TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Medizin

Darstellung der Interaktion zwischen Lipopolysacchariden und Hypoxie in einem in-vitro-Modell chronischer Wundverhältnisse

Cordelia Simone von Loeper

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades einer Doktorin der Medizin genehmigten Dissertation.

Vorsitz:		Prof. Dr. Ernst J. Rummeny
Prüfer der Dissertation:	1.	Prof. Dr. Arndt F. Schilling
	2.	Prof. Dr. Bernhard Holzmann

Die Dissertation wurde am 14.07.2021 bei der Technischen Universitär München eingereicht und durch die Fakultät für Medizin am 16.02.2022 angenommen.

In Erinnerung meinem Vater Arthur Reinshagen

und in Liebe meinem Mann Nikolai gewidmet.

I. Inhaltsverze	eichnis	4
II. Abbildungsv	verzeichnis	
III. Tabellenver	zeichnis	
III.I. Tabellenve	erzeichnis Anhang	
IV. Abkürzungs	verzeichnis	11

1. Einleitung	14
1.1. Physiologische Grundlagen der Wundheilung	14
1.2. Wundheilungskaskade	15
1.2.1. Exsudation	15
1.2.2. Granulation	17
1.2.3. Epithelisierung	18
1.3. Angiogenese	19
1.4. Vascular Endothelial Growth Factor - VEGF	20
1.4.1. Aufgaben in der Angiogenese	26
1.4.2. Regulation	27
1.4.3. Weitere Aufgaben	27
1.5. Chronische Wunden	28
1.5.1. Bakterielle Besiedelung	29
1.6. Wirkung von Lipopolysacchariden auf das Immunsystem	29
2. Fragestellung	31
3. Material	32
3.1. Geräte und Laborbedarf	32
3.2. Verbrauchsmaterial	32
3.3. Chemikalien, Lösungen und Puffer	33
3.4. Auswertungsgeräte	33
4. Methoden	
4.1. Wundmilieusimulation	34
4.1.1. Kollagenproduktion	34
4.1.2. Peripheren Blood Cell solution (PBCs) Herstellung	35
4.1.3. Bakterielle Besiedelung	35

4.1.4. LPS-Blockierung	35
4.1.5. Versuchsaufbau	36
4.1.6. Inkubation	36
4.2. Proteome Profiler Antibody Array Versuche.	36
4.2.1. Proteome Profiler Human Angiogenesis Array	37
4.2.2. Proteome Profiler Human Cytokine Array	39
4.3. Enzyme linked immunosorbent assay (ELISA) Versuche	41
4.3.1. Quantikine ^R ELISA - Human TSP-1	42
4.3.2. Quantikine ^R ELISA - Human VEGF	43
4.3.3. Quantikine ^R ELISA - Human IL-8	44
4.3.4. Quantikine ^R ELISA - Human CCL5	44
4.4. Statistische Auswertungsmethode	46
4.4.1. Proteome Profiler	46
4.4.1. ELISA	46

5. Ergebnisse	
5.1. Expression angiogenetischer Proteine	
5.1.1. Auswirkungen von LPS, Normoxie und Hypoxie	49
5.2. Expression immunologisch wirkender Proteine	52
5.2.1. Auswirkungen von LPS, Normoxie und Hypoxie	53
5.3. Expression der Angiogenesefaktoren VEGF/TSP-1	55
5.3.1. Auswirkungen von LPS, Normoxie und Hypoxie	55
5.3.2. Auswirkungen vom LPS-Blocker	57
5.3.3. weiterführende Auswertungsanalysen	57
5.3.3.1. LPS-Vergleich	58
5.3.3.2. Normoxie/Hypoxie-Vergleich	58
5.4. Expression der Cytokine IL8/CCL5	60
5.4.1. Auswirkungen von LPS, Normoxie und Hypoxie	60
5.4.2. Auswirkungen vom LPS-Blocker	60
5.4.3. weiterführende Auswertungsanalysen	
5.4.3.1. LPS-Vergleich	
5.4.3.2. Normoxie/Hypoxie-Vergleich	65

6. Diskussion	57
6.1. Darstellung der Interaktion zwischen LPS und Hypoxie in einem in-vitro-	
Modell chronischer Wundverhältnisse	67
6.2. Auswirkungen von LPS, Normoxie und Hypoxie auf die Angiogenese	69
6.2.1. Auswirkungen auf proangiogenetische Faktoren	69
6.2.2. Auswirkungen auf antiangiogenetische Faktoren	71
6.2.3. Detaillierte Auswirkungsbetrachtung auf TSP-1 und VEGF	74
6.3. Auswirkungen von LPS, Normoxie und Hypoxie auf die	
Entzündungsmediatoren	76
6.3.1. Detaillierte Auswirkungsbetrachtung auf IL-8 und CCL5	79
6.4. LPS-Blocker-Funktionalität 8	81
6.4.1. LPS-Blocker – Gegenstand der Forschung	82
6.5. Kollagen-Nutzung	82
6.6. Limitationen der Studie	82
7. Zusammenfassung 8	34
8. Literaturverzeichnis 8	36
9. Anhang) 9
10. Danksagung 11	18

II. Abbildungsverzeichnis

Abbildung 4.1.:	Versuchsaufbau	36
Abbildung 4.2.:	ELISA-Versuchsparameter I	41
Abbildung 4.3.:	ELISA-Versuchsparameter II	42
Abbildung 4.4.:	ELISA-Verdünnungsreihe	42
Abbildung 5.1.:	Cawomat 200 IR Fotofilm Proteome Profiler Human	
	Angiogenesis Array nach 5 Minuten	48
Abbildung 5.26.:	Box-Plots Proteome Profiler Human Angiogenesis Array	52
Abbildung 5.7.:	Cawomat 200 IR Fotofilm Proteome Profiler Human	
	Cytokine Array	52
Abbildung 5.811.:	Box-Plots Proteome Profiler Cytokine Array Panel A	55
Abbildung 5.12.:	VEGF-ELISA-Versuchsergebnisse	56
Abbildung 5.13.:	TSP-1-ELISA-Versuchsergebnisse	56
Abbildung 5.14.:	IL-8-ELISA-Versuchsergebnisse	61
Abbildung 5.15.:	IL-8-ELISA-Versuchsergebnisse	61

III. Tabellenverzeichnis

Tabelle 1.1.:	Signalmoleküle Angiogenese	25
Tabelle 4.1.:	Versuchsproteine Proteine Proteome Profiler	
	Human Angiogenesis Array	39
Tabelle 4.2.:	Versuchszytokine Proteine Proteome Profiler	
	Human Cytokine Array	40
Tabelle 5.1.:	Ergebniszusammenfassung Proteome Profiler Human	
	Angiogenesis Array	49
Tabelle 5.2.:	Ergebniszusammenfassung Proteome Profiler Human	
	Cytokine Array Panel A	53
Tabelle 5.3.:	VEGF-Expressionsgegenüberstellung	56
Tabelle 5.4.:	TSP-1-Expressionsgegenüberstellung	57
Tabelle 5.5.:	Kolmogorov-Smirnov/Shapiro-Wilk Test VEGF, TSP-1	58
Tabelle 5.6.:	Kruskal-Wallis-Test VEGF, TSP-1	58
Tabelle 5.7.:	Friedman-Test VEGF, TSP-1	59
Tabellen 5.89.:	Wilcoxon-Test VEGF, TSP-1	59
Tabelle 5.10.:	IL-8-Expressionsgegenüberstellung	61
Tabelle 5.11.:	CCL5-Expressionsgegenüberstellung	61
Tabelle 5.12.:	Kolmogorov-Smirnov/Shapiro-Wilk Tests IL-8, CCL5	62
Tabelle 5.13.:	Kruskal-Wallis-Test IL-8, CCL5	63
Tabellen 5.1419.:	Mann-Whitney-Test IL-8, CCL5	64
Tabelle 5.20.:	Friedman-Test IL-8, CCL5	65
Tabellen 5.2122.:	Wilcoxon-Test IL-8, CCL5	65

III.I. Tabellenverzeichnis Anhang

Tabelle A1:	Ergebnisübersicht Proteome Profiler Human	
	Angiogenesis Array	99
Tabelle A2:	Minimum-/Maximumwerte, Median und 1. und 2.	
	Quartils Proteome Profiler Human Angiogenesis Array	100
Tabelle A3:	Ergebnisübersicht Proteome Profiler Human	
	Cytokine Array	101
Tabelle A4:	Minimum-/Maximumwerte, Median und 1. und 2.	
	Quartils Proteome Profiler Human Cytokine Array	102
Tabelle A5:	Well Pipetierungsübersicht Human TSP-1 1 ELISA	103
Tabellen A6-A8:	Absolute Ergebniswerte Quantikine ^R ELISA	
	Human TSP-1 (Messung 1; 2; 3)	103
Tabellen A9-A11:	Polynomische Konzentrationswerte Quantikine ^R	
	ELISA - Human TSP-1 (Messung 1; 2; 3)	104
Tabelle A12:	Well Pipetierungsübersicht Human VEGF ELISA	104
Tabellen A13-A15:	Absolute Ergebniswerte Quantikine ^R ELISA	
	Human VEGF (Messung 1; 2; 3)	104
Tabellen A16-A18:	Polynomische Konzentrationswerte Quantikine ^R	
	ELISA - Human VEGF (Messung 1; 2; 3)	105
Tabelle A19:	Well Pipetierungsübersicht Human IL-8 ELISA	105
Tabellen A20-A22:	Absolute Ergebniswerte Quantikine ^R ELISA	
	Human IL-8 (Messung 1; 2; 3)	105
Tabellen A23-A25:	Polynomische Konzentrationswerte Quantikine ^R	
	ELISA - Human IL8 (Messung 1; 2; 3)	106
Tabelle A26:	Well Pipetierungsübersicht Human CCL5 ELISA	106
Tabellen A27-A28:	Absolute Ergebniswerte Quantikine ^R ELISA	
	Human CCL5 vom 28.07.2014 (Messung 1; 2)	106
Tabellen A29-A30:	Polynomische Konzentrationswerte Quantikine ^R ELISA	
	Human CCL5 (Messung 1; 2)	107
Tabellen A31-A32:	Shapiro-Wilk-Test VEGF, TSP-1	107
Tabellen A33-A34:	Kruskal-Wallis-Test VEGF, TSP-1	108
Tabellen A35-A36:	Friedmann-Test VEGF	109
Tabellen A37-A42:	Wilcoxon-Test VEGF, TSP-1	111
Tabellen A43-A44:	Shapiro-Wilk-Test IL-8, CCL5	112

Tabellen A45-A48:	Kruskal-Wallis-Test zu IL-8, CCL5	113
Tabellen A49.16.:	Mann-Whitney-Test IL-8	115
Tabellen A50.16.:	Mann-Whitney-Test CCL5	115
Tabellen A51-A52:	Friedman-Test für IL-8, CCL5	115
Tabellen A53-A58:	Wilcoxon-Test IL-8, CCL5	117

IV. Abkürzungsverzeichnis

aFGF	Saurer Fibroblasten-Wachstumsfaktor
ADAMTS-1	A Disintegrin-like And Metalloproteinase with Thrombospondin-1
AIM	Serum freies Medium von Invitrogen®
av	average
bFGF	basic Fibroblast Growth Factor
°C	Grad Celsius
C5/C5a	Komplementkomponente 5/5a
CCL	CC-chemokin Ligand
CD	Cluster of Differentiation
COX-2	Cyklooxygenase-2
CO_2	Kohlenstoffdioxid
Col1	Kollagen
CRH	Corticotropin-releasing-Hormone
CRP	C-reaktives Protein
CXCL	CXC-Motiv-Chemokin
d	days = Tage
D.m.	Diabetes mellitus
DMEM	Dulbecco's Modified Eagle's Medium
eNOS	Endothelial Nitric-Oxide-Synthase
EDTA	Ethylendiamintetraazetat
EG-VEGF	Endocrine-gland-derived Vascular Endothelial Growth Factor
EGF	Epithelial Growth Factor
ELISA	Enzyme Linked Immunosorbent Assay
Flt-1	Fms-linke Tyrosinekinase-1
EZM	Extrazelluläre Matrix
FGF	Fibroblast Growth Factor
G-CSF	Granulocyte-Colony Stimulating Factor
GDNF	Glial cell line-derived Neurotrophic Factor
GM-CSF	Granulocyte Macrophage Colony Stimulating Factor
GROα	Growth-regulated protein alpha
Н	Hypoxie
h	hour/s = Stunde/n
HB-EGF	Heparin-binding EGF-like Growth Factor

HGF	Hepatocyte Growth Factor
HIF	Hypoxie-induzierter Faktor
HIF-1a	Hypoxie-induzierter Faktor 1 alpha
I-309	Syn: CCL1
I-TAC	Syn: CXCL11
IL	Interleukin
ICAM-1	Intercelluläres Adhäsionsmolekül 1
IL-1ra	Interleukin 1 Rezeptorantagonist
IFN-α	Interferon alpha
IFN-β	Interferon beta
IFN-γ	Interferon gamma
IGF-1	Insulin-like growth Factor 1
IGFBP	Insulin-like Growth Factor-binding Protein
IP-10	Interferon gamma-induced Protein 10
KDR	Kinase domain receptor
KGF-2	Keratinocyte Growth Factor-2
LAP	Latency-associated Peptide
LPS	Lipopolysaccharide
MCP-1	Makrophagen-Chemoattraktorprotein-1
mg	Milligramm
MIF	Macrophage migration Inhibitory Factor
MIP-1a	Macrophage Inflammatory Protein-1alpha
MIP-1β	Macrophage Inflammatory Protein-1beta
ml	Milliliter
MMP	Matrix-Metalloprotease
mRNA	messenger Ribonukleinsäure
Ν	Normoxie
NaOH	Natriumhydroxid
ng	Nanogramm
NO	Nitrogen oxid
NRG1-β1	Neuregulin-β1
O_2	Sauerstoff
PAI-1	Plasminogen Activator Inhibitor-1
paVK	periphere arterielle Verschlusskrankheit
PBCs	Periphere Blood Cell solution

PBS	Phosphate-buffered saline
PD-ECGF	Platelet-derived Endothelial Cell Growth Factor
PDGF	Platelet-derived Growth Factor
PECAM-1	Platelet Endothelial Cell Adhesion Molecule-1
PEDF	Pigment Epithelium-derived Factor
PF4	Plated Factor 4
pg	Picogramm
PIGF	Phosphatidylinositol-Glycan biosynthesis class F
rpm	rounds per minute
SDF-1	Stromal cell-derived Factor 1, Syn. CXCL12
StdAbw.	Standardabweichung
sTREM-1	soluble Triggering Receptor expressed on Myeloid cells-1
Syn.	Synonym
TGF-α	Transforming Growth Factor alpha
TGF-ß	Transforming Growth Factor beta
Tie-2	Tyrosinkinase-Rezeptor
TIMP	Tissue Inhibitor of Metalloproteinasen
TLR	Toll-like-Rezeptor
TNF-α	Tumornekrosefaktor-alpha
TNF-β	Tumornekrosefaktor-beta
tPA	tissue Plasminogen Aktivator
TRAF-6	Tumornekrosefaktor Receptor associated Factor-6
TSP-1	Thrombospondin-1
TSP-2	Thrombospondin-2
uPA	Urokinase-Typ Plasminogen-Aktivator
VE-Cadherin	Vascular Endothelial Cadherin
VEGF	Vascular Endothelial Growth Factor

1. Einleitung

1.1. Physiologische Grundlagen der Wundheilung

Nach der Definition des österreichischen Chirurgen Carl Ignatz Gussenbauer (1842-1903) sind "Wunden alle directen, offenen Continuitätstrennungen der Gewebe" und somit eine "morphologisch-funktionelle Störung einer Gewebeeinheit" (Oehmichen 1990). Den Prozess einer normalen erfolgreichen Wundheilung, der meist nicht länger als drei Wochen benötigen sollte (Dissemond 2006), beschrieben Barrientos, Stojadinovic und Kollegen als einen komplex-vielzelligen Prozess, der als Ziel den Wundverschluss und somit die Wiederherstellung der natürlichen Barrierefunktion des Körpers hat. Dieses Vorgehen beinhaltet ein komplexes dynamisches, teils parallel verlaufendes Zusammenspiel und eine erfolgreiche Koordination der Migration, Proliferation, Differenzierung, Proteinexpression und Enzymproduktion unterschiedlichster Zelltypen u.a. von Keratinozyten, Fibroblasten, Endothelzellen, Makrophagen und Blutplättchen und derer Wechselwirkungen sowohl untereinander als auch mit der Extrazellulären Matrix (EZM) und löslichen Mediatoren (Mast and Schultz 1996, Komarcevic 2000). Regulierend und zielführend sind hierbei u.a. zahlreiche Wachstumsfaktoren, Zytokine - wie der Tumor-Nekrose-Faktor alpha (TNF- α) - und Chemokine (Interleukine (IL), CC-Chemokin Ligand (CCL)), die über eine Entzündungsreaktion und Gewebeneubildung zum Wundverschluss führen (Schäffer and Becker 1999, Barrientos, Stojadinovic et al. 2008). Daher ist es nachvollziehbar, dass der Wundheilungsprozess durch eine Dysregulation der Expression dieser Zytokine und Wachstumsfaktoren dramatisch verändert wird, und es lässt sich erahnen, welche zentrale Rolle diesen Mediatoren bei der Wundreperatur zukommt (Efron and Moldawer 2004).

An erster Stelle ist hier als wichtigster Wachstumsfaktoren-Vertreter der Vascular Endothelial Growth Factor (VEGF), zu nennen. Es spielen aber ebenso weitere Faktoren eine entscheidende Rolle, u.a. Angiopoetin, Fibroblast Growth Factor (FGF) und Transforming Growth Factor-beta (TGF-ß) (Carmeliet 2003, Auböck 2007, Barrientos, Stojadinovic et al. 2008). Diese und weitere Faktoren werden vom Serum und der EZM in vielschrittigen, umfangreichen und genregulierten Stadien bereitgestellt. Ihre Expression wird im Körper streng reguliert (Folkman and Klagsbrun 1987) und dank der in Wunden existierenden Hypoxie und der Inflammation ausschlaggebend beeinflusst (Carmeliet 2003, Thittamaranahalli Muguregowda Honnegowda, Pramod Kumar et al. 2015). Dies geschieht v.a. über den Hypoxie-induzierter Faktor (HIF), die Cyclooxygenase-2 (COX-2) und die daraus resultierende Produktion sowie Ausschüttung von VEGF (Dulmovits and Herman 2012). Der für die Angiogenese benötigte Umbau der EZM wird durch Proteinasen, Plasminogen-Aktivierer, wie dem Urokinase plasminogen Aktivator (uPA), -Inhibitoren, wie dem Plasminogen Aktivator Inhibitor (PAI-1), sowie Matrix-Metalloproteinasen (MMP) und Gewebe-Inhibitoren (TIMP) initiiert (Carmeliet, 2003). Somit entsteht ein "crosstalk" zwischen Zell-zu-Zell- und Zell-zu-EZM-Kontakten (Dulmovits and Herman 2012). Proteinasen wirken aber nicht nur in Bezug auf den EZM-Umbau in den Prozess der Angiogenese ein, sie haben wahrscheinlich ebenso einen Effekt auf die Terminierung der Angiogenese, da sie Matrix-gebundene Inhibitoren wie Thrombospondin-1 (TSP-1), Endostatin und den Plateled Faktor 4 freisetzen (PF4) (Carmeliet, 2003).

Die aus diesem komplexen Zusammenspiel aus EZM, unterschiedlichsten Zellen, Aktivatoren und Inhibitoren resultierenden neuen Kapillaren bringen den benötigten Sauerstoff und "Baustoffe" zum Wundbereich und transportieren Abfallprodukte ab. Ein positiver gesunder Kreislauf entsteht, der als Endpunkt den Wundverschluss aufweist.

1.2. Wundheilungskaskade

Der natürlich biologisch-dynamische Wundheilungsprozess ist in die Stadien der Exsudation, Granulation und Epithelisierung unterteilt. Manche Lehrbücher nutzen auch die Aufteilung in Exsudation, Resorption, Proliferation und Reparation. Unabhängig von der Einteilung sind alle Phasen ineinander übergehend und müssen in einem regulierten Zeitfenster ablaufen, um einen optimalen Wundverschluss zu gewährleisten.

1.2.1. Exsudation

Das erste Stadium ist die so genannte Exsudation (Tag 0 - 6). Diese beinhaltet die Thrombozytenaktivierung, Hämostase, Fibrinbildung und Inflammation. In diesem Stadium haben u.a. die Thrombozyten eine wichtige Aufgabe, da diese eine besondere Affinität zu geschädigtem Endothel besitzen (Laurent and Bienvenu 1982). Sie wandern nach der Gewebeverletzung massenhaft in dieses ein (Bolam and Smith 1977, Bolam and Smith 1977) und aggregieren (Shoshan 1981) u.a. durch die Interaktion mit Kollagen (Shimokomaki, Duance et al. 1981).

Diese Thrombozytenadhäsion und Kollagenfaserinteraktion kann mittels Vasokonstriktion beteiligter Gefäße und dem dadurch reduzierten Blutfluss im Wundgebiet gewährleistet werden. Durch diesen setzen die aktivierten Thrombozyten vermehrt gerinnungsfördernde Stoffe und Mediatoren, wie Faktor XIII, Circulary Growth Factor, Komplementfaktoren, Zytokine und andere, frei (Laurent and Bienvenu 1982). Diese Speicher- und Lockstoffe aktivieren wiederum weitere Thrombozyten. Ein sich selbst verstärkendes System entsteht. Das Gewebe beabsichtigt mit Hilfe der Hämostase durch Vasokonstriktion, Thrombozyten-, Endothelzellen-, EZM- und Gerinnungskaskadenaktivierung, die Wunde dank eines Fibrinnetzwerkes fest verschließen. Dieses Fibrinnetzwerk, bestehend aus Kollagen, Thrombozyten, Thrombin und Fibronectin, soll als Dichtungsgerüst für die Gewebereperatur fungieren (Salajegheh 2016). Seine Bestandteile setzen wiederum Cytokine, wie Interleukin 8 (IL-8) und Wachstumsfaktoren, frei, die eine inflammatorische Reaktion initiieren.

Nach der Vasokonstriktion ist eine Vasodilatation mit einer Erhöhung der Gefäßpermeabilität erforderlich. Diese wird durch die von Mastzellen induzierte Ausschüttung von Serotonin erreicht. Dank dieser und der Chemokinfreisetzung wandern anschließend polymorphkernige neutrophile Graulozyten ins Wundgebiet ein (Seaton, Hocking et al. 2015).

Die Inflammation ist ein essentieller Bestandteil für einen erfolgreichen Wundverschluss und wird dank der in der Wunde herrschenden Hypoxie unterstützt (Sen 2009). Zudem wird die Entzündungs- und immunologisch getriebene Angiogenese dadurch begünstigt, dass viele Leukozytensubtypen angiogene Faktoren, u.a. auch VEGF, produzieren (Vacca, Ribatti et al. 1998, Norrby 2002), somit den Weg zur Angiogenese und demzufolge zum Wundverschluss ebnen. Neutrophilen Granulotyten werden bei der den Wundheilungsprozess begleitenden Inflammation eine besondere Bedeutung zugesprochen. Sie erreichen ihre höchste Konzentration 48 Stunden (h). nach einer Verletzung (Schäffer and Becker 1999) und setzen u.a. proteolytische Enzyme (Elastase, MMPs), freie Radikale sowie Aminosäuren frei, die das Wundbett von Bakterien und nicht vitalem Gewebe mit Hilfe der phagozytierenden Makrophagen befreien (Broughton, Janis et al. 2006). Nach etwa 48h übernehmen Makrophagen die Stellung als vorherrschende Entzündungszellen und reagieren auf die Wundumgebung ebenfalls mit der Freisetzung von Cytokinen, insbesondere dem Tumornokrosefaktor-alpha/-beta $(TNF-\alpha/-\beta)$ und Interleukinen (IL-1, IL-6, IL-8), und vom Plateled-derived Growth Factor (PDGF) (Seaton, Hocking et al. 2015). Dieses lässt erkennen, dass sowohl die membrangebundenen als auch die löslichen Mediatoren eine zentrale Brücke bei den Reperationsregulationsprozessen zwischen Immunreaktion und Bildung neuen Gewebes einnehmen (Schäffer and Becker 1999).

1.2.2. Granulation

Die Aktivierung der inflammatorisch wirkenden charakteristischen Zellen (Neutophile, Lymphozyten, Makrophagen) (Gosain and DiPietro 2004, Broughton, Janis et al. 2006) ist entscheidend für den Übertritt in die Proliferations/Granulationsphase (Tag 4 - 14), die v.a. durch Zellproliferation, Neovaskularisierung und schlussendlich durch den Wundverschluss mittels Granulationsgewebe und Kontraktion der Myofibroblasten dank TGF- β 1 und PDGF (Broughton, Janis et al. 2006) gekennzeichnet ist. Den Makrophagen kommt bei der Neovaskularisierung eine entscheidende Rolle zuteil (Koh and DiPietro 2011). Mittels Interleukin-1 (IL-1) und TNF- α stimulieren sie die Keratinozyten, VEGF zu produzieren.

VEGF (bisher Untergruppe A-F bekannt) beschreibt eine glykolisierte, Disulfid-vernetzte Homodimer-Proteinfamilie. Als Signalmoleküle sind sie sowohl für die Vaskulogenese als auch die Angiogenese entscheidend mitverantwortlich. VEGF entfaltet seine Wirkung, indem es an zwei verschiedene Tyrosinkinase-Rezeptoren (Kinase domain receptor (KDR), Fms-like tyrosinekinase-1 (Flt-1)) bindet (Muller, Christinger et al. 1997) und dadurch als einziges endothelspezifisches Mitogen die Endothelzellproduktion direkt stimuliert und reguliert (Kleinheinz, Wiesmann et al. 2002). Ebenso lässt die im Wundmilieu vorherrschende erhöhte Stickstoffmonoxid (NO)-Konzentration die VEGF-Produktion und somit die Gefäßsprossung steigern (Broughton, Janis et al. 2006).

Ein weiterer Einflussmechanismus auf die VEGF-Produktion geschieht über Fibroblasten. Sie (Dulmovits and Herman 2012) schütten neben VEGF proangiogenetische Faktoren wie Keratinocyte Growth Faktor-2 (KFG-2), FGF-2, TGF- β und PDGF aus (Barrientos, Stojadinovic et al. 2008). Fibroblasten wirken ebenso über ihre Rezeptoren auf die Wundheilung ein. Bereits 1981 wurde nachgewiesen, dass sie Rezeptoren für "epidermal growth factor" (EGF) und für FGF aufweisen. Diese Rezeptoren gehören der Familie der Wachstumsfaktoren an und sind für die Proliferation, Migration und Differenzierung von Zellen zuständig (Joseph-Silverstein and Rifkin 1987). EGF und FGF finden sich auf verschiedensten Zelltypen. Neben Fibroblasten sind v.a. die Myoblasten und Endothelzellen zu nennen (Salajegheh 2016). EGF gehört zur Familie der Rezeptortyrosinkinasen und wird als solcher durch Bindung an bestimmte Liganden aktiviert. Er ist an der Wundheilung beteiligt, indem er die epidermale und dermale Reparatur stimuliert und als dosisabhängiges Mitogen für die Bildung von Granulationsgewebe zuständig ist. Dieses gut durchblutete Gewebe, das mit bloßem Auge als rote körnrige Struktur sichtbar ist, breitet sich von Seiten der Wundränder an der Leitstruktur des existierenden Fibringitters aus. FGF spielt eine Rolle bei der Proteaseentwicklung, Chemotaxis und Mitogenese der Neovaskularisation (Joseph-Silverstein and Rifkin 1987).

Fibroblasten und Endothelzellen sind somit in dieser Phase die prominentesten und entscheidensten Vertreter der Wundheilung und stehen im Mittelpunkt der Zellproliferation, Neovaskularisierung und sind wesentlich mitverantwortlich für das Endothelwachstum, die Kollagenformation, das Granulationsgewebe- und EZM-Wachstum (Guo and Dipietro 2010) und folglich für einen weiteren essentiellen Schritt, für den Wundverschluss, zuständig.

1.2.3. Epithelisierung

In der Epithelisierungsphase (Tag 8 - >365) steht die Reparation durch Fibrosierung mittels Fibroblasten im Vordergrund. Das bereits im Vorfeld gebildete Fibrinnetzwerk wird in dieser Wundheilungsphase weiter ausgebaut und verstärkt. TGF-ß beeinflusst nun diese Matrix entscheidend dadurch, dass es zum einen die Fibroblastendifferenzierung zu Myofibroblasten steuert, die Muskelaktin zur Wundkontraktion exprimieren (Seaton, Hocking et al. 2015), und zum anderen die Expression von TIMP steigert und die der MMP senkt. TIMPs haben wichtige Aufgaben in der EZM-Erneuerung, im Gewebeumbau und zellulärem Überleben und senken die Aktivitäten der MMPs. Eine Überaktivität der MMPs zeichnet sich durch unkontrollierte EZM-Erneuerung, Inflammation, Zellwachstum und Migration aus und ist assoziiert mit Erkrankungen wie Arthritis, kardiovaskulären Erkrankungen, Tumoren und Gewebeulzerationen (Brew and Nagase 2010).

Im Zuge der weiteren Epithelisierung werden Proteoglycane, Glykosaminoglykane, Fibrin, Fibronektin und TSP-1 in Kollagen umgewandelt. Anfänglich dominert das Kollagen Typ-III. Dieses wird schlußendlich zu insgesamt ca. 90% durch Kollagen Typ-I ersetzt und die Matrix kann dadurch an Stärke und Dicke gewinnen (Schäffer and Becker 1999, Broughton, Janis et al. 2006). Der Wundverschluss erfolgt und stabilisiert sich.

1.3. Angiogenese

Für die Entwicklung eines Granulationsgewebes im Rahmen des Wundverschlusses ist der An- und Abtransport von Nährstoffen, Abfallprodukten und Entzündungszellen essentiell (Nissen, Polverini et al. 1998). Dieses geschieht mithilfe von neugebildeten Blutgefäßen im Rahmen der Angiogenese. Als Angiogenese wird das Wachstum durch Keimung von bereits bestehenden Blutgefäßen verstanden (Joussen, Kirchhof et al. 2003). Diese Neu-Sprossung ist somit nicht zu verwechseln mit der Vaskulogenese, bei der neue Gefäße durch Neubildung aus endothelialen Vorläuferzellen entstehen.

Allerdings zeigen neue Erkenntnisse in der Tumorangiogenese, "dass das Wachstum von Gefäßen häufig eine Kombination aus Angiogenese und Vaskulogenese ist, bei der zirkulierende Endothelvorläuferzellen zum Wachstum der Endothelzellmasse beitragen" (Joussen, Kirchhof et al. 2003).

Es wird angenommen, dass die Angiogenese von einem Gleichgewicht zwischen proangiogenetischen und antiangiogenetischen Faktoren abhängig ist (Maisonpierre, Suri et al. 1997) und vielschichtige Abschnitte umfasst. Während die Vasodilatation der Gefäße und der FGF in den ersten drei Tagen der Wundreperatur als Grundstein für die Angiogenese verstanden wird (Nissen, Polverini et al. 1998, Singer and Clark 1999), gilt danach die Produktion, Freisetzung und Hochregulation von VEGF als entscheidender Hypoxie-induzierter proangiogenetischer Faktor (Shweiki, Itin et al. 1992, Kimura, Weisz et al. 2000, Befani and Liakos 2018).

Es folgt der enzymatische Abbau der kapillaren Basalmembran, die Proliferation und Migration von Endothelzellen, die Tubulogenese, Gefäßfusion und Perizytenstabilisierung (Adair and Montani 2010). Dieser komplexe Prozess, der auf der extrazellulären Matrix, der Migration mitogener Stimulation von Endothelzellen (Sankar, Mahooti-Brooks et al. 1996) sowie der Produktion der dazu benötigten Mediatoren beruht, wird eingeleitet, wenn biologische Signale wie Hypoxie, Inflammation, Ischämie und/oder Blutgefäßschädigung ruhende Endothelzellen aktivieren und die Freisetzung von angiogenen Wachstumsfaktoren induzieren.

Die im Wundmilieu vorherrschende Hypoxie fördert die Vaskularisierung ebenfalls, indem sie den Hypoxie-induzierbaren Faktor-1 α (HIF-1 α) aktiviert und stabilisiert (Heun, Pogoda et al. 2017). Dieser wiederum ist u.a. durch die Induzierung des VEGFA-Gens (Wagener and Müller 2009) und Transkription von Erythropoetin (Wang and Semenza 1993) gekennzeichnet. Zudem unterdrückt HIF-1 α die Transkription von Thrombospondin-2 (TSP-2), das ein starker Inhibitor der Angiogenese ist (MacLauchlan, Calabro et al. 2018). Somit ist HIF-1 α ebenfalls essentiell an der Angiogenese beteiligt.

Zur besseren Darstellbarkeit bietet die folgende Tabelle eine Übersicht der derzeit bekanntesten und erforschten, bei der Angiogenese beteiligten Signalmoleküle und ihrer Funktionen:

Proangiogenetische Signalmoleküle	Funktion		
Angiogenin	Induziert die Angiogenese indem es		
	Gefäßendothel- und glatte Muskelzellen		
	aktiviert. Beteiligt an Zellmigration,		
	Invasion, Proliferation und Bildung von		
	tubulären Strukturen (Gao and Xu 2008).		
Angiopoietin-1	Fördert die Endothelaussprossung		
	(Maisonpierre, Suri et al. 1997),		
	stabilisiert neu gebildete Gefäße,		
	stimuliert die Tyrosinkinase Rezeptor		
	TIE2-Phosphorylierung und -		
	Translokation zu Endothelzellen		
	(Saharinen, Leppanen et al. 2017).		
Angiotropin	Stimuliert die Migration, die		
	phänotypische Differenzierung und die		
	Röhrenbildung von Endothelzellen		
	(Salajegheh 2016).		
Basic Fibroblast Growth Factor (bFGF)	Zuständig für die Angiogeneseinitiation		
	(Thittamaranahalli Muguregowda		
	Honnegowda, Pramod Kumar et al. 2015).		
EGF	Bildung von Granulationsgewebe		
	(Salajegheh 2016).		
Endothelial Nitric-Oxide-Synthase	Vaskuläre Schutzfunktionen (Saharinen,		
(eNOS)	Leppanen et al. 2017) und Vasodilatation		
	(Kimura, Weisz et al. 2000).		
FGF	Proteaseentwicklung, Chemotaxis und		
	Mitogenese der Neovaskularisation		
	(Joseph-Silverstein and Rifkin 1987).		

Fibrin	Diant als Diahtungsgarügt und stauart		
FIDIII	Dient als Dientungsgerüst und steuert		
	hierdurch die Gewebereparatur		
	(Salajegheh 2016).		
Hepatocyte Growth Factor (HGF)	An der Zellmigration, Proliferation,		
	Matrixablagerung und den		
	Wundheilungsabbau beteiligt. Reguliert		
	die Gefäßangiogenese, fördert die		
	Wundreepithelisierung und reduziert die		
	Narbenbildung (Lin, Wang et al. 2018).		
Interleukine	IL-1: Enthält proinflammatorische		
(IL-1, IL-6, IL-8, IL-16, IL-17)	Zytokine, beeinflusst die Angiogenese		
	Salajegheh 2016).		
	IL-6: Induziert die VEGF Expression		
	(Salajegheh 2016).		
	IL-8: Wirkt proangiogenetisch und		
	chemotaktisch bei Entzündungen		
	(Rodriguez, Morrison et al. 2010).		
	IL-16: Rekrutiert Monozyten, Eosinophile		
	und dendritische Zellen und ist somit an		
	der Entzündungsrektion beteiligt		
	(Cruikshank, Kornfeld et al. 2000).		
	IL-17: Hemmt und stimuliert die		
	Angiogenese (Salajegheh 2016).		
Heparin	Wird von Mastzellen freigesetzt und		
	erhöht die Kapillarendothelzellen-		
	migration (Folkman, Taylor et al. 1983).		
HIF-1a	HIF-1 α induziert die Produktion von		
	VEGF (Wagener and Müller 2009) und		
	Erythropoietin (Wang and Semenza 1993).		
	Transkriptionsunterdrückung antiangio-		
	genetischer Faktoren (MacLauchlan,		
	Calabro et al. 2018).		

Integrin- $\alpha\nu\beta$ 3, - $\alpha\nu\beta$ 1, - $\alpha\nu\beta$ 5	Hauptadhäsionsrezeptoren für Endothel-		
	zellen, um mit der extrazellulären		
	Mikroumgebungen zu interagieren. Nötig		
	bei der Zellproliferation, -migration,		
	-reparatur und -überleben (Stupack and		
	Cheresh 2004).		
Insulin-Like Growth Factor 1	Induziert die Expression von HIF-1α und		
(IGF-1)	fördert die Endothelzellmigration und		
	Differenzierung (Shigematsu, Yamauchi et		
	al. 1999, Salajegheh 2016).		
MMPs	EZM-Auflösung mittels Wachstums-		
	faktorenfreisetzung (Maisonpierre, Suri et		
	al. 1997). Beteiligt an Zellvermehrung.		
	programmiertem Zelltod immunogenen		
	Reaktionen. Entzündungen und		
	Angiogenese (Rodriguez, Morrison et al.		
	2010).		
PDGF (A-D)	Die Expression korreliert mit einer		
	erhöhten Vaskularität, Gefäßwandreifung		
	(Raica and Cimpean 2010) und		
	Kapillarbildung (Sato, Nariuchi et al.		
	1990). Ebenso wird eine Hochregulierung		
	des Gefäßendothelwachstums-Faktors		
	durch PDGF-D initiiert (Li, Fredriksson et		
	al. 2003).		
PAI-1	Proteinase-Inhibitor vom Urokinasetyp		
	(uPA) und vom Gewebetyp (tPA), die die		
	Fibrinolyse vermitteln. Reguliert die		
	Zellmigration, -Proliferation, -Adhäsion		
	und Phagozytose (Balsara and Ploplis		
	2008)		
Prostaglandin E ₁ und E ₂	E1: Vasodilatator und Inhibitor der		
	Blutplättchenaggregation (Moreschi,		
	Fagundes et al. 2008) und VEGF		
	Stimulator.		

	E2: Stimuliert die Zellmigration und
	Kapillarbildung (Finetti, Solito et al. 2008)
	durch Röhrenbildung von Endothelzellen
	und die Expressionssteigerung von VEGF-
	mRNA (Tamura, Sakurai et al. 2006).
ΤΝΓ-α	Immunsystemregulator durch Aktivierung
	von T-Zellen, B-Zellen und Makrophagen.
	Endothelzellwachstumsinhibitor in vitro,
	in vivo angiogen (Montrucchio, Lupia et
	al. 1994).
TGF-β	Apoptoseinduzierend, Bildung neuer
	Kapillaren aus bereits existierenden
	Gefäßen (Ferrari, Cook et al. 2009) sowie
	Fibroblastendifferenzierung (Seaton,
	Hocking et al. 2015).
VEGF, VEGF-B, VEGF-C, VEGF-D	Direkte und indirekte Stimulation der
	Angiogenese durch mitogene Wirkung auf
	Endothelzellen (Ferrara 1993).
Vascular Endothelial (VE)-Cadherin/	Junktionales Endothelmolekül –
PECAM (CD31)	unterstützend bei Endothelintegrität,
	Gefäßpermeabilität, Zellproliferation und
	Apoptose. Moduliert die
	Rezeptorfunktionen des vaskulären
	endothelialen Wachstumsfaktors
	(Salajashah 2016)

Antiangiogenetische Faktoren	Funktion		
Aktivin A	Hat Einfluss innerhalb von		
	Immunantworten (Entzündunge		
	Zelldifferenzierungen, Homöostase und		
	Gewebeumbau. Erhöht die		
	Wundheilungsgeschwindigkeit und		
	Narbenreaktion (Sulyok, Wankell et al.		
	2004).		
Angiostatin	Endogener Angiogeneseinhibitor –		
	Hemmung der Endothelzellmigration und		
	Proliferation sowie Apoptoseinduzierend		
	(Redlitz, Daum et al. 1999).		
	Zusätzliche Auswirkungen auf		
	Entzündungsreaktionen indem es		
	Neutrophile an der Aktivität und		
	Migration hemmt (Aulakh, Balachandran		
	et al. 2014).		
Endostatin	Endostatin hemmt spezifisch die		
	Endothelproliferation (O'Reilly, Boehm et		
	al. 1997).		
Interferone alpha, beta, gamma	IFN-α: Hemmung der Produktion von		
(IFN α, β, γ)	Fibroblastenwachstumsfaktor, Herunter-		
	regulierung der IL-8 und VEGF		
	Expression. Ebenso direkte Auswirkungen		
	auf Endothelzellen (Proliferation und		
	Migration) (Indraccolo 2010).		
	IFN-β: VEGF Herunterregulierung		
	(Takano, Ishikawa et al. 2014)		
	IFN-γ: hemmt die Endothelzellen-		
	proliferation und die Kollagensynthese		
	(Sato, Nariuchi et al. 1990).		
PF4	Chemokin, das die Vermehrung von		
	endothelialen Zellen, die Migration und		
	die Angiogense hemmt (Bikfalvi 2004).		

Serpin E1/F1	Serpin E1, auch Plasminogen activator				
	inhibitor-1 (PAI-1), hemmt die				
	Angiogenese durch Hemmung der				
	VEGFR-2-Aktivierung durch VEGF (V				
	Strawn et al. 2015).				
	Serpin F1 oder auch bekannt als Pigm				
	epithelium-abgeleitet-Faktor (PED				
	unterdrückt die Hypoxie-induzier				
	Angiogenese wahrscheinlich über HIF-				
	und oder HIF-1 Signalkaskaden (He,				
	Cheng et al. 2015).				
TSP-1, TSP-2	Direkte Inhibition auf die Endothelzellen,				
	Migration und Proliferation.				
	Antagonisierung der VEGF-Aktivität				
	(Lawler 2002, Lawler and Lawler 2012).				
TIMP	Gewebe-Inhibitor, der am EZM Umbau				
	(Carmeliet, 2003), der Inflammation, dem				
	Zellwachstum und der Migration (Brew				
	and Nagase 2010) beteiligt ist.				
Tumstatin	Hemmt die durch VEGF induzierte				
	Neovaskularisation (Yamamoto,				
	Maeshima et al. 2004) indem es die				
	Apoptose proliferierender Endothel-zellen				
	induziert (Hamano and Kalluri 2005).				

Tabelle 1.1.: Signalmoleküle Angiogenese

1.4. Vascular Endothelial Growth Factor - VEGF

VEGF ist ein basisches, Heparin bindenes, homodimeres Glykoprotein mit einem Molekulargewicht von ca. 45 Kilodalton (Ferrara, Houck et al. 1992). Es existiert in verschiedenen Isoformen (VEGF A-F), die eine ähnliche biologische Aktivität aufweisen, sich aber in ihrem Sekretionsmuster merklich unterscheiden (Ferrara 1993). VEGF wird als unersetzlicher Schlüsselmediator der Entwicklung und Differenzierung des Gefäßsystems betrachtet. Diese These wird dadurch unterstützt, dass der Verlust eines einzigen VEGF-Allels zu embryonaler Letalität führt (Carmeliet, Ferreira et al. 1996, Ferrara, Carver-Moore et al. 1996, Ferrara and Davis-Smyth 1997). Bereits 1989 wurde

von Ferrera und Henzel die besondere Stellung des VEGF in der Angiogenese beschrieben, da dieser eine einzigartige Zielzellspezifität auf vaskuläre Endothelzellen aufwies (Ferrara and Henzel 2012).

1.4.1 Aufgaben in der Angiogenese

VEGF dient als Modulator der Angiogenese und bindet vornehmlich an zwei von drei VEGF-Rezeptoren (VEGF-Rezeptor-1 und VEGF-Rezeptor-2), die auf vaskulären Endothelzellen exprimiert werden (Carmeliet 2005). VEGF hat zum einen eine direkte und spezifische mitogene Wirkung auf Endothelzellen, zum anderen wirkt er als sezernierendes Polypeptid. 1994 betonte ein Versuch an Rattenaortenringen, die in ein Kollagengel eingelegt waren, die Spezifität von VEGF. Der Versuch zeigte, dass die durch VEGF induzierte Gefäßproliferation fast ausschließlich aus vaskulären Endothelzellen bestand, und nicht wie durch IGF-1 oder Platelet Derived Growth Factor (PDGF) durch das Keimen von Endothelzellen und Fibroblastenproliferation (Nicosia, Nicosia et al. 1994) entstand.

1986 stellten Dvorak und Kollegen die Hypothese auf, dass die Hauptfunktion von VEGF im angiogenen Prozess von Tumoren und Wunden darin bestehe, das Auslaufen von Plasmaproteinen durch Bildung eines extravaskulären Fibringels und durch die Erhöhung der mikrovaskulären Permeabilität (VEGF=VPF – vascular permeability factor) zu induzieren und dadurch die Angiogenese zu fördern (Dvorak 1986, Dvorak, Harvey et al. 1987). Spätere Studien zeigten, dass VEGF die Gefäßpermeabilität durch die Reorganisation von Adhäsionsmolekülen wie PECAM-1 (platelet endothelial cell adhesion molecule-1) oder VE-Cadherin erhöht. Auch durch topische Anwendung oder intradermale Injektion von rekombinantem humanem VEGF-165 stellten Roberts und Palade fest, dass dieses innerhalb kürzester Zeit zur Fenestrierung und der damit verbundenen gesteigerten Gefäßpermeabilität im Endothel kleiner Kapillaren und Venolen führte, auch an Regionen, die normalerweise keiner Fenestrierung unterliegen (Roberts and Palade 1995).

Wachstumsfaktoren, wie Angiopoetine, verstärken das Aussprossen von Endothelzellen mittels Tie-2 und Steuerung der Auflösung der EZM mittels MMPs und TIMPs (Maisonpierre, Suri et al. 1997). Dank der Auflösung der EZM haben Endothelzellen die Möglichkeit sich aus dem Verband zu lösen; "es setzt eine komplexe Interaktion zwischen Wachstumsfaktoren (VEGF, FGFs, HGF u.a.), Differenzierungsfaktoren (z.B. den Angiopoeitinen) und den zugehörigen Rezeptoren ein" (Joussen, Kirchhof et al. 2003). Die Erhöhung der VEGF-Konzentration wird von den Filopodien/VEGF-Rezeptoren von Endothelzellen registriert und sie leiten dadurch, mithilfe proteolytischer Proteine, das sich entwickelnde Gefäß durch die EZM (Adair TH, Montani JP. 2010). Die Produktion neuer Gefäße wird stimuliert.

1.4.2. Regulation

Die Expression von VEGF wird auf vielerlei Ebenen gesteuert, einschließlich der Transkription (Pagès and Pouysségur 2005) und durch Bindung von regulatorischen Proteinen an die nicht translatierte 3'-messenger-Ribonukleinsäure (mRNA) Region (Akiri, Nahari et al. 1998, Claffey, Shih et al. 1998, Shih and Claffey 1999, Onesto, Berra et al. 2004). Diese wurde von Claffey und Shih auch als Hypoxiestabilisationsregion identifiziert. Denn der Hauptregulator für VEGF ist die Gewebe-/Gefäßhypoxie (Shweiki, Itin et al. 1992, Brogi, Wu et al. 1994, Minchenko, Bauer et al. 1994, Kimura, Weisz et al. 2000, Hadjipanayi, Brown et al. 2010). Ebenso spielen die HIF-1- (Lin, McGough et al. 2004, Semenza 2010) und nach neuesten Erkenntnissen die HIF-2- (Befani and Liakos 2018) Freisetzung, die COX-2, das NO (Broughton, Janis et al. 2006), Wachstumsfaktoren (Keratinozyten-Wachstumsfaktor, EGF, TGF-β) (Frank, Hubner et al. 1995, Ferrara and Davis-Smyth 1997) und Interleukine (Ben-Av, Crofford et al. 1995, Cohen, Nahari et al. 1996) eine Rolle.

1.4.3. Weitere Aufgaben

VEGF wirkt zusätzlich auf das Gefäßendothel, indem es zu einer signifikanten Geschwindigkeitserhöhung des Hexosetransportes führt (Pekala, Marlow et al. 1990). Diese ergänzende Wirkung kann für einen erhöhten Energiebedarf während der Proliferation sprechen (Ferrara and Davis-Smyth 1997). Es wirkt u.a. auf Monozyten (Clauss, Gerlach et al. 1990), dendritische Zellen (Gabrilovich, Chen et al. 1996), Ganulozyten-Makrophagen-Vorläuferzellen (Gabrilovich, Chen et al. 1996), Makrophagen (Ramos, Kuzuya et al. 1998), Schwann'sche Zellen (Sondell, Lundborg et al. 1999), kardiale Myofibroblasten (Chintalgattu, Nair et al. 2003) oder Chondrozyten (Gerber, Vu et al. 1999). Somit ist VEGF an der Pathogenese einer Vielzahl von Erkrankungen beteiligt: Tumorwachstum, Metastasierung, proliferative Retinopathien, altersbedingte Makuladegeneration, rheumatoide Arthritis, Psoriasis u.a. (Folkman and Klagsbrun 1987, Ferrara and Davis-Smyth 1997, Shinkaruk, Bayle et al. 2003, Shibuya

2006). Auch soll er an inflammatorische Reaktionen des Körpers beteiligt sein (Shaik-Dasthagirisaheb, Varvara et al. 2013).

VEGF war, ist und wird Gegenstand vieler Studien, Forschungen, Versuche und Therapieansätze sein. Auch in den vorliegenden Versuchen wurde die Spezifität und Sensitivität des VEGFs auf Endothelzellen und Hypoxie in der Angiogenese genutzt und wirkt sich auf weitere Überlegungen, Analysen und Auswertungsbeobachtungen der nachfolgenden Arbeit, aus.

1.5. Chronische Wunden

Chronische Wunden treten vornehmlich "bei immunkomprimmierten Patienten mit Tumorleiden, Sepsis oder Diabetes mellitus, sowie nach einem Polytrauma oder einer Organtransplatation auf" (Schäffer and Becker 1999), aber auch ein Alter > 65 Jahre spielt eine entscheidende Rolle (Margolis, Bilker et al. 2002, Margolis, Bilker et al. 2002). Sie sind durch einen verzögerten bis ausbleibenden Wundverschluss, eine persistierende Granulatiosphase, eine reduzierte Neovaskularisierung, die Persistenz der eine vermehrten Sekretion inflammatorischen Reaktion und von Matrix-Metalloproteasen (MMPs) charakterisiert (Suleman 2016). Das Ungleichgewicht von erhöhten MMPs und erniedrigten TIMPs verstärkt den Abbau der EZM, beeinträchtigt die Zellmigration, verringert die Fibroblastenproliferation und die Kollagensynthese (Mast and Schultz 1996). Die EZM-Abbauprodukte fördern die Entzündung und erzeugen einen sich selbst erhaltenden Prozess (Zhao, Liang et al. 2016). Ebenso fehlt in chronischen Wunden die hohe mitogene Aktivität, die in akuten Wunden zu beobachten ist (Stojadinovic, Carlson et al. 2008).

Die Wundoxygenierung ist ein tragender Faktor im Ausgang der Wundheilung (Sen 2009). Die akute Hypoxie fördert zwar nach einer Gewebeverletzung die wichige Produktion und Ausschüttung proangiogenetischer Faktoren wie VEGF. Hypoxie erreicht im Wundgebiet an Tag 4 im Stadium des Granulationsgewebes ihren Höhepunkt und korreliert mit einer erhöhten Zellularität und Zellproliferation. Nach diesen 4 Tagen reduziert sich die Hypoxie und man trifft sie nur noch im Bereich des Narbengewebes an (Haroon, Raleigh et al. 2000). Sauerstoff ist somit ebenso eine Grundvoraussetzung für eine erfolgreiche Wundheilung (Schreml, Szeimies et al. 2010) wie Hypoxie. Die dauerhafte Hypoxie bis nahezu Anoxie, die in chronischen Wunden vorherrscht, ist mit dem erfolgreichen Wundheilungsverschluss daher nicht kompatibel, sondern endet sogar

im Gewebeverlust (Sen 2009). Ebenso werden infolge der durch die dauerhafte Hypoxie bedingten reduzierten/limitierten Neovaskularisation Faktoren wie Infektion und Schmerz verstärkt. Diese begünstigen wiederum das schlechte Heilungsergebnis der Wunde (Allen, Maguire et al. 1997, Kim, Gao et al. 2007).

1.5.1. Bakterielle Besiedelung

Ein weiteres Charakteristikum chronischer Wunden und negativer Indikator zum erfolgreichen Wundverschluss ist die bakterielle Besiedelung. "Bei ausgeprägter bakterieller Kolonisation (>10⁵ Mikroorganismen/g) kann eine Wunde nicht mehr heilen, man spricht daher auch von kritischer Kolonisation" (Streit and Mayer 2009). Basierend auf bereits erfolgten Studien, ist die Mehrzahl der chronischen Wunden von einem bakteriellen Biofilm befallen (Hurlow, Couch et al. 2015, Suleman 2016, Schultz, Bjarnsholt et al. 2017). Dieser ist oft polymikrobial. Staphylococcus aureus (grampositives Bakterium) und Pseudomonas aeruginosa (gram-negatives Bakterium) sind die am häufigsten anzutreffenden Bakterien. Aber auch Anaerobier finden sich immer häufiger (Schultz, Bjarnsholt et al. 2017).

1.6. Wirkung von Lipopolysacchariden auf das Immunsystem

Gram-negative Bakterien, wie Pseudomonas aeruginosa, oder Enterobakterien weisen im Gegensatz zu ihren gram-positiven Artgenossen so genannte Lipopolysaccharide (LPS) auf ihrer Oberfläche auf. Diese thermostabilen, zuckerartigen Fettverbindungen agieren u.a. als Bakterienidentifizierungsmöglichkeit mittels Gram-Färbung, wirken als Antigen sowie Endotoxin und somit als wichtiges Signalmolekül für das angeborene Immunsystem. Sie bestehen aus Lipid A, einer inneren und äußeren Kernregion (bestehend aus Oligosachariden), sowie einem aus Polysacchariden aufgebautem O-Antigen.

Lipopolysaccharide gehören zu der Gruppe der inflammatorisch wirkenden Mediatoren die u.a. über die Expressionsaktivierung von Matrix-Metalloproteasen, wie MMP-1 und MMP-9, über die LPS induzierte Stimulation von Monozyten wirken (Woo, 2004) und über Monozyten und Makrophagen zur Sekretion von Stickstoffzwischenprodukten, Prostaglandinen und Zytokinen führen (Myokai, Takashiba et al. 1999). In akuten Situationen reagiert der Körper so mit einer Entzündung, minimaler Gewebeschädigung und Eliminierung des Erregers. Das Versäumnis, den Erreger auszuschalten endet mit einer signifikanten Gewebeschädigung und unkontrollierbaren Entzündungsreaktion

(Myokai, Takashiba et al. 1999). Diese wird durch die entzündlich wirkenden Zytokine und Proteasen aufrechterhalten (Mast and Schultz 1996).

Die Mechanismen des komplexen und mehrstufigen Wundheilungsprozesses sind noch nicht vollständig geklärt. V.a. die Wechselwirkungen zwischen Wunden und ihrer Mikroflora stehen noch am Anfang der Forschung. Kostarnoy, Gancheva und Kollegen testeten die Auswirkungen von topisch aufgebrachten bakteriellen LPS, dem wichtigsten exogenen Liganden von Toll-like-Rezeptor 4, auf Hautwunden von Mäusen. Die Studien-Ergebnisse zeigten, dass die LPS-Behandlung den Wundheilungsprozess beeinflusst, u.a. durch Reduktion Entzündungen, Makrophageninfiltrationserhöhung, von Kollagensynthese und Sekretionsregulation von proinflammatorischen Zytokinen (IL-6, IL-1β und Leukämie-Hemmfaktor (LIF)) und CC-Chemokinen (CCL2 / MCP-1, CCL7 / MCP-3, CCL3 / MIP- 1α und CCL5 / RANTES), jedoch von keinen CXC-Chemokinen (CXCL2 / MIP-2 und CXCL9 / MIG). Yang und Hu kamen zu der Erkenntnis, dass die Effekte von LPS dosisabhängig zu sein scheinen und eine angemessene Konzentration von LPS möglicherweise keine Wirkung oder sogar einen Vorteil für die Wundheilung darstellt. Wohingegen eine übermäßige Konzentration von LPS die Wundheilung verzögern könnte (Yang, Hu et al. 2013).

Ebenso wurde eine erhöhte Sekretion von VEGF, TGF-1 und FGF2 an der Wundstelle festgestellt (Kostarnoy, Gancheva et al. 2013). LPS haben somit einen wesentlichen Einfluss auf die Angiogenese (Hajighasemi and Gheini 2015). Dies geschieht dadurch, dass Lipolpolysaccharide HIF-1α unter Normoxie stabilisieren können (Lin and Simon 2016). Sie stimulieren über diesen direkten Weg die Angiogenese und Neovaskularisation in vitro sowie in vivo (Pollet, Opina et al. 2003, Hajighasemi 2013). Dieses geschieht nach Ingrid Pollet, Christy J. Opina und Kollegen über einen LPS/Toll-like-Rezeptoren (TLR)-Signalweg und wird durch den mit dem TNF-Rezeptor-assoziierten Faktor 6 (TRAF6) geleitet.

2. Fragestellung

Mit dem Wissen, dass sowohl Hypoxie als auch LPS auf die Angiogenese und Neovaskularisation fördernd wirkt, aber chronisch infizierte Wunden im hypoxischen Milieu eine begrenzte Heilung aufweisen, war es unser Ziel, diese chronischen Wundverhältnisse näher im Modell zu untersuchen, darzustellen und immunologische Aspekte einzubeziehen.

Daraus ergaben sich folgende Fragen:

- 1. Welche Gewebe und Entzündungsfaktoren werden auf Seiten der Angiogenese und der immunologisch-entzündlichen Komponente exprimiert?
- 2. Wo und wie verändert eine Kombination aus LPS + Hypoxie die Expression von Signalmolekülen der Angiogenese und des immunologischen Systems?
- 3. Spielt die Inkubationsdauer eine Rolle?
- 4. Kann der Effekt von LPS geblockt werden?

3. Material

3.1. Geräte und Laborbedarf

Laminar-Flow Werkbank:

Zentrifuge Rotanta 460R Inkubator Heracell 150i/150 Thermomixer Eppendorf compact Mikroskop Nikon Eclipse TS 100 Kühlschrank -80°C Cawomat 200 IR:

Pipettierhilfe Pipetus Einkanal Pipetten (0,1-2,5μl; 0,5-10μ; 10-100μl; 100-1000μl; 500-5000μl)

3.2. Verbrauchsmaterial

X-Ray Film CEA RPnew Spritzenfilter 0,22µm Pipettenspitzen Tip One mit/ohne Filter (0,5-10µl; 1-200µl; 100-1000µl) Biocoat cell environments Collagen I cellware 6-well plate Cellstar 6-well cell culture plate Falcon 6-well cell culture Insert Transparent 1.0 µm pore size Sterile Pinzetten Metall Sterile Löffel Metall verschließbare Tubes BDK Luft- und Reinraumtechnik GmbH Sonnenbühl Genkingen Andreas Hettich GmbH&Co.KG, Tuttlingen Thermo Scientific, Langenselbold Eppendorrf AG, Hamburg Nikon Corporation, Chiyoda Thermo Scientific, Langenselbold Herafreeze Basic CAWO Photochemische Fabrik GmbH, Schrobenhausen Hirschmann Laborgeräte GmbH&Co.KG, Eberstadt Eppendorrf AG, D-22339 Hamburg

Agfa NV Health Care, Mortsel TPP Techno Plastic Products AG, Trasadingen STARLAB GmbH, Ahrensburg

Becton Dickinson Labware, Franklin Lakes

greiner bio-one, Frickenhausen handelsübliche Modelle

handelsübliche Modelle handelsübliche Modelle handelsübliche Modelle

3.3. Chemikalien, Lösungen und Puffer

Periphere blood cell solution	Blutabnahme, in EDTA Röhrchen, von 40ml			
	peripherem Blut (4x10ml) und dem daraus			
	resultierenden aufgearbeiteten buffycoat			
Dilbecco's MEM	Biochrom AG, Berlin			
PBS Dulbecco	Biochrom AG, Berlin			
AIM V Medium (1x)	Life technologies, Carlbad			
Serum Free Medium				
collagen G approx. 4mg/ml	Biochrom AG, Berlin			
from bovine calf skin				
Natriumhydroxid	Carl Roth GmbH & Co. KG, Karlsruhe			
LPS Escherichia coli 055:B5	SIGMA-Aldrich Chemie GmbH, Steinheim			
L6529-1mg				
LPS Blocker	Prof. Dr. K. Brandenburg, Forschungszentrum			
	Borstel, Leibniz-Institut für Medizin und Bio-			
	wissenschaften, Borstel			
Proteom Profiler	R&D Systems, Inc., Minneapolis			
Quantikine ELISA	R&D Systems, Inc., Minneapolis			

3.4. Auswertungsprogramme

Dichtemessung	Image J			
Programm	Mikro Win			
Microplate reader Mithras LB 940	Berthold	Technologies	GmbH&Co.KG,	Bad
	Wildbad			

4. Methoden

Die Versuchsdurchführungen erfolgte nach den Versuchsgebrauchs- und Herstelleranweisungen. Für den Eigen- sowie Kontaminationsschutz wurde während der ganzen Versuchsreihe, von allen beteiligten Personen, Handschuhe sowie Mundschutz getragen. Die Kit Reagenzien wurden vor Vewendung auf Raumtemperatur gebracht und die eingefrorenen Versuchsproben auf Eis liegend aufgetaut und gelagert, um die Proteinstrukturen weniger anfällig zu machen.

4.1. Wundmilieusimulation

Zur Beantwortung der Fragestellung galt es ein Wundmilieu in-vitro zu simulieren. Dazu dienten folgende Grundsäulen:

- 1. Kollagengel
- 2. periphere blood cell solution (PBCs)
- 3. 21% O₂, 37°C (Normoxie)
- 4. 3% O₂, 37°C (Hypoxie)
- 5. LPS
- 6. LPS Blocker

4.1.1. Kollagengelproduktion

Für den Versuchsaufbau eigneten sich die Kollagene, die als Strukturproteine die dreidimensionalen Gerüste der menschlichen EZM - insbesondere der Haut und Organe - bilden (Bella and Hulmes 2017). Daher wurde eine kalte 0.4% Kollagenlösung G zu je 20ml mit je 3,5ml 10xMEM Earle's Medium in 4 sterilen Tubes so miteinander gemischt, dass eine gelbliche Farbe entstand. Anschließend wurde mit Hilfe einer Eppendorf Pipette tröpfchenweise 0,5molare Natronlauge (15 μ l pro Tropfen) solange unter beständigen Schwenkbewegung des Tubes hinzugefügt, bis ein pinker Farbumschlag resultierte (ca. 3.0ml NaOH). Diese nun entstandene Kollagenmischflüssigkeit wurde zu je 2ml mit einer Glaspipette in ein Insert (Filterporengröße 1 μ m) überführt, das im Vorfeld in einer 6er Well-Platte platziert wurde. Dieses Insert diente im Verlauf als Membran für die angiogenen Faktoren. Die Well-Platte wurde anschließend in einem Inkubator bei 37° bei Normoxie (21% O₂) für etwa 1h inkubiert, bis das flüssige Kollagen geliert war.

4.1.2. Periphere Blood Cell solution (PBCs) Herstellung

Zur Herstellung der PBCs diente als eine der Grundsäulen der isolierte Buffy Coat. Dafür wurde etwa 40ml peripheres Blut (4x10ml) benötigt. Daher wurde nach dem regelgerechten Desinfizieren der Blutabnahmestelle (Armbeuge), der Anlage des Stauschlauches und Punktieren der Vene (BD VacutainerTM Safety Lock), etwa 50ml Blut von einem gesunden, freiwilligen und volljährigen Spender in bereitgelegte EDTA – Ethylendiamintetraazetat-Röhrchen (BD VacutainerTM) - entnommen. Bei EDTAsich die Röhrchen handelt es um Röhrchen, mit dem Chelatbildner Ethylendiamintetraazetat ausgekleidet sind. Mithilfe dieses Chelatbildners wird das Blut ungerinnbar und kann somit für weitere Versuche einfacher genutzt werden.

Für die Isolation des Buffy Coats wurde der Effekt der Gravitation mittels Zentrifugation (1300 rounds per minute (rpm), 15min, $+4^{\circ}$ C) genutzt. Dabei werden Substanzen mit verschiedenen Dichten voneinander getrennt. Der benötigte Buffy coat, bestehend aus den für diesen Versuch benötigten Leukozyten und Thrombozyten, sammelte sich als dünne gelbliche Schicht zwischen den flüssigen und festen Blutbestandteilen an. Er macht nur etwa 1% des gesamten Blutvolumens aus. Mittels Eppendorf Pipette (100-200µl) wurde der Buffy Coat entnommen und für die weiteren Versuchsschritte in einem verschließbaren sterilen Tube gesammelt und mit AIM auf ein Gesamtvolumen von 40ml (Blutausgangsvolumen) aufgefüllt, was der Periphere Blood Cell solution (PBCs) entspricht.

Nun wurden 1ml PBCs und je 2ml AIM in kollagenbeschichtete und unbeschichtete 6er Well-Platten überführt. Dieses geschah unter stetig kreisenden Bewegungen der PBC Solution Tubes, damit die Bestandteile gleichmäßig im Lumen verteilt waren.

4.1.3. Bakterielle Besiedelung

Um eine Besiedelung des gram-negativen Bakterienspektrums zu simulieren, erfolgte bei einem Teil der zu untersuchenden Proben die LPS Zugabe mit einer Endkonzentration von lug/ml.

4.1.4. LPS-Blockierung

Die LPS-Blockade erfolgte mittels eines LPS-Blockers mit ebenfalls 1ug/ml Endkonzentration. Der LPS-Blocker wurde freundlicherweise von Prof. Dr. K. Brandenburg aus dem Forschungszentrum Borstel zur Verfügung gestellt.

4.1.5. Versuchsaufbau

Als nächster Schritt wurde das gelierte Kollagen aus dem Inkubator entnommen und mittels steriler Pinzette inklusive Insert in die kollagenbeschichteten und unbeschichteten Wells überführt. Abschließend wurden diese jeweils mit 1ml AIM bedeckt.

4.1.6. Inkubation

Die Proben sollten im ersten Teil der Arbeit mittels Proteome Profiler Antibody Array analysiert werden. Hierfür wurde die Auswirkung von Normoxie und Hypoxie auf das Probenmaterial mit und ohne LPS betrachtet. Hierzu erfolgte die Inkubation der Proben über 5-10 Tage bei 37°C in kollagenbeschichteten Wells folgendermaßen:

- 5 Tage ohne LPS unter Normoxie (21% O₂)
- 5 Tage mit LPS unter Normoxie (21% O₂)
- 5 Tage mit LPS unter Hypoxie (3% O₂)
- 10 Tage mit LPS unter Hypoxie (3% O₂)

4.2. Proteome Profiler Antibody Array Versuche

Nach der 5 bis 10-tägigen Inkubationszeit, wurden die Inserts mit Hilfe einer sterilen Pinzette aus den Vertiefungen herausgehoben. Das Gel wurde jeweils mit Hilfe eines neuen sterilen Löffels in ein separates mit 1ml AIM gefüllten beschrifteten Tube (Größe 50ml) überführt und anschließend bei 2000 rpm, 20min, +4°C zentrifugiert.

Danach wurde das gesamte flüssige Medium aspiriert und in identisch beschriftete 2ml Eppendorf Tubes umgefüllt. Nun könnte man das Medium für weitere Versuchsreihen bei -20°C einfrieren, um flexibel auf dieses zurückzugreifen zu können. Folgende Proteome Profiler Arrays wurden verwendet:

- Human Angiogensis Array, R&D Systems, Katalog Nummer ARY007
- Human Cytokine Array Panel A, R&D Systems, Katalog Nummer ARY005
4.2.1. Proteome Profiler Human Angiogenesis Array

Mit den Proteome Profiler Human Angiogenesis Array wird die Expression von 55 Angiogenese-zugehörigen Proteinen mithilfe eines Protein/Antibody-Komplexes (jeweils doppelte Membranmessungen A1-A20; B1-B24; C1-C24; D1-D24; E1-E22; F1/F2; F23/F24) gemessen. Dazu musste vorab der Detection-Antibody-Cocktail mit 100µl destilliertem Wasser und 40ml des 25X Wash Buffers, zur Herstellung des 1X Wash Buffers, mit 960ml destilliertem Wasser gemischt werden. Danach erfolgte die weitere Versuchsdurchführung:

- In die mitgelieferte 4er Well-Platte wurde in jede Vertiefung 2.0ml des Array Buffers 7, welcher als Blocker fungiert, überführt. Danach wurde mittels einer Pinzette jeweils eine Membran, mit den Zahlen nach oben zeigend, in die Wells gegeben. Diese wurden dann für 1 Stunde auf einer Kipp-Plattform inkubiert.
- Während der Inkubation wurde 1ml jeder Probe (siehe 4.1.5.) mit 0,5ml des Array Buffers 4 in seperaten Tubes zu einem Gesamtvolumen von je 1,5ml gemischt. Zu jedem wurden danach 15µl des Detection-Antibody-Cocktail hinzugegeben und für 1h bei Raumtemperatur inkubiert.
- Nach 1h wurde der Array Buffer 7 von der 4er Well-Platte aspiriert und die vorbereiteten Proben aus Schritt 2 hinzugefügt und über Nacht bei 2-8°C auf der Kipp-Plattform inkubiert.
- 4. Am nächsten Tag wurden die 4 Membranen in eine neue 4er Well-Platte überführt und dreimalig mit dem 1X Wash Buffer mittels Kipp-Plattform gespühlt. Nach Abtropfen überflüssigen Buffers wurden die Membranen abermals in eine neue 4er Well-Platte überführt und mit je 2,0ml des verdünnten Streptavidin-HRP (Streptavidin-HRP mit Array Buffer 5) bedeckt und für 30min auf einem Rocking-Platform-Shaker inkubiert.
- 5. Es erfolgte abermals eine dreimalige Waschung, vergleiche hierzu Schritt 4. Parallel zum Ende der dritten Waschung wurde der nun in den nächsten Schritten benötigte Chemi-Reagent-Mix angesetzt. Hierfür wurden die Reagenzien 1 und 2 zu gleichen Teilen gemischt. Zu beachten war, dass die Reagenzlösung vor Licht geschützt und innerhalb von 15min genutzt werden musste.
- 6. Nach der dritten Waschung wurden die Membranen vorsichtig aus den Well-Platten genommen, der überflüssige Buffer mittels eines weichen saugfähigen Tuches abgenommen und auf den Boden der mitgelieferten Kunststoffschutzfolie (Identifikationsnummer nach oben zeigend) gelegt. Danach erfolgte die

Benetzung der Membran mit 1ml des Chemi-Reagent-Mixes und Bedeckung mittels Plastikschutzfolie. Vorsichtig mussten nun alle Luftblasen zwischen Membran und der Plastikschutzfolie ausgestrichen werden. Dabei war zusätzlich zu beachten, dass der Chemi-Reagenz-Mix gleichmäßig verteilt und die ganze Membran bedeckt war.

7. Nach 1min wurde vorsichtig der Chemi-Reagenz-Mix mittels eines weichen Tuches aus der Plastikfolie gedrückt, der Deckel der Schutzfolie entfernt und das restliche Reagenz mit leichtem Kontakt zu einem saugfähigen Tuch entfernt. Danach wurde die Membran wieder, unter Luftblasenausschluss, mit einer Schutzfolie bedeckt.

A1/A2:	Reference Spots	C17/C18:	IL-8
A5/A6:	Activin A	C19/C20:	LAP (TGF-ß1)
A7/A8:	ADAMTS-1	C21/C22:	Leptin
A9/A10:	Angiogenin	C23/C24:	MCP-1
A11/A12:	Angiopoietin-1	D1/D2:	MIP-1a
A13/A14:	Angiopoietin-2	D3/D4:	MMP-8
A15/A16:	Plasminogen	D5/D6:	MMP-9
A17/A18:	Amphiregulin	D7/D8:	NRG1-ß1
A19/A20:	Artemin	D9/D10:	Pentraxin 3 (PTX3)
A23/A24:	Reference Spots	D11/D12:	PD-ECGF
B1/B2:	Coagulations Faktor III	D13/D14:	PDGF-AA
B3/B4:	CXCL16	D15/D16:	PDGF-AB
B5/B6:	CD26	D17/D18:	Persephin
B7/B8:	EGF	D19/D20:	Platelet Faktor 4
B9/B10:	EG-VEGF	D21/D22:	PIGF
B11/B12:	Endoglin	D23/D24:	Prolactin
B13/B14:	Endostatin	E1/E2:	Serpin B5
B15/B16:	Endothelin-1	E3/E4:	Serpin E1
B17/B18:	FGF acidic	E5/E6:	Serpin F1
B19/B20:	FGF basic	E7/E8:	TIMP-1
B21/B22:	FGF-4	E9/E10:	TIMP-4
B23/B24:	FGF-7	E11/E12:	Thrombospondin-1
C1/C2:	GDNF	E13/E14:	Thrombospondin-2
C3/C4:	GM-CSF	E15/E16:	uPA
C5/C6:	HB-EGF	E17/E18:	Vasohibin
C7/C8:	HGF	E19/E20:	VEGF
C9/C10:	IGFBP-1	E21/E22:	VEGF-C
C11/C12:	IGFBP-2	F1/F2:	Reference Spots
C13/C14:	IGFBP-3	F23/F24:	Negative Control
C15/C16:	IL-1ß		

Tabelle 4.1.: Versuchsproteine Proteome Profiler Human Angiogenesis Array

4.2.2. Proteome Profiler Human Cytokine Array

Der Proteome Profiler Human Cytokine Array Panel A analysiert die Expression von 36 Cytokinen mithilfe eines Cytokin/Antibody-Komplexes (jeweils doppelte Membranmessungen A1-A20, B3-B18, C3-C18, D3-D18, E1-E10, E19/E20). Die Versuchsvorbereitung erfolgte wie beim Proteome Profiler Human Angiogenesis Array. Danach erfolgten die weiteren Versuchsdurchführungsschritte:

- 1. Vergleiche 4.2.1.1. Punkt 1 der Versuchsdurchführung, anstatt Array Buffer 7 wurde hier der Array Buffer 4 verwendet.
- 2. Vergleiche 4.2.1.1. Punkt 2 der Versuchsdurchführung.
- 3. Vergleiche 4.2.1.1. Punkt 3 der Versuchsdurchführung, anstatt Array Buffer 7 wurde hier der Array Buffer 4 entfernt.
- Vergleiche 4.2.1.1. Punkt 4 der Versuchsdurchführung, die Platte wurde mit je 2ml des verdünnten Streptavidin-HRP (Streptavidin-HRP mit Array Buffer 5) bedeckt.

A1/A2:	Reference Spot	C7/C8:	IL-13
A3/A4:	C5/C5a	C9/C10:	IL-16
A5/A6:	CD40 Ligand	C11/C12:	IL-17
A7/A8:	G-CSF	C13/C14:	IL-17E
A9/A10:	GM-CSF	C15/C16:	IL-23
A11/A12:	GROa	C17/C18:	IL-27
A13/A14:	I-309	D3/D4:	IL-32a
A16/A16:	CD54	D5/D6:	IP-10
A17/A18:	IFN-γ	D7/D8:	I-TAC
A19/A20:	Reference Spot	D9/D10:	MCP-1
B3/B4:	IL-1a	D11/D12:	MIF
B5/B6:	IL-1ß	D13/D14:	MIP-1a
B7/B8:	IL-1ra	D15/D16:	MIP-1ß
B9/B10:	IL-2	D17/D18:	Serpin E1
B11/B12:	IL-4	E1/E2:	Reference Spot
B13/B14:	IL-5	E3/E4:	CCL5
B15/B16:	IL-6	E5/E6:	SDF-1
B17/B18:	IL-8	E7/E8:	TNF-a
C3/C4:	IL-10	E9/E10:	sTREM-1

5.-7. Vergleiche 4.2.1.1. Punkt 5-7 Versuchsdurchführung.

Tabelle 4.2.: Versuchszytokine Proteine Proteome Profiler Human Cytokine Array

4.3. Enzyme linked immunosorbent assay (ELISA) - Versuche

Nach der durchgeführten Versuchsreihe der Proteome Profiler Antibody Arrays (Angiogenesis, Cytokine) erfolgte das differenzierte immunologische Nachweisverfahren mittels Quantikine^R ELISA Kolorimetrie, mit dessen Hilfe die Konzentration von Antikörpern/Antigenen im Buffy coat bestimmt werden konnten. Zur Herstellung des benötigten Wash-Buffers wurden 480ml destilliertem Wasser mit 20ml Wash Buffer-Konzentrat gemischt. Folgende Analysen wurden durchgeführt:

- Quantikine ^R ELISA	Human TSP-1, R&D Systems
	Katalognummer DTSP10
- Quantikine ^R ELISA	Human VEGF, R&D Systems
	Katalognummer DVE00, SVE00, PDVE00
- Quantikine ^R ELISA	Human CXCL8/IL-8, R&D Systems
	Katalognummer D8000C, S8000C, PD8000C
- Quantikine ^R ELISA	Human CCL5, R&D Systems
	Katalognummer DRN00B, SRN00B, PDRN00B

Um jede in dieser Arbeit zu untersuchende Wundsituation differenziert betrachten zu können erfolgte als erster Schritt die Gruppenunterteilung (siehe Abbildung 4.2. und 4.3.). Als Kontrolle wurden sowohl kollagenbeschichtete (physiologische Wundsimulation) und kollagenunbeschichteten Wells verwendet.

	ohne LPS		mit LPS		LPS + Blocker			Blocker				
kollagenbeschichtet	1	2	3	4	5	6	7	8	9	10	11	12
kollagenbeschichtet	13	14	15	16	17	18	19	20	21	22	23	24
unbeschichtet	25	26	27	28	29	30	31	32	33	34	35	36

Abbildung 4.2.: ELISA-Versuchsparameter I

In dieser Versuchsreihe erfolgte die Inkubation der Proben über 5 Tage bei 37°C in dementsprechenden Wells folgendermaßen:

(jede Vertiefung gefüllt mit 1ml PBCs, 2ml AIM, /+LPS/+LPS+Blocker/+Blocker).

	ohne LPS	mit LPS	LPS + Blocker	Blocker
Hypoxie (3% O ₂) kollagenbeschichtet	1 2 3 je 1ml PBCs + 2ml AIM	4 5 6 je 1ml PBCs + 2ml AIM (+LPS 3μl)	7 8 9 je 1ml PBCs + 2ml AIM (+LPS 3µl,Blocker 3µl)	10 11 12 je 1ml PBCs + 2ml AIM (+Blocker 3µl)
Normoxie (21% O ₂) kollagenbeschichtet	13 14 15 je 1ml PBCs + 2ml AIM	16 17 18 je 1ml PBCs + 2ml AIM (+LPS 3μl)	19 20 21 je 1ml PBCs + 2ml AIM (+LPS 3µl,Blocker 3µl)	22 23 24 je 1ml PBCs + 2ml AIM (+Blocker 3µl)
Hypoxie (3% O ₂) unbeschichtet	25 26 27 je 1ml PBCs + 2ml AIM	28 29 30 je 1ml PBCs + 2ml AIM (+LPS 3µl)	31 32 33 je 1ml PBCs + 2ml AIM (+LPS 3µl,Blocker 3µl)	34 35 36 je 1ml PBCs + 2ml AIM (+Blocker 3µl)

Abbildung 4.3.: ELISA-Versuchsparameter II

4.3.1. Quantikine^R ELISA - Human TSP-1

Zur Vorbereitung wurden je 100µl der Versuchsproben wurden mit 100µl Calibrator Diluent RD5-33 (1X) in einem Polypopylene Tube gemischt. Die Herstellung des TSP-1 Standards erfolgte mittels 15minütiger Mischung mit 1ml destilliertem Wasser (entspricht Grundlösungs-Konzentration 1000pg/ml).

Als nächstes wurden je 300µl vom Calibrator Diluent RD5-33 (1X) – von dem 20ml vorab mit 20ml destilliertem Wasser gemischt wurde - in 8 Polypropylene Tubes gefüllt und eine Verdünnungsreihe mit der TSP-1 Grundlösung durchgeführt. Die 500ng/ml Lösung diente als höchster Standard, der alleinige Calibrator Diluent RD5-33 (1X) als Null-Standard (0pg/ml).

Abbildung 4.4.: ELISA-Verdünnungsreihe

Danach erfolgte die Versuchsdurchführung folgendermaßen:

- Anfangs wurden in jede Well-Vertiefung 100µl Assay Diluent RD1-56 mit Hilfe einer Pipette gegeben.
- Danach erfolgte die Zugabe von 50µl der Standardlösung, der Kontrolle und des Versuchsmediums in jeweils 2 Wells. Dies wurde mit dem im Kit

enthaltendem Klebestreifen bedeckt und für 2h bei 21° Raumtemperatur auf einem horizontalen Schüttler bei 500rpm +/- 50rpm inkubiert.

- 3. Anschließend musste jegliche Flüssigkeit aus den Wells mit Hilfe einer Pipette aspiriert und insgesamt 4x mit Hilfe von je 400µl Wash-Buffer gespült werden. Nach der letzten Waschung wurde jeglicher Buffer aus den Wells entfernt, indem die Platte leicht auf einem sauberen saugfähigen Tuch ausgeklopft wurde.
- 4. Der nächste Versuchsdurchführungsschritt bestand daraus, 200µl Thrombospondin-1-Konjugat in jede Wellvertiefung zu geben, mit einem neuen Klebestreifen zu bedecken und abermals für 2h, bei Raumtemperatur, auf einem horizontalen Schüttler zu inkubieren.
- 5. Nach den 2h wurde der Waschvorgang, wie in Punkt 3. beschrieben, wiederholt. Parallel zur letzten Waschung wurde die Substrate Solution hergestellt, indem Color Reagenz A mit B im gleichen Verhältnis gemischt wurde. Diese Flüssigkeit gilt es vor Licht zu schützen und innerhalb von 15min nach Herstellung zu verbrauchen, indem 200µl dieser in jedes Well gefüllt und für 30min bei Dunkelheit und Raumtemperatur inkubiert wurde.
- Nach 30min wurden 50µl der Stopp Solution in jedes Well pipettiert.
 Dabei resultierte der gewünschte Farbumschlag von blau zu gelb.
- Abschließend wurde der optische Stärkeunterschied mittels Microplate Reader (450nm) binnen 30min durchgeführt und ausgewertet.

4.3.2. Quantikine^R ELISA - Human VEGF

Zuerst wurde die Herstellung des VEGF Standard vorgenommen, indem dieser mit dem Calibrator Diluent RD5K (entspricht Grundlösungs-Konzentration 2000pg/ml) für 15min gewaschen wurde. Als nächsten Versuchsvorbereitungsschritt wurden je 500µl des Calibrator Diluent RD5K in 8 Polypropylen Tubes überführt. Die darauffolgende Verdünnungsreihe wurde mit der Grundlösung (500µl) durchgeführt (Procedere vergleiche TSP-1-ELISA). Die Konzentration von 1000pg/ml fungierte als höchster Standard, der alleinige Calibrator Diluent RD5K als Null Standard (0pg/ml). Danach erfolgte die Versuchsdurchführung folgendermaßen:

1. Vergleiche 4.3.2.1. Punkt 1 der Versuchsdurchführung, anstatt 100µl Assay

Diluent RD1-56 wurden hier 50µl Assay Diluent RD1W verwendet.

- Vergleiche 4.3.2.1. Punkt 2 der Versuchsdurchführung, anstatt 50µl wurden hier 200µl des Standards, der Kontrolle, des Versuchsmediums verwendet.
- Vergleiche 4.3.2.1. Punkt 3 der Versuchsdurchführung, anstatt 4x wurde 3x mit Hilfe des Wash-Buffers gewaschen.
- Vergleiche 4.3.2.1. Punkt 4 der Versuchsdurchführung, anstatt 200µl Thrombospondin-1-Konjugat wurden 200µl VEGF-Konjugat verwendet.
- Vergleiche 4.3.2.1. Punkt 3 und 5 der Versuchsdurchführung, anstatt 30min Inkubationszeit wurden nur 20min benötigt.
- 6-7. Vergleiche 4.3.2.1. Punkt 6 und 7 Versuchsdurchführung

4.3.3. Quantikine^R ELISA - Human IL-8

Zur Vorbereitung wurden 20ml Calibrator Diluent RD5P- Konzentrates mit 80ml destilliertem Wasser gemischt. 990µl dieses Calibrator Diluent RD5P (1:5) wurde anschließend mit je 10µl der Versuchsproben in einem Polypopylene Tube gemischt. Die Herstellung des Human IL-8 Standard erfolgte mittels 15minütiger Mischung mit 5ml des Calibrator Diluent RD5P (1:5). Dieses entspricht der Grundlösungs-Konzentration von 2000pg/ml. Als nächstes wurden 500µL der Calibrator Diluent RD5P (1:5)-Lösung in 6 Tubes überführt und die Verdünnungsreihe mit der Grundlösung begonnen (Procedere vergleiche TSP-1-ELISA). Die unverdünnte Grundlösung diente als höchster Standard (2000pg/ml) und der Calibrator Diluent RD5P (1:5) als Null Standard (0pg/ml). Danach erfolgte die Versuchsdurchführung folgendermaßen:

- Vergleiche 4.3.2.1. Punkt 1 der Versuchsdurchführung, anstatt 100µl Assay Diluent RD1-56 wurden hier 100µl Assay Diluent RD1-85 verwendet.
- 2+3. Vergleiche 4.3.2.1. Punkt 2 und 3 der 4 der Versuchsdurchführung.
 - Vergleiche 4.3.2.1. Punkt 4 der Versuchsdurchführung, anstatt 200µlThrombospondin-1-Konjugat wurden 100µl Human- IL-8- Konjugat verwendet.
 - 5. Vergleiche 4.3.2.1. Punkt 3 und 5 der Versuchsdurchführung.
- 6+7. Vergleiche 4.3.2.1. Punkt 6 und 7 der Versuchsdurchführung.

4.3.4. Quantikine^R ELISA - Human CCL5

Zur Vorbereitung wurden 20ml Calibrator Diluent RD6-11- Konzentrates mit 80ml destilliertem Wasser gemischt. 990µl dieses Calibrator Diluent RD6-11 (1:5) wurden

anschließend mit je 10µl der Versuchsproben in einem Polypopylene Tube gemischt. Die Herstellung des RANTES Standard erfolgte mittels 15minütiger Mischung mit 5ml des Calibrator Diluent RD56-11 (1:5). Dieses entspricht der Grundlösungs-Konzentration von 2000pg/ml. Anschließend wurden je 500µl des Calibrator Diluent RD6-11 (1:5) in je 8 Polypropylen Tubes überführt. Die darauffolgende Verdünnungsreihe wurde mit der Grundlösung (500µl) durchgeführt (Procedere vergleiche TSP-1-ELISA).

Die Konzentration von 2000pg/ml des unverdünnten Standards fungierte als höchster Standard, der alleinige Calibrator Diluent RD6-11 als Null Standard (0pg/ml). Danach erfolgte die Versuchsdurchführung folgendermaßen:

- Vergleiche 4.3.2.1. Punkt 1 der Versuchsdurchführung, anstatt 100µl Assay Diluent RD1-56 wurden hier 100µl Assay Diluent RD1W verwendet.
- Vergleiche 4.3.2.1. Punkt 2 der Versuchsdurchführung, anstatt 50µl wurden hier 100µl des Standards, der Kontrolle, des Versuchsmediums verwendet.
- 3. Vergleiche 4.3.2.1. Punkt 3 der Versuchsdurchführung.
- Vergleiche 4.3.2.1. Punkt 4 der Versuchsdurchführung, anstatt 200µl Thrombospondin-1-Konjugat wurden 200µl RANTES-Konjugat verwendet.
- 5. Vergleiche 4.3.2.1. Punkt 3 und 5 der Versuchsdurchführung.
- 6.+7. Vergleiche 4.3.2.1. Punkt 6 und 7 der Versuchsdurchführung.

4.4. Statistische Auswertungsmethode

4.4.1. Proteome Profiler

Für die anfangs ermittelte Übersicht erfolgte die Datenerhebung mittels Proteome Profiler Human Angiogenesis Array und Proteome Profiler Human Cytokine Array Panel A von R&D Systems. Die bildliche Darstellung und Auswertung geschah mittels Cawomat 200 IR der Firma CAWO Photochemische Fabrik GmbH, Schrobenhausen für 1-10 Minuten, jeweils zur vollen Minute. Am aussagekräftigsten zeigte sich eine Belichtung der Proben ab Minute 4 und 5. Daher flossen in die Ergebnisauswertungen die Bewertungen von Minute 4, 5 und 6 (Angiogenese) und von Minute 5, 6 und 7 (Cytokine) ein. Die später durchgeführte Dichtemessung mit Hilfe des Computerprogrammes Image J. Die Durchschnittswerte und das jeweilige Mittel wurden an 4, bei den Kontrollen an 12 (6x2) und bei den Probewerten an 2 unterschiedlichen Orten gemessen und mit der Hintergrunddichte (backround reference) verglichen. Mit diesen Ergebnissen konnte die Darstellung in Mittelwert und Standardabweichung erfolgen und mit Hilfe von Box-Plots veranschaulicht werden. Die Darstellung der Expressionsauswirkungen durch die Zugabe von LPS, sowie der Vergleich von Normoxie zu Hypoxie in den LPS-Gruppen, erfolgte mittels Box-Plot. Die Tabellen der Minimum-/Maximumwerte, des Medians, und des 1. und 2. Quartils zur Erstellung der Box-Plots können in den Tabellen A2 (Human Angiogenesis Array) und A4 (Cytokine Array) im Anhang entnommen werden.

4.4.2. ELISA

Die ELISA-Versuchsreihen fand, mit drei unterschiedlichen Proben, mit jeweils 3x2maliger Testung in einem Versuch, statt. Der Versuch wurde 2-3x zu unterschiedlichen Zeitpunkten mit unterschiedlichen Proben wiederholt, so dass am Ende Mittelwert und Standardabweichung (Std.-Abw.) gebildet werden konnten. Die Ergebnisgegenüberstellungen geschahen mittels Box-Plots. Ausführlichere Daten finden Darstellung in den Tabellen A5-A11/A12-A18 und A33/A34 im Anhang.

Dank der kolorimetrischen Analyse und der Ermittlung der polynomischen Konzentrationen erfolgten auf dieser Basis die deskriptiven Statistiken, Verteilungsprüfungen, Diagrammdarstellungen, die Kolmogorov-Smirnov-Testungen sowie die Shapiro-Wilk-Berechnungen. Eine weitere nicht-parametrische Analyse wurde bei einer signifikanten Abweichung von der Normalverteilung (Shapiro-Wilk-Test Ergebnissen p<0,05) durchgeführt. Eine Rangermittlung zwischen den Gruppen wurde dank Kruskal-Wallis-Test ermittelt und bei signifikantem Unterschied (Kruskal-Wallis-Test p<0,05) Post-Hoc-Paarvergleiche zwischen zwei Gruppen mit den U-Test berechnet.

Die weiteren Berechnungen im Rahmen des Normoxie/Hypoxie-Vergleiches erfolgten zuerst im Friedman Test Verfahren. Die für diese Ergebnisse erforderlichen Tests/Rangermittlungen finden sich im Anhang Tabellen A47 und A48. Bei signifikantem Unterschied (Friedman-Test p<0,05) wurde die Analyse um den Wilcoxon-Test für Paardifferenzen erweitert. Daran anschließend erfolgte die statistische Auswertung mit Hilfe der Sigma Plot Software. Mittelwert, Standardabweichung sowie zweiseitiger unabhängiger Student's t-Test dienten, bei 2 Gruppen, der Berechnung des P-Wertes. Für die statistische Auswertung der Mechanotransduktionsgene wurde ein paarweiser Vergleich der Gruppe mittels Tukey-Test, durchgeführt. Ein P-Wert von <0,05 wurde als statistisch signifikant gewertet.

5. Ergebnisse

Um einen ersten Eindruck über die Proteinexpression (Normoxie (21% O₂) 5d mit LPS, Normoxie 5d ohne LPS, Hypoxie (3% O₂) 5d mit LPS, Hypoxie 10d mit LPS) gewinnen zu können erfolgte die Analyse mittels Proteome Profilern. Diese Analysen erfolgten sowohl aus angiologischer (ProteomeProfiler Human Angiogenesis Array) als auch aus immunologischer (Proteome Profiler Human Cytokine Array) Perspektive. Als Vertreter für die weitere Betrachtung wurde auf Seiten der Angiogenese das VEGF und TSP-1 und auf der Seite der Immunantwort IL-8 und CCL5 gewählt. Diese wurden mit Hilfe des ELISAs differenzierter betrachtet und mittels statistischer Auswertungsmethoden analysiert.

5.1. Expression angiogenetischer Proteine

Abbildung 5.1.: Cawomat 200 IR Fotofilm des Proteome Profiler Human Angiogenesis Array nach 5 Minuten.

Auf der Grundlage der Fotofilmentwicklung zeigte die Image J Auswertung die Expression bei den in der Tabelle aufgeführten Proteinen. Die gesamten detaillierten Ergebnisaufstellungen finden Darstellung in den Tabelle A1 im Anhang.

		21% O ₂ /5d	21% O ₂ /5d mit	3% O ₂ /5d mit	3% O ₂ /10d mit
Aktivin A	Durchschnitt	0,13	0,03	0,11	0,1
	Standardabweichung	± 0,02	± 0,02	± 0,04	± 0,01
Angiogenin	Durchschnitt Standardabweichung	$0,08 \pm 0.02$	$0,03 \pm 0.01$	-	$0,1 \pm 0.05$
Angiostatin	Durchschnitt Standardabwaishung	0,24	0,26	0,24	0,27
Endothelin 1	Average	$\pm 0,07$ 0,3	$\pm 0,03$	± 0,07	± 0,01 0,29
	Standardabweichung	± 0,06	± 0,01	± 0,05	± 0,02
IL-8	Durchschnitt	0,22	1,05	1,04	1,03
	Standardabweichung	± 0,10	± 0,04	± 0,05	± 0,01
MMP 9	Durchschnitt	-	0,02	0,06	0,16
	Standardabweichung	-	± 0,03	± 0,02	± 0,07
Persephin	Durchschnitt	-	0,16	0,11	-
	Standardabweichung	-	± 0,04	± 0,01	-
PF4	Durchschnitt Standardabweichung	$1,08 \pm 0,05$	$1,06 \pm 0,04$	$1,05 \pm 0,04$	$1,02 \pm 0,03$
Serpin E1	Durchschnitt	-	0,01	0,01	0,07
	Standardabweichung	-	-	-	± 0,09
Serpin F1	Durchschnitt	0,04	0,19	0,02	0,09
TD (D 1	Standardabweichung	± 0,05	$\pm 0,10$	$\pm 0,03$	± 0,04
TIMP I	Standardabweichung	-	-	-	0,27 ± 0,03
TSP-1	Durchschnitt	0,17	0,39	0,27	0,32
	Standardabweichung	± 0,07	± 0,05	± 0,02	± 0,02

Tabelle 5.1.: Ergebniszusammenfassung (Durchschnitt, Standardabweichungen) der exprimierten Proteine des Proteome Profiler Human Angiogenesis Array nach 4, 5, und 6 Minuten unter den Versuchsbedingungen der Normoxie 5d ohne LPS; Normoxie 5d mit LPS, Hypoxie 5d mit LPS, Hypoxie 10d mit LPS. Aufgeführt sind Röntgenintensitätsumrechnungen des Image J Programmes.

Für das Probenmaterial Angiopoetin 1 und 2, Plasminogen, Amphiregulin, Artemin, Coagulationsfaktor III, CXCL16, CD26, EGF, EG-VEGF, Endogelin, Endostatin, FGF acidic/basic, FGF-4, -7, GDNF, GM-CSF, HB-EGF, IGFBP1-3, IL-1ß, MCP-1, MIP-1a, MMP-8, NRG1-ß1, Pentraxin 3, PD-ECGF, PDGF-AA & -AB, PIGF, Prolactin, Serpin B5, TIMP-4, TSP-2, uPA, Vasohibin, VEGF und VEGF-C erfolgte keine Wertauswertung und -analyse, da sie keine Expression aufwiesen. Dieses war dadurch erkennbar, dass Sie keinen Dichteunterschied auf dem Arrayfotofilm zeigten.

5.1.1. Auswirkungen von LPS, Normoxie und Hypoxie

Wie aus den Box-Plot-Darstellungen (Abbildung 5.2.) und der Tabelle 5.1. ersichtlich fand eine Intensitätserhöhung unter der Zugabe von LPS bei den proangiogenetisch wirkenden Faktoren IL-8 (Abbildung 5.2.A); MMP-9 (Abbildung 5.2.B) und Persephin (Abbildung 5.2.C) statt. Bei der MMP-9 sowie Persephin zeigte sich, dass die Expression unter Normoxie ohne LPS nicht nachweislich stattfand. Die unterschiedlichen Sauerstoffkonzentrationen schienen keinen Einfluss auf die IL-8-Expression zu besitzen (Tabelle 5.1.: $1,05 \pm 0,04$ vs. $1,04 \pm 0,04$).

Die MMP-9 Konzentration stieg unter Hypoxiebedingungen weiter von $0,02 \pm 0,03$ auf $0,06 \pm 0,02$ auf $0,16 \pm 0,07$ an (Tabelle 5.1.). Wohingegen Persephin eine Abnahme in der Kombination LPS mit Hypoxie um etwa 30% verzeichnete und nach 10 Tagen nicht mehr exprimiert wurde (Tabelle 5.1.).

Mit Blick auf die Angiogenese-Inhibitoren Serpin E1, Serpin F1, und TSP-1 ergab sich in den Versuchen ebenso ein Expressionsunterscheid zugunsten der LPS- beinhaltenden Proben unter Normoxie (Abbildung 5.3.D-F, Tabelle 5.1.). Setzt man diese in den Vergleich zur Hypoxie, so erkennt man eine Reduzierung der Expression im zeitlichen Verlauf von 5 Tagen bei Serpin F-1 und TSP-1 sowie eine Werterhaltung bei Serpin E1. Im Verhältnis zu 10 Tagen liegt wiederum die Expression bei allen dreien höher.

21% O2/5d ohne LPS

0,00

0,10

0,20 0,30 0,40

0,50 0,60

Abbildung 5.4.: Box-Plot-Vergleichsdarstellung (G-H) der im Versuchsaufbau ermittelten Expressionsauswirkungen.

Eine um etwa 77% reduzierte Expression bei Normoxie unter der Zugabe von LPS zeigte sich bei Aktivin-A (Abbildung 5.4.G). Bei Angiogenin (Abbildung 5.4.H) war sie um etwa 63% niedriger (Tabelle 5.1.). Zwischen den Versuchsparametern Normoxie mit LPS und Hypoxie mit LPS zeigte sich eine Expressionserhöhung zugunsten der hypoxischen Versuchsbedingungen im Falle des Aktivin-A. Jedoch fand sich beim Angiogenin im 5-tägigen Vergleich in der Gruppe Hypoxie mit LPS keinerlei Expression (Tabelle 5.1., Abbildung 5.4.H). Nach 10 Tagen waren sowohl Aktivin-A als auch Angiogenin exprimiert.

⋒⊢

I

· III)

0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40

Endothelin-1, Angiostatin und PF4 präsentierten ein etwa gleichbleibendes Expressionsmuster unter dem Zusatz von LPS unter Normoxie-Bedingungen (Tabelle $5.1.: 0,3 \pm 0,06$ vs. $0,3 \pm 0,01$ (Endothelin-1); $0,24 \pm 0,07$ vs. $0,26 \pm 0,05$ (Angiostatin); $1,08 \pm 0,05$ vs. $1,06 \pm 0,04$ (PF4)). Mit Blick auf alle Gruppenvarianzen, schien die Expression unter keinem großen beeinflussenden Faktor zu stehen und verhielt sich in

3% O2/10d mit LPS

3% O2/5d mit LPS

21% O2/5d mit LPS

21% O2/5d ohne LPS

allen Gruppen ähnlich, allerdings war ein leichter Rückgang unter Hypoxie erkennbar (Tabelle 5.1.).

Abbildung 5.6.: Box-Plot-Vergleichsdarstellung (L) der im Versuchsaufbau ermittelten Expressionsauswirkungen.

Keinerlei Expressionauswirkungen zeigten die Konditionen im 5-Tages-Vergleich (Tabelle 5.1., Abbildung 5.6.L) der TIMP-1 Probe. Betrachte man die Versuchsergebnisse, so fiel auf, dass nur eine Expression dieses Glykoproteins nach 10-tägiger Hypoxiebehandlung mit LPS erreicht wurde.

5.2. Expression immunologisch wirkender Proteine

Abbildung 5.7.: Cawomat 200 IR Fotofilm Proteome Profiler Human Cytokine Array nach 5 Minuten.

Die Image-J-Auswertungen ergaben die Expression bei den in der Tabelle aufgeführten Proteinen. Die gesamten detaillierten Ergebnisaufstellungen finden Darstellung in den Tabellen A3 siehe Anhang.

		21% O ₂ /5d ohne	21% O2/5d mit	3% O2/5d mit	3% O2/10d mit
		LPS	LPS	LPS	LPS
C5/C5a	Durchschnitt	-	-	0,14	0,23
	Standardabweichung	-	-	± 0,10	± 0,13
CCL5	Durchschnitt	-	0,62	0,83	0,47
	Standardabweichung	-	± 0,13	± 0,05	± 0,15
CD54	Durchschnitt	0,14	0,13	0,23	0,13
	Standardabweichung	$\pm 0,08$	± 0,04	± 0,192	$\pm 0,072$
GROa	Durchschnitt	-	0,79	0,80	0,95
	Standardabweichung	-	± 0,10	$\pm 0,09$	$\pm 0,06$
IL-1B	Durchschnitt	-	0,06	0,43	0,61
	Standardabweichung	-	± 0,05	± 0,13	± 0,28
IL-1ra	Durchschnitt	0,10	0,69	0,97	0,79
	Standardabweichung	± 0,05	$\pm 0,08$	± 0,01	± 0,27
IL-6	Durchschnitt	-	0,09	0,32	0,38
	Standardabweichung	-	± 0,05	± 0,13	± 0,17
IL-8	Durchschnitt	0,36	1,03	1,01	1,03
	Standardabweichung	± 0,11	± 0,02	± 0,01	± 0,01
IL-16	Durchschnitt	-	-	-	0,07
	Standardabweichung	-	-	-	$\pm 0,05$
MIF	Durchschnitt	0,26	0,21	0,49	0,93
	Standardabweichung	± 0,11	± 0,09	± 0,14	± 0,06
MIP1a	Durchschnitt	-	-	0,10	-
	Standardabweichung	-	-	± 0,07	-
Serpin E1	Durchschnitt	0,34	0,50	0,47	0,47
	Standardabweichung	± 0.12	± 0.10	± 0.11	± 0.11

Tabelle 5.2.: Ergebniszusammenfassung (Durchschnitt, Standardabweichungen) der exprimierten Proteine des Proteome Profiler Human Cytokine Array Panel A nach 5, 6, und 7 Minuten unter den Versuchsbedingungen der Normoxie 5d ohne LPS; Normoxie 5d mit LPS, Hypoxie 5d mit LPS, Hypoxie 10d mit LPS.

Für das Probenmaterial CD40 Ligand, G-CSF, GM-CSF, I-309, IFN-γ, IL-1a, -2, -4, -5, -10, -13, -17, -17E, -23, -27, -32a, IP-10, I-TAC, MCP-1, MIP-1β, SDF-1, TNF-a und sTRE-1 erfolgte keine Wertauswertung und -analyse, da sie keine Expression aufwiesen. Dieses war dadurch erkennbar, dass Sie keinen Dichteunterschied auf dem Arrayfotofilm zeigten.

5.2.1. Auswirkungen von LPS, Normoxie, Hypoxie

Abbildung 5.8.: Box-Plot-Vergleichsdarstellung (A-D) der im Versuchsaufbau ermittelten Expressionsauswirkungen.

Unter normoxischen Bedingungen und ohne LPS fand bei GROα, IL-1β, IL-6 und CCL5 keinerlei Expression statt. Diese wurden erst unter dem Zusatz von LPS exprimiert. Unter hypoxischen Bedingungen wurde eine Steigerung der Expression durch Dichtezunahme festgestellt (Tabelle 5.2. Abbildung 5.6. A-D).

Beim IL-1ra (Abbildung 5.9.E), der zur IL-1-Familie gehört, zeigten die Versuche, eine erhöhte Expression unter Normoxie bei Zugabe von LPS um etwa Faktor 7 (Tabelle 5.2.) im Gegensatz zur Probe ohne LPS. IL-8 (Abbildung 5.9.F) und Serpin-E1 (Abbildung 5.9.G) haben bereits in den Ergebnissen des Proteome Profilers Human Angiogenesis ihre Darstellung gefunden. Diese Expressionsmusterverteilungen spiegeln sich ähnlich wider. Vergleiche hierzu 5.1.1.

Keine Expression unter Normoxie-Bedingungen sowohl mit als auch ohne LPS zeigten sich bei den Entzündungsprozess beteiligten Proteinen C5/C5a (Abbildung 5.10.H); IL-16 (Abbildung 5.10.I) und MIP1a (Abbildung 5.10.J). Der Versuch zeigte aber eine unterschiedliche Expression dieser drei Entzündungsprozess- und Immun-Abwehrsystem-Komponenten unter Hypoxie bei LPS-Zugabe. Es lässt laut Darstellung (Tabelle 5.2., Abbildung 5.10.H-J) vermuten, dass die Expression von der Hypoxieumgebung beeinflusst wird.

Abbildung 5.11.: Box-Plot-Vergleichsdarstellung (K-L der im Versuchsaufbau ermittelten Expressionsauswirkungen.

In den Versuchen zeigte sich beim Macrophage migration Inhibitory Factor (MIF), eine sich im Verlauf steigernde Expression unter Hypoxie mit LPS-Zusatz (Tabelle 5.2., Abbildung 5.10.K). Im Vergleich wird CD54, auch als Interzelluläres Adhäsions-Molekül (ICAM-1) bezeichnet, ohne große Unterschiede in jeder Versuchsgruppe im zeitlichen Verlauf exprimiert (Tabelle 5.2., Abbildung 5.10.L).

5.3. Expression der Angiogenesefaktoren VEGF/TSP-1

Die Ergebnisse der Angiogenese basierenden Auswertungen des Proteome Profilers ergaben, dass diese näher analysiert werden sollten. Somit war es das Ziel den Einfluss von Normoxie, Hypoxie, LPS und Blockerfunktionalität auf die VEGF- und TSP-1-Expression und somit die Auswirkungen seitens der pro- wie antiangiogenetisch wirkenden Seite zu ermitteln.

5.3.1. Auswirkungen von LPS, Normoxie und Hypoxie

Wie zu erwarten resultierte eine VEGF-Expressionsteigerung durch Hypoxie (ohne LPS) um etwa das 4,5-fache (Tabelle 5.3.: ohne LPS VEGF/21% O₂/Col1 28,509 \pm 36,989 vs. VEGF/3% O₂/Col1 127,402 \pm 156,851). Ebenso geschah dieses unter der Kombination Normoxie mit LPS (Maximum 407,626 pg/ml; Tabelle A33 Anhang).

Abbildung 5.12.: Zusammenfassung der VEGF-ELISA-Versuchsergebnisse N=9 (Tabelle A6-A11, A33 siehe Anhang) mittels Shapiro-Wilk-Test. Bezugnehmende Wertdarstellung der Kolorimetrie pg/ml.

In der Gesamtschau erfahren die Hypoxie Gruppen im Vergleich zur Kontrollgruppe eine Mittelwertexpressionserhöhung im Gruppendurchschnitt um etwa 47,75% (VEGF/3%O₂ control vs. VEGF/3% O₂/Col1).

LPS / Blocker		Mittelwert (pg/ml)	StdAbw. (pg/ml)
ohne LPS	VEGF/21% O ₂ /Col1	28,509	\pm 36,989
	VEGF/3% O ₂ /Col1	127,402	$\pm 156,851$
	VEGF/3% O ₂ /control	75,151	$\pm 111,062$
mit LPS	VEGF/21% O ₂ /Col1	104,798	$\pm 163,886$
	VEGF/3% O ₂ /Col1	46,221	± 48,129
	VEGF/3% O ₂ /control	28,111	± 39,267
mit LPS und	VEGF/21% O2/Col1	95,598	± 137,012
Blocker	VEGF/3% O ₂ /Col1	101,818	$\pm 125,780$
	VEGF/3% O ₂ /control	51,508	± 64,012
Blocker	VEGF/21% O ₂ /Col1	26,995	± 29,549
	VEGF/3% O ₂ /Col1	144,312	$\pm 169,850$
	VEGF/3% O ₂ /control	54,846	± 61,646

Tabelle 5.3.: Gegenüberstellung der Expression (pg/ml) von VEGF unter Normoxie- (21% O2) sowie Hypoxie (3% O2)-Bedingungen.

Die Ergebnisse des TSP-1-ELISAs zeigten eine Kolorimetriereduktion unter Hypoxie-Einfluss ohne LPS (Tabelle 5.4.: TSP1/21% O₂/Col1 174,120 \pm 198,560 vs. TSP1/3% O₂/Col1 137,924 \pm 139,231) mit einer Steigerung bei LPS-Zugabe bei Normoxie (192,615 \pm 209,475) und bei Hypoxie (198,615 \pm 221,902).

Abbildung 5.13.: Zusammenfassung der TSP-1-ELISA-Versuchsergebnisse N=9 (Tabelle A13-18, A34, siehe Anhang) mittels Shapiro-Wilk-Test (ng/ml).

Ebenso zeigte sich in allen Gruppen, wie beim VEGF Versuch, eine reduzierte Expression des Kontrollgruppenkollektives.

LPS / Blocker		Mittelwert ng/ml	StdAbw. ng/ml
ohne LPS	TSP-1/21% O2/Col1	174,120	$\pm 198,560$
	TSP-1/3% O2/Col1	137,924	$\pm 139,231$
	TSP-1/3% O ₂ /control	81,895	± 89,507
mit LPS	TSP-1/21% O2/Col1	192,802	$\pm 209,475$
	TSP-1/3% O2/Col1	198,615	$\pm 221,902$
	TSP-1/3% O ₂ /control	73,957	± 74,776
mit LPS und Blocker	TSP-1/21% O2/Col1	178,371	$\pm 200,415$
	TSP-1/3% O2/Col1	157,258	± 174,364
	TSP-1/3% O ₂ /control	61,914	± 57,235
Blocker	TSP-1/21% O2/Col1	165,245	$\pm 199,864$
	TSP-1/3% O2/Col1	134,767	$\pm 146,292$
	TSP-1/3% O ₂ /control	37,998	$\pm 29,680$

Tabelle 5.4.: Gegenüberstellung der Expression (pg/ml) von TSP-1 unter Normoxie (21% O2)- sowie Hypoxie (3% O2)-Bedingungen.

5.3.2. Auswirkungen vom LPS-Blocker

Der LPS-Blocker-Einsatz ergab eine VEGF-Produktionserhöhung unter Hypoxie, sowohl bei dem alleinigen Einsatz des Blockers als auch in der Zusatzkombination von LPS und Blocker im Vergleich zur Gruppe mit LPS. Der Einsatz von LPS+Blocker bei den TSP-1 Proben ergab eine verminderte Expression im Vergleich zum LPS-Einsatz. Ebenso erfährt die Kontrollgruppe eine Mittelwertreduktion im Gegensatz zu den Proben mit Kollagenzusatz. Zusammenfassend kann man sagen, dass sowohl der VEGF als auch der TSP-1 plus Blocker-Vergleich am ehesten mit der Probe ohne LPS-Zusatz gegenüberzustellen ist.

5.3.3. weiterführende Auswertungsanalysen

Auf Basis der im Anhang befindlichen Daten (Tabelle A33 und A34) erfolgten weitere deskriptive Auswertungsanalysen die auch bei einer kleineren Versuchsanzahl Anwendung finden können (Kolmogorov-Smirnov/Shapiro-Wilk – Signifikanzberechnung). In allen Parametern zeigten sich bei Zusatz von LPS signifikante Abweichungen von der Normalverteilung (Shapiro-Wilk-Test, p<0,05, Tabelle 5.5.). Daraufhin erfolgte die weitere Analyse mittels nicht-parametrischer Methoden (Friedman-Test, Kruskal-Wallis-Test, Mann-Whitney-Test, U-Test) unter den Gesichtspunkten des \pm LPS / Normoxie- vs. Hypoxie -Vergleichs.

		Kolr	nogorov-Sr	nirnov ^a	S	hapiro-Will	K
							Signifikanz
LPS / Blocker		Statistik	df	Signifikanz	Statistik	df	р
VEGF/21% O2/Col1	ohne LPS	0,355	9	0,002	0,698	9	0,001
	mit LPS	0,397	9	0,000	0,698	9	0,001
	mit LPS und Blocker	0,395	9	0,000	0,669	9	0,001
	Blocker	0,256	9	0,090	0,809	9	0,026
VEGF/3% O2/Col1	ohne LPS	0,327	9	0,006	0,753	9	0,006
	mit LPS	0,294	9	0,024	0,764	9	0,008
	mit LPS und Blocker	0,347	9	0,003	0,701	9	0,001
	Blocker	0,314	9	0,011	0,758	9	0,007
VEGF/3% O2/control	ohne LPS	0,371	9	0,001	0,735	9	0,004
	mit LPS	0,384	9	0,000	0,728	9	0,003
	mit LPS und Blocker	0,378	9	0,001	0,705	9	0,002
	Blocker	0,289	9	0,029	0,820	9	0,034
TSP-1/21% O2/Col1	ohne LPS	0,365	9	0,001	0,748	9	0,005
	mit LPS	0,398	9	0,000	0,662	9	0,001
	mit LPS und Blocker	0,388	9	0,000	0,677	9	0,001
	Blocker	0,370	9	0,001	0,748	9	0,005
TSP-1/3% O2/Col1	ohne LPS	0,342	9	0,003	0,767	9	0,009
	mit LPS	0,389	9	0,000	0,716	9	0,002
	mit LPS und Blocker	0,386	9	0,000	0,684	9	0,001
	Blocker	0,381	9	0,000	0,693	9	0,001
TSP-1/3% O2/control	ohne LPS	0,343	9	0,003	0,782	9	0,013
	mit LPS	0,292	9	0,026	0,812	9	0,028
	mit LPS und Blocker	0,295	9	0,023	0,785	9	0,014
	Blocker	0,329	9	0,006	0,830	9	0,045

*. Dies ist eine untere Grenze der echten Signifikanz. a. Signifikanzkorrektur nach Lilliefors

 $\label{eq:source} Tabelle 5.5.: Test auf Normalverteilung bei VEGF sowie TSP-1: Kolmogorov-Smirnov/Shapiro-Wilk - Signifikanzberechnung (Shapiro-Wilk-Test, p<0,05). Signifikanzspielraum p=0,001 - 0,04$

5.3.3.1. LPS-Vergleich

Die weiteren Berechnungen im Rahmen des LPS-Vergleiches erfolgten im Kruskal-Wallis-Test-Verfahren. Die für diesen Test ausführlich dargestellten Ergebnisse/Rangermittlungen, finden sich im Anhang Tabellen A35 und A36.

	VEGF/21%	VEGF/3%	VEGF/3%	TSP-1/21%	TSP-1/3%	TSP-1/3%
	O ₂ /Col1	O ₂ /Col1	O ₂ /control	O ₂ /Col1	O ₂ /Col1	O ₂ /control
Kruskal-	0,173	0,546	2,023	1,330	3,919	1,244
Wallis H						
df	3	3	3	3	3	3
Asymptotische	0,982	0,909	0,568	0,722	0,270	0,742
Signifikanz						

a. Kruskal-Wallis-Test

b. Gruppenvariable: LPS / Blocker

Tabelle 5.6.: Ergebnisse des Kruskal-Wallis-Test VEGF sowie TSP-1

Da, wie zu erkennen, keine signifikanten Unterschiede zwischen den LPS-Gruppen in den VEGF-Gruppen, sowie TSP-1-Gruppen nachweisbar waren (Kruskal-Wallis-Test $p \ge 0.05$), entfallen weitere Post-Hoc-Paarvergleiche.

5.3.3.2. Normoxie/Hypoxie-Vergleich

Die weiteren Berechnungen im Rahmen des Normoxie/Hypoxie-Vergleiches erfolgten im Friedman-Test-Verfahren. Die für diese Ergebnisse erforderlichen Tests/Rangermittlungen finden sich im Anhang Tabelle A37.

	Normoxie/Hypoxie-Vergleicha VE	Normoxie/Hypoxie-Vergleicha TSP-1		
ohne LPS	N	9	N	9
	Chi-Quadrat	10,889	Chi-Quadrat	2,889
	df	2	df	2
	Asymptotische Signifikanz	0,004	Asymptotische Signifikanz	0,236
mit LPS	Ν	9	Ν	9
	Chi-Quadrat	4,667	Chi-Quadrat	8,222
	df	2	df	2
	Asymptotische Signifikanz	0,097	Asymptotische Signifikanz	0,016
mit LPS und	Ν	9	Ν	9
Blocker	Chi-Quadrat	4,222	Chi-Quadrat	8,222
	df	2	df	2
	Asymptotische Signifikanz	0,121	Asymptotische Signifikanz	0,016
Blocker	Ν	9	Ν	9
	Chi-Quadrat	14,889	Chi-Quadrat	8,222
	df	2	df	2
	Asymptotische Signifikanz	0,001	Asymptotische Signifikanz	0,016

a. Friedman-Test

Tabelle 5.7.: Ergebnisse des Friedman-Test für den Vergleich von Normoxie/Hypoxie, Ermittlung von Signifikanzen (p<0,05).

Es zeigten sich signifikante Unterschiede (Friedman-Test p<0,05) zwischen den Sauerstoffkonzentrationen bei VEGF ohne LPS, VEGF mit Blocker, TSP-1 mit LPS, TSP-1 mit LPS und Blocker sowie TSP-1 mit Blocker. Für diese folgten Post-Hoc-Paarvergleiche zwischen je zwei Konzentrationen mittels Wilcoxon-Test für Paardifferenzen. Die für diese Ergebnisse erforderlichen Tests/Rangermittlungen finden sich im Anhang Tabellen A39.1.-A39.3.

		VEGF/3% O ₂ /Col1 - VEGF/21%	VEGF/3% O ₂ /control - VEGF/21%	VEGF/3% O ₂ /control - VEGF/3%
LPS / Blocker		O ₂ /Col1 O ₂ /Col1		O ₂ /Col1
ohne	Z	-2,666 ^b	-1,481 ^b	-2,192 ^b
LPS	Asymptotische Signifikanz (2-seitig)	0,008	0,139	0,028
Blocker	Z	-2,666 ^b	-2,666 ^b	-2,073 ^b
	Asymptotische Signifikanz (2-seitig)	0,008	0,008	0,038

a. Wilcoxon-Test b. Basiert auf negativen Rängen.

b. Basiert auf negativen Rangen.c. Basiert auf positiven Rängen.

Tabelle 5.8.: Ergebnisse des Wilcoxon-Test für den Vergleich von Normoxie/Hypoxie mit den Versuchsparametern ohne LPS und Blocker im Vergleich, Ermittlung von Signifikanzen (p<0,05).

In der weiteren Vergleichsanalysen von Normoxie/Hypoxie, mittels Wilcoxon-Test, zeigten sich bei VEGF ohne LPS Zusatz signifikante Unterschiede in zwei von drei Versuchen (VEGF/3% O₂/Col1 vs. VEGF/21% O₂/Col1 sowie VEGF/3% O₂/control vs. VEGF/3% O₂Col1). In den mit Blocker zugesetzten Proben zeigten sich in allen drei Versuchskonstellationen Signifikanzen p<0,05.

LPS / Blocker		TSP-1/3% O ₂ /Col1 – TSP-1/21% O ₂ /Col1	TSP-1/3% O ₂ /control – TSP-1/21% O ₂ /Col1	TSP-1/3% O ₂ /control – TSP-1/3% O ₂ /Col1
mit LPS	Ζ	-0,296°	-2,547 ^b	-2,547 ^b
	Asymptotische Signifikanz (2-seitig)	0,767	0,011	0,011
mit LPS	Z	-0,652 ^b	-2,429 ^b	-2,547 ^b
und	Asymptotische Signifikanz (2-seitig)	0,515	0,015	0,011
Blocker				
Blocker	Z	-0,533 ^b	-2,073 ^b	-2,666 ^b
	Asymptotische Signifikanz (2-seitig)	0,594	0,038	0,008

a. Wilcoxon-Test

b. Basiert auf positiven Rängen.
 c. Basiert auf pagativen Pängen.

c. Basiert auf negativen Rängen

Tabelle 5.9.: Ergebnisse des Wilcoxon-Test für den Vergleich von Normoxie/Hypoxie mit den Versuchsparametern mit LPS, mit LPS und Blocker und Blocker im Vergleich, Ermittlung von Signifikanzen (p<0,05). Die für diese Ergebnisse erforderlichen Tests/Rangermittlungen finden sich im Anhang Tabellen A40.1.-A40.3.

Der TSP-1 Wilcoxon-Test zeigte Signifikanzen bei den Proben mit LPS; mit LPS und Blocker und Blocker jeweils bei den Vergleichsgruppen TSP1/3% O₂/control vs. TSP1/21% O₂/Col1 und TSP1/3% O₂/control vs. TSP1/3% O₂/Col1. Keine Signifikanzen zeigte sich in der Gruppe TSP1/3% O₂/Col1 vs. TSP1/21% O₂/Col1.

5.4. Expression der Zytokine IL-8/CCL-5

Die Versuchsergebnisse der entzündungsbegleitenden Faktoren des Proteome Profilers zeigten bei allen mit LPS zugesetzten Proben eine höhere Expression. Die Kombination von Hypoxie und LPS hatten im Vergleich zur Normoxie und LPS in den Gruppen C5/C5a, IL-1ß, IL-6, IL-16 und MIP1a klare Expressionserhöhungen seitens der Hypoxie. Auf Grundlage dieser Erkenntnisse war es Ziel dieses Versuches den näheren Einfluss von Normoxie, Hypoxie, LPS und Blockerfunktionalität auf die IL-8- und CCL5-Expression zu ermitteln um somit eine Aussage über die ggf. unterschiedliche Immunreaktionen des Körpers, unter besagten Zuständen, tätigen zu können. Ausführlichere Daten finden Darstellung in den Tabellen A21-A27/A28-A32 und A41/A42 im Anhang. Zu vermerken ist, dass bei der Analyse der IL-8-Rohdaten starke Wertschwankungen auffielen (Anhang Tabelle A.23. F5+6, G5+6, B9+10, C9+10). Ein Grund dieser Schwankungen könnten Messfehler im Bereich des Pipettierens sein. Diese wurden daher bei den statistischen Berechnungen nicht berücksichtigt.

5.4.1. Auswirkungen von LPS, Normoxie und Hypoxie

Die Ergebnisse des ELISAs zeigten eine Steigerung von IL-8 unter Hypoxie-Einfluss (Tabelle 5.10.: IL8/21% $O_2/Col1 60,13 \pm 71,42$ vs. IL8/3% $O_2/Col1 161,29 \pm 160,26$) mit einer weiteren Steigerung bei LPS-Zugabe unter Normoxie um ca. das 20-fache sowie unter Hypoxie um ca. das 10,5-fache. Ebenso zeigte sich in der Hypoxie-Kontrollgruppe ein IL-8 Anstieg ohne LPS-Zusatz, sowie bei der Zugabe von LPS.

Abbildung 5.14.: Zusammenfassung der IL-8 ELISA-Ergebnisse N=8-9 (Tabelle A22-A27, A41 siehe Anhang) mittels Shapiro-Wilk-Test (pg/ml).

LPS / Blocker		N	Mittelwert	StdAbw.
ohne LPS	IL-8/21% O2/Col1	8	60,13	± 71,42
	IL-8/3% O ₂ /Col1	8	161,29	± 160,26
	IL-8/3% O ₂ /control	8	352,64	± 327,06
mit LPS	IL-8/21% O2/Col1	9	1258,00	$\pm 1065,96$
	IL-8/3% O ₂ /Col1	9	1708,86	$\pm 1607,95$
	IL-8/3% O ₂ /control	9	1161,46	$\pm 1226,40$
mit LPS und	IL-8/21% O2/Col1	9	1490,53	$\pm 1318,50$
Blocker	IL-8/3% O2/Col1	9	1897,60	$\pm 1659,73$
	IL-8/3% O ₂ /control	9	1509,79	$\pm 1397,28$
Blocker	IL-8/21% O2/Col1	9	68,96	± 85,41
	IL-8/3% O ₂ /Col1	9	172,47	± 215,48
	IL-8/3% O ₂ /control	9	278,17	± 214,95

Tabelle 5.10.: Gegenüberstellung der Expression (pg/ml) von IL-8 unter Normoxie (21% O₂)- sowie Hypoxie (3% O₂)-Bedingungen.

Die Ergebnisse ELISAs zeigten in allen Gruppen eine Steigerung von CCL5 unter Hypoxie-Einfluss im Vergleich zur Normoxie-Gruppe. Mit der größten Differenz in der Gruppe mit LPS-Zusatz (Tabelle 5.11.: CCL5/21% O₂/Col1 494,493 \pm 184,092 vs. CCL5/3% O₂/Col1 1351,033 \pm 1072,265)

Abbildung 5.15.: Zusammenfassung der CCL5 ELISA-Ergebnisse N=8-9 (Tabelle A29-A32, A42 siehe Anhang) mittels Shapiro-Wilk-Test bezugnehmende Wertdarstellung der Kolorimetrie pg/ml.

LPS / Blocker		Ν	Mittelwert	StdAbw.
ohne LPS	CCL5/21% O2/Col1	6	91,501	± 98,551
	CCL5/3% O2/Col1	6	294,066	$\pm 103,056$
	CCL5/3% O ₂ /control	6	128,206	$\pm 117,439$
mit LPS	CCL5/21% O2/Col1	6	494,493	$\pm 184,092$
	CCL5/3% O2/Col1	6	1351,033	±1072,265
	CCL5/3% O ₂ /control	6	221,123	$\pm 119,110$
mit LPS und Blocker	CCL5/21% O2/Col1	6	644,970	$\pm 353,192$
	CCL5/3% O2/Col1	6	1326,833	±1001,623
	CCL5/3% O ₂ /control	6	205,843	$\pm 120,393$
Blocker	CCL5/21% O2/Col1	6	99,130	± 111,176
	CCL5/3% O2/Col1	6	318,990	± 116,696
	CCL5/3% O ₂ /control	6	118,721	± 132,771

Tabelle 5.11.: Gegenüberstellung der Expression (pg/ml) von CCL5 unter Normoxie (21% O₂)-sowie Hypoxie (3% O₂)-Bedingungen.

5.4.2. Auswirkungen vom LPS-Blocker

Die Expression von IL-8 und CCL5 mit Blocker-Probenzusatz zeigte ein etwa gleiches Wertergebnis wie die Probe ohne LPS. Die Kombination aus LPS mit LPS-Blocker ergab ebenso, auf den ersten Blick, keine großen Expressionsunterschiede.

5.4.3. weiterführende Auswertungsanalysen

Auf Basis der im Anhang befindlichen Daten (Tabelle A41 und A42) erfolgten weitere deskriptive Auswertungsanalysen (Kolmogorov-Smirnov/Shapiro-Wilk – Signifikanzberechnung) mit signifikanten Abweichungen von der Normalverteilung (Shapiro-Wilk-Test, p<0,05) ergaben (Tabelle 5.12.). Daran anschließend erfolgte die weitere Analyse des \pm LPS / Normoxie- vs. Hypoxie-Vergleichs mittels nichtparametrischen Methoden (Kruskal-Wallis-Test, Mann-Whitney-Test, U-Test).

		Kolmogorov-Smirnov ^a		S	hapiro-Wilk	(
LPS / Blocker		Statistik	df	Signifikanz	Statistik	df	Signifikanz
IL-8/21% O2/Col1	ohne LPS	0,368	16	0,000	0,734	16	0,000
	mit LPS	0,271	18	0,001	0,791	18	0,001
	mit LPS und	0,372	17	0,000	0,705	17	0,000
	Blocker						
	Blocker	0,381	18	0,000	0,701	18	0,000
IL-8/3% O2/Col1	ohne LPS	0,270	16	0,003	0,793	16	0,002
	mit LPS	0,357	18	0,000	0,707	18	0,000
	mit LPS und	0,344	18	0,000	0,713	18	0,000
	Blocker						
	Blocker	0,371	18	0,000	0,718	18	0,000
IL-8/3% O2/control	ohne LPS	0,271	16	0,003	0,838	16	0,009
	mit LPS	0,396	18	0,000	0,693	18	0,000
	mit LPS und	0,281	18	0,001	0,759	18	0,000
	Blocker						
	Blocker	0,188	18	0,092	0,910	18	0,085
CCL5/21% O2/Col1	ohne LPS	0,297	6	0,106	0,757	6	0,024
	mit LPS	0,255	6	$0,200^{*}$	0,897	6	0,358
	mit LPS und	0,286	6	0,136	0,855	6	0,174
	Blocker						
	Blocker	0,296	6	0,109	0,800	6	0,059
CCL5/3% O2/Col1	ohne LPS	0,271	6	0,193	0,806	6	0,066
	mit LPS	0,307	6	0,081	0,766	6	0,028
	mit LPS und	0,290	6	0,125	0,816	6	0,082
	Blocker						
	Blocker	0,294	6	0,116	0,790	6	0,048
CCL5/3% O2/control	ohne LPS	0,176	6	$0,200^{*}$	0,902	6	0,383
	mit LPS	0,259	6	$0,200^{*}$	0,910	6	0,439
	mit LPS und	0,193	6	$0,200^{*}$	0,954	6	0,774
	Blocker						
	Blocker	0,310	6	0,073	0,777	6	0,036

*. Dies ist eine untere Grenze der echten Signifikanz.

a. Signifikanzkorrektur nach Lilliefors Tabelle 5.12.: Test auf Normalverteilung bei IL8 sowie CCL5: Kolmogorov-Smirnov/Shapiro-Wilk – Signifikanzberechnung (Shapiro-Wilk-Test, p<0,05). Signifikanzspielraum p=0,001 – 0,048

5.4.3.1. LPS-Vergleich

Die weiteren Berechnungen im Rahmen des LPS-Vergleiches erfolgten im Kruskal-Wallis-Test-Verfahren. Die für diesen Test ausführlich dargestellten Ergebnisse/Rangermittlungen, finden sich im Anhang Tabelle A43/A44. Unter LPS Einfluss zeigten sich signifikante Unterschiede in allen drei IL-8-Konstellationen, sowie in zwei bei CCL5 (Kruskal-Wallis-Test p≥0.05).

	IL8/21% O ₂ /Col1	IL8/3% O2/Col1	IL8/3% O ₂ /control	CCL/21% O ₂ /Col1	CCL5/3% O ₂ /Col1	CCL5/3% O ₂ /control
Kruskal-	25,915	24,089	10,404	17,367	10,107	3,467
Wallis H						
df	3	3	3	3	3	3
Asymptotische	0,000	0,000	0,015	0,001	0,018	0,325
Signifikanz						

a. Kruskal-Wallis-Test

b. Gruppenvariable: LPS / Blocker Tabelle 5.13.: Ergebnisse des Kruskal-Wallis-Test VEGF sowie TSP-1

Im darauffolgenden Post-Hoc-Paarvergleich zwischen je zwei Gruppen mittels U-Test (Mann-Whitney-Test) wurden ebenso signifikanten Unterschieden ermittelt (U-Test, p<0,05). Der Versuchsaufbau "ohne LPS vs. mit LPS" ergab Signifikanzen bei IL8/21%O₂/Col1; IL8/3%O₂/Col1; CCL5/21%O₂/Col1 und CCL5/3%O₂/Col1. Diese wurden ebenso bei IL-8 und CCL5 in allen Vergleichsgruppen des Gruppenvergleichs "ohne LPS vs. mit LPS und Blocker" und "mit LPS und Blocker vs. Blocker" nachgewiesen. Hierbei ist zu beachten, dass CCL5/3%O₂/control nicht betrachtet worden ist, da im vorangegangenen Kruskal-Wallis-Test keine Signifikanz zu beobachten war.

Die Versuchskonstellationen IL-8 "mit LPS vs. Blocker" unter Normoxie sowie Hypoxie (Ausnahme Hypoxie-Kontrollgruppe) wiesen ebenso signifikante Unterschiede auf. Bei CCL5/21%O₂/Col1 ergab sich ebenfalls eine Signifikanz von 0,004.

Ausführliche Darstellungen finden sich im Anhang Tabelle A45.1.-A45.6./A46.1.-A46.6.

	IL-8/21%	IL-8/3%	IL-8/3%	CCL5/21%	CCL5/3%
	O ₂ /Col1	O ₂ /Col1	O ₂ /control	O2/Col1	O2/Col1
Mann-Whitney-U	0,000	0,000	18,000	0,000	4,000
Wilcoxon-W	36,000	36,000	54,000	21,000	25,000
Z	-3,464	-3,464	-1,732	-2,882	-2,242
Asymptotische Signifikanz (2-seitig)	0,001	0,001	0,083	0,004	0,025
Exakte Signifikanz [2*(1-seitige Sig.)]	0,000 ^b	0,000 ^b	0,093 ^b	0,002 ^b	0,026 ^b

Gruppenvergleich ohne LPS vs. mit LPS:

a. Gruppenvariable: LPS / Blocker b. Nicht für Bindungen korrigiert.

Tabelle 5.14.: Mann-Whitney-Test IL-8 und CCL5 ohne LPS vs. mit LPS

Gruppenvergleich ohne LPS vs. mit LPS und Blocker:

	IL-8/21%	IL-8/3%	IL-8/3%	CCL5/21%	CCL5/3%
	O ₂ /Col1	O ₂ /Coll	O ₂ /control	O ₂ /Coll	O ₂ /Coll
Mann-Whitney-U	0,000	0,000	13,000	0,000	4,000
Wilcoxon-W	36,000	36,000	49,000	21,000	25,000
Z	-3,464	-3,464	-2,213	-2,882	-2,242
Asymptotische	0.001	0.001	0.027	0.004	0.025
Signifikanz (2-seitig)	0,001	0,001	0,027	0,004	0,025
Exakte Signifikanz	0 000 ^b	0 000 ^b	0.027 ^b	0.00 2 b	0.026 ^b
[2*(1-seitige Sig.)]	0,000	0,000	0,027	0,002	0,020

a. Gruppenvariable: LPS / Blocker

b. Nicht für Bindungen korrigiert.

Tabelle 5.15.: Mann-Whitney-Test IL-8 und CCL5 ohne LPS vs. mit LPS und Blocker

Gruppenvergleich ohne LPS vs. Blocker:

	IL-8/21%	IL-8/3%	IL-8/3%	CCL5/21%	CCL5/3%
	O2/Col1	O ₂ /Col1	O ₂ /control	O ₂ /Col1	O ₂ /Col1
Mann-Whitney-U	27,000	32,000	36,000	16,000	12,000
Wilcoxon-W	63,000	68,000	81,000	37,000	33,000
Z	-0,866	-0,385	0,000,	-0,320	-0,961
Asymptotische Signifikanz (2-seitig)	0,386	0,7	>0,999	0,749	0,337
Exakte Signifikanz [2*(1-seitige Sig.)]	0,423 ^b	0,743 ^b	1,000 ^b	0,818 ^b	0,394 ^b

a. Gruppenvariable: LPS / Blocker b. Nicht für Bindungen korrigiert.

Tabelle 5.16.: Mann-Whitney-Test IL-8 und CCL5 ohne LPS vs. Blocker

Gruppenvergleich mit LPS vs. mit LPS und Blocker:

	IL-8/21% O ₂ /Col1	IL-8/3% O2/Col1	IL-8/3% O ₂ /control	CCL5/21% O ₂ /Col1	CCL5/3% O ₂ /Col1
Mann-Whitney-U	30,000	29,000	24,000	15,000	17,000
Wilcoxon-W	75,000	74,000	69,000	36,000	38,000
Z	-0,927	-1,015	-1,457	-0,480	-0,160
Asymptotische Signifikanz (2-seitig)	0,354	0,310	0,145	0,631	0,873
Exakte Signifikanz [2*(1-seitige Sig.)]	0,387 ^b	0,340 ^b	0,161 ^b	0,699 ^b	0,937 ^b

a. Gruppenvariable: LPS / Blocker

b. Nicht für Bindungen korrigiert.

Tabelle 5.17 .: Mann-Whitney-Test IL-8 und CCL5 mit LPS vs. mit LPS und Blocker

Gruppenvergleich mit LPS vs. Blocker:

	IL-8/21%	IL-8/3%	IL-8/3%	CCL5/21%	CCL5/3%
	O ₂ /Col1	O ₂ /Col1	O ₂ /control	O ₂ /Col1	O ₂ /Col1
Mann-Whitney-U	0,000	6,000	22,000	0,000	7,000
Wilcoxon-W	45,000	51,000	67,000	21,000	28,000
Z	-3,576	-3,046	-1,634	-2,882	-1,761
Asymptotische Signifikanz (2-seitig)	0,000	0,002	0,102	0,004	0,078
Exakte Signifikanz [2*(1-seitige Sig.)]	0,000 ^b	0,001 ^b	0,113 ^b	0,002 ^b	0,093 ^b

a. Gruppenvariable: LPS / Blocker b. Nicht für Bindungen korrigiert.

Tabelle 5.18.: Mann-Whitney-Test IL-8 und CCL5 mit LPS vs. Blocker

Gruppenvergleich mit LPS und Blocker vs. Blocker:

	IL8/21%	IL8/3%	IL8/3%	CCL5/21%	CCL5/3%
	O ₂ /Col1	O ₂ /Col1	O ₂ /control	O ₂ /Col1	O ₂ /Col1
Mann-Whitney-U	0,000	0,000	9,000	0,000	3,000
Wilcoxon-W	45,000	45,000	54,000	21,000	24,000
Z	-3,576	-3,576	-2,782	-2,882	-2,402
Asymptotische Signifikanz (2-seitig)	0,000	0,000	0,005	0,004	0,016
Exakte Signifikanz [2*(1-seitige Sig.)]	0,000 ^b	0,000 ^b	0,004 ^b	0,002 ^b	0,015 ^b

a. Gruppenvariable: LPS / Blocker b. Nicht für Bindungen korrigiert.

Tabelle 5.19.: Mann-Whitney-Test IL-8 und CCL5 mit LPS und Blocker vs. Blocker

5.4.3.2. Normoxie/Hypoxie-Vergleich

Im weiteren Normoxie/Hypoxie-Vergleich fanden sich signifikante Unterschiede zwischen den Sauerstoffkonzentrationen (Friedman-Test p<0,05) sowohl bei IL-8 als auch bei CCL5. Für diese folgten Post-Hoc-Paarvergleiche zwischen je zwei Konzentrationen mittels Wilcoxon-Test für Paardifferenzen. Die für diese Ergebnisse erforderlichen Tests/Rangermittlungen finden sich im Anhang Tabellen A49.1.-A49.3. sowie A50.1.-A50.3..

	Normoxie/Hypoxie-Vergleicha IL-8		Normoxie/Hypoxie-Vergleicha CCL5	
ohne LPS	Ν	8	Ν	6
	Chi-Quadrat	7,750	Chi-Quadrat	9,333
	df	2	df	2
	Asymptotische	0,021	Asymptotische	0,009
	Signifikanz		Signifikanz	
mit LPS	Ν	9	N	6
	Chi-Quadrat	10,889	Chi-Quadrat	8,333
	df	2	df	2
	Asymptotische	0,004	Asymptotische	0,016
	Signifikanz		Signifikanz	
mit LPS und Blocker	Ν	9	N	6
	Chi-Quadrat	13,556	Chi-Quadrat	5,333
	df	2	df	2
	Asymptotische	0,001	Asymptotische	0,069
	Signifikanz		Signifikanz	
Blocker	Ν	9	N	6
	Chi-Quadrat	13,556	Chi-Quadrat	9,333
	df	2	df	2
	Asymptotische	0,001	Asymptotische	0,009
	Signifikanz		Signifikanz	
a Friedman-Test				

Tabelle 5.20.: Ergebnisse des Friedman-Test für den Vergleich von Normoxie/Hypoxie, Ermittlung von Signifikanzen (p<0,05).

Sowohl die IL-8 Proben ohne LPS, mit LPS, mit LPS und Blocker und Blocker zeigten in den Berechnungen signifikante im Unterschiede (Wilcoxon-Test). Besonders vertreten waren diese im Gruppenvergleich IL8/3%O₂/Col1 und IL8/21%O₂/Col1. Nur die Gruppe mit LPS-Zusatz wies hier keine signifikannten Unterschiede auf. Im Hypoxie Vergleich der Kontrollgruppe vs. Col1 zeigten der Zusatz von LPS (mit und ohne Blocker) Unterschiede p<0,05, aber wiederum keine im Hypoxie/Normoxie Vergleich (control vs. Col1).

LPS / Blocker		IL-8/3%O ₂ /Col1 – IL-8/21%O ₂ /Col1	IL-8/3%O ₂ /control – IL-8/21%O ₂ /Col1	IL-8/3%O ₂ /control – IL-8/3%O ₂ /Col1	
ohne	Ζ	-2,521 ^b	-2,100 ^b	-0,420 ^b	
LPS	Asymptotische Signifikanz (2-seitig)	0,012	0,036	0,674	
mit LPS	Z	-1,955 ^b	-0,415°	-2,666°	
	Asymptotische Signifikanz (2-seitig)	0,051	0,678	0,008	
mit LPS	Z	-2,666 ^b	-0,415 ^b	-2,666°	
und	Asymptotische Signifikanz (2-seitig)	0,008	0,678	0,008	
Blocker					
Blocker	Z	-2,666 ^b	-2,666 ^b	-0,770 ^b	
	Asymptotische Signifikanz (2-seitig)	0,008	0,008	0,441	
a Wilcoxon-Test					

b. Basiert auf negativen Rängen.

c. Basiert auf negativen Rängen.

Tabelle 5.21.: Ergebnisse des Wilcoxon-Test für den Vergleich von Normoxie/Hypoxie mit den Versuchsparametern ohne LPS und Blocker im Vergleich, Ermittlung von Signifikanzen (p<0,05).

Die Ergebnisse der CCL5 Hypoxie/Normoxie Analyse zeigten in allen Versuchsproben Signifikanzen zwischen Hypoxie und Normoxie in der Gegenüberstellung der Kollagengruppen und Kontrollgruppe vs. Kollagengruppe (Wilcoxon-Test p<0,05). Die Gruppengegenüberstellung CCL5/3%O₂/control vs. CCL5/21%O₂/Col1 zeigten keine signifikanten Unterschiede.

		CCL5/3%O2/Col1 -	CCL5/3%O2/control -	CCL5/3%02/control -
LPS / Blocker		CCL5/21%O2/Col1	CCL5/21%O2/Col1	CCL5/3%O2/Col1
ohne	Z	-2,201 ^b	-1,363 ^b	-2,201 ^b
LPS	Asymptotische Signifikanz (2-seitig)	0,028	0,173	0,028
mit	Z	-1,992 ^b	-1,782°	-2,201 ^b
LPS	Asymptotische Signifikanz (2-seitig)	0,046	0,075	0,028
Blocker	Z	-2,201 ^b	-1,153 ^b	-2,201 ^b
	Asymptotische Signifikanz (2-seitig)	0,028	0,249	0,028

a. Wilcoxon-Test b. Basiert auf negativen Rängen.

c. Basiert auf positiven Rängen.

Tabelle 5.22.: Ergebnisse des Wilcoxon-Test für den Vergleich von Normoxie/Hypoxie mit den Versuchsparametern ohne LPS und Blocker im Vergleich, Ermittlung von Signifikanzen (p<0,05).

6. Diskussion

Ziel dieser Doktorarbeit war es aus der Sicht der Angiogenese und der immunologischen Perspektive die Interaktion zwischen Lipopolysacchariden und Hypoxie in einem invitro-Wundmodell zu analysieren, um einen Beitrag für einen möglichen Zusammenhang zwischen der bakteriellen Besiedelung chronischer Wunden und einem nicht stattfindenden Wundverschluss leisten zu können. Dieses sollte dadurch geschehen, indem man das Expressionsverhalten von angiogenesefördenden Wachstumsfaktoren und Chemokinen (Vertreter der immunologischen Reaktion) in einem in-vitro-Modell chronisch infizierter Wundverhältnisse untersucht.

Eine Überlegung der Versuchsreihe war es ebenfalls, neue Erkenntnisse zu der Entwicklung einer klinisch relevanten unterstützenden Wundauflage oder Applikation von bearbeiteten autologen PBCs mit LPS-Blockern bei gram-negativ besiedelten Wunden beizutragen. B. Aminian et. al. zeigten bereits in einer klinischen Studie, dass autologer PDGF, der topisch auf chronisch diabetische Ulcerationen aufgebracht wurde, eine erhöhte Wundheilungstendenz aufwies. Auch weitere Studien bestätigten diese Wirkung topisch aufgebrachter Wachstumsfaktoren (Knighton, Ciresi et al. 1986, Brown, Nanney et al. 1989, Akita, Akino et al. 2005). Die klinische Verwendung von Wachstumsfaktoren zur Behandlung nicht heilender Wunden birgt daher ein großes therapeutisches Potenzial (Robson 1997). Ebenso die sich rasant entwickelnde Stammzellbiologie und das Skin Tissue Engineering eröffnen Wege neuartiger Wundheilungstherapien (Ko, Nauta et al. 2011). Auf Basis dieser Erkenntnisse, aber auch mit Hinzunahme der folgenden Versuchsresultate gilt es ebenso zu diskutieren, ob die lokale Injektion von bearbeiteten vaskulogenen Zellen als therapeutischer Ansatz zur Wiederherstellung des Blutflusses, durch eine reaktivierte Angiogense, vorzuschlagen sei (Melero-Martin, De Obaldia et al. 2008, Choi, Lee et al. 2013, Merfeld-Clauss, Lu et al. 2018).

6.1. Darstellung der Interaktion zwischen LPS und Hypoxie in einem in-vitro-Modell chronischer Wundverhältnisse

Der erste Teil der Arbeit galt der Analyse und Darstellung der Interaktion zwischen Lipopolysacchariden und Hypoxie der Angiogenese und Zytokin-Expression durch das Proteome Profiling. Der zweite Teil richtete sich anschließend im Speziellen darauf die Interaktion bei VEGF und TSP-1, als Vertreter der Wachstumsfaktoren, und auf IL-8 und CCL5, als Zytokin-Vertreter, mittels ELISA zu ermitteln. Ein weiterer Teil galt der Beurteilung des LPS-Blocker-Anwendungsnutzen. Schlussendlich erfolgte die statistische Auswertung dieser Ergebnisse.

Die Simulation eines in-vitro-Modells chronischer Wundverhältnisse (Inkubator, 3% O₂, Beobachtungszeitraum 5-10 Tage) erfolgte mittels peripherer Blutzellen (buffy coat), Kollagen und unterschiedlichen Versuchskonstellationen inklusive einer Kontrollgruppe unter Normoxiebedigungen.

Es wurden periphere Blutzellen gewählt, da diese entscheidend an den Wundheilungsphasen beteiligt sind indem sie Wachstumsfaktoren wie TGF- β 1 oder VEGF produzieren (Iwamoto, Hori et al. 2015) und Zytokine freisetzen (Seaton, Hocking et al. 2015) und über eine reguläre Blutabnahme mit Aufbereitung schnell, komplikationslos und unbegrenzt verfügbar waren.

Mittels Inkubator wurde ein hypoxisches Millieu geschaffen (3%O₂). Der primäre Stimulus der Angiogenese und der darüber zu erreichende mögliche Wundverschluss ist die Hypoxie. In chronischen Wunden scheint es allerdings zu einer Abnahme der Hypoxie-Sensitivität und somit zur Reduktion dieses Stimulus zu kommen. Dieses lässt sich ggf. dadurch erklären, dass es zu einer erniedrigten HIF-1α-gesteuerten Gen-Expression kommt (Hadjipanayi, Bauer et al. 2013) und so die Induzierung von angiogenesesteigernden Faktoren abnimmt (Wagener and Müller 2009) und die der angiogenesehemmenden zunimmt (MacLauchlan, Calabro et al. 2018). Ein weiterer begünstigender Effekt der Wundchronifizierung unter hypoxischen Bedingungen ist, dass die inflammatorische Reaktion gefördert wird (Allen, Maguire et al. 1997, Kim, Gao et al. 2007). Um den Versuchsaufbau um diese inflammatorische Reaktion/bakterielle Besiedlung erweitern zu können, wurden einzelnen Proben der Oberflächenmarker von gram-negativen Bakterien, das LPS, hinzugefügt. Lipopolysachharide beeinflussen auf direktem Wege die Angiogenese und Neovaskularisation (Pollet, Opina et al. 2003, Hajighasemi 2013). Sie gehören ebenso zu der Gruppe der inflammatorisch wirkenden Mediatoren die u.a. über die Expressionsaktivierung von Matrix-Metalloproteasen, wie MMP-1 und MMP-9 wirken (Woo, Lim et al. 2004). Ein Anstieg findet sich u.a. bei der Einwanderung von Mastzellen und der damit verbundenen inflammatorischen Hochregulation des Körpers (Coussens, Raymond et al. 1999).

Als eine Limitation der Versuche sollte beachtet werden, dass die ermittelten Ergebnisse aus einer geringen Anzahl an Versuchen stammen und somit die Beurteilung einer Replizierbarkeit der Resultate nicht vorliegt. Ebenso liegt der maximale Beobachtungszeitraum <= 10 Tage, somit ist eine Aussage über das Verhalten der Parametern unter längeren Versuchsbedigungen (längere chronisch infizierte Wundsimulation) nicht möglich, sondern man kann nur eine etwaige Tendenz beschreiben. In den Versuchen wurde nur mit dem buffy coat gesunder Probanden gearbeitet, daher sollte es auch in Betracht gezogen werden, das eine veränderte Zellreaktion bei einem größerem Patientenkollektiv, die Patienten mit Vorerkrankungen (z.B. Arteriosklerose, Diabetes mellitus, pAvK) beinhaltet, zu anderen Ergebnissen kommen könnte, da sowohl die Angiogenese als auch die immunoloigische Reaktion bei diesen Erkrankungen anders reagieren könnte.

6.2. Auswirkungen von LPS, Normoxie und Hypoxie auf die Angiogenese

6.2.1. Auswirkungen auf proangiogenetische Faktoren

Die im ersten Teil ermittelten Ergebnisse des Proteome Profilers mit der Betrachtung der exprimierten Angiogeneseparamenter unter der Simulation einer Entzündungsreaktion mittels LPS-Zusatz und die der chronischen infizierten Wundsituation (5-10 Tage, 3% O2 mit LPS-Zusatz) zeigten bei den proangiogenetischen Faktoren ein unterschiedliches Expressionsmuster. Betrachtet man diese mit dem Ziel, die Interaktion zwischen Lipopolysacchariden und Hypoxie zu ermitteln, so erkennt man, dass sich über die Gesamtdauer von 10 Tagen unter 3%O₂ die ansonsten scheinbar ausgeglichene Waage zwischen pro- und antiangiogenetischer Faktoren Richtung antiangiogenetischen Faktoren verlagerte (Tabelle 5.1.). IL-8 und MMP-9 zeigten sich unter LPS Zusatz mit einer gesteigerten Expression und in der zeitlichen Beobachtung des Sauerstoffentzuges präsent (Tabelle 5.1.). Die unterschiedliche Sauerstoffkonzentration schien beim Proteome Profiler aber keinen Einfluss auf die IL-8-Expression zu besitzen und blieb in jeder Versuchskonstellation nahezu konstant. Die Expression von MMP-9 steigerte sich im zeitlichen Verlauf der 3%-igen Hypoxiebedingung (5d: 0,06±0,02 auf 10d: 0,16±0,07). Dieses Ergebnis unterstützt die Annahme, dass die MMP-Expression in infizierten Wunden erhöht zu sein scheint, sowohl in Form der eigenen humanen (Rayment, Upton et al. 2008) als auch in Form der bakteriellen Proteasen (McCarty, Cochrane et al. 2012). Es lässt vermuten, dass die chemotaktische Komponente dieser beiden Mediatoren im 10-Tages- Beobachtungszeitraum überwiegt, da die weiteren proangiogenetischen Faktoren in ihrem Expressionsmuster konstant bleiben oder fallen. Beispielhaft hierfür ist die Expression von Persephin, die mit Zugabe von LPS zwar angeregt wird, in Kombination mit Hypoxie aber sinkt und nach 10 Tagen Hypoxie zum Erliegen kommt (Tabelle 5.1.).

Eine expressionssteigernde Wirkung auf VEGF u.a. durch Einfluss auf die HIF-1α-Signalkaskaden und somit einen positiven Einfluss auf die Angiogenese wird dem potenten Vasokonstriktor Endothelin-1 zugesprochen (Wu, Huang et al. 2014). Daher mag man anfangs davon ausgehen, dass die Expression von Endothelin-1 bei niedriger Sauerstoffspannung steigen würde (Faller 1999). Diese unterlag aber in allen Versuchen keiner großen Expressionsschwankungsbreite (Tabelle 5.1.). Eine mögliche Erklärung für die in etwa gleichbleibende Expression könnten die Versuche von Kourembanas, Marsden et al. liefern. Sie fanden in Versuchen heraus, dass die Endothelinsekretion aus kultivierten menschlichen Endothelzellen unter Hypoxie innerhalb von 1 Stunde anstieg und für mindestens 48 Stunden anhielt (Kourembanas, Marsden et al. 1991). Somit legen ggf. die Ergebnisse es nahe, dass der Beobachtungszeitraum von mindestens 5 Tagen unter Sauerstoffentzug zu lang bemessen war und die Transkriptionsrate wieder auf das Anfangsniveau fallen ließ. Daher wäre im Falle des Endothelins eine kürzere Beobachtungsperiode zum Vergleich sinnvoll.

Ein weiterer untersuchter proangiogenetischer Faktor stellt das Angiogenin dar. Es ist das erste isolierte humane Tumorprotein dem in vivo angiogene Aktivität nachgewiesen wurde (Fett, Strydom et al. 1985). Es induziert die Angiogenese, indem es Gefäßendothelund glatte Muskelzellen aktiviert, Zellmigration, Invasion, Proliferation und Bildung von tubulären Strukturen fördert (Gao and Xu 2008), durch die Stimulierung der ribosomalen **RNA-Transkription** Endothelzellen wirkt und in durch Hypoxie eine Expressionssteigerung erfährt (Kishimoto, Yoshida et al. 2012). Da in diesem Versuch eine isolierte Betrachtung von Hypoxie nicht stattfand, kann dazu leider keine vergleichbare Aussage getätigt werden. Da in den Versuchen unter den Versuchsparametern der Hypoxie in Kombination mit LPS über 5 Tage keine Expression stattfand und nach 10 Tagen ein minimaler Wert von 0,1±0,05 ermittelt wurde, ließe dieses sich dadurch begründen, das Angiogenin an entzündungshemmenden Reaktionen beteiligt ist und u.a. die Expression von IL-6 und IL-8 verringert (Lee, Kim et al. 2014). Die erhöhten IL-8-Spiegel sowie IL-6-Spiegel (siehe Tabelle 5.2.) erzeugten ggf. den Mechanismus, dass Angiogenin zuerst herunterreguliert wurde (siehe Vergleich Normoxie ohne LPS $0.08\pm$ vs. Normoxie mit LPS 0.03 ± 0.01), die Expression bei Hypoxie und LPS zum Erliegen kommt, um dann beim Beobachtungszeitraum von 10 Tagen Hypoxie wieder zu steigen. Fraglich ist hierbei nun, ob Angiogenin im weiteren Verlauf weiter steigen würde. Dieses würde für eine spätere immunologische Antwort \geq

10d von Angiogenin auf Entzündungsreaktionen sprechen. Hierbei wird die Limitation des Versuchszeitraumes von <= 10 Tagen deutlich.

6.2.2. Auswirkungen auf antiangiogenetische Faktoren

Mit Betrachtung der Angiogense-Inhibitoren zeigte sich bei fast allen Faktoren ein direkter Anstieg oder die Tendenz des weiteren Ansteigens der Expression über den Verlauf von 10 Tagen unter niedriger Sauerstoffspannung mit LPS-Zusatz (Tabelle 5.1.). Ausnahme war hier der PF4, der eine konstante Expression zeigte.

Die Expressionserhöhung und/oder Expressionskonstanz lässt vermuten, dass der Befall von gram-negativen Bakterien und des damit verbundenen LPS-Kontaktes die Angiogenese hemmen könnte, indem das Gleichgewicht sich zugunsten der antiangiogentischen Faktoren verschiebt.

TSP-1 und Serpin F1 reagierten bereits mit einer starken Expressionssteigerung unter dem Zusatz von LPS unter Normoxie (Tabelle 5.1.). Dieses spiegelt das Wissen wieder, das TSP-1 bei entzündlichen Prozessen erhöht ist (Velasco, Huegel et al. 2009, Lopez-Dee, Pidcock et al. 2011). Hierzu wird im Verlauf der Arbeit noch detaillierter Bezug genommen. Serpin F1, auch bekannt als Pigment epithelium-abgeleitet-Faktor (PEDF), gehört zu der Familie der Serin-Proteasen-Inhibitoren und unterdrückt die Hypoxieinduzierte Angiogenese wahrscheinlich über eine direkte Wirkung über HIF-1 oder, indem es die Signalkaskaden der Zielgene von HIF-1 beeinflusst (He, Cheng et al. 2015). Es ist bekannt, dass ein PEDF-Mangel bei einer Reihe von erkrankten Prozessen eine pathogene Rolle spielt. Insbesondere sind die PEDF-Spiegel bei diabetischen und Hypoxie induzierten angiogenen Erkrankungen verändert (vergleiche 90%igen Expressionsabfall Tabelle 5.1.), von denen angenommen wird, dass sie die Erkrankungen verschlimmern (He, Cheng et al. 2015). Dieses könnte man in diesem Versuch auf eine verzögerte Wundheilung übertragen.

Serpin E1, auch Plasminogen activator inhibitor-1 (PAI-1) genannt, wird hauptsächlich vom Endothel produziert. Die ermittelte hohe Expression beim Versuchsaufbau der besiedelten hypoxischen Wundsimulation (3% O₂, LPS, 10 Tage) spiegelt die Studienlage wider, da es nach neuesten Erkenntnissen wahrscheinlich die VEGFR-2-Aktivierung durch VEGF und dadurch die Angiogenese hemmt (Wu, Strawn et al. 2015). Ebenso wird es bei Gewebetrauma oder bei der Reaktivierung eines Wundreparaturprogramms in vitro

induziert (Providence, Higgins et al. 2008, Simone, Higgins et al. 2014) und soll an der Entstehung von chronischen Geschwüren beteiligt sein.

Gleichfalls ist Aktivin A an vielerlei Prozessen beteiligt, u.a. zeigt es Einfluss innerhalb von Immunantworten (fördert die Produktion von IL-1 β, TNF, IL-6 (Yamashita, Nakajima et al. 1993)), Zelldifferenzierungen, Homöostase und Gewebeumbau. Eine reduzierte Expression unter der Zugabe von LPS unter Normoxie Bedingungen zeigte sich in den Versuchen (Tabelle 5.1.). Der Zusatz von Hypoxie ließ die Expression auf nahezu Ausgangsniveau wieder ansteigen. Sulyok und Kollegen zeigten in Versuchen, dass eine Überexpression von Aktivin die Wundheilungsgeschwindigkeit und die Narbenreaktion erhöht (Sulyok, Wankell et al. 2004). Die Reaktion von Aktivin A nach intravenöser LPS-Injektion wurde von Sozzani und Musso getestet ("The vin and vang of Activin A"). Sie fanden heraus, dass LPS mit einer Kinetik, die derjenigen von primären proinflammatorischen Zytokinen wie TNF, IL-1, und IL-6 vorausgeht, schnell induziert wird. Dies geschehe wahrscheinlich durch Aktivierung des Toll-like-Rezeptor-4-Signalwegs (de Kretser, O'Hehir et al. 2012). Beim Einsatz von Follistatin (Aktivinhemmung) wurde das Muster der durch Aktivin freigesetzten entzündungsfördernden Zytokine verändert und es konnte die Mortalität von Mäusen als Reaktion durch einen letalen endotoxischen Schock gesenkt werden, was stark darauf hindeutet, dass Activin A eine wichtige Rolle beim akuten Entzündungsereignis von LPS spielt (Phillips, de Kretser et al. 2009). Bezüglich der Expressionsauswirkung von Activin A auf Hypoxie gibt es unterschiedliche Literaturangaben. Blumenstein und Kollegen untersuchten die Auswirkung von in-vitro-Hypoxie in Zotten-Plazenta-Explanaten, die über 24 bis 72 Stunden unter normoxischen (21% O2) oder hypoxischen (2% O2) Bedingungen inkubiert wurden. Nach 48-stündiger Hypoxie zeigten die Explantate eine signifikante Verringerung der Aktivin-A-Produktionsraten (Blumenstein, Mitchell et al. 2002). Eine andere in vitro Studie an kokultivierten Endothel-Fettstromazellen, die ähnlich wie in diesen Versuchen die Rolle der Endothelzellen Sekretion von Aktivin-A in der Vaskulogenese bei Hypoxie untersuchte, kam zu dem Schluss, dass Hypoxie die Sekretion von Aktivin A hochreguliert, dass eine Blockade des Activin A-Signals in ischämischem Gewebe die Erhaltung des betroffenen Gewebes verbessern könnte und die Revaskularisierung von ischämischem Gewebe durch lokal injizierte vaskulogene Zellmischungen verbessern würde (Merfeld-Clauss, Lu et al. 2018). Diese doch unterschiedlichen Ergebnisse könnten aufgrund der organspezifischen Activin A-Aktivitäten begründet sein. Oder um die vergleichbare Brücke zu Merfeld-Clauss und et.
al. zu bauen, müsste diesen Versuchen ein weiterer Versuchsbeobachtungsparameter bei Aktivin ohne LPS bei Hypoxie stattfinden und ebenso müsste man den Beobachtungszeitraum < 5 Tage einbeziehen, um die Aktivin Aktivität in vollem Umfang beurteilen zu können.

Die in dieser Arbeit ermittelten Angiostatin-Ergebnisse lassen eine Verschiebung des Medians (Abbildung 5.5.J.) zu höheren Expressionswerten unter LPS Einfluss erkennen, was für eine Reaktion auf Entzündungsprozesse sprechen würde. Bereits 1971 stellte Folkmann die Theorie auf, dass Angiostatin einen Einfluss auf die Angiogenese und das Tumorwachstum (Folkman 1971) habe. Im zeitlichen Verlauf stellte sich heraus, dass Angiostatin ein endogener Inhibitor der Angiogenese ist, indem er die Endothelzellmigration und Proliferation hemmt und die Induktion von Apoptose hervorruft (Redlitz, Daum et al. 1999). Ebenso werden ihm Auswirkungen auf Entzündungsreaktionen zugesprochen, indem er Neutrophile an der Aktivität und Migration hemmt (Aulakh, Balachandran et al. 2014) und die Leukozytenadhäsion an extrazelluläre Matrixproteine und das Endothel sowie deren Transmigration durch das Endothel in vitro unterbindet (Chavakis, Athanasopoulos et al. 2005). Emara, Obaid und Kollegen führten einen 4-Tages-Hypoxie-Versuch an Ferkeln durch, in dem sie zeigten, dass Hypoxie eine vorrübergehende supprimierende Wirkung auf die Plasma-Angiostatin-Expression zeigte. Dieses führten Sie auf eine eventuelle hemmende Rolle der Hypoxie auf MMP-2 und eine proteolytische Plasminogen zu Angiostatin zurück (Emara, Obaid et al. 2007). Inwieweit die Kombination aus Hypoxie und LPS auf die Expression von Angiostatin wirken, war nicht ermittelbar. Die Ergebnisse zeigten keine signifikanten Unterschiede.

In dieser Arbeit verhält sich der Platelet-Factor-4 unter allen Versuchsbedingungen ähnlich. Man kann ggf. eine dezente Abnahme unter Hypoxie erkennen (Tabelle 5.1., Abbildung 5.5.K). Es stellt ein antiangiogenes Chemokin dar, in dem es die Vermehrung von endothelialen Zellen und die Migration und Angiogense hemmt (Bikfalvi 2004) und eine Rolle bei der Abwehr des bakteriellen Wirts spielt, indem er eine humorale Immunantwort auf PF4-beschichtete Bakterien auslöst, dadurch das er an das negativ gelandene Lipopolysaccharid (LPS) bindet (Krauel, Potschke et al. 2011).

Keine Expression zeigt TIMP-1 in allen Versuchsparametern (Normoxie 5d, Normoxie 5d mit LPS, Hypoxie 5d mit LPS). Es fällt auf, dass nur eine Expression dieses

Glykoproteins nach 10-tägiger Hypoxiebehandlung mit LPS exprimiert wurde. TIMP-1 ist ein bekannter Inhibitor von Matrix-Metalloproteinasen und wirkt ebenso als antiangiogenetischer Faktor. Matrix-Metalloproteasen (MMPs) und ihre Inhibitoren (TIMPs) sind stark mit der Gewebezerstörung assoziiert. Die Expression von sowohl MMPs als auch TIMP-1 war in Lipopolysaccharid-stimulierten Zellen im Vergleich zu nicht stimulierten Zellen erhöht. (Letra, Ghaneh et al. 2013). Pagenstecher und Kollegen untersuchten die enzymatische Aktivität von MMPs und TIMP in Organen nach systemischer Injektion verschiedener Dosen von LPS bei Mäusen. Diese Beobachtungen belegen eine dramatische Verschiebung zugunsten einer erhöhten Expression der MMP-Gene gegenüber den TIMP-Genen und legen nahe, dass MMPs zur Entwicklung von Organschäden, oder wie in diesen Versuchen auf Dauer zu Wundheilungsstörungen beitragen können (Pagenstecher, Stalder et al. 2000). Die Ergebnisse der vorliegenden Versuche spiegeln eine früher einsetzende Expressionssteigerung von MMP-9 mit einer "verzögerten" TIMP-Erhöhung wider. Dadurch kann keine vergleichende Aussage/Einschätzung im Verlauf/Vergleich in den Versuchen möglich sein was widerum die zeitliche Limitation der Versuche und die niedrige Probenanzahl widerspiegelt.

6.2.3. Detaillierte Auswirkungsbetrachtung auf TSP-1 und VEGF

Das Hypoxie einen entscheidenden Einfluss auf die VEGF Expression hat (Shweiki, Itin et al. 1992, Brogi, Wu et al. 1994, Minchenko, Bauer et al. 1994, Kimura, Weisz et al. 2000, Hadjipanayi, Brown et al. 2010), wird in den vorliegenden Studienergebnissen bestätigt. Ebenso unterstützen sie die Forschungsergebnisse, dass TSP-1 bei entzündlichen Prozessen - in diesen Versuchen simuliert durch die LPS Zugabe bei normoxischen Bedingungen - erhöht ist (Velasco, Huegel et al. 2009, Lopez-Dee, Pidcock et al. 2011). Analog dazu geschah dies bei VEGF (Shin, Kang et al. 2015, Earle, Zitouni et al. 2019). Der Höhe der Expression wurde ebenso eine Dosisabhängigkeit zugeschrieben (Hajighasemi 2013).

Zieht man den erniedrigten Sauerstoffpartialdruck der LPS-Probe hinzu, so wird ebenfalls eine signifikante Expressionssteigerung bei TSP-1 ersichtlich (p=0,016 Tabelle 5,7,), hingegen kommt es zu einer Reduktion bei VEGF (LPS; VEGF/3%O₂/Col1/ohne LPS $127,402 \pm 156,851$ vs. $46,221 \pm 48,129$ VEGF/3%O₂/Col1 mit LPS). Dies könnte einen weiteren Hinweis auf die Umverteilung zu Gunsten antiangiogenetischer Mediatoren in entzündlich hypoxischen Geweben liefern, eine Inhibition von TSP-1 auf VEGF, eine stattfindende Adaptation an die Ischämie-Bedingungen, Folgen der Überexpression von TSP-1, sowie die Expressionsminderung von VEGF, der als stärkster Modulator der Angiogenese gilt. Diese Vermutungen könnten Erklärungen für den fehlenden bis verzögerten Wundverschluss bei chronisch-infizierten hypoxischen Wunden aufgrund reduzierter Angiogenese und anhaltenden Entzündungskomponenten liefern.

TSP-1 wird von Neutrophilen, Monozyten und Makrophagen, die Immunantworten in Entzündungsregionen und der Wundheilung vermitteln, ausgeschüttet (DiPietro, Nissen et al. 1996). Zusätzlich wirkt es als direkter Antagonist auf die VEGF-Aktivität (Lawler 2002, Lawler and Lawler 2012). Streit, Velasco und Kollegen testeten an transgenen Mäusen die gezielte Überexpression von TSP-1 in der Haut. Die Mäuse zeigten keine wesentlichen Anomalien der normalen Hautvaskularität, der kutanen Gefäßarchitektur oder der mikrovaskulären Permeabilität. Die Heilung von Hautwunden war jedoch stark verzögert und ging mit einer verminderten Granulationsgewebebildung und einer stark einher. verminderten Angiogenese Darüber hinaus inhibierte TSP-1 die Fibroblastenmigration in vivo und in vitro. Diese Befunde zeigten, dass TSP-1 bevorzugt die mit der Wundheilung verbundene Angiogenese und nicht die mit der normalen Entwicklung und der Hauthomöostase verbundene Angiogenese stört. Sie legten mit Ihren Versuchsergebnissen die Vermutung nahe, dass die therapeutische Anwendung von Angiogenese-Inhibitoren möglicherweise mit einer beeinträchtigten Wundvaskularisation und Gewebereparatur einhergeht (Streit, Velasco et al. 2000). Aber auch ein Mangel an TSP-1 scheint mit Wundheilungsstörungen einherzugehen. Dieses veranschaulichten Agah, Kyriakides und Kollegen an TSP-1 Knock-Out-Mäusen. Diese zeigten eine verzögerte Reparatur, die durch lose verdichtetes, unorganisiertes und mäßig vaskularisiertes Granulationsgewebe sowie eine anhaltende Entzündungshemmung durch eine Abnahme der Makrophagenrekrutierung gekennzeichnet war (Agah, Kyriakides et al. 2002). Diese Ergebnisse verdeutlichen die Notwendigkeit einer normalen Entzündungsreaktion für die Wundheilung und damit einen regelrechten physiologischen Ablauf ausgleichender Wundheilungsstadien.

Die Vermutung, dass es zu einer Hypoxie-Desensibilisierung kommt, wird durch unterschiedliche Studien zu diesem Thema gestützt. Zum einen zeigten Versuche an chronisch ischämischen Wundbeschaffenheiten eine Herab-Regulierung der HIF1-alphagesteuerten Gen-Expression (Pichiule and LaManna 2002, Hadjipanayi, Bauer et al. 2013), mit der Reaktion des TSP-1-Anstieges und der VEGF-Drosselung.

Die Limitation der Versuchsreihe, dass andere Erkrankungen ebenso die Angiogenese beeinflussen können zeigen u.a. weitere Studie zur Systemischen Sklerose, die eine chronisch entzündliche Autoimmunerkrankung mit einer Vaskulopathie, einer chronisch hypoxischen Gewebeumgebung und einer paradoxerweise fehlenden Angiogenese einhergeht (Hypoxie = Angiogenese fördernd) zeigt, das die TSP-1-Expression in der Haut von Patienten mit Systemischer Sklerose im Vergleich zu gesunden signifikant höher war. TSP-1 blockierte dosisabhängig die Proliferation von Endothelzellen und induzierte ihre Apoptose (Morgan-Rowe, Nikitorowicz et al. 2011). Ein weiterer Versuch am Krankheitsbild der Systemischen Sklerose zeigte erhöhte VEGF-Spiegel, was unter der Annahme der herunterregulierten Angiogenese bei chronisch hypoxischen Bedingungen auf den ersten Blick widersprüchlich wäre. In der Studie wurde allerdings zwischen dem proangiogenetisch wirkenden VEGF- (165) und den antiangiogenen VEGF (165)-b-Isoformen, die durch alternatives Spleißen im terminalen Exon der VEGF-Prä-RNA erzeugt werden, unterschieden. Hierbei zeigte sich, dass die endogene antiangiogene VEGF (165)-b-Spleißvariante sowohl auf mRNA- als auch auf Proteinebene selektiv überexprimiert war (Manetti, Guiducci et al. 2011, Manetti, Guiducci et al. 2011). Somit eröffnen können sich weitere Möglichkeiten für eine Therapie Angiogenese abhängiger Erkrankungen eröffnen (Peiris-Pages 2012). Auch ist eine Expressionsabnahme der VEGF-Rezeptoren denkbar (Olszewska-Pazdrak, Hein et al. 2009). Wenn zu diesem noch die reduzierte VEGF-Produktion aufgrund der chronisch entzündlichen Komponente addierend hinzukommt, so wäre es nachvollziehbar, dass Wunden sich nicht mehr verschließen.

6.3. Auswirkungen von LPS, Normoxie und Hypoxie auf die Entzündungsmediatoren

Es gibt bislang nur wenige Informationen über die durch Hypoxie und Lipopolysaccharid (LPS) induzierte Zytokinexpression. Die durchgeführten Untersuchungen zeigten im Versuchschritt der LPS-Zugabe durch eine Expressionserhöhung bei 8 von 12 Exponaten (Tabelle 5.2.), einen Hinweis auf die zu erwartende Entzündungsreaktion. Entzündungsmediatoren können als Biomarker für die Krankheitsüberwachung, den verlauf oder die -prognose dienen (Altara, Manca et al. 2014). Dabei gilt, dass LPS aus gram-negativen Bakterien einen der stärksten bekannten angeborenen immunaktivierenden Stimuli darstellt (Rossol, Heine et al. 2011). Bekannt und wie im Vorfeld schon beschrieben ist, dass Hypoxie eine Entzündungsreaktion auslöst. Somit müsste bei der Kombination aus LPS und Hypoxie eine Erhöhung der Versuchswerte

durch Potenzierung von Hypoxie und LPS zu erwarten sein. Dieses war auch unter diesem genannten Analysegesichtspunkt der Hypoxieergebnisse unter Verwendung von LPS der Fall. Es zeigten sich zum Normoxie+LPS-Vergleich nach 5 Tagen (zu Hypoxie + LPS) Expressionssteigerungen bei 8 von 11 Mediatoren, bei dreien (II-8, IL-16 und Serpin E1) verhielten sich die Expressionsmuster ähnlich (Tabelle 5.2.). Die wenigen Studien, die sich als Vergleich heranziehen ließen, zeigten ähnliche Resultate. Jian, Li und Kollegen sowie Jung, Frey et. al. zeigten - so wie am vorliegenden Versuchsmedium - dass eine durch Hypoxie verstärkte Lipopolysaccharid-induzierte Cytokinexpression bei IL-1 β und IL-6 stattfand (Jian, Li et al. 2014, Jung, Frey et al. 2015).

Nur GROα wies in den Versuchen einen Expressionsabfall um etwa 70% auf (Tabelle 5.2.). Dieser Abfall kann auf die hypoxischen Bedingungen zurückzuführen sein, da GROα keine Expressionssteigerung unter hypoxischen Bedingungen erfährt (Hartmann, Kunz et al. 1999) oder wie im vorliegenden Fall es ggf. Wege einer Hemmung in der Kombination zwischen LPS und Hypoxie zu finden gäbe.

Im Verlauf von 10 Tagen hypoxischer Probenbehandlung ergaben sich Expressionssteigerungen nur noch bei 5 Exponaten (C5/C5a, CD54, IL-16, IL-16, MIF). anderen stagnierten oder zeigten einen Abfall. Dieses Alle lässt eine Anpassungsfähigkeit/Desensibilisierung gegenüber der Mediatoren Ihre an Mediumsumgebung vermuten. Dennoch schreitet die Entzündungsreaktion in Summe nach 10 Tagen weiter an und kommt nicht zur Stagnation, was für den begünstigenden Effekt der Zytokine bei chronischen infizierten Wunden sprechen würde.

Eine erhöhte Expression unter 21% Sauerstoffkonzentration bei Zugabe von LPS war ersichtlich bei den Entzündungsmediatoren CD54, GROa, IL-1B, IL-1ra, IL-6 und Serpin E1 (Tabelle 5.2.). Dieses spiegelt die Ergebnisse vorangegangener Studien durch Brown, Narayanan und Kollegen im Jahr 2013 sowie Vries, Wagenaar und Kollegen 2015 und weitere (Beaty, Franklin et al. 1994, Becker, Quay et al. 1994, de Bont, Netea et al. 1998, de Bont, Netea et al. 2006, Xu, Liew et al. 2008, Ren, Wang et al. 2015) wider. Diese und andere Studien (Bazzoni and Beutler 1995, Yao, Mackman et al. 1997, van der Bruggen, 1999) Niienhuis et al. ergaben, dass LPS die Transkription vom proangiogenetisch/zytotoxisch wirkendem TNF- α positiv beeinflusst (Beutler, Milsark et al. 1985, Miethke, Wahl et al. 1992). Es wurde auf den Chromosomen 16p12–16p13.3 die LITAF (lipopolysaccharide-induced transcription factor)-Region identifiziert, die augenscheinlich eine wichtige Rolle bei der Aktivierung des menschlichen TNF-α-Gens spielen soll (Myokai, Takashiba et al. 1999). Im Hinblick auf die ermittelten Versuchsergebnisse, in denen es nach diesen Erkenntnissen untypisch ist dass TNF- α , aber auch MCP-1, keine Expression erfährt gilt es in die Ursachen-Überlegung mit einzubeziehen, dass die pleiotropen Wirkungen von TNF- α dosisabhängig sind (Tracey, Wei et al. 1988) und dadurch eine erregerabhängige- oder eine zeitliche-Inkubationskomponente einen Einfluss besitzen könnte oder es noch nicht verstandene/erforschte Nebentraskriptionswege gibt.

C5/C5a, IL-16 und MIP1a zeigten eine zu erwartende Nicht-Expression auf den LPS Zusatz (Tabelle 5.2.). Rittirsch, Flierl und Kollegen fanden in Experimenten heraus, das LPS-induzierte akute Verletzungen der Lunge neutrophilenabhängig waren. Es erforderte zwar die Beteiligung von Makrophagen-Mikrationshemmfaktor (MIF) und Leukotrien B4 (LTB4) war jedoch unerwarteter Weise nicht mit der Bildung von C5a assoziiert und unabhängig von C3, C5 oder C5a und somit von der Komplementaktivierung (Rittirsch, Flierl et al. 2008). Ebenso wird nach Erkenntnissen die Freisetzung von IL-16 (Elssner, Doseff et al. 2004) und MIP1a (Sherry, Espinoza et al. 1998) durch LPS inhibiert.

Die MIF Ergebnisse stellten sich relativ konstant gegenüber LPS-Zusatz dar (0,26±0,11 vs. 0,21±0,09). Nishihira, Koyama und Kollegen zeigten mittels Versuchen unter Verwendung von Endothelzellen der menschlichen Nabelschnur, dass die MIF-mRNA durch die Stimulation von LPS übermäßig hochreguliert wurde (Maximum nach 12 Stunden), sich jedoch nach 24 Stunden wesentlich verringerte. Ebenso zeigte sich eine dosisabhängige Expressionsinduzierung im Bereich von 10 pg / ml bis 10 ng / ml LPS sowie eine Reduktion bei Dosen von mehr als 100 ng / ml (Nishihira, Koyama et al. 1996, Nishihira, Koyama et al. 1998). Da die Versuchs-Beobachtungszeiträume >24 Stunden liegen, ist eine Überlegungs-Betrachtung auf der Basis von den Versuchsergebnissen von Nishihira, Koyama und Kollegen nicht gegeben bzw. die vorliegenden Ergebnisse spiegeln das Expressionsverhalten im reduzierten Bereich >24 Stunden wieder. Zum exakten Vergleich müsste der Versuch nochmals mit geringeren Beobachtungszeiträumen erfolgen, um eine ggf. stattgefundene Expressionssteigerung zu ermitteln.

Die Chemokine CCL5 und IL-8 erfuhren ebenso Expressionsveränderungen. Diese werden im weiteren Verlauf der Arbeit ausführlicher betrachtet, da diese beiden Effektoren mit ihrem Expressionsverhalten unter den unterschiedlichen Versuchseinstellungen der Versuchsreihe der ELISA-Testung näher differenziert worden sind. Zu erwähnen ist an dieser Stelle noch, dass IL-8 sowie Serpin-E1 ebenso bereits in den Ergebnissen des Proteome Profilers Human Angiogenesis Array ihre Darstellung gefunden haben. Diese Expressionsmusterverteilungen spiegeln sich nahezu ähnlich wider (Vergleich hierzu 5.2.1).

In Zusammenschau der Ergebnisse wird deutlich das Hypoxie eine inflammatorische Reaktion hervorruft. Dieses wurde in einigen Studien ebenso repräsentiert. Beispielsweise stiegen bei Personen mit Höhenkrankheit die zirkulierenden proinflammatorischen Zytokine an mit den Folgen des Flüssigkeitsaustretens in Form eines Lungen- oder Hirnödems (Grocott, Martin et al. 2009). Ebenso waren die Entzündungsmarker IL-6, IL-6-Rezeptor und C-reaktives Protein bei gesunden Probanden, die 3 Nächte in einer Höhe von mehr als 3400m verbracht hatten, erhöht (Hartmann, Tschop et al. 2000). Bei Mäusen traten nach langfristiger Exposition gegenüber einer niedrigen Sauerstoffkonzentration Gefäßleckagen, Ansammlungen von Entzündungszellen in mehreren Organen und erhöhte Serumspiegel von Zytokinen auf (Eckle, Faigle et al. 2008, Rosenberger, Schwab et al. 2009, Eltzschig and Carmeliet 2011). Ebenso wie Hypoxie Entzündungen hervorrufen kann, werden entzündete Läsionen häufig stark hypoxisch. Ursächlich für Gewebehypoxie während einer Entzündung zählen eine Erhöhung des Zellstoffwechsels bei gleichzeitiger Stoffwechselsubstrateverringerung (Eltzschig and Carmeliet 2011), darüber hinaus kann die Vermehrung intrazellulärer Krankheitserreger infizierten Zellen den Sauerstoff entziehen (Kempf, Lebiedziejewski et al. 2005). Die alleinige Betrachtung des Expressionsverhaltens gegenüber Hypoxie entfällt an dieser Stelle, da dieses nicht Gegenstand der Versuchsreihe war und es wird auf die bereits genannten und durchgeführten Studien verwiesen.

6.3.1. Detaillierte Auswirkungsbetrachtung auf IL-8 und CCL5

Die Ergebnisse zeigen eine signifikante Steigerung von IL-8 bei dem Zusatz von LPS sowohl beim Kruskal-Wallis-Test (Tabelle 5.13.) als auch beim Mann-Whitney- Test (Tabelle 5.14.) in den Testgruppen der Normoxie. Durchgeführte Studien belegen das LPS Monozyten stimulieren, vermehrt IL-8 freizusetzten (Bliss, Golenbock et al. 1998, Watari, Watari et al. 2003, Karlsson, Hagman et al. 2015). Ebenso wirkt sich Hypoxie signifikant steigernd auf die IL-8-Expression aus (p=0,012 – siehe Tabelle 5.21.). Diese Steigerung könnte die Aussagen schon stattgefundener Studien zum IL-8-Anstieg unter Hypoxie Einfluss, untermauern (Tamm, Bihl et al. 1998, Hirani, Antonicelli et al. 2001)

und unterstützt die Vermutung, dass die IL-8-Spiegel bei chronischen Wunden im Vergleich zu verheilten Wunden erhöht sind sodass diese Erhöhung zum verzögerten Wundverschluss beitragen könnte (Iocono, Colleran et al. 2000). In Anbetracht dieser Studienlage könnte man davon ausgehen, dass in der chronischen infizierten Wundsituation die entzündungsfördernden Eigenschaften des IL-8 denen der Angiogense fördernden Eigenschaften überwiegen, denn IL-8 steuert die Angiogenese über die Expression von VEGF, in dem es die Aktivierung von VEGF-Rezeptoren auf autokrine Weise fördert (Martin, Galisteo et al. 2009). Ebenso steigert es die Expression von MMP durch Endothelzellen (Li, Dubey et al. 2003) und wie an den Ergebnissen ersichtlich, findet eine Expressionsminderung von VEGF mit den Parametern der LPS- und Hypoxie-Belastung statt.

CCL5, ein weiterer Chemokinvertreter, wirkt als Chemoattraktant und bewirkt die Freisetzung von Histamin aus Basophilen und aktiviert Eosinophile (Wang, Wei et al. 2016). Dass der Zusatz von LPS eine signifikante Auswirkung auf die CCL5-Expression zeigt, konnte durch die Versuche bestätigen werden. Sowohl unter Normoxie als auch unter Hypoxie waren die Unterschiede der Expressionshöhe signifikant (Normoxie: p=0,004; Hypoxie: p=0,025). Die Ergebnisse stützen vorangegangene Studien, die ebenso eine Überexpression von CCL5 in LPS-behandelten Zellen gefunden haben (Castellani, Shanmugham et al. 2007, Bai, Han et al. 2018). Der Zusatz von Hypoxie zeigte in den Gruppen ohne LPS einen signifikanten Expressionsanstieg (p=0,028). Dieses Ergebnis bestätigt sich auch in anderen Studien, die eine CCL5-Steigerung bei einem niedrigen Sauerstoffdruck verzeichneten (Skurk, Mack et al. 2009, Lin, Wan et al. 2012).

Bai, Han und Kollegen fanden mit ihrer Studie zur infantilen Pneumonie heraus, dass unterschiedliche LPS-Konzentrationen (5µg/ml, 10µg/ml und 20µg/ml) die CCL5-Expression positiv korrelieren lässt, und sie kamen zu dem Schluss, dass die CCL5-Expression in engem Zusammenhang mit LPS-induzierten Entzündungsschäden stehen könnte (Bai, Han et al. 2018). Ob diese Expressionseigenschaften mit unterschiedlichen LPS-Konzentrationen sich in dem Versuch zeigen würde, gilt es ggf. in weiteren Studien-Schritten zu analysieren. Über die Auswirkungen von LPS in Kombination mit Hypoxie auf CCL5 ist wenig bekannt. Die Ergebnisse zeigten eine signifikante Steigerung unter diesen Parametern (p=0,046). Dieses könnte als eine Bekräftigung der Theorie des Chemokine-Ungleichgewichtes mit dem daraus veränderten Wundheilungsprozess, einer verlängerten Entzündungsreaktion und somit Bildung einer chronisch nicht heilenden Wunde (Ridiandries, Tan et al. 2018) verstanden werden. Jedoch ist hier zu vermerken, dass die Versuche einen maximalen Beobachtungszeitraum von <=10 Tagen aufweisen.

6.4. LPS-Blocker-Funktionalität

Ein weiterer Untersuchungspunkt dieser Arbeit war es zu analysieren, ob die LPS Blockierung einen Einfluss auf die Expressionseigenschaften der unterschiedlichen Modulatoren nimmt und ob ein LPS-Blocker als therapeutischer Unterstützer bei gramnegativer bakterieller Wundbesiedelung genutzt werden könnte, da dadurch die entzündliche Reaktion eingedämmt werden und es ggf. zu einer verbesserten bis gar erfolgreichen Wundbehandlung kommen könnte.

Mit der Annahme, dass die Werte mit Blockerzusatz oder Blocker+LPS (bei erfolgreicher Blockierung) ähnlich den Werten der Proben ohne LPS-Zusatz sein müssten, so wäre dieses ansatzweise bei einem groben Mittelwertvergleich bei VEGF (ohne LPS vs. Blocker - siehe Tabelle 5.3.) der Fall (28,509 \pm 36,989 vs. 26,995 \pm 29,549; 127,402 \pm 156,851 vs. 144,312 \pm 169,850). Die in Tabellen 5.3. und 5.4. dargestellten Ergebnisse (Mittelwerte) ließen vermuten, dass der Blocker eine blockierende Funktion hat, da die Expressionsergebnisse gegenüber den LPS Werten (LPS+Blocker vs. LPS) entsprechend der jeweilig zu erwartenden Ergebnissen ausgefallen sind.

Betrachtet man die IL-8- und CCL5-Versuchsergebnisse, so fällt auf, dass es zu keinem signifikanten Expressionsabfall in der Gruppe LPS mit Blocker im Vergleich der Werte unter reinem LPS Einfluss gekommen ist (Tabelle 5.17.). Zieht man aber die Werte zwischen den Gruppen ohne LPS und der Gruppe LPS und Blocker hinzu, so fallen signifikante Unterschiede bei ohne LPS vs. mit LPS IL8/21%O₂/Col1, IL8/3%O₂/Col1, CCL5/21%O₂/Col1 und CCL5/3%O₂/Col1 (Tabelle 5.14.) und bei ohne LPS vs. LPS mit LPS und Blocker zusätzlich Gruppe IL8/3% O₂/control (Tabelle 5.15.) auf.

Diese Ergebnisse könnten für eine nicht funktionierende Blockerfunktion sprechen. Es wäre zu diskutieren und zu ermitteln, ob dieses allgemeingültig gilt oder ob es eine dosisabhängige Inaktivierung des LPS durch den Blocker gibt. Dafür wären weitere Versuche mit unterschiedlichen Blockerkonzentrationenn bei gleichzeitig gleichbleibender LPS Konzentration erforderlich. Auch wäre es zu diskutieren, ob LPS ggf. einen anderen Wirkungsansatz und Signalweg über Rezeptoren nimmt und somit die Blockierung beeinträchtigt. Prof. Dr. Peter Reeh und sein Forscherteam haben beispielsweise nachgewiesen, dass LPS an den Chemorezeptor TRPA1 (Ionenkanal der Zellwand) bindet und über diesen Immunzellen und Entzündungsmediatoren aktiviert.

6.4.1. LPS-Blocker – Gegenstand der Forschung

In Zusammenschau der Ergebnisse und in Bezug auf die Fragestellungen dieser Arbeit ist es gelungen, das bisherige Wissen um die Interaktion zwischen Hypoxie und bakterrieller Reize, in Form von LPS, im Bereich der immunologischen Reaktion und Angiogenese im Prozess der Wundheilung zu erweitern. Daher sollte ein Ziel in der Zukunft sein, ein noch effektiveres Verständnis der einzelnen Signalwege zu erwerben, um wertvolle Hinweise und Wege für die Entwicklung neuer Therapien zu schaffen. Denn aufgrund der immer neu auftretenden Resistenzen gegenüber Bakterien und dem Wissen das ein massives Freisetzen von LPS aus den durch Antibiotika zerfallenden Bakterienwänden geschieht, beschäftigen sich derzeit viele Laboratorien (Chaby 2004, David and Sil 2010) mit diesen Thematiken, mit dem Ziel neue Therapien für eine Vielzahl von Erkrankungen zu entwickeln. Somit sollte es in Betracht gezogen werden, dass die vorliegenden Ergebnisse es wert sind weiter erforscht zu werden um ggf. eine synergetisch arbeitende Therapie eines topisch aufgebrachten oder injizierbaren LPS-Blocker als Unterstützung zur Antibiotikatherapie zu entwickeln.

6.5. Kollagen-Nutzung

Ein weiterer Baustein im Wundmodell war die Verwendung von Kollagen. Kollagene dienen als Strukturproteine des dreidimensionalen Gerüstes der menschlichen EZM (Bella and Hulmes 2017). Die statistischen Auswertungen der unbeschichteten Wells (control) im Vergleich zu den Ergebnissen der kollagenbeschichteten (Col1) zeigten in fast 90% der durchgeführten Tests eine deutliche bis signifikant reduzierte Expression im Vergleich zur Kollagengruppe. Dieses kann als Vorteil des Kollagens in den Versuchen verstanden werden und bekräftigen die Interaktionsabhängigkeit der Versuchsparameter mit der simulierten Kollagenmatrix.

6.6. Limitationen der Studie

Die vorliegende Arbeit gilt es auf Limitationen zu prüfen. Die zentrale Limitationen ergeben sich aus der begrenzt durchgeführten Versuchsanzahl und Probengröße. Daher spiegelt die Analyse und Bewertung der statistischen Ergebnisse sowie die getroffene Vermutungen eine ggf. nicht repräsentative Verallgemeinerung dar. Ebenso müssten die Forschungskriterien überdacht werden. Ein höheres Patientenkollektiv, Geschlecht,

Alter, bestehende Vorerkrankungen (wie pAVK, Diabetes mellitus, Systemische Sklerose), Wundheilungsstörungen etc. könnten die vorliegenden Versuchsergebnisse ändern, zu Interindividualitäten führen und sollten daher ergänzt und die Versuche differenziert beobachtet und bewertet werden. Durch diese Maßnahmen würde sich eine benötigte Repräsentativität ergeben und die vorliegenden Daten könnten zur statistischen Tendenzabschätzung herangezogen werden.

Desweiteren könnten Beobachtungszeiträume >10 Tage, unterschiedlichste Bakterienkolonisationen oder Sauerstoffkonzentrationen von Interesse sein. Ebenso könnten höhere Blockerdosierungen andere Ergebnisse liefern und eine mögliche Funktionalität ggf. bestätigen.

Da die Effekte von LPS dosisabhängig zu sein scheinen (Yang, Hu et al. 2013), wäre eine Darstellung der Versuchswerte unter unterschiedlichen LPS-Konzentrationen lohnend.

Eine weitere Limitation der Auswertungen zeigt sich in der Quellenrecherche, da viele der in die Bewertung einbezogenen Bereiche noch Gegenstand der Forschung sind und dadurch wenig Forschungsergebnisse aufweisen. Es gilt weitere Signalwege, Wirkungsweisen und Interaktionen zu erforschen. Daher unterstützt diese Arbeit eine Entwicklungstendenz die eine aussagekräftige Theorie und Therapie unterstützen könnte.

7. Zusammenfassung

Chronische Wunden sind durch eine reduzierte Angiogenese, bakterielle Besiedelung, hypoxisches Wundmilieu, anhaltende Entzündung und einen unzureichenden oder schwachen Wundverschluss gekennzeichnet (Ridiandries, Tan et al. 2018). Daher war es ein Ziel dieser Arbeit, die Interaktion zwischen Lipopolysacchariden und Hypoxie in einem in-vitro-Modell chronischer Wundverhältnisse darzustellen um aus den gewonnenen Erkenntnissen das Verständnis dieser Interaktion auszubauen und ggf. auf die Prozesse einer unzureichenden Wundheilung anzuwenden. Ebenso war es ein Bestreben dadurch einen Beitrag, Ideen und einen Gedankenanreiz zur Entwicklung neuer und verbesserter Therapiemöglichkeiten für chronisch-infizierte Wunden, z.B. mittels lokaler autologer Wachstumsfaktoren-Injektion oder Wundauflagen sowie LPS-Blockierung oder entzündlich- sowie angiogenesebegleitender Erkrankungen zu leisten. Denn chronische Wunden stellen für Millionen Menschen weltweit ein erhebliches gesundheitliches, soziales wie wirtschaftliches Risiko dar, das aufgrund der zunehmenden Alterung der Bevölkerung inklusiver begleitender Risikofaktoren wie Arteriosklerose, Diabetes, pAVK, venöser Insuffizienz und Immobilität stetig zunimmt (Margolis, Bilker et al. 2002, Margolis, Bilker et al. 2002).

Diese Erkenntnisse bewogen uns mittels eines in-vitro-Modells, bestehend aus den aus peripheren Blutzellen zu analysierenden Mediatoren, Kollagen und LPS, die bei niedrigem Sauerstoffpartialdruck über 5-10 Tage inkubiert wurden, sowohl die Angiogenese wirkenden als auch immunologischen Effekte darzustellen. Dem Parameter der Hypoxie wurde die Normoxie als Kontrollkultur gegenübergestellt. Im ersten Schritt wurden die Medien über die Testreihe des Proteome Profilers (Angiogenesis, Cytokine Array) via Fotoentwickler und Image G ausgewertet. Die Untersuchungen zeigten eine scheinbare Verschiebung zu Gunsten der antiangiogenetisch wirkenden Wachstumsfaktoren, der sonst physiologisch ausgeglichenen Situation zwischen proangiogenetisch und antiangiogenetisch wirkenden Mediatoren. Ebenso wurde eine anhaltende inflammatorische Reaktion unter chronischen Wundverhältnissen dargestellt. Beides wurde durch die Anwesenheit von LPS noch verstärkt. Diese Ergebnisse bestätigten sich im nächsten Schritt der näheren Wirkungsdifferenzierung mittels ELISA-Testung ebenfalls. Diese wurde repräsentiert durch die Wahl von VEGF, TSP-1, CCL5 und IL-8.

Die positive Wirkungsweise durch den Einsatz eines LPS-Blockers konnte nicht signifikant in allen Bereichen nachgewiesen werden, dennoch zeugen die Ergebnisse davon, dass diese Thematik näher verfolgt werden sollte.

Durch die vorliegenden Ergebnisse kann diese Arbeit als Zugewinn und zum Verständnis der molekularen Zusammenhänge der Wundheilungskaskade in einem chronisch hypoxischem, bakteriell besiedelten Wundmillieu und zur Ursachenforschung nicht heilender Wunden beitragen. Ebenso können Mechanismen, die zum Verständnis von Angiogenese und entzündlichen Erkrankungen sowie deren Therapiemöglichkeiten nötig sind, aufgezeigt werden.

8. Literaturverzeichnis

Adair, T. H. and J. P. Montani (2010). Integrated Systems Physiology: from Molecule to Function to Disease. <u>Angiogenesis</u>. San Rafael (CA), Morgan & Claypool Life Sciences Copyright (c) 2010 by Morgan & Claypool Life Sciences.

Agah, A., T. R. Kyriakides, J. Lawler and P. Bornstein (2002). "The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice." Am J Pathol 161(3): 831-839.

Akiri, G., D. Nahari, Y. Finkelstein, S.-Y. Le, O. Elroy-Stein and B.-Z. Levi (1998). "Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription." Oncogene 17(2): 227-236.

Akita, S., K. Akino, T. Imaizumi and A. Hirano (2005). "A basic fibroblast growth factor improved the quality of skin grafting in burn patients." Burns 31(7): 855-858.

Allen, D. B., J. J. Maguire, M. Mahdavian and et al. (1997). "Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms." Archives of Surgery 132(9): 991-996.

Altara, R., M. Manca, M. H. Hessel, B. J. Janssen, H. H. Struijker-Boudier, R. J. Hermans and W. M. Blankesteijn (2014). "Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample." BMC Biotechnol 14: 63.

Auböck, J. (2007). Biologie der Wundheilung. Manual der Wundheilung: Chirurgischdermatologischer Leitfaden der modernen Wundbehandlung. T. Wild and J. Auböck. Vienna, Springer Vienna: 1-10.

Aulakh, G. K., Y. Balachandran, L. Liu and B. Singh (2014). "Angiostatin inhibits activation and migration of neutrophils." Cell Tissue Res 355(2): 375-396.

Bai, D., A. Han and S. Cong (2018). "The effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia." Iran J Basic Med Sci 21(5): 449-454.

Balsara, R. D. and V. A. Ploplis (2008). "Plasminogen activator inhibitor-1: the doubleedged sword in apoptosis." Thromb Haemost 100(6): 1029-1036.

Barrientos, S., O. Stojadinovic, M. S. Golinko, H. Brem and M. Tomic-Canic (2008). "Growth factors and cytokines in wound healing." Wound Repair Regen 16(5): 585-601. Bazzoni, F. and B. Beutler (1995). "Comparative expression of TNF-alpha alleles from normal and autoimmune-prone MHC haplotypes." J Inflamm 45(2): 106-114.

Beaty, C. D., T. L. Franklin, Y. Uehara and C. B. Wilson (1994). "Lipopolysaccharideinduced cytokine production in human monocytes: role of tyrosine phosphorylation in transmembrane signal transduction." Eur J Immunol 24(6): 1278-1284.

Becker, S., J. Quay, H. S. Koren and J. S. Haskill (1994). "Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages." Am J Physiol 266(3 Pt 1): L278-286.

Bella, J. and D. J. Hulmes (2017). "Fibrillar Collagens." Subcell Biochem 82: 457-490.

Befani, C. and P. Liakos (2018). "The role of hypoxia-inducible factor-2 alpha in angiogenesis." J Cell Physiol.

Ben-Av, P., L. J. Crofford, R. L. Wilder and T. Hla (1995). "Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis." FEBS Lett 372(1): 83-87.

Beutler, B., I. W. Milsark and A. C. Cerami (1985). "Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin." Science 229(4716): 869-871.

Bikfalvi, A. (2004). "Platelet factor 4: an inhibitor of angiogenesis." Semin Thromb Hemost 30(3): 379-385.

Bliss, C. M., Jr., D. T. Golenbock, S. Keates, J. K. Linevsky and C. P. Kelly (1998). "Helicobacter pylori lipopolysaccharide binds to CD14 and stimulates release of interleukin-8, epithelial neutrophil-activating peptide 78, and monocyte chemotactic protein 1 by human monocytes." Infect Immun 66(11): 5357-5363.

Blumenstein, M., M. D. Mitchell, N. P. Groome and J. A. Keelan (2002). "Hypoxia inhibits activin A production by term villous trophoblast in vitro." Placenta 23(10): 735-741.

Bolam, J. P. and J. H. Smith (1977). "Platelets in inflammatory exudates." J Pharm Pharmacol 29(11): 674-676.

Bolam, J. P. and M. J. Smith (1977). "Accumulation of platelets at acute inflammatory sites [proceedings]." Br J Pharmacol 61(1): 158p-159p.

Brew, K. and H. Nagase (2010). "The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity." Biochimica et biophysica acta 1803(1): 55-71.

Brogi, E., T. Wu, A. Namiki and J. M. Isner (1994). "Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only." Circulation 90(2): 649-652.

Broughton, G., 2nd, J. E. Janis and C. E. Attinger (2006). "The basic science of wound healing." Plast Reconstr Surg 117(7 Suppl): 12s-34s.

Brown, G. L., L. B. Nanney, J. Griffen, A. B. Cramer, J. M. Yancey, L. J. Curtsinger, 3rd, L. Holtzin, G. S. Schultz, M. J. Jurkiewicz and J. B. Lynch (1989). "Enhancement of wound healing by topical treatment with epidermal growth factor." N Engl J Med 321(2): 76-79.

Brown, G. T., P. Narayanan, W. Li, R. L. Silverstein and T. M. McIntyre (2013). "Lipopolysaccharide stimulates platelets through an IL-1beta autocrine loop." J Immunol 191(10): 5196-5203.

Carmeliet, P. (2003). "Angiogenesis in health and disease." Nature Medicine 9: 653.

Carmeliet, P. (2005). "VEGF as a key mediator of angiogenesis in cancer." Oncology 69 Suppl 3: 4-10.

Carmeliet, P., V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau and A. Nagy (1996). "Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele." <u>Nature</u> **380**(6573): 435-439.

Castellani, M. L., L. N. Shanmugham, C. Petrarca, I. Simeonidou, S. Frydas, M. De Colli, J. Vecchiet, K. Falasca, S. Tete, V. Salini and P. Conti (2007). "Expression and secretion of RANTES (CCL5) in granulomatous calcified tissue before and after lipopolysaccharide treatment in vivo." Calcif Tissue Int 80(1): 60-67.

Chaby, R. (2004). "Lipopolysaccharide-binding molecules: transporters, blockers and sensors." Cell Mol Life Sci 61(14): 1697-1713.

Chavakis, T., A. Athanasopoulos, J. S. Rhee, V. Orlova, T. Schmidt-Woll, A. Bierhaus, A. E. May, I. Celik, P. P. Nawroth and K. T. Preissner (2005). "Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment." Blood 105(3): 1036-1043. Chintalgattu, V., D. M. Nair and L. C. Katwa (2003). "Cardiac myofibroblasts: a novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR." J Mol Cell Cardiol 35(3): 277-286.

Choi, M., H. S. Lee, P. Naidansaren, H. K. Kim, E. O, J. H. Cha, H. Y. Ahn, P. I. Yang, J. C. Shin and Y. A. Joe (2013). "Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels." Int J Biochem Cell Biol 45(3): 560-570.

Claffey, K. P., S. C. Shih, A. Mullen, S. Dziennis, J. L. Cusick, K. R. Abrams, S. W. Lee and M. Detmar (1998). "Identification of a human VPF/VEGF 3' untranslated region mediating hypoxia-induced mRNA stability." Mol Biol Cell 9(2): 469-481.

Clauss, M., M. Gerlach, H. Gerlach, J. Brett, F. Wang, P. C. Familletti, Y. C. Pan, J. V. Olander, D. T. Connolly and D. Stern (1990). "Vascular permeability factor: a tumorderived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration." J Exp Med 172(6): 1535-1545.

Cohen, T., D. Nahari, L. W. Cerem, G. Neufeld and B. Z. Levi (1996). "Interleukin 6 induces the expression of vascular endothelial growth factor." J Biol Chem 271(2): 736-741.

Coussens, L. M., W. W. Raymond, G. Bergers, M. Laig-Webster, O. Behrendtsen, Z. Werb, G. H. Caughey and D. Hanahan (1999). "Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis." <u>Genes Dev</u> **13**(11): 1382-1397. Cruikshank, W. W., H. Kornfeld and D. M. Center (2000). "Interleukin-16." J Leukoc Biol 67(6): 757-766.

David, S. A. and D. Sil (2010). "Development of small-molecule endotoxin sequestering agents." Subcell Biochem 53: 255-283.

de Bont, N., M. G. Netea, C. Rovers, T. Smilde, P. N. Demacker, J. W. van der Meer and A. F. Stalenhoef (1998). "LPS-induced cytokine production and expression of LPS-receptors by peripheral blood mononuclear cells of patients with familial hypercholesterolemia and the effect of HMG-CoA reductase inhibitors." Atherosclerosis 139(1): 147-152.

de Bont, N., M. G. Netea, C. Rovers, T. Smilde, A. Hijmans, P. N. Demacker, J. W. van der Meer and A. F. Stalenhoef (2006). "LPS-induced release of IL-1 beta, IL-1Ra, IL-6, and TNF-alpha in whole blood from patients with familial hypercholesterolemia: no effect of cholesterol-lowering treatment." J Interferon Cytokine Res 26(2): 101-107.

de Kretser, D. M., R. E. O'Hehir, C. L. Hardy and M. P. Hedger (2012). "The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair." Mol Cell Endocrinol 359(1-2): 101-106.

DiPietro, L. A., N. N. Nissen, R. L. Gamelli, A. E. Koch, J. M. Pyle and P. J. Polverini (1996). "Thrombospondin 1 synthesis and function in wound repair." Am J Pathol 148(6): 1851-1860.

Dissemond, J. (2006). "[When is a wound chronic?]." Hautarzt 57(1): 55.

Dulmovits, B. M. and I. M. Herman (2012). "Microvascular remodeling and wound healing: a role for pericytes." Int J Biochem Cell Biol 44(11): 1800-1812.

Dvorak, H. F. (1986). "Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing." N Engl J Med 315(26): 1650-1659.

Dvorak, H. F., V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh and A. M. Dvorak (1987). "Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing." Lab Invest 57(6): 673-686.

Earle, K. A., K. Zitouni and J. Nourooz-Zadeh (2019). "Lipopolysaccharide-Induced VEGF Production and Ambient Oxidative Stress in Type 2 Diabetes." J Clin Endocrinol Metab 104(1): 1-6.

Eckle, T., M. Faigle, A. Grenz, S. Laucher, L. F. Thompson and H. K. Eltzschig (2008). "A2B adenosine receptor dampens hypoxia-induced vascular leak." Blood 111(4): 2024-2035.

Efron, P. A. and L. L. Moldawer (2004). "Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response." J Burn Care Rehabil 25(2): 149-160.

Elssner, A., A. I. Doseff, M. Duncan, M. Kotur and M. D. Wewers (2004). "IL-16 is constitutively present in peripheral blood monocytes and spontaneously released during apoptosis." J Immunol 172(12): 7721-7725.

Emara, M., L. Obaid, S. Johnson, D. L. Bigam and P. Y. Cheung (2007). "The effect of hypoxia on plasma angiostatin and related factors in newborn pigs." Proc West Pharmacol Soc 50: 47-52.

Eltzschig, H. K. and P. Carmeliet (2011). "Hypoxia and inflammation." N Engl J Med 364(7): 656-665.

Faller, D. V. (1999). "Endothelial cell responses to hypoxic stress." Clin Exp Pharmacol Physiol 26(1): 74-84.

Ferrara, N. (1993). "Vascular endothelial growth factor." Trends Cardiovasc Med 3(6): 244-250.

Ferrara, N., K. Carver-Moore, H. Chen, M. Dowd, L. Lu, K. S. O'Shea, L. Powell-Braxton, K. J. Hillan and M. W. Moore (1996). "Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene." Nature 380(6573): 439-442.

Ferrara, N. and T. Davis-Smyth (1997). "The biology of vascular endothelial growth factor." Endocr Rev 18(1): 4-25.

Ferrara, N. and W. J. Henzel (2012). "Pituitary follicular cells secrete a novel heparinbinding growth factor specific for vascular endothelial cells. 1989." Biochem Biophys Res Commun 425(3): 540-547.

Ferrara, N., K. Houck, L. Jakeman and D. W. Leung (1992). "Molecular and biological properties of the vascular endothelial growth factor family of proteins." Endocr Rev 13(1): 18-32.

Fett, J. W., D. J. Strydom, R. R. Lobb, E. M. Alderman, J. L. Bethune, J. F. Riordan and B. L. Vallee (1985). "Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells." Biochemistry 24(20): 5480-5486.

Ferrari, G., B. D. Cook, V. Terushkin, G. Pintucci and P. Mignatti (2009). "Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis." J Cell Physiol 219(2): 449-458.

Finetti, F., R. Solito, L. Morbidelli, A. Giachetti, M. Ziche and S. Donnini (2008). "Prostaglandin E2 regulates angiogenesis via activation of fibroblast growth factor receptor-1." J Biol Chem 283(4): 2139-2146.

Folkman, J. (1971). "Tumor angiogenesis: therapeutic implications." N Engl J Med 285(21): 1182-1186.

Folkman, J. and M. Klagsbrun (1987). "Angiogenic factors." Science 235(4787): 442-447.

Folkman, J., S. Taylor and C. Spillberg (1983). "The role of heparin in angiogenesis." Ciba Found Symp 100: 132-149.

Frank, S., G. Hubner, G. Breier, M. T. Longaker, D. G. Greenhalgh and S. Werner (1995). "Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing." J Biol Chem 270(21): 12607-12613.

Gabrilovich, D. I., H. L. Chen, K. R. Girgis, H. T. Cunningham, G. M. Meny, S. Nadaf, D. Kavanaugh and D. P. Carbone (1996). "Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells." Nat Med 2(10): 1096-1103.

Gao, X. and Z. Xu (2008). "Mechanisms of action of angiogenin." Acta Biochim Biophys Sin (Shanghai) 40(7): 619-624.

Gerber, H. P., T. H. Vu, A. M. Ryan, J. Kowalski, Z. Werb and N. Ferrara (1999). "VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation." Nat Med 5(6): 623-628.

Gosain, A. and L. A. DiPietro (2004). "Aging and wound healing." World J Surg 28(3): 321-326.

Guo, S. and L. A. Dipietro (2010). "Factors affecting wound healing." J Dent Res 89(3): 219-229

Grocott, M. P., D. S. Martin, D. Z. Levett, R. McMorrow, J. Windsor and H. E. Montgomery (2009). "Arterial blood gases and oxygen content in climbers on Mount Everest." N Engl J Med 360(2): 140-149.

Hamano, Y. and R. Kalluri (2005). "Tumstatin, the NC1 domain of alpha3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth." Biochem Biophys Res Commun 333(2): 292-298.

Hadjipanayi, E., A. T. Bauer, P. Moog, B. Salgin, H. Kuekrek, B. Fersch, U. Hopfner, T. Meissner, A. Schluter, M. Ninkovic, H. G. Machens and A. F. Schilling (2013). "Cell-free carrier system for localized delivery of peripheral blood cell-derived engineered factor signaling: towards development of a one-step device for autologous angiogenic therapy." J Control Release 169(1-2): 91-102.

Hadjipanayi, E., R. A. Brown, V. Mudera, D. Deng, W. Liu and U. Cheema (2010). "Controlling physiological angiogenesis by hypoxia-induced signaling." J Control Release 146(3): 309-317.

Hajighasemi F. (2013) "Profile of VEGF secretion in human peripheral blood mononuclear cells in vitro." Res J Biol Sci (RJBS);8(6):210–4.

Hajighasemi, F. and M. H. Gheini (2015). "Lipopolysaccharide Effect on Vascular Endothelial Factor and Matrix Metalloproteinases in Leukemic Cell Lines In vitro." Iran J Cancer Prev 8(3): e2327.

Haroon, Z. A., J. A. Raleigh, C. S. Greenberg and M. W. Dewhirst (2000). "Early wound healing exhibits cytokine surge without evidence of hypoxia." Ann Surg 231(1): 137-147. Hartmann, A., M. Kunz, S. Kostlin, R. Gillitzer, A. Toksoy, E. B. Brocker and C. E. Klein (1999). "Hypoxia-induced up-regulation of angiogenin in human malignant melanoma." Cancer Res 59(7): 1578-1583.

Hartmann, G., M. Tschop, R. Fischer, C. Bidlingmaier, R. Riepl, K. Tschop, H. Hautmann, S. Endres and M. Toepfer (2000). "High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein." Cytokine 12(3): 246-252.

He, X., R. Cheng, S. Benyajati and J. X. Ma (2015). "PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases." Clin Sci (Lond) 128(11): 805-823.

Heun, Y., K. Pogoda, M. Anton, J. Pircher, A. Pfeifer, M. Woernle, A. Ribeiro, P. Kameritsch, O. Mykhaylyk, C. Plank, F. Kroetz, U. Pohl and H. Mannell (2017). "HIF-1alpha Dependent Wound Healing Angiogenesis In Vivo Can Be Controlled by Site-Specific Lentiviral Magnetic Targeting of SHP-2." Mol Ther 25(7): 1616-1627.

Hirani, N., F. Antonicelli, R. M. Strieter, M. S. Wiesener, P. J. Ratcliffe, C. Haslett and S. C. Donnelly (2001). "The regulation of interleukin-8 by hypoxia in human macrophages--a potential role in the pathogenesis of the acute respiratory distress syndrome (ARDS)." Mol Med 7(10): 685-697.

Hurlow, J., K. Couch, K. Laforet, L. Bolton, D. Metcalf and P. Bowler (2015). "Clinical Biofilms: A Challenging Frontier in Wound Care." Adv Wound Care (New Rochelle) 4(5): 295-301.

Indraccolo, S. (2010). "Interferon-alpha as angiogenesis inhibitor: learning from tumor models." Autoimmunity 43(3): 244-247.

Iocono, J. A., K. R. Colleran, D. G. Remick, B. W. Gillespie, H. P. Ehrlich and W. L. Garner (2000). "Interleukin-8 levels and activity in delayed-healing human thermal wounds." Wound Repair Regen 8(3): 216-225.

Iwamoto, U., H. Hori, Y. Takami, Y. Tokushima, M. Shinzato, M. Yasutake and N. Kitaguchi (2015). "A novel cell-containing device for regenerative medicine: biodegradable nonwoven filters with peripheral blood cells promote wound healing." J Artif Organs 18(4): 315-321.

Jian, C., C. Li, Y. Ren, Y. He, Y. Li, X. Feng, G. Zhang and Y. Tan (2014). "Hypoxia augments lipopolysaccharide-induced cytokine expression in periodontal ligament cells." Inflammation 37(5): 1413-1423.

Joussen, A. M., B. Kirchhof and C. Gottstein (2003). "[Molecular mechanisms of vasculogenesis and angiogenesis. What regulates vascular growth?]." Ophthalmologe 100(4): 284-291.

Joseph-Silverstein, J. and D. B. Rifkin (1987). "Endothelial cell growth factors and the vessel wall." Semin Thromb Hemost 13(4): 504-513.

Jung, S., D. Frey, F. Brackmann, M. Richter-Kraus and R. Trollmann (2015). "Hypoxia potentiates cytotoxicity of LPS-activated microglial BV2 cells in vitro by synergistic effects on cytokine and nitric oxide secretion." Molecular and Cellular Pediatrics 2(1): A20.

Karlsson, I., R. Hagman, Y. Guo, P. Humblot, L. Wang and S. Wernersson (2015). "Pathogenic Escherichia coli and lipopolysaccharide enhance the expression of IL-8, CXCL5, and CXCL10 in canine endometrial stromal cells." Theriogenology 84(1): 34-42.

Kempf, V. A., M. Lebiedziejewski, K. Alitalo, J. H. Walzlein, U. Ehehalt, J. Fiebig, S. Huber, B. Schutt, C. A. Sander, S. Muller, G. Grassl, A. S. Yazdi, B. Brehm and I. B. Autenrieth (2005). "Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections." Circulation 111(8): 1054-1062.

Kim, J.-w., P. Gao and C. V. Dang (2007). "Effects of hypoxia on tumor metabolism." Cancer and Metastasis Reviews 26(2): 291-298.

Kimura, H., A. Weisz, Y. Kurashima, K. Hashimoto, T. Ogura, F. D'Acquisto, R. Addeo, M. Makuuchi and H. Esumi (2000). "Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide." Blood 95(1): 189-197.

Kishimoto, K., S. Yoshida, S. Ibaragi, N. Yoshioka, T. Okui, G. F. Hu and A. Sasaki (2012). "Hypoxia-induced up-regulation of angiogenin, besides VEGF, is related to progression of oral cancer." Oral Oncol 48(11): 1120-1127.

Kleinheinz, J., H.-P. Wiesmann, U. Stratmann and U. Joos (2002). "Beurteilung der Angiogenese und Osteogenese unter dem Einfluss von Vascular endothelial growth factor (VEGF)." Mund-, Kiefer- und Gesichtschirurgie 6(3): 175-182.

Knighton, D. R., K. F. Ciresi, V. D. Fiegel, L. L. Austin and E. L. Butler (1986). "Classification and treatment of chronic nonhealing wounds. Successful treatment with autologous platelet-derived wound healing factors (PDWHF)." Ann Surg 204(3): 322-330.

Ko, S. H., A. Nauta, V. Wong, J. Glotzbach, G. C. Gurtner and M. T. Longaker (2011). "The role of stem cells in cutaneous wound healing: what do we really know?" Plast Reconstr Surg 127 Suppl 1: 10s-20s.

Koh, T. J. and L. A. DiPietro (2011). "Inflammation and wound healing: The role of the macrophage." Expert reviews in molecular medicine 13: e23-e23.

Komarcevic, A. (2000). "[The modern approach to wound treatment]." Med Pregl 53(7-8): 363-368.

Kourembanas, S., P. A. Marsden, L. P. McQuillan and D. V. Faller (1991). "Hypoxia induces endothelin gene expression and secretion in cultured human endothelium." J Clin Invest 88(3): 1054-1057.

Kostarnoy, A. V., P. G. Gancheva, D. Y. Logunov, L. V. Verkhovskaya, M. A. Bobrov, D. V. Scheblyakov, A. I. Tukhvatulin, N. E. Filippova, B. S. Naroditsky and A. L. Gintsburg (2013). "Topical bacterial lipopolysaccharide application affects inflammatory response and promotes wound healing." J Interferon Cytokine Res 33(9): 514-522.

Krauel, K., C. Potschke, C. Weber, W. Kessler, B. Furll, T. Ittermann, S. Maier, S. Hammerschmidt, B. M. Broker and A. Greinacher (2011). "Platelet factor 4 binds to bacteria, [corrected] inducing antibodies cross-reacting with the major antigen in heparin-induced thrombocytopenia." Blood 117(4): 1370-1378.

Laurent P, Bienvenu J (1982) Acute inflammatory process. In: Allen RC, Bienvenu J, Laurent P, Suskind RM (eds) Marker proteins in inflammation, vol 1. De Gruyter, Berlin New york pp 33-43

Lawler, J. (2002). "Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth." J Cell Mol Med 6(1): 1-12.

Lawler, P. R. and J. Lawler (2012). "Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2." Cold Spring Harb Perspect Med 2(5): a006627.

Lee, S. H., K. W. Kim, K. M. Min, K. W. Kim, S. I. Chang and J. C. Kim (2014). "Angiogenin reduces immune inflammation via inhibition of TANK-binding kinase 1 expression in human corneal fibroblast cells." <u>Mediators Inflamm</u> **2014**: 861435.

Letra, A., G. Ghaneh, M. Zhao, H. Ray, Jr., C. F. Francisconi, G. P. Garlet and R. M. Silva (2013). "MMP-7 and TIMP-1, new targets in predicting poor wound healing in apical periodontitis." J Endod 39(9): 1141-1146.

Li, A., S. Dubey, M. L. Varney, B. J. Dave and R. K. Singh (2003). "IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis." J Immunol 170(6): 3369-3376.

Li, H., L. Fredriksson, X. Li and U. Eriksson (2003). "PDGF-D is a potent transforming and angiogenic growth factor." Oncogene 22(10): 1501-1510.

Li, W. Y., S. S. Chong, E. Y. Huang and T. L. Tuan (2003). "Plasminogen activator/plasmin system: a major player in wound healing?" Wound Repair Regen 11(4): 239-247.

Lin, C., R. McGough, B. Aswad, J. A. Block and R. Terek (2004). "Hypoxia induces HIFlalpha and VEGF expression in chondrosarcoma cells and chondrocytes." J Orthop Res 22(6): 1175-1181.

Lin, N. and M. C. Simon (2016). "Hypoxia-inducible factors: key regulators of myeloid cells during inflammation." J Clin Invest 126(10): 3661-3671.

Lin, S., S. Wan, L. Sun, J. Hu, D. Fang, R. Zhao, S. Yuan and L. Zhang (2012). "Chemokine C-C motif receptor 5 and C-C motif ligand 5 promote cancer cell migration under hypoxia." Cancer Sci 103(5): 904-912.

Lin, X. Y., H. Wang and Y. Tan (2018). "[Role of Hepatocyte Growth Factor in Wound Repair]." Zhongguo Yi Xue Ke Xue Yuan Xue Bao 40(6): 822-826.

MacLauchlan, S. C., N. E. Calabro, Y. Huang, M. Krishna, T. Bancroft, T. Sharma, J. Yu, W. C. Sessa, F. Giordano and T. R. Kyriakides (2018). "HIF-1alpha represses the expression of the angiogenesis inhibitor thrombospondin-2." Matrix Biol 65: 45-58.

Lopez-Dee, Z., K. Pidcock and L. S. Gutierrez (2011). "Thrombospondin-1: multiple paths to inflammation." Mediators Inflamm 2011: 296069.

Maisonpierre, P. C., C. Suri, P. F. Jones, S. Bartunkova, S. J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T. H. Aldrich, N. Papadopoulos, T. J. Daly, S. Davis, T. N. Sato and G. D. Yancopoulos (1997). "Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis." Science 277(5322): 55-60.

Manetti, M., S. Guiducci, L. Ibba-Manneschi and M. Matucci-Cerinic (2011). "Impaired angiogenesis in systemic sclerosis: the emerging role of the antiangiogenic VEGF(165)b splice variant." Trends Cardiovasc Med 21(7): 204-210.

Manetti, M., S. Guiducci, E. Romano, C. Ceccarelli, S. Bellando-Randone, M. L. Conforti, L. Ibba-Manneschi and M. Matucci-Cerinic (2011). "Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis." Circ Res 109(3): e14-26.

Margolis, D. J., W. Bilker, J. Knauss, M. Baumgarten and B. L. Strom (2002). "The incidence and prevalence of pressure ulcers among elderly patients in general medical practice." Ann Epidemiol 12(5): 321-325.

Margolis, D. J., W. Bilker, J. Santanna and M. Baumgarten (2002). "Venous leg ulcer: incidence and prevalence in the elderly." J Am Acad Dermatol 46(3): 381-386.

Martin, D., R. Galisteo and J. S. Gutkind (2009). "CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex." J Biol Chem 284(10): 6038-6042.

Mast, B. A. and G. S. Schultz (1996). "Interactions of cytokines, growth factors, and proteases in acute and chronic wounds." Wound Repair Regen 4(4): 411-420.

McCarty, S. M., C. A. Cochrane, P. D. Clegg and S. L. Percival (2012). "The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing." Wound Repair Regen 20(2): 125-136.

Melero-Martin, J. M., M. E. De Obaldia, S. Y. Kang, Z. A. Khan, L. Yuan, P. Oettgen and J. Bischoff (2008). "Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells." Circ Res 103(2): 194-202.

Merfeld-Clauss, S., H. Lu, X. Wu, K. L. March and D. O. Traktuev (2018). "Hypoxiainduced activin A diminishes endothelial cell vasculogenic activity." J Cell Mol Med 22(1): 173-184.

Miethke, T., C. Wahl, K. Heeg, B. Echtenacher, P. H. Krammer and H. Wagner (1992). "T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor." J Exp Med 175(1): 91-98.

Minchenko, A., T. Bauer, S. Salceda and J. Caro (1994). "Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo." Lab Invest 71(3): 374-379.

Montrucchio, G., E. Lupia, E. Battaglia, G. Passerini, F. Bussolino, G. Emanuelli and G. Camussi (1994). "Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis." J Exp Med 180(1): 377-382.

Moreschi, D., Jr., D. J. Fagundes, L. Hernandes and E. F. Haapalainen (2008). "Effects of prostaglandin E(1) in the genesis of blood capillaries in the ischemic skeletal muscle of rats: ultrastructural analysis." Ann Vasc Surg 22(1): 121-126.

Morgan-Rowe, L., J. Nikitorowicz, X. Shiwen, A. Leask, J. Tsui, D. Abraham and R. Stratton (2011). "Thrombospondin 1 in hypoxia-conditioned media blocks the growth of human microvascular endothelial cells and is increased in systemic sclerosis tissues." Fibrogenesis Tissue Repair 4: 13.

Muller, Y. A., H. W. Christinger, B. A. Keyt and A. M. de Vos (1997). "The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding." Structure 5(10): 1325-1338.

Myokai, F., S. Takashiba, R. Lebo and S. Amar (1999). "A novel lipopolysaccharideinduced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment." Proc Natl Acad Sci U S A 96(8): 4518-4523.

Nicosia, R. F., S. V. Nicosia and M. Smith (1994). "Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro." Am J Pathol 145(5): 1023-1029.

Nishihira, J., Y. Koyama and Y. Mizue (1996). "Identification of macrophage migration inhibitory factor in human leukemia HL-60 cells and its induction by lipopolysaccharide." Biochem Mol Biol Int 40(5): 861-869.

Nishihira, J., Y. Koyama and Y. Mizue (1998). "Identification of macrophage migration inhibitory factor (MIF) in human vascular endothelial cells and its induction by lipopolysaccharide." Cytokine 10(3): 199-205.

Nissen, N. N., P. J. Polverini, A. E. Koch, M. V. Volin, R. L. Gamelli and L. A. DiPietro (1998). "Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing." Am J Pathol 152(6): 1445-1452.

Norrby, K. (2002). "Mast cells and angiogenesis." Apmis 110(5): 355-371.

Oehmichen, M. (1990). Die Wundheilung - Theorie und Praxis der Chronomorphologie von Verletzungen in der forensischen Pathologie, Springer Verlag.

Olszewska-Pazdrak, B., T. W. Hein, P. Olszewska and D. H. Carney (2009). "Chronic hypoxia attenuates VEGF signaling and angiogenic responses by downregulation of KDR in human endothelial cells." Am J Physiol Cell Physiol 296(5): C1162-1170.

Onesto, C., E. Berra, R. Grepin and G. Pages (2004). "Poly(A)-binding proteininteracting protein 2, a strong regulator of vascular endothelial growth factor mRNA." J Biol Chem 279(33): 34217-34226.

O'Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen and J. Folkman (1997). "Endostatin: an endogenous inhibitor of angiogenesis and tumor growth." Cell 88(2): 277-285.

Pagenstecher, A., A. K. Stalder, C. L. Kincaid, B. Volk and I. L. Campbell (2000). "Regulation of matrix metalloproteinases and their inhibitor genes in lipopolysaccharideinduced endotoxemia in mice." Am J Pathol 157(1): 197-210.

Pagès, G. and J. Pouysségur (2005). "Transcriptional regulation of the Vascular Endothelial Growth Factor gene–a concert of activating factors*." Cardiovascular Research 65(3): 564-573.

Peiris-Pages, M. (2012). "The role of VEGF 165b in pathophysiology." Cell Adh Migr 6(6): 561-568.

Pekala, P., M. Marlow, D. Heuvelman and D. Connolly (1990). "Regulation of hexose transport in aortic endothelial cells by vascular permeability factor and tumor necrosis factor-alpha, but not by insulin." J Biol Chem 265(30): 18051-18054.

Phillips, D. J., D. M. de Kretser and M. P. Hedger (2009). "Activin and related proteins in inflammation: not just interested bystanders." Cytokine Growth Factor Rev 20(2): 153-164.

Pichiule, P. and J. C. LaManna (2002). "Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia." J Appl Physiol (1985) 93(3): 1131-1139.

Pollet, I., Christy J. Opina, Carla Zimmerman, Kevin G. Leong, Fred Wong and A. Karsan (2003). "Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-B and c-Jun N-terminal kinase."

Providence, K. M., S. P. Higgins, A. Mullen, A. Battista, R. Samarakoon, C. E. Higgins, C. E. Wilkins-Port and P. J. Higgins (2008). "SERPINE1 (PAI-1) is deposited into keratinocyte migration "trails" and required for optimal monolayer wound repair." Arch Dermatol Res 300(6): 303-310.

Raica, M. and A. M. Cimpean (2010). "Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy." Pharmaceuticals (Basel) 3(3): 572-599.

Ramos, M. A., M. Kuzuya, T. Esaki, S. Miura, S. Satake, T. Asai, S. Kanda, T. Hayashi and A. Iguchi (1998). "Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions." Arterioscler Thromb Vasc Biol 18(7): 1188-1196.

Rayment, E. A., Z. Upton and G. K. Shooter (2008). "Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer." Br J Dermatol 158(5): 951-961.

Redlitz, A., G. Daum and E. H. Sage (1999). "Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells." J Vasc Res 36(1): 28-34.

Ren, W., Z. Wang, F. Hua and L. Zhu (2015). "Plasminogen activator inhibitor-1 regulates LPS-induced TLR4/MD-2 pathway activation and inflammation in alveolar macrophages." Inflammation 38(1): 384-393.

Ridiandries, A., J. T. M. Tan and C. A. Bursill (2018). "The Role of Chemokines in Wound Healing." Int J Mol Sci 19(10).

Rittirsch, D., M. A. Flierl, D. E. Day, B. A. Nadeau, S. R. McGuire, L. M. Hoesel, K. Ipaktchi, F. S. Zetoune, J. V. Sarma, L. Leng, M. S. Huber-Lang, T. A. Neff,

R. Bucala and P. A. Ward (2008). "Acute lung injury induced by lipopolysaccharide is independent of complement activation." J Immunol 180(11): 7664-7672.

Roberts, W. G. and G. E. Palade (1995). "Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor." J Cell Sci 108 (Pt 6): 2369-2379.

Robson, M. C. (1997). "The role of growth factors in the healing of chronic wounds." Wound Repair Regen 5(1): 12-17.

Rodriguez, D., C. J. Morrison and C. M. Overall (2010). "Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics." Biochim Biophys Acta 1803(1): 39-54.

Rosenberger, P., J. M. Schwab, V. Mirakaj, E. Masekowsky, A. Mager, J. C. Morote-Garcia, K. Unertl and H. K. Eltzschig (2009). "Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia." Nat Immunol 10(2): 195-202.

Rossol, M., H. Heine, U. Meusch, D. Quandt, C. Klein, M. J. Sweet and S. Hauschildt (2011). "LPS-induced cytokine production in human monocytes and macrophages." Crit Rev Immunol 31(5): 379-446.

Saharinen, P., V. M. Leppanen and K. Alitalo (2017). "SnapShot: Angiopoietins and Their Functions." Cell 171(3): 724-724.e721.

Salajegheh, A. (2016). Angiotropin. Angiogenesis in Health, Disease and Malignancy. Cham, Springer International Publishing: 29-32, 61-68, 103-109, 159-168, 181-188, 381-386

Sankar, S., N. Mahooti-Brooks, L. Bensen, T. L. McCarthy, M. Centrella and J. A. Madri (1996). "Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis." J Clin Invest **97**(6): 1436-1446.

Sato, N., H. Nariuchi, N. Tsuruoka, T. Nishihara, J. G. Beitz, P. Calabresi and A. R. Frackelton, Jr. (1990). "Actions of TNF and IFN-gamma on angiogenesis in vitro." J Invest Dermatol 95(6 Suppl): 85s-89s.

Schäffer, M. and H.-D. Becker (1999). "Immunregulation der Wundheilung." Der Chirurg 70(8): 897-908.

Schreml, S., R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler and P. Babilas (2010). "Oxygen in acute and chronic wound healing." Br J Dermatol 163(2): 257-268.

Schultz, G., T. Bjarnsholt, G. A. James, D. J. Leaper, A. J. McBain, M. Malone, P. Stoodley, T. Swanson, M. Tachi and R. D. Wolcott (2017). "Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds." Wound Repair Regen 25(5): 744-757.

Seaton, M., A. Hocking and N. S. Gibran (2015). "Porcine models of cutaneous wound healing." Ilar j 56(1): 127-138.

Semenza, G. L. (2010). "Vascular responses to hypoxia and ischemia." Arterioscler Thromb Vasc Biol 30(4): 648-652.

Sen, C. K. (2009). "Wound healing essentials: let there be oxygen." Wound Repair Regen 17(1): 1-18.

Shaik-Dasthagirisaheb, Y. B., G. Varvara, G. Murmura, A. Saggini, G. Potalivo, A. Caraffa, P. Antinolfi, S. Tete, D. Tripodi, F. Conti, E. Cianchetti, E. Toniato, M. Rosati, P. Conti, L. Speranza, A. Pantalone, R. Saggini, T. C. Theoharides and F. Pandolfi (2013). "Vascular endothelial growth factor (VEGF), mast cells and inflammation." Int J Immunopathol Pharmacol 26(2): 327-335.

Sherry, B., M. Espinoza, K. R. Manogue and A. Cerami (1998). "Induction of the chemokine beta peptides, MIP-1 alpha and MIP-1 beta, by lipopolysaccharide is differentially regulated by immunomodulatory cytokines gamma-IFN, IL-10, IL-4, and TGF-beta." Mol Med 4(10): 648-657.

Shibuya, M. (2006). "Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis." J Biochem Mol Biol 39(5): 469-478.

Shigematsu, S., K. Yamauchi, K. Nakajima, S. Iijima, T. Aizawa and K. Hashizume (1999). "IGF-1 regulates migration and angiogenesis of human endothelial cells." Endocr J 46 Suppl: S59-62.

Shih, S. C. and K. P. Claffey (1999). "Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L." J Biol Chem 274(3): 1359-1365.

Shimokomaki, M., V. C. Duance and A. J. Bailey (1981). "Identification of two further collagenous fractions from articular cartilage." Biosci Rep 1(7): 561-570.

Shin, M. R., S. K. Kang, Y. S. Kim, S. Y. Lee, S. C. Hong and E. C. Kim (2015). "TNFalpha and LPS activate angiogenesis via VEGF and SIRT1 signalling in human dental pulp cells." Int Endod J 48(7): 705-716.

Shinkaruk, S., M. Bayle, G. Lain and G. Deleris (2003). "Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy." Curr Med Chem Anticancer Agents 3(2): 95-117.

Shoshan, S. (1981). "Wound healing." Int Rev Connect Tissue Res 9: 1-26.

Shweiki, D., A. Itin, D. Soffer and E. Keshet (1992). "Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis." Nature 359(6398): 843-845.

Simone, T. M., C. E. Higgins, R. P. Czekay, B. K. Law, S. P. Higgins, J. Archambeault, S. M. Kutz and P. J. Higgins (2014). "SERPINE1: A Molecular Switch in the Proliferation-Migration Dichotomy in Wound-"Activated" Keratinocytes." Adv Wound Care (New Rochelle) 3(3): 281-290.

Singer, A. J. and R. A. Clark (1999). "Cutaneous wound healing." N Engl J Med 341(10): 738-746.

Skurk, T., I. Mack, K. Kempf, H. Kolb, H. Hauner and C. Herder (2009). "Expression and secretion of RANTES (CCL5) in human adipocytes in response to immunological stimuli and hypoxia." Horm Metab Res 41(3): 183-189.

Sondell, M., G. Lundborg and M. Kanje (1999). "Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system." J Neurosci 19(14): 5731-5740.

Sozzani, S. and T. Musso (2011). "The yin and yang of Activin A." <u>Blood</u> **117**(19): 5013-5015.

Stojadinovic, A., J. W. Carlson, G. S. Schultz, T. A. Davis and E. A. Elster (2008). "Topical advances in wound care." Gynecol Oncol 111(2 Suppl): S70-80.

Streit, M. und Mayer, D. (2009). "Infektionen chronischer Wunden." Zeitschrift für Wundheilung(3): 160-176.

Streit, M., P. Velasco, L. Riccardi, L. Spencer, L. F. Brown, L. Janes, B. Lange-Asschenfeldt, K. Yano, T. Hawighorst, L. Iruela-Arispe and M. Detmar (2000). "Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice." Embo j 19(13): 3272-3282.

Stupack, D. G. and D. A. Cheresh (2004). "Integrins and angiogenesis." Curr Top Dev Biol 64: 207-238.

Suleman, L. (2016). "Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target?" Adv Wound Care (New Rochelle) 5(10): 455-463.

Sulyok, S., M. Wankell, C. Alzheimer and S. Werner (2004). "Activin: an important regulator of wound repair, fibrosis, and neuroprotection." Mol Cell Endocrinol 225(1-2): 127-132.

Takano, S., E. Ishikawa, M. Matsuda, T. Yamamoto and A. Matsumura (2014). "Interferon-beta inhibits glioma angiogenesis through downregulation of vascular endothelial growth factor and upregulation of interferon inducible protein 10." Int J Oncol 45(5): 1837-1846.

Tamm, M., M. Bihl, O. Eickelberg, P. Stulz, A. P. Perruchoud and M. Roth (1998). "Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by plateletactivating factor and platelet-derived growth factor in primary human lung cells." Am J Respir Cell Mol Biol 19(4): 653-661.

Tamura, K., T. Sakurai and H. Kogo (2006). "Relationship between prostaglandin E2 and vascular endothelial growth factor (VEGF) in angiogenesis in human vascular endothelial cells." Vascul Pharmacol 44(6): 411-416.

Thittamaranahalli Muguregowda Honnegowda, Pramod Kumar, Echalasara Govindarama Padmanabha Udupa, Sudesh Kumar, Udaya Kumar and P. Rao (2015). "Role of angiogenesis and angiogenic factors in acute and chronic wound healing."

Tracey, K. J., H. Wei, K. R. Manogue, Y. Fong, D. G. Hesse, H. T. Nguyen, G. C. Kuo, B. Beutler, R. S. Cotran, A. Cerami and et al. (1988). "Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation." J Exp Med 167(3): 1211-1227.

Vacca, A., D. Ribatti, M. Iurlaro, A. Albini, M. Minischetti, F. Bussolino, A. Pellegrino, R. Ria, M. Rusnati, M. Presta, V. Vincenti, M. G. Persico and F. Dammacco (1998). "Human lymphoblastoid cells produce extracellular matrix-degrading enzymes and induce endothelial cell proliferation, migration, morphogenesis, and angiogenesis." Int J Clin Lab Res 28(1): 55-68.

Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau and A. Nagy (1996). "Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele." Nature 380(6573): 435-439.

van der Bruggen, T., S. Nijenhuis, E. van Raaij, J. Verhoef and B. S. van Asbeck (1999). "Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway." Infect Immun 67(8): 3824-3829.

Velasco, P., R. Huegel, J. Brasch, J. M. Schroder, M. Weichenthal, E. Stockfleth, T. Schwarz, J. Lawler, M. Detmar and B. Lange-Asschenfeldt (2009). "The angiogenesis inhibitor thrombospondin-1 inhibits acute cutaneous hypersensitivity reactions." J Invest Dermatol 129(8): 2022-2030.

Vries, M. H., A. Wagenaar, S. E. Verbruggen, D. G. Molin, I. Dijkgraaf, T. H. Hackeng and M. J. Post (2015). "CXCL1 promotes arteriogenesis through enhanced monocyte recruitment into the peri-collateral space." Angiogenesis 18(2): 163-171.

Wagener, C. and O. Müller (2009). Molekulare Onkologie: Entstehung, Progression, klinische Aspekte, Thieme.

Wang, G. L. and G. L. Semenza (1993). "General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia." Proc Natl Acad Sci U S A 90(9): 4304-4308.

Wang, T., Y. Wei, L. Tian, H. Song, Y. Ma, Q. Yao, M. Feng, Y. Wang, M. Gao and Y. Xue (2016). "C-C motif chemokine ligand 5 (CCL5) levels in gastric cancer patient sera predict occult peritoneal metastasis and a poorer prognosis." Int J Surg 32: 136-142.

Watari, M., H. Watari, T. Fujimoto, H. Yamada, J. Nishihira, J. F. Strauss and S. Fujimoto (2003). "Lipopolysaccharide induces interleukin-8 production by human cervical smooth muscle cells." J Soc Gynecol Investig 10(2): 110-117.

Woo, C. H., J. H. Lim and J. H. Kim (2004). "Lipopolysaccharide induces matrix metalloproteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase-activator protein-1 pathway in Raw 264.7 cells." J Immunol 173(11): 6973-6980.

Wu, J., T. L. Strawn, M. Luo, L. Wang, R. Li, M. Ren, J. Xia, Z. Zhang, W. Ma, T. Luo, D. A. Lawrence and W. P. Fay (2015). "Plasminogen activator inhibitor-1 inhibits angiogenic signaling by uncoupling vascular endothelial growth factor receptor-2-alphaVbeta3 integrin cross talk." Arterioscler Thromb Vasc Biol 35(1): 111-120.

Wu, M. H., C. Y. Huang, J. A. Lin, S. W. Wang, C. Y. Peng, H. C. Cheng and C. H. Tang (2014). "Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells." Oncogene 33(13): 1725-1735.

Xu, H., L. N. Liew, I. C. Kuo, C. H. Huang, D. L. Goh and K. Y. Chua (2008). "The modulatory effects of lipopolysaccharide-stimulated B cells on differential T-cell polarization." Immunology 125(2): 218-228.

Yamamoto, Y., Y. Maeshima, H. Kitayama, S. Kitamura, Y. Takazawa, H. Sugiyama, Y. Yamasaki and H. Makino (2004). "Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy." Diabetes 53(7): 1831-1840.

Yamashita, N., T. Nakajima, H. Takahashi, H. Kaneoka, Y. Mizushima and T. Sakane (1993). "Effects of activin A on IgE synthesis and cytokine production by human peripheral mononuclear cells." Clin Exp Immunol 94(1): 214-219.

Yang, H., C. Hu, F. Li, L. Liang and L. Liu (2013). "Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation." IUBMB Life 65(6): 526-532.

Yao, J., N. Mackman, T. S. Edgington and S. T. Fan (1997). "Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors." J Biol Chem 272(28): 17795-17801.

Zhao, R., H. Liang, E. Clarke, C. Jackson and M. Xue (2016). "Inflammation in Chronic Wounds." Int J Mol Sci 17(12).

9. Anhang:

Anhang zu 5.1.	Proteome Profiler	Human Ar	ngiogenesi	is Array

	<u>.</u>	Proteome Profiler Human Angiogenesis Array											
					4 Minuten				5 Minuten				6 Minuten
		21% O ₂ 5d mit LPS	21% O ₂ 5d ohne LPS	3% O ₂ 5d mit LPS	3% O ₂ 10d mit LPS	21% O ₂ 5d mit LPS	21% O ₂ 5d ohne LPS	3% O ₂ 5d mit LPS	3% O ₂ 10d mit LPS	21% O ₂ 5d mit LPS	21% O ₂ 5d ohne LPS	3% O ₂ 5d mit LPS	3% O ₂ 10d mit LPS
1	backroud	68,25	74,25	83,50	82,00	102,75	101,00	98,50	87,00	62,50	84,00	86,25	92,75
3	1 – 2	33,92	37,58	34,67 48,83	50.17	52,92 69.83	58,00 63.00	37,50 61.00	55.42	35,00 27,50	41,42	48.50	60.58
		-)	,	.,	, .				,		,	.,	
4	Activin A	-	70,50	76,00	73,00	98,50	97,50	93,50	80,50	-	82,50	84,00	-
5	Activin A factor average (av.)	-	68,00	75,00	76,50	93,50	87,50 92.50	91,00	75,50	-	76,00	81,00	-
6	1 - 5	-	5,00	8,00	7,25	6,75	8,50	6,25	9,00	-	4,75	3,75	-
7	6 // 3	-	0,14	0,16	0,14	0,10	0,13	0,10	0,16	-	0,11	0,08	-
4	Angiogenin	-	68.50	-	74.00	98.00	92.50	-	82.50	61.00	82.00	-	89.00
	Angiogenin	-	73,50	-	73,50	102,50	95,50	-	82,00	60,50	81,50	-	90,00
5	factor av.	-	71,00	-	73,75	100,25	94,00	-	82,25	60,75	81,75	-	89,50
7	6 // 3	-	0,09	-	0,16	0,04	0,11	-	4,73 0,09	0,06	0,05	-	0,05
							^						
4	Angiostatin	58,00	68,00	73,50	66,50 68,50	89,50	89,50	79,00	73,50	52,50	72,00	73,00	78,00
5	factor av.	57,50	67,75	76,75	67,50	89,00	87,75	81,25	71,50	55,25	69,25	72,25	70,30
6	1-5	10,75	6,50	6,75	14,50	13,50	13,25	17,25	15,50	7,25	14,75	14,00	15,50
7	6 // 3	0,31	0,18	0,14	0,29	0,19	0,21	0,28	0,28	0,26	0,35	0,29	0,26
4	Endothelin-1	61,00	66,00	77,00	67,00	80,50	88,50	78,50	70,50	53,00	70,00	73,50	78,50
	Endothelin-1	54,50	60,50	71,50	65,00	85,50	85,00	82,00	73,50	55,00	67,00	70,00	72,50
5	factor av.	57,75	63,25	9.25	66,00 16.00	83,00 19.75	86,75	80,25	72,00	54,00 8 50	68,50 15 50	71,75	75,50
7	6 // 3	0,31	0,30	0,19	0,32	0,28	0,23	0,30	0,27	0,31	0,36	0,30	0,28
4	IL-8 IL-8	25,00	66,50 72.00	37,00	27,50	31,50 29.00	91,50 88 50	37,50	31,00	34,00	69,50 68.00	32,00	28,00
5	factor av.	30,50	69,25	35,25	30,00	30,25	90,00	35,50	30,75	34,75	68,75	32,25	30,50
6	1-5	37,75	5,00	48,25	52,00	72,50	11,00	63,00	56,25	27,75	15,25	54,00	62,25
/	6 // 3	1,10	0,14	0,99	1,04	1,04	0,17	1,03	1,02	1,01	0,36	1,11	1,03
4	MMP-9	-	-	78,50	68,50	99,00	-	94,00	81,00	64,00	-	-	87,50
5	MMP-9 factor av	-	-	77,50	69,50	97,50	-	94,50	80,50	61,00	-	-	85,50 86,50
6	1-5	-	-	5,50	13,00	4,50	-	4,25	6,25	02,50	-	-	6,25
7	6 // 3	-	-	0,11	0,26	0,06	-	0,07	0,11	0,00	-	-	0,10
4	Persenhin	-	-	-	-	86.50	-	91.00	-	52.50	-	77.00	-
· ·	Persephin	-	-	-	-	91,50	-	86,00	-	57,00	-	78,50	-
5	factor av.	-	-	-	-	89,00	-	88,50	-	54,75	-	77,75	-
6	1-5	-	-	-	-	0.20	-	10,00	-	0.28	-	8,50	-
,	0110					0,20		0,10		0,20		0,10	
4	Plated Factor 4	31,00	34,00	35,00	31,50	31,00	36,00	38,00	33,50	34,50	37,00	34,50	32,50
5	factor av.	31,00	30,50	33.00	26,00	33,30	36,50	35,50	30,50	30,00	40,50	31,00	31,50
6	1 - 5	37,25	42,00	50,50	53,25	70,50	64,50	61,75	55,00	30,25	45,25	53,50	60,75
7	6 // 3	1,08	1,15	1,03	1,06	1,01	1,02	1,01	0,99	1,10	1,06	1,10	1,00
4	Serpin El	-	-	82,00	73,00	97,00	-	-	87,00	-	-	-	-
5	Serpin El	-	-	82,00	71,00	105,00	-	-	85,00	-	-	-	-
6	1 – 5	-	-	1,50	10,00	1,75	-	-	1,00	-	-	-	-
7	6 // 3	-	-	0,03	0,20	0,03	-	-	0,02	-	-	-	-
4	Sarnin F1	53 50		81.00	72.50	00.00	102 50	94.00	82.00	59.00	77.00		
+	Serpin F1	60,00	-	80,50	74,00	90,00	97,00	103,50	82,50	61,00	81,50	-	-
5	factor av.	56,75	-	80,75	73,25	92,25	99,75	98,75	82,25	60,00	79,25	-	-
6	1-5 6//3	0.33	-	2,75	8,75	10,50	1,25	-0,25	4,75	2,50	4,75	-	-
,		0,00		0,00	0,17	0,15	0,02	0,00	0,02	0,07	0,11		-
4	TIMP-1	-	-	-	66,00	-	-	-	70,50	-	-	-	80,50
5	factor av.	-	-	-	66.00 66.00	-	-	-	73.25	-	-	-	/5,50 78.00
6	1-5	-	-	-	16,00	-	-	-	13,75	-	-	-	14,75
7	6 // 3	-	-	-	0,32	-	-	-	0,25	-	-	-	0,24
4	TSP-1	52,50	67,00	72,00	66,00	82,00	94,00	87,50	68,00	54,50	73,00	73,00	69,00
	TSP-1	52,00	62,50	70,00	68,00	76,00	97,00	78,50	71,50	50,50	80,00	70,50	74,50
5	factor av.	52,25	64,75	71,00	67,00	79,00	95,50	83,00	69,75	52,50	76,50	71,75	71,75
7	6 // 3	0,47	0,26	0,26	0,30	0,34	0,09	0,25	0,31	0,36	0,18	0,30	0,35

Tabelle A1: Ergebnisübersicht Proteome Profiler Human Angiogenesis Array

		21% O ₂ 5d mit LPS	21% O ₂ 5d kein LPS	3% O ₂ 5d mit LPS	3% O ₂ 10d mit LPS		21% O ₂ 5d mit LPS	21% O ₂ 5d kein LPS	3% O ₂ 5d mit LPS	3% O ₂ 10d mit LPS
Aktivin A										
	MIN	0,00	0,11	0,08	0,00		0,00	0,11	0,08	0,00
	1. Q	0,00	0,12	0,09	0,07		0,00	0,01	0,01	0,07
	Median	0,00	0,13	0,10	0,14		0,00	0,02	0,03	0,14
	2. Q	0,05	0,14	0,13	0,15		0,05	0,02	0,06	0,15
	Max	0,10	0,14	0,16	0,16		0,10	0,02	0,09	0,16
Angiogenin										
	MIN	0,00	0,05	0,00	0,05		0,00	0,05	0,00	0,05
	1. Q	0,02	0,07	0,00	0,07		0,02	0,02	0,00	0,02
	Median	0,04	0,09	0,00	0,09		0,04	0,04	0,00	0,03
	2. Q	0,05	0,10	0,00	0,13		0,05	0,05	0,00	0,07
	Max	0,06	0,11	0,00	0,16		0,06	0,06	0,00	0,11
Angiostatin				-						-
	MIN	0,19	0,18	0,14	0,26		0,19	0,18	0,14	0,26
	1. Q	0,23	0,19	0,21	0,27		0,04	0,02	0,07	0,01
	Median	0,26	0,21	0,28	0,28		0,07	0,03	0,14	0,02
	2. Q	0,29	0,28	0,29	0,28		0,10	0,10	0,15	0,03
	Max	0,31	0,35	0,29	0,29		0,12	0,17	0,15	0,03
Endothelin-1										
1	MIN	0,28	0,23	0,19	0,27		0,28	0,23	0,19	0,27
1	1.Q	0,29	0,26	0,24	0,28		0,01	0,04	0,05	0,01
	Median	0,31	0,30	0,30	0,28		0,02	0,07	0,11	0,01
1	2.Q	0,31	0,33	0,30	0,30		0,02	0,11	0,11	0,03
И. 0	Max	0,31	0,36	0,30	0,32		0,03	0,14	0,11	0,05
IL-8	MDV	1.01	0.14	0.00	1.02		1.01	0.14	0.00	1.02
	MIN	1,01	0,14	0,99	1,02		1,01	0,14	0,99	1,02
	1.0	1,03	0,16	1,01	1,03		0,01	0,02	0,02	0,00
	Median	1,04	0,17	1,03	1,03		0,03	0,03	0,04	0,01
	2.Q	1,07	0,27	1,07	1,04		0,06	0,13	0,08	0,02
MADO	Max	1,10	0,36	1,11	1,04		0,09	0,22	0,12	0,02
MMP-9	MIN	0.00	0.00	0.00	0.10		0.00	0.00	0.00	0.10
	MIN	0,00	0,00	0,00	0,10		0,00	0,00	0,00	0,10
	1.Q	0,00	0,00	0,03	0,11		0,00	0,00	0,03	0,00
	2 O	0,00	0,00	0,07	0,11		0,00	0,00	0,07	0,01
	2. Q	0,05	0,00	0,09	0,19		0,05	0,00	0,09	0,08
Darcanhin	IVIAX	0,00	0,00	0,11	0,20		0,00	0,00	0,11	0,10
reisephili	MIN	0.20	0.00	0.16	0.00		0.20	0.00	0.16	0.00
	1.0	0,20	0,00	0,10	0,00		0,20	0,00	0,10	0,00
	Median	0,22	0,00	0.17	0,00		0,02	0,00	0,00	0,00
	2.0	0,24	0,00	0,17	0,00		0,04	0,00	0,01	0,00
	Max	0.28	0.00	0.18	0.00		0.08	0.00	0.01	0.00
Plated Faktor 4	17107	0,20	0,00	0,10	0,00		0,00	0,00	0,01	0,00
Thated Taktor T	MIN	1.01	1.02	1.01	0.99		1.01	1.02	1.01	0.99
	1.0	1.05	1.04	1.02	1.00		0.04	0.02	0.01	0.01
	Median	1,05	1,01	1.03	1,00		0.08	0.04	0.02	0.01
	2.0	1.09	1 10	1.07	1.03		0.08	0.08	0.06	0.04
	Max	1.10	1.15	1.10	1.06		0.09	0.12	0.09	0.07
Serpin E1		, .			1					
	MIN	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00
1	1. Q	0,00	0,00	0,00	0,01		0,00	0,00	0,00	0,01
	Median	0,00	0,00	0,00	0,02		0,00	0,00	0,00	0,02
	2. Q	0,01	0,00	0,02	0,11		0,01	0,00	0,02	0,11
	Max	0,03	0,00	0,03	0,20		0,03	0,00	0,03	0,20
Serpin F1										
	MIN	0,09	0,00	0,00	0,00		0,09	0,00	0,00	0,00
	1. Q	0,12	0,01	0,00	0,04		0,03	0,01	0,00	0,04
	Median	0,15	0,02	0,00	0,09		0,06	0,02	0,00	0,09
	2. Q	0,24	0,07	0,03	0,13		0,15	0,07	0,03	0,13
	Max	0,33	0,11	0,06	0,17		0,24	0,11	0,06	0,17
TIMP-1										
	MIN	0,00	0,00	0,00	0,24		0,00	0,00	0,00	0,24
	1. Q	0,00	0,00	0,00	0,25		0,00	0,00	0,00	0,00
1	Median	0,00	0,00	0,00	0,25		0,00	0,00	0,00	0,00
	2. Q	0,00	0,00	0,00	0,28	_	0,00	0,00	0,00	0,04
	Max	0,00	0,00	0,00	0,32		0,00	0,00	0,00	0,08
TSP-1										
	MIN	0,34	0,09	0,25	0,30		0,34	0,09	0,25	0,30
	1. Q	0,35	0,14	0,26	0,31	_	0,01	0,05	0,01	0,01
	Median	0,36	0,18	0,26	0,31		0,02	0,09	0,01	0,01
1	2. Q	0,42	0,22	0,28	0,33		0,08	0,13	0,03	0,03
	Max	0,47	0.26	0,30	0.35		0,13	0,17	0,05	0.05

 Tabelle A2: Berechnungen der Minimum-/Maximumwerte, des Medians und des 1. und 2. Quartils zur Erstellung der Box-Plots des Proteome Profiler Human Angiogenesis Array

					Prote	ome Profiler H	uman Cytokine	Array					
					5 Minuten				6 Minuten				7 Minuten
		21% O ₂	21% O ₂	3% O ₂	3% O ₂	21% O ₂	21% O ₂	3% O ₂	3% O ₂	21% O ₂	21% O ₂	3% O ₂	3% O ₂
		5d mit	5d ohne	5d mit	10d mit	5d mit	5d ohne	5d mit	10d mit	5d mit	5d ohne	5d mit	10d mit
1	backroud	205,00	201,75	204,25	202,75	153,75	161,25	163,25	161,25	200,75	204,75	203,25	198,00
2	controls	43,75	48,42	45,67	45,33	34,50	38,67	38,00	38,00	46,42	53,75	49,25	41,83
3	1 – 2	161,25	153,33	158,58	157,42	119,25	122,58	125,25	123,25	154,33	151,00	154,00	156,17
4	C5/C5a	-	-	192.00	179.50	-	-	128.00	113.50	-	-	194.00	180.00
	C5/C5a	-	-	195,00	180,00	-	-	129,00	108,00	-	-	192,00	176,50
5	factor av.	-	-	193,50	179,75	-	-	128,50	110,75	-	-	193,00	178,25
7	6//3	-	-	0.07	23,00	-	-	0.28	50,50 0.41	-	-	0.07	0.13
					*,==			0,-0	•,•=				*,
4	GROa	89,00	-	88,00	58,50	44,00	-	45,00	39,50	90,00	-	92,00	61,50
5	GROa factor av	84,50	-	86,50	58,50	42,50	-	48,50	31,00	92,50	-	91,50	54,50
6	1-5	118,25	-	117,00	144,25	110,50	-	116,50	126,00	109,50	-	111,50	140,00
7	6 // 3	0,73	-	0,74	0,92	0,93	-	0,93	1,02	0,71	-	0,72	0,90
4	CD54	184 50	188 50	190.00	193 50	128 50	129.00	100.50	131.50	186 50	191.00	193 50	185 50
-	CD54	188,50	194,00	189,50	190,00	135,00	132,00	101,00	134,50	191,00	188,00	184,50	185,50
5	factor av.	186,50	191,25	189,75	191,75	131,75	130,50	100,75	133,00	188,75	189,50	189,00	185,00
6	1-5	18,50	10,50	14,50	11,00	22,00	30,75	62,50	28,25	12,00	15,25	14,25	13,00
/	0110	0,11	0,07	0,09	0,07	0,10	0,23	0,50	0,23	0,00	0,10	0,09	0,08
4	IL-1ß	195,00	-	151,50	133,00	141,00	-	86,50	35,50	-	-	148,50	134,00
5	IL-1B factor av	199,50	-	155,00	138,00	137,50	-	86,00	41,00	-	-	152,50	137,50
6	1 - 5	7,75	-	51,00	67,25	14,50	-	77,00	123,00	-	-	52,75	62,25
7	6 // 3	0,05	-	0,32	0,43	0,12	-	0,61	1,00	-	-	0,34	0,40
4	II las	02.50	106.50	52.50	46.00	5(50	1.42.50	46.00	112.00	106.50	100.50	56.50	46.50
4	IL-Ira IL-Ira	93,50	196,50	50,50	48,00	63,00	145,50	46,00	109,50	110,00	190,30	49,50	46,30
5	factor av.	96,00	193,50	51,50	47,00	59,75	139,50	42,50	110,75	108,25	193,75	53,00	46,75
6	1-5	109,00	8,25	152,75	155,75	94,00	21,75	120,75	50,50	92,50	11,00	150,25	151,25
/	0 // 3	0,08	0,05	0,90	0,99	0,79	0,18	0,90	0,41	0,00	0,07	0,98	0,97
4	IL-6	192,50	-	165,50	162,00	130,50	-	101,00	84,00	192,50	-	169,00	160,50
6	IL-6	193,00	-	168,50	158,50	140,00	-	99,00	87,00	197,00	-	165,50	156,00
5	1 = 5	192,75	-	37.25	42.50	135,25	-	63.25	85,50	194,75 6.00	-	167,25 36.00	158,25 39,75
7	6 // 3	0,08	-	0,23	0,27	0,16	-	0,50	0,61	0,04	-	0,23	0,25
<u> </u>		41.50	155.50	47.00	20.50	22.00	100.50	41.50	25.00	27.50	161.00	16.00	26.00
4	IL-8 II-8	41,50	157,50	47,00	39,50	32,00	100,50	41,50	37,00	37,50	161,00	46,00	36,00
5	factor av.	40,25	157,00	43,75	38,50	33,50	98,00	38,25	36,25	39,00	162,00	46,50	36,00
6	1-5	164,75	44,75	160,50	164,25	120,25	63,25	125,00	125,00	161,75	42,75	156,75	162,00
/	6 // 3	1,02	0,29	1,01	1,04	1,01	0,52	1,00	1,01	1,05	0,28	1,02	1,04
4	IL-16	-	-	-	193,00	-	-	-	140,50	-	-	-	194,50
6	IL-16	-	-	-	197,00	-	-	-	147,50	-	-	-	197,50
6	1 - 5	-	-	-	7,75	-	-	-	144,00	-	-	-	196,00
7	6 // 3	-	-	-	0,05	-	-	-	0,14	-	-	-	0,01
4	MIE	175.50	171.50	146 50	50.00	112.50	112.50	77.50	27.00	100 50	172.50	120.50	60.00
4	MIF	1/5,50	1/1,50	146,50	58,00	112,50	113,50	74 50	37,00 40.50	180,50	1/3,50	139,50	59.50
5	factor av.	176,50	174,75	142,75	55,25	113,50	110,00	76,00	38,75	182,50	176,25	141,75	63,75
6	1-5	28,50	27,00	61,50	147,50	40,25	51,25	87,25	122,50	18,25	28,50	61,50	134,25
/	u // J	0,18	0,18	0,39	0,94	0,34	0,42	0,70	0,99	0,12	0,19	0,40	0,86
4	MIP 1a	-	-	198,00	-	-	-	141,50	-	-	-	196,50	-
-	MIP 1a	-	-	193,50	-	-	-	137,50	-	-	-	197,00	-
5	1 - 5	-	-	195,75 8.50	-	-	-	23.75	-	-	-	196,75 6.50	-
7	6 // 3	-	-	0,05	-	-	-	0,19	-	-	-	0,04	-
4	Sornin El	125.00	161.50	145 50	120.00	75.00	00.00	96 50	00.50	120.00	167.50	154.50	146.00
4	Serpin El Serpin El	125,00	161,50	145,50	139,00	79.00	99,00	85.00	82,50	138,00	167,50	134,50	146,00
5	factor av.	128,75	162,50	139,75	135,75	77,00	98,75	85,75	84,00	139,25	166,25	145,50	142,00
6	1-5	76,25	39,25	64,50	67,00	76,75	62,50	77,50	77,25	61,50	38,50	57,75	56,00
7	0// 3	0,47	0,26	0,41	0,43	0,64	0,51	0,62	0,63	0,40	0,25	0,38	0,36
4	CCL5	127,50		71,50	147,00	60,00	-	54,50	83,50	118,00	-	85,50	147,50
	CCL5	110,50	-	73,00	137,50	56,50	-	49,00	71,50	122,00	-	87,00	136,50
5	1 – 5	119,00	-	72,25	142,25	58,25 95,50	-	51,75 111.50	77,50 83.75	120,00	-	86,25	142,00
7	6 // 3	0,53		0,83	0,38	0,80		0,89	0,68	0,52	-	0,76	0,36

Anhang zu 5.2. Proteome Profiler Human Cytokine Array

Tabelle A3: Ergebnisübersicht Proteome Profiler Human Cytokine Array

		21% O2 5d mit LPS	21% O2 5d kein LPS	3% O2 5d mit LPS	3% O ₂ 10d mit LPS		21% O2 5d mit LPS	21% O ₂ 5d kein LPS	3% O ₂ 5d mit LPS	3% O2 10d mit LPS
C5/C5a										
	MIN	0,00	0,00	0,07	0,13		0,00	0,00	0,07	0,13
	1 Q	0,00	0,00	0,07	0,14		0,00	0,00	0,00	0,01
	Median	0,00	0,00	0,07	0,15		0,00	0,00	0,00	0,02
	3 Q	0,00	0,00	0,17	0,28		0,00	0,00	0,11	0,15
CRO	Maximum	0,00	0,00	0,28	0,41		0,00	0,00	0,21	0,28
GRUa	MIN	0.71	0.00	0.72	0.00		0.71	0.00	0.72	0.00
		0,71	0,00	0,72	0,90		0,71	0,00	0,72	0,90
	Median	0,72	0,00	0,75	0,91		0,01	0,00	0,01	0,01
	3.0	0.83	0.00	0.83	0,92		0.12	0,00	0.11	0,02
	Maximum	0.93	0.00	0.93	1.02		0.22	0.00	0.21	0.13
CD54										
	MIN	0,08	0,07	0,09	0,07		0,08	0,07	0,09	0,07
	1 Q	0,10	0,08	0,09	0,08		0,02	0,02	0,00	0,01
	Median	0,11	0,10	0,09	0,08		0,04	0,03	0,00	0,01
	3 Q	0,15	0,18	0,30	0,16		0,07	0,11	0,20	0,09
	Maximum	0,18	0,25	0,50	0,23		0,11	0,18	0,41	0,16
IL-1B	MD	0.00	0.00	0.32	0.40	1	0.00	0.00	0.22	0.40
	MIN	0,00	0,00	0,32	0,40	-	0,00	0,00	0,32	0,40
	Median	0,02	0,00	0,33	0,41		0,02	0,00	0,01	0,01
	3.0	0.05	0,00	0.48	0,43		0.05	0,00	0.02	0,03
	Maximum	0.12	0.00	0.61	1.00	1	0.12	0.00	0.29	0.60
IL-1ra		•,-=	.,	,			•,•2			
	MIN	0,60	0,05	0,96	0,41		0,60	0,05	0,96	0,41
	1 Q	0,64	0,06	0,96	0,69		0,04	0,01	0,00	0,28
	Median	0,68	0,07	0,96	0,97		0,08	0,02	0,00	0,56
	3 Q	0,73	0,13	0,97	0,98		0,13	0,07	0,01	0,57
	Maximum	0,79	0,18	0,98	0,99		0,19	0,12	0,01	0,58
IL-6	MD	0.04	0.00	0.22	0.25	1	0.04	0.00	0.22	0.25
	MIN	0,04	0,00	0,23	0,25		0,04	0,00	0,23	0,25
	Median	0,00	0,00	0,23	0,20		0,02	0,00	0,00	0,01
	3.0	0,08	0,00	0.37	0.44		0.04	0,00	0,00	0,02
	Maximum	0,12	0.00	0,50	0.61		0.12	0.00	0.27	0.36
IL-8		., .			.,.		.,	.,	., .	.,
	MIN	1,01	0,28	1,00	1,01		1,01	0,28	1,00	1,01
	1 Q	1,02	0,29	1,01	1,03		0,01	0,01	0,00	0,01
	Median	1,02	0,29	1,01	1,04		0,01	0,01	0,01	0,03
	3 Q	1,04	0,41	1,02	1,04		0,03	0,13	0,02	0,03
	Maximum	1,05	0,52	1,02	1,04		0,04	0,24	0,02	0,03
IL-16	MIN	0.00	0.00	0.00	0.01	<u> </u>	0.00	0.00	0.00	0.01
		0,00	0,00	0,00	0,01		0,00	0,00	0,00	0,01
	1 Q Median	0,00	0,00	0,00	0,05		0,00	0,00	0,00	0,02
	3.0	0,00	0,00	0,00	0,05		0,00	0,00	0,00	0,04
	Maximum	0,00	0.00	0.00	0.14		0.00	0,00	0.00	0.13
MIF		0,00	-,	0,00	•,•		-,	0,00	-,	0,00
	MIN	0,12	0,18	0,39	0,86		0,12	0,18	0,39	0,86
	1 Q	0,15	0,18	0,39	0,90		0,03	0,01	0,01	0,04
	Median	0,18	0,19	0,40	0,94		0,06	0,01	0,01	0,08
	3 Q	0,26	0,30	0,55	0,97		0,14	0,13	0,16	0,11
	Maximum	0,34	0,42	0,70	0,99		0,22	0,24	0,31	0,13
MIP1a	101	0.00	0.00	0.04	0.00		0.00	0.00	0.04	0.00
	MIN	0,00	0,00	0,04	0,00		0,00	0,00	0,04	0,00
	Madian	0,00	0,00	0,05	0,00		0,00	0,00	0,01	0,00
	3.0	0,00	0,00	0,03	0,00		0,00	0,00	0,01	0,00
	Maximum	0,00	0,00	0,12	0,00		0,00	0,00	0,03	0,00
Serpin El	Maximum	0,00	0,00	0,17	0,00		0,00	0,00	0,15	0,00
	MIN	0,40	0,25	0,38	0,36		0,40	0,25	0,38	0,36
	1 Q	0,44	0,26	0,39	0,39		0,04	0,00	0,02	0,03
	Median	0,47	0,26	0,41	0,43		0,07	0,00	0,03	0,07
	3 Q	0,56	0,38	0,51	0,53		0,16	0,13	0,14	0,17
	Maximum	0,64	0,51	0,62	0,63		0,25	0,25	0,24	0,27
CCL5										
	MIN	0,52	0,00	0,76	0,36	<u> </u>	0,52	0,00	0,76	0,36
	1 Q Mediar	0,53	0,00	0,80	0,3/		0,01	0,00	0,03	0,01
	3.0	0,55	0,00	0,85	0,38		0,01	0,00	0,07	0,02
	Maximum	0,0/	0,00	0,80	0,53		0,15	0,00	0,10	0,1/
L	iviaAiiiiuiii	0,00	0,00	0,69	0,08	1	0,28	0,00	0,15	0,52

Tabelle A4: Berechnungen der Minimum-/Maximumwerte, des Medians und des 1. und 2. Quartils zur Erstellung der Box-Plots des Proteome Profiler Human Cytokine Array

Anhang zu 5.3./5.4. Ergebnisse Quantikine^R ELISA - Human VEGF/TSP-1

	1	2	3	4	5	6	7	8	9	10	11	12
	St	St	3%O2, Coll	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O2,	3%O2,
	500	500	ohne	ohne	mit LPS	mit LPS	Coll	Coll	control ohne	control ohne	control mit	control mit
A	ng/ml	ng/ml	LPS	LPS	+Blocker	+Blocker	mit LPS	mit LPS	LPS	LPS	LPS+Blocker	LPS+Blocker
	St	St	3%O ₂ , Coll	3%O2, Coll	3%O ₂ , Coll	3%O ₂ , Coll	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%02,	3%O2,
	250	250	ohne	ohne	mit	mit	Coll	Coll	control ohne	control ohne	control mit	control mit
H	ng/ml	ng/ml	LPS	LPS	Blocker	Blocker	mit LPS	mit LPS	LPS	LPS	Blocker	Blocker
			3%O2, Coll	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,	3%O2,	3%O2,
	St 125	St 125	ohne	ohne	mit	mit	mit	mit	control ohne	control ohne	control mit	control mit
(C ng/ml	ng/ml	LPS	LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker	LPS	LPS	Blocker	Blocker
	St	St	3%O2, Coll	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,	3%O2,	3%O2,
	62,5	62,5	mit	mit	mit	mit	mit	mit	control mit	control mit	control mit	control mit
I	ng/ml	ng/ml	LPS	LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker	LPS	LPS	Blocker	Blocker
			3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	St 31,3	St 31,3	mit	mit	Coll	Coll	mit LPS +	mit LPS +	control mit	control mit		
H	ng/ml	ng/ml	LPS	LPS	ohne LPS	ohne LPS	Blocker	Blocker	LPS	LPS		
			3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	St 15,6	St 15,6	mit	mit	Coll	Coll	mit	mit	control mit	control mit		
F	ng/ml	ng/ml	LPS	LPS	ohne LPS	ohne LPS	Blocker	Blocker	LPS	LPS		
									3%O ₂ ,	3%O ₂ ,		
			3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	control mit	control mit		
	St 7,81	St 7,81	mit LPS +	mit LPS +	Coll	Coll	mit	mit	LPS+Blocke	LPS+Blocke		
(ng/ml	ng/ml	Blocker	Blocker	ohne LPS	ohne LPS	Blocker	Blocker	r	r		
	St	St							3%O ₂ ,	3%O ₂ ,		
	0ng/ml	0ng/ml	3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	control mit	control mit		
	RD5-	RD5-	mit LPS +	mit LPS +	Coll	Coll	mit	mit	LPS+Blocke	LPS+Blocke		
ł	I 33	33	Blocker	Blocker	mit LPS	mit LPS	Blocker	Blocker	r	r		

Tabelle A5: Well Pipetierungsübersicht Human TSP-1 ELISA

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2,370	2,243	0,804	0,649	0,824	0,850	0,817	0,854	0,796	0,791	0,760	0,766
B	1,876	1,944	0,880	0,871	0,779	0,765	0,933	0,949	0,772	0,783	0,705	0,701
С	1,312	1,395	0,872	0,870	0,807	0,791	0,825	0,853	0,864	0,829	0,718	0,719
D	0,898	0,893	0,936	0,922	0,806	0,774	0,798	0,766	0,821	0,829	0,719	0,726
E	0,567	0,610	0,911	0,850	0,776	0,777	0,817	0,825	0,923	0,898		
F	0,400	0,414	0,910	0,968	0,824	0,671	0,646	0,700	0,851	0,816		
G	0,307	0,310	0,860	0,840	0,645	0,946	0,673	0,679	0,884	0,841		
Н	0,181	0,183	0,831	0,847	0,883	0,945	0,733	0,718	0,757	0,763		

Tabelle A6: absolute Ergebniswerte Quantikine^R ELISA - Human TSP-1 vom 22.06.2014 (Messung 1)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2,030	2,043	0,667	0,688	0,396	0,409	0,569	0,570	0,278	0,289	0,256	0,265
В	1,413	1,386	0,589	0,568	0,388	0,400	0,553	0,570	0,216	0,223	0,147	0,152
С	0,905	0,904	0,569	0,574	0,525	0,553	0,495	0,500	0,175	0,168	0,221	0,229
D	0,585	0,593	0,635	0,639	0,483	0,492	0,600	0,596	0,199	0,198	0,317	0,317
E	0,373	0,378	0,510	0,499	0,637	0,647	0,557	0,557	0,258	0,259		
F	0,253	0,267	0,620	0,638	0,562	0,561	0,579	0,586	0,224	0,237		
G	0,194	0,205	0,563	0,566	0,641	0,673	0,535	0,552	0,413	0,390		
п	0.122	0.121	0.465	0.460	0.504	0.621	0 549	0 546	0.100	0.100		

Tabelle A7: absolute Ergebniswerte Quantikine^R ELISA - Human TSP-1 vom 28.10.2014 (Messung 2)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1,612	1,619	1,292	1,306	1,353	1,411	1,616	1,619	0,986	0,995	0,599	0,62
В	1,191	1,169	1,117	0,978	1,267	1,306	1,539	1,57	1,146	1,128	0,519	0,543
С	0,767	0,811	1,377	1,522	1,426	1,350	1,559	1,588	0,834	0,874	0,711	0,697
D	0,476	0,506	1,399	1,397	1,248	1,261	1,495	1,454	0,847	0,813	0,545	0,536
E	0,325	0,329	1,606	1,603	1,367	1,360	1,541	1,561	1,121	1,062		
F	0,229	0,241	1,743	1,825	1,750	1,727	1,709	1,677	0,773	0,811		
G	0,161	0,165	1,372	1,394	1,350	1,375	1,218	1,277	0,863	0,877		
Н	0.099	0 117	1 504	1 533	1.538	1 602	1 495	1 479	0.924	0.907		

Tabelle A8: absolute Ergebniswerte Quantikine R ELISA - Human TSP-1 vom 01.12.2014 (Messung 3)

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	2,370	2,243	491,229	435,184	35,274	17,978	37,871	41,372	36,953	41,923	34,259	33,631	29,855	30,570
В	1,876	1,944	292,142	316,524	45,587	44,303	32,145	30,450	53,492	55,994	31,293	32,637	23,648	23,222
С	1,312	1,395	127,104	147,226	44,445	44,161	35,658	33,631	38,003	41,785	43,316	38,533	25,058	25,168
D	0,898	0,893	48,206	47,472	53,957	51,803	35,530	31,535	34,511	30,570	37,476	38,533	25,168	25,943
Е	0,567	0,610	10,855	14,415	50,139	41,372	31,779	31,901	36,953	38,003	51,956	48,206		
F	0,400	0,414	0,688	1,317	49,989	59,034	37,871	20,127	17,692	23,115	41,510	36,822		
G	0,307	0,310	-2,451	-2,378	42,756	40,009	17,598	55,520	20,328	20,934	46,163	40,144		
II	0.191	0.192	2,925	2 8 2 0	20.000	40.061	46.010	55 262	26 720	25.059	20,500	20 211		

H0.1810.183-3.825-3.82938.80040.96146.01955.36326.72925.05829.50030.211Tabelle A9: polynomische Konzentrationswerte Quantikine R ELISA - Human TSP-1 vom 22.06.2014 (Messung 1), RD5-33 dient als
Nullstandard, polynomische Formel y=104,34x²-40,016x

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	2,03	2,043	496,203	502,020	72,675	76,399	32,481	34,075	56,455	56,611	19,541	20,631	17,435	18,285
В	1,413	1,386	258,731	250,067	59,610	56,299	31,516	32,968	53,988	56,611	13,852	14,456	8,419	8,781
С	0,905	0,904	120,016	119,794	56,455	57,236	49,793	53,988	45,472	46,180	10,510	9,972	14,283	14,982
D	0,585	0,593	58,972	60,250	67,169	67,846	43,793	45,049	61,379	60,733	12,426	12,344	23,512	23,512
E	0,373	0,378	29,741	30,328	47,610	46,038	67,507	69,210	54,600	54,600	17,623	17,717		
F	0,253	0,267	17,155	18,476	64,658	67,676	55,369	55,215	58,022	59,132	14,543	15,694		
G	0,194	0,205	12,017	12,923	55,524	55,988	68,186	73,730	51,273	53,835	34,573	31,756		
Н	0,132	0,131	7,363	7,294	41,329	41,871	60,411	66,495	53,227	52,924	11,694	11,694		

Tabelle A10: polynomische Konzentrationswerte Quantikine ^R ELISA - Human TSP-1 vom 28.10.2014 (Messung 2), RD5-33 dient als Nullstandard, polynomische Formel y=99,396x²+42,661x

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	1,612	1,619	489,802	493,942	319,132	325,838	348,859	378,351	492,166	493,942	189,954	193,279	74,221	79,136
В	1,191	1,169	272,817	263,209	241,183	187,023	307,330	325,838	447,665	465,328	253,348	245,763	56,933	61,881
С	0,767	0,811	117,926	131,030	360,918	438,124	386,173	347,366	459,021	475,740	138,153	150,989	102,244	98,497
D	0,476	0,506	48,581	54,339	372,151	371,123	298,509	304,531	423,182	400,987	142,263	131,642	62,302	60,417
E	0,325	0,329	24,452	24,987	486,268	484,505	355,869	352,355	448,794	460,165	242,844	218,932		
F	0,229	0,241	13,324	14,536	570,165	623,571	574,631	560,023	548,722	528,915	119,673	131,030		
G	0,161	0,165	7,423	7,725	358,389	369,583	347,366	359,905	284,843	312,024	147,403	151,975		
Н	0,099	0,117	3,474	4,480	428,134	444,286	447,101	483,918	423,182	414,449	167,834	162,007		

Tabelle A11: polynomische Konzentrationswerte	Quantikine R ELISA	- Human TSP-1 vom	n 01.12.2014 (Messung	3), RD5-33 dient
als Nullstandard, polynomische Formel y=177,63	x ² +17,508x			

	1	2	3	4	5	6	7	8	9	10	11	12
					3%O2, Coll	3%02, Coll						
	St	St	3%O2, Coll	3%O2, Coll	mit	mit	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O2,
	1000	1000	ohne	ohne	LPS+Blocke	LPS+Blocke	Coll	Coll	control ohne	control ohne	control mit	control mit
Α	pg/ml	pg/ml	LPS	LPS	r	r	mit LPS	mit LPS	LPS	LPS	LPS+Blocker	LPS+Blocker
			3%O2, Coll	3%O2, Coll	3%O2, Coll	3%02, Coll	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O2,
	St 500	St 500	ohne	ohne	mit	mit	Coll	Coll	control ohne	control ohne	control mit	control mit
В	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	mit LPS	mit LPS	LPS	LPS	Blocker	Blocker
							21%O2, Col1	21%O2, Col1				
			3%O2, Coll	3%O ₂ , Coll	3%O2, Coll	3%02, Coll	mit	mit	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%02,
	St 250	St 250	ohne	ohne	mit	mit	LPS+Blocke	LPS+Blocke	control ohne	control ohne	control mit	control mit
С	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	r	r	LPS	LPS	Blocker	Blocker
							21%O2, Col1	21%O2, Col1				
			3%O2, Coll	3%O2, Coll	3%O2, Coll	3%02, Coll	mit	mit	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O2,
	St 125	St 125	mit	mit	mit	mit	LPS+Blocke	LPS+Blocke	control mit	control mit	control mit	control mit
D	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	r	r	LPS	LPS	Blocker	Blocker
							21%O2, Col1	21%O2, Col1				
	St		3%O2, Coll	3%O ₂ , Coll	21%O ₂ ,	21%O ₂ ,	mit	mit	3%O ₂ ,	3%O ₂ ,		
	62,5	St 62,5	mit	mit	Coll	Coll	LPS+Blocke	LPS+Blocke	control mit	control mit		
E	pg/ml	pg/ml	LPS	LPS	ohne LPS	ohne LPS	r	r	LPS	LPS		
	St	St	3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	31,3	31,3	mit	mit	Coll	Coll	mit	mit	control mit	control mit		
F	pg/ml	pg/ml	LPS	LPS	ohne LPS	ohne LPS	Blocker	Blocker	LPS	LPS		
	St	St	3%O2, Coll	3%02, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	15,6	15,6	mit LPS +	mit LPS +	Coll	Coll	mit	mit	control mit	control mit		
G	pg/ml	pg/ml	Blocker	Blocker	ohne LPS	ohne LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker		
	St											
	0pg/m	St	3%O2, Coll	3% O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Coll	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	IRD6	0pg/ml	mit LPS +	mit LPS +	Coll	Coll	mit	mit	control mit	control mit		
Н	U	RD6U	Blocker	Blocker	mit LPS	mit LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker		

Tabelle A12: Well Pipetierungsübersicht Human VEGF ELISA

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1,832	1,932	0,006	0,003	0,015	0,019	-0,005	-0,005	-0,001	-0,002	0,021	0,018
В	1,109	1,060	0,011	0,005	0,010	0,006	0,000	-0,001	-0,010	-0,006	0,006	0,006
С	0,543	0,609	0,006	0,007	0,004	0,002	0,000	-0,002	-0,004	-0,004	0,011	0,009
D	0,341	0,390	0,017	0,012	0,001	0,004	-0,001	0,001	0,014	0,010	0,008	0,002
E	0,177	0,137	0,013	0,016	0,004	0,000	-0,002	-0,004	0,016	0,012		
F	0,100	0,104	0,016	0,015	0,004	0,004	0,009	0,000	0,003	0,005		
G	0,050	0,057	0,021	0,019	0,000	0,002	0,006	-0,001	0,022	0,023		
Н	0,011	0,018	0,019	0,010	-0,001	-0,001	-0,005	0,003	0,011	0,013		

Tabelle A13: absolute Ergebniswerte Quantikine^R ELISA - Human VEGF vom 22.06.2014 (Messung 1)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2,190	2,113	0,163	0,161	0,062	0,066	0,011	0,012	0,023	0,031	0,027	0,029
B	1,225	1,138	0,127	0,129	0,148	0,152	0,002	0,010	0,040	0,042	0,045	0,052
С	0,585	0,604	0,081	0,083	0,207	0,204	0,015	0,012	0,011	0,016	0,087	0,098
D	0,313	0,314	0,058	0,052	0,143	0,141	0,033	0,031	-0,001	0,004	0,081	0,088
E	0,207	0,181	0,076	0,083	0,011	0,010	0,030	0,029	0,012	0,017		
F	0,081	0,083	0,054	0,054	0,021	0,016	0,039	0,043	0,005	0,007		
G	0,038	0,043	0,110	0,113	0,027	0,027	0,025	0,024	0,040	0,043		
Н	0,016	0,022	0,065	0,062	0,011	0,010	0,053	0,053	0,024	0,026		

Tabelle A14: absolute Ergebniswerte Quantikine ^R ELISA - Human VEGF vom 28.10.2014 (Messung 2)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2,265	2,359	0,895	0,812	0,620	0,634	0,990	0,954	0,474	0,450	0,311	0,308
B	1,175	1,244	0,645	0,680	0,916	0,857	0,778	0,797	0,692	0,698	0,277	0,291
С	0,587	0,567	0,893	0,843	0,917	0,945	0,613	0,622	0,407	0,408	0,394	0,407
D	0,307	0,302	0,287	0,274	0,850	0,777	0,660	0,692	0,153	0,148	0,273	0,290
E	0,125	0,131	0,244	0,253	0,174	0,215	0,707	0,706	0,251	0,260		
F	0,057	0,060	0,257	0,272	0,200	0,188	0,177	0,170	0,157	0,165		
G	0,023	0,026	0,689	0,657	0,185	0,167	0,153	0,150	0,299	0,302		
Н	0,018	0,027	0,667	0,604	0,484	0,472	0,150	0,149	0,371	0,382		

Tabelle A15: absolute Ergebniswerte Quantikine ^R ELISA - Human VEGF vom 11.12.2014 (Messung 3)

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	1,832	1,932	966,192	1036,585	2,163	1,081	5,421	6,873	-1,798	-1,798	-0,360	-0,720	7,600	6,510
В	1,109	1,060	511,619	484,268	3,971	1,802	3,609	2,163	0,000	-0,360	-3,591	-2,157	2,163	2,163
С	0,543	0,609	222,422	253,129	2,163	2,524	1,441	0,720	0,000	-0,720	-1,439	-1,439	3,971	3,247
D	0,341	0,390	133,385	154,298	6,146	4,333	0,360	1,441	-0,360	0,360	5,058	3,609	2,886	0,720
Е	0,177	0,137	66,583	51,035	4,695	5,783	1,441	0,000	-0,720	-1,439	5,783	4,333		
F	0,100	0,104	36,914	38,428	5,783	5,421	1,441	1,441	3,247	0,000	1,081	1,802		
G	0,050	0,057	18,228	20,817	7,600	6,873	0,000	0,720	2,163	-0,360	7,964	8,328		
Н	0.011	0.018	3,971	6.510	6.873	3,609	-0.360	-0.360	-1.798	1.081	3.971	4.695		

Tabelle A16: polynomische Konzentrationswerte Quantikine ^R ELISA - Human VEGF vom 20.06.2014 (Messung 1), RD6U dient als Nullstandard, polynomische Formel y=91,374 x^2 +360x

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	1,832	1,932	1020,559	978,353	63,118	62,331	23,765	25,308	4,194	4,576	8,781	11,845	10,312	11,078
В	1,109	1,060	524,915	483,787	49,000	49,782	57,223	58,793	0,762	3,813	15,298	16,066	17,219	19,911
С	0,543	0,609	236,122	244,237	31,107	31,882	80,510	79,319	5,722	4,576	4,194	6,104	33,432	37,700
D	0,341	0,390	123,026	123,432	22,222	19,911	55,262	54,478	12,612	11,845	-0,381	1,524	31,107	33,819
E	0,177	0,137	80,510	70,214	29,172	31,882	4,194	3,813	11,462	11,078	4,576	6,486		
F	0,100	0,104	31,107	31,882	20,681	20,681	8,016	6,104	14,914	16,450	1,905	2,668		
G	0,050	0,057	14,530	16,450	42,368	43,537	10,312	10,312	9,547	9,164	15,298	16,450		
Н	0,011	0,018	6,104	8,398	24,922	23,765	4,194	3,813	20,296	20,296	9,164	9,929		

Tabelle A17: polynomische Konzentrationswerte Quantikine^R ELISA - Human VEGF vom 28.10.2014 (Messung 2), RD6U dient als Nullstandard, polynomische Formel y=38,867x²+380,89x

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	1,832	1,932	976,696	1019,262	374,701	339,335	258,007	263,914	415,335	399,918	196,617	186,562	128,539	127,291
В	1,109	1,060	494,940	524,791	268,558	283,349	383,669	358,493	324,884	332,957	288,426	290,965	114,400	120,220
С	0,543	0,609	244,097	235,676	373,847	352,529	384,096	396,067	255,055	258,851	168,575	168,993	163,144	168,575
D	0,341	0,390	126,875	124,795	118,557	113,154	355,511	324,459	274,895	288,426	63,015	60,949	112,738	119,804
Е	0,177	0,137	51,451	53,927	100,698	104,433	71,697	88,672	294,775	294,352	103,603	107,339		
F	0,100	0,104	23,426	24,661	106,093	112,323	82,458	77,490	72,938	70,043	64,668	67,975		
G	0,050	0,057	9,445	10,678	287,156	273,627	76,249	68,802	63,015	61,775	123,547	124,795		
Н	0,011	0,018	7,391	11,089	277,853	251,260	200,809	195,778	61,775	61,362	153,542	158,133		
Tat	elle A18:	polynomi	sche Konzenti	ationswerte Q	uantikin	e ^R ELIS	SA - Hui	man VE	GF vom	11.12.2	014 (Me	ssung 3)	, RD6U	dient

als Nullstandard, polynomische Formel y=9,1622x²+410,46x

Anhang zu 5.5./5.6. Ergebnisse Quantikine^R ELISA - Human IL-8/CCL5

	1	2	3	4	5	6	7	8	9	10	11	12
	St	St	3%O ₂ ,	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	2000	2000	Coll ohne	ohne	mit	mit	Coll	Coll	control ohne	control ohne	control mit	control mit
Α	pg/ml	pg/ml	LPS	LPS	LPS+Blocker	LPS+Blocker	mit LPS	mit LPS	LPS	LPS	LPS+Blocker	LPS+Blocker
	St	St	3%O ₂ ,	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	1000	1000	Coll ohne	ohne	mit	mit	Coll	Coll	control ohne	control ohne	control mit	control mit
В	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	mit LPS	mit LPS	LPS	LPS	Blocker	Blocker
			3%O ₂ ,	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O2, Coll	21%O2, Coll	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	St 500	St 500	Col1 ohne	ohne	mit	mit	mit	mit	control ohne	control ohne	control mit	control mit
C	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker	LPS	LPS	Blocker	Blocker
			3%O ₂ ,	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O2, Coll	21%O2, Coll	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	St 250	St 250	Col1 mit	mit	mit	mit	mit	mit	control mit	control mit	control mit	control mit
D	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker	LPS	LPS	Blocker	Blocker
			3%O ₂ ,	3%O2, Coll			21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	St 125	St 125	Col1 mit	mit	21%O2, Coll	21%O2, Col1	mit	mit	control mit	control mit		
Е	pg/ml	pg/ml	LPS	LPS	ohne LPS	ohne LPS	LPS+Blocker	LPS+Blocker	LPS	LPS		
	St	St	3%O ₂ ,	3%O2, Coll			21%O2, Coll	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	62,5	62,5	Col1 mit	mit	21%O2, Coll	21%O2, Col1	mit	mit	control mit	control mit		
F	pg/ml	pg/ml	LPS	LPS	ohne LPS	ohne LPS	Blocker	Blocker	LPS	LPS		
			3%O ₂ ,									
	St	St	Col1 mit	3%O2, Coll			21%O2, Coll	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	31,3	31,3	LPS +	mit LPS +	21%O2, Col1	21%O2, Coll	mit	mit	control mit	control mit		
G	pg/ml	pg/ml	Blocker	Blocker	ohne LPS	ohne LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker		
			3%O ₂ ,	3%O2, Coll								
	St	St	Col1 mit	mit			21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	0pg/m	0pg/m	LPS+Bloc	LPS+Blocke	21%O2, Col1	21%O2, Coll	mit	mit	control mit	control mit		
Н	IRD5P	IRD5P	ker	r	mit LPS	mit LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker		

Tabelle A19: Well Pipetierungsübersicht Human IL-8 ELISA

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1,275	1,974	0,573	0,567	0,783	0,778	0,514	0,491	0,335	0,365	0,495	0,478
В	1,198	1,127	0,565	0,512	0,619	0,627	0,535	0,505	0,398	0,418	0,622	0,53
С	0,692	0,632	0,563	0,516	0,666	0,646	0,741	0,010	0,394	0,422	0,468	0,419
D	0,396	0,393	0,631	0,604	0,613	0,812	0,680	0,649	0,512	0,542	0,532	0,468
E	0,230	0,215	0,695	0,654	0,326	0,338	0,689	0,731	0,596	0,585		
F	0,135	0,127	0,651	0,658	0,268	0,263	0,369	0,367	0,645	0,598		
G	0,070	0,072	0,791	0,756	0,296	0,291	0,329	0,354	0,726	0,785		
Н	0,020	0,019	0,798	0,778	0,586	0,585	0,390	0,304	0,677	0,701		

Tabelle A20: absolute Ergebniswerte Quantikine^R ELISA - Human IL-8 vom 10.07.2014 (Messung 1)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	2,597	2,628	0,957	0,856	1,700	1,687	1,747	1,788	0,900	0,791	1,654	1,650
В	1,435	1,434	0,010	0,007	0,026	0,028	1,085	1,023	0,002	0,006	0,063	0,068
С	0,900	0,912	0,014	0,011	0,056	0,047	1,173	1,135	0,003	0,005	0,081	0,109
D	0,481	0,501	1,434	1,378	0,019	0,021	1,222	1,175	0,532	0,454	0,020	0,019
E	0,273	0,268	1,271	1,311	0,896	0,909	1,156	1,165	0,659	0,594		
F	0,143	0,142	1,300	1,264	0,007	0,005	0,011	0,017	0,707	0,654		
G	0,073	0,073	1,488	1,496	0,006	0,005	0,007	0,007	1,068	1,218		
Н	0,004	0,008	1,353	1,475	1,062	0,974	0,015	0,018	0,780	0,691		

Tabelle A21: absolute Ergebniswerte Quantikine^R ELISA - Human IL-8 vom 06.11.2014 (Messung 2)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1,884	1,964	0,084	0,078	3,065	3,193	2,406	2,363	1,042	1,003	2,574	2,729
В	1,156	1,208	0,059	0,040	0,066	0,072	2,044	2,126	0,908	0,902	0,629	0,608
С	0,696	0,707	0,284	0,304	0,065	0,069	2,598	2,659	0,888	0,868	0,637	0,57
D	0,352	0,413	2,861	2,813	0,093	0,104	2,778	2,684	2,152	2,230	0,859	0,841
E	0,222	0,215	2,942	3,038	0,028	0,026	2,605	2,500	2,600	2,687		
F	0,112	0,120	2,931	3,029	0,019	0,027	0,036	0,032	2,297	2,316		
G	0,068	0,069	2,953	2,989	0,023	0,025	0,028	0,040	2,650	2,455		
Н	0,014	0,011	3,018	3,124	2,427	2,403	0,029	0,035	2,843	2,864		

Tabelle A22: absolute Ergebniswerte Quantikine^R ELISA - Human IL-8 vom 19.11.2014 (Messung 3)

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	1,275	1,974	1293,765	2747,497	364,414	358,762	586,682	580,837	310,530	290,542	170,036	191,171	293,977	279,496
В	1,198	1,127	1165,864	1053,597	356,887	308,769	409,031	417,023	329,278	302,640	215,540	230,882	412,020	324,771
С	0,692	0,632	484,523	422,054	355,016	312,295	456,976	436,283	538,421	3,322	212,524	234,002	271,124	231,660
D	0,396	0,393	214,030	211,773	421,046	394,231	403,082	621,115	471,718	439,359	308,769	335,633	326,571	271,124
E	0,23	0,215	103,712	95,208	487,748	444,508	163,885	172,105	481,307	527,211	386,437	375,833		
F	0,135	0,127	53,955	50,209	441,415	448,647	126,341	123,274	194,062	192,614	435,259	388,379		
G	0,07	0,072	25,522	26,329	596,090	555,439	144,012	140,795	165,925	183,308	521,647	589,027		
Н	0,02	0,019	6,752	6,405	604,379	580,837	376,791	375,833	209,525	149,217	468,542	494,228		

Tabelle A23: polynomische Konzentrationswerte Quantikine ^R ELISA - Human IL-8 vom 10.07.2014 (Messung 1), RD5P dient als Nullstandard, polynomische Formel $y=539,52x^2+326,83x$

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	2,597	2,628	1997,183	2029,207	578,296	508,578	1154,167	1143,138	1194,325	1229,719	538,699	464,795	1115,294	1111,933
В	1,435	1,434	936,051	935,254	5,091	3,562	13,280	14,307	669,596	624,962	1,017	3,052	32,412	35,018
С	0,9	0,912	538,699	546,981	7,134	5,602	28,771	24,104	734,274	706,154	1,525	2,543	41,818	56,581
D	0,481	0,501	267,658	279,794	935,254	890,979	9,691	10,715	770,962	735,762	298,763	251,402	10,203	9,691
E	0,273	0,268	146,209	143,397	808,133	838,834	535,944	544,907	721,658	728,330	378,492	337,281		
F	0,143	0,142	74,718	74,182	830,359	802,794	3,562	2,543	5,602	8,667	409,470	375,292		
G	0,073	0,073	37,630	37,630	978,545	985,009	3,052	2,543	3,562	3,562	657,281	767,949		
Н	0,004	0,008	2,034	4,072	871,416	968,070	652,948	590,232	7,645	9,179	457,469	399,092		
Tab	elle A24:	polynomi	ische Konzent	rationswerte	Quantik	ine ^R EI	JISA - H	uman II	8 vom	06.11.20	14 (Me	ssung 2) RD5P	dient als

Nullstandard, polynomische Formel y=100,46x²+508,14x

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	1,884	1,964	1939,037	2062,736	46,650	43,195	4107,441	4386,567	2806,911	2729,997	841,474	799,682	3116,742	3415,778
В	1,156	1,208	968,227	1028,317	32,378	21,751	36,341	39,759	2189,805	2323,547	701,231	695,173	439,567	421,530
С	0,696	0,707	498,665	508,593	172,676	186,437	35,773	38,048	3162,217	3279,163	681,110	661,200	446,499	389,482
D	0,352	0,413	220,322	265,135	3680,414	3583,121	51,869	58,305	3512,944	3327,658	2366,692	2498,263	652,309	634,655
E	0,222	0,215	131,356	126,817	3847,346	4049,665	15,137	14,042	3175,537	2978,438	3166,020	3333,500		
F	0,112	0,12	63,026	67,781	3824,474	4030,491	10,227	14,590	19,538	17,334	2613,837	2647,042		
G	0,068	0,069	37,478	38,048	3870,282	3945,792	12,404	13,496	15,137	21,751	3261,786	2895,743		
Н	0,014	0,011	7,517	5,898	4007,115	4235,029	2844,827	2801,513	15,686	18,986	3643,787	3686,535		

Tabelle A25: polynomische Konzentrationswerte Quantikine ^R ELISA - Human IL-8 vom 19.11.2014 (Messung 3) RD5P dient als Nullstandard, polynomische Formel y=263,25x²+533,25x

	1	2	3	4	5	6	7	8	9	10	11	12
					3%O2, Coll	3%O2, Coll						
	St	St	3%O2, Coll	3%O2, Coll	mit	mit	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	1000	1000	ohne	ohne	LPS+Blocke	LPS+Blocke	Coll	Coll	control ohne	control ohne	control mit	control mit
Α	pg/ml	pg/ml	LPS	LPS	r	r	mit LPS	mit LPS	LPS	LPS	LPS+Blocker	LPS+Blocker
	St	St	3%O2, Col1	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	500	500	ohne	ohne	mit	mit	Coll	Coll	control ohne	control ohne	control mit	control mit
В	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	mit LPS	mit LPS	LPS	LPS	Blocker	Blocker
	St	St	3%O2, Col1	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	250	250	ohne	ohne	mit	mit	mit	mit	control ohne	control ohne	control mit	control mit
С	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker	LPS	LPS	Blocker	Blocker
	St	St	3%O2, Col1	3%O2, Coll	3%O2, Coll	3%O2, Coll	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,	3%O ₂ ,
	125	125	mit	mit	mit	mit	mit	mit	control mit	control mit	control mit	control mit
D	pg/ml	pg/ml	LPS	LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker	LPS	LPS	Blocker	Blocker
	St	St	3%O2, Col1	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	62,5	62,5	mit	mit	Coll	Coll	mit	mit	control mit	control mit		
Е	pg/ml	pg/ml	LPS	LPS	ohne LPS	ohne LPS	LPS+Blocker	LPS+Blocker	LPS	LPS		
	St	St	3%O2, Col1	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	31,2	31,2	mit	mit	Coll	Coll	mit	mit	control mit	control mit		
F	pg/ml	pg/ml	LPS	LPS	ohne LPS	ohne LPS	Blocker	Blocker	LPS	LPS		
	RD6-	RD6-	3%O2, Coll	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
	11	11	mit LPS +	mit LPS +	Coll	Coll	mit	mit	control mit	control mit		
G	(1:5)	(1:5)	Blocker	Blocker	ohne LPS	ohne LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker		
			3%O2, Col1	3%O2, Coll	21%O ₂ ,	21%O ₂ ,	21%O2, Col1	21%O2, Col1	3%O ₂ ,	3%O ₂ ,		
			mit LPS +	mit LPS +	Coll	Coll	mit	mit	control mit	control mit		
н			Blocker	Blocker	mit LPS	mit LPS	Blocker	Blocker	LPS+Blocker	LPS+Blocker		

Tabelle A26: Well Pipetierungsübersicht Human CCL5 ELISA

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1,707	1,578	0,880	0,871	1,119	1,062	0,829	0,869	0,653	0,387	0,630	0,714
В	1,089	1,007	0,881	0,903	1,005	0,977	0,764	0,819	0,705	0,701	0,587	0,618
С	0,684	0,709	0,881	0,872	1,054	0,896	0,852	0,881	0,669	0,633	0,705	0,710
D	0,369	0,409	0,548	0,941	0,902	0,897	0,833	0,808	0,805	0,712	0,629	0,640
E	0,205	0,237	0,974	0,938	0,525	0,571	0,806	0,752	0,646	0,736		
F	0,154	0,155	0,932	0,935	0,488	0,496	0,442	0,597	0,960	0,884		
G	0,060	0,061	0,982	1,030	0,543	0,571	0,562	0,532	0,827	0,667		
II			0.961	0 (57	1.006	0.710	0 (15	0.662	0.970	0.707		

 H
 0,861
 0,657
 1,006
 0,719
 0,013
 0,002
 0,002

 Tabelle A27: absolute Ergebniswerte Quantikine ^R ELISA - Human CCL5 vom 28.07.2014 (Messung 1)

	1	2	3	4	5	6	7	8	9	10	11	12
Α	1,601	1,552	0,822	0,780	2,405	2,261	1,370	1,328	0,596	0,576	0,687	0,641
B	1,415	1,362	0,756	0,740	0,888	0,860	1,231	1,269	0,354	0,335	0,282	0,283
С	0,945	0,972	1,004	1,000	0,881	0,814	1,791	1,756	0,214	0,203	0,301	0,280
D	0,594	0,602	2,565	2,563	0,866	0,845	1,619	1,601	0,718	0,725	0,189	0,184
E	0,350	0,364	2,380	2,431	0,250	0,253	1,554	1,486	0,710	0,701		
F	0,227	0,219	2,498	2,416	0,269	0,266	0,209	0,210	0,650	0,617		
G	0,134	0,134	2,367	2,375	0,341	0,340	0,253	0,221	0,397	0,398		
Н			2,600	2,539	1,485	1,524	0,340	0,311	0,882	0,834		

Tabelle A28: absolute Ergebniswerte Quantikine^R ELISA - Human CCL5 vom 11.12.2014 (Messung 2)

1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
1,707	1,578	1069,113	938,583	373,340	367,607	540,080	497,779	341,374	366,338	240,818	117,569	228,796	273,956
1,089	1,007	517,618	458,467	373,980	388,173	457,066	437,648	302,474	335,255	268,952	266,741	207,012	222,626
0,684	0,709	257,431	271,171	373,980	368,242	491,969	383,631	355,633	373,980	249,334	230,349	268,952	271,727
0,369	0,409	110,478	126,451	188,037	413,244	387,522	384,278	343,835	328,580	326,770	272,841	228,279	233,991
0,205	0,237	53,162	63,314	435,590	411,239	177,194	199,138	327,373	295,518	237,132	286,353		
0,154	0,155	38,017	38,302	407,243	409,239	160,295	163,892	140,217	211,998	426,045	375,901		
0,060	0,061	13,434	13,673	441,087	474,727	185,658	199,138	194,763	180,467	340,146	248,263		
				361,283	242,935	457,766	276,753	221,094	245,593	366,972	321,965		
	1 (Reader) 1,707 1,089 0,684 0,369 0,205 0,154 0,060	I (Reader) 2 (Reader) 1,707 1,578 1,089 1,007 0,684 0,709 0,369 0,409 0,205 0,237 0,154 0,155 0,060 0,061	I (Reader) 2 (Reader) I (polynomisch) 1,707 1,578 1069,113 1,089 1,007 517,618 0,684 0,709 257,431 0,369 0,409 110,478 0,205 0,237 53,162 0,154 0,155 38,017 0,060 0,061 13,434	I (Reader) 2 (Reader) I (polynomisch) 2 (polynomisch) 1,707 1,578 1069,113 938,583 1,089 1,007 517,618 458,467 0,684 0,709 257,431 271,171 0,369 0,409 110,478 126,451 0,205 0,237 53,162 63,314 0,154 0,155 38,017 38,302 0,060 0,061 13,434 13,673	1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 1,707 1,578 1069,113 938,583 373,340 1,089 1,007 517,618 458,467 373,980 0,684 0,709 257,431 271,171 373,980 0,269 0,409 110,478 126,451 188,037 0,205 0,237 53,162 63,314 435,590 0,154 0,155 38,017 38,302 407,243 0,060 0,061 13,434 13,673 441,087 0,060 0,061 13,434 13,673 441,087	1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 1,707 1,578 1069,113 938,583 373,340 367,607 1,089 1,007 517,618 458,467 373,980 388,173 0,684 0,709 257,431 271,171 373,980 368,242 0,369 0,409 110,478 126,451 188,037 413,244 0,205 0,237 53,162 63,314 435,590 411,239 0,154 0,155 38,017 38,302 407,243 409,239 0,060 0,061 13,434 13,673 441,087 474,277	1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 5 1,707 1.578 1069,113 938,583 373,340 367,607 540,080 1,089 1.007 517,618 458,467 373,980 388,173 457,066 0,684 0,709 257,431 271,171 373,980 368,242 491,969 0,369 0,409 110,478 126,451 188,037 413,244 387,522 0,205 0,237 53,162 63,314 435,590 411,239 177,194 0,154 0,155 38,017 38,302 407,243 409,239 100,295 0,060 0,061 13,434 13,673 441,087 474,727 185,658 0,060 0.061 24,343 13,673 242,935 437,766	1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 5 6 1,707 1,578 1069,113 938,583 373,340 367,607 540,080 497,779 1,089 1,007 517,618 458,667 373,980 388,173 457,066 437,648 0,684 0,709 257,431 271,171 373,980 368,242 491,099 383,631 0,369 0,409 110,478 126,451 188,037 443,244 387,522 384,278 0,050 0,237 53,162 66,314 435,590 411,239 177,194 199,138 0,154 0,155 38,017 38,302 407,243 409,239 160,295 163,992 0,060 0,061 13,434 13,673 441,087 474,727 185,658 199,138 0,060 0,061 13,434 13,673 441,087 474,727 185,658 199,138 0,610 13,434 13,673 441,087 <	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 5 6 7 8 1,070 1,578 1069,113 938,583 373,340 367,607 540,080 497,779 341,374 366,335 1,089 1,007 517,618 458,467 373,980 388,173 457,066 437,648 302,474 335,255 0,684 0,709 257,431 271,171 373,980 388,173 457,066 437,648 302,474 335,255 0,684 0,709 257,431 271,171 373,980 368,242 491,096 383,631 555,633 373,980 0,369 0,409 110,478 126,451 188,037 413,244 387,522 384,278 343,835 328,860 0,205 0,237 53,162 63,314 435,590 411,239 177,194 199,138 327,373 295,518 0,154 0,155 38,017 38,302 407,243 400,239 160,255 163,982 <th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th> <th>1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 5 6 7 8 9 10 1,077 1,578 1069,113 938,583 373,340 366,607 540,80 497,779 341,374 366,338 240,818 117,569 1,089 1,007 517,618 458,467 373,980 388,173 457,066 437,648 302,474 335,255 268,952 266,741 0,684 0,709 257,431 271,171 373,980 388,242 491,969 383,631 355,633 373,980 249,318 220,349 0,669 0,409 110,478 126,651 188,037 413,244 387,522 384,278 343,835 326,700 272,841 0,205 0,237 53,162 63,314 435,590 411,239 171,74 99,138 327,373 295,518 237,132 286,533 0,154 0,155 38,017 38,302 407,243 409,239 160,295 163,892</th> <th>1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 5 6 7 8 9 10 11 1,707 1.578 1069,113 938,583 373,340 367,607 540,080 497,779 341,374 366,338 240,818 117,569 228,769 228,712 0,684 0,709 257,431 271,171 373,980 388,173 457,066 437,648 302,474 335,255 268,952 266,741 207,012 0,684 0,709 257,431 271,171 373,980 388,173 437,606 437,648 302,474 335,255 268,952 266,741 207,012 0,639 0,409 110,478 126,451 188,037 413,244 387,522 384,278 343,835 328,580 326,770 272,841 228,279 0,050 0,237 53,162 63,314 435,590 117,194 199,138 327,373 295,518 237,132 286,535 0,154 0,555</th>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 5 6 7 8 9 10 1,077 1,578 1069,113 938,583 373,340 366,607 540,80 497,779 341,374 366,338 240,818 117,569 1,089 1,007 517,618 458,467 373,980 388,173 457,066 437,648 302,474 335,255 268,952 266,741 0,684 0,709 257,431 271,171 373,980 388,242 491,969 383,631 355,633 373,980 249,318 220,349 0,669 0,409 110,478 126,651 188,037 413,244 387,522 384,278 343,835 326,700 272,841 0,205 0,237 53,162 63,314 435,590 411,239 171,74 99,138 327,373 295,518 237,132 286,533 0,154 0,155 38,017 38,302 407,243 409,239 160,295 163,892	1 (Reader) 2 (Reader) 1 (polynomisch) 2 (polynomisch) 3 4 5 6 7 8 9 10 11 1,707 1.578 1069,113 938,583 373,340 367,607 540,080 497,779 341,374 366,338 240,818 117,569 228,769 228,712 0,684 0,709 257,431 271,171 373,980 388,173 457,066 437,648 302,474 335,255 268,952 266,741 207,012 0,684 0,709 257,431 271,171 373,980 388,173 437,606 437,648 302,474 335,255 268,952 266,741 207,012 0,639 0,409 110,478 126,451 188,037 413,244 387,522 384,278 343,835 328,580 326,770 272,841 228,279 0,050 0,237 53,162 63,314 435,590 117,194 199,138 327,373 295,518 237,132 286,535 0,154 0,555

Tabelle A29: polynomische Konzentrationswerte Quantikine ^R ELISA - Human CCL5 vom 28.07.2014 (Messung 1), RD6-11 dient als Nullstandard (polynomische Formel: $y=0244,33x^2+209,24x$)

	1 (Reader)	2 (Reader)	1 (polynomisch)	2 (polynomisch)	3	4	5	6	7	8	9	10	11	12
Α	1,601	1,552	905,260	845,140	191,856	168,090	2184,036	1914,493	639,756	596,370	81,696	74,044	120,816	100,158
В	1,415	1,362	687,910	631,376	155,184	146,853	232,241	214,654	501,915	537,962	12,010	8,652	0,913	1,037
С	0,945	0,972	270,107	289,010	312,219	309,270	227,781	187,213	1157,735	1108,914	-5,510	-6,178	3,412	0,668
D	0,594	0,602	80,915	84,058	2504,261	2500,123	218,366	205,508	927,859	905,260	135,755	139,241	-6,880	-7,090
Е	0,350	0,364	11,277	13,900	2135,972	2234,588	-2,601	-2,308	847,554	767,397	131,821	127,461		
F	0,227	0,219	-4,587	-5,172	2367,511	2205,353	-0,620	-0,953	-5,826	-5,765	104,058	90,097		
G	0,134	0,134	-8,019	-8,019	2111,190	2126,424	9,679	9,506	-2,308	-5,031	20,745	20,966		
U					2577 210	2450 720	766 247	811 705	0.506	4 951	228 416	108 022		

H2577,2192450,739766,247811,7059,5064,851228,416198,922Tabelle A30: polynomische Konzentrationswerte Quantikine R ELISA - Human CCL5 vom 11.12.2014 (Messung 2), RD6-11 dient als Nullstandard (polynomische Formel: y=426,23x2-116,96x)

Shapiro Wilk-Test VEGF/TSP-1

			Desk	riptive Statist	iken				
								Perzentile	
								50.	
	LPS / Blocker	Ν	Mittelwert	StdAbw.	Minimum	Maximum	25.	(Median)	75.
ohne	VEGF/21%O2/Col1	9	28,509	36,989	0,360	80,185	1,081	7,060	76,250
LPS	VEGF/3%O2/Col1	9	127,402	156,851	1,622	363,188	2,615	49,391	316,486
	VEGF/3%O2/control	9	75,151	111,062	-2,874	289,695	-0,989	10,313	180,187
mit	VEGF/21%O2/Col1	9	104,798	163,886	-1,798	407,626	-0,270	4,004	263,607
LPS	VEGF/3%O2/Col1	9	46,221	48,129	5,239	115,855	5,421	21,067	105,887
	VEGF/3%O2/control	9	28,111	39,267	0,572	105,471	1,864	5,058	64,152
mit	VEGF/21%O2/Col1	9	95,598	137,012	-1,079	294,563	-0,180	11,270	269,307
LPS	VEGF/3%O2/Col1	9	101,818	125,780	5,241	280,392	6,692	24,536	262,759
und	VEGF/3%O ₂ /control	9	51,508	64,012	4,333	155,837	7,601	10,695	126,043
Blocker									
Blocker	VEGF/21%O2/Col1	9	26,995	29,549	-0,358	71,491	1,263	15,682	61,982
	VEGF/3%O2/Col1	9	144,312	169,850	0,901	390,081	1,984	58,008	355,533
	VEGF/3%O2/control	9	54,846	61,646	1,803	165,859	2,886	32,463	116,791

Tabelle A31: Shapiro-Wilk-Test – auf Basis VEGF ELISA Ergebnissen Tabelle A6-A11, Ermittlung von Mittelwert, Std.-Abw., Minimum, Maximum, Perzentile (25/50/75), bezugnehmende Wertdarstellung pg/ml (VEGF). Ergebnissanzahl N=9

	Deskriptive Statistiken											
								Perzentile				
								50.				
LPS / Blocker		Ν	Mittelwert	StdAbw.	Minimum	Maximum	25.	(Median)	75.			
ohne LPS	TSP-	9	174,120	198,560	28,999	567,327	34,199	68,358	353,874			
	1/21%O2/Col1											
	TSP-1/3%O2/Col1	9	137,924	139,231	26,626	399,521	44,624	57,954	268,294			
	TSP-1/3%O2/control	9	81,895	89,507	10,241	249,556	17,120	33,945	168,094			
mit LPS	TSP-	9	192,802	209,475	39,438	493,054	52,717	56,533	461,003			
	1/21%O2/Col1											
	TSP-1/3%O2/Col1	9	198,615	221,902	45,756	596,868	49,852	66,167	428,512			
	TSP-1/3%O2/control	9	73,957	74,776	12,385	230,888	16,394	39,166	131,152			
mit LPS und	TSP-	9	178,371	200,415	32,541	467,381	38,686	54,600	433,282			
Blocker	1/21%O2/Col1											
	TSP-1/3%O2/Col1	9	157,258	174,364	33,278	436,210	39,751	41,600	363,796			
	TSP-1/3%O2/control	9	61,914	57,235	11,694	164,920	23,858	33,164	113,184			
Blocker	TSP-	9	165,245	199,864	20,404	538,818	23,262	53,076	358,625			
	1/21%O2/Col1											
	TSP-1/3%O2/Col1	9	134,767	146,292	31,298	366,770	32,887	44,421	309,052			
	TSP-1/3%O2/control	9	37,998	29,680	8,600	100,371	19,034	25,113	60,383			

Tabelle A32: Shapiro-Wilk-Test – auf Basis TSP-1 ELISA Ergebnissen Tabelle A13-18, Ermittlung von Mittelwert, Std.-Abw., Minimum, Maximum, Perzentile (25/50/75), bezugnehmende Wertdarstellung ng/ml (VEGF). Ergebnissanzahl N=9

Kruskal-Wallis-Test VEGF/TSP-1

	Ränge		
LPS / Blocker		Ν	Mittlerer Rang
VEGF/21%O ₂ /Col1	ohne LPS	9	18,61
	mit LPS	9	17,28
	mit LPS und Blocker	9	19,11
	Blocker	9	19,00
	Gesamt	36	
VEGF/3%O ₂ /Col1	ohne LPS	9	19,00
	mit LPS	9	16,33
	mit LPS und Blocker	9	18,89
	Blocker	9	19,78
	Gesamt	36	
VEGF/3%O ₂ /control	ohne LPS	9	18,00
	mit LPS	9	14,67
	mit LPS und Blocker	9	21,22
	Blocker	9	20,11
	Gesamt	36	
Statis	tik für Test ^{a,b}		
	VEGF/21%O2/Col1	VEGF/3%O2/Col1	VEGF/3%O2/control
Kruskal-Wallis H	0,173	0,546	2,023
df	3	3	3
Asymptotische Signifikanz	0,982	0,909	0,568

a. Kruskal-Wallis-Test b. Gruppenvariable: LPS / Blocker Tabelle A33: Kruskal-Wallis-Test VEGF ELISA (p≥0.05) Rangermittlung

	Ränge		
LPS / Blocker		Ν	Mittlerer Rang
TSP-1/21%O ₂ /Col1	ohne LPS	9	18,78
	mit LPS	9	21,44
	mit LPS und Blocker	9	18,00
	Blocker	9	15,78
	Gesamt	36	
TSP-1/3%O ₂ /Col1	ohne LPS	9	19,56
	mit LPS	9	23,56
	mit LPS und Blocker	9	16,67
	Blocker	9	14,22
	Gesamt	36	
TSP-1/3%O ₂ /control	ohne LPS	9	19,56
	mit LPS	9	19,78
	mit LPS und Blocker	9	19,56
	Blocker	9	15,11
	Gesamt	36	
	Statistik für Test ^{a,b}		
	TSP1/21%O2/Col1	TSP1/3%O2/Col1	TSP1/3%O2/control
Kruskal-Wallis H	1,330	3,919	1,244
df	3	3	3
Asymptotische Signifikanz	0,722	0,270	0,742

a. Kruskal-Wallis-Test b. Gruppenvariable: LPS / Blocker

Tabelle A34: Kruskal-Wallis-Test TSP-1 ELISA (p≥0.05) Rangermittlung
Friedmann-Test VEGF/TSP-1

	Ränge			Ränge	
LPS / Blocker		Mittlerer Rang	LPS / Blocker		Mittlerer Rang
ohne LPS	VEGF/21%O2/Col1	1,44	ohne LPS	TSP-1/21%O2/Col1	2,11
	VEGF/3%O2/Col1	2,89		TSP-1/3%O2/Col1	2,33
	VEGF/3%O ₂ /control	1,67		TSP-1/3%O2/control	1,56
mit LPS	VEGF/21%O2/Col1	1,89	mit LPS	TSP-1/21%O2/Col1	2,33
	VEGF/3%O ₂ /Col1	2,56		TSP-1/3%O2/Col1	2,44
	VEGF/3%O ₂ /control	1,56		TSP-1/3%O2/control	1,22
mit LPS und	VEGF/21%O2/Col1	1,78	mit LPS und	TSP-1/21%O2/Col1	2,33
Blocker	VEGF/3%O ₂ /Col1	2,56	Blocker	TSP-1/3%O2/Col1	2,44
	VEGF/3%O ₂ /control	1,67		TSP-1/3%O2/control	1,22
Blocker	VEGF/21%O2/Col1	1,00	Blocker	TSP-1/21%O2/Col1	2,33
	VEGF/3%O2/Col1	2,78		TSP-1/3%O2/Col1	2,44
	VEGF/3%O ₂ /control	2,22		TSP-1/3%O2/control	1,22

Tabelle A35: Friedmann-Test VEGF Rangermittlung

	Statistik für Test ^a			Statistik für Test ^a	
ohne LPS	Ν	9	ohne LPS	Ν	9
	Chi-Quadrat	10,889		Chi-Quadrat	2,889
	df	2		df	2
	Asymptotische Signifikanz	0,004		Asymptotische Signifikanz	0,236
mit LPS	Ν	9	mit LPS	Ν	9
	Chi-Quadrat	4,667		Chi-Quadrat	8,222
	df	2		df	2
	Asymptotische Signifikanz	0,097		Asymptotische	0,016
				Signifikanz	
mit LPS und	Ν	9	mit LPS und	Ν	9
Blocker	Chi-Quadrat	4,222	Blocker	Chi-Quadrat	8,222
	df	2		df	2
	Asymptotische Signifikanz	0,121		Asymptotische	0,016
				Signifikanz	
Blocker	Ν	9	Blocker	N	9
	Chi-Quadrat	14,889		Chi-Quadrat	8,222
	df	2		df	2
	Asymptotische Signifikanz	0,001		Asymptotische Signifikanz	0,016

Tabelle A36: Friedmann-Test VEGF Signifikanzberechnung

Wilcoxon-Test VEGF/TSP-1

	Ränge				
				Mittlerer	
LPS / Blocker			Ν	Rang	Rangsumme
ohne LPS	VEGF/3%O ₂ /Col1 -	Negative Ränge	0 ^a	0,00	0,00
	VEGF/21%O2/Col1	Positive Ränge	9 ^b	5,00	45,00
		Bindungen	0°		
		Gesamt	9		
Blocker	VEGF/3%O ₂ /Col1 -	Negative Ränge	0^{a}	0,00	0,00
	VEGF/21%O2/Col1	Positive Ränge	9 ^b	5,00	45,00
		Bindungen	$0^{\rm c}$		
		Gesamt	9		

a. VEGF/3%O₂/Col1 < VEGF/21%O₂/Col1 b. VEGF/3%O₂/Col1 > VEGF/21%O₂/Col1 c. VEGF/3%O₂/Col1 = VEGF/21%O₂/Col1

Tabelle A37: Wilcoxon-Test VEGF

	Ränge				
				Mittlerer	
LPS / Blocker			Ν	Rang	Rangsumme
ohne LPS	VEGF/3%O2/control -	Negative Ränge	4 ^a	2,50	10,00
	VEGF/21%O2/Col1	Positive Ränge	5 ^b	7,00	35,00
		Bindungen	0°		
		Gesamt	9		
Blocker	VEGF/3%O2/control -	Negative Ränge	0^{a}	0,00	0,00
	VEGF/21%O ₂ /Col1	Positive Ränge	9 ^b	5,00	45,00
		Bindungen	0°		
		Gesamt	9		

a. VEGF/3%O₂/control < VEGF/21%O₂/Coll b. VEGF/3%O₂/control > VEGF/21%O₂/Coll c. VEGF/3%O₂/control = VEGF/21%O₂/Coll

Tabelle A38: Wilcoxon-Test VEGF

	Ränge				
				Mittlerer	
LPS / Blocker			Ν	Rang	Rangsumme
ohne LPS	VEGF/3%O2/control -	Negative Ränge	8 ^a	5,13	41,00
	VEGF/3%O2/Col1	Positive Ränge	1 ^b	4,00	4,00
		Bindungen	0°		
		Gesamt	9		
Blocker	VEGF/3%O2/control -	Negative Ränge	7 ^a	5,71	40,00
	VEGF/3%O2/Col1	Positive Ränge	2 ^b	2,50	5,00
		Bindungen	$0^{\rm c}$		
		Gesamt	9		

a. VEGF/3%O₂/control < VEGF/3%O₂/Coll b. VEGF/3%O₂/control > VEGF/3%O₂/Coll c. VEGF/3%O₂/control = VEGF/3%O₂/Coll

Tabelle A39 .: Wilcoxon-Test VEGF

	Ränge				
				Mittlerer	
LPS / Blocker			Ν	Rang	Rangsumme
mit LPS	TSP-1/3%O ₂ /Col1 – TSP-1/	Negative Ränge	4 ^a	5,00	20,00
	21%O ₂ /Col1	Positive Ränge	5 ^b	5,00	25,00
		Bindungen	0°		
		Gesamt	9		
mit LPS und Blocker	TSP-1/3%O ₂ /Col1 – TSP-1/	Negative Ränge	4 ^a	7,00	28,00
	21%O ₂ /Col1	Positive Ränge	5 ^b	3,40	17,00
		Bindungen	0°		
		Gesamt	9		
Blocker	$TSP\text{-}1/3\%O_2/Col1 - TSP\text{-}1/$	Negative Ränge	5 ^a	5,40	27,00
	21%O ₂ /Col1	Positive Ränge	4 ^b	4,50	18,00
		Bindungen	$0^{\rm c}$		
		Gesamt	9		

a. TSP-1/3%O₂/Col1 < TSP-1/21%O₂/Col1 b. TSP-1/3%O₂/Col1 > TSP-1/21%O₂/Col1 c. TSP-1/3%O₂/Col1 = TSP-1/21%O₂/Col1

Tabelle A40: Wilcoxon-Test TSP-1

	Ränge				
				Mittlerer	
LPS / Blocker			Ν	Rang	Rangsumme
mit LPS	TSP-1/3%O2/control - TSP-	Negative Ränge	8 ^a	5,50	44,00
	1/21%O2/Col1	Positive Ränge	1 ^b	1,00	1,00
		Bindungen	0°		
		Gesamt	9		
mit LPS und Blocker	TSP-1/3%O2/control - TSP-	Negative Ränge	8 ^a	5,38	43,00
	1-/ 21%O2/Col1	Positive Ränge	1 ^b	2,00	2,00
		Bindungen	$0^{\rm c}$		
		Gesamt	9		
Blocker	TSP-1/3%O ₂ /control – TSP-	Negative Ränge	7 ^a	5,71	40,00
	1/ 21%O ₂ /Col1	Positive Ränge	2 ^b	2,50	5,00
		Bindungen	0°		
		Gesamt	9		

a. TSP-1/3%O₂/control < TSP-1/21%O₂/Col1 b. TSP-1/3%O₂/control > TSP-1/21%O₂/Col1 c. TSP-1/3%O₂/control = TSP-1/21%O₂/Col1

Tabelle A41: Wilcoxon-Test TSP-1

	Ränge				
				Mittlerer	
LPS / Blocker			Ν	Rang	Rangsumme
mit LPS	TSP-1/3%O2/control - TSP-	Negative Ränge	8 ^a	5,50	44,00
	1/3%O ₂ /Col1	Positive Ränge	1 ^b	1,00	1,00
		Bindungen	0^{c}		
		Gesamt	9		
mit LPS und Blocker	TSP-1/3%O2/control – TSP-	Negative Ränge	8 ^a	5,50	44,00
	1/3%O2/Col1	Positive Ränge	1 ^b	1,00	1,00
		Bindungen	0°		
		Gesamt	9		
Blocker	TSP-1/3%O2/control – TSP-	Negative Ränge	9 ^a	5,00	45,00
	1/3%O ₂ /Col1	Positive Ränge	0 ^b	0,00	0,00
		Bindungen	0°		
		Gesamt	9		

a. TSP-1/3%O₂/control < TSP-1/3%O₂/Col1 b. TSP-1/3%O₂/control > TSP-1/3%O₂/Col1 c. TSP-1/3%O₂/control = TSP-1/3%O₂/Col1

Tabelle A42: Wilcoxon-Test TSP-1

Shapiro-Wilk Test IL8/CCL5

Deskriptive Statistiken										
Perzentile										
								50.		
LPS / Blocker		Ν	Mittelwert	StdAbw.	Minimum	Maximum	25.	(Median)	75.	
ohne LPS	IL-8/21%O2/Col1	8	60,13	71,42	2,80	168,00	5,39	13,77	138,00	
	IL-8/3%O2/Col1	8	161,29	160,26	4,33	361,59	11,54	112,24	333,45	
	IL-8/3%O2/control	8	352,64	327,06	2,03	820,58	46,68	223,24	691,44	
mit LPS	IL-8/21%O2/Col1	9	1258,00	1065,96	300,54	2823,17	346,14	647,28	2512,56	
	IL-8/3%O2/Col1	9	1708,86	1607,95	407,64	3948,51	455,58	823,48	3779,63	
	IL-8/3%O2/control	9	1161,46	1226,40	275,08	3249,76	340,04	392,38	2531,46	
mit LPS und	IL-8/21%O2/Col1	9	1490,53	1318,50	455,54	3420,30	521,34	724,99	3148,84	
Blocker	IL-8/3%O2/Col1	9	1897,60	1659,73	575,76	4247,00	588,18	981,78	4014,55	
	IL-8/3%O2/control	9	1509,79	1397,28	286,74	3665,16	454,83	712,61	3172,51	
Blocker	IL-8/21%O2/Col1	9	68,96	85,41	3,56	193,34	7,77	18,44	176,99	
	IL-8/3%O2/Col1	9	172,47	215,48	10,20	512,10	20,12	38,05	429,83	
	IL-8/3%O2/control	9	278,17	214,95	9,95	643,48	41,46	298,85	424,27	

Tabelle A43: Shapiro-Wilk-Test auf Basis IL-8 ELISA Ergebnissen Tabelle A20-A25 Ermittlung von Mittelwert, Std.-Abw., Minimum, Maximum, Perzentile (25/50/75)

	Deskriptive Statistiken								
Perzentile									
				Std				50.	
LPS / Blocker		Ν	Mittelwert	Abw.	Minimum	Maximum	25.	(Median)	75.
ohne LPS	CCL5/21%O2/Col1	6	91,501	98,551	-2,454	192,398	-1,203	85,843	189,224
	CCL5/3%O2/Col1	6	294,066	103,056	151,019	381,076	172,734	340,609	373,602
	CCL5/3%O2/control	6	128,206	117,439	-5,844	267,847	6,287	128,532	246,843
mit LPS	CCL5/21%O2/Col1	6	494,493	184,092	318,864	788,976	345,108	443,599	660,791
	CCL5/3%O2/Col1	6	1351,033	1072,265	300,641	2502,192	381,341	1304,347	2340,372
	CCL5/3%O2/control	6	221,123	119,110	97,077	400,973	121,500	199,620	325,097
mit LPS und	CCL5/21%O2/Col1	6	644,970	353,192	311,446	1133,324	330,017	586,141	970,751
Blocker	CCL5/3%O2/Col1	6	1326,833	1001,623	302,109	2513,979	418,957	1284,097	2217,600
	CCL5/3%O2/control	6	205,843	120,393	20,856	344,469	88,079	232,522	306,770
Blocker	CCL5/21%O2/Col1	6	99,130	111,176	-5,796	233,344	-4,201	91,643	199,047
	CCL5/3%O2/Col1	6	318,990	116,696	207,497	447,357	210,827	304,674	440,189
	CCL5/3%O2/control	6	118,721	132,771	-6,985	270,340	-1,015	108,429	240,936

Tabelle A44: Shapiro-Wilk-Test auf Basis CCL5 ELISