC. However, their
amplitude levels of the error are comparable, i.e. ei remains several percent of the rated current
IN . The fitted maps in Fig. 5.8 show obvious differences of ei under the control with Np = 1
and Np = 5. More specifically, the most severe error under the control of Np = 1 appears at the
full-load condition, while it occurs at the no-load condition with Np = 5.

Further investigations about the influence of the inductance Ls on the tracking performance
of FCS-MPC is shown in Fig. 5.9.

(a) (b)

Figure 5.9: The steady state error ei caused by the parameter mismatch of Ls for the MPDCC with Np = 1 in (a)
and with Np = 5 in (b).

At Np = 1, the relationship between rp and ei as well as between Tl and ei is similar to that
of CCS-MPC, i.e. the error grows as the rate of the mismatch increases and the load has little
impact on the tracking performance. However, it can be noticed that the least tracking error
resulted from the Ls mismatch is not aligned with the line of rp = 100%, which is shifted to
around rp = 80%. Moreover, the error map of Np = 5 is nonlinear to both Tl and rp .

Finally, the impact from the parameter variation of Ψm is studied with the simulation results
presented in Fig. 5.10. The parameter Ψm has the similar impact on the FCS-MPC to that on
the CCS-MPC. The tracking error has the minimal value if the parameter Ψm applied in the
controller exactly matches the motor parameter. Moreover, the load condition has diminutive
impacts on the tracking error, i.e. at the same rp the MPDCC demonstrates almost the same
tracking error under diverse load conditions. It is worth mentioning that ei is quasi symmetric
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(a) (b)

Figure 5.10: The steady state error ei caused by the parameter mismatch of Ψm for the MPDCC with Np = 1 in
(a) and with Np = 5 in (b).

about the rp = 100% at Np = 1, while larger error can be observed at rp = 150% than at
rp = 50% for Np = 5.

Several conclusions can be drawn from the simulation results. Firstly, the stator resistance
has the least impact on the control performance of MPDCC. The influence from the parameter
variation ofRs andLs is not linear regarding the operating points. On the contrary, the parameter
variation of Ψm is nearly linear to the load torque. For a certain load torque, the steady state
error is linearly dependent on the rate of the parameter variation on Ψm. Moreover, Ψm causes
more steady -state error than Rs and Ls. Furthermore, it can be observed in the Fig. 5.10a and
the Fig. 5.10b that the parameter mismatch of Ψm causes more steady state error for the MPDCC
with Np = 5 than for the MPDCC with Np = 1. For the one-step MPDCC, the variation of Ψm,
in a range from rp = 50% to rp = 150%, can result in a steady-state error up to 8% of the rated
current. Nonetheless, it can cause a steady-state error for MPDCC with Np = 5 up to almost
15% of the rated value, which is however less than its impact on the CCS-MPC.

5.3.6 Experimental Results

In order to analyse the impacts of the parameter mismatches on the MPDCC and validate the
proposed observer-enhanced control strategy, which eliminates the tracking error resulted from
the parameter mismatches and improves the system performance, in terms of the robustness
and the tracking accuracy, the corresponding experiments have been carried out on the Test
Bench B.2. The currents and the switching frequencies under the nominal condition and under
diverse parameter mismatches have been recorded. Furthermore, the dynamic behaviours of
the classic MPDCC and the enhanced MPDCC can be observed from the applied load step
during the experiments. Besides, the total demand harmonics are computed and compared. The
experimental results as well as the computational results are demonstrated accordingly.

5.3.6.1 Performance under Nominal Condition

Firstly, the performance of both methods are tested under the nominal condition, i.e. with the
nominal parameters of the PMSM listed in Table. B.6. A load step from 0% to 50% of the rated
torque is added at t = 2 s and another load step from 50% to full load is applied at t = 4 s.
The PMSM run at 2000 rpm. The experimental results of the test with one-step FCS-MPC are
shown in Fig. 5.11.
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Figure 5.11: Comparison between the RMPDCC and MPDCC with Np = 1 under the nominal condition. (a)-(c)
denote the performance of MPDCC and (d)-(f) represent the control performance of the proposed RMPDCC. (a)
and (d) denote the tracking performance of d-current. (b) and (e) represent the tracking performance of q-current.
(c) and (f) are the switching frequencies.

The further tests for MPDCC and the proposed RMPDCC with Np = 5 have been carried
out in the nominal condition. The experimental results are shown in Fig. 5.12 accordingly.
It can be observed from Fig. 5.11 that the MPDCC and RMPDCC yield similar performance
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Figure 5.12: Comparison between the RMPDCC and MPDCC with Np = 5 under the nominal condition. (a)-(c)
denote the performance of MPDCC and (d)-(f) represent the control performance of the proposed RMPDCC.

under the nominal condition with Np = 1. In Fig. 5.12 similar conclusion can be drawn.
However, a smaller current ripple during the steady state under the control with RMPDCC is
worth mentioning. The control with Np = 5 has smaller current ripples than the control with
Np = 1 for MPDCC, where the comparable switching frequencies are employed. Moreover,
the RMPDCC can reach the new steady state faster than the MPDCC.

5.3.6.2 Performance under the Variation of Ψm

The second validating scenario is the parameter variation of the permanent magnet flux linkage
Ψm . The experiments with rp = 50% and rp = 150% have been conducted respectively. The
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experimental results of rp = 50% for Np = 1 and Np = 5 are presented in Fig. 5.13 and
Fig. 5.14, respectively.
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Figure 5.13: Comparison between the RMPDCC and MPDCC with Np = 1 under the parameter mismatch of Ψm
with rp = 50%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.
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Figure 5.14: Comparison between the RMPDCC and MPDCC with Np = 5 under the parameter mismatch of Ψm
with rp = 50%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.

It can be noted from Fig. 5.13 and Fig. 5.14 that the decrease of the Ψm value generates a
negative steady-state offset for the current of q-axis, which amounts to around 25% of the rated
current. An obvious improvement can be observed at the steady state by implementing the
proposed RMPDCC, i.e. the steady-state error caused by the decrease of Ψm is mitigated.

The experimental results of rp = 150% for Np = 1 and Np = 5 are presented in Fig. 5.15
and Fig. 5.16, respectively. Similar to the previous observation, an increase of the Ψm value
can also result in a steady-state error for MPDCC. In Fig. 5.15 and Fig. 5.16 the current in
q-axis reached the current limit at t = 4 s and triggered the over-current protection mechanism
of the drive system. On the contrary, RMPDCC tracked the reference accurately and retained
the control performance under the parameter mismatch of Ψm. Even though the current under
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Figure 5.15: Comparison between the RMPDCC and MPDCC with Np = 1 under the parameter mismatch of Ψm
with rp = 150%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.

0 1 2 3 4 5 6
Time (s)

-1

0

1

(a)

0 1 2 3 4 5 6
Time (s)

-0.5

0

0.5

1

1.5

(b)

0 1 2 3 4 5 6
Time (s)

0

2

4

(c)

0 1 2 3 4 5 6
Time (s)

-1

0

1

(d)

0 1 2 3 4 5 6
Time (s)

-0.5

0

0.5

1

1.5

(e)

0 1 2 3 4 5 6
Time (s)

1

1.5

2

2.5

(f)

Figure 5.16: Comparison between the RMPDCC and MPDCC with Np = 5 under the parameter mismatch of Ψm
with rp = 150%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.

the control of the MPDCC stays within the current limits before t = 4 s , an obvious offset can
be observed, which is around 25% of the rated current. Moreover, the MPDCC with a longer
prediction horizon demonstrates a larger steady-state offset under the parameter mismatch of
Ψm. More specifically, an offset of around 25% of the rated current at Np = 1 and an offset of
around 45% of IN at Np = 5 are noticeable, which complies with the conclusions drawn from
the simulation results. However, the deployment of the proposed RMPDCC can eliminate the
errors effectively. Moreover, the switching frequency remains quasi constant under various load
conditions, if the RMPDCC is employed.

5.3.6.3 Performance under the Variation of Ls

MPDCC and RMPDCC are further tested under the parameter mismatch of Ls. rp = 50% and
rp = 150% are tested individually. The experimental results are shown in Fig. 5.17, Fig. 5.18
and Fig. 5.19, Fig. 5.20, respectively.
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Figure 5.17: Comparison between the RMPDCC and MPDCC with Np = 1 under the parameter mismatch of Ls
with rp = 50%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.
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Figure 5.18: Comparison between the RMPDCC and MPDCC with Np = 5 under the parameter mismatch of Ls
with rp = 50%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.

In Fig. 5.17 and Fig. 5.18, a more obvious steady-state error than the control of the MPDCC
under the variation of Ψm can be observed at rp = 50%, i.e. an offset of around 35% of the
rated current at Np = 1 and an offset of around 35% of IN with no load, 45% of IN with full
load at Np = 5 can be noted. The controller with Np = 5 has a larger error than the one with
Np = 1. Moreover, the switching frequency is heavily influenced by the variation of Ls. It
worth mentioning that under the rp = 50% of Ls variation, the RMPDCC demonstrates also
small steady-state offset, which is much smaller than the offset of MPDCC. The performances
for the situation of the parameter mismatch of Ls and rp = 150% are shown in Fig. 5.19 and in
Fig. 5.20.

Steady state errors can also be observed under the variation of Ls and rp = 150%. However,
the errors are much smaller than the former test scenario, where the change of Ls is set to
rp = 50%. The drive system reached the current limit at the full load under rp = 150%. The
investigations on the impacts from the stator resistance variation are omitted, since its effects
are relatively low.
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Figure 5.19: Comparison between the RMPDCC and MPDCC with Np = 1 under the parameter mismatch of Ls
with rp = 150%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.
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Figure 5.20: Comparison between the RMPDCC and MPDCC with Np = 5 under the parameter mismatch of Ls
with rp = 150%. (a)-(c) denote the performance of MPDCC and (d)-(f) represent the control performance of the
proposed RMPDCC.

5.3.6.4 Total Demand Harmonics

The TDDs of the MPDCC and of the RMPDCC are furthermore computed, since the total
demand distortion is one of the important performance metrics to evaluate the control methods.
The TDD is computed via

TDD =
1√
2 IN

√∑
j 6=1

i2s, j , (5.37)

where j denotes the order of the current harmonics. As it is shown in former section, the stator
resistance has slight impact on the control performance. Therefore, only the TDD under the
parameter mismatches of Ψm and Ls are computed and demonstrated. The results are shown in
Fig. 5.21 and Fig. 5.22, where Fig. 5.21 shows the results from the parameter variation of Ψm

and Fig. 5.22 represents the results under the variation of Ls . The switching frequencies are also
affected by the parameter mismatches, as shown in preceding experiments. The current metrics
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are heavily dependent on the switching frequencies. Therefore, the MPDCC is furthermore
tuned to operate with a comparable switching frequency as the RMPDCC at the respective
scenario. The currents under the control of corresponding MPDCC are also measured, of which
the TDD is computed. The corresponding TDDs are computed and presented.
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Figure 5.21: Comparison of the TDD under the parameter mismatch of Ψm, where the blue and the green denote
the TDD with switching frequencies shown in previous testing scenarios of MPDCC and the proposed RMPDCC,
respectively. The yellow represents the TDD of MPDCC with the mean switching frequency same as that of the
RMPDCC in respective test scenarios. (a) denotes the control of Np = 1 and (b) shows the results from the control
of Np = 5.

