
DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

TECHNISCHE UNIVERSITÄT MÜNCHEN

Ph.D Dissertation

Pre-Silicon Power and Performance Estimation
and Optimization for System Scenarios of

Mobile Communication Platforms

Muhammad Mudussir Ayub

Fakultät für Elektrotechnik und Informationstechnik

Pre-Silicon Power and Performance Estimation and Optimization for System Scenarios of
Mobile Communication Platforms

Muhammad Mudussir Ayub

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors
der Ingenieur wissenschaften (Dr.-Ing.) genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing habil. Erwin Biebl

Prüfer*innen der Dissertation:

1. Prof. Dr. rer. nat. Franz Kreupl

2. apl. Prof. Dr.-Ing habil. Helmut Gräb

Die Dissertation wurde am 16.06.2021 bei der Technischen Universität München eingereicht

und durch die Fakultät für Elektrotechnik und
Informationstechnik am 14.10.2021 angenommen.

Acknowledgments

It gives me immense pleasure to write this acknowledgment note as it marks the end of a
chapter in my life. A chapter that has great significance not only in my life but in the life of
all the people who have helped me write it.

I can not be thankful enough to Allah Almighty, who gave me the strength, courage, and
motivation to go through the last five years’ ups and downs.

I would begin by thanking Professor Franz Kreupl for giving me this opportunity and
supporting my research work. A big thanks to my Industry supervisor Josef Eckmuller, who
initially discussed the idea and has played an important role in materializing it.

This work was funded by Intel Deutschland Gmbh. I would like to sincerely thank my
managers at Intel, Guenther Liebel and Aditya Tomar, for providing me all the resources and
a suitable environment to carry out this work.

Many people have played a significant role in helping me achieve this milestone. None
of them has played a more vital role than my parents and especially my mother. It is her
unconditional love, guidance, and support, that have forged me into a person who has faced
a doctorate’s hardship with a smile on his face.

Abstract

5G brings innovation challenges for the spectra of computing and connectivity technology.
Cellular modems, in particular, have to support various services and applications requir-
ing low to high data rates. Therefore, the co-optimization of power and performance for
architecture along circuit design is inevitable. The design space exploration (DSE) of novel
architecture design to enhance the key performance indicators (KPI), i.e., power and perfor-
mance, for multiprocessors-system-on-chips (MPSoC) is an active research paradigm. The
existing methodologies lack a holistic framework to incorporate the performance and power
models in the complete design cycle, starting from functional validation to micro-architecture
exploration, then to software implementation, and finally to hardware development. Develop-
ing a generic methodology for novel and sophisticated embedded systems that incorporate the
power and performance model in the complete design cycle for the design space exploration
is the ultimate goal of this dissertation. This work presents a modular and distributed setup
at electronic system level (ESL) to meet this challenge. It first separates functionality from
architecture, and second, the way a power database is attached and integrated makes it
practical.

Throughout the years, the complexity, heterogeneity, and scope of modern embedded
systems have enormously increased. Rapid exploration of the ample design space for
different design choices, such as register transfer level (RTL), has become more challenging
and time-consuming at low abstraction levels. The widely-adopted trend in literature and
industry is to increase the level of design abstraction into system level to cope with design
space exploration challenges. In this dissertation, a methodology is developed, which allows
analysis and predicting the power and performance of a heterogeneous MPSoC in the early
phases of design at the system level. Moreover, it presents the detailed implementation of
this methodology in SystemC and its usage to model the workload of an abstract application
and analyze the under-design architecture’s power and performance for different mapping
scenarios of the application tasks. The principle of separation of concerns is exercised in
its true spirit and enhanced for power evaluation by proposing a specific mapping step
between power and performance models. Power modeling is carried out in an external power
modeling framework, vital for modular setup and rapid prototyping. A use case for the
network process is evaluated to demonstrate the effectiveness of the methodology. Results
are promising in terms of estimation accuracy and simulation speed achieved.

iii

Contents

Acknowledgments ii

Abstract iii

1 Introduction 1
1.1 Embedded Systems . 1

1.1.1 Mobile Communication or Cellular Platforms 2
1.2 Problem Statement . 3
1.3 Positioning of the Proposed Methodology Alongside State of the Art 4

2 Fundamentals and State of the Art 6
2.1 Background . 6

2.1.1 Electronics System Level (ESL) . 6
2.1.2 Modeling of Embedded Systems . 9
2.1.3 Transaction Level Modeling . 10
2.1.4 Power Consumption of Embedded Systems 11
2.1.5 Power Management Techniques . 12
2.1.6 Power Analysis Approaches and Methods 13
2.1.7 Power Model Development . 14

2.2 Related Work . 16
2.2.1 ESL Performance Estimation Frameworks 16
2.2.2 ESL Power Estimation Frameworks . 21

2.3 Fundamentals . 24
2.3.1 Architectural Abstraction Level . 25
2.3.2 Software Abstraction Level . 26
2.3.3 Hardware Abstraction Level . 27
2.3.4 Holistic and Modular Methodology . 27

3 POEM: Power and Performance Optimization and Exploration Methodology 29
3.1 Application Modeling . 29

3.1.1 Task Execution Model (Workload) . 30
3.1.2 Implementation of the Task-Graph in SystemC 34

3.2 Architecture Modeling . 45
3.2.1 Task Scheduling and Resource Allocation 45
3.2.2 Virtual-Engine . 48

3.3 Power Modeling . 48
3.3.1 Docea™ . 50

iv

Contents

4 Implementation of the Methodology at Architectural Abstraction Level 55
4.1 Methodology: Overview . 55

4.1.1 Implementation of Application Model . 57
4.1.2 Implementation of Performance Model 58
4.1.3 Implementation of Power Model . 60
4.1.4 Interface and Mapping . 61

5 Network Processor Case Study 70
5.1 System level uses of Mobile Communication Platforms 70
5.2 Network Processor Use Case . 71
5.3 Stand-Alone Application Simulation Using Virtual Engines 72

5.3.1 Mapping All Tasks on a Single Virtual Engine 73
5.3.2 Mapping Tasks on Multiple Virtual Engines 75

5.4 Co-simulation of the Application and the Architecture Model 79
5.4.1 Mapping Tasks on an Architecture Model With Two CPU Cores 79
5.4.2 Mapping Tasks on an Architecture Model With Three CPU Cores . . . 82
5.4.3 Increasing the Memory Size and Result Analysis 82

5.5 Power and Performance Co-Simulation . 84
5.5.1 Simulation Environment Settings and Goals 86

5.6 Comparison with Platform Architect . 87

6 Integration of the Methodology At Software and Hardware Abstraction Levels 93
6.1 POEM at Software Abstraction Level . 93
6.2 POEM at Hardware Abstraction Level . 94

7 Conclusion and Future Work Directions 98
7.1 Conclusion . 98
7.2 Future Work Directions . 98

List of Figures 100

List of Tables 104

Listings 105

Bibliography 106

Acronyms 113

Publications of the Author 116

v

1 Introduction

This chapter intends to give the reader an overview and motivation behind this work. How
a shift towards sophisticated embedded systems design and specifically mobile platforms
complexity in the light of 5G and beyond drives to co-optimize power and performance. The
challenges and the current practices of power and performance analysis and optimization
during the project life span of an embedded system are critically looked at to determine the
potential gaps for co-optimizations. In the end, the positioning of the proposed methodology,
alongside state of the art, is also introduced to showcase the work’s contribution.

1.1 Embedded Systems

Embedded systems are becoming an integral part of our life as they have brought enormous
convenience in many aspects, such as communication, security, health issues, and automation.
The modern-day electronic devices (i.e., mobile phones, tablets, smartwatches) are based on
heterogeneous multiprocessors system on chip (MPSoC) architecture. These architectures
range from hierarchical memory systems to fully programmable processors to dedicated
hardware accelerators for time-critical application tasks.

As services and applications that users expect to run on these electronic devices are
becoming more sophisticated and resource-hungry [1] (e.g., high-definition games and video
encoding/decoding, with several new demanding services approaching with 5G networks on
the horizon), so multiprocessors system on chips are becoming more and more complex. To
overcome the complexity and to manage the limited available resources efficiently, there are
two well-known approaches.

The first option is to increase the frequency of the processor to achieve a higher number
of computations in a given clock cycle. The second promising solution is to exercise the
parallelism, divide a program or task into independent executable parts, and schedule them
on different resources in multiprocessors system on chips. These two approaches help to
improve the max throughput or performance of the system. However, an increase in frequency
raises thermal concerns and causes higher power dissipation. Similarly, to exploit parallelism
in multiprocessors system on chips has a cost in terms of the power budget.

Hence, most of the time, performance increase comes at the cost of the power budget. Per-
formance and power are conflicting parameters in the silicon design regime. Therefore, power
modeling and optimization techniques are as critical in the system design of multiprocessors
system on chips as performance, given the fact that most of the multiprocessors system on
chips have a limited power budget in the form of battery capacity. Moreover, a user expects
to run these devices for a significant amount of time (i.e., a day or two) without worrying

1

1 Introduction

about connecting them to the power source.
The decrease in device size and the quest to put more and more transistors in a given area

(nano-miniaturization) following Moore’s law [2] is another reason to optimize the increase
in static power consumption. As the recent study for mobile platforms shows that two factors
restrict the maximum receiving rate in smartphones. One factor is the computation capability
of the base-band processor, and the other is heat dissipation [3].

1.1.1 Mobile Communication or Cellular Platforms

To give a perspective about how relevant cellular platforms are in today’s day of age, we need
to look at the statistics provided by GSMA Intelligence [4]. "According to GSMA real-time
intelligence data, there are now over 5.15 Billion people with mobile devices worldwide –
This means that 66.60% of the world’s population has a mobile device (cell phone, tablet, or
cellular-enabled IoT devices)". Moreover, these numbers are increasing with every passing
day. Therefore, the optimal design of the Mobile communication platform is one of the major
differentiating factors for the users to prefer one supplier from another.

Cellular platforms generally have two processors; application processor (AP) and a base-
band processor, aka cellular modem. At a high abstraction level, the application processor
processor is responsible for running all the diverse and demanding applications alongside
the operating system on the cellular platform. Similarly, the task of the cellular modem is to
establish a stable connection with the network and send and receive data at a specific rate.

The 3rd generation partnership project (3GPP), responsible for standardization of mobile
communications (i.e., 2G up to 5G), is a worldwide cooperation of standardization bodies.
The 3GPP standards are evolving with every passing year, and the cellular modem has to
adapt accordingly. Likewise, multimedia applications are becoming more and more resource
hungry; as a result, more sophisticated design and scheduling of applications are expected
from application processor. Therefore, 3GPP standards and multimedia are driving power
and performance issues in cellular platforms. However, a recent study shows that the co-
optimization of power and performance for novel and sophisticated embedded systems such
as mobile platforms is a way forward [5].

5G and Challenges

5G will revolutionize the world; connected devices, self-driven cars, and cellular modems
supporting much higher data rates promise an exciting future ahead. The materialization
of the connected devices, i.e., machine-to-machine or device-to-device communication, has
vast potential but still needs time to mature. The task at hand is to develop efficient 5G
cellular platforms. They belong to the category of multiprocessors system on chips, which
has massive potential for design space exploration as the world is riding the tide of higher
data rates for 5G and beyond.

The high data rate performance criteria in cellular platforms will come at the cost of a
considerable increase in power consumption. This challenge has opened the door to explore
new configurations and architecture designs to meet the performance requirements with

2

1 Introduction

minimum overall power consumption. Hence, the design space exploration of innovative
architectural design to enhance power and performance for mobile communication platforms
is a current research paradigm.

Design space exploration and power analysis of the cellular modem are vital because not
only do they have to meet evolving 3GPP standards, but they also have to support legacy use
cases. For example, a new architectural design of the cellular modem may suit well for 5G
data rates. However, if the power budget for legacy use cases (2G, 3G) is not the same or less,
we have a design challenge to resolve here.

In mobile communication platforms, a few key performance indicators (KPIs) allow an easy
comparison of different platforms. KPIs are metrics like data rate, area, and power. Power
is one of the most relevant KPIs in mobile communication by nature. Therefore, we have to
consider the trade-off between power and performance/data rates in this work. Furthermore,
the area of the mobile communication platform is highly dependent upon the technology
node being used, system specifications, both of these are infeed for our work. Thus power
and performance trade-off is carried out without considering areas as an objective in this
work.

1.2 Problem Statement

Post-silicon KPIs estimation and optimization for mobile communication platforms or other
complicated multiprocessors system on chips are not attractive anymore, as the time to market
is squeezing, the efforts and time required to incorporate changes (design iterations), and
optimization margins are not significant enough at this point. Pre-silicon functional and
non-functional (i.e., power and performance) verification and optimization can enable a shift
left in the timeline of the embedded system design cycle. A correct decision taken at the very
beginning of the design cycle will have more impact than a decision taken later time in point.

Along with pre and post-silicon, selecting the right abstraction level is critical for key
performance indicator estimation and optimizations. A mobile user runs a single or set of
applications from a plethora of applications on it. For such heterogeneous multiprocessors
system on chips, the system level power and performance estimation is required for specific
system use cases or scenarios. For example, in a mobile platform, a relevant question might
be the power consumption in the activation of triple carrier aggregation in 4G.

Power estimation and optimization need to be addressed at the architecture level, soft-
ware (SW) implementation level, and hardware (HW) implementation level. However, in
industry, the power analysis and estimation at the different levels are not well coupled. As a
result, power models development effort, accuracy, and simulation speed, along with their
integration to the system level, is a complicated task.

Power estimation at the architecture level is required to influence architecture and design
decisions. However, it is challenging because it has to be done in a very early stage of the
design process, based on uncertain data and with limited resources and effort.

At the software level, we have to analyze and minimize the power consumption based
on software running on a fixed hardware architecture. The pre-silicon phase requires an

3

1 Introduction

abstracted hardware architecture model to run the software with good simulation performance
and timing approximation needed for reliable power estimations. The goal of this step is to
do the power optimization of the software.

At the hardware implementation level, we usually analyze the power consumption of
hardware libraries, building blocks, and hardware modules. The result of that low-level
power estimations will also be used as input for power estimation at software and architecture
levels.

The other non-functional property performance, like power, also needs to be addressed at
the abstraction mentioned above levels in the coupled way; the challenging part is that the
system level use cases for power and performance are different. For example, for performance,
the system use cases targeting the max-throughput and latency of the components are under
the radar. Such system use cases are not very helpful for power optimizations.

In summary, there is a need to work towards a holistic methodology for functional and
non-functional properties estimation and for the design space exploration to analyze different
variants and configurations of the heterogeneous architecture of mobile communication
platforms. Moreover, further architecture refinement through regression and continuous
feedback is required. Potential application mapping to evolving architecture according to
the demanding standards can be achieved in the best possible manner regarding power and
performance KPIs.

1.3 Positioning of the Proposed Methodology Alongside State of
the Art

To perform an effective power performance trade-off analysis in early design phases, the
following key ingredients are required:

• Abstract performance model of the hardware architecture candidate(s)

• High-level description of the use cases under analysis

• Power model for the relevant hardware components

In real projects, these different parts are developed by different teams. Hardware architects
define different variants of the overall architecture. System architects determine the high-level
structure of the system use cases (functional elements and their interaction). Power experts
do the initial power analysis, defining early abstractions of power models at the component
level, derived from previous generations or high-level estimates, and including all relevant
technical parameters.

The main contribution of this work is a novel power optimization and exploration method-
ology (POEM), which addresses such distributed project setup by using the concept of
separation of concerns [6].

The first step allows independent power and performance analysis of the application, and in
the second step, it combines power and performance view to carry out the optimization. Thus,

4

1 Introduction

this modular setup helps to understand better, extend, and maintain a complex embedded
system.

POEM describes applications at different abstraction and accuracy levels. Moreover, this
methodology is applied for novel 5G use cases.

The differentiation of this work is mainly implemented in the following components:

1. Performance modeling A productivity library on top of Accelera SystemC is used to
enable the loosely-timed and approximately-timed simulation models. This setup helps
POEM to cover application scenarios for power and performance analysis holistically.

2. Application modeling: The activity or the functionality modeling at different hierarchy
levels (firmware, OS, application) with the help of task graphs or running the actual
software on the simulation platform.

3. Power modeling: Generation of comprehensive power database, hierarchical in nature
and generic enough to support heterogeneous functional stimulus.

4. Connecting power and performance modeling: POEM simulates application and per-
formance models in a SystemC kernel with the help of a configuration file and maps
the generated output stimuli (i.e., functional states, frequency, and usage) to a power
model. Thus, POEM supports dynamic power management techniques like dynamic
voltage and frequency scaling (DVFS), power gating, and clock gating.

5

2 Fundamentals and State of the Art

Chapter 1 provides an overview of the proposed methodology and why it is needed. This
chapter describes the methodology’s fundamentals and introduces important terminologies
throughout this dissertation to understand, identify, and shed light on different embedded
system project phases. State of the art is also discussed to differentiate and highlight the
importance of the work done.

2.1 Background

2.1.1 Electronics System Level (ESL)

Software and hardware development run in parallel in the conventional design flow of the
embedded system. The design specifications from a customer drive this process. Functional
and extra-functional requirements are the two broad categories of these specifications. Func-
tional requirements specify; what the system does? e.g., a cellular modem should be capable of
making calls, sending text messages, and running different applications.

Similarly, extra-functional requirements define; how (good or bad) the system does? e.g., a
power consumption rate of the cellular modem, time taken to open an application, time to
market, cost of the phone, and the final product area. Design space exploration for power and
performance requires modeling of the embedded system for extra-functional requirements
along with functional requirements.

The work done by Gajski and Kuhn is known as Y-chart [7], describes different abstraction
levels at which a system can be modeled. Y-chart consists of five concentric circles in three
different domains - behavioral, structural, and physical, as shown in Figure 2.1.

System modeling started with describing an embedded system manually a few decades
ago; as the embedded system’s complexity and functionality gained momentum, the manual
modeling was no longer possible. It moved up from the physical level to gate-level and
from the gate-level to the register transfer level (RTL). Well known, VHDL and Verilog are
examples of register transfer level descriptive languages.

The design space of embedded systems, especially cellular modems, is vast. The register
transfer level abstraction level is not the appropriate level to model such a complex system as
the modeling effort and simulation time required are very high.

Electronics system level is the highest level of abstraction possible for modeling of complex
multiprocessors system on chips extra-functional properties. The decisions made at this level
will impact the entire design space [8]. The challenge faced at electronics system level is
little to no information about the low-level implementation details. Figure 2.2 shows the

6

2 Fundamentals and State of the Art

Physical level

Logical level

Register
transfer level

Algorithmic
level

System level

Chip, board

Block, chip

Macros,
 floor plan

Standard
cells

Polygons

Transistors
Gates, flipflops

ALU, registers
Subsystems,

buses

CPU,

memory

Diffe
re

nti
al

eq
ua

tio
ns

Boo
lea

n

eq
ua

tio
ns

 Reg
ist

er
-

tra
ns

ferAlgo
rith

msSys
tem

s
Structural

dom
ainBeh

av
io

ra
l

do
m

ain

Physical
domain

Figure 2.1: Y-chart shown as a concentric circles, representing different abstraction level in
three different domains [7]. The innermost circle corresponds to the lowest ab-
straction level, and the abstraction level increases as the distance of the concentric
circles from the center increases. Fast and accurate system modeling of heteroge-
neous, multicore system on chip needs to be done at the highest abstraction level:
system level. It corresponds to actual chip or prototype boards in the physical
domain, systems in the behavioral domain (even above algorithms), and CPU,
memory blocks in the structural domain.

7

2 Fundamentals and State of the Art

design flow for embedded systems and how the simulation time, design details, and design
abstraction varies along the complete development cycle.

Software abstraction
levels

Hardware abstraction
levels

Software (C/C++)
Assembler

Executables

RTL (HDL)

Gate

Transistor

 Architecture Application
 model model

Electronic system
level

MEM CPU

CPU CPU CPU

T5

T2
T3

T1

T4

System
specifications

D
es

ig
n

ab
st

ra
ct

io
n

A
m

ou
nt

 o
f I

m
pa

ct
 o

f s
pe

ci
fic

at
io

ns
 o

n
ke

y
pe

rfo
rm

an
ce

 in
di

ca
to

rs

S
im

ul
at

io
n

tim
e

Figure 2.2: Contemporary design flow of an embedded system and an overview of the
relation between design abstraction, design detail and simulation time: The
embedded system is divided into four abstraction levels. Simultaneously, design
specifications sit at the top, and the system level, also known as the electronics
system level (ESL), is the first abstraction level derived based on customer-provided
design specifications. The abstraction level is the highest, the time required for
a system level use case is the lowest, and very few design details are known at
this point. The hierarchy of the funnels is to visualize the available field of design
space exploration. The complete design space exploration field is accessible from
the top where the design specification resides. These streams are further divided
into three abstraction levels. Register transfer level Design is the first, and the
transistor level is the last abstraction level in the hardware stream. Similarly,
software written in C/C++ is the first, and executable is the last abstraction level
in the software stream.

8

2 Fundamentals and State of the Art

Electronics system level offers more than one way of modeling an embedded system;
therefore, this abstraction level, unlike the register transfer level and other lower abstraction
levels, does not have a clear, commonly agreed definition. According to [9], it can be
described as "the utilization of appropriate abstractions in order to increase comprehension
about a system, increase the probability of a successful implementation of functionality in a
cost-effective manner, while meeting necessary constraints."

The cycle-accurate (CA) modeling and transaction-level modeling (TLM) approaches were
explored above RTL to raise the abstraction further to the electronics system level. Cycle-
accurate modeling did not emerge as a winner because of multiple reasons, as mentioned
in [10]. Higher modeling efforts (almost the same as register transfer level), 10x lower
simulation speed than anticipated, register transfer level annotation for cycle-accurate char-
acterization due to tight deadlines towards the end of the embedded system development
made it impractical. Liberating the system design from synthesis-related constraints was one
of cycle-accurate’s benefits, resulting in a rise in abstraction.

2.1.2 Modeling of Embedded Systems

An embedded system at the electronics system level consists of architectural resources
like processors, memories, hardware accelerators, and interconnects in the forms of buses
and Network-on-Chips (NoC). TLM abstracts from the low-level implementation details
required for register transfer level and models the architecture resources’ functionality and
their communication separately. As the name suggests, the communication between system
resources happens in the form of transactions. Thus the simulation speed is much faster than
register transfer level and cycle-accurate.

TLM is carried out with a high-level language capable of software development and
hardware modeling at a conceptual level without requiring implementation details. Such
high-level languages include SystemC [11], SpecC [12], System Verilog [13] Hpascal [14], and
Hardware-C [15].

Since the last decade, SystemC has become a de facto language to model an embedded
system at the electronics system level. It is partially because of the backing of big electronic
design automation (EDA) companies such as Synopsys [16] and Cadence [17]. Due to multiple
reasons, SystemC stands out from the rest of the above mentioned high-level languages. We
will first describe the language briefly, and a few advantages will follow.

SystemC is a language that consists of C++ class libraries and macros. SystemC has an
event-driven simulation kernel. It has all the data types of C++, and besides C++ data types,
few additional data types, i.e., sc_time and user-defined data types, are also part of it. SystemC
data types use sc as a prefix, so an initialization of an integer variable in C++ takes the form
of sc_int in it.

SystemC models the system in modules; a module can represent a process written in plain
C++ and running concurrently with other modules/processes. Signals of all data types can be
used for communication purposes during the event-driven simulation. Modules may consist
of port, method, and channels for connectivity. There are two types of process in SystemC,
SC_METHOD, and SC_THREAD. SC_METHOD is suitable for pure functional description

9

2 Fundamentals and State of the Art

(without timing), and SC_TREAD process has timing notion because of the introduction
of wait() function. System modeling in SystemC comprises of two phases, elaboration and
simulation. In the elaboration phase, design objects are instantiated, such as methods, ports,
and channels, and during the simulation phase, the system model is being run.

Along with the embedded system modeling at electronics system level, SystemC can also
be used for functional verification, architecture exploration, performance modeling, software
development, and high-level synthesis of the embedded system using different transactional’s
abstraction modeling.

To understand the different transactional abstraction models, i.e., loosely-timed (LT) and
approximately-timed (AT) in SystemC, as mentioned in [18, 10, 19], consider the example of
software development and performance modeling. Software development depends upon a
register, and a data-accurate view of the system, simulation speed, and early evaluation is
more critical for software refinement than timing information of the simulation. For perfor-
mance analysis, accurate timing information is essential; thus, modeling micro-architectural
details of key modules is required.

Loosely-timed and approximately-timed were previously known as programmers view (PV)
and programmers view with timing (PVT), respectively. Loosely-timed has enough timing
information to boot the operating system (OS) and run the multi-core system. In loosely-
timed, processes can run ahead of simulation time, and a transaction has only two points.
The first point is the start of the transaction from a Master module, and the second point
is the end of the transaction to a Slave module. Loosely-timed modeling can not have pipe-
lined transactions; hence, suitable for software development that does not depend on timing
accuracy.

Architectural exploration by adding the system’s micro-architectural details is possible with
the help of approximately-timed abstraction modeling. In approximately-timed abstraction,
processes run in a lock setup. Furthermore, each transaction has four points instead of two-
point. Begin and end of transaction request and begin and end of the transaction response.
Approximately-timed also allows blocking, non-blocking, and pipe-lined transactions, making
it suitable for performance analysis of the embedded system.

2.1.3 Transaction Level Modeling

The open SystemC initiative (OSCI) TLM 2.0 [20] present a standardized approach to use
TLM. TLM 2.0 is a tool kit based on a set of library functions written in SystemC and suitable
for functional validation, especially for multiprocessors system on chip (MPSoC) simulation.
SystemC standards have integrated the TLM 2.0 transactional modeling since 2011.

TLM 2.0 separates the computation details from communication details as the communica-
tion and computation’s internal implementation details are hidden. Each can be designed
at different abstraction levels. They communicate with each other through interfaces using
transactions. A transaction is an aggregation or encapsulation of several events, signal states,
and data exchange details into a single function call.

Advantages of TLM over register transfer level and cycle-accurate abstraction levels are the
following:

10

2 Fundamentals and State of the Art

• One of the most significant benefits of TLM is providing a simulation environment in
which hardware and software can be modeled as concurrent running processes. That
results in efficient hardware-software co-design [10, 19].

• TLM resolves synchronization issues that designers face during hardware-software co-
design as a homogeneous environment is available for hardware-software co-design [21].
Beneath the TLM abstraction level, hardware and software are modeled in different
simulation environments. For their co-design, Inter-Process Communication overhead
is replaced with threads switch over in TLM and simplifies the synchronization.

• TLM abstracts away low-level implementation details, and it provides modeling speed-
up compared to the cycle-accurate and the register transfer level. A 10x modeling
speed-up was reported compared to the register transfer level abstraction level, and a
7x modeling speed-up was reported compared to the cycle-accurate abstraction level
in [10, 19].

• The simulation speed of TLM is also significantly higher than in register transfer level
and cycle-accurate abstraction level [10].

2.1.4 Power Consumption of Embedded Systems

The embedded system targeted in this work is multiprocessor system on chip (MPSoCs), i.e.,
a cellular modem. Such multiprocessors system on chips are built using CMOS technology.
An inverter is the most simple circuit of CMOS, and it is made of a pull-up network (P-type
transistor) and a pull-down network (N-type transistor). According to [22], CMOS circuits’
power consumption can be divided into two types, as shown in equation 2.1.

Ptotal = Pstatic + Pdynamic, (2.1)

where Ptotal is the total consumed power, Pstatic is the static power and Pdynamic is the
dynamic power.

Four major contributors to these two types are leakage power, other static power, short-circuit
power, and switching power. The two contributors to static power consumption that are inde-
pendent of the circuit’s switching activity are leakage power and other static power. The parasitic
currents cause leakage power, and other static power is contributed by the additional circuit
added and the current it causes to flow between the supply rails. Therefore, Pstatic consump-
tion is independent of computing and occurs when the embedded system is connected to a
power supply.

Pstatic = Vdd · Ileakage, (2.2)

where Vdd is the supply voltage, and Ileakage is the current flowing between the supply rails.
Ileakage increases with the reduction in transistor size, and Pstatic that is directly proportional
to it also increases.

11

2 Fundamentals and State of the Art

The short-circuit power and switching power corresponds to dynamic power consumption
Pdynamic. Pdynamic results from the switching activity and in result charging and discharging of
the capacitors in a component. The short-circuit power consumption caused by the instanta-
neous short-circuit between the supply voltage (Vdd) and ground (during the switching of
gate state) is negligible compared to switching power consumption and, therefore, often left
out [23].

Pdynamic = α · C ·V2
dd · f , (2.3)

where α is activity ratio, C is the capacitance, and f is the clock frequency of the component.

2.1.5 Power Management Techniques

Power management of a sophisticated embedded system like multiprocessors system on chips
is studied since many years because of its obvious need and importance. Two significant
contributors to power consumption are voltage and clock frequency. Static power depends on
the connected voltage (power supply Vdd) and the leakage current produced. Dynamic power
depends upon voltage, frequency, and an activity factor. Most of the time, Static power was
neglected in the past, as its contribution towards total power consumption was negligible.
As the embedded system’s technology node is shrinking, the contribution of static power
towards total power consumption is increasing and can not be neglected anymore.

Power consumption in the embedded system can be managed with software and hardware.
Power management policies in the software are implemented in the power manager, and the
power controller (that consists of hardware components) control voltage and clock in hardware
to manage the power. The three well-established techniques, according to [24], are power
gating, clock gating, and dynamic voltage and frequency scaling. There are other techniques,
which are either combination or a slight variant of these three fundamental techniques.

Clock Gating

Clock gating [25, 26] is a technique in which a component’s clock is turned off if it is not
computing; thus, it stops the component’s switching activity and reduces dynamic power
consumption. A significant portion of the power consumed in the clock tree can be reduced,
and many low-level synthesizers can execute it automatically. This technique does not impact
static power consumption.

Power Gating

Power gating is a technique in which a component not used is power gated, which means
switched off. It can reduce static power plus dynamic power. Nevertheless, to switch off
a component, not in use for a time interval is not straight forward. First, the power gated
component’s internal states need to be stored in retention registers before power gating.
Second, the power penalty and the time required to restore the component must be carefully
managed. In case of a deadlock (if the application requires a component that is yet power

12

2 Fundamentals and State of the Art

gated), the power penalty is higher than this technique’s saved power. Therefore the decision
to switch off (power gate) a component or not is non-trivial; it depends on many factors, that
include, i.e., the inactive interval, application, firmware, and technology node.

Dynamic Voltage and Frequency Scaling (DVFS)

Dynamic voltage and frequency scaling is the most sophisticated one of all techniques dis-
cussed. It impacts both voltage and frequency that are quadratically and directly proportional
to power consumption, respectively. Dynamic voltage and frequency scaling is a technique in
which a component’s clock frequency and voltage are changed dynamically depending upon
the data load and processing demand. If a component is performing computation faster than
required, the computation rate can be decreased by reducing the clock frequency that results
in the decrease of dynamic power consumption. The voltage and frequency pair selection is
a task as non-trivial as power gating. Power controller that controls the voltage and clock
generator hardware modules and power manager that implements power policies in software
works together to choose the right voltage and frequency pair.

2.1.6 Power Analysis Approaches and Methods

Power estimation methodologies can be divided into two main categories, low-level, and
high-level methodologies. The accuracy of the power estimation and the time required for
executing the methodology are inversely proportional. Low-level methodologies are more
accurate but the simulation time is very high. Among the low-level tools worth mentioning
are, SPICE [27] Diesel [28] and Petrol [29], which work at transistor, gate and register transfer
level (RTL) respectively. It is almost impossible to use such low-level tools for a full system
design of complex mobile devices of these days, as the fine circuit details are not available in
early design phase and the simulation time required makes them impractical for regressive
design space exploration of complex multiprocessors system on chip.

High-level power modeling methodologies can be based on instruction level power anal-
ysis (ILPA), a methodology first introduced by V. Tiwari [30] or functional level power
analysis (FLPA), proposed by J. Laurent [31]. ILPA divides the program running on a
processor into a set of discrete instructions or instruction sequences and assign to them
power/current values. The complexity associated with assigning a current consumption
to each instruction is by far the biggest drawback of this work [32], alongside missing in-
stantaneous power estimation and the consequences of address and data changes when a
program runs. To overcome the deficiencies of ILPA, FLPA and the associated SoftExplorer
[33] power modeling tool revolve around the extraction of two types of parameters for any
target embedded system, i.e., the architectural and the algorithmic parameters. processing
unit (PU), instruction management unit (IMU), buses and memories are examples of the
former, whereas operating voltage, frequency, and input data word length of the latter, as
they also affect the power consumption of the platform. Although the abstraction level that
FLPA propose is rather high, this approach suffers in terms of identification and extraction of
the appropriate parameters to simulate the power model in complex platforms.

13

2 Fundamentals and State of the Art

Power modeling techniques used at electronics system level are analytical or simulation-
based. Analytical techniques are static and, most of the time, used for the worst-case and
best-case bounds. Such techniques are well suited if the application or system level use case
under evaluation has deterministic behavior [34, 35, 36, 37, 38]. These techniques do not
require a functional simulation input to derive them, and that is one significant advantage
over the simulation-based techniques. One typical example of an Analytical technique is
spreadsheet analysis with the help of the Excel tool. Manual input is prone to errors, and in
industry, the inability to maintain and share different versions of spreadsheet-based power
estimation is not preferred.

Simulation techniques are attractive as they are dynamic and well suited for non-deterministic
applications; therefore, power and performance analysis over time help hardware software
optimization, i.e., by spreading out the power peaks or scheduling the activities differently.
Simulation-based techniques require embedded system modeling and simulation capability.
SystemC/TLM modeling discussed in 2.1.3 is the right candidate for such techniques, and
many tools and frameworks in the industry use this combination. Our dissertation also uses
this technique for power estimation.

2.1.7 Power Model Development

Power state machine and Linear Regression are the most commonly used approaches to
develop electronics system level power models. All the electronics system level power
estimation methodologies use these standard approaches in one or another way to develop a
power model.

Power State Machine

PSM, very similar to finite state machine (FSM), is used to model the power consumption of
an embedded system or subsystems at electronics system level. The characteristics associated
with PSM include modeling power consumption and an agnostic approach towards functional
simulation. An agnostic approach towards simulation means that the system use case and
time notion of the simulated system does not impact how the PSM model the system’s
consumption. This agnostic approach is in-line with our goal of developing a modular
methodology.

The input stimuli of power state machine come from the timed, functional simulation of
the embedded system under evaluation, and these input stimuli trigger the different states in
PSM. The transition of power states in PSM changes the estimated power consumption. Each
power state has a different power budget behind it, and the total power is the sum of all the
power states in one instance. Hence, PSM techniques are linked with power estimation only
approaches.

In the literature, all the approaches that use PSM to estimate power consumption are similar,
with minor differences. In [39], PSM is developed for the system’s components, and the power
budget of the PSM power states is derived manually. The power budget calculation method

14

2 Fundamentals and State of the Art

keeps the system’s component in a specific state and measures the power for a long enough
duration. In [39], annotated power sates are later verified with hardware measurements.

The power modeling approach for design space exploration at electronics system level
presented in [40] uses PSM. A unique feature is that each component could have a different
power state depending upon the global governor, which decides the mode of operation, fast,
medium, and slow. This work does not focus on creating the PSM but comparing different
configurations of the embedded system for early design space exploration.

PSM concept is also discussed with unified power format (UPF) [41]. UPF is the only
standard of IEEE, which provides guidelines to model the power of an embedded system at
electronics system level. Power Modeling, with just two power states in PSM, is shown in [42].
The two power states are Active and no operation; this work also explains how to annotate the
power states for critical components like hardware accelerators, memories, and processors.

Linear Regression

Linear Regression is another frequently used approach to develop power models at electronics
system level. This approach can create the power model given the input variables, and power
consumption is known benchmark or reference scenarios. Therefore, it is frequently used for
black-box modeling; for example, if a processor’s internal power states are unknown (as it
could come from a vendor or third party), linear regression can develop its power model.

The summation is the basic principle behind linear regression; if an embedded system
consists of more than one crucial component, its total power consumption is the sum of power
consumed in each component. The power consumption of each component depends upon
the activity being performed inside the component.

The linear regression approach models the power as the weighted sum of some input
variables. These weighted factors are first extracted from reference scenarios or for a known
benchmark. Linear regression is a particular case of PSM; if a linear regression model has
variables with binary values, and only one variable must be in the high state at a given time,
then the weighted factors correspond to the power annotation of power states in PSM.

The linear regression approach suffers the apparent problem of over-fitting and instability
for non-linear components in an embedded system, i.e., a power amplifier. There are multiple
solutions proposed to tackle these shortcomings, i.e., uses non-negative values of weighted
factors. non-negative least square (NNLS), a constrained linear regression, is proposed in [43]
for CPU and GPUs. [44] tackles the over-fitting issue by proposing the tree structure. Each
branch of the tree is selected based on control input, and regression equation at a specific
branch level of the tree is executed based on data input. Control and Data are the input
variable for linear regression.

Several approaches that develop power models using liner regression are discussed in [45,
46]. In [45] number of instructions and registers, type of the instructions, and data inside
the registers are the variables, and a manually created reference scenario extracts weighted
factors of these variables. In [46], functional units are used as a variable, and weighted factors
tell the power consumed by each functional unit depending upon their activity.

A case study for network on chips (NoC) [47] uses linear power models. Input variables

15

2 Fundamentals and State of the Art

are the switching activity inside the transmitted data and output port and the number of
active output ports. The reference power trace to find out the weighted factor is gathered by
gate-level simulation.

2.2 Related Work

This section will review the electronic system level simulation tools or frameworks available in
industry or academia for the embedded system’s key performance indicators analysis. As we
have seen, TLM can model the performance along with other aspects (functional verification,
software development, and high-level synthesis) of the complex multiprocessors system on
chips. For early path findings, micro-architecture and performance analysis are the most
crucial aspects from the key performance indicators perspective.

The second topic of interest is power-aware architecture modeling at the electronics system
level, adding non-functional properties like power information into the embedded system
analysis using TLM. In this section, we will review the frameworks addressing power and
performance together, which is the focus of this dissertation.

2.2.1 ESL Performance Estimation Frameworks

There are various system level design frameworks developed in industry or academia over the
last decades. In this section, a selection of these frameworks are summarized. We only review
state of the art simulation-based system level performance evaluation methods, which do not
require mature application and architecture models (as is the case at electronics system level).

SPADE

System-level Performance Analysis and Design Space Exploration (SPADE) is a tool and
framework for system level architecture exploration of heterogeneous signal processing
systems[48, 49]. SPADE mainly focuses on signal processing domain embedded systems, and
it uses a trace-driven simulation technique for performance evaluation. The application is
modeled using the Kahn process network, and the architecture is constructed using building
blocks from a library. The architecture model has generic processing, communication, and
memory elements. The performance specifications, such as execution time and latency, are
configured using some parameters during architecture instantiation. For this purpose, look-up
tables of pre-computed performance parameters from data-sheets or low-level simulations
are used to configure each architecture component. During a simulation, each process in the
application model, while reading their input FIFOs, processing their local data, or writing to
their output FIFOs, generates a trace of symbolic instructions such as read, write or execute.
These symbolic instructions represent the workload of the application on the architecture.
The trace of each process in the application model is mapped on one of the architecture
resources that interprets the corresponding trace’s symbolic instructions and simulates their
timing and performance behavior according to their performance configurations. However,
the symbolic instructions do not contain any inter-process control expressions, and the

16

2 Fundamentals and State of the Art

architecture resources execute them in the same order as they are received. Therefore, the
potential concurrency of the application processes cannot be exploited [50], such as time-
dependent behavior. The simulation speed is very fast because the architecture resources
simulate the symbolic instructions without processing the actual data.

ARCHER

It is a framework for system level performance evaluation and architecture exploration of
heterogeneous embedded systems, and it focuses on streaming-based applications [50, 51].
Application is modeled as KPN with non-determinism modeling capabilities of the YAPI
tool [52]. ARCHER extends the SPADE framework by using symbolic programs instead of
symbolic instructions. In this approach, the scheduling and non-determinism effects of the
parallel process can also be handled. Each process in the KPN is annotated, control traces for
a set of input data, and a symbolic program is generated. The architecture model contains a
symbolic program unit (SPU) with read and write ports and FIFO buffers for communication.
The SPU can process the application model generated by symbolic programs. The connection
between the architecture resources is a point to point connection network. The SPU resources
contain read, write, and execute units that can run in parallel. It also contains program and
control units for scheduling traces from different processes according to their control and
resource availability information. The SPUs are modeled in SystemC.

SESAME

Similar to ARCHER, simulation of embedded system architectures for multi-level exploration
(SESAME) is also based on the SPADE framework and uses a trace-driven simulation technique
for system level performance evaluation. SESAME models the application using the Kahn
process network either automatically using the Compaan framework [53] or manually from a
sequential C/C++ code [54].

The architecture in SESAME is modeled in the Transaction Level, which simulates the
traces’ performance consequences carrying the application’s computation and communication
workload. The architecture is constructed from a generic library with configurable perfor-
mance blocks for processing cores, memory, and interconnect subsystems. These generic
blocks are modeled in Pearl [55] or SystemC and a SystemC-Pearl extension library [54].

Unlike ARCHER, where the scheduling (control) unit is integrated inside the processing
element, SESAME has a separate mapping layer for scheduling the traces of processes mapped
on the same architecture resource. This mapping layer consists of Virtual processing elements
and FIFO buffers for communication between the virtual processors. The virtual processors
read the event traces of the application model and dispatch them, according to different
scheduling policies (FCFS, round-robin, or custom), to a processing element in the architecture
model [54].

The structure of the process in the application model, their mapping, and the architecture
model are described in YML language, which can be rapidly changed for analyzing different
design choices. Additionally, SESAME allows simulating the architecture at different levels of

17

2 Fundamentals and State of the Art

abstraction. The architecture models can be gradually refined for more detailed performance
analysis without modifying the application model. The mapping layer in SESAME refines
the coarse-grained communication and computation event traces of the application into fine-
grained computation and communication events using data-flow graphs to achieve detailed
performance analysis.

TAPES

Trace-based architecture performance evaluation with SystemC (TAPES) is a framework
implemented in SystemC for performance evaluation of an SoC at the system level using the
transaction level approach [56]. The application functionality and behavior are manually mod-
eled as traces. Furthermore, traces are parsed and translated by the underlying architecture
resources during the simulation. Each trace can include a sequence of an application task’s
execution primitives with some transaction primitives for interaction with other resources.
The computation and communication primitives of the application trace are translated on
the architecture resources, as latencies and transactions between the architecture modules,
respectively. No real data is transferred between the modules; instead, tokens are transferred,
and these tokens can trigger other traces in the destination module. The architecture resources
are modeled in SystemC, interacting with each other by calling SystemC transactions via a
single system-bus or point-to-point connections. The communication resources additionally
model the dynamic system behavior such as resource contention and arbitration. TAPES is
mainly focusing on network processor applications.

The control dependencies between the traces are resolved manually by generating traces
for all possible execution patterns of the application. Moreover, system cache effects are also
manually integrated into the traces before the start of the simulation. The system architecture
is automatically generated from a model library containing abstract processors, memory
blocks, accelerators, and communication resources. It is based on a system configuration
provided by the user in an XML file. XML file enables easy evaluation of different mapping
and application-architecture configurations. The traces and the pattern for the control path
between the traces are manually specified within the traces.

MILAN

Model based Integrated simuLAtioN (MILAN) integrates various simulators, with different
level of abstractions and different input/output formats, into a single framework. Moreover, it
provides a global user interface for system specification, enabling a system-wide performance
evaluation of an embedded system design [57].

The hierarchical simulation technique in the MILAN framework has two levels. The top-
level is based on the interpretive simulation tool, high-level performance Estimator (HiPerE),
and the bottom level is based on component-specific simulators with different abstraction
levels [58].

In [58], a system level performance evaluation technique based on the MILAN framework
is used. The architecture is modeled using Generic models (GenM), which consists of generic

18

2 Fundamentals and State of the Art

processors, reconfigurable logic, and memory blocks with some performance parameters
such as timing and energy consumption. The application is modeled as a task graph, which
shows the execution order of each task mapped either on the processor or reconfigurable
logic resources. During the simulation, task preemption, dynamic scheduling, and other
operating system effects are not considered. Each task’s starting time is defined, considering
the dependencies between the tasks and their estimated execution time.

HiPerE, starts from an initial set of component-specific performance parameters given by
the user, estimates the overall system performance and generates a task activity report for
energy consumption and latency estimates. Additionally, HiPerE generates the configuration
file to configure the low-level stand-alone component-specific simulators of each architecture
component. The low-level simulators’ feedback is used back by the HiPerE to refine the system
level component performance parameters for more accurate overall system performance
results.

METROPOLIS

METROPOLIS is an embedded design framework based on meta-models with precise seman-
tics which can capture functionality, architecture description, the mapping relation between
the application and architecture, and a logic language for capturing declarative and non-
functional constraints of the design [59]. Since the meta-models have precise semantics, the
METROPOLIS framework can support synthesis and formal analysis tools as well. Addition-
ally, it provides some APIs that allow the designer to modify or add more information to the
models.

The system application is modeled as a network of concurrent processes or tasks interacting
with each other through ports with interface functions via a medium that implements these
interfaces. Each process execution is a sequence of events that represent the entry and exit
points of the code. The whole network’s execution behavior is defined as a sequence of event
vectors that trigger the processes during the execution. The meta-models can also capture
non-deterministic behavior, and also logic formulas are used to define some constraints that
coordinate the processes and behavior of the network. The architecture is also modeled as a
network of processes, representing software tasks, processors, buses, and memory subsystems.
The architecture model is event-driven, and it implements the functionality of the system
by providing services to these events with costs, such as time or energy. The application
model’s processes request some services using events, and the architecture model provides
these services by considering the performance cost. The mapping between the application
and architecture model is established through a third network layer that synchronizes the
events of processes in the application model and the corresponding resources’ events in the
architecture model.

In [60] a framework based on DIPLODOCUS [61] for system level architecture exploration,
and performance evaluation of an embedded system focusing on the influence of shared
resources on the performance of the system is presented. The application is modeled as a
network of tasks whose behavior is modeled as a UML activity diagram, such as control
flow commands and communication commands (sending sample data, waiting for events).

19

2 Fundamentals and State of the Art

The tasks interact with each other through channels (for exchanging data samples), events
(exchanging signals), and requests (requesting triggering of other tasks). Communication
through channels and events are blocking or non-blocking while the communication through
requests are non-blocking. The architecture is also modeled as a network of resources,
instantiated from a generic library, for computation, communication, and storage purposes
such as CPU, Memory block, buses, switches, and routers. The architecture resources’
performance characteristics are configured through parameters. Following the Y-chart [62]
approach, application tasks are mapped on the architecture resources, where each task can
perform computation or communication requests to the corresponding architecture resource.
To handle the resource allocation and scheduling of concurrent requests from different tasks
mapped on the same resources, a virtual node (VN) component for each architecture resource
is modeled. VN models an architecture resource’s allocation and scheduling behavior, such
as processors and bus, for concurrent requests from different application tasks. The allocation
request considers the time for processing a pending request according to the underlying
architecture resource’s performance metrics. The framework takes the UML models of
application, architecture, and mapping relation and generates SystemC code for simulation.
The simulation generates statistics for the best, worse, and average execution time of each
task and the utilization of each architecture resource.

In [63], the focus is on modeling and analyzing application using a task modeling lan-
guage (TML). The application is modeled independent of the architecture, as a network of
communication tasks. In addition to computation and communication primitives, control
exchange between the task nodes, and a task flow control semantic is also considered in
the task model. The tasks communicate with each other through virtual channels of finite
or infinite capacity with specific data width. The exchanged information between the tasks
is abstract-data and control-data. The control data consists of REQ(request) instructions
and event notifications, which are used for task invocation and synchronization respectively.
Each task’s data processing functionality is abstracted by a sequence of three coarse-grained
instructions EXECI, EXECF, and EXECC for fixed point integer operations, floating-point
operation, and custom hardware instructions, respectively. These instructions’ performance
cost, such as execution time, depends on the underlying architecture, which is defined after
mapping the application model on the architecture model.

ARTS

Abstract system level modeling and simulation framework (ARTS) [64] is a SystemC-based
framework for system level performance evaluation and modeling of an multiprocessors
system on chip. ARTS mainly focuses on system level modeling and performance evaluation
of streaming-based applications. In ARTS, application is modeled as a task graph, where
nodes represent atomic application tasks and the edges represent the dependency between
nodes. There are 3 types of task nodes, computation, message, and I/O tasks. Each task node
has parameters, such as worst-case execution time (WCET), best-case execution time (BCET),
release time, deadline, and memory requirement. Each task’s behavior is implemented as a
finite state machine with four states(idle, ready, running, preempted). The task’s execution time

20

2 Fundamentals and State of the Art

depends on the clock frequency and availability of the corresponding processing element
in the architecture model to which the task is mapped. The architecture model comprises
processing elements and communication elements such as buses, networks, or memory blocks.
The processing elements are modeled as abstract RTOS models, which provide services,
i.e., resource allocation, task scheduling, and execution synchronization. The architecture
communication network is modeled as a communication-processor that can non-preemptively
schedule the message type tasks of the application. A custom scripting language is used to
model application, architecture and mapping their relation.

The other method for modeling and evaluating an embedded system’s performance at a
high level is using the specification and description language (SDL) [65]. In [66] the system
specification and functionality are modeled in SDL, and the architecture and mapping of
application tasks on the architecture resources are modeled by annotating the SDL code
processes with NODE, PRIORITY, and DELAY directives. Where NODE represents the
architecture resources such as processors or dedicated hardware, PRIORITY represents
the priority of each process, and DELAY represents the execution time of each task on the
corresponding architecture resource. These architecture performance-related parameters, such
as execution delay, are obtained by generating and simulating a low-level implementation
of each SDL application process as hardware (VHDL RTL code) and software (C code).
The annotated SDL code is simulated in the GEODISIM system level simulator to evaluate
different hardware software partitionings and architecture configurations. Each SDL process
to evaluate an application model’s performance for different architecture models with different
mapping relations is implemented as hardware (VHDL RTL code) and software (C code).

2.2.2 ESL Power Estimation Frameworks

Electronics system level simulation frameworks that rely on functional simulation to provide
the embedded system’s timing and functionality are extensively studied in academia and
industry. Works from academia and industry relevant to this dissertation’s scope are discussed
in this section and categorized based on two practical approaches. First, those electronics
system level frameworks that connect the power model to the simulation framework and
second, those frameworks that integrate the power modeling information within the functional
simulation.

ESL Frameworks Integrating Power Models into SystemC Simulation

[67] integrates power hooks into SystemC simulation instead of integrating the complete
power models. A proposed software infrastructure integrates the power hooks into SystemC
simulation, and a timed functional model calls them. The number of power hooks and types
required depends on the components. [67] claims system-wide rapid power estimation and
analysis.

An approach called pktool is presented in [68]. This tool creates power modules as a
wrapper on top of SystemC modules. Furthermore, power modules observe the data relevant

21

2 Fundamentals and State of the Art

for power models from the input and output ports. This work intends to keep the SystemC
simulation intact as much as possible.

A work tightly coupled with SystemC is presented in [69] as it modifies the base class for
modules with member function to add energy and power types to set dynamic and static
power consumption. Power consumption comes from the components’ behavioral code in the
embedded system modeled in SystemC/TLM. The limitation of [69] results from replacing
the generic TLM transaction payload structure with a customized payload structure for power
annotation by observing the switching bits.

An electronics system level framework for power and temperature modeling in SystemC
was first discussed in [70]. It spreads the power peaks over the correct time interval in order
to get accurate thermal simulations. This work was further enhanced in [71, 72] by connecting
the power model developed in external power/temperature solver to SystemC/M functional
simulation. The work done for the SystemC extension is available as an open-source library
called LIBTLMPWT [73].

ESL Frameworks Connecting Power models to SystemC Simulation

A power estimation framework built on top of the architecture exploration framework SESAM
[54] is introduced in [74]. In this framework, the application model is abstracted and modeled
by the abstracted Kahn Process Network [75]. The simulation events are transferred to the
hardware model, and the hardware model maps it to the event tables, which contain the
time and power budget. The approach used for application modeling is very similar to the
approach used in this dissertation.

A project named COMPLEX [76] estimates power in the context of design space exploration
and rapid prototyping of embedded systems for hardware-software co-design. Power models
are developed using the PSM approach, but with a slight variation, the protocol state machine
is placed between SystemC simulation and power models. The protocol state machine observes
the transactions of functional simulation and determines the power states in PSM, which
helps black-box component modeling [77, 78]. This work separates the application from the
platform and the functional simulation from non-functional properties, i.e., the power, which
is also the focus of this dissertation.

A research group has worked towards multiple power estimation frameworks [79, 80, 46].
Each framework has a different methodology and the logic behind calling it hybrid.

The work [79] has a similar approach as discussed in [76]. This approach is called a hybrid
approach as it can model both white and black boxes. Instead of a protocol state machine as in
[76], it has component estimator modules attached to the ports of the components’ functional
models. The work in [80] uses low-level physical measurements and analytical formulas to
model the power of vital components in an embedded system and use the electronics system
level simulation counters to multiply them with the parameters determined by physical
measurements to calculate the power consumption. Electronics system level simulation
counters are put for those events that impact power consumption. This research group’s last
work [46] is also a hybrid approach, as a functional power estimator is connected with fast
electronics system level simulation at the transaction level. Electronics system level simulation

22

2 Fundamentals and State of the Art

(modeled at transaction level) drives different power models of the components, and the
power models are developed by linear regression in the first place.

System Level Performance and Power Evaluation in Industry

Intel CoFluent Studio [81], as the name suggests, is an EDA tool powered by Intel. It is a
commercial model-driven tool for designing and exploring complex embedded systems in
the early phases of the design process. In CoFluent, the application is modeled, using a GUI
tool, as a network of function blocks or processes communicating with each other through
communication elements such as events, shared variables, or message queues. Activity
diagrams with timing attributes abstract the complex algorithms or behavior of each process.
Once the application is modeled, a timed SystemC TLM model of the application can be
automatically generated. The simulation of this timed model can be used for the analysis
of the application model. Similarly, using the same GUI tool, the system architecture model
is created by connecting different generic architecture resources, such as processors (ASIC,
CPU, MCU, DSP, FPGA), interrupts, interconnect(BUS), and memory blocks. High-level
performance attributes characterize architecture resources. The mapping relation of the
application model with the architecture model is expressed by creating mapping models of
the system. In the mapping models, each function or process in the application model is
mapped on one of the architecture models’ processing resources. Similarly, the communication
path between the application model processes is mapped on the interconnect subsystem in
the architecture model. The shared variables and message queues in the application model
are mapped on the architecture memory blocks. The SystemC TLM code of the system can be
generated automatically to analyze the power, cost, resources loads, memory footprint, and
dynamic behavior of the application on the architecture.

Synopsys Platform Architect (Synopsys PA) MCO is a SystemC TLM standard-based
graphical framework for system level design and early power, and performance analysis
of a multicore SoC architecture [16]. In Synopsys PA, the application is modeled as a
task-graph. Each node is instantiated from basic blocks of a generic task library (GTL) and
represents an application task in a task graph. The edges in the task-graph represent the nodes’
dependencies, and this edge connection between two task nodes is established via ports. The
task nodes use samples of communication tokens for activation and synchronization purposes.
Tasks read their input ports, consume or process the input tokens and generate output tokens.
The behavior and execution time of each task for actual processing of the incoming tokens is
specified by some generic functions, such as for data processing (cpu function) and memory
access (mem function), which are connected to each task node during instantiation of the
corresponding node. Under the control of a default task manager, the application model
can be simulated stand-alone to analyze the application behavior and memory traces. The
architecture model components are instantiated from a library containing a virtual processing
unit (VPU), memory blocks, and interconnect subsystems. The VPU, when a task with cpu
function is mapped on it, can generate statistical traffic for instruction(fetch) and data (load
+ store) accesses. The mapped task graph with architecture can be simulated to analyze the
system’s overall power and performance.

23

2 Fundamentals and State of the Art

2.3 Fundamentals

After explaining the background and related work, a methodology’s fundamentals with
a defined goal of power and performance estimation, co-optimization, and design space
exploration to analyze different variants and configurations of the embedded systems’ hetero-
geneous architecture are presented in this section.

An embedded system design flow, which starts from design specifications by the customer,
has multiple stages until completion. In this dissertation, the complete design flow is divided
and modeled into three different abstraction levels.

1. Architectural abstraction level

2. Software abstraction level

3. Hardware abstraction level

Before explaining these abstraction levels from a methodology point of view and comparing
these with the Y-chart [7], it is vital to understand the essential components of a methodology
at these abstraction levels.

Application model is a model representing a use case, a scenario, the activation flow,
task sequence, or order of processes depending upon the systems’ abstraction level and the
information available. Software that is developed from system specifications, if available,
provides an accurate representation of an application model. However, most of the time, the
software is not present from the start of the design flow.

Architecture model or performance model is a model capable of simulating a system level
use case, application, or existing software to generate parameters for performance and power
analysis of the system. It consists of fundamental components like processors, programmable
and dedicated hardware accelerators, memory, and buses, modeled at a suitable abstraction
level.

For early system level evaluations, these resources in the architecture model capture only
the application’s execution behavior and provide means to measure the system’s performance
details. These details include high-level throughput, latencies, deadlines, and bandwidth
analysis. Therefore, they are also called performance models.

Power model is a model containing power modeling information of the embedded system’s
components contributing significantly towards power consumption, i.e., core, on-chip and
off-chip memories, buses, hardware accelerators, clock tree. The power model is driven by
the architecture or performance model’s parameters to perform a static or dynamic power
analysis. They can also carry out a standalone power analysis of the modeled system, i.e.,
with power state machines (PSM) or handwritten scenarios.

Ideally, the power model should be developed at the same granularity as the architectural
model. Nevertheless, the system use cases relevant for performance and power analysis are
not always the same; hence, the power and architecture model’s granularity are not always
the same.

24

2 Fundamentals and State of the Art

Automation is the integration of the application model, architecture model, and power
model in a methodology capable of power and performance analysis and co-optimization
requires automatic interaction of the models. This automation can be achieved with the help
of scripting, application programming interface (APIs), value change dump (VCD) file, java
script object notation (JSON) file depending upon the requirements and abstraction level.

Now, we explain the three abstraction levels of the methodology in the context of essential
components introduced above.

2.3.1 Architectural Abstraction Level

The high-level definition of architectural abstraction in the context of this dissertation is a
level that is pre-software and pre-silicon. Thus, neither software nor hardware is available
for an embedded system. It corresponds to the electronics system level discussed in detail in
section 2.1.1.

The architectural level is the first abstraction level of the embedded system, and it is the
most important one for design space exploration and key performance indicators analysis.
According to the Pareto principle [82], the correct design decisions taken at an early phase of
the project have (80%) or significant impact than the later stages’ decisions (only 20% impact).

For example, hardware-software split, components placement on a silicon die, selection of
the technology node, size of the memory, an on-chip of-chip split of the applications are few
examples of the decisions system engineers have to take to translate design specifications into
system configuration. A methodology at the architectural abstraction level that can address
system engineers’ need to evaluate different system configurations for system level use cases
is particularly advantageous - as it can help refine the application and architecture model of
the embedded system.

At this abstraction level, the challenge to develop a methodology is the missing low-
level implementation details. Application models are abstracted, such as directed acyclic
graphs (DAG), control data flow graphs (CDFG), finite state machines (FSM), kahn process
networks (KPN), or task graphs. Architecture models are developed with the help of language
capable of abstracting hardware functionality. Transaction-level modeling (TLM) libraries
on top of SystemC is an attractive choice to model architectural models - as they separate
implementation details of computation from communication. Moreover, they can be enhanced
to simulate the application model to generate system parameters responsible for performance
and power analysis. At this stage, power models consist of an excel file filled with the
information coming from data sheets, designers’ experience, or rule of thumbs practiced in
the industry.

The higher the abstraction, the lower the accuracy - as low-level implementation details
are missing, and many assumptions are made along with methodology development. An
advantage of higher abstraction can be seen in the result of fast simulation speed; otherwise,
simulating one millisecond of a cycle-accurate system can take more than hours, which is not
practical to simulate system level use cases.

In conclusion, a methodology that can analyze and co-optimize power and performance at
the architectural abstraction level is desirable but challenging to develop. Hence, this work

25

2 Fundamentals and State of the Art

focuses on the architectural abstraction level and linking it with lower abstraction levels.

2.3.2 Software Abstraction Level

The software abstraction level in this dissertation corresponds to a level that is pre-silicon
but post-software. Similar to the architectural abstraction level, the hardware is in the
development phase, but the software engineers have developed the software at this stage of
the project.

The architecture/performance model development of the essential components discussed
in Section 2.3 to achieve a methodology at the software abstraction level has the following
potential options.

Application and key performance indicator critical system level use cases are modeled
with the existing software; hence, the application model’s accuracy is very high. The second
vital component of the methodology is the architectural/performance model. Similar to the
architectural abstraction level, hardware components can be represented with SystemC/TLM
modules (that abstract computation and focus on communication) at the Software abstraction
level. virtual prototypes (VP) composed of SystemC/TLM modules and libraries representing
the architecture model (or embedded system platform) can simulate a complete software.
SystemC/TLM VP modeling has different time notions loosely-timed (LT) or approximately-
timed (AT), and there can be a trade-off for simulation speed or accuracy. This abstraction
level is also known as the functional verification stage in embedded system design. The
software and firmware are both at hand, and the system level use case or activation flow of
the actual hardware can be triggered with the help of test-cases to verify the functionality.
Functional verification gives confidence that the system is performing as expected.

Power models are refined during the architectural abstraction level. They are developed in
electronic design automation (EDA) tools or frameworks to analyze fully-grown software at
this abstraction level. Power models developed in EDA tools or frameworks have multiple
options to simulate a performance/architecture model’s stimuli.

The power model can be attached to the software in the form of libraries, or an XML file is
read at SystemC elaboration phase or with software APIs to external power modeling tools.
For example, virtual prototypes of the architecture model can simulate an application or
system level use case and dump the performance and power-related stimuli. The dump file
in the form of value change dump or another format can be re-used by an external power
modeling tool or framework to produce a dynamic power consumption trace over time.

The software abstraction level accuracy in terms of an application model is very high as
low-level implementation details related to an application or system level use case are known.
The simulation of the architecture/performance model depends upon the trade-off made
between accuracy and speed.

Depending on the system scenario under consideration, different timing resolutions and
scales are needed. Mobile communication systems have characteristic time constants (e.g.,
transmission time interval (TTI) of 1 ms in 4G). For functional simulation of a 4G use
case, a performance/architecture model needs to simulate several hundred TTIs. Therefore,
a performance model development at a TLM loosely-timed level is a useful abstraction.

26

2 Fundamentals and State of the Art

For throughput and latency analysis of the memory subsystems and interconnects, timing
accuracy at a transaction level is needed and requires a TLM approximately-timed (AT)
modeling style.

2.3.3 Hardware Abstraction Level

The third and last abstraction level in this dissertation is the hardware abstraction level. It is a
post-silicon, and post-software abstraction level, unless if the embedded system developed
is generic enough to support a new application model or the new hardware is a slight
modification of the legacy hardware. In that case, this abstraction level is post-silicon but
pre-software.

There are certain advantages of this abstraction level; for example, the application model’s
simulation or running an end to end system level use case is easy and fast. The regression-
based power modeling techniques require actual hardware to run at least one system level
use case to develop a power model at this abstraction level.

Post-silicon and post-software is the lowest abstraction level. Thus, low-level implemen-
tation details are available, which allows for developing a detailed and precise design
methodology for embedded systems. For accurate and precise results, modeling can be done
at a fine granularity, which requires higher modeling efforts from model developers. So,
accurate and precise results are achieved at the cost of higher modeling efforts.

Post-silicon implies that the embedded system’s hardware is constant in the hardware
abstraction level; thus, the room to perform design space exploration and optimize power and
performance key performance indicator is limited. As with given hardware, the flexibility
to choose between a different type of core, memory type, on-chip off-chip memory size,
technology node, placement of the component, and bus sizes is limited.

2.3.4 Holistic and Modular Methodology

The holistic and modular methodology in the context of this dissertation is defined as a
methodology that starts from the architecture, incorporates software and hardware abstraction
level for design space exploration, power and performance estimation and analysis. Moreover,
still modular enough to keep the critical components of methodology, i.e., application,
architectural, and power model, separate.

In real projects, these different parts are developed by different teams. Hardware architects
define different variants of the overall architecture. System architects define the high-level
structure of the system use cases (functional elements and their interaction). Power experts
do the early power analysis, defining early abstractions of power models at the component
level, derived from previous generations or high-level estimates, and including all relevant
technology parameters.

The main contribution of this work is a Power and Performance Optimization and Explo-
ration Methodology POEM to address this a distributed project setup by orthogonalization of
concerns [6].

27

2 Fundamentals and State of the Art

The key to holistic methodology is power modeling framework, which is integrateable with
multiple abstraction levels and acts as a binding force between them, as shown in Figure 2.3.

V
C

D
V

C
D

VCD Power database

RTL Design (HDL)

Gate

 Architecture model Application model

Architectural level

Power modeling
framework

Hardware level

Executables Transistor

Software level

Software (C/C++)

Assembler

Figure 2.3: POEM: A multi-abstraction level methodology, estimating KPIs at architectural,
software, and hardware abstraction level with a common power modeling frame-
work. That implies a methodology in which the modules addressing functional
simulation, power modeling, or application development are agnostic concerning
each other.

28

3 POEM: Power and Performance
Optimization and Exploration Methodology

After stating the background, fundamentals and terminologies in Chapter 2, this chapter
comprises the details of application, architecture, and power model. Application and archi-
tecture models are introduced at the architectural abstraction level (2.3.1) because at this
level, simulation platforms and software are not straightforward to model due to missing
implementation details.

The application model is represented with the help of task graphs. The performance
model simulates the task graph and runs the application model to generate performance
parameters and report the power evaluation stimuli. Both application and performance
models are developed with SystemC/TLM and an additional library on top. As this work
is an outcome of the collaboration with the Intel Cellular department, the application and
performance models used in this dissertation are developed internally by intel using intel
SystemC transaction-level modeling (ISCTLM).

ISCTLM is a wrapper that provides instrumentation for the parameters’ configuration of
task graph and performance model parameters to evaluate a different set of application and
architecture model combinations. It allows parameters’ configuration dynamically - that
means not only an application and a performance model can be modified by just modifying
the configuration file, but also the parameters impacting the power and performance can
be changed at run time. For example, frequency and voltage change during a simulation
run while switching from one use case to another or moving from short connected mode
discontinuous reception (CDRX) to fully connected mode in a cellular modem. This ISCTLM
library is fully compliant with the Accellera [83] (SystemC based) library.

An in-house Intel framework exercising ISCTLM for performance and application model
simulation is called system architecture and validation environment (SAVE). One of power
and performance optimization and exploration methodology (POEM) goals is modular setup;
hence, this dissertation uses the SAVE environment to analyze power and performance by
attaching an agnostic power model to it and making this setup in line with our goal.

Sections 3.1, 3.2 explaining the application and architecture models have been presented in
[84] and in [85].

3.1 Application Modeling

In our methodology, given a set of system specifications, an application is manually modeled
as a task graph. Nodes represent abstract application tasks, and the edges represent the

29

3 POEM: Power and Performance Optimization and Exploration Methodology

dependencies and the communication channels between the nodes. These communication
channels are modeled as bounded SystemC first-in-first-out (FIFO) channels. The user defines
the size of each FIFO channel. During the simulation, the nodes are triggered when there is
data available in their input FIFO channels. The triggered nodes first read their input ports,
request executing on their mapped architecture resource, and write some communication-data
to their output ports to trigger other tasks.

The task graph captures the functionality of the application without implementing the
actual behavior of the application tasks. Each application task’s actual data processing or
behavior is abstracted to a set of primitives representing the execution workload of a task on
an architecture resource, from a performance point of view. These workloads approximate the
computation and communication activities as if it was running on a real platform. The task
graph provides the underlying architecture resources’ simulation models with each task’s
execution workload in an application or use case while maintaining the correct control and
data flow of the application. Consequently, the behavior of the overall architecture for the
corresponding use case or application can be analyzed.

A task node’s characteristics are defined by a set of parameters, such as start or release
time, deadline, a period, and priority. Moreover, each node has a parameter for referencing a
resource in the architecture model. Before explaining the application stand-alone simulation
and mapping of the application task on the architecture resources for co-simulation of the
application-architecture model combination, the following section presents the concept of
abstract task execution workload or task-execution model in more details.

3.1.1 Task Execution Model (Workload)

The goal is to model the application generically, such that it is independent of the architecture
model. We want to compare the application task’s behavior mapped to different architectural
resources for power and performance analysis and comparison. Therefore, the actual behavior
of processing data is not implemented inside the tasks in the task graph. Instead, each
task only provides its processing workload, corresponding to input data sets, to drive the
underlying architecture performance models. A set of parameters captures this execution or
data processing workload of a task on an architecture-resource.

For example, suppose one of the application tasks, which is mapped on a DMA module, is
to transfer a specific volume of data from external memory to on-chip memory. Furthermore,
suppose the DMA performance model is very abstract and has only three run-time parameters,
source address, the volume of data, and destination address. Then the very abstract execution
workload of the task mapped on the DMA module is the address of the external memory, the
volume of data to be transferred, and the address of the on-chip memory block. Whenever this
task is triggered, it will request executing on the DMA module by providing a reference to its
execution workload. The DMA module’s run-time parameters will be configured according
to the values provided by the task’s execution workload. Accordingly, the DMA will initiate a
read transaction request on the interconnect for reading data from the corresponding source
address(external memory), and it will be followed by a write transaction request to the
destination address (on-chip memory). This task’s completion time depends on the load,

30

3 POEM: Power and Performance Optimization and Exploration Methodology

bandwidth, latency of the interconnect, the volume of data, and the read and write access
latency of the external and on-chip memory blocks. Depending on how detailed the DMA
and the memory subsystems are modeled, this task execution workload parameters can be
refined further for including the details about reading, writing, and preparing each chunk of
data during this transfer.

In our methodology, for each task, we encapsulate this set of execution parameters as mem-
ber variables into a SystemC module, which we refer to as workload objects (workload_obj).
The reason why the SystemC module is used instead of plain C++ struct containers is the
ease in initializing these member variables from a configuration file, which is discussed in
detail in Section 3.1.2. These workload objects represent coarse-grained computation and
communication activities of a task’s execution on an architecture resource during a simulation.
The parameters for these activities depend on the type and modeling granularity of the
mapped architecture resource. For instance, when a task is mapped on a processing resource
modeling the performance of a CPU with different levels of caches, then it is necessary to have
some parameters in the task’s workload object to represent these cache effects. However, if
the same task is mapped on an application-specific integrated circuit (ASIC), without caches,
then the workload object will not need these cache effect parameters.

Moreover, the number and granularity of these parameters or activities within a workload
object depend on how detailed the corresponding architecture resource, which the task is
mapped on, is modeled. These workload objects are instantiated as sub-modules within the
architecture resources. In the task graph level, each task only carries a reference or name
of these objects, without considering the internal parameter details of them. Therefore, this
enables the application to be modeled independently of the implementation details of the
architecture resources.

Table 3.1 shows the workload_obj parameter of a task mapped on a virtual engine.
Virtual engines, which will be discussed with details in Section 3.2.2, do not generate any
traffic while executing a task; instead, they only simulate the execution latency of the tasks
mapped on to them. Therefore the workload of each task mapped on a virtual-engine is
only the execution time. This is captured by a single parameter, exe_time. Similarly, the
workload of a task mapped on a more detailed DMA module is shown in Table 3.2. Besides
the source, destination, and volume of data, it also has parameters for dividing this data
volume into bursts and chunks. Accordingly, traffic is generated on the interconnect for each
burst transfer, and the corresponding memory blocks are accessed.

Table 3.1: A task execution workload (workload_obj) mapped on a Virtual Engine
Parameter Name Data Type Default Value Details
exe_time sc_time 0 ns Task execution time

Table 3.3 shows a task execution workload for a task mapped on a typical stochastic
CPU. The total execution of a task on a CPU might need a specific number of instructions.
This is defined by the numberOfInst parameter. The CPU’s internal behavior will loop
for the total number of numberOfInst times, where each iteration means executing an

31

3 POEM: Power and Performance Optimization and Exploration Methodology

Table 3.2: A typical task execution workload (workload_obj) mapped on a DMA channel
Parameter Name Data Type Default Value Description
SMEM_Addr sc_dt::uint64 0x0 Source Memory Address
DMEM_Addr sc_dt::uint64 0x0 Destination Memory Ad-

dress
TRBKsize unsigned int. 0 Transfer Block: total volume

of data to be transferred
BRSTsize unsigned int. 0 Bytes per Burst transfer
TRBKcyc unsigned int. 0 Number of cycles required

for preparing a transfer block
of data

BRSTcyc unsigned int. 0 Number of cycles required
for preparing a burst transfer
transaction

CHNKsize unsigned int. 0 Chunk: bytes per codeblock
or codeword, which depends
on the width of the intercon-
nect

SMEM_Size sc_dt::uint64 0x0 Source Memory Size
DMEM_Size sc_dt::uint64 0x0 Destination Memory Size
SMEM_CHNK_Base sc_dt::uint64 0x0 Source Memory Address for

first CHNK in case of fixed
start

DMEM_CHNK_Base sc_dt::uint64 0x0 Destination Memory Ad-
dress for first CHNK

32

3 POEM: Power and Performance Optimization and Exploration Methodology

Table 3.3: A typical task execution workload (workload_obj) mapped on a CPU with
instruction and data caches

Parameter Name Data Type Default Value Description
numberOfInst Integer 0 Total number of instructions

for a task
fetchRatio double 0 Probability that a task exe-

cution performs a fetch op-
eration

fetchHitRate double 0 Probability that a fetch op-
eration is a hit

loadRatio double 0 Probability that a task exe-
cution performs a load op-
eration

loadHitRate double 0 Probability that a load oper-
ation is a hit

storeRatio double 0 Probability that a task exe-
cution performs a store op-
eration

storeHitRate double 0 Probability that a store op-
eration is a hit

lineDirtyRate double 0 Probability that a cache line
is dirty

branchRatio double 0 Probability of branching
branchMispredict double 0 Probability of branch miss

prediction
instAddOffset sc_dt::uint64 0x0 Task inst. address offset to

the inst. mem. base address
dataAddOffset sc_dt::uint64 0x0 Task data address offset to

the data mem. base address

33

3 POEM: Power and Performance Optimization and Exploration Methodology

Input
Ports

Output
Ports

iBuffer oBuffer

sc_fifo

Task_body ()
SC_THREAD

com_data

Req_start
(this)

Figure 3.1: Node of a task graph: Input is the abstract communication data coming from
SC_fifos connected to the input ports and finally ending up in input buffers. The
method/function SC_THREAD controls the node behavior and processes the data
to the output buffer. The output buffers transfer data to the output FIFO channels.
According to the provided mapping information, the Req_start member of the
task graph node requests execution of the task on an underlying architecture.

instruction. During the execution of an instruction, fetch, load, store, and execute operations
are performed, and accordingly, memory blocks are accessed, and traffic is generated on
the interconnect. The miss or hit for any data or instruction fetch operation is decided
during run-time according to the probabilities given in Table 3.3. The penalty for accessing
different memory blocks will depend on the traffic load of the corresponding memory block’s
interconnect and performance specifications.

3.1.2 Implementation of the Task-Graph in SystemC

Task-Graph Nodes

The task graph nodes have a set of input ports for reading abstract communication data from
their input FIFO channels, and output ports for writing to their output FIFO channels, as
shown in Figure 3.1. The number of input and output ports of a task is defined by the number
of its predecessor and successor tasks, respectively. The communication data between the
nodes is a generic C++ container, and a task is triggered when it receives a sample of this
communication data in its input ports. By default, the communication-data is only used
for triggering the execution of tasks. However, in addition to triggering information, it can
also include data such as global variables for synchronization of tasks and control data for
changing the internal control behavior of a task.

As shown in Figure 3.2, there are four kinds of nodes in our task graph methodology.

34

3 POEM: Power and Performance Optimization and Exploration Methodology

Source
node

Internal
node

Sink node

Internal
node

Autonomous
node

Figure 3.2: Illustration of source, sink, internal and autonomous nodes. FIFO buffers (com-
munication channels) between these show the relation between input and output
ports.

1) Source node: It has one input port and at least one output port. Since it has no predecessor
tasks, the input port is left open. But in order to be triggered at least once during
simulation, a default sample of communication-data is pushed to its input port during
the instantiation of the task graph.

2) Sink node: It has at least one input port, connected to its predecessor tasks, and no
output ports.

3) Autonomous node: It has only one input port and no output ports. This task has no
connection or dependencies on the rest of the task graph. Like a source node, a
default sample of communication-data is pushed to its input port during the task graph
instantiation.

4) Internal node: This is any node within the task graph with at least one input and one
output port connected to its predecessor and successor tasks, respectively.

A task graph node is a SystemC module, and its internal behavior is implemented as a
SystemC thread (SC_THREAD). Each node has a set of parameters, method (function), and
SystemC container members. These members are used to characterize the behavior of the task
and establish its connection with other nodes during the task graph construction. Table 3.4
shows some of the main parameters of a node with a short description of each. Besides these
parameters, each node has a set of methods (functions) that implement the node’s internal
control behavior and its interaction with other nodes. Table 3.5 shows these methods with a
short description.

Most of these parameters are defined as Attribute<T> objects of ISCTLM. This allows
us to configure and initialize these parameters for each task through a configuration file, as
shown in Figure 3.3. This will be elaborated with details in Section 3.1.2.

During a simulation, each node can be in one of the five states IDLE, PENDING, ACTIVE,
PREEMPTED, and COMPLETED. The execution flow of all four types of the task graph nodes

35

3 POEM: Power and Performance Optimization and Exploration Methodology

Table 3.4: General parameters of a task graph node
Parameter Name Data Type Default Value Description
task_name string "?" Name of the task
state enum IDLE States of the task, IDLE,

PENDING, ACTIVE, PRE-
EMPTED, COMPLETED

task_id integer 0 Unique ID of the task (de-
fined during instantiation
of the corresponding task
graph node)

engine_name string "?" Name of the engine which
this task is mapped on

engineif reference NULL A pointer to the task sched-
uler interface of the mapped
engine

start_time sc_time 0 ns Task’s release time
period sc_time 0 ns Task period (only valid for

periodic tasks)
tot_num_itr integer 0 Total number of iterations

(only valid for periodic
tasks)

trig_after_itr integer 0 Total number of executions
or iterations of a task be-
fore triggering its successor
tasks

deadline sc_time 0 ns Deadline of the task
priority integer 0 Priority of the task
workload_obj string "-" Name of the execution

workload of the task
workload_obj_ptr reference NULL Pointer to the

workload_obj

sel_prob double 1.0 Execution probability of the
task during simulation

suc_tasks string "-" Name of the successor tasks
oTrig_mode enum OR Output-ports triggering

mode of the task
iTrig_mode enum AND Input-ports reading mode

of the task

36

3 POEM: Power and Performance Optimization and Exploration Methodology

Figure 3.3: A piece of configuration file depicting a task’s specification using all or a subset of
task graph node parameters.

Table 3.5: Main function members of a task graph node
Function Description

void configure_node
(sc_trace_file *tf)

Initializes some parameters and local variables according to the config-
uration file and also registers node’s state as a signal to a common
trace file.

void new_input
(sc_fifo*, node*)

For every successor and predecessor tasks of a node, these functions
are called for instantiating new input and output ports and
establishing their connections with the corresponding FIFO channels,
during the construction of the task graph

void new_output
(sc_fifo*, node*)

void task_body()
This function is registered as SC_THREAD in the SystemC kernel. It
implements the main behavior of a node.

void read_iports() Reads the input ports according to AND or OR rules

com_data read_iData()
Reads received communication-data samples from input buffer of a
node

void req_start()
Requests execution of the task on an underlying architecture according
to the provided mapping information.

void
write_oData(com_data)

It writes communication-data samples into the output buffer (oBuffer).

void trigger_out
(trig_mode mode)

It triggers successor tasks by writing communication-data samples
from the output buffer to the corresponding output ports of the node
according to AND or OR rules.

void report_()
It writes the run-time statistics of the task into an activity report for
performance analysis.

37

3 POEM: Power and Performance Optimization and Exploration Methodology

(source, sink, autonomous, internal) is shown in Figure 3.4. For the sake of clarity, we divide
this flow, which represents the task’s main thread (task_body()), into the following four
steps:

Step-1) Wait for starting time: Each task waits for a specific time before starting execution,
which represents its release time. This waiting time is defined as a parameter of the
task and initialized from the task graph configuration file. At this step the node is in
IDLE state.

Step-2) Reading the input ports: If the input data buffer is empty, then function read_iports()
is called from the main thread (task_body()) of the task. If the input buffer is not
empty, then the task continues with Step-3. The read_iports() function reads data
of the input FIFO channels via the input ports of the node and pushes the received
communication-data samples into the input buffer of the node. The reading from the
channels is blocking, and it is performed according to the two “input-port reading
modes"(AND or OR) of the task, which is defined by configuring the iTrig_mode
parameter of the task. These modes, for instance, can represent a logical combination of
a set of conditions in an IF statement of application code. For each mode, the execution
of the node proceeds as follow:

• AND mode: In this mode, the task is triggered if all of its input FIFO channels have
data. read_iports() function, reads all the input ports in a round-robin fashion.
If any of the input FIFO channels is empty, it means that not all of this task’s
predecessors are completed. The task waits until all the running predecessors
are completed, and communication-data is available on the corresponding FIFO
channels.

• OR mode: In this mode, the task is triggered if any of its input FIFO channels have
data. Since, reading from the input port is blocking, read_iports() function
first checks the input FIFO channels for existence of data. If data exists then, it
is read via the corresponding input port. In case all the input FIFO channels are
empty, then the task waits for a data_written event, which will be notified by
any input channel upon receiving a communication-data. The received data is
read, and the task proceeds with the next steps.

Additionally, user can override read_iports() for implementing a custom method
of reading the input ports.

Step-3) Processing data: In the data processing step of the task execution flow, shown in Figure
3.4, a task reads its input buffer one by one and for each received communication data,
requests starting its processing on a resource by calling req_start() function of the
node. By default, the req_start() function, calls the req_start_task(this) API
in the task scheduler interface of the corresponding mapped processing element in
the architecture model. This task’s state is changed to PENDING, and the scheduler
schedules its execution if the processing resource is busy with a previous task having

38

3 POEM: Power and Performance Optimization and Exploration Methodology

PREEMPTED

PENDING

ACTIVE

Completed

Start

Wait
Starting

time
(Release

time)

Input
data

Buffer
empty?

Process data

Read Input
ports

Write to
outputs ports

Is it
Periodic

?

Total
Iteration

count
reached

?

YES

YES

YES

NO

NO

NO

Internal
Node

Input
data

Buffer
empty?

Process data

Read Input
ports

Write to
outputs ports

Is it
Periodic

?

Total
Iteration

count
reached

?

YES

YES

NO

NO

NO

Sink
Node

Input
data

Buffer
empty?

Process data

Read Input
ports

Write to
outputs ports

Is it
Periodic

?

Total
Iteration

count
reached

?

YES

YES

YES

NO

NO

NO

Source
Node

Input
data

Buffer
empty?

Process data

Read Input
ports

Write to
outputs ports

Is it
Periodic

?

Total
Iteration

count
reached

?

YES

YES

YES

NO

NO

NO

Autonomous
Node

End End

IDLE

Step-1

Step-2

Step-3

Step-4

YES

Figure 3.4: During the first step, the node waits for the release time of the task to expire, and
in the second step, it waits for input ports to read the communication data. The
third step is the core execution state of the execution flow, and the task graph
node can take ACTIVE, PREEMPTED, or PENDING states depending upon the
situation. Fourth is the final step, and the task graph node finishes its job and puts
execution flow into the COMPLETED state.

39

3 POEM: Power and Performance Optimization and Exploration Methodology

higher priority. The previous task is preempted, and this new task is executed with
its state changed to ACTIVE if the previous task has lower priority and is preemptible.
As shown in Figure 3.4, in the processing step, a task can be in one of the three states,
PENDING, ACTIVE and PREEMPTED. The completion time of a task depends on
the load of the processing element, scheduling and resource allocation policies of the
scheduler interface, and the previous tasks’ execution time. The user can override
the behavior of the req_start() function, in case some pre-processing of the re-
ceived communication-data is necessary before requesting execution on an architecture
resource.

Step-4) Writing to output ports: When the processing of a received data is completed, the
task triggers its successor tasks using trigger_out() function. The trigger_out()
function writes communication data samples to output FIFO channels via the output
ports of the node. Writing to output ports, similar to reading input ports, is performed
according to "output triggering mode" (AND or OR) of the task. This is defined by the
oTrig_mode parameter of the task.

• AND mode: In this mode, the task triggers all of its successor tasks. Therefore,
trigger_out() function writes same data samples to all output ports of the
node in a round-robin fashion.

• OR mode: In this mode, the task triggers only one of its successor tasks. Each task
has a probability of execution, which is defined by the sel_prob parameter of the
task, and it is initialized from a configuration file during task graph instantiation.
In OR mode trigger_out() function writes data sample to its output port,
connected to the task with the highest probability of execution.

Since the communication FIFO channels between the nodes have finite user defined
sizes, the writing to the output ports is also blocking. The task has to wait until there is
space available in the FIFO channels. Once the data is written to the output ports, and
if the task is a periodic task and the total number of iterations is not reached, then the
task requests starting on the corresponding processing element again without reading
the input ports. If the total number of iterations is reached or the task is non-periodic, it
starts back from Step-2. However, in case the task is a source or autonomous task, then
it ends here.

Task-Graph Configuration Using ISCTLM Attributes

In our methodology, the configuration of tasks, the structure of the task graph, and the
underlying architecture configuration are specified using a set of .ini extension ISCTLM
initialization files. Parsing and management of these configuration files are based on Intel
SystemC TLM (ISCTLM) library. ISCTLM uses the concept of attributes for the configuration
of a system from .ini extension files. Our task graph also exploits this property of ISCTLM for
easy and rapid configuration of the tasks and evaluation of different application structures
with different mapping relations on the architecture model.

40

3 POEM: Power and Performance Optimization and Exploration Methodology

In order to be able to initialize and change parameters and configuration of a system
modeled using Intel SystemC TLM (ISCTLM), the following main conditions have to be
fulfilled:

1) The member variables of a SystemC module, whose values need to be configured from
a configuration file, have to be defined as ISCTLM Attribute<T>, where T represents
the type of these member variables.

2) T should be copy constructible C++ or SystemC standard data types. In order to define
custom type member variables as attributes and initialize or configure them from a
configuration file, some operations have to be manually defined for it.

3) The format of the configuration file should be according to the parser. The ISCTLM
parser used for our task graph requires the correct SystemC object hierarchical name of
these member variables. Furthermore, a value to a variable can be assigned using the
equal(=) sign. For instance, the period of a task, named as Task_1, in our task graph
model can be set in a configuration file as:

HARDWARE.TG_Constructor.Task_1.period = 20 ns

Where HARDWARE represents the top level, TG_Constructor is a sub-module within
the HARDWARE, and Task_1 is a sub-module within the TG_Constructor representing
a task node. Figure 3.5, shows these class hierarchy (left) and the corresponding
initialization file (right).

SC_MODULE (Top)

SC_MODULE (TG_Constructor)

SC_MODULE (Task_1)

Public:
Attribute<int> priority ;
Attribute<sc_time> period ;
Attribute<bool> generate_vcd ;

// This is a comment
// Configuration file

Top.TG_Constructor.Task_1.priority = 1
Top.TG_Constructor.Task_1.period = 20 ns
Top.TG_Constructor.Task_1.generate_vcd = true

Figure 3.5: A configuration file is shown (right), consisting of three entries for task priority,
period, and debug option. And the corresponding hierarchy of the class in the
configuration file is shown on the left side.

Task-Graph Creation

For task graph construction and mapping of tasks on different architecture resources,
tg_constructor module is used. It is an SC_MODULE and instantiated with the task

41

3 POEM: Power and Performance Optimization and Exploration Methodology

Registering and storing a reference of all the
resources in the architecture model

Instantiating Task-graph nodes

Mapping tasks on the resources in the
Architecture model

Configuring nodes Internal control behavior

Establishing connection between the nodes

ASICCPU DSP

On-chip
Memory

Off-chip
Memory

NoC

Task
1

Task
2

Task
4

Task
3

Task
5

Task 1

Task 2 Task 4

Task 3 Task 5

ASICCPU DSP

NoC

Task-Graph Configuration file

Figure 3.6: Task graph creation flow: It consists of four steps and starts with the registration of
all the resources to instantiating task graph nodes to configuration nodes’ internal
behavior to map the task to architecture model to connection establishment.

graph configuration file reference, given as a constructor parameter. This module’s function-
ality is to construct the task graph, map tasks on the architecture resources, collect run-time
statistics about the tasks, and the underlying architecture for power estimations. It creates
the task graph step by step from a configuration file according to the flow shown in Figure
3.6. The module tg_constructor has a set of member variables and methods as shown in
Table 3.6 which are called while constructing the task graph, as follow:

Step-1 Registering architecture resources: Each processing resource in the architecture model,
upon instantiation during the elaboration phase, calls the hw_engine_register()
API of the tg_constuctor module. A reference to each of these processing elements,
is stored in a list (hw_engine_list) within the tg_constuctor.

42

3 POEM: Power and Performance Optimization and Exploration Methodology

Table 3.6: Main function and variable members of tg_constructor
Members Description
void hw_engine_register
(task_scheduler_engine_if *eng)

Stores the references of processing element in
tg_constructor.

void register_all_tasks() Instantiates task nodes and invokes other function
members for construction of the task graph step by
step.

void map_task(node* tg) Maps tasks on their corresponding processing ele-
ments or engines.

std::vector<std::pair <int,int»
build_graph()

Instantiates fifo channels and establishes the connec-
tion between nodes through these fifo channels.

void PM_info
(task_scheduler_engine_if *eng,
node*)

Sends necessary information to a power estimating
module during simulation.

void print_graph (bool write) Prints the task graph in text format in the activity
report.

std::vector
<task_scheduler_engine_if*>
hw_engine_lst

List of instantiated architecture processing elements.

std::vector <tg_node*> task_lst List of all instantiated nodes in the task graph.

Step-2 Instantiating task nodes: Before end of the elaboration phase, the function
register_all_tasks() is called. It instantiates task graph nodes for all the tasks in
the application model, as sub modules of the tg_constrcutor. The name of these
task nodes are according to the names provided for task_name member variable of
tg_constrcutor in the configuration file, as shown in line #29 of Figure 3.7. A refer-
ence to each instantiated node is stored in a list (task_lst). The task parameters of
each node, such as mapped engine name, priority, period and name of its successor tasks
are also initialized automatically after their instantiation according to the configurations
provided for each task in the configuration file. For instance, task1 is mapped on
Engine1 (line #35 of Figure 3.7), it has two successor tasks, task3 and task6 (line #43 of
Figure 3.7), and its execution workload object(workload_obj) name is workload_1
(shown in line #44 of Figure 3.7).

Step-3 Configuring nodes: At this step, the list of all instantiated nodes (task_list) is
traversed and configure_node() function of each node is called. Which defines
the internal control flow of a node according to the information provided in the
configuration file. It initializes parameters and local variables, such as iTrig_mode
and oTrig_mode and it also registers node’s state as a SystemC sc_logic signal to a
common trace file.

Step-4 Mapping tasks on architecture resources: At Step-3 each task node has only the name
of its mapped engine as a string, according to the configuration file. However, it
has no direct access to the corresponding engine in the architecture model. There-

43

3 POEM: Power and Performance Optimization and Exploration Methodology

Figure 3.7: A piece of configuration file depicting three tasks and their specifications using all
or a subset of task graph node parameters.

fore, using the map_tasks(node*) function, a direct reference as pointer to the task
scheduling interface of the corresponding engine is provided to the task. The function
map_tasks(node*) searches for all the instantiated engines in the hw_engine_list
and a reference to an engine, with its name matching to the engine name assigned for
the task, is stored in the node. Using this reference, the node can directly call the API
functions of the corresponding task-scheduler interface during simulation for requesting
execution of its workload on the corresponding engine.

Step-5 Establishing connection between the nodes: The communication fifo channels between
the nodes are instantiated and their connection with the input and output ports of
the nodes are established. For this purpose the function build_graph() is used.
Which traverses the list of all tasks (task_list) in the tg_constructor, for each task
in the successor tasks list (suc_tasks) of a node. When a task name in suc_tasks
matches the name of a task in the task_list, new sc_fifo channel with specific
size, is instantiated and accordingly its connections with the corresponding nodes are
established by calling the new_inpunt() and new_ouput() functions of the nodes.

44

3 POEM: Power and Performance Optimization and Exploration Methodology

All the above steps are completed during the elaboration phase of the SystemC code. The
task graph structure, the mapping relation of each task, and its timing characteristics can be
easily modified using the configuration file without recompilation of the task graph or the
architecture model SystemC code.

In order to estimate the consumed power by the underlying architecture while running
an application, power models of each architecture resources are needed. Our methodology
provides the required data needed to drive the power estimation module of the underlying
architecture. During a simulation, run-time statistics of each processing element is collected by
the tg_constructor and communicated to the power module through a generic interface.
This run-time statistics of a processing element in the current implementation includes
information about the states of a processing element, whether it is IDLE or RUNNING, and if
it is RUNNING, then at what power state which task it is executing. The charactrization of
the power states and power modeling of the archictecure is explained in detail in Section 3.3.

3.2 Architecture Modeling

The architecture model comprises components from intel’s system architecture validation
and exploration(SAVE) framework, which has some generic and application-specific perfor-
mance models for processing elements, interconnects, and memory subsystems for macro and
microarchitecture exploration. These elements are implemented in SystemC using the Intel
SystemC TLM (ISCTLM) libraries in our case. The processing elements in the architecture
model communicate with each other through transactions via an NoC interconnect or direct
point-to-point connections with different communication protocols. The operating system
services are modeled as a scheduling layer on top of each processing element. We refer to this
scheduling layer as task scheduling engine interface (task_scheduling_engine_if). This
scheduling layer serves as an interface between the application model and the architecture
model, which provides abstract real time operating services (RTOS) to the application tasks,
such as resource allocation and task scheduling with different scheduling policies. Addi-
tionally, it encapsulates the execution workloads of each task mapped to the corresponding
processing element. Like the task graph, the run-time configuration of these elements and the
workload objects are defined by a configuration file.

3.2.1 Task Scheduling and Resource Allocation

The task scheduling engine interface is modeled as a SystemC Module, which forms a base
for all the processing elements in the architecture models including the virtual-engine. As
shown in Figure 3.8, it has some pure virtual function members, such as start_task(),
preempt_task(), and resume_task(), which have to be implemented inside the corre-
sponding processing elements. These functions represent the APIs for the task-scheduling
layer, to start, preempt or resume task executions during a simulation on a processing element.
Additionally, the scheduling layer provides an API, req_start_task(), to the task nodes
in the task graph model, which can be accessed by each task for requesting execution on a

45

3 POEM: Power and Performance Optimization and Exploration Methodology

processing element.
The following are the primary services provided by this task-scheduling engine interface:

• Scheduling: Many tasks that might be running in parallel can be mapped on the
same processing element. The process of deciding the order of execution of these
parallel tasks on the corresponding processing element is called Scheduling. In this
scheduling interface, the tasks are scheduled according to their priorities. Nevertheless,
the implementation of this scheduler is generic enough to allow integration of other
scheduling policies as well.

• Resource allocation: Depending on the type of resources, a task can be granted access to
a resource until it is completed (run-to completion (RTC)), or it can be preempted by
another higher priority task and rescheduled for resuming later. Therefore, the resource
allocation policy can be RTC or preemption based.

• Context switching: In the case of preemptive resource allocation, the execution cost
of switching between tasks is simulated by the context_switch block within the
task-scheduler interface. This cost accounts for context storing or context loading of a
preempted task.

• Task execution workload modeling and instantiation: As discussed in Section 3.1.1, workload
objects are basically a different set of values for the run-time parameters of a processing
element. Executing different tasks on a processing element means running the same
processing element with different values assigned to its run-time parameters. There-
fore, before starting the execution of a task on a processing element, these run-time
parameters of the corresponding processing element need to be initialized with values
according to the task’s execution workload object. It has to be mentioned that not
all the run-time parameters of a processing element are task-dependent. Therefore,
the workload objects (workload_obj) only store the task-dependent parameters of a
processing element with their values. These execution workload objects are instantiated
inside the processing elements as SystemC sub-modules. The member variables of
these workload objects, which are the corresponding processing element’s run-time
parameters, are defined as ISCTLM Atrribute<T>s. Therefore, they can be initialized
with specific values from a configuration file. The scheduling layer provides an API
to the task graph constructor (tg_constructor) for instantiating these workload
objects during the task graph construction. The number of these workload objects
depends on the number of tasks mapped on to the same processing element but with
different execution loads. When a task requests starting on a processing element, the
corresponding scheduling interface binds it to its workload object (workload_obj)
and then schedule it for execution. When the scheduler dispatches a scheduled task, the
processing element’s run-time parameters are initialized according to the corresponding
workload object.

During a simulation, when a task requests access to a resource, it goes through the following
steps:

46

3 POEM: Power and Performance Optimization and Exploration Methodology

On-chip
Memory

Off-chip
Memory

NoC

Task 1

Task 2 Task 4

Task 3 Task 5

ASICCPU DSP

Req_start_task(task*)

Task_done
(task*)

Preempt
(task*)

Resume
(task*)

Start
(task*)

Context_switch
SC_THREAD

Resource
Allocator

Res_preempt()

Task
workloads

Task
Waiting-room

Task
Scheduler

Figure 3.8: An enhanced (internal) view of the Task Scheduler Interface. It acts as a Real-
time operating system as it controls the functionality and manages the data-flow
between the task graph nodes and processing elements.

Step-1 When a task in the task graph is triggered, it requests executing on its mapped
processing element by calling the req_start_task(task*) API of the corresponding
task scheduling interface of a processing element. req_start_task(task*) binds
the reference of the corresponding workload_obj to the task and asks the scheduler
block for scheduling the execution of the task. The scheduler places the task in a
waiting-room according to its priority.

Step-2 Upon receiving notification from the scheduler block when a task is dispatched, the
context switch block asks for resource allocation and, if necessary, simulates the context
switching cost of the task by consuming specific simulation time.

Step-3 The resource allocation block checks the state of the current processing elements. If
it is IDLE, then the resource is granted, and the execution of the task is requested by
calling the start_task(task*) function, which is implemented inside the processing
element. If the resource is occupied by another task having a lower priority, then a
preemption of this other task is requested by calling the req_preempt() function.

Step-4 When a processing element completes the execution of a task, it calls the scheduling
interface’s function task_done(). The scheduler dispatches the next waiting task
for execution. In case preemption of a task was requested in Step-3 and the task is
preemptible, then instead of calling task_done(), the processing element calls the
resp_preempt() API of the scheduling interface. In this case, the preempted task is
rescheduled, and the scheduler dispatches another task with a higher priority.

47

3 POEM: Power and Performance Optimization and Exploration Methodology

3.2.2 Virtual-Engine

Virtual-engine processing element is an SC_MODULE, which is the SAVE framework’s most
basic performance model. It has the same task scheduling interface as the other processing
elements of the SAVE framework, shown in Figure 3.8, for scheduling of its mapped tasks.
It is mainly used to analyze and develop the application structure and configuration of
the application tasks in the task graph model. It can also be used in combination with
other SAVE architecture resources for executing tasks, whose execution does not require the
generation of any traffic or memory access or where only the execution time of the tasks
and the processing resource contentions are concerned. Therefore, it has no SystemC TLM
sockets or ports to interact with other resources in the architecture model. It implements the
basic pure virtual functions of the task scheduling interface, such as start_task(task*),
resume_task(task*), and Preempt_task(task*). Additionally, it has its internal be-
havior, which is abstractly shown in Figure 3.9.

The execution of a task is simulated using the SystemC wait(exe_time) statement.
The waiting time, exe_time, depends on the task’s execution time. A running task can
be preempted by adding a SystemC event (sc_event) as a second parameter to the wait
statement(wait(exe_time, preempt_eve)). Whenever, a preemption is requested the
running task’s remaining exe_time is stored in its workload and engine waits for being
triggered again by its scheduling layer. When a preempted task is resumed back, it only waits
for the corresponding remaining time of its total execution.

3.3 Power Modeling

Modeling in the context of embedded systems is a technique to accurately define vital
processing elements, i.e., processor, hardware accelerator, memories, and buses in a theoretical
manner to better understand their functionality. Thus, power modeling estimates the power
consumption of the processing elements and develop power optimization policies to optimize
the system.

To analyze power models, we need to answer three fundamental questions; How accurate it
is? How fast is it? How much effort is required? These characteristics are conflicting in nature,
and a trade-off is required to achieve an optimal solution.

It is desirable to model the embedded system as accurate as possible. For accurate modeling,
design details are pre-requisite. Design or implementation details evolve over the time-line of
the product development cycle. Hence, there is a trade-off between how early we want to
develop power models and how accurately we want to develop them. Higher the abstraction
level, lower the accuracy of the power model.

Ideally, power model execution should be fast so that the system’s power consumption is
available in no time. Fast execution allows exploring different aspects of the system, i.e., the
impact of changing frequency and voltage. The cost of fast execution is less control over the
system’s observation points, which results in inaccurate power estimation.

Power modeling efforts depends on the available implementation details and the abstrac-
tion level. Lower power modeling efforts are attractive as design space exploration (i.e.,

48

3 POEM: Power and Performance Optimization and Exploration Methodology

SystemC Simulation

SystemC Simulation

T1.rest_status()
exe_time = T1.exe_time

Start_sig.notify()

Start_task(task* con)

exe_time = T1.exe_time
Start_sig.notify()

Resume_task(task* con)

Preempt_req.notify()

Req_preempt()

wait (start_sig)

wait (exe_time, preempt_req)

waited time > exe_time

Task_done(current_task) Resp_preempt(current_task)

T1.exe_time = exe_time

Interrupt_task()

NO

YES

SystemC Events
Flow Diagram Arrows

Figure 3.9: Virtual Engine processing element internal flow: In a Virtual Engine, the execution
flow starts with a wait state. The start signal notifies about the task to be simulated.
It could be a new task or an already running task that resumes. The wait statement
in SystemC simulates the execution time of the current task in a Virtual Engine.
The wait state of a task graph node is preemptable by a SystemC event, given
that the execution time is greater than the current waited time at the point of the
SystemC event preempting the task. As soon as the waited time is greater than
the execution time, it ends.

implementations of application on different design configurations) can be achieved in a faster
manner. Higher the power modeling efforts, the more significant the time required to explore
different design options.

The power consumption of SoCs is calculated by static and dynamic power consumption.
The static power is contributed mainly because of leakage, irrespective of the computation
being performed by the SoC. In contrast, the switching activities contribute to the dynamic

49

3 POEM: Power and Performance Optimization and Exploration Methodology

power discussed in 2.1.4. Heterogeneous SoCs are becoming rapidly complex with every
passing day, and conventional methods used by system engineers to generate crude powers
number at the early stage of the design process, by maintaining excel sheets and doing an
extrapolation of in-hand data from previous generation platforms, is neither suitable nor
error-prone anymore. Power models need to develop as soon as the basic system requirements
are available, as the challenging task of hardware and software partitioning be carried out
before the register transfer level (RTL) is frozen.

Power modeling approaches to develop high-level power models have been discussed in
detail in Section 2.1.7. We use the power state machine (PSM) that complements POEM’s
multi-abstraction level, modular, and holistic approach. It resembles the approaches described
in [86, 87, 88] as they are also architecture-level estimation approaches and use inbuilt
processor performance counters to estimate the energy.

Some of the described frameworks in Section 2.2.2 do not specify how to create power
models. Others are specific to only one type of component or require electronics system level
models created according to a specific modeling approach. In contrast, this work presents a
generic methodology for creating electronics system level power models for components of
any type. Further, it applies to white box electronics system level models created with any
modeling style and black box electronics system level models.

The power modeling framework used is an electronic design automation (EDA) tool called
Intel® Docea™ [89] and previously known as Aceplorer. The motivation behind using
Docea™ is its ability to target architecture-level power modeling and thermal analysis along
with flexible options to connect with an external event-based simulator. The interface options
include application programmable interface (API)s or a value change dump (VCD) file.

3.3.1 Docea™

Stand-alone power models simulation for handwritten scenarios can give pessimistic power
numbers for a scenario, but the use of SoC for real time operating services is highly dynamic,
and handwritten scenarios can not cover all the system level use cases. Another practical
challenge faced during power modeling is managing, structuring, and collaboration of huge
power modeling data. It can range from component characterization, leakage dependencies
law, abstraction of power domains activity factor, till writing system level uses cases.

The Intel® Docea™ power and thermal modeling and simulation solutions provide
an analytics and a simulator, called Intel® Docea™ power analytics (IDPA) and Intel®
Docea™ power simulator (IDPS) respectively can handle above challenges. “It is a web-
based, collaborative power modeling and simulation framework that improves power roll-up
productivity and early power architecture exploration" [89].

IDPA

Power models for the components are developed in IDPA by populating them with power
design data. PSM-based approach for design space exploration and early power analysis in
[90] are used to model components in IDPA. PSM allows components to have a hierarchical

50

3 POEM: Power and Performance Optimization and Exploration Methodology

HWA

HWA

HWA

HWA

HWA

HWA

HWA

HWA

Figure 3.10: Docea flow: At the top of the hierarchy sits System, Subsystem, or Component.
A System contains the Subsystems or Components to give the flexibility and ease
of modeling components and reusability in different projects.

51

3 POEM: Power and Performance Optimization and Exploration Methodology

structure, which makes them suitable for system level integration and to back-annotate the
low-level power information by creating sub-components as shown in Figure 3.10.

IDPA provides flexibility to model a system, subsystem, or component with the input,
user-defined parameters, modes, and basic formulas. The input parameters are the voltage
and clock frequency. User-defined parameters include the process, temperature, and any other
parameter helpful to model a component, i.e., capacitance value, activity ratio, frequency
divider, and memory dimensions.

Modes in IDPA are used to characterize the components like logic and memory. Modes
can vary from components to components, but the most commonly used modes are Active,
Clocked, Idle, Retention, and Off.

IDPA calculates the dynamic and static power at the component level using relevant
parameters and the currently selected mode. IDPA also provides a modeling component
called a database that can be populated for third-party IP and increase power models’
re-usability across different projects and systems.

In IDPA, power modeling for any component is done hierarchically. It starts with the
system level, then follows the component level, and behind each component, a formula is
attached to calculate the consumed power depending on the mode. Power data needed to
build power models in IDPA can come from the component data-sheets, previous-generation
platform, RTL simulations, or can be inferred by the component’s design and functional
scaling. The power number reported in IDPA are average power numbers.

IDPS

IDPS, a software solution provided along IDPA by Intel® Docea™ to couple power model
with performance models, and to run realistic power simulations for system uses cases.

IDPS simulates the system level use, scenario, or application running on multiprocessor
system on chip (MPSoC) for dynamic power Analysis. There are multiple ways to connect the
performance model with IDPS. As the definition of the performance model has already been
explained in Section 2.3, it simulates the computation and communication workloads of the
use case or system scenario with the main focus on data volume rather than data content. The
stimuli generated as a result of the performance model are re-run or re-stimulated in IDPS.

IDPS is an external power solver that is driven by events. Different types of performance
models can produce these events at different abstraction levels. The interface of IDPS is
flexible and generic in the sense that it can be connected with any event-driven performance
model that captures multiprocessors system on chips functionality and the state-residencies
of the critical components in the system.

The power model is defined in IDPA and can be exported in Python (as a package, an
.egg folder) for dynamic simulations. By default, the static parameters at the power model
interface can be stimulated in a dynamic simulation.

If power model internal signals are to be modified or observed during the simulation, the
configuration file must be used. The configuration file is a JavaScript Object Notation (JSON)
file with the following fields: “ input ” contains the definition of new inputs exposed at the
interface of power model.

52

3 POEM: Power and Performance Optimization and Exploration Methodology

1 "<input name>" : {" params " : [<list of path to power model parameters>]} "
outputs "

And it also contains the definition of new outputs exposed at the interface of the power
model.

1 "<output name>" : {" params " : [<list of path to power model parameters>]} "
outputs "

1 "<input name>" :{
2 " params " : [<list of path to power model parameters>],
3 " type " : <"str", "init", "float", "bool">,
4 " default " : <default input value at init>,
5 " values " : [<list of expressions to convert an input value to a power model

parameter value>]
6 }

Listing 3.1: Definition of input with value conversion, It is possible to connect an input
to power model parameters and convert input values for each power model
parameter. In the expression, the input value is identified by the tag input.

Power Model
[Web Based]

Python Power
Calculator

Computation
Model

IDPS

IDPA

Code Generator

Power Interface
(JSON File)

Shell Script
Control Power

Parameters

Python
Environment

Figure 3.11: Generation of computable power model from a web-based Docea™ Power Ana-
lytics: An offline script produces a computational model using power interface
information in the form of a JSON file. It is also seen as a Python power cal-
culator. It gives in-feed to Docea™ Power Simulator and Python environment
configurable by control power input parameters, i.e., voltage, frequency, modes,
activity ratio. [89]

The overall flow of the Docea™ is shown in Figure 3.11. An offline script converts the
power model developed in IDPA into an executable project (computation model) of the user’s
desired language, i.e., Python or C++. The interface file establishes the performance model’s

53

3 POEM: Power and Performance Optimization and Exploration Methodology

connection with IDPS by exposing and connecting the parameters of the power model in
IDPA with the performance model. IDPS has two options: offline in the form of value change
dump or integrated with the application programming interface (API). In this dissertation,
the offline approach is more suitable to keep in line with the modular setup of POEM.

IDPS generates an output in a value change dump file that users can visualize to see the
power trace over time or even opt for post-processing.

54

4 Implementation of the Methodology at
Architectural Abstraction Level

This chapter will focus on implementing the power and performance optimization and ex-
ploration methodology (POEM) at architectural abstraction level (AAL). The reason behind
targeting this abstraction level is missing implementation details of the application, perfor-
mance, and power model. The design space exploration is vast and challenging to secure
specifications, optimize power behavior, and accelerate validation and verification of design
projects at architectural abstraction level.

We have introduced application, architecture, and power modeling in Chapter 3. The
interface and mapping between the performance model (driven by the application model) and
power model are described using hardware accelerator. This chapter gives an overview of the
methodology first, followed by the implementation details of the application, performance,
and power models; at the end, the interface and mapping have been explained.

4.1 Methodology: Overview

Our methodology POEM at architectural abstraction level aims to provide reliable system
level power and performance estimates of a target multi-core embedded system architecture
for an abstract use case or application. It does not require the detailed implementation of the
application or the target architecture at the architectural abstraction level. Therefore it enables
the system architects to explore the power and performance of different design choices at the
system level in the early phases of the development process.

In this methodology, following the Y-Chart [91] approach, application and architecture
models are developed independently. The application model provides abstract execution
workloads of application tasks to the underlying architecture while capturing the application’s
correct control and data flow.

In POEM, an application or a system level use case is modeled as a task graph using the
Intel SystemC TLM (ISCTLM) library (a productivity layer) on top of Accellera [83] standard
SystemC.

Likewise, all the processing elements of the performance model, i.e., processors, memories,
buses, are modeled at transaction level with approximately-timed (AT) coding style using
the same ISCTLM library. ISCTLM is compliant to SystemC standards and includes generic
bus sockets, component base classes, power trace infrastructure, register modeling tools,
and many other convenience modeling tools for efficient AT modeling and simulation. The
simulation environment of POEM (shown in Figure. 4.1) comprises of the performance model,
which is driven by the application model.

55

4 Implementation of the Methodology at Architectural Abstraction Level

 Layer 1
 Performance

model

Application
model

Time

P
ow
er

Use case to power
model mapping

V
C

D
/A

P
I

 Power
model

 Use
cases

 Layer 2

State residencies, high
level activities

Docea power analyser
and simulator

Generic SystemC
modules

Virtual prototype (VP)
Custom SystemC

modules
Hardware components

Task graphs,
use case written in

prototype SW,
hand written scenarios

 Mapping of application
and performance

models in SystemC
environment or in

prototype HW

Figure 4.1: POEM: Layer-1) application modeled as a task graph mapped to processing
elements of the performance model. Layer-2) SystemC simulation of Layer-1
generates performance and power stimuli, mapped to the power database, and
re-simulated for power vs. time for different configurations.

The application model tells the performance model to simulate each application task’s
computation and communication workload and acknowledge it as it finishes. The behavior of
the SystemC simulation can be controlled using attributes based configuration mechanism, as
the application and performance models are configured dynamically using these attributes.

At the end of the simulation, stimuli files are generated, which contain the functional states,
and timing information, together known as the state residency of a processing element. The
power models are developed in Docea™ (not SystemC), a mapping step and an interface are
required to drive them using the stimuli generated from SystemC simulation for dynamic
power estimation. The power trace over time for different design choices along performance
analysis gives system designers a complete picture to co-optimize the embedded system for

56

4 Implementation of the Methodology at Architectural Abstraction Level

power and performance.

4.1.1 Implementation of Application Model

The application model is developed as task graphs, and during the simulation, it provides the
computation and communication workload of use case’s tasks mapped to the performance
model. The task graphs capture the application at a high level of abstraction, such as a group
of interacting processes or tasks. The task graphs nodes represent abstract application tasks,
and the edges represent the dependencies and the communication channels between the
tasks. Each task, represented via a node, can have input and output ports connected with
other nodes through a SystemC FIFO channel. The nodes communicate via these channels by
sending tokens to each other.

A node is triggered when it receives a token from its predecessor nodes, and then it
requests access to its mapped processing element to execute. By executing an application
task on a processing element in the performance model at architectural abstraction level, we
mean simulating the communication and computation workload (data traffic generation and
simulation time consumption) of the task by the corresponding performance model. The
access response from the resource (processing element) side depends on the corresponding
resource’s load and the priority of the task itself. If the resource is free, it will start simulating
the corresponding task’s workload; otherwise, it will put the task in a pending state and
schedule its workload simulation according to the number of its other pending tasks and
their priorities.

Suppose the requesting task has a higher priority than the already running task, and the
running task is preemptible. In that case, the processing element can preempt the execution
of its current task and starts the new task. When the execution of a task is completed on
a processing element, it notifies the corresponding node. Upon receiving notification of
completion, the node triggers its successor’s nodes by pushing tokens to its output channels
via its output ports.

Each node has a set of parameters for specifying its behavior, its workload on a processing
element, and its interaction with other nodes.

Some of the parameters needed in the described interactions are listed below:

1) Start time: If a node has no predecessors, then a specific value can be configured as its
starting time.

2) Period: A task can be configured to run periodically till the end of the simulation or for
a specific number of iterations.

3) Triggering mode: This parameter is used to decide whether a node should start after
it receives a token on one or all of its input ports and in which order these tokens
should be consumed. Similarly, the triggering mode of its successor nodes can also be
configured using a similar parameter.

4) Priority: Each task can be assigned a priority for accessing performance model resources.

57

4 Implementation of the Methodology at Architectural Abstraction Level

5) Iterations/trig: It is used to specify how many iterations a node’s task needs to complete
before triggering its successor nodes.

Application Stand-Alone Simulation Using Virtual Engines

An application’s task graphs model can be simulated stand-alone to analyze the application
itself and find initial design configurations for the target architecture. In the stand-alone
simulation, each task is mapped on a set of virtual processing elements referred to as
Virtual Engines in this work. The execution workload of a task, when mapped on a Virtual
Engine, is the estimated non-interrupted execution time (exe_time) of the task on the target
processing element. This execution time can be estimated according to the information in
the corresponding target processing element’s datasheet. If the engine represents a CPU,
then it can be estimated by the approximate number of instructions needed for executing the
corresponding task on the corresponding CPU.

At the end of the simulation, an activity report is generated, giving detailed information
about each task’s run-time statistics. This information contains the minimum, maximum,
and average execution time (considering the execution time stretching because of resource
contentions), completion time, deadline misses, back-pressure by the successor tasks. Stand-
alone simulation results can also answer questions like how many programmable or dedicated
hardware blocks are needed and an initial partitioning of the application. Partitioning means
implementing some tasks as software instructions running on a programmable resource and
some tasks as hardware descriptions for dedicated hardware resources.

4.1.2 Implementation of Performance Model

POEM uses generic performance models for key architecture components such as CPU,
memories, interconnects, and some other functional blocks, fundamentally the same as
discussed in [92]. The performance model of CPU uses a stochastic modeling approach
for data generation and mimicking the behavior of a software task, i.e., generating a traffic
pattern for instruction and data cache miss and consuming simulation time for representing
the execution of a specific number of instructions. This approach is suitable for architecture
design space exploration before the software is available, and the platform depicted in Fig. 4.2
is not meant to run real modem software.

The performance model simulates computation and communication workloads of applica-
tion tasks using non-blocking transactions based on SystemC TLM communication. The main
focus and relevance of performance models are on the data volume rather than the actual
data content.

For instance, let us consider an hardware accelerator performance model and a network
processor application task called packet-classification mapped onto it. The performance
model of this hardware accelerator simulates the execution time of this packet classification
task and also sends transactions of different data-lengths on its interfaces for representing the
resulting traffic (reads/writes) of the corresponding packet data to/from the memory models,
respectively.

58

4 Implementation of the Methodology at Architectural Abstraction Level

NOC

External MemoryInternal
Memory

CPU Traffic
Generator

HW
Accelerator

Modem SoC

Task
1

Task
2

Task
3

Task
4

Task
5

Task
8

Task
6

Task
7

Task
9

Figure 4.2: Abstract representation of main functional blocks of a cellular modem (below)
and of a task graph mapped to the blocks (above).

Each processing element (Engine) in the performance model has a task scheduling interface
which schedules the execution of parallel tasks on the same processing element. It also serves
as an interface layer between a processing element and the task graphs nodes in the application
model. For performance analysis, different arbitration policies are implemented as the
interface is event-driven. Similarly, performance model allows annotation of resource access,
processing latencies along with modeling of back pressure that is crucial for performance
analysis.

Mapping Application Tasks on Architecture Model Resources

A task graph is mapped on an architecture model to analyze its behavior and identify design
bottlenecks of the architecture model for different mapping configurations. In the mapped
simulation, each task in the task graph is mapped on one of the processing resources in

59

4 Implementation of the Methodology at Architectural Abstraction Level

the architecture model which are referred to as Engines as well in this dissertation, through
the configuration files. During the simulation, the tasks request executing on their mapped
architecture resources (Engines). The resources while executing the tasks (simulating only
the abstract execution workloads of the tasks), generate some traffic and upon completion
notifies the task node in the application model.

As shown in Figure 4.2, many tasks can be mapped on one engine. Their execution is
scheduled by the corresponding engine’s task scheduling layer. The total execution and
completion time of a task depends on the load of the engine, load, and latency of the
interconnect and memory subsystems.

4.1.3 Implementation of Power Model

There are two fundamental questions associated with power modeling, which we have to
answer before expecting accurate power estimation and optimization at electronics system
level (ESL). How to develop the power model in the first place? Moreover, how to simulate
the power model from electronics system level simulation?

Analytical (power state machines (PSM)) and regression-based (linear regression and
beyond) modeling techniques are available to answer the first question as discussed in
section 2.1.7. We have opted for the analytical approach, as it allows separation between the
simulation of the functionality and the power modeling, thus, in-line with the separation of
concerns principle.

Multiprocessors system on chip consists of digital and analog blocks; analog blocks are
challenging to model because of their non-linear nature and their dependence on functionality.
One way to represent an analog block is to consider it as a black box and specify the output
power consumption for specific input by creating a database, i.e., look-up tables.

Digital blocks, on the other hand, can be divided into logic and memory parts, and their
characterization is possible with different power states. In this work, we assume the following
power states for logic: Active (executing a task), Clocked (waiting for the resources to be
available to execute a task), Idle (a low power consumption state, no task is executing neither
scheduled) and OFF. Similarly, memory has Active (data is being either written or read),
Clocked (the component is in use, but memory is not accessed), Retention (component not in
use, a low power state to retain the content), and OFF states.

The power consumption of the multiprocessors system on chips consists of dynamic power
and static power. The leakage current because of the imperfections of the silicon is the main
contributor to static power. If the area and silicon technology node (i.e., standard cell types,
leakage reference data) of the component are known, we can easily calculate the static power
with the help of area metrics. Leakage base value tables for different variants of standard
cells (fast, slow, and nominal) in a unit area are provided by the silicon technology node.

Dynamic power consumption is because of the charging and discharging of the capacitances
in a circuit. For Active and Clocked state it can be modeled as

Pdynamic = α · C ·V2
dd · f , (4.1)

where Pdynamic is the dynamic or active power, α is activity ratio, C is the capacitance, Vdd

60

4 Implementation of the Methodology at Architectural Abstraction Level

is the supply voltage and f is the clock frequency of the component. The product of α and
C is called switched capacitance (Cdyn) and it varies for Active and Clocked state. The Cdyn
for each power state can come from component data sheets, previous platform generations,
register transfer level simulations, or can be inferred by the design and functional scaling of
the component.

Active, Clocked, Idle/Retention is just one basic representation of power states for a
component. In principle, what is needed is a Cdyn per power state (the number of power states
depends on the component), or in certain cases an equation of Cdyn = F(system parameters)
where a fixed Cdyn value cannot be given per power state. For example Cdyn in Active state
might depend on certain data pattern, or data throughput.

There are different methods to integrate PSM to electronics system level simulations. An
XML file containing the power database is attached with SystemC simulation in [40], PSM
state transition can come directly from functional simulation calls, or power state can be
derived by observing the activity of the processing elements. We use the later as it is a more
sophisticated approach, and it allows us to build power models at different abstraction levels;
hence, even more independently from performance models.

We annotate PSM with switched capacitance instead of static value as in [93] so that
same PSM can be used for different frequencies and voltages. Thus, power optimization
techniques like dynamic voltage and frequency scaling (DVFS) can be implemented without
any modifications. We use a well known electronics system level industrial framework called
Docea to create power database and simulate it. Docea is an attractive choice for our work
because this framework provides a simulator called Intel® Docea™ power simulator (IDPS)
and works on the principle of PSM. Details of Intel® Docea™ have already been discussed in
section 3.3.1.

4.1.4 Interface and Mapping

The performance model runs a system level use case and produces a trace file contain-
ing the information of resource utilization and execution latencies (functional states along
with timestamps). This information can be mapped to power models with the help of an
interface/connection between performance and power models.

The correlation of power data with performance models is critical to get the right balance
between modeling efforts and estimation accuracy. Power models can be coarse grain and
less accurate or fine grain and more accurate. Mapping and back-annotating the design data
to a performance model can increase the accuracy of the estimated power. In the POEM,
the mapping of the power data to performance models is done manually and by a close
collaboration during the development phase of the performance model and power model.

There are two primary techniques to build an interface between performance (SystemC
simulation) and power model, i.e., using an API or value change dump file. Value change
dump file, an offline simulation technique, has its advantages and disadvantages, as it
allows running power simulations for refined power models independently of the task graph
and performance model changes, but it slowdowns the functional simulation. API based
simulation is faster and allows a feedback loop for the system optimization. For this work,

61

4 Implementation of the Methodology at Architectural Abstraction Level

we use a value change dump file although API can also be used similarly.
The number of components in performance and power models are not equal most of the

time as they are created independently at different abstraction levels and granularities. The
performance model could be fine-grained, whereas the power model can be coarse-grained
and vice versa. Hence, the connection of such models is a non-trivial task and requires
an explicit mapping definition. The modularity and hierarchical nature of IDPA allow the
structuring of power models to be developed and mapped to performance models later in
time.

Suppose the system has M components in the performance model, and each component
ci ∈ {1, 2, .., M} can take Kci discrete functional states, Sci ∈ {1, 2, ..Kci} at a given time of
point. Given N number of time stamps tj in total simulation time t, the functional states of
the components in the performance model can be defined as M× N matrix

W =


Sc1,t1 Sc1,tj+1 · · · Sc1,tN

Sci+1,t1 Sci+1,tj+1 · · · Sci+1,tN
...

...
. . .

...
ScM ,t1 ScM ,tj+1 · · · ScM ,tN

 (4.2)

Similarly, the power states of the components in the power model can be shown in a Q× N
matrix Y

Y =


Pr1,t1 Pr1,tj+1 · · · Pr1,tN

Pri+1,t1 Pri+1,tj+1 · · · Pri+1,tN
...

...
. . .

...
PrQ,t1 PrQ,tj+1 · · · PrQ,tN

 (4.3)

Assuming that Q is the number of components in the power model, that each component
ri ∈ {1, 2, .., Q} can have Lri discrete power states, and Pri ∈ {1, 2, .., Lri} at a given time stamp.

The operation of extracting power states from corresponding functional states is performed
by the mapping function F(·), associating a set of power modes Pri ,t from the history of
functional states Sci ,t′ , t′ ∈ {1 . . . tN} for each time stamp.

Y = F(W) (4.4)

The mapping function F(·) is written manually once for every new component, and the
next section explains how it is obtained for an hardware accelerator.

Hardware Accelerator Mapping Example

Hardware accelerators in the SoCs help the CPU to manage the traffic load efficiently; the
building blocks of their architecture are called tiles (also known as cores) of different sizes
in this dissertation. These tiles are made of sub-components like logic and memory, and
memory is further subdivided into data and instruction cache.

Performance model with the help of task graphs maps the system level use case on hardware
accelerator, and it can take different functional states e.g. Burst_Process, Clocked_ON,

62

4 Implementation of the Methodology at Architectural Abstraction Level

Table 4.1: Distinct functional states of a tile and corresponding power states
Functional states Power states (Tile_0 = Pr1 + Pr2 +Pr3)
Sc1 ,(c1 = Tile_0) Pr1 = Logic Pr2= Data Mem Pr3= Inst Mem

Power_ON IDLE Ret Ret
Power_OFF OFF OFF OFF

Clocked_ON Clocked Clocked Clocked
Block_Transfer Active Clocked Active

Next_SDU Active Clocked Clocked
Burst_Process Active Active Active

Check_Write_Ops Active Active Clocked
Wait_Pre_Burst Clocked Active Clocked

Wait_Pre_Burst, Power_ON, Power_OFF, Block_Transfer, Check_Write_Ops and Next_SDU.
For every functional state of a tile, its sub-components logic and memory could be in different
power modes as shown in Table 4.1.

The performance model of the hardware accelerator has four (M=4) tiles c1..M and each
tile ci can take eight Kci =8 discrete functional states Sci . The power model of the hardware
accelerator in IDPA is called “coprocessor" and consists of twelve (Q=12) components r1..Q,
and each component ri can take four Lri =4 different power states Pri . Thus every tile ci in the
performance model maps to three components r1,2,3 in the power model.

The value change dump file generated by the performance model, during the simulation
of the use case, contains the information W (see Equation 4.2) of functional states of each
tile in a 32 bit vector in the binary form. An adapted value change dump file coming out of
SystemC simulation of hardware accelerator performance model is shown in Listing 4.1.

How this information is decoded and mapped to the components in power model is shown
in Figure 4.3 for Tile_0 (i.e., the definition of F(W), as introduce in Equation 4.4 above).

The hardware accelerator in the performance model is composed of 4 tiles. A 32-bit vector
Modem_SoC.HW_Accelerator.funcState_n[31:0] from each tile is traced as shown in Figure 4.3.
In this vector “n" corresponds to the tile number and “Modem_SoC.HW_Accelerator" depicts
the hierarchy of the tile in the performance model.

Listing 4.2 shows a Java script object notation (JSON) file for Tile_0 that acts as an interface
and contains mapping information between performance and power model of hardware
accelerator.

The Mapping in the middle is the most critical block in POEM, as it is developed from joint
inputs of the performance and power models. A JSON file is used to make sure the power
models can make use of the information coming out of the performance models in the form
of value change dump file.

As the Tile_0’s power model is fine-grained, the funcState_0[31:0] is broken down into three
parts, the first [0:3] bits contain the information for logic, the next [7:4] bits are for data memory
and the last [11:8] bits are for instruction memory. Apart from that, a mapping between
the different hierarchical naming is also required, “Coprocessor/Tile_0/Logic@CurrentMode"

63

4 Implementation of the Methodology at Architectural Abstraction Level

Coprocessor

Tile 0

Tile 3

Tile 2

Tile 1

HW Accelerator

Modem_SoC.HW_Accelerator.funcState_0[31:0]

Modem_SoC.HW_Accelerator.funcState_3[31:0]

HW Accelerator Coprocessor

 Tile_0/Logic@
CurrentMode

Tile_0/Data_Mem@
CurrentMode

Tile_0/Inst_Mem@
CurrentMode

funcState_0[0:3]

funcState_0[7:4]

funcState_0[B:8]

Mapping for Tile 0

Tile 3

Logic Inst
Mem

Data
Mem

Tile 2

Logic Inst
Mem

Data
Mem

Tile 1

Logic Inst
Mem

Data
Mem

Tile 0

Logic Inst
Mem

Data
Mem

 Power Model Performance Model

Figure 4.3: Mapping of the hardware accelerator’s stimuli (in the form of VCD) generated as
a result of SystemC simulation of the performance model, on to the Coprocessor
in the power model with the help of JSON file.

in the power model corresponds to the Modem_SoC.HW_Accelerator.funcState_0[3:0] in the
performance model.

1 $date
2 Jul 21, 2017 10:02:33
3 $end
4

5 $version
6 SystemC 2.3.1-Accellera --- Sep 2 2015 13:45:25
7 $end
8

9 $timescale
10 1 ps
11 $end
12

13 $scope module SystemC $end
14 $var wire 32 aaaaa Modem_SoC.HW_Accelerator.funcState_s_0 [31:0] $end
15 $var wire 32 aaaab Modem_SoC.HW_Accelerator.funcState_s_1 [31:0] $end
16 $var wire 32 aaaac Modem_SoC.HW_Accelerator.funcState_s_2 [31:0] $end
17 $var wire 32 aaaad Modem_SoC.HW_Accelerator.funcState_s_3 [31:0] $end
18 $var wire 32 aaaae Modem_SoC.HW_Accelerator.funcState_s_4 [31:0] $end
19

20 $upscope $end

64

4 Implementation of the Methodology at Architectural Abstraction Level

21 $enddefinitions $end
22

23 $comment
24 All initial values are dumped below at time 0 sec = 0 timescale units.
25 $end
26

27 $dumpvars
28 b0 aaaaa
29 b0 aaaab
30 b0 aaaac
31 b0 aaaad
32 b0 aaaae
33 $end
34

35 #100000000
36 b1100010011 aaaaa
37 b1100010011 aaaab
38 b1100010011 aaaac
39 b1100010011 aaaad
40 b1100010011 aaaae
41

42

43 #100001000
44 b1000100010 aaaaa
45 b1000100010 aaaab
46 b1000100010 aaaac
47 b1000100010 aaaad
48 b1000100010 aaaae
49

50

51 #100031248
52 b1100100010 aaaaa
53

54 #100059024
55 b1100100010 aaaac
56

57 #100086800
58 b1100100010 aaaad
59

60 #100197904
61 b1100110010 aaaaa
62

65

4 Implementation of the Methodology at Architectural Abstraction Level

63 #102281104
64 b1000110010 aaaaa
65

66 #102304048
67 b1000100010 aaaaa
68

69 #102310992
70 b1000110010 aaaaa
71

72 #102326992
73 b1000100010 aaaaa
74

75 #102329104
76 b1000110010 aaaaa
77

78 #102342992
79 b1000100010 aaaaa
80

81 #102345104
82 b1000110010 aaaaa
83

84 #102358992
85 b1000100010 aaaaa
86

87 #102361104
88 b1000110010 aaaaa
89

90 #102374992
91 b1000100010 aaaaa
92

93 #102377104
94 b1000110010 aaaaa
95

96 #102384048
97 b1000100010 aaaaa
98

99 #102393104
100 b1000110010 aaaaa
101

102 #102397936
103 b1000100010 aaaaa
104

66

4 Implementation of the Methodology at Architectural Abstraction Level

105 #102404880
106 b1000110010 aaaaa
107

108 #102409104
109 b1100110010 aaaaa
110

111 $...
112

113 $...
114

115 $...
116

117

118 #4900000000
119 b100010001 aaaaa
120 b100010001 aaaab
121 b100010001 aaaac
122 b100010001 aaaad
123 b100010001 aaaae
124

125

126 #4900001000
127 b1000100010 aaaaa
128 b1000100010 aaaab
129 b1000100010 aaaac
130 b1000100010 aaaad
131 b1000100010 aaaae

Listing 4.1: A piece of VCD file generated as a result of SystemC simulation of the performance
model of the hardware accelerator.

1 {"inputs": {
2 "Modem_SoC.HW_Accelerator.funcState_s_0_3_0":
3 {"params":["Coprocessor/Tile_0@CurrentMode"],
4 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’Idle

’, <input>==2, ’Clocked’, <input>==3, ’Active’)"],
5 "type": "int",
6 "default": 0},
7 "Modem_SoC.HW_Accelerator.funcState_s_0_7_4":
8 {"params":["Coprocessor/Tile_0_D@CurrentMode"],
9 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],
10 "type": "int",

67

4 Implementation of the Methodology at Architectural Abstraction Level

11 "default": 0},
12 "Modem_SoC.HW_Accelerator.funcState_s_0_B_8":
13 {"params":["Coprocessor/Tile_0_I@CurrentMode"],
14 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],
15 "type": "int",
16 "default": 0},
17

18 "Modem_SoC.HW_Accelerator.funcState_s_1_3_0":
19 {"params":["Coprocessor/Tile_1@CurrentMode"],
20 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’Idle

’, <input>==2, ’Clocked’, <input>==3, ’Active’)"],
21 "type": "int",
22 "default": 0},
23 "Modem_SoC.HW_Accelerator.funcState_s_1_7_4":
24 {"params":["Coprocessor/Tile_1_D@CurrentMode"],
25 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],
26 "type": "int",
27 "default": 0},
28 "Modem_SoC.HW_Accelerator.funcState_s_1_B_8":
29 {"params":["Coprocessor/Tile_1_I@CurrentMode"],
30 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],
31 "type": "int",
32 "default": 0},
33 "Modem_SoC.HW_Accelerator.funcState_s_2_3_0":
34 {"params":["Coprocessor/Tile_2@CurrentMode"],
35 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’Idle

’, <input>==2, ’Clocked’, <input>==3, ’Active’)"],
36 "type": "int",
37 "default": 0},
38 "Modem_SoC.HW_Accelerator.funcState_s_2_7_4":
39 {"params":["Coprocessor/Tile_2_D@CurrentMode"],
40 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],
41 "type": "int",
42 "default": 0},
43 "Modem_SoC.HW_Accelerator.funcState_s_2_B_8":
44 {"params":["Coprocessor/Tile_2_I@CurrentMode"],
45 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],

68

4 Implementation of the Methodology at Architectural Abstraction Level

46 "type": "int",
47 "default": 0},
48 "Modem_SoC.HW_Accelerator.funcState_s_3_3_0":
49 {"params":["Coprocessor/Tile_3@CurrentMode"],
50 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’Idle

’, <input>==2, ’Clocked’, <input>==3, ’Active’)"],
51 "type": "int",
52 "default": 0},
53 "Modem_SoC.HW_Accelerator.funcState_s_3_7_4":
54 {"params":["Coprocessor/Tile_3_D@CurrentMode"],
55 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],
56 "type": "int",
57 "default": 0},
58 "Modem_SoC.HW_Accelerator.funcState_s_3_B_8":
59 {"params":["Coprocessor/Tile_3_I@CurrentMode"],
60 "values":["builtins.IF(<input>==0, ’OFF’,<input>==1, ’RET’,

<input>==2, ’Clocked’, <input>==3, ’ACTIVE’)"],
61 "type": "int",
62 }
63 }

Listing 4.2: JSON file for mapping of the hardware accelerator’s stimuli generated as a result
of SystemC simulation of the performance model, on to the Co-processor.

69

5 Network Processor Case Study

In order to validate and showcase the effectiveness of the proposed methodology, an archi-
tectural exploration of a network processor for performance and power is presented in this
chapter. The idea of the network processor case study is taken from the work reported in
TAPES [56]. The difference lies in the approach used for performance analysis in TAPES and
other extra features evaluated for packet routing in this dissertation.

We start with evaluating the application with stand-alone simulation using virtual engines.
Virtual engines are developed in SystemC and Accellera library on top, discussed in 3.2.2
in detail already. After refining the application with virtual engines’ help, co-simulation
of the application and architectural model gives an insight into the resources required to
get the optimal performance key performance indicators. We conclude this chapter with a
network processor case study for power and performance co-optimization for a given set of
constraints. Co-optimization at run time (software modification) is carried out by changing
the parameters like frequency, packet size, and mapping file in our example. And based on
the simulation results, the optimizations like memory size, memory word size, number of
cores are done (in hardware configurations) for the next iteration until we achieve our target
key performance indicators. POEM is used to compare different hardware configurations for
power and performance with a systematic and modular framework.

5.1 System level uses of Mobile Communication Platforms

The outcome and contribution of this work are primarily related to the development of 5G
modems at Intel® Deutschland; However, due to confidentiality reasons, we are explaining
the relevance now with a general network processor example. As this work is done in
collaboration with Intel’s Mobile Communications Division, the focus was on protocol stack
development of modems. In Intel® , this smart engine was developed in the first place to
achieve cross-layer optimizations in the terminal. This smart engine is very similar to the
hardware accelerator we have discussed in 4.1.4.

There are low-envelope power use cases that are critical for cellular modem architecture
design perspective and dictate its design. These use cases belong to Connected Mode
DRX (CDRX). Such use cases have traffic patterns and data transfer on the uplink, and
downlink happens in bursts. An inactivity period between data bursts is crucial from a power
perspective as the cellular modem can be in low power mode or even in power gated state.
The proposed methodology contributed significantly to identifying such periods and doing
the non-trivial trade-off analysis of save and restore power penalty (required in incase of
power gating a subsystem) and power saved due to power gating. POEM was successfully

70

5 Network Processor Case Study

applied in making system level decisions like power domain division, hardware-software
split, micro-architecture path findings, on-chip off-chip memory sizing, and implementing
left shift strategy for power and performance verification.

5.2 Network Processor Use Case

The basic functionality of a network processor is to receive packets at a certain rate from its
input ports, process them and route them to its output ports. A packet header is processed
only to determine the destination port without performing any packet classification or security
checks in TAPES. However, according to [94], the demand for high quality of service of current
network systems requires giving some kinds of packets higher priority than others, and also
security checks need to be applied on packets for safe communication.

In this case-study, we analyze both performance and power of a network processor, and in
addition to packet routing, we also consider the load for packet classification and security
check. The security check in our use case means applying a firewall (state-full firewall) for
allowing packets only for known active connections and blocking the others. Same as in
TAPES, we assume that all the packets have 20 bytes header and output port distribution for
all the received packets are equal. Additionally, we assume that the network processor only
processes the 20 byte packet headers, and the security check result is always non-blocking (all
the packets are allowed to pass through). The number of instructions necessary for executing
each task of this application, on a 32-bit processor, is assumed to be as in Table 5.1.

Table 5.1: Number of instructions of a network processor application tasks with CPI=1.2
Task Name cost(#instructions) #CPU cycles(For CPI = 1.2)
Packet routing 400 480
Packet classification 1000 1200
Stateful firewall 3000 3600

As a first design step, we evaluate the application itself by performing a stand-alone
simulation using only the virtual engines. After analyzing the results of this step, an initial
architecture and mapping configuration is determined. Then we set up the corresponding
initial architecture using the SAVE framework (see details in 3.2) performance models, evaluate
its feasibility, and improve it step by step. First the performance of the application for a pure
software based solution is evaluated, where all the processing and packet management is
done inside the CPU. Then some of the CPU tasks are offloaded on a hardware accelerator
and DMA channels.

The flow of a typical network processor application is as follow:

Step-1 The received packets are stored in the memory by a buffer manager and a descriptor
to each packet. The descriptor shows where the packet resides in the memory is stored
in an input-queue.

71

5 Network Processor Case Study

Step-2 The stored packets are read from memory according to their descriptors in the
input-queue. Each packet is classified, checked for security, and its destination port is
specified. The processed packets are written back to the memory, and the descriptor of
the corresponding packets are sent to the output queue manager.

Step-3 The processed packets are retrieved from the memory, according to their descriptors
in the output queue, by the queue manager and sent to their corresponding output
ports.

Table 5.2: Network processor specifications
Components Specifications
Input port1

100 Mbps Ethernet ports
Input port2
Output port1
Output port2
Memory block Off-chip single port 8 or 16 bit SDRAM
Processing cores Flexible

The network processor has two 100 Mbps Ethernet input ports and two output ports, shown
in table 5.2. Unlike TAPES, we model the application as a task graph having seven tasks,
shown in Figure 5.1. The tasks, Read_1 and Read_2, read the received packets from the two
input ports. Then the packets are classified, firewall check is applied, output ports’ routing
information is added, by the Classify, Firewall and Route tasks, respectively. The Transmit_1
and Transmit_2 tasks write the processed packets to the two output ports, respectively. It is
assumed that, after arriving in the input ports, each packet is written to the memory. Therefore,
tasks Read_1 and Read_2 are configured as periodic tasks, and their period represents the
inter-arrival time of the packets. This period is configured for each packet size and input
data rate separately. The triggering mode of the task Classify is configured as OR_MODE.
Therefore, it is triggered whenever there is data available in any of its input channels. When
both of its input channels have data simultaneously, then it reads them in a round-robin
fashion. Similarly, task Route’s output triggering mode is also configured as OR_MODE. Upon
completion, it triggers only one of its successor tasks. The sequence of triggering its output
task is configured in a round-robin fashion to ensure uniform packet distribution in the
output ports.

5.3 Stand-Alone Application Simulation Using Virtual Engines

In this section, the application itself is simulated using virtual engines. The workload
of each task on a virtual engine, as stated in Section 3.1.1, has only one parameter: the
corresponding task’s processing time. The workloads for this network processing application’s
tasks are approximated based on the frequency and number of instructions for executing the
corresponding tasks. Since the virtual-engines do not generate any traffic, the interconnect
and memory subsystem, latency, and contentions, are not considered at this stage.

72

5 Network Processor Case Study

T1

T1 T2

T3
T5

T6 T7 T4

Virtual
engine

Read_1

Read_2

Classify Firewall Route

Transmi
t_1

Transmi
t_2

Figure 5.1: Network application task graph sequence shown with seven task graph nodes and
FIFO channels in between them after analyzing with a virtual engine.

5.3.1 Mapping All Tasks on a Single Virtual Engine

At first, a pure-software based solution is evaluated, where all of the 7 tasks are mapped on a
single virtual-engine. The virtual-engine at this stage serves as a meta-model for a 32 bit CPU
running at 500 MHz, shown in table 5.4. The workload of each task on a virtual engine for
500 MHz frequency, is shown in the table 5.3.

After performing an initial simulation, it was observed that the engine was mostly occupied
by the Read_1, Read_2, and Classify tasks. Therefore, tasks’ priorities were set in increasing
order from left to right, and further simulations were carried out. Figure 5.2a shows the
throughput or aggregate output data rate, in a million bits per second (Mbps), of the network
processor as a function of its input data rate. It shows that the throughput for shorter packets
is lower than the throughput for the larger ones. For 64-byte packets, the throughput saturates
at 50 Mbps, but for 256-byte packets, it saturates at 190 Mbps. This saturation behavior is

73

5 Network Processor Case Study

Table 5.3: Virtual engine workload load for different tasks
Task name Virtual-engine workload (ns)
Packet routing 960
Packet classification 2400
Firewall check 7200
Read_1

This value depends on the size
of the packet. For a 64 byte
packet it is 77 ns

Read_2
Transmit_1
Transmit_2

Table 5.4: Use case modeled in the form of task graphs mapped on to single virtual engine
Task name Processing element
Packet routing

Virtual engine

Packet classification
Firewall check
Read_1
Read_2
Transmit_1
Transmit_2

because of processing only the 20-byte header of all kinds of packets, either short or long.
Consequently, for the same input data rate, a large number of shorter packets enter the
network processor than longer ones. Therefore, in the case of 64-byte packets, the network
processor has to process many 20-byte headers than for the 128 and 256-byte packets.

However, the maximum throughput with respect to the number of packets processed per
second, as shown in Figure 5.2b, is slightly higher for the smaller packets than the larger ones.
The lower throughput for larger packets is because considering the latency increase while
writing them to memory when received and reading them from memory for transmitting to
the output ports when processed.

Similarly, Figure 5.3 shows the virtual engine’s average usage or load imposed by each task,
while processing a total number of 800 packets in case of maximum throughput. It shows
that the Firewall task mainly occupies the engine.

These simulation results show that the pure software based solution using one 32-bit CPU
core of 500 MHz frequency cannot handle the processing of packets from two 100 Mbps input
ports. One logical option to improve the system’s performance is to map the heaviest task
Firewall on a separate processing element. Next, we want to see the throughput improvement
when the Firewall task is running on a separate virtual engine with the same speed as virtual
engine used in this section. Additionally, the tasks Read_1, Read_2, Transmit_1, and Transmit_2
are offloaded to another virtual engine.

74

5 Network Processor Case Study

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250

Th
ro

u
gh

p
u

t
[M

b
p

s]

Input data rate [Mbps]

64 byte

128 byte

256 byte

(a)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

P
ac

ke
t

Th
ro

u
p

u
t

[K
p

p
s]

Input data rate [Mbps]

64 byte

128 byte

256 byte

(b)

Figure 5.2: System’s corresponding data throughput (a) and packet throughput (b) (consisting
of a single virtual engine) at different input data rates and packet sizes.

5.3.2 Mapping Tasks on Multiple Virtual Engines

In this section, the mapping configuration shown in table 5.5 is evaluated. In this configuration,
the Firewall task is mapped on a separate virtual engine. Classify, and Route tasks share one
virtual engine, and similarly, Read_x and Transmit_x tasks share another virtual engine. The
execution speed and workload of all three virtual engine tasks are the same as those used
in the previous section 5.3.1. It can be seen from the simulation results of this configuration

75

5 Network Processor Case Study

Transmit_
0% 10% 20% 30% 40% 50% 60%

Read_1

Read_2

Classify

Firewall

Route

Transmit_1

Transmit_2 256 byte

128 byte

64 Byte

Figure 5.3: Virtual engine usage by each task for maximum throughput. Firewall Classify
and Route are the three tasks that contribute towards the virtual engine usage,
respectively, for all three packet sizes.

(shown in Figure 5.4), that there is a 50% output data throughput increase for all packet sizes
as compared to the single virtual engine configuration.

The packet throughput, shown in Figure 5.4b, has also improved with the same scale, but
it saturates around 140 Kbps for all three types of packets. This throughput was slightly
higher for 64-byte packets than the others in the previous configuration, using one virtual
engine. Throughput is equal for all packet sizes in the multiple virtual engine case because
the tasks Read_x, and Transmit_x are offloaded from the packet processing engines. Therefore,
the virtual engine-2 and virtual engine-3’s processing load is the same for long and short
packets.

Table 5.5: Use case modeled in the form of task graphs mapped on to 3 virtual engines
Task name Processing element
Packet routing

Virtual engine 3
Packet classification
Firewall check Virtual engine 2
Read_1

Virtual engine 1
Read_2
Transmit_1
Transmit_2

Simulation results in Figure 5.4a show that using three processing elements, the throughput
for 256-byte packets is above 200 Mbps, but for 128 and 64-byte packets, it is still not enough
for handling two 100 Mbps Ethernet ports. Figure 5.5 shows the average execution latency of

76

5 Network Processor Case Study

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Th
ro

u
gh

p
u

t
[M

b
p

s]

Input data rate [Mbps]

64 byte (500 MHz)

128 byte (500 MHz)

256 byte (500 MHz)

64 byte (1.5 GHz)

(a)

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300

P
ac

ke
t

Th
ro

u
gh

p
u

t
[K

p
p

s]

Input data rate [Mbps]

64 byte (1.5 GHz)

64 byte (500 MHz)

128 byte (500 MHz)

256 byte (500 MHz)

(b)

Figure 5.4: System’s corresponding data throughput (a) and packet throughput (b) (consisting
of multiple virtual engines) at different input data rates and packet sizes.

the tasks on their corresponding virtual engines. It can be seen that the execution latency of
the Firewall task, mapped on Engine2, is relatively longer than the other tasks and it affects
the system throughput. The frequency of the processing elements is increased to 1500 MHz
to decrease this task’s execution latency. It can be seen from the simulation results shown
in Figure 5.4a that the throughput of 215 Mbps can be achieved for 64-byte packets, and
throughput of 128 and 256-byte packets will be higher than 64-byte packets for this new
frequency.

Figure 5.5 also shows that the execution latency of the tasks (mapped on Engine1), respon-
sible for writing received packet to the memory and reading the processed packets from

77

5 Network Processor Case Study

0 1000 2000 3000 4000 5000 6000 7000

Engine3
(500 MHz)

Engine2
(500 MHz)

Engine1
(500 MHz)

(ns)

Read_1 Read_2

Classify Firewall

Route Transmit_1

Transmit_2

(a)

0 1000 2000 3000 4000 5000 6000 7000

Engine3
(1.5 GHz)

Engine2
(1.5 GHz)

Engine1
(1.5 GHz)

(ns)

Read_1 Read_2

Classify Firewall

Route Transmit_1

Transmit_2

(b)

Figure 5.5: Average execution latency of the tasks on the corresponding engines for 500 MHz
(a) and 1.5 GHz (b).

the memory, is very short. This low latency is because while using the virtual engines, the
interconnect and memory subsystem latency and contentions are not considered. In the

78

5 Network Processor Case Study

following section performance of this application for an actual architectural configuration
is examined. And the virtual engines are replaced with more detailed performance models.
While executing a task, these performance models access the memory block via the intercon-
nect and accordingly generate traffic. Therefore, it is possible to observe the contentions and
load of the interconnect and the memory subsystems.

5.4 Co-simulation of the Application and the Architecture Model

The application’s performance on an architecture model, consisting of processing elements,
interconnect, and memory blocks, is evaluated in this section. As an initial decision for the
number and configuration of the processing cores and the mapping configuration of the tasks,
the previous section’s results are used.

5.4.1 Mapping Tasks on an Architecture Model With Two CPU Cores

In stand-alone application simulation using virtual engines, it was observed that for obtaining
a throughput of 200 Mbps, assuming no memory and interconnect contentions, a minimum
of two CPU cores running at 1.5 GHz is needed. Therefore, in this section, we first evaluate a
network processor architecture’s performance, shown in table 5.6. This architecture consists of
two 1.5 GHz CPU cores(replacing engine-2 and engine-3), a DMA model (replacing engine-1),
an interconnect, and an off-chip memory block. direct memory access (DMA) is a component
in an embedded system used to efficiently transfer data from one memory location to another
without involving the CPU.

Table 5.6: Use case modeled in the form of task graphs mapped on to network processor
performance model with 2 CPU cores and a DMA

Task name Processing element
Packet routing

Core 1
Packet classification
Firewall check Core 2
Read_1

DMA
Read_2
Transmit_1
Transmit_2

The CPU cores’ workload objects for each task are configured according to the values
presented in Table 5.1. Further, it is assumed that each CPU core has its private data and
program caches of size at least one network packet (64, 128, or 256 bytes) and the program
instructions, respectively. The first instruction for executing each task is considered data
cache-miss, resulting in a memory transaction of burst-size 4 bytes and length 5, representing
a 20-byte packet header reading from memory. Similarly, when the reading transaction
is completed, the header’s processing time is defined by the frequency and number of
instructions (table 5.1) required for each task. Finally, writing back the modified packet

79

5 Network Processor Case Study

header to the memory is also carried out through a transaction of burst-size 4 bytes and
length 5.

The memory block is configured as an off-chip SDRAM of word-depth 1k and word-width
8 bits running at 100 MHz. SDRAM read and write access latencies are configured as 15 and
10 clock cycles, respectively. Each read or write transaction request is served as bursts of
size 8 and length 4. Each beat’s reading, representing a word of size 8 bits, within a burst
transaction is configured as two clock cycles and, similarly, writing each beat as one clock
cycle.

0 1000 2000 3000 4000 5000 6000 7000 8000

Core1
(Classify, Route)

Core2
(Firewall)

DMA

ns

Read_1

Read_2

Classify

Firewall

Route

Transmit_1

Transmit_2

Figure 5.6: Average execution latency of the tasks on the corresponding engines for 2 CPU
core (1.5 GHz) configuration.

The NoC is configured as a crossbar with round-robin arbitration. The DMA channels
are modeled as a traffic generator, which generates traffic according to the workload of the
tasks mapped on to it. For instance, in table 5.6 Read_1 and Read_2 are mapped on the DMA
module; therefore, they periodically trigger this traffic generator to generate write transaction
requests of packet-size on the NoC for writing the received packets to the memory block.
Similarly, Transmit_1 and Transmit_2 are also mapped on this traffic generator, which requests
similar transactions of a read request. The workload object of Read_x and Transmit_x tasks
only differ in read and write commands.

The above stated architecture and task graph with corresponding mapping relations are
simulated. The simulation results in Figure 5.7a shows that the throughput of the system
for 64-byte packet length, unlike the results in Figure 5.4a, is below 200 MHz. Though, the
number and frequency of the cores are the same as those used in Section 5.3.2. Similarly,
Figure 5.7b shows that shorter packets have larger packet throughput than longer ones, unlike
the packet throughput in Figure 5.4b. These differences in performance are the memory and
interconnect latencies and contentions, which are not considered in the stand-alone simulation

80

5 Network Processor Case Study

0

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250

Th
ro

u
gh

p
u

t
[M

b
p

s]

Input data rate [Mbps]

64 byte (1.5 GHz)

128 byte (1.5 GHz)

256 byte (1.5 GHz)

(a)

0

50

100

150

200

50 100 150 200

P
ac

ke
t

Th
ro

u
gh

p
u

t
[K

p
p

s]

Input data rate [Mbps]

64 byte (1.5 GHz)

128 byte (1.5 GHz)

256 byte (1.5 GHz)

(b)

Figure 5.7: System’s performance for 2 CPU cores (1.5 GHz) a) data throughput, b) packet
throughput.

using virtual engines.
The effects of these memory latencies and contentions can be seen by comparing tasks’,

Read_1, Read_2, Transmit_1, and Transmit_2 average execution latencies in Figure 5.6 with
Figure 5.5b. There is a 2500% increase in these tasks’ execution latencies, which are mapped
on to the Engine1 in stand-alone simulation and on the DMA module in this section.

By inspecting the average execution latencies of the tasks for 64-byte packets, shown in

81

5 Network Processor Case Study

Figure 5.6, one can observe that the bottleneck of this design configuration is the performance
of the core1, on which the tasks Classify and Route are mapped. Therefore, in order to
improve the system’s performance, the number of cores is increased to 3, and the task Route
is mapped on this third core, which is also running at 1.5 GHz. Without changing the other
configurations of the system and mapping relations of the other tasks, we evaluate the three
core architecture’s performance in the next section.

5.4.2 Mapping Tasks on an Architecture Model With Three CPU Cores

In this section, the architecture’s performance with three CPU cores and the tasks’ mapping
relations, as shown in table 5.7, is evaluated. All three cores are running at 1.5 GHz, and the
memory and DMA configurations are the same as in the previous section 5.4.1.

Figure’s 5.8 simulation results show that there is only around 14% improvement in the
system’s maximum throughput. The throughput of the 64-byte length packets saturates at
around 115 Mbps, which is not enough for handling two 100 Mbps input ports of the network
processor. Similarly, Figure 5.9 shows the average execution latency of the tasks. It can be
seen that the execution latency of the tasks mapped on the DMA module, whose functions are
writing the received packets to the memory and reading the processed packets from memory,
are now the bottleneck of the design. These tasks’ execution latency is mainly caused by the
contentions and latencies of the memory block and the NoC.

Table 5.7: Use case modeled in the form of task graphs mapped on to network processor
performance model with 3 CPU cores and a DMA

Task name Processing element
Packet routing Core 3
Packet classification Core 1
Firewall check Core 2
Read_1

DMA
Read_2
Transmit_1
Transmit_2

5.4.3 Increasing the Memory Size and Result Analysis

In the previous section, after analyzing the simulation results, it was observed that the
latencies and contentions of the memory block and the interconnect cause the increase in
average execution latency of the tasks Read_x and Transmit_x. These tasks are creating the
bottleneck for gaining a throughput of above 200 Mbps for 64-byte packet lengths. Therefore,
in this section the performance of the system is evaluated with an improved memory block.
The SDRAM memory block’s width is increased from 8 bits to 16 bits, and its frequency is
increased from 100 MHz to 133 MHz.

Figure’s 5.10 simulation results show that the DMA tasks’ average execution latency has
improved by more than 50%. Similarly, Figure 5.11a, shows that the maximum throughput

82

5 Network Processor Case Study

0

50

100

150

200

250

70 120 170 220

Th
ro

u
gh

p
u

t
[M

b
p

s]

Input data rate [Mbps]

64 byte (1.5 GHz)

128 byte (1.5 GHz)

256 byte (1.5 GHz)

Figure 5.8: System’s performance for 3 CPU cores at 1.5 GHz frequency at three different
packet sizes, the system run with 256-bytes packet size can archive max output
throughput.

0 1000 2000 3000 4000 5000 6000

Core1
(Classify)

Core2
(Firewall)

Core3
(Route)

DMA

(ns)

Read_1

Read_2

Classify

Firewall

Route

Transmit_1

Transmit_2

Figure 5.9: Average execution latency of the tasks on their corresponding engines for 3 CPU
core (1.5 GHz) configuration.

for the 64-bytes packets, is above 200 Mbps, which is adequate for serving two 100 Mbps
input Ethernet ports of the network processor.

At this point, we have derived the network processor (architecture) configuration, system

83

5 Network Processor Case Study

parameters (i.e., frequency of processing elements) from a step-by-setup refinement of the
application and architecture model. This activity corresponded to Layer-1 of our methodology
POEM, as shown in Figure 4.1 and discussed in Section 4.1.

All the implementation changes, i.e., mapping tasks on different cores (modification of
application model) and increasing the number of cores (modification in the architecture
model) to mitigate the resource contention, do not affect each other. As an outcome, the
achieved modularity and separation-of-concern back the claim of POEM. Moreover, one run
from the other can be done on the fly by modifying the configuration file or the system
architecture validation environment (SAVE) environment’s initiation file. SAVE is an Intel
internal environment that consists of SystemC libraries and focuses on transaction modeling
at an approximate abstraction level see details in Section 3.1.2.

The design space exploration emphasis was on output throughput (performance) for
the network processor. Next, we will re-evaluate this network processor configuration by
building on top of the derived configuration to co-optimize power and performance. The
CPU’s performance model will be replaced with an hardware accelerator (as discussed in
Section 4.1.4). The stimuli coming out of the SystemC simulation of the configuration will be
captured in value change dump (VCD) file. Later to be used in Intel® Docea™ for power
analysis.

0 1000 2000 3000 4000 5000 6000

Core1
(Classify)

Core2
(Firewall)

Core3
(Route)

DMA

(ns)

Read_1

Read_2

Classify

Firewall

Route

Transmit_1

Transmit_2

Figure 5.10: Average execution latency of the tasks on their corresponding engines for 3 CPU
core (1.5 GHz) with improved memory block.

5.5 Power and Performance Co-Simulation

Co-optimization of power and performance for multiprocessor system on chip,i.e., the cellular
modem, is inevitable (as reported in [5]); thus, one of the motivations behind this research

84

5 Network Processor Case Study

150

200

250

300

350

400

450

150 200 250 300 350 400 450 500

Th
ro

u
gh

p
u

t
[M

b
p

s]

Input data rate [Mbps]

64 byte (1.5 GHz)

128 byte (1.5 GHz)

256 byte (1.5 GHz)

(a)

0

50

100

150

200

250

300

350

400

450

150 200 250 300 350 400 450 500

P
ac

ke
t

Th
ro

u
gh

p
u

t
[K

p
p

s]

Input data rate [Mbps]

64 byte (1.5 GHz)

128 byte (1.5 GHz)

256 byte (1.5 GHz)

(b)

Figure 5.11: System performance for 3 CPU cores (1.5 GHz) with improved memory block.

work. POEM works towards this goal by keeping the application, architecture, and power
modeling setup modular.

The connection between SystemC simulation (at TLM) and power modeling framework
is offline with the help of a value change dump file, which contains the state-residencies
of the performance model’s processing elements ,i.e., cores, memory, buses, and hardware
accelerators. By state-residence, we mean the discrete power state (that is characterized and
back annotated based on its functional state in the first place) and time spent in this power

85

5 Network Processor Case Study

state by a component. The interface and mapping between the SystemC simulation of the
performance model and the power modeling framework have been explained (see details in
Section 4.1.4).

We will start with the three CPU core configuration, which we derived in Section 5.4.2,
with slight modifications for co-optimization and power and performance analysis. In the
process, we will explore system parameters and play with the application to achieve the
desired results.

The performance model of this network processor consists of a network on chip (NoC),
memory, direct memory access (DMA) controller, and a 32-bit 3-core/tile CPU. Hardware
accelerator explained in 4.1.4 will be used here as a CPU. Tasks Read_1, Read_2, Transmit_1
and Transmit_2 are mapped on DMA. Classify, Firewall and Route can be mapped on the three
tiles of the CPU, It is assumed that the CPU has an L1 cache, which can access only 3 network
packets at a time.

5.5.1 Simulation Environment Settings and Goals

The simulation parameters fixed for this use case are voltage Vdd equal to 0.9 V, and simulated
run-time t equal to 4 ms. In this case study for a fixed input throughput of 200 Mbps, the goal
is to achieve an output (max) throughput of 200 Mbps in an optimal way. Similarly, the power
dissipation calculated here is an average power that includes dynamic and static power.

The application modeled is mapped to fixed architecture resource in two potential ways,
called configurations, as shown in Figure 5.12 and Figure. 5.13. Configuration_1 and Con-
figuration_2 are simulated for 64-byte packet size over a frequency range, in order to see
how mapping the Firewall task to two tiles (Tile_1 and Tile_2) and task of Classify and
Route to Tile_0 impact the system w.r.t. power and performance, as compared to the first
Configuration_1.

The results for throughput and power are shown in Figure 5.14a and Figure 5.14b respec-
tively, and they clearly indicate that Configuration_2 can achieve a higher throughput than
Configuration_1 but, that higher throughput comes at the cost of higher power dissipation as
well. The reason behind is that, as the Firewall needs the double number of the clock cycles as
compared to Classify and Route tasks together (as shown in Table 5.1), it is a bottleneck for
higher throughput in Configuration_1. Hence, mapping it to two different tiles will increase
the throughput.

It is important to note that with a 64-byte packet size, both configurations fail to achieve
even a 100 Mbps throughput. Therefore, as a next step, we simulate Configuration_1 for
different packet sizes and increase the frequency range even further to achieve 200 Mbps
throughput. Configuration_2 is not persuaded going forward in this work. Although we can
achieve higher throughput with this configuration, it comes at the cost of almost double the
power dissipation.

Results shown in Figure 5.15a, highlight that Configuration_1 achieves max throughput for
128 and 256-byte packet size at 500 and 833.33 MHz frequency respectively, but it fails to
achieve a 150 Mbps throughput for a 64-byte packet size for frequency as high as 1 GHz. This
is because the network processor only processes packet headers that are fixed for both large

86

5 Network Processor Case Study

Read_1

Read_2

Classify Firewall Route

Transmit_1

Transmit_2

NOC

CPU

Tile 1 Tile 2Tile 0

Memory DMA Network
Processor

Figure 5.12: Configuration_1: Use case modeled in the form of task graphs (above) mapped
on to network processor performance model (below) with 3 tiles of CPU and a
DMA.

and small packets. The larger packets’ inter-arrival time is higher than smaller packets that
affect the packet processing rate of the network configuration.

Power dissipation results for this configuration are shown in Figure 5.15b. It is interesting
to see that the power consumption of the 256-byte packet is the lowest as soon as it reaches
the max throughput at 500 MHz. Similarly, the power consumption for 128-byte packets is
less than the 64-byte packet after achieving max throughput.

5.6 Comparison with Platform Architect

In order to evaluate the accuracy of the proposed methodology POEM, we compare it with
state of the art Synopsys [16] tool called platform architect ultra (PA Ultra) [95]. PA Ultra
was initially developed by CoWare and recently acquired by Synopsys to perform electronic
system level (ESL) modeling of extra-functional properties like performance and power. PA
Ultra and POEM methodologies are very similar. Therefore a comparative study can tell us
about the equivalency of POEM.

There are few other EDA tools available, i.e., Intel Confluent [96] to evaluate a developing
architecture for power and performance, one of the reasons behind opting PA Ultra is its

87

5 Network Processor Case Study

NOC

CPU

Tile 1 Tile 2Tile 0

Memory DMA

Read_1

Read_2

Classify

Firewall

Route

Transmit_1

Transmit_2
Firewall

Network
Processor

Figure 5.13: Configuration_2: Use case modeled in the form of task graphs (above) mapped
on to network processor performance model (below) with 3 tiles of CPU and a
DMA. The difference from Configuration_1 is that the single firewall task is split
into two nodes and mapped to two different tiles.

distributed setup just like POEM. It separates the power from application and performance.
PA uses the IEEE standard format unified power format (UPF) [96], and the power database
is attached using Tcl scripts.

Network processor example modeled in Section 5.5 is used for the comparison. The
network processor example modeled in Section 5.5 is used for the comparison. First, the PA
Ultra modeling flow is explained, and then how the use case is modeled, and at the end, a
comparison of processing element usage and power consumption is made.

PA Ultra has SystemC model libraries for the most commonly used components called
virtual processing units (VPU) (see Figure 5.16). Similarly, the use case (workload in PA Ultra)
is modeled with task graphs (as shown in Figure 5.17) and mapped to VPUs. Task graphs
and VPUs are configurable, and we have tried to model them as closely as possible to our
application and performance models. PA uses UPF to annotate an electrical power design
with the help of Tcl script for combined performance and power analysis.

The results demonstrate a close correlation between the loads of the components and their
power consumption calculated by POEM for Configuration_1, as shown in Table 5.8.

It is worth mentioning that POEM’s simulation speed is six times faster than PA Ultra, as
the simulation time took was three and eighteen seconds for network processor example,

88

5 Network Processor Case Study

0

20

40

60

80

100

100 200 250 333.33

Th
ro

ug
hp

ut
 [M

bp
s]

Frequency [MHz]

Config_1 Config_2

(a)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

100 200 250 333.33

Po
w

er
 [m

W
]

Frequency [MHz]

Config_1 Config_2

(b)

Figure 5.14: Throughput and power numbers, a) throughput of configurations over frequency
for 64-byte packet size, b) power dissipation over frequency for 64-byte packet
size.

respectively. There could be multiple reasons behind, i.e generic VPUs, obtaining the license
for PA, reading the Tcl script to attach the power database etc.

The difference and advantage lie in the separation of concerns principle as POEM uses best
in class performance and power modeling solutions. POEM maps task graph to specialized
components, and PA Ultra maps task graph to generic VPUs. Hence, processing elements
are more flexible, scale-able (for complex NoC architecture developed), and tailored to a use
case in POEM than PA Ultra. Similarly, instead of working with UPF file, POEM develops a
power model in a dedicated EDA tool with a web-based, collaborative power modeling and
simulation framework that improves power roll-up productivity and early power architecture
exploration.

89

5 Network Processor Case Study

0

50

100

150

200

250

100 200 250 333.33 500 666.67 833.33 1000

Th
ro

ug
hp

ut
 [M

bp
s]

Frequency [MHz]

Packet_Size_64 Packet_Size_128 Packet_Size_256

(a)

0
0.5
1

1.5
2

2.5
3

3.5

100 200 250 333.33 500 666.67 833.33 1000

Po
w

er
 [m

W
]

Frequency [MHz]

Packet_Size_64 Packet_size_128 Packet_Size_256

(b)

Figure 5.15: Throughput and power numbers, a) Throughput for different packet sizes,
Vdd = 0.9 V, t = 4 ms, b) power dissipation for different packet sizes, Vdd = 0.9 V,
t = 4 ms.

90

5 Network Processor Case Study

Main_mem

32 0

0

CPU_clk

CPU

DMA

RESET

DMA_clk

MEM_clk

i_ClockG
enerator

C_Main_mem_
MEM_m

C_CPU_C_Main_
mem_MEM_m

C_CPU_C_Main_
mem_MEM_m_s

MEMC_Main_mem
_MEM_m

CLK

CLK

C_Reset

RST

CLK

CLK

SYS_BUS

CLK

Rst

C_Main_mem_
MEM_m

C_DMA_C_Main_mem
_MEM_m

C_CPU_C_Main_
mem_MEM_m_s

C
_1

C_2

p_PSELECT

Rst

Bus_clk

DRVR_p_clk

Rst

C

CLK

Clk

mem_clk

p_PowerDown

p_Retention

Figure 5.16: A top-level view of modeled network processor hardware in PA Ultra. CPU and
DMA are made of generic VPUs and configured to perform specified functions.

Table 5.8: Comparison between POEM and PA Ultra
Component POEM Power[W] PA Ultra Power[W] delta[%]

Tile 0 1.64 1.59 +3.14
Tile 1 1.18 1.21 -2.58
Tile 2 0.98 1.05 -6.67

Memory 2.39 2.29 +4.36
Component POEM Usage[%] PA Ultra Usage[%] delta[%]

Tile 0 99.9 99.9 0
Tile 1 71.8 76 -4.8
Tile 2 59.4 65.9 -6.5

Memory 64.5 60.1 +7.15

91

5 Network Processor Case Study

transmit1

0

64:0

transmit2

0

64:0

route

20:20

480

classify

20:20

1200

read2

0:64

0

read1

0:64

0

p_get[0]

C_1

firewall

20:20

1000

p_get[1]

p_put[0]p_put[0]

C
C
_4

C
_5

C_2

p_put[0]

p_put[0]

p_put[0]

p_put[1]
p_get[0]

p_get[0]

p_get[0]

p_get[0]

C
_3

Figure 5.17: Modeling of network processor’s application with task graph in PA Ultra. Seven
tasks and their sequence are depicted, and it can be seen that they have identical
order and sequence as in POEM.

92

6 Integration of the Methodology At Software
and Hardware Abstraction Levels

Implementing the introduced methodology at software and hardware abstraction level is
crucial to continue power and performance analysis and co-optimization throughout the
embedded system design cycle. As power and performance optimization and exploration
methodology (POEM) targets the holistic and multi-abstraction analysis and optimization, this
chapter describes the aspects targeted and gaps filled with our methodology’s implementation
at these (software and hardware) abstraction levels. A detailed description and definition of
the software and hardware abstraction levels have been introduced in Section 2.3.

As this research work collaborates with Intel, the implementation of the methodology
(POEM) at the software and hardware abstraction level is influenced by their custom needs,
challenges faced, and practices. Nevertheless, this chapter explains the generic implementation
steps required for POEM to work at these abstraction levels without giving away Intel’s trade
secrets.

6.1 POEM at Software Abstraction Level

For fair comparison and to get the perspective of implementation efforts required at the
software abstraction level (SAL), it is necessary to evaluate the methodology (POEM) based on
the implementation of the same essential components of the methodology that are introduced
at the architecture abstraction level (AAL) in Chapter 4. Hence, first, the application, then
performance, and at the end, power model implementation details are discussed.

At software abstraction level, the embedded system’s software is developed or matured
enough to simulate system level use case or application or a scenario under analysis. Unlike
at architecture abstraction level, the application is not modeled with task graphs, and the
accuracy of the application model is high as well. The disadvantage is if any change is
required in the application model at software abstraction level, higher efforts are required.
Furthermore, several checks are in place as a standard practice in the industry to ensure that
the new changes made in the application model (software) do not break any other functional
component.

That implies the advantage of rapid prototyping is comprised at the cost of higher accuracy
of the application model. So, in POEM at software abstraction level, the existing software
written in embedded C is used and fulfills the application model’s need.

The second essential component of the system level methodology after the application
model is the simulation environment development by modeling the vital architecture compo-
nents, known as the performance model. POEM uses virtual prototype as an architecture

93

6 Integration of the Methodology At Software and Hardware Abstraction Levels

model (developed using SystemC TLM libraries) at software abstraction level. Virtual proto-
type is very similar to the performance environment introduced in architecture abstraction
level. Except most of virtual prototype ’s components are modeled at loosely-timed (LT)
transaction-level modeling, unlike approximately-timed in architecture abstraction level per-
formance model. Virtual prototype is a prototype of a complete platform, and in order
to rapidly verify the functionality, speed gain due to loosely-timed modeling is of utmost
importance.

In POEM, virtual prototype ’s crucial architecture components for a system level use case
are modified with an ISCTLM (see details in section 3.1.2) wrapper (to enable run-time
simulation configuration with attributes and tracing mechanism) to make the architecture
model consistent for interface and mapping with the power modeling framework.

The power model is developed independently of the application and architecture models
in Docea™ (3.3.1). Hence, its modeling and implementation will not be affected by the
application model being replaced by the standard software at software abstraction level. It is
straight forwards that software abstraction level has more low-level implementation details
available; therefore, the power model developed in Docea for software abstraction level is
fine-grained.

The Figure 6.1 shows the flow of the POEM at software abstraction level. There are five
steps involved and explained as follow:

Step 1: Virtual prototype of the embedded system is loaded with the production software
binaries.

Step 2: System level use case or a scenario is triggered, and with ISCTLM instrumentation,
stimuli of relevant processing elements are collected in a value change dump file as
an outcome of SystemC simulation. Performance key performance indicators like
throughput, back pressure, latencies, and high-level activities can already be observed
from this SystemC simulation.

Step 3: Based on the value change dump information, a java script object notation (JSON) file
is prepared. The java script object notation file contains the input and output definition
of the power modeling framework and also serves as the mapping function of functional
to power states.

Step 4: Docea™ simulates the value change dump file for power analysis and produces a
power trace as an output.

Step 5: Analysis of power traces over time to identify the potential optimization opportunities.

6.2 POEM at Hardware Abstraction Level

Implementation of POEM at hardware abstraction level (HAL) is no different from software
abstraction level and architecture abstraction level. Nevertheless, harware abstraction level’s

94

6 Integration of the Methodology At Software and Hardware Abstraction Levels

VCD

Docea power
analyser and

simulator

Performance
model

[virtual
prototype]

Application
model

[use case,
software]

JS
O

N

Config 2

Config 1

Config3

Step
1

Step
2

Step
3

Step
4

V
C

D

Step
5

Time

P
ow

er
Figure 6.1: POEM: A block-level overview of the POEM at software abstraction level. This

modular setup is capable of step-by-step refinements, whether application devel-
opment, architecture resource selection, or average power analysis.

focus is to use Docea™ as a power simulator rather than the actual hardware. During
the final stage of the embedded system design process, multiple hardware prototypes are
developed before the actual tape-out to verify the production software and meet specific
industry standards to get the platform’s certification. These prototypes are not capable of
measuring power consumption without special instrumentation.

Using Docea™ to measure the power for a system level use case at harware abstraction
level by running the standard software on a hardware prototype can give power consumption
at a fine-grain level. Even if a particular hardware prototype is prepared to measure the
power consumption of the critical system level power use case, it is limited by the voltage
rails and the platform’s power domain division constraints. Embedded system consists of
many power and clock domains, components having the same power or clock domain share
the same voltage and clock rails, respectively. The only available IEEE standard format for
power modeling (unified power Format (UPF) [96]) uses the power domain concept to model
the multiprocessors system on chips for power.

To understand the problem statement better, let us take the example of a cellular platform
for a power critical system level use case; it is required to measure a component’s power
consumption in an isolated fashion. However, if the power domain in which the component

95

6 Integration of the Methodology At Software and Hardware Abstraction Levels

is located has other components, there is no way to calculate its power contribution. The
differential approach often used to estimate the power consumption between two simulation
runs is not applicable in this scenario; the chances are that the measurement fluctuations are
higher than the power consumption difference between them.

Figure 6.2 shows the abstract overview of the POEM at harware abstraction level to measure
the power consumption using Docea™ following below mentioned steps.

VCD

Time

Pow
er JSON

MIPI

Test cases

FLS
Trace
box

Trigger

FTP

Scripting

Config 2

Config 1

Config3

Step
1

Step
2

Step
3

Step
4

Step
5

Step
6

Step
7

Step
8

Application
model

[test bench, software]

Performance
model

[HW prototype,
FPGA board]

Docea power
analyser and

simulator

Figure 6.2: A block-level overview of the POEM at a hardware abstraction level: How are
test-cases triggered? After flashing the software or use case on the performance
model (that consists of FPGA or prototype hardware at a hardware abstraction
level). Next, collection of the relevant parameters and post-processing with scripts
to get the value change dump file use able by power molding framework to
re-simulate and generate power trace over time.

Step 1: The production software is flashed on prototype hardware or field programmable
gate array (FPGA) board.

Step 2: The performance model consisting of SystemC modules in architecture abstraction
level and software abstraction level are replaced with actual hardware components, and
in order to trigger the system use case, a host is required to send the commands to the
evaluation board acting as a performance model.

96

6 Integration of the Methodology At Software and Hardware Abstraction Levels

Step 3: System-level use cases are triggered, and traces are captured in a trace box.

Step 4: Extract the traces and open them in a tool for functional verification of the system use
case and debugging if required before passing it for post-processing.

Step 5: System traces captured during the last step require post-processing to make them
use-able for the power modeling framework as this approach keeps the methodology
modular. The information captured in the form of traces is transformed into a value
change dump file with scripts and later used in the Docea.

Step 6: Based on the value change dump information, a java script object notation file is
prepared. The java script object notation file contains the input and output definition of
the power modeling framework and also serves as the mapping function of functional
to power states.

Step 7: Docea™ simulates the value change dump file for power analysis and produces a
power trace as an output.

Step 8: Analysis of power traces over time to identify the potential optimization opportunities.

97

7 Conclusion and Future Work Directions

7.1 Conclusion

POEM is a methodology for power and performance estimation for complex systems, like, for
instance, mobile platforms. The key advantage over state of the art is the explicit mapping
methodology between performance models and the power models, along with the modeling
of system level use case with task graphs in the first place.

This dissertation’s outcome backs the motivation and problem statement; power and
performance estimation, exploration, and co-optimization for the sophisticated and state of
the art embedded system along with coupling of different design abstraction levels for key
performance indicator gains.

Division and definition of embedded system design cycle into three distinct abstraction
levels are influenced by current industry practices’ needs and gaps. Nevertheless, the holistic
methodology spanning the complete design cycle is the preferred solution irrespective of the
abstraction level definitions introduced in this work.

Similarly, the idea to keep the methodology modular and exercises the principle of
separation-of-concern principle is vital. It gives system engineers the freedom to nail down
their module’s configuration and design without being dependent on others’ outcomes. There-
fore, the modular setup of POEM enables model co-development and team collaboration and
maximizes the reuse of existing models for a power performance integrated analysis.

Performance and power co-optimization has an added challenge in terms of finding out the
right system level use case. It is challenging to identify the system level use cases critical for
both power and performance points of view. This challenge is because performance critical
use case targets maximum throughput, and critical power use cases focus on low throughput
and idle periods.

7.2 Future Work Directions

The holistic, multi-abstraction and modular approach of POEM prefers offline connection be-
tween functional stimuli and power modeling framework. The integration of state-residencies
is currently based on an offline connection (based on functional traces), which can be shared
asynchronously. This enables separate refinements of the power model, e.g. for technology
scaling or power domain definition.

An integrated simulation will also support feedback loops, where the use case may demand
it. The Docea has started providing support for APIs, and these APIs can establish a
connection with the SystemC module of application and performance models. Future work

98

7 Conclusion and Future Work Directions

may include automating the design space exploration against certain power and performance
constraints set by the designers.

As Docea also provides a thermal solver, one future direction could be to integrate the
thermal analysis with power and performance. Transition power modeling is not part of
POEM. In the future, this missing contributor can be included in power modeling.

99

List of Figures

2.1 Y-chart shown as a concentric circles, representing different abstraction level
in three different domains [7]. The innermost circle corresponds to the lowest
abstraction level, and the abstraction level increases as the distance of the
concentric circles from the center increases. Fast and accurate system modeling
of heterogeneous, multicore system on chip needs to be done at the highest
abstraction level: system level. It corresponds to actual chip or prototype
boards in the physical domain, systems in the behavioral domain (even above
algorithms), and CPU, memory blocks in the structural domain. 7

2.2 Contemporary design flow of an embedded system and an overview of the
relation between design abstraction, design detail and simulation time: The
embedded system is divided into four abstraction levels. Simultaneously,
design specifications sit at the top, and the system level, also known as the
electronics system level (ESL), is the first abstraction level derived based on
customer-provided design specifications. The abstraction level is the highest,
the time required for a system level use case is the lowest, and very few
design details are known at this point. The hierarchy of the funnels is to
visualize the available field of design space exploration. The complete design
space exploration field is accessible from the top where the design specification
resides. These streams are further divided into three abstraction levels. Register
transfer level Design is the first, and the transistor level is the last abstraction
level in the hardware stream. Similarly, software written in C/C++ is the first,
and executable is the last abstraction level in the software stream. 8

2.3 POEM: A multi-abstraction level methodology, estimating KPIs at architectural,
software, and hardware abstraction level with a common power modeling
framework. That implies a methodology in which the modules addressing
functional simulation, power modeling, or application development are agnos-
tic concerning each other. 28

3.1 Node of a task graph: Input is the abstract communication data coming from
SC_fifos connected to the input ports and finally ending up in input buffers.
The method/function SC_THREAD controls the node behavior and processes
the data to the output buffer. The output buffers transfer data to the output
FIFO channels. According to the provided mapping information, the Req_start
member of the task graph node requests execution of the task on an underlying
architecture. 34

100

List of Figures

3.2 Illustration of source, sink, internal and autonomous nodes. FIFO buffers
(communication channels) between these show the relation between input and
output ports. 35

3.3 A piece of configuration file depicting a task’s specification using all or a subset
of task graph node parameters. 37

3.4 During the first step, the node waits for the release time of the task to expire,
and in the second step, it waits for input ports to read the communication data.
The third step is the core execution state of the execution flow, and the task
graph node can take ACTIVE, PREEMPTED, or PENDING states depending
upon the situation. Fourth is the final step, and the task graph node finishes its
job and puts execution flow into the COMPLETED state. 39

3.5 A configuration file is shown (right), consisting of three entries for task priority,
period, and debug option. And the corresponding hierarchy of the class in the
configuration file is shown on the left side. 41

3.6 Task graph creation flow: It consists of four steps and starts with the regis-
tration of all the resources to instantiating task graph nodes to configuration
nodes’ internal behavior to map the task to architecture model to connection
establishment. 42

3.7 A piece of configuration file depicting three tasks and their specifications using
all or a subset of task graph node parameters. 44

3.8 An enhanced (internal) view of the Task Scheduler Interface. It acts as a
Real-time operating system as it controls the functionality and manages the
data-flow between the task graph nodes and processing elements. 47

3.9 Virtual Engine processing element internal flow: In a Virtual Engine, the
execution flow starts with a wait state. The start signal notifies about the task to
be simulated. It could be a new task or an already running task that resumes.
The wait statement in SystemC simulates the execution time of the current task
in a Virtual Engine. The wait state of a task graph node is preemptable by a
SystemC event, given that the execution time is greater than the current waited
time at the point of the SystemC event preempting the task. As soon as the
waited time is greater than the execution time, it ends. 49

3.10 Docea flow: At the top of the hierarchy sits System, Subsystem, or Component.
A System contains the Subsystems or Components to give the flexibility and
ease of modeling components and reusability in different projects. 51

3.11 Generation of computable power model from a web-based Docea™ Power
Analytics: An offline script produces a computational model using power
interface information in the form of a JSON file. It is also seen as a Python
power calculator. It gives in-feed to Docea™ Power Simulator and Python
environment configurable by control power input parameters, i.e., voltage,
frequency, modes, activity ratio. [89] . 53

101

List of Figures

4.1 POEM: Layer-1) application modeled as a task graph mapped to processing
elements of the performance model. Layer-2) SystemC simulation of Layer-1
generates performance and power stimuli, mapped to the power database, and
re-simulated for power vs. time for different configurations. 56

4.2 Abstract representation of main functional blocks of a cellular modem (below)
and of a task graph mapped to the blocks (above). 59

4.3 Mapping of the hardware accelerator’s stimuli (in the form of VCD) gener-
ated as a result of SystemC simulation of the performance model, on to the
Coprocessor in the power model with the help of JSON file. 64

5.1 Network application task graph sequence shown with seven task graph nodes
and FIFO channels in between them after analyzing with a virtual engine. . . 73

5.2 System’s corresponding data throughput (a) and packet throughput (b) (con-
sisting of a single virtual engine) at different input data rates and packet
sizes. 75

5.3 Virtual engine usage by each task for maximum throughput. Firewall Classify
and Route are the three tasks that contribute towards the virtual engine usage,
respectively, for all three packet sizes. 76

5.4 System’s corresponding data throughput (a) and packet throughput (b) (con-
sisting of multiple virtual engines) at different input data rates and packet
sizes. 77

5.5 Average execution latency of the tasks on the corresponding engines for 500
MHz (a) and 1.5 GHz (b). 78

5.6 Average execution latency of the tasks on the corresponding engines for 2 CPU
core (1.5 GHz) configuration. 80

5.7 System’s performance for 2 CPU cores (1.5 GHz) a) data throughput, b) packet
throughput. 81

5.8 System’s performance for 3 CPU cores at 1.5 GHz frequency at three different
packet sizes, the system run with 256-bytes packet size can archive max output
throughput. 83

5.9 Average execution latency of the tasks on their corresponding engines for 3
CPU core (1.5 GHz) configuration. 83

5.10 Average execution latency of the tasks on their corresponding engines for 3
CPU core (1.5 GHz) with improved memory block. 84

5.11 System performance for 3 CPU cores (1.5 GHz) with improved memory block. 85
5.12 Configuration_1: Use case modeled in the form of task graphs (above) mapped

on to network processor performance model (below) with 3 tiles of CPU and a
DMA. 87

5.13 Configuration_2: Use case modeled in the form of task graphs (above) mapped
on to network processor performance model (below) with 3 tiles of CPU and
a DMA. The difference from Configuration_1 is that the single firewall task is
split into two nodes and mapped to two different tiles. 88

102

List of Figures

5.14 Throughput and power numbers, a) throughput of configurations over fre-
quency for 64-byte packet size, b) power dissipation over frequency for 64-byte
packet size. 89

5.15 Throughput and power numbers, a) Throughput for different packet sizes,
Vdd = 0.9 V, t = 4 ms, b) power dissipation for different packet sizes, Vdd = 0.9 V,
t = 4 ms. 90

5.16 A top-level view of modeled network processor hardware in PA Ultra. CPU
and DMA are made of generic VPUs and configured to perform specified
functions. 91

5.17 Modeling of network processor’s application with task graph in PA Ultra.
Seven tasks and their sequence are depicted, and it can be seen that they have
identical order and sequence as in POEM. 92

6.1 POEM: A block-level overview of the POEM at software abstraction level. This
modular setup is capable of step-by-step refinements, whether application
development, architecture resource selection, or average power analysis. 95

6.2 A block-level overview of the POEM at a hardware abstraction level: How are
test-cases triggered? After flashing the software or use case on the performance
model (that consists of FPGA or prototype hardware at a hardware abstraction
level). Next, collection of the relevant parameters and post-processing with
scripts to get the value change dump file use able by power molding framework
to re-simulate and generate power trace over time. 96

103

List of Tables

3.1 A task execution workload (workload_obj) mapped on a Virtual Engine . . 31
3.2 A typical task execution workload (workload_obj) mapped on a DMA channel 32
3.3 A typical task execution workload (workload_obj) mapped on a CPU with

instruction and data caches . 33
3.4 General parameters of a task graph node . 36
3.5 Main function members of a task graph node . 37
3.6 Main function and variable members of tg_constructor 43

4.1 Distinct functional states of a tile and corresponding power states 63

5.1 Number of instructions of a network processor application tasks with CPI=1.2 71
5.2 Network processor specifications . 72
5.3 Virtual engine workload load for different tasks 74
5.4 Use case modeled in the form of task graphs mapped on to single virtual engine 74
5.5 Use case modeled in the form of task graphs mapped on to 3 virtual engines . 76
5.6 Use case modeled in the form of task graphs mapped on to network processor

performance model with 2 CPU cores and a DMA 79
5.7 Use case modeled in the form of task graphs mapped on to network processor

performance model with 3 CPU cores and a DMA 82
5.8 Comparison between POEM and PA Ultra . 91

104

Listings

3.1 Definition of input with value conversion, It is possible to connect an input
to power model parameters and convert input values for each power model
parameter. In the expression, the input value is identified by the tag input. . . 53

4.1 A piece of VCD file generated as a result of SystemC simulation of the perfor-
mance model of the hardware accelerator. 64

4.2 JSON file for mapping of the hardware accelerator’s stimuli generated as a
result of SystemC simulation of the performance model, on to the Co-processor. 67

105

Bibliography

[1] B. Raaf, M. Faerber, B. Badic, and V. Frascolla. “KEY TECHNOLOGY ADVANCEMENTS
DRIVING MOBILE COMMUNICATIONS FROM GENERATION TO GENERATION.”
In: Intel Technology Journal 18.1 (2014).

[2] G. E. Moore. “Cramming more components onto integrated circuits.” In: IEEE solid-state
circuits society newsletter 20.3 (2006).

[3] J. Yang, X. Ge, and Y. Zhong. “How Much of Wireless Rates Can Smartphones Support
in 5G Networks?” In: IEEE Network 33.3 (2018), pp. 122–129.

[4] GSMA™ Intelligence. https://www.gsmaintelligence.com. Accessed: 2020-02-23.

[5] V. Ilderem. “1.4 5G Wireless Communication: An Inflection Point”. In: 2019 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE. 2019, pp. 35–39.

[6] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli. “System-level
design: orthogonalization of concerns and platform-based design”. In: IEEE transactions
on computer-aided design of integrated circuits and systems 19.12 (2000), pp. 1523–1543.

[7] D. Gajski and R. H. Kuhn. “New VLSI Tools - Guest Editors’ Introduction”. In: IEEE
Computer 16.12 (1983), pp. 11–14.

[8] Y. Veller and S. Matalon. “Why you should optimize power at the ESL–Whitepaper”. In:
{Online} http://go. mentor. com/cvtq (2010).

[9] G. Martin, B. Bailey, and A. Piziali. ESL design and verification: a prescription for electronic
system level methodology. Elsevier, 2010.

[10] F. Ghenassia et al. Transaction-level modeling with SystemC. Springer, 2005.

[11] P. R. Panda. “SystemC: a modeling platform supporting multiple design abstractions”.
In: Proceedings of the 14th international symposium on Systems synthesis. 2001, pp. 75–80.

[12] L. Cai, D. Gajski, and M. Olivarez. “Introduction of system level architecture exploration
using the SpecC methodology”. In: ISCAS 2001. The 2001 IEEE International Symposium
on Circuits and Systems (Cat. No. 01CH37196). Vol. 5. IEEE. 2001, pp. 9–12.

[13] C. Spear. SystemVerilog for verification: a guide to learning the testbench language features.
Springer Science & Business Media, 2008.

[14] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. “The pascal
visual object classes (voc) challenge”. In: International journal of computer vision 88.2
(2010), pp. 303–338.

[15] R. K. Gupta. Co-synthesis of hardware and software for digital embedded systems. Vol. 329.
Springer Science & Business Media, 2012.

106

https://www.gsmaintelligence.com

Bibliography

[16] Synopsys®. https://www.synopsys.com. Accessed: 2019-02-23.

[17] Cadence®design systems. https://www.cadence.com. Accessed: 2019-02-23.

[18] A. Donlin. “Transaction level modeling: flows and use models”. In: International Confer-
ence on Hardware/Software Codesign and System Synthesis, 2004. CODES+ ISSS 2004. IEEE.
2004, pp. 75–80.

[19] T. Kogel. “Tlm peripheral modeling for platform-driven esl design”. In: Technical report,
CoWare Inc. (2006).

[20] J. Aynsley et al. “OSCI TLM-2.0 language reference manual”. In: Open SystemC Initiative
(OSCI) (2009), p. 15.

[21] Y. Yi, D. Kim, and S. Ha. “Fast and accurate cosimulation of MPSoC using trace-driven
virtual synchronization”. In: IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems 26.12 (2007), pp. 2186–2200.

[22] A. Chandrakashan and R. Brodersen. Low power digital CMOS design. 1996.

[23] M. Sharma, R. Gautam, and M. A. Khan. Design and Modeling of Low Power VLSI Systems.
IGI Global, 2016.

[24] S. McCloud. “Low-Power RTL Report”. In: Calypto Design Systems (2012).

[25] L. Benini and G. De Micheli. “Automatic synthesis of low-power gated-clock finite-state
machines”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 15.6 (1996), pp. 630–643.

[26] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou. “Precomputation-
based sequential logic optimization for low power”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 2.4 (1994), pp. 426–436.

[27] L. W. Nagel. “SPICE2: A computer program to simulate semiconductor circuits”. In: Ph.
D. dissertation, University of California at Berkeley (1975).

[28] P. E. Design. “Tools Group”. In: Philips Research, DIESEL User Manual, version 2 (2001).

[29] R. P. Llopis and K. Goossens. “The petrol approach to high-level power estimation”.
In: Low Power Electronics and Design, 1998. Proceedings. 1998 International Symposium on.
IEEE. 1998, pp. 130–132.

[30] V. Tiwari, S. Malik, and A. Wolfe. “Power analysis of embedded software: a first
step towards software power minimization”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 2.4 (1994), pp. 437–445.

[31] J. Laurent, N. Julien, E. Senn, and E. Martin. “Functional level power analysis: An
efficient approach for modeling the power consumption of complex processors”. In:
Proceedings of the conference on Design, automation and test in Europe-Volume 1. IEEE. 2004,
p. 10666.

[32] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, and S. Blionas. “Instruction
level energy modeling for pipelined processors”. In: Journal of Embedded Computing 1.3
(2005), pp. 317–324.

107

https://www.synopsys.com
https://www.cadence.com

Bibliography

[33] E. Senn, J. Laurent, N. Julien, and E. Martin. “SoftExplorer: estimation, characterization,
and optimization of the power and energy consumption at the algorithmic level”. In:
Intl. workshop on power and timing modeling, optimization and simulation. Springer. 2004,
pp. 342–351.

[34] V. S. Adve and M. K. Vernon. “Parallel program performance prediction using deter-
ministic task graph analysis”. In: ACM Transactions on Computer Systems (TOCS) 22.1
(2004), pp. 94–136.

[35] S. Chakraborty, S. Künzli, and L. Thiele. “A General Framework for Analysing System
Properties in Platform-Based Embedded System Designs.” In: Date. Vol. 3. Citeseer.
2003, p. 10190.

[36] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. “Exploring trade-offs in performance
and programmability of processing element topologies for network processors”. In:
Network Processor Design: Issues and Practices 2 (2003), pp. 1–5.

[37] L. Thiele, S. Chakraborty, M. Gries, and S. Kunzli. “4 Design Space Exploration of
Network Processor”. In: Network Processor Design: Issues and Practices 1 (2003).

[38] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert. “Embedded software
in network processors—models and algorithms”. In: International Workshop on Embedded
Software. Springer. 2001, pp. 416–434.

[39] L. Benini, R. Hodgson, and P. Siegel. “System-level power estimation and optimization”.
In: Proceedings of the 1998 international symposium on Low power electronics and design.
1998, pp. 173–178.

[40] M. Streubühr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich. “ESL power and
performance estimation for heterogeneous MPSoCs using SystemC”. In: FDL 2011
Proceedings. IEEE. 2011, pp. 1–8.

[41] S. Honnavara-Prasad. “Overview of IEEE1801-2015: Standard for Design and Verification
of Low-Power, Energy-Aware Electronic Systems”. In: Proceedings of the 2016 International
Symposium on Low Power Electronics and Design. 2016, pp. 186–186.

[42] A. A. Garcia, J. Gobert, T. Dombek, H. Mehrez, and F. Petrot. “Cycle-accurate energy
estimation in system level descriptions of embedded systems”. In: 9th international
conference on electronics, circuits and systems. Vol. 2. IEEE. 2002, pp. 549–552.

[43] T. Diop, N. E. Jerger, and J. Anderson. “Power modeling for heterogeneous processors”.
In: Proceedings of workshop on general purpose processing using GPUs. 2014, pp. 90–98.

[44] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli. “Regression models for behavioral
power estimation”. In: Integrated Computer-Aided Engineering 5.2 (1998), pp. 95–106.

[45] S. Lee, A. Ermedahl, S. L. Min, and N. Chang. “An accurate instruction-level energy
consumption model for embedded risc processors”. In: Acm Sigplan Notices 36.8 (2001),
pp. 1–10.

108

Bibliography

[46] S. K. Rethinagiri, R. B. Atitallah, and J.-L. Dekeyser. “A system level power consumption
estimation for mpsoc”. In: 2011 International Symposium on System on Chip (SoC). IEEE.
2011, pp. 56–61.

[47] S. E. Lee and N. Bagherzadeh. “A high level power model for Network-on-Chip (NoC)
router”. In: Computers & Electrical Engineering 35.6 (2009), pp. 837–845.

[48] P. Lieverse, P. Van Der Wolf, K. Vissers, and E. Deprettere. “A methodology for architec-
ture exploration of heterogeneous signal processing systems”. In: Journal of VLSI signal
processing systems for signal, image and video technology 29.3 (2001), pp. 197–207.

[49] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere. “System level design with
SPADE: an M-JPEG case study”. In: IEEE/ACM International Conference on Computer
Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No. 01CH37281).
IEEE. 2001, pp. 31–38.

[50] V. D. Zivkovic, E. Deprettere, P. Van der Wolf, and E. De Kock. “Design space exploration
of streaming multiprocessor architectures”. In: IEEE Workshop on Signal Processing
Systems. IEEE. 2002, pp. 228–234.

[51] V. D. Zivkovic, E. Deprettere, E. De Kock, and P. van der Wolf. “Fast and accurate
multiprocessor architecture exploration with symbolic programs”. In: 2003 Design,
Automation and Test in Europe Conference and Exhibition. IEEE. 2003, pp. 656–661.

[52] E. A. de Kock, W. Smits, P. van der Wolf, J.-Y. Brunel, W. Kruijtzer, P. Lieverse, K. A.
Vissers, and G. Essink. “YAPI: Application modeling for signal processing systems”. In:
Proceedings of the 37th Annual Design Automation Conference. 2000, pp. 402–405.

[53] A. Turjan, B. Kienhuis, and E. Deprettere. “Translating affine nested-loop programs
to process networks”. In: Proceedings of the 2004 international conference on Compilers,
architecture, and synthesis for embedded systems. 2004, pp. 220–229.

[54] A. D. Pimentel, C. Erbas, and S. Polstra. “A systematic approach to exploring embedded
system architectures at multiple abstraction levels”. In: IEEE Transactions on Computers
55.2 (2006), pp. 99–112.

[55] H. L. Muller et al. Simulating computer architectures. Citeseer, 1993.

[56] T. Wild, A. Herkersdorf, and G.-Y. Lee. “TAPES—Trace-based architecture performance
evaluation with SystemC”. In: Design Automation for Embedded Systems 10.2-3 (2005),
pp. 157–179.

[57] A. Bakshi, V. K. Prasanna, and A. Ledeczi. “MILAN: A model based integrated sim-
ulation framework for design of embedded systems”. In: Proceedings of the 2001 ACM
SIGPLAN workshop on Optimization of middleware and distributed systems. 2001, pp. 82–93.

[58] S. Mohanty and V. K. Prasanna. “Rapid system-level performance evaluation and
optimization for application mapping onto SoC architectures”. In: 15th Annual IEEE
International ASIC/SOC Conference. IEEE. 2002, pp. 160–167.

109

Bibliography

[59] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. “Metropolis: An integrated electronic system design environment”. In:
Computer 36.4 (2003), pp. 45–52.

[60] C. Jaber, A. Kanstein, L. Apvrille, A. Baghdadi, P. Le Moenner, and R. Pacalet. “High-
level system modeling for rapid hw/sw architecture exploration”. In: 2009 IEEE/IFIP
International Symposium on Rapid System Prototyping. IEEE. 2009, pp. 88–94.

[61] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and R. Pacalet. “A UML-
based environment for system design space exploration”. In: 2006 13th IEEE International
Conference on Electronics, Circuits and Systems. IEEE. 2006, pp. 1272–1275.

[62] B. Kienhuis, F. Deprettere, P. van der Wolf, and K. Vissers. “The Y-chart approach”. In:
Embedded processor design challenges. Springer. 2002, p. 18.

[63] M. Waseem, L. Apvrille, R. Ameur-Boulifa, S. Coudert, and R. Pacalet. “Abstract
application modeling for system design space exploration”. In: 9th EUROMICRO
Conference on Digital System Design (DSD’06). IEEE. 2006, pp. 331–337.

[64] S. Mahadevan, K. Virk, and J. Madsen. “ARTS: A SystemC-based framework for multi-
processor systems-on-chip modelling”. In: Design Automation for Embedded Systems 11.4
(2007), pp. 285–311.

[65] A. Sarma. “Introduction to SDL-92”. In: Computer Networks and ISDN Systems 28.12
(1996), pp. 1603–1615.

[66] A. Baghdadi, N.-E. Zergainoh, W. O. Cesario, and A. A. Jerraya. “Combining a per-
formance estimation methodology with a hardware/software codesign flow support-
ing multiprocessor systems”. In: IEEE Transactions on Software Engineering 28.9 (2002),
pp. 822–831.

[67] A. Varma, E. Debes, I. Kozintsev, P. Klein, and B. Jacob. “Accurate and fast system-
level power modeling: An XScale-based case study”. In: ACM Transactions on Embedded
Computing Systems (TECS) 7.3 (2008), pp. 1–20.

[68] G. B. Vece and M. Conti. “Power estimation in embedded systems within a SystemC-
based design context: the PKtool environment”. In: 2009 Seventh Workshop on Intelligent
solutions in Embedded Systems. IEEE. 2009, pp. 179–184.

[69] D. Greaves and M. Yasin. “TLM POWER3: Power estimation methodology for SystemC
TLM 2.0”. In: Models, Methods, and Tools for Complex Chip Design. Springer, 2014, pp. 53–
68.

[70] T. Bouhadiba, M. Moy, and F. Maraninchi. “System-level modeling of energy in TLM
for early validation of power and thermal management”. In: 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE. 2013, pp. 1609–1614.

[71] T. Bouhadiba, M. Moy, F. Maraninchi, J. Cornet, L. Maillet-Contoz, and I. Materic.
“Co-simulation of functional SystemC TLM models with power/thermal solvers”. In:
2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum. IEEE. 2013, pp. 2176–2181.

110

Bibliography

[72] M. Moy, C. Helmstetter, T. Bouhadiba, and F. Maraninchi. “Modeling Power Consump-
tion and Temperature in TLM Models”. In: Leibniz Transactions on Embedded Systems 3.1
(2016), pp. 03–1.

[73] C. Helmstetter and M. Moy. “LIBTLMPWT: Model power-consumption and temperature
in systemc/tlm”. In: Distributed under the terms of the GNU General Public License version
2 (2013).

[74] R. Piscitelli and A. D. Pimentel. “A signature-based power model for mpsoc on fpga”.
In: VLSI Design 2012 (2012).

[75] K. Gilles. “The semantics of a simple language for parallel programming”. In: Information
processing 74 (1974), pp. 471–475.

[76] K. Grüttner, P. A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera, E. Villar,
C. Brandolese, W. Fornaciari, G. Palermo, et al. “COMPLEX: Codesign and power
management in platform-based design space exploration”. In: 2012 15th Euromicro
Conference on Digital System Design. IEEE. 2012, pp. 349–358.

[77] K. Grüttner, P. A. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stattelmann, B. Sander,
O. Bringmann, W. Nebel, and W. Rosenstiel. “An ESL timing & power estimation and
simulation framework for heterogeneous SoCs”. In: 2014 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV). IEEE.
2014, pp. 181–190.

[78] K. Grüttner, K. Hylla, S. Rosinger, and W. Nebel. “Towards an ESL framework for
timing and power aware rapid prototyping of HW/SW systems”. In: 2010 Forum on
Specification & Design Languages (FDL 2010). IET. 2010, pp. 1–6.

[79] C. Trabelsi, R. Ben Atitallah, S. Meftali, J.-L. Dekeyser, and A. Jemai. “A model-driven
approach for hybrid power estimation in embedded systems design”. In: EURASIP
Journal on Embedded Systems 2011 (2011), pp. 1–15.

[80] R. B. Atitallah, S. Niar, and J.-L. Dekeyser. “MPSoC power estimation framework at
transaction level modeling”. In: 2007 Internatonal Conference on Microelectronics. IEEE.
2007, pp. 245–248.

[81] A. Barreteau. “System-Level Modeling and Simulation with Intel® CoFluent™ Studio”.
In: Complex Systems Design & Management. Springer, 2016, pp. 305–306.

[82] R. Dunford, Q. Su, and E. Tamang. “The pareto principle”. In: University of Plymouth
(2014).

[83] A. S. Initiative et al. “IEEE 1666 Standard: SystemC Language Reference Manual., 2011”.
In: URL: http://www. accellera. org (2011).

[84] H. Ahmadzay. “Design and Implementation of a Flexible Task Graph for Power and
Performance Simulation Models”. MA thesis. Technische Universität München, 2018.

[85] M. M. Ayub, H. Ahmadzay, J. Eckmüller, and F. Kreupl. “Electronic System Level Power
and Performance Analysis for Multi-Processor-System-on-Chip”. In: 2019 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE. 2019, pp. 1–2.

111

Bibliography

[86] R. Joseph, D. Brooks, and M. Martonosi. “Live, runtime power measurements as a
foundation for evaluating power/performance tradeoffs”. In: Workshop on Complexity
Effectice Design WCED, held in conjunction with ISCA. Vol. 28. 2001.

[87] M. Pedram and J. M. Rabaey. Power aware design methodologies. Springer Science &
Business Media, 2002.

[88] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J. Irwin, and A. Sivasubra-
maniam. “vEC: virtual energy counters”. In: Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering. 2001, pp. 28–
31.

[89] Intel® Docea™. https://www.intel.com/content/www/us/en/system-modeling-and-
simulation/docea/overview.html. Accessed: 2019-02-23.

[90] R. A. Bergamaschi and Y. W. Jiang. “State-based power analysis for systems-on-chip”.
In: Proceedings 2003. Design Automation Conference (IEEE Cat. No. 03CH37451). IEEE. 2003,
pp. 638–641.

[91] B. Kienhuis, E. F. Deprettere, P. Van der Wolf, and K. Vissers. “A methodology to design
programmable embedded systems”. In: International Workshop on Embedded Computer
Systems. Springer. 2001, pp. 18–37.

[92] A. B. Ameur, D. Martinot, P. Guitton-Ouhamou, V. Frascolla, F. Verdier, and M. Auguin.
“Power and performance aware electronic system level design”. In: 2017 12th IEEE
International Symposium on Industrial Embedded Systems (SIES). IEEE. 2017, pp. 1–4.

[93] K. Grüttner, P. A. Hartmann, T. Fandrey, K. Hylla, D. Lorenz, S. Stattelmann, B. Sander,
O. Bringmann, W. Nebel, and W. Rosenstiel. “An ESL timing & power estimation and
simulation framework for heterogeneous SoCs”. In: (SAMOS XIV). July 2014, pp. 181–
190. doi: 10.1109/SAMOS.2014.6893210.

[94] R. Ohlendorf. “A network processor architecture with application-optimized reconfig-
urable processing paths (FlexPath NP)”. PhD thesis. Technische Universität München,
2011.

[95] Platform Architect by Synopsys®. https://www.synopsys.com/-verification/virtual-
prototyping/platform-architect.html.

[96] P. Stanley-Marbell. “What is IEEE P1801 (unified power format)?” In: ACM SIGDA
Newsletter 37.19 (2007), pp. 1–1.

112

https://www.intel.com/content/www/us/en/system-modeling-and-simulation/docea/overview.html
https://www.intel.com/content/www/us/en/system-modeling-and-simulation/docea/overview.html
http://dx.doi.org/10.1109/SAMOS.2014.6893210
https://www.synopsys.com/-verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/-verification/virtual-prototyping/platform-architect.html

Acronyms

3GPP 3rd generation partnership project. 2

AAL architectural abstraction level. 55

AP application processor. 2

API application programming interface. 25

AT approximately-timed. 10, 26

BCET best-case execution time. 20

CA cycle-accurate. 9

CDFG control data flow graphs. 25

CPU central processing unit. 7, 100

DAG directed acyclic graphs. 25

DMA direct memory access. 79

DSE design space exploration. iii

DVFS dynamic voltage and frequency scaling. 5

EDA electronic design automation. 9, 26

ESL electronic system level. iii

FLPA functional level power analysis. 13

FSM finite state machine. 14

GSMA global system for mobile communications. 2

GTL generic task library. 23

HAL hardware abstraction level. 94

HW hardware. 3

113

Acronyms

IDPA Intel® Docea™ power analytics. 50

IDPS Intel® Docea™ power simulator. 50

ILPA instruction level power analysis. 13

IMU instruction management unit. 13

JSON java script object notation. 25

KPN kahn process networks. 25

LT loosely-timed. 10, 26

MPSoCs multiprocessors-system-on-chips. iii

NNLS non-negative least square. 15

NoC network on chips. 15

OS operating system. 10

OSCI open SystemC initiative. 10

PA Ultra platform architect ultra. 87

POEM power optimization and exploration methodology. 4, 27

PSM power state machine. 14

PU processing unit. 13

PV programmers view. 10

PVT programmers view with timing. 10

RTC run-to completion. 46

RTL register transfer level. iii

RTOS real time operating services. 45

SAL software abstraction level. 93

SDL specification and description language. 21

SPU symbolic program unit. 17

SW software. 3

114

Acronyms

TLM transaction-level modeling. 9

TTI transmission time interval. 26

UPF unified power format. 15

VCD value change dump. 25

VPU virtual processing unit. 23

WCET worst-case execution time. 20

115

Publications of the Author

[1] Ayub, Muhammad Mudussir and Kreupl, Franz. "A Modular and Distributed Setup
for Power and Performance Analysis of Multi-Processor System-on-Chip at Electronic
System Level". In: 2020 IEEE 39th International Performance Computing and Communications
Conference (IPCCC), 2020, 1–8, IEEE.

[2] Ayub, Muhammad Mudussir and Ahmadzay, Habibullah and Eckmüller, Josef and
Kreupl, Franz. "Electronic System Level Power and Performance Analysis for Multi-
Processor-System-on-Chip". In: 2019 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), 2019, 1–2, IEEE.

[3] Frascolla, Valerio and Sue, Jonathan Ah and Ayub, Muhammad Mudussir and Miesniak,
Krzysztof and Hasholzner, Ralph and Englisch, Jürgen and Ben-Ameur, Amal. "Cross-layer
optimization in terminals". In: 2018 26th European Signal Processing Conference (EUSIPCO,
2018, 802–806, IEEE.

[4] Ayub, Muhammad Mudussir and Josef, Eckmuller and Francois, Philipp. "Intel Docea
Power Analyser Comparison with KV2, and Future of Power Modeling". In: Intel® Power
Summit (IPS), 2018, Intel® Internal Conference.

[5] Ayub, Muhammad Mudussir and Jürgen, Brück. "Pre-Silicon Power and Performance
Power Analysis with Physical Data Emulation (PDE) Framework". In: Intel® Software
Conference (ISC), 2017, Intel® Internal Conference.

116

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle Stellen,
die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen
entnommen sind, sind als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen in
dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden Quellen-
nachweis versehen. Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

München, date Name

	Acknowledgments
	Abstract
	Contents
	Introduction
	Embedded Systems
	Mobile Communication or Cellular Platforms

	Problem Statement
	Positioning of the Proposed Methodology Alongside State of the Art

	Fundamentals and State of the Art
	Background
	Electronics System Level (ESL)
	Modeling of Embedded Systems
	Transaction Level Modeling
	Power Consumption of Embedded Systems
	Power Management Techniques
	Power Analysis Approaches and Methods
	Power Model Development

	Related Work
	ESL Performance Estimation Frameworks
	ESL Power Estimation Frameworks

	Fundamentals
	Architectural Abstraction Level
	Software Abstraction Level
	Hardware Abstraction Level
	Holistic and Modular Methodology

	POEM: Power and Performance Optimization and Exploration Methodology
	Application Modeling
	Task Execution Model (Workload)
	Implementation of the Task-Graph in SystemC

	Architecture Modeling
	Task Scheduling and Resource Allocation
	Virtual-Engine

	Power Modeling
	Docea™

	Implementation of the Methodology at Architectural Abstraction Level
	Methodology: Overview
	Implementation of Application Model
	Implementation of Performance Model
	Implementation of Power Model
	Interface and Mapping

	Network Processor Case Study
	System level uses of Mobile Communication Platforms
	Network Processor Use Case
	Stand-Alone Application Simulation Using Virtual Engines
	Mapping All Tasks on a Single Virtual Engine
	Mapping Tasks on Multiple Virtual Engines

	Co-simulation of the Application and the Architecture Model
	Mapping Tasks on an Architecture Model With Two CPU Cores
	Mapping Tasks on an Architecture Model With Three CPU Cores
	Increasing the Memory Size and Result Analysis

	Power and Performance Co-Simulation
	Simulation Environment Settings and Goals

	Comparison with Platform Architect

	Integration of the Methodology At Software and Hardware Abstraction Levels
	POEM at Software Abstraction Level
	POEM at Hardware Abstraction Level

	Conclusion and Future Work Directions
	Conclusion
	Future Work Directions

	List of Figures
	List of Tables
	Listings
	Bibliography
	Acronyms
	Publications of the Author