Fig. 5.21 shows that the proposed RMPDCC yields smaller TDD than the MPDCC at most
test cases. However, for some test scenarios, e.g. rp = 150% and Tl = 100% at Np = 1, a con-
trast phenomenon can be observed. It may be explained by the fact that the performance of the
observer degrades under the control of MPDCC because that the measured currents are heavily
disturbed by the harmonics (comparing to the control results of CCS-MPC). Analogously to
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Figure 5.22: Comparison of the TDD under the parameter mismatch of Ls. (a) and (b) represent the results from
the current control of Np = 1 and Np = 5, respectively.

the observations in Fig. 5.21, in Fig. 5.22 it can be noticed that the RMPDCC outperforms the
MPDCC at most test cases. However, it shows higher TDD value at some test scenarios. Be-
sides, it can be concluded from the computation results that a long prediction horizon benefits
the MPDCC in terms of the current ripple, since a smaller TDD can be noticed at Np = 5 under
the same load condition and with the comparable switching frequencies. Moreover, the pro-
posed RMPDCC yields smaller TDD than the MPDCC for the most cases. However, MPDCC
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outperforms RMPDCC in terms of the harmonics content at some cases. But RMPDCC elimi-
nates the steady-state offsets effectively.

5.4 Conclusion

In this chapter, the FCS-MPC based current controller is developed for the PMSM drive system.
More specifically, the one-step solution as well as the controller with a long prediction horizon
is introduced. Depending on the applications, i.e. the dynamic requirement and the available
computational power, either the enumeration method or the sphere decoding algorithm can
be implemented to solve the underlying mixed-integer optimization problem. As it is shown
in this chapter, the deployment of the sphere decoding algorithm reduces the computational
burden of the control problem with a long prediction horizon and enables a real-time application
of the MPDCC. Furthermore, thanks to the symmetry of the matrices for the SPMSM, some
proportion of the heavy computations can be allocated to the offline preparation, which reduces
the online computational burden. However, analogous to the continuous-control-set MPC, FCS-
MPC also suffers from the parameter mismatches and the disturbances. Although it is more
robust against these effects, an improvement needs to be proposed to tackle this problem. In this
chapter, a disturbance observer is deployed into the FCS-MPC framework. Its effectiveness has
been validated via experiments at various working points. Moreover, the real-time feasibility of
the MPDCC and the RMPDCC of up to 10 kHz sampling rate is demonstrated by experiments,
where a prediction horizon of Np = 5 can be realised.
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CHAPTER 6

Attenuation of the Periodic Disturbance

6.1 Introduction

In Chapter 4 and Chapter 5, an observer-based robust solution to eliminate the unmodelled un-
certainties and the disturbances has been introduced and verified via experiments. However,
because of the capability limitation of the observer, the periodic disturbance, such as the non-
linear effects of the VSI and the flux harmonics, remains in the PMSM drive system and may
result in performance degradation of the PMSM drive system, such as the current distortion
as well as the torque pulsation [56]. As indicated in [237], FOC as well as MPC is sufficient
for the control purpose, if the disturbances are non-periodic, or if the frequency of the distur-
bance is lower than the bandwidth of the controlled plant. In this chapter, the principle of the
promising methods are introduced to compensate the 6i-th order harmonics that are resulted
from the VSI nonlinear effects, where i ∈ Z, since they heavily influence the parameter identi-
fication results as well as the control performance. The compensation targeting other harmonics
can be deployed analogously. The most intuitive perspective is to combine the method of VSI
nonlinear effect estimation proposed in Section 3.6 and the disturbance estimation method dis-
cussed in Section 4.3. However, after examination of the observability, it can be concluded
that the disturbance ε and the VSI nonlinearities Udead can not be estimated simultaneously.
Therefore, an auspicious method is proposed in this chapter to tackle this problem. Firstly, the
state-of-the-art compensation methods dealing with the periodic disturbances are introduced as
a start point of this chapter, where they are roughly categorized. Subsequently, the most applied
methods among them are introduced and compared in details, i.e. the offline method, the adap-
tive solution [238], the resonant control [204] and the repetitive control [239]. Furthermore, a
fractional-repetitive-control (FRPC) based periodic disturbance attenuation method is presented
in this chapter. The proposed method solves the problem encountered in the practical imple-
mentation, when the ratio between the period of the periodic signals and the sampling time is
non-integer. Moreover, since the compensating voltage is varying with the rotor speed in terms
of the frequency, a speed-dependent FRPC is derived to adjust the delay time of the FRPC ac-
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cordingly. The parameter determination of the proposed FRPC-based approach is completed
via simulations. Besides, it is compared with the state-of-the-art methods through experiments.

As it is shown in Section 2.4, the nonlinearities of the inverter comprises mainly the dead
time, the turn-on/-off time of the power switches, the voltage drops of the switches as well as of
the freewheeling diodes and the parasitic effects. With the analysis performed in [57, 59, 106],
methods for mitigating the impacts of the VSI nonlinearities have been developed both in
academia and in industry. In general, they can be categorized into two families: the elimi-
nation/minimization of the nonlinear effects of the VSI and the compensation of the distorted
voltage. They differ on the basis of the engaging component, i.e. the elimination/minimization
occurs in the modulator or the VSI, while the compensation is carried out before the modulation.
The elimination/minimization for the VSI-nonlinearities is normally accomplished by modify-
ing the switching strategy. In [240], the reference wave of the PWM was modified and a logic
circuit was applied to mitigate the dead time. Reference [241] eliminated the dead-time effect by
shifting the pulse by the dead-time in each PWM cycle. Reference [242] included furthermore
the effects of the non-ideal DC-link voltage and the switching delay. However, precise current
sensors is needed to detect the current polarity for the elimination. Reference [243] proposed a
digital modulator with a single switch commutation technique to omit the insertion of the dead
time and adopts a sufficient threshold for the current polarity detection. Instead of detecting
the phase current polarity, [244] and [245] employed detecting circuits to determine the current
polarity of the freewheeling diode and [246] used the information of the reference current to
achieve this goal. Reference [247] adjusted the switching frequency according to the ampli-
tude of the reference voltages and minimized the harmonics of the output voltage. Besides the
dead-time effect, [248] included the voltage drops, [249] considered the influence of the turn-
on/turn-off time and [54] mitigated against the effects of the snubber and the parasitic capaci-
tance. Various PWM strategies [250–254] as well as many modified topologies [255–258] have
also been proposed to eliminate the dead time. However, the elimination/minimization methods
mainly focuses on excluding the dead-time effect with the averaged value and the other time-
varying VSI nonlinearities are hardly considered. They require commonly the additional circuit
for the modulation or aiding the switching strategy. Moreover, even though they are simple and
fast, their application to devices with slow control update rate, e.g. GTO, would be inadequate
and the integration of other VSI nonlinearities may increase the design complexity.

On the other hand, the compensating method can be easily adapted to an arbitrary system
and the inclusion of VSI nonlinearities is straightforward. The compensating voltage ∆u can
be either applied at the output of the controller as a compensation signal or directly computed
in the controller as an additional control output. The first category applies the offline or on-
line determined compensating voltage at the output of the controller and delivers the sum of
controller output with this compensating signal to the modulator. The second category ana-
lyzes the characteristics of the VSI nonlinearities and applies adequate control techniques to
improve the performance against this disturbance. With respect to the determination of the
compensating voltage, numerous methods have been proposed. They can be roughly sorted
into following categories: the curve-fitting method [55, 56, 259–264], the average-value-based
method [62, 107, 265–267], the observer/ filter-based method [88, 209, 238, 268–271], the real-
time measurement method [272–274] and the modification of controllers [203, 239, 275–279].
Their principles are briefly introduced as follows.



6.1. INTRODUCTION 193

6.1.1 The Curve-Fitting Method

The curve-fitting method executes experiments and measurements to obtain the datasets of
the distorted voltage that can be regarded as a function of the phase current or other obtain-
able signals, e.g. the reference voltage. The method furthermore adopts certain curves or a
look-up table (LUT) to approximate the sustained characteristics. The offline measurements
can be obtained at the start-up [263] or by an offline self-commissioning procedure [259].
The measurements can be further modelled as a piecewise linear function [280, 281], a lin-
ear saturated function [259, 263], a logarithmic function [260], a piecewise nonlinear func-
tion [107, 261, 282, 283], a support vector regression model [55], a trapezoidal function [264]
or saved as a LUT [56, 106, 262, 284], which will be interpolated as well as extrapolated online
during operation. The accuracy of the compensation varies as the complexity of the chosen
approximating function changes. In general, the curve-fitting method is relatively accurate. But
the offline measuring procedure is time consuming and each VSI need to be determined indi-
vidually. Besides, the influence from the environmental conditions, such as the temperature and
the humidity, is excluded.

6.1.2 The Average-Value-Based Method

The average-value-based method explicitly analyzes the VSI nonlinearities and models the error
based on the VSI characteristics as an average value, which is computed as the voltage-second
error within one PWM period, as shown in Fig. 2.22. The average value is then fed forward to
compensate the reference voltage and delivered together as a sum to the modulator.

Depending on the application as well as the requirement for the accuracy of the compensation
voltage, different elements of the VSI nonlinearities are selected and included into the compu-
tation of the average value. The dead time is normally regarded as a constant. The turn-on/-off
time and the voltage drops can be obtained from the manufacturers’ data sheets. In [64, 285],
only the dead time is taken into consideration, which is regarded as a constant and compensates
the reference voltage by segmenting the current domain. Reference [267,286] included both the
dead time and the voltage drops. And in [265] the zero-current clamping phenomenon was ad-
dressed. Besides the dead time and voltage drops, works such as [62,287] included furthermore
the turn-on/-off time of the VSI. Instead of comprehensively computing the average value, [266]
included the dead time and used a coefficient to approximate the non-ideal switching character-
istics. The average-value-based method is simple but the compensation performance is limited,
since the average value is calculated based on certain constant values from the manufacturers’
data sheets in most cases.

6.1.3 The Filter-Based Method

The main effect of the VSI nonlinearities is causing the increase of the odd harmonic content in
the phase current [238] as well as in the phase voltage [104]. The analysis of the corresponding
harmonics provides another perspective for compensating the VSI nonlinearities. Based on the
analysis conducted in Section 2.4.2, the currents id and iq considering the nonlinear effect of
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the VSI can be expanded with Fourier analysis and written as [238]

id = AI

[
− sin θ −

∞∑
n=6 k

sin(n θe − (n− 1) θ)

n− 1
+

∞∑
n=6 k

sin(n θe − (n+ 1) θ)

n+ 1

]
,

iq = AI

[
− cos θ +

∞∑
n=6 k

cos(n θe − (n− 1) θ)

n− 1
−

∞∑
n=6 k

cos(n θe − (n+ 1) θ)

n+ 1

]
,

(6.1)

where k = 1, 2, 3, · · · and AI is the amplitude of the current. θe is the electrical angle of the
rotor and θ is related to the load power factor.

Controller Modulator VSI PMSM

MeasurementFilter

i∗ u∗

i

4uĩ4i∗

Figure 6.1: Block diagram of the filter-based method.

As it is shown in Fig. 6.1, there are several strategies to insert the compensation signals that
are computed based on the filter. In [238], the compensating voltage ∆u is generated by mini-
mizing the sixth harmonic of the currents with a tuning factor for the design of the convergence
rate. Analogously, reference [288] separated the fundamental component as well as the har-
monics of the currents and voltages. The compensating voltage ∆u was computed based on the
harmonic model. Reference [104] adopted the adaptive-linear-neuron-based method to solve
the optimization problem of minimizing the harmonics. Instead of generating the compensating
voltage, it is also applicable to modify the reference current with ∆i∗. In [268], the reference
current i∗ was modified by analyzing the harmonics. The resulting reference current corrector
∆i∗ was computed based on the analysis. Reference [270] corrected the reference current by
extracting the low-frequency component of the current error ei := i∗ − i and computing the
current error corrector ∆i∗ as the integral of ei. Reference [269] applied an adaptive first-order
infinite-impulse-response (IIR) filter to filter out the harmonics of the current i and delivered
the filtered current ĩ to the controller. The coefficients of the IIR is tuned with a high-pass filter
and the corresponding adaptation algorithm. Works, such as [103, 289], applied a proportional
controller over the harmonics. More specifically, reference [289] deployed an adaptive notch
filter and reference [103] applied an all-pass-based adaptive band-pass filter to estimate the 6-th
order of the current harmonics. Authors in [103] considered furthermore the DC bias of the
distorted voltage, which is related to the current vector angle, and compensated the voltage dis-
tortion with ∆u through the average-value method. The filter-based method is straightforward,
but the filter system need to be properly tuned and the filtering of multiple harmonics aggravates
the design complexity of the filter.
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6.1.4 The Observer-Based Method
Besides the aforementioned methods, the observer-based method can also be implemented to
compensate the distorted voltage. The observer-based method incorporates the error voltage
induced by the VSI nonlinearities into the system dynamics with uk = u∗k − ∆u. Therefore,
the system dynamics in dq reference frame is correspondingly reformulated as

xk+1 = F (xk,∆u,u
∗
k) ,

yk = H(xk) .
(6.2)

The principle of the observer-based method, which is shown in Fig. 6.2, is to minimize the mea-
surements yk and the predicted system states xk from the last step, either by directly extending
the system model with the to be estimated parameters [63, 208, 211, 271], or by deriving the
error voltage as a function of the reconstructed physical quantities [88, 290].

Controller Modulator VSI PMSM

Measurement

Observer

i∗ u∗

4u∗

i

Figure 6.2: Structure diagram of the observer-based method.

Depending on the solving methods of the minimization problem, there are several alterna-
tives to be applied as the disturbance observer: reduced-order disturbance observer [208], first-
order disturbance observer [290], adaptive disturbance observer [63, 210, 271, 281], vectorial
disturbance observer [88], recursive-least-square-based disturbance observer [211], Kalman
filter-based disturbance observer [291], neural-network-based disturbance observer [48] and
particle-swarm-optimization-based disturbance observer [133, 292], etc. Many of them require
an accurate knowledge of the machine parameters, since the prediction as well as the quan-
tity reconstruction is based on the machine models. Nonetheless, the adaptive disturbance ob-
server [63, 210] and the solutions proposed in [48, 133, 292] are stated to be robust against the
machine parameter variation. But they need several operating points to solve the optimiza-
tion problem and are more computational expensive than the other methods. The tuning of the
adaptive disturbance observer is however burdensome.

6.1.5 The Real-Time Measurement Method
The real-time measurement method, presented in Fig. 6.3, originates from the intuition of di-
rectly measuring the terminal voltage u and comparing the measurements with the reference
voltage u∗. Many works have been conducted to realize the real-time measurement method.
Reference [272] designed a circuit to measure the volt-second value of the error voltage by in-
tegrating the terminal voltage over the dead-time interval. Authors in [273] measured the actual
applied duty cycle and compared it with the command duty cycle to compute the compensat-
ing time. In [293], the actual output voltage with additional measurements of phase current
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Figure 6.3: Block diagram of the real-time measurement method.

and DC-link voltage is estimated. Reference [274] employed the terminal voltage to compute
the compensation time as well as to detect the current polarity. The real-time measurement
method is independent of the topology and characteristics of the power devices. Furthermore,
the method from this category is relatively efficient, simple for the computation and provides the
possibility of eliminating the influence from the current sensor for the current polarity detection.
However, the additional hardware is required for the measurements. Besides, the compensated
value is one step delayed.

6.1.6 Modification of the Controller

The principle of modifying the controller for reducing the effects of VSI nonlinearities is to
solve a general robust tracking problem, i.e. tracking the reference enduring the existence of
disturbance with considerable amount. The most methods are derived from the internal model
principle, which is widely deployed due to its simplicity and straightforward implementation
[294]. The internal model principle was developed in the late 1970s and utilized in the chemical
industries [295]. The concept of the internal model principle is to deploy an internal model of
the exogenous disturbances in the feedback system and actively reject the disturbances.

The two-degrees-of-freedom control (2DOFC) is a method based on the internal principle
and well developed. Its block diagram is shown in Fig. 6.4, where L denotes the set-point filter
and Q is the disturbance rejection gain.

Controller Modulator VSI PMSM

Measurement

L

Q

i∗ ei u∗

i

Figure 6.4: Block diagram of general two-degrees-of-freedom control.

Reference [296] used the 2DOFC scheme to compensate the dead-time effect by regulating
the error of currents ei . The two-degrees-of-freedom control method provides more freedom
for the control problem, while the design and the parameter selection are relatively complicated.

The resonant control (RSC) is another method derived from the internal model principle,
which has a high gain around the resonant frequency and therefore is able to track or reject
a sinusoidal signal of a certain frequency [297]. Since the implementation of the ideal reso-
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nant is difficult, a quasi-resonant controller is normally deployed. Its transfer function GRSC is
designed as a second-order system and expressed as

GRSC(ωd) =
2KRSC ωc s

s2 + 2ωc s+ ω2
d

, (6.3)

where KRSC denotes the resonant coefficient, ωd is the resonant frequency and ωc is the cutoff
frequency [278]. The structure diagram of the general RC is shown in Fig. 6.5, where the GΣ

denotes the multi-resonant controllers (MRC), which consists of several parallel quasi-resonant
controllers, i.e. GΣ =

∑
i=1,2,3,...GRSC(ωi). G1 is an augmented controller and is set as G1 = 1

Controller G1

GΣ

Modulator VSI PMSM

Measurement

i∗ ei u∗

i

Figure 6.5: Block diagram of general resonant control.

for the traditional resonant control.
As it is explained previously in (6.1), the VSI nonlinearities causes 6 i-th order (i =

1, 2, 3, ...) harmonics in id and iq, among which the sixth order harmonic is dominant. Ref-
erence [278] compensated the VSI nonlinearities by applying a RSC with resonant frequency
of six times rotor frequency due to the fact that the 6th-order harmonic dominates in harmonic
components. Authors in [298] considered both 6th- and 12th-order harmonic and combined
RSC with 2DOFC to further improve the tracking and disturbance rejection capability of the
proposed method. In several works, the augmented controllerG1 is designed as an integral term
to suppress the constant disturbance, i.e. G1 = 1

s
. For example, works in [204] and [205] com-

bined MPC and the resonant controller. More specifically, in [204] the MPC is developed over
an incremental system model to eliminate the constant disturbance and the resonant controller is
designed to suppress the 6th-order harmonic. However, the cascaded combination of MPC and
resonant controllers degrades the dynamic performance and can cause undesired peak around
the resonant frequency in the closed-loop control [205]. Thus, an observer was employed
in [205] to estimate the non-periodic disturbance as well as the currents. Furthermore, a vector
resonant controller was applied to tackle the problem of the conventional resonant controller.

Another alternative deduced from the internal model principle is the repetitive control, which
shares the same structure with the iterative learning control [299]. Therefore, they are treated as
the equals and abbreviated as RPC in this thesis. They are also able to track or reject periodic
signals. The structure of a general repetitive control as well as the iterative learning control
scheme is shown in Fig. 6.6. In Fig. 6.6, L represents the learning function/control gain, Q is
the filter and Tp is the repetition period. In [61], the RPC was applied in the angle domain of the
induction motor. Works, such as [239, 279], applied a fractional RPC to solve the problem that
the performance of the RPC degrades, if the time delay steps Tp is non-integer. Reference [300]
improved the closed-loop system robustness for the VSI-nonlinearities compensation problem
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Figure 6.6: Block diagram of the repetitive control/ the iterative learning control.

by integrating a finite impulse response moving average filter that limits the gain of the RPC
and also empowers the controller to suppress the target disturbances. In [301], RPC associated
with a sliding mode observer to realize the sensorless control of the PMSM.

After analyzing and comparing the principle of the RPC and RSC, it is noticeable that RPC
is equivalent to combining infinite resonant controller in all frequencies. Therefore, the RPC
can reject all harmonics, but is dynamically slow, while the resonant control has fast dynamic,
but works on a single frequency [302].

Besides the internal model principle based methods, the robust control method is also widely
applied to deal with the disturbances, which is designed in order that the controller can maintain
stability and meet specified performance with the existence of plant uncertainties and external
disturbances. However, the robust control method has few effect on the elimination of the
periodic disturbances.

Moreover, works based on the analysis on the characteristics of the VSI nonlinearities can
be found in [210, 275–277], to name but only a few. Reference [275] applied the PI technique
over the difference between the referred voltage and the DC-link voltage to control the DC-
link voltage, which derived from the conclusion that the error voltage can be largely reduced
if the ratio between the command output voltage and the DC-link voltage is well controlled.
Authors in [276] proposed a compensation strategy in the angle domain, which is based on
the conclusion that the integral of the current error generates the sixth order harmonic, and
cancelled it with the PI technique. Reference [210] applied a similar technique to compensate
the VSI nonlinearities and moreover implemented an adaptive controller to cancel the effects
from the machine parameter variation. Authors in [277] applied an all-pass filter to compute
the instantaneous angle and the magnitude of the zero-axis current and implemented a zero-axis
current regulator to eliminate the harmonics.

6.2 State-of-the-Art Methodologies

In the preceding section, the general categorization of the compensation methods for the VSI
nonlinear effects is introduced. Subsequently, the state-of-the-art approaches are selected and
introduced in this section, where their principles as well as implementations are demonstrated
accordingly. The following methods are chosen for the investigations and the further imple-
mentations, the offline average-value-based method, the adaptive harmonic filtering method,
the resonant control method and the repetitive control method, since they have been widely
applied and have particular advantages as well as disadvantages.
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6.2.1 Offline Average-Value-Based Method
As introduced prior, the most simple and straightforward method is to employ the relationship
between the nonlinear effect of the VSI and the error voltage, where Udead is approximated with
the values from the data sheet, which is provided by the manufacture. Recall the approximation
of Udead from (3.109) as

Udead =
Tdead + Ton − Toff

Tc
(Udc − Uce + Ud) +

Uce − Ud
Udc

U ref +
Uce + Ud

2
, (6.4)

as explained in Section 2.4.2, the error voltage caused by the VSI nonlinearities can be rep-
resented by a function of Udead, θe and the currents direction in (3.107), i.e. ∆u = Udead ·
(Fd, Fq)T , where [

Fd
Fq

]
= Tdq(θe)

sgn(ia)

sgn(ib)

sgn(ic)

 . (6.5)

Different from the proposed method in Section 3.6, where the value of Udead is estimated and
adjusted in real time. The compensating voltage here is computed with the help of the offline
obtained value via (6.4) and the online computed value with (6.5).

6.2.2 Adaptive Harmonic Filtering
The adaptive periodic disturbance filtering method is based on the analysis of the harmonics and
eliminates them by adjusting the amplitude of the compensation signal. The VSI nonlinearities
causes the 6i-th harmonics for the drive system. As it is described in Section 2.4.2, the error
voltage in the three-phase stationary reference frame can be transformed into the two-phase dq
reference frame as

[
∆ud

∆uq

]
= Tdq

∆ua

∆ub

∆uc

 = AU


− sin γ −∑∞n=6i

(sin(n θe + (n− 1) γ)

n− 1
+

sin(n θe + (n+ 1) γ)

n+ 1

)
cos γ −∑∞n=6i

(cos(n θe + (n− 1) γ)

n− 1
− cos(n θe + (n+ 1) γ)

n+ 1

)


(6.6)
where AU = 4Udead

π
, i = 1, 2, 3, . . . , and γ = θi − π

2
denotes the angle between the current

vector and the q-axis. It can be concluded from the aforementioned formulation of ∆u that
the VSI nonlinearities can be compensated by eliminating the fundamental as well as the 6i-th
harmonics. Moreover, authors in [103] mentioned that the higher order harmonics with i ≥ 2
have less effect on the voltage distortion. Therefore, an elimination of the sixth harmonic is
sufficient to compensate the distorted voltage. Then, the problem of compensating the distorted
voltage becomes the filtering of the sixth harmonic, which is realized by a simple second-
order all-pass-based adaptive bandpass filter [103]. Its center frequency is dependent on the
rotor angular speed, i.e. ωe. The application of the second-order all-pass filter independently
facilitates the control of the bandpass frequency and the bandwidth [103]. The transfer function
of the bandpass filter given in z domain can be written as

Gbp(z) =
1−Ga(z)

2
, (6.7)
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where Ga(z) denotes the transfer function of the second-order all-pass filter, which employs the
framework of the second-order lattice Gray–Markel all-pass filter and can be given as

Ga(z) =
k2 + k1 (1 + k2) z−1 + z−2

1 + k1 (1 + k2) z−1 + k2 z−2
, (6.8)

where k1 determines the center frequency of the filter and gives

k1 = − cosωbo . (6.9)

The frequency ωbo denotes the center frequency of the filter. The coefficient k2 controls the
bandwidth through

k2 =
1− tan(Bb)

1 + tan(Bb)
, (6.10)

where Bb represents the bandwidth of the filter, which directly represents the distance from
the pole to the unity-circle. The characteristics of the bandpass filter can be determined by
choosing adequate coefficients k1 and k2. More specifically, the center frequency ωbo of the
bandpass filter is defined by the coefficient k1, which is related to the rotor angular speed, and
the bandwidth is determined by specifying the value of the coefficient k2. In terms of cancelling
the VSI nonlinear effects, the center frequency is selected as the 6k-th harmonics of the PMSM,
i.e.

ωbo = 6 k ωe Ts , (6.11)

where k ∈ Z+, ωe denotes the electrical rotor angular speed of PMSM and Ts is the sampling
time. If the elimination of the sixth harmonic is sufficient to compensate the VSI nonlinearities,
as stated in [103], then i is chosen as i = 1.

After obtaining the sixth order harmonic, a simple proportional type feedforward compen-
sator via (6.6) is applied, i.e. ∆uc = Ka ∆u, where ∆u is given in (6.6). The amplitude AU in
(6.6) is an approximation, which is in practice time varying. Therefore, aKa is applied to adjust
the amplitude of the compensating voltage ∆uc. The method proposed in [238] is deployed to
online adjust the amplitude of the compensation voltage, which gives

Ka, i+1 = Ka, i + δk, i ,

δk, i = −αk δk, i−1 sgn(Ka, i −Ka, i−1) sgn(Σa, i − Σa, i−1) ,
(6.12)

where αk denotes the converging coefficient and Σa, i represents the accumulation of the sixth
harmonic over half the period.

6.2.3 Resonant Control
The concept of internal models plays an essential role in the regulation problem, which esti-
mates the development of the disturbance by simulating the system response. In this thesis, two
methods derived from the internal model principle, i.e. the resonant control and the repetitive
control, are introduced and compared. The resonant control can track sinusoidal references of
arbitrary frequencies with zero steady-state error [303]. Derived from the internal model princi-
ple, the resonant controller embeds the poles of the open-loop transfer function into the forward
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path between the reference and the output. The transfer function of an ideal resonant controller
can be given in Laplace domain as [204]

GRSC(s) =
KRSC s

s2 + ω2
d

, (6.13)

where KRSC denotes the resonant coefficient and ωd represents the resonant angular frequency,
i.e. the frequency of the periodic signals. This assures the perfect tracking or eliminating the
components rotating at the resonant frequency ωd when the RSC controller is implemented in
the closed-loop. Nonetheless, the ideal resonant controller is difficult to implement in practice
and demonstrates poor frequency robustness. Moreover, because of the narrow band and the
infinite gain, the discretization is essential for the resonant controllers. A small frequency devi-
ation may even result in a significant performance degradation of the proportional resonant con-
trollers [304]. Therefore, instead of the ideal resonant controller, the quasi-resonant controller
is normally deployed to realize the periodic disturbance attenuation, as mentioned previously.
The transfer function of the quasi-resonant controller has been introduced and given in (6.3).
If more than one single frequency need to be cancelled, the quasi-resonant controllers of the
individual frequency need to be parallel constructed, which can be written as

GΣ(s) =
∑
i

KRSC, i ωc s

s2 + 2ωc s+ ω2
d, i

, (6.14)

where ωd, i denote the resonant angular frequency of interest.

6.2.4 Repetitive Control
Besides the resonant control, the repetitive control is also based on the internal model prin-
ciple and aims to realize an asymptotic tracking as well as rejection of periodic signals. It
requires only the knowledge of the period time and was originally designed in the continuous
time domain. The repetitive control (RPC) shows superior performance when the periodic sig-
nals contains infinite number of harmonics, e.g. the square wave, over the finite dimensional
controllers, for example the resonant control. The repetitive control is employed in a feedfor-
ward manner, if the periodic signals can be predetermined [305]. The conventional repetitive
controller consists of a repetitive control gain KRPC and a delay term, which is defined by the
delay time Td [299, 305]. The delay time Td is selected equivalently to the disturbance signals.
The delay mechanism is normally realized by a memory loop and constitutes a periodic signal
generator. The block diagram of a conventional repetitive control is shown in Fig. 6.7, where the
controller is demonstrated in z-domain. The RPC can be integrated into the system regarding

KRPC

z−Td

Controller Plant
x∗ e y

Figure 6.7: Principle of the conventional repetitive control.

different architectures, namely the series approach and the plug-in (parallel) approach. In this
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thesis, the plug-in architecture is deployed to compensate the nonlinear effects of the VSI, since
the plug-in type RPC can be inserted into the control loop without affecting the performance of
the existing controller [306].

However, the repetitive control requires an exact knowledge of the period time of the periodic
signals, which is equivalent to the known constant period time or can be obtained through
accurately measurement in real-time.

6.3 Speed-Adaptive Fractional Repetitive Control

As mentioned formerly, the repetitive controller was proposed to track or reject the periodic
signals in a wide field of researches and applications, such as manufacturing processes, hard
disk drives and chemical processes [306]. A guarantee of the performance for the conventional
repetitive control is the accurate knowledge of the periodic signals. However, the practical ap-
plication faces the problem that the periodic frequency varies during the operation and the to
be controlled system is in general uncertain. Moreover, the implementation of the conventional
repetitive control on a digital control platform evokes normally a non-integer ratio between the
period of the periodic signals and the sampling time, which dramatically degrades the perfor-
mance of the repetitive controller. Furthermore, in the context of the attenuating the periodic
disturbance for the electric drive system, the disturbance is varying in terms of the frequency.
Therefore, a speed-adaptive fractional repetitive control strategy is proposed to tackle these
problems.

6.3.1 System Description
The VSI nonlinearities can be considered as a repetitive signal, which propagates with a fre-
quency of 6 fe . fe is the fundamental frequency of the PMSM, i.e. fe = ωe/(2 π). Therefore,
the time delay can be computed in a discrete manner as a multiples of the sampling time as

Ns =
π

3ωe Ts
, (6.15)

where Ns represents the number of the delayed time period, ωe denotes the electrical angular
speed and Ts is the sampling time. However, the ratio Ns is normally a fraction. For example,
a common working condition, the rated condition with ωe = 100π rad/s and Ts = 10 kHz, the
ratio is obviously a fraction. Therefore, it can be concluded from (6.15) that the ratio Ns, on
the one hand, can be a fractional number. On the other hand, it is time varying and depends
on the electrical motor speed ωe. The ratio Ns is normally rounded and the nearest integer is
applied for the delay mechanism, as it is shown in [300]. But this approximation degrades the
disturbance attenuation performance, since the high control gains shift away from the targeted
harmonic frequencies [279]. A simulation is conducted to demonstrate this phenomenon. In
Fig. 6.8, the frequency response of the conventional RPC under two scenarios is shown, i.e.
Ns is a integer, which is represented with N∗, and Ns is a fraction, of which the integer part is
represented by N .

It can be noted from the Fig. 6.8 that the gains at the target frequencies decrease significantly,
when the delay step Ns is a non-integer. Besides, the conventional RPC has infinite gain at
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Figure 6.8: Frequency response comparison between the conventional RPC with Ns as an integer and a non-
integer. The situation, where the ratio Ns is an integer, is represented by the legend N∗ and in blue star, where the
non-integer ratio Ns is given by the legend N and in red plus.

frequencies of 2 i π/Td (i = 0, 1, 2, ...), which can cause the system too sensitive to the certain
frequencies and has a great impact on the stability of the closed-loop system [299]. Moreover,
based on the prior analysis that the delay time Td is related to the electrical angular speed ωe ,
the RPC may evoke undesired peak around the frequencies of 2 i π/Td and reduces the stability
margin with increase of the angular speed.

To tackle these problems, a plug-in fractional RPC with a moving horizon average filter is
proposed to eliminate the disturbance caused by the VSI nonlinearities and to guarantee that

lim
i→∞

edi = 0 ∈ RNx×1 , (6.16)

where edi denotes the error caused by the VSI nonlinearities. The block diagram presenting the
predictive current control with the proposed speed-adaptive fractional repetitive control (FRPC)
compensation mechanism is give in Fig. 6.9. The proposed speed-adaptive FRPC method is im-

CCS-MPC

Compensator

αβ
dq

SVM VSI

abc
dq

PMSM
i∗dq

i∗dq ωe

u∗
dq udq uαβ

iabc

idq

∆udq

ωe(θe)

Figure 6.9: The control block diagram of the predictive current control with the proposed compensation method,
where the compensator is realized with speed-adaptive fractional repetitive control.

plemented as a compensator, which compensates the distorted voltage in a plug-in manner. The
model predictive current control is realized with the CCS-MPC or the deadbeat control, of which
the details are described in Chapter 4. The reference current i∗ as well as the measurements i
are firstly transformed into the dq reference frame and then fed into the compensator. More
specifically, the block diagram of the proposed compensation strategy is shown in Fig. 6.10.

The gain KRPC is the gain of the fractional repetitive controller. The filter L is normally
selected as a zero-phase low-pass filter to deal with the fact that the RPC has high gains at
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KRPC z−Ns L F
i∗

i

ei

ωe

∆u

Figure 6.10: Structure of the plug-in repetitive control strategy.

the disturbance related frequencies and therefore may induce instability. In this thesis, a zero-
phase moving average filter is implemented [300] and enhances the robustness of the closed-
loop system [307]. The filter F denotes a linear-phase lead filter, which is applied to stabilize
the overall closed-loop system. It is a zero-phase-error tracking controller and can be designed
with methods mentioned in [308], of which the coefficients can be determined with experiments
[309]. The transfer function of the plug-in RPC presented in Fig. 6.10 can be written as

GFRPC(z) =
Uc(z)

E(z)
= KRPC

z−Ns L(z)

1− z−Ns L(z)
F (z) . (6.17)

The poles of GFRPC(z) are located at the frequencies 2iπfd, where fd is the fundamental fre-
quency of the periodic disturbance. In the context of eliminating the VSI nonlinear effects,
fd is defined as fd := 6 fe, where i ∈ Z. Therefore, the transfer function GFRPC(z) has an
infinite amplitude at the frequencies 2iπfd if L(z) = 1, which indicates that the RPC can
achieve zero steady-state error for the harmonics below the Nyquist frequency if L(z) = 1
and Ns is an integer. The stability of RPC can be guaranteed by the design of the feedback
gain, as indicated in [310]. However, in practical applications, the non-integer delayed time
step Ns is more often encountered. In order to tackle the problem, a technique to handle the
fractional delay element is deployed, which approximates the fractional delay by a Lagrange-
interpolation-based finite-impulse-response filter. The employed filter handling the fractional
delay costs only limited computational resources and is one of the easiest methods to design
a fractional delay filter [311]. It is suitable for the online tuning of the fractional delay [311],
since the filter on the one hand is simple to implement, on the other hand provides high accu-
racy for the approximations. The delay z−Ns can be split by the Lagrange-interpolation-based
finite-impulse-response filter, i.e. a N1-th order FIR filter as [312]

z−Ns ' z−N
∗
s

N1∑
k=0

m(k)z−k , (6.18)

whereN∗s is the integer part ofNs andN1 is an integer, which is selected during the filter design
and indicates the accuracy of the approximation. m(k) is so designed that the error between the
term on the right hand side and the term on the left hand side of (6.18) is minimized. As it is
stated in [313], the coefficients m(k) can be obtained by employing the Lagrange interpolation
as follows

m(k) =

N1∏
j=0, j 6=k

N+
s − j
k − j , for k = 0, 1, ...N1 , (6.19)

whereN+
s is the fractional part ofNs andN1 is the order of the FIR filter, as it is shown in (6.18).

The accuracy of the FIR filter in (6.18) is improved with the increase of N1. A simple linear
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interpolation of z−Ns is obtained with N1 = 1. The approximation conducted in (6.18) leaves
a remainder R for the fractional delay, which can be derived by subtracting the approximation
from the fractional delay and deploying the properties of the Lagrange interpolation as [239]

R = z−N
+
s −

N1∑
k=0

m(k)z−k =
δ−N

+
s −N1

∏N1−1
i=0 (−N+

s − i)
(N1 + 1)!

N1∏
i=0

(N+
s − i) , (6.20)

where δ ∈ [Ts, k, Ts, k+1]. It can be concluded from the formulation of the remainder R that
an increase of N1 improves the accuracy of the approximation in (6.18). Furthermore, the
transfer function of the fractional repetitive control can be further rewritten by substituting the
formulation of the FIR filter for the fractional delay in (6.18) as

GFRPC(z) = KRPC
z−N

∗
s
∑N1

k=0m(k)z−k L(z)

1− z−N∗
s

∑N1

k=0m(k)z−k L(z)
F (z) , (6.21)

which turns into a repetitive controller with N+
s = 0. The integer component N∗s and the

fractional termN+
s change with the rotor speed and the sampling frequency, where the sampling

frequency is normally constant for an implementation of the control for the PMSM drive system
on an embedded system.

6.3.2 Parameter Design
After obtaining the general form of the fractional repetitive controller in (6.21), the parameters
of (6.21) need to be designed properly, in order to eliminate the periodic disturbances and
realize the precise control. First of all, the parameter of the FIR filter for approximating the
fractional delay is investigated, i.e. the order of the filter N1. The simulations of the frequency
response considering various values of the parameter N1 have been carried out, where the target
frequencies are 480 Hz and its multiples. The corresponding results are shown in Fig. 6.11.

Figure 6.11: Frequency response of the FRPC designed with various values of the parameter N1, which represents
the order of the Lagrange-interpolation-based FIR filter.

In Fig. 6.11, it can be observed that the FRPC can accurately suppress the signals at the
designed frequencies, while the conventional RPC shifted the control gain on the frequency
domain. The gain of the conventional RPC is relatively large at the frequency of 500 Hz and
its multiples, while it is significantly reduced at the target frequency 480 Hz and its multiples.
It is worth mentioning that the gain reduction of the conventional RPC is even worse in higher
frequency region.
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In order to demonstrate the frequency response of the respective filter with different parameter
selections, the gains at the harmonic frequencies, which consider 480 Hz as the fundamental
frequency, are collected and presented in the relation to the harmonic order in Fig. 6.12.

Figure 6.12: Frequency response of different values of the parameter N1 as a relation to the harmonic order.

Obviously, the gain reduction of the conventional RPC at the target frequencies is significant.
Consequently, the rejection ability of the conventional RPC is dramatically reduced. Because of
the principle of the fractional repetitive control, the gain at the target frequencies is reduced and
yet large enough. An increase on the order of the Lagrange-interpolation-based FIR filter can
result in a higher gain at the target frequencies, which furthermore delivers a more accurate ap-
proximation and improves the disturbance rejection performance. However, the computational
burden is increased accordingly.

The moving average filter L(z) is utilized to guarantee the system stability by limiting the
control gain of the repetitive control as finite and yet large enough at the target frequencies to
suppress the periodic disturbance [309]. Moreover, it can realize the functionality of a low-pass
filter and demonstrates zero phase shift. The formulation of a general moving average filter can
be given as

L(z) =

∑N2

j=0 αjz
j +
∑N2

j=1 αjz
−j

2
∑N2

j=1 αj + α0

, (6.22)

where αj > 0 with j = 0, 1, · · · , N2 . The determination of the parameter N2 and the coeffi-
cients αj depends on various factors, e.g. the phase delay, the gains and the current measure-
ment noise. For a causal FIR filter, the phase delay increases as the filter length N2 gets longer.
Nonetheless, the FIR filter in (6.22) can achieve zero phase delay. The simulations to study
the frequency response of the FIR filter given in (6.22) have been carried out in terms of the
different parameter selections of N2. The corresponding results are shown in Fig. 6.13.

It can be concluded from the Fig. 6.13 that a larger value of N2 can lead to a smaller gain at
the target frequencies, which however improves the robustness of the closed-loop system [314].
A first-order filter with N2 = 1 is normally sufficient for the practical applications, as claimed
in [309]. Once the order of the moving average filter is determined, the weighting allocating
coefficients αj are studied subsequently. Simulations for investigating the relationship between
α0 and the gain at the target frequencies have been carried, of which the results are shown in
Fig. 6.14 correspondingly.

A larger α0 enlarges the passband of the filter L(z), while a smaller value of α0 brings a wider
stability range for the gain KRPC [309]. As it is indicated in [315], the lowest noise is obtained
when all the input samples are treated equally. Moreover, it can be observed that ‖L(z)‖ → 1
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Figure 6.13: Frequency response of different parameter selections of N2 for the FRPC, which is represented as a
function of the harmonic orders.

Figure 6.14: Frequency response of different parameter design of α0 for the FRPC filter.

at low frequencies and ‖L(z)‖ → 0 at high frequencies. Therefore, the parameter design of
L(z) can be regarded as a tradeoff between the tracking ability and the system robustness [316].
Since the moving average filter L(z) has no extra phase displacement, its phase characteristics
is zero.

Moreover, the original closed current loop demonstrates the system delay and phase shift.
Therefore, the implementation of a phase lead filter F (z) is encouraged to realize the zero-
phase-shift compensation [309]. The phase lead filter can be chosen as a stable inversion of the
current dynamics, which can be generally written as [317]

F (z) =
zN3A(z−1)Bu(z−1)

Ba(z−1)Bu(1)
, (6.23)

where N3 represents the delay of the system, Bu(z−1) and Ba(z−1) denote the unstable zeros
and stable zeros of the plant, respectively. A(z−1) includes poles of the plant. Bu(1) is the
scaling factor of the steady state control gain of the controller. However, the inverse of the
system is normally unavailable due to various uncertainties and disturbances [309]. But the
value of the parameter N3 can be determined via experiments [309].

After applying the plug-in speed-adaptive FRPC into the current control loop, the overall
control law u at step k from Fig. 6.9 is then given as:

uk = u∗k + ∆uk , (6.24)

where u∗k is the control voltage computed from the predictive controller and the ∆uk denotes
the compensating voltage obtained from the proposed plug-in speed-adaptive FRPC. As a result,
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the transfer function of the plug-in speed-adaptive FRPC is summarized as

GFRPC(z) =
Uc(z)

E(z)
= KRPC

z−NsL(z)

1− z−NsL(z)
F (z) , (6.25)

where z−Ns , L and F can be realized with (6.18), (6.22) and (6.23), respectively.
In the discrete-time domain, the delay z−1 is realized by implementing the buffer stack. Its

length is determined by the delay time and the sampling time. The buffer stack is updated at
each sampling instant. More specifically, the stack is shifted by one element and the most recent
data is enclosed.

6.3.3 Stability Analysis
After determining the aforementioned parameters of FRPC with the help of simulations and
experiments, the control gain KRPC needs to be assigned. It denotes the trade-off between the
stability robustness and the steady-state performance [318]. A proper selection of the control
gain KRPC enables a decrease of the non-harmonic components [319]. The transfer function of
the closed-loop system regardless of the controllers can be written as

Gcp(z) =
Gp(z)

1 +Gp(z)
, (6.26)

where Gp(z) denotes the transfer function of the system, i.e. the current loop of the PMSM.
After deploying the plug-in speed-adaptive FRPC, the transfer function of the reference Yr(z)
and the disturbance Ds(z) to the system output or measurement Y (z) can be derived as [309]

Y (z)

Yr(z)
=

[1− L(z) z−Ns(1−KRPC F (z))]Gcp(z)

1− L(z) z−Ns(1−KRPC F (z)Gcp(z))
, (6.27)

and
Y (z)

Ds(z)
=

1− L(z) z−Ns

1 +Gp(z)
· 1

1− L(z) z−Ns(1−KRPC F (z)Gcp(z))
, (6.28)

respectively. The error transfer function of the FRPC-based compensation mechanism can be
given as

E(z)

Yr(z)−Ds(z)
=

(1 +Gp(z))−1 (1− z−Ns L(z)
)

1− z−Ns L(z) (1−KRPC F (z)Gcp(z))
. (6.29)

As a result, the stability of the closed-loop system controlled by the FRPC is asymptotically
stable as long as the following two conditions are satisfied: the closed-loop feedback system
Gcp(z) is stable and the roots of the denominator, i.e. 1 − z−NsL(z) (1 − KRPCF (z)Gcp(z)),
are inside the unit circle, which gives

|1−KRPC F (z)Gcp(z)| < |L(z)|−1

∣∣∣∣∣
N1∑
k=0

m(k)z−k

∣∣∣∣∣
−1

, ∀z = ejω, 0 < ω <
π

Ts
. (6.30)

The first condition is equivalent to the statement that the roots of
(
1 + Gp(z)

)−1 are inside the
unit circle, which is same as the conventional repetitive control method. The second stability
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criterion is almost equivalent to the consideration of the conventional repetitive control within
the passband of the fractional delay filter in (6.18), i.e.

∣∣∣∑N1

k=0m(k)z−k
∣∣∣ → 1. Furthermore, if

the bandwidth of the moving average filter L(z) is smaller than the bandwidth of the fractional
delay filter, it can be obtained that |L(z)|

∣∣∣∑N1

k=0 m(k)z−k
∣∣∣→ 1. Then the second condition in

(6.30) can be simplified as a more conservative condition as

|1−KRPC F (z)Gcp(z)| < 1 . (6.31)

If the applied phase lead filter F (z) can achieve zero-phase compensation, the synthesis of the
plug-in speed-adaptive FRPC is similar to that of the conventional repetitive controller [309].
If the frequency of the reference signal yr(t) and the disturbance ds(t) approaches ωi = 2iπ fd,
where i = 0, 1, 2, ..., N∗s (N∗s = bNsc), then z−Ns = 1. Consequently, if the overall closed-
loop system is asymptotically stable, the error E(z) can be derived from (6.29) with the as-
sumption L(z) = 1 as

lim
ω→ωi

‖E(z)‖ = 0, ∀ωi , (6.32)

which denotes that for any periodic reference signal with a frequency less than the Nyquist
frequency, a zero steady-state tracking error can be guaranteed even under the existence of the
model uncertainties. It can be concluded from the inequality in (6.30) that the choice of the
parameters for F (z) and KRPC is coupled.

Let MGcp and θGcp represent the magnitude characteristics and the phase characteristics of
Gcp(z), respectively, i.e. Gcp(jω) = MGcp(ω)ejθGcp (ω). Analogously, F (z) has the frequency
characteristics F (jω) = MF (ω)ejθF (ω), where MF (ω) and ejθF (ω) denote its magnitude and
phase, respectively. Substitute the magnitude characteristics as well as the phase characteristics
of Gcp(z) and F (z) into (6.31), it can be obtained that

|1−KRPCMGcp(ω)MF (ω) ejθGcp (ω)+jθF (ω)| < 1 . (6.33)

The phase lead filter F (z) is deployed to realize the zero-phase compensation and normally is
designed in practice as

F (z) = zN3 . (6.34)

As a result, the inequality (6.33) can be simplified as

|1−KRPC MGcp(ω) ej(θGcp (ω)+N3 ω)| < 1 . (6.35)

Therefore, it can be derived from (6.30) that [320]

0 < KRPC <
2

MGcp

. (6.36)

Thus, if F (z) yields a zero-phase compensation for the closed-loop system, the stability range
of the gain KRPC will be 0 < KRPC <

2
MGcp

.
It is worth mentioning that the conditions are sufficient to guarantee the closed-loop stability,

which however has been claimed to be close to the necessary ones in practice [321]. Moreover,
works such as [322] and [306] provide the guidelines for designing the repetitive controllers.
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6.4 Experimental Evaluation

Subsequent to the explicit introduction and analysis of the overall system behaviour and the
stability issue, the proposed speed-adaptive FRPC is implemented on the laboratory facility de-
scribed in Appendix B.2. The proposed method is firstly tested at the steady state, in order to
compare with the state-of-the-art methods mentioned previously, namely the offline average-
value-based method, the adaptive harmonic filtering method and the resonant controller. Subse-
quently, the proposed method has been tested under the parameter mismatch of Ld, Lq and Ψm.
The performance under the parameter mismatch of Rs is not investigated, since its influence is
almost ignorable. At last, the dynamic performance of the proposed FRPC is evaluated under a
load step.

6.4.1 Steady State Performance

First of all, the steady-state performance in terms of the harmonics elimination are evaluated
for all methods with an analysis of the harmonic content of the three-phase current up to 13-th
order. The working point of the PMSM is chosen as the rated speed and the no-load condition.
The computation results of the harmonic contents are shown in Table. 6.1. Moreover, their sum
is also computed and shown in Table 6.1 under the denotation named HD.

Table 6.1: Harmonic analysis

5th 7th 11th 13th HD

CCS-MPC 5.48% 2.07% 0.14% 0.19% 7.88%

Offline 4.59% 1.02% 0.43% 0.59% 6.63%

AHF 5.12% 1.24% 0.08% 0.11% 6.55%

RSC 3.29% 0.77% 0.06% 0.08% 4.20%

FRPC 3.60% 0.73% 0.10% 0.14% 4.57%

In Table 6.1, the term Offline represents the offline average-value-based method and the AHF
denotes the adaptive harmonic filtering method. It can be observed from the computational
results in Table 6.1 that the predictive current control yields a harmonic distortion up to 13-th
order of almost 8% of the fundamental amplitude and the implementation of the disturbance
observer introduced in Chapter 4 has little effect on the harmonic elimination, since the distur-
bance observer mainly focuses on the constant-like disturbance and has effect on the noises.
Although the deployed disturbance observer, e.g. the derivatives of the Kalman filter and the
MHE, has the ability to filter out the measurement noises and the system noises, their band-
width is however limited. Moreover, they have little effects on the low-order harmonics. After
implementing the offline average-value-based method, of which the values are obtained from
the manufacturer’s data sheet, has reduced the harmonic content (up to 13-th harmonic) to
6.63%. An obvious reduction of the 5-th and 7-th harmonic can be observed, while the 11-th
and the 13-th harmonics have been increased significantly. The adaptive harmonic filtering has
reduced the harmonic content by 1.33% and the values of all harmonics have declined. The
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resonant controllers outperforms the other three methods, which reduced the harmonic content
to 4.2%. However, multiple resonant controllers need to be implemented to eliminate indi-
vidual harmonic content. The system under the control of the proposed FRPC can achieve a
harmonic distortion of 4.57%, which reduced the harmonic distortion of the CCS-MPC by 42%
and shows better performance than the offline average-value-based method and the adaptive
harmonic filtering method.

6.4.2 Parameter Variation of Ld

The proposed method can furthermore eliminate the steady-state error caused by the parameter
mismatches to a certain level. The first test scenario is the parameter variation of the inductance
in the d-axis. The PMSM runs at the rated speed and has no load. Ld has increased by 20% in
the CCS-MPC. The corresponding experimental results are shown in Fig. 6.15. The proposed
speed-adaptive FRPC is activated at t = 0 s. Analogously, an reduction of the parameter Ld in

(a) (b)

Figure 6.15: The control performance of the predictive current control and the proposed harmonic elimination
strategy under the parameter mismatch of Ld with rp = 120%. The speed-adaptive FRPC is activated at t = 0 s.

the controller is also investigated, i.e. rp = 80%. The corresponding experimental results are
shown in Fig. 6.16.

(a) (b)

Figure 6.16: The control performance of the predictive current control and the proposed harmonic elimination
strategy under the parameter mismatch of Ld with rp = 80%. The speed-adaptive FRPC is activated at t = 0 s.

It can be concluded from Fig. 6.15 and Fig. 6.16 that the proposed FRPC-enhanced CCS-
MPC eliminates the harmonics significantly, especially for the d-axis current. After activating
the proposed method, the system converges to the new steady state within 10 ms. The variation
of the inductance Ld causes small steady-state offsets in d- and q-axis, which are cancelled by
activating the FRPC at t = 0 s.
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6.4.3 Parameter Variation of Lq
The control performance under the parameter mismatch of the Lq is furthermore investigated.
Similar to the former test scenario, experiments simulating the increase as well as the reduction
of Lq have been carried out. The experimental results are shown in Fig. 6.17 and Fig. 6.18,
respectively.

(a) (b)

Figure 6.17: The control performance of the predictive current control and the proposed harmonic elimination
strategy under the parameter mismatch of Lq with rp = 120%. The speed-adaptive FRPC is activated at t = 0 s.

(a) Id (b) Iq

Figure 6.18: The control performance of the predictive current control and the proposed harmonic elimination
strategy under the parameter mismatch of Lq with rp = 80%. The speed-adaptive FRPC is activated at t = 0 s.

Similar conclusions to the test scenario of Ld variation can be drawn from Fig. 6.17 and
Fig. 6.18 that the proposed strategy reduce the harmonic content significantly and cancelled the
small steady-state error of CCS-MPC under the parameter mismatch of Lq.

6.4.4 Parameter Variation of Ψm

As it has been studied in Chapter 4, the parameter mismatch of the permanent magnet flux
linkage Ψm can cause the most steady-state offset among all electrical parameters. The control
performance under the parameter variation of Ψm is then furthermore studied with the exper-
iments on the increase and the reduction of Ψm . The corresponding experimental results are
shown in Fig. 6.19 and Fig. 6.20.

It can be observed from Fig. 6.19 that a conspicuous steady-state offset can be observed in
the q-axis before t = 0 s, which is however reduced by integrating the FRPC-based compensa-
tion mechanism. A small steady-state offset can also be observed in the d-axis, which has been
cancelled after t = 0 s as well. In Fig. 6.20, a larger steady-state offset is observed in q-axis
than the test scenario presented in Fig. 6.19, where rp = 120%. The error can be reduced to a
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(a) (b)

Figure 6.19: The control performance of the predictive current control and the proposed harmonic elimination
strategy under the parameter mismatch of Ψm, where rp = 120%. The speed-adaptive FRPC is activated at
t = 0 s.

(a) (b)

Figure 6.20: The control performance of the predictive current control and the proposed harmonic elimination
strategy under the parameter mismatch of Ψm, where rp = 80%. The speed-adaptive FRPC is activated at t = 0 s.

certain level by activating the FRPC at t = 0 s, while the tracking error in d-axis is effectively
eliminated. Consequently, the capability of the proposed FRPC-based control strategy to elimi-
nate the steady-state error caused by the parameter mismatch is limited, which means that it can
improve the robustness of the closed-loop system against the model uncertainties to a certain
degree. Severe parameter variation may still have observable impacts on the tracking accuracy.
An increase of the control gain KRPC can increase the tracking ability, but it is nonetheless
limited by the stability criterion.

It is worth mentioning that the different parameter mismatches altered the harmonic content,
i.e. the parameter variation of the inductances induces a severer harmonic distortion than the
variation of the permanent magnet flux linkage. The reason to this observation can be traced
back to the fact stated in Chapter 2 that the parameter mismatch of the inductances influences
the system characteristics, while the parameter mismatch of the Ψm results in a steady-state
error.

6.4.5 Dynamic Performance
Furthermore, the dynamic performance of the proposed harmonic cancellation strategy is tested
and compared with the CCS-MPC. A load step of the full load is added to the PMSM at t = 0 s.
The corresponding results are shown in Fig. 6.21 and Fig. 6.22, respectively.

It can be noted from Fig. 6.21 that the increase of the load condition impairs the control
performance of the predictive current control, i.e. more obvious voltage distortion caused by the
VSI can be observed in the d-axis and a conspicuous steady-state offset can be observed in the
q-axis after the insertion of the load step. Moreover, an overshoot of more than 5% of the rated
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(a) (b)

Figure 6.21: Dynamic performance of the CCS-MPC. A load step of the full load is added at t = 0 s.

(a) (b)

Figure 6.22: Dynamic performance of the proposed harmonics elimination strategy. A load step of the full load is
added at t = 0 s.

current appeared during the transient. A significant improvement of the control performance can
be realized by employing the proposed speed-adaptive FRPC, which is shown in Fig. 6.22. The
harmonic contents of the d-current have been significantly reduced. Furthermore, the overshoot
during the transient has decreased to around 2% of the rated current. It is worth mentioning that
the dynamic of the d-current is affected, which is slower than the classical predictive current
control. Nonetheless, the dynamic of q-current is hardly affected and the steady-state error after
the load step has been eliminated effectively. Moreover, the current quality of iq in terms of the
ripples has also been improved.

6.5 Conclusion

In this chapter, the attenuation of the periodic disturbances is addressed. More specially, the
voltage distortion problem raised by the nonlinear effects of the VSI is discussed. Firstly, the
state-of-the-art approaches dealing with the VSI nonlinearities are introduced. Subsequently,
the offline average-value-based method, the adaptive harmonic filtering, the resonant control
and the repetitive control are elaborated in detail. However, the promising repetitive control
method suffers from the problem of fractional ratio between the target frequency and the sam-
pling frequency, which significantly degrades the performance of eliminating the periodic dis-
turbance. Therefore, the speed-adaptive fractional-repetitive-control-enhanced predictive cur-
rent control is proposed to tackle the aforementioned problem, where a plug-in architecture is
employed. The proposed method can effectively eliminate the current harmonics caused by the
nonlinear effect of VSI. Its performance in terms of eliminating the harmonics outperforms the
offline averaged value method and the adaptive harmonic filtering method, while it is slightly
worse than the resonant controllers. Nonetheless, the resonant controller is designed for a single
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target frequency, which means that the compensation of the distorted voltage requires multiple
parallel resonant controllers. Moreover, the proposed strategy can improve the system robust-
ness against the parameter variation to a certain level. A significant improvement of the current
tracking ability can be noticed at the full-load condition, where the VSI nonlinear effect is
dominant.
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CONCLUSIONS AND OUTLOOKS
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CHAPTER 7

Conclusions and Outlook

In this work, two problems are investigated, i.e. the parameter identification and the controller
optimization. First, the investigation of the parameter identification of the PMSM drive system
was carried out. More specifically, both offline identification procedures and online estimation
methods for the electrical parameters and the VSI nonlinear effects have been addressed. Sec-
ond, the control problems with the continuous-control-set MPC and the finite-control-set MPC
under the existence of the model uncertainties and the disturbances have been studied. The con-
trol performance has been improved in terms of the tacking ability and the robustness against
model uncertainties, disturbances. These two focuses of this thesis were addressed separately
in Part II and Part III.

7.1 Conclusions

7.1.1 Part II: Parameter Identification

One of the main objectives in this part is to refine the offline determination procedures for the
electrical parameters of the PMSM and the nonlinear effects of the inverter. Based on the simpli-
fied and the general formulation of the current dynamics for the PMSM, the important electrical
parameters for describing the PMSM current dynamics can be identified respectively. More-
over, because of the non-ideal behaviour of the inverter, the nonlinear effects of the VSI were
furthermore analysed and identified as the distorted voltage at the machine terminal. The offline
determination procedures are accurate and employ simple computation methodology. However,
the design of the procedure is normally sophisticated and requires extra equipment or hardware
to realize the measurement. Even though the self-commissioning strategy can be implemented
to complete the procedures, the high-level control logic is still required. Moreover, an accurate
modelling of the parameter values requests the establishment of a multi-dimensional relation-
ship. For example, the inductance of the PMSM is primarily related to the temperature and the
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current, which is also affected by the humidity and the material characteristics. Therefore, the
online estimation can better capture the real-time variation of the parameters. The identifiabil-
ity of the parameter combinations have been studied and is regarded as the prerequisite for the
online estimator implementation. Numerous estimation methods have been proposed and ap-
plied in the industry and also academia to achieve the goal of estimating the parameters during
the operation. The model reference adaptive system employs the PI technique to guarantee the
hyperstability of the closed-loop system. It is simple and has low computational burden. How-
ever, it is sensitive against the noises and the tuning of the PI coefficient is burdensome. The
recursive least squares method is the first method of formulating an optimal estimation from
noisy measurements in a recursive manner. It has also relatively low computational burden and
is easy to implement. But the implementation of the recursive least squares method is a trade-
off between the robustness to the noises and the dynamic performance. As the experimental
results showed, it may deliver biased estimates. Two variants from the Kalman-filter family
were also investigated, i.e. the extended Kalman filter and the unscented Kalman filter. The ex-
tended Kalman filter linearised the nonlinear system constructed during the parameter estima-
tion problem, while the unscented Kalman filter applied scattered sample points to interpret the
nonlinearity. They involve the measurement noise and the process noise in the problem formu-
lation. Thus, they are relatively accurate and dynamic in the practical application, but has high
computational cost. An optimization based estimator, the moving horizon estimator, has also
been investigated. It is normally preferred for the problem with constraints and requiring high
dynamic response. The parameter estimation problem is generally formulated in the context of
the moving horizon estimator, where the solving methods were systematically introduced and
elaborated. These methods have been implemented and tested under various scenarios. Their
performances were summarized in terms of the accuracy, the computational burden, the dy-
namic response, the robustness and the memory allocation. In summary, the complexity of the
estimation method benefits the accuracy of the results. However, the computational power is
limited by the hardware configuration. The methods have individual advantages and disadvan-
tages. Thus, the choice of the proper estimator depends on the requirements of the application.
As addressed in the context of offline determination procedures, the nonlinear effect of the in-
verter has a significant impact on the parameter estimation, which is therefore approximated
and included into the system model. As a result, the nonlinear effect of the inverter can be es-
timated concurrently with the machine parameters. Furthermore, a dual extended Kalman filter
was applied to realize the estimation. Because of the separation of the state estimation and the
parameter estimation within the framework of the dual Kalman filter, the computational burden
can be significantly reduced by deactivating the parameter estimator.

7.1.2 Part III: Controller Optimization

This part concentrates on the optimization of the predictive current control of the PMSM drive
system under the existence of uncertainties and disturbances. Based on the theoretical analysis
and experimental investigations about the uncertainties and disturbances in the PMSM drive
system, their impacts on the control performance are furthermore studied. Because that the
model predictive control is set up based on the system dynamics, its sensitivity to the system
model accuracy is rather higher than FOC. The uncertainties as well as the disturbances can
result in steady-state error, harmonic content or even cause instability. This problem was firstly
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addressed for the continuous-control-set MPC, where the deadbeat control is regarded as a spe-
cial case of the CCS-MPC. The problem resulted from the parameter mismatches, the encoder
error and the digital delay were investigated via the experiments. It can be concluded that in the
PMSM drive system, the permanent magnet flux linkage causes mainly the steady-state error,
while the inductances can affect the stability of the closed-loop system. The impact from the
stator resistance is almost ignorable. A disturbance observer was implemented to estimate the
currents and the disturbances. The estimates were then fed into the underlying optimization
problem of CCS-MPC, which is tasked to find the optimum of the control problem based on the
augmented PMSM current model. The stability of the overall control strategy was addressed,
which is proven to be input-to-state stable, if several conditions are satisfied. Moreover, the pro-
posed control strategy is generally formulated and can be applied to an arbitrary drive system.
Analogously, the conclusion about the system stability can be mapped to other drive system.
Different from CCS-MPC, finite-control-set MPC inherits the discrete nature of the inverter.
Therefore, it demonstrates higher robustness against the uncertainties and disturbances, but it is
still affected. The influence of the parameter mismatch was analysed and quantified with sev-
eral designed simulations. An observer was likewise applied to improve the performance of the
FCS-MPC. In order to reduce the computational burden of FCS-MPC, a problem formulation
in the αβ domain was proposed for a special PMSM, SPMSM. Thanks to the symmetry of the
related matrices, the major part of the heavy computations involving in the FCS-MPC can be
allocated offline, which significantly reduces the online computational burden. Furthermore,
the disturbances can increase the harmonic content of the current as well as the speed. The pe-
riodic disturbances produced by the VSI nonlinear effects were subsequently emphasized. The
most straightforward intuition is to combine the aforementioned parameter estimator and the
disturbance observer. Nonetheless, after examining the extended system model with the terms
related to the VSI nonlinearity and the disturbance, it can be noticed that they are not simultane-
ously observable. Therefore, a speed-adaptive fractional-repetitive-control based compensation
scheme was proposed, which aims to cancel the 6i-th harmonics with i ∈ Z. The effectiveness
was validated and compared with state-of-the-art methods.

7.2 Outlook

Chapter 3 introduces the offline as well as the online parameter identification methods, which
offers several potential directions for future research. Firstly, the comparison and discussion
are based on the PMSM drive system. It would be interesting to study if the conclusions can
be derived from other electrical drive systems. Theoretically, the algorithm and the principle
of the determination procedures should be independently of the machine and the inverter type.
Nonetheless, a further validation and research would be beneficial. Furthermore, several as-
sumptions are made before constructing the machine model. Although the omitted terms, e.g.
the core losses, are normally neglected in the drive modelling. They can have impacts on the
parameter identifications and estimations. Thus, a further investigation including the losses of
the PMSM is worth engaging.

In the Chapter 4, the problems encountered in the framework of the continuous-control-set
MPC have been addressed and tackled via the proposed robust control strategy, where a distur-
bance estimator is employed. The closed-loop system stability are unifying verified. Nonethe-
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less, the conditions to guarantee the stability was validated in the context of the extended
Kalman filter and the moving horizon estimator. An extended validation of the theory with
other estimators could be an interesting research direction. Moreover, the robust control strat-
egy can be applied to an arbitrary electrical drive system. A verification on the other systems,
besides the PMSM drive system, would be useful for the application of the proposed theory.

Chapter 5 provides researching results about the performance improvement of the finite-
control-set MPC. As the analysis suggests, the uncertainties and the disturbances not necessarily
cause the performance deterioration of the FCS-MPC. To the author’s knowledge, this problem
has not been explored yet in the literature. Therefore, a possible research direction would be
improving the control performance of the FCS-MPC based on the probability, especially for the
long horizon solution with a receding horizon implementation.

Chapter 6 presented an adaptive compensation strategy for the inverter invoked harmonics.
However, the design process requires multiple simulations and even experiments. Therefore,
a promising improving potential is to deploy self-learning process to determine the parame-
ters and realize accurate elimination of the harmonic content, which meanwhile guarantees the
closed-loop stability.
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APPENDIX A

List of Abbreviations

2DOFC two-degrees-of-freedom control

AC alternating current

CCS-MPC continuous-control-set model predictive control

CFTOC constrained finite time optimal control

DC direct current

DEKF dual extended Kalman filter

DSP digital signal processor

DTC direct torque control

EKF extended Kalman filter

EMF electro-motive force

ENLP equality constrained nonlinear programming

EV electric vehicle

FCS-MPC finite-control-set model predictive control

FFT fast Fourier transform

FOC field oriented control

FPGA field-programmable gate array
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FRPC fractional repetitive control

HEV hybrid electric vehicle

IGBT insulated gate bipolar transistor

IIR infinite-impulse-response

ILS integer least-squares

IM induction machine

IP interior point

IPMSM interior permanent-magnet synchronous machine

KF Kalman filter

KKT Karush-Kuhn-Tucker

LQR linear quadratic regulator

LS least squares

LTI linear time-invariant

LTV linear time-variant

LUT look-up table

MHE moving horizon estimator

MIP mixed-integer programming

MIQP mixed-integer quadratic programming

MMC modular multi-level converter

MOSFET metal oxide semiconductor field effect transistor

MPC model predictive control

MPDCC multi-step predictive direct current control

MRAS model reference adaptive system

MTPA maximum torque per ampere

MTPV maximum torque per voltage

NeFeB Neodymium
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NLP nonlinear programming

NMPC nonlinear model predictive control

NN neural network

NTI nonlinear time-invariant

OPP optimized pulse patterns

PI proportional-integral

PID proportional-integral-derivative

PLC programmable logic controller

PMSM permanent-magnet synchronous machine

PSO particle swarm optimization

PWM pulse width modulator

QP quadratic programming

RC resistor-capacitor

RLC resistor-inductor-capacitor

RLS recursive least squares

RMSE root mean squared error

RPC repetitive control

RSC resonant control

RTI real-time iteration

SmCo Samarium-Cobalt

SPMSM surface permanent-magnet synchronous machine

SQP sequential quadratic programming

SSFR standstill frequency response

SVM space vector modulator

TDD total demand distortion

THD total harmonic distortion
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UKF unscented Kalman filter

UT unscented transformation

VSI voltage source inverter
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Test Bench Data

B.1 IndraDrive

The first test bench consists of a real-time embedded drive system, including control unit and
two-level inverters, and two permanent magnet synchronous machines.

B.1.1 Embedded System

The embedded system is a product from Bosch Rexroth AG, the IndraDrive Cs. It is equipped
with a microprocessor, i.e. Renesas SH7750R, which is running at 240 MHz. The inverter
SKiiP 36NAB126V1 comes from SEMIKRON with the characteristics listed in Table B.1. The
position is measured with single-turn absolute encoder from HIPERFACE.

B.1.2 Two-Level Inverter

The characteristics of the two-level VSI from the data sheet are shown in the following.
Table B.1: Characteristics of VSI (from data sheet)

Parameter Symbol Value
Turn-on time Ton 80 ns
Turn-off time Toff 390 ns
Switch control dead time Tdead 2 µs
Voltage drop of the active switch (25 °C) Uce 1.2 V
Voltage drop of the freewheeling diode (25 °C) Ud 1.5 V
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B.1.3 Machines

The parameters from the data sheets of the PMSMs, i.e. PMSM I is a servo motor with
MSK040B-0600-NN-M1-UG1-NNNN from Bosch Rexroth and PMSM II is MSK050B-0300-
NN-M2-UG0-RNNN, are given in Table B.2 and Table B.3.

Table B.2: Parameters of the PMSM I

Parameter Symbol Value
Rated current IN 2.2 A
Rated speed wmN 7500 rpm
Rated torque TN 1.7 N m
Number of pole pairs np 4
Nominal permanent flux Ψm 0.108 Wb
Nominal phase resistance Rs 4.2 Ω
Nominal d-axis inductance Ld 16.8 mH
Nominal q-axis inductance Lq 18.6 mH

Table B.3: Parameters of the PMSM II

Parameter Symbol Value
Rated current IN 2 A
Rated speed wmN 4700 rpm
Rated torque TN 3 N m
Number of pole pairs np 4
Nominal permanent flux Ψm 0.212 Wb
Nominal phase resistance Rs 6.5 Ω
Nominal d-axis inductance Ld 36.7 mH
Nominal q-axis inductance Lq 39 mH

B.2 dSPACE-based System

The dSPACE-based system consists of a dSPACE system as the control unit and a product from
SEW-Eurodrive with the number MDX-60A as the inverter. The dSPACE real-time system
comprising a 4-core 3.5 GHz Intel XEON E3V6 processor and a FPGA from Xilinx Kintex-7
family. The PMSM is driven by the SEW MDX-60A and coupled with an induction machine.
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B.2.1 Two-Level Inverter
The inverter applied in the SEW MDX-60A is SEMIKRON SKiiP 35NAB12T4V1, of which
the parameters from the data sheet are given in Table B.4.

Table B.4: Characteristics of VSI

Parameter Symbol Value
Turn-on time Ton 60 ns
Turn-off time Toff 370 ns
Switch control dead time Tdead 1.4 µs
Voltage drop of the active switch (25 °C) Uce 1.85 V -2.1 V
Voltage drop of the freewheeling diode (25 °C) Ud 2.22 V-2.54 V

B.2.2 Machines
The parameters of the IM and the PMSM are shown in Table B.5 and Table B.6, respectively.

Table B.5: Parameters of the Induction Machine

Parameter Symbol Value
Synchronous frequency fN 50 Hz
Rated current IN 8.5 A
Power factor cos(ϕ) 0.86
Nominal speed ωmN 2830 rpm
Number of pole pairs np 1
Stator resistance Rs 2.1294 Ω
Rotor resistance Rr 2.2773 Ω
Stator inductance Ls 350.47 mH
Rotor inductance Lr 350.47 mH
Mutual inductance Lm 340.42 mH
Inertia J 0.002 kg m2
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Table B.6: Parameters of the PMSM

Parameter Symbol Value
Rated current IN 6.3 A
Rated speed wmN 3000 rpm
Rated torque TN 10.5 N m
Number of pole pairs np 3
Nominal permanent flux Ψm 0.26 Wb
Nominal phase resistance Rs 0.95 Ω
Nominal d-axis inductance Ld 9.6 mH
Nominal q-axis inductance Lq 9.6 mH
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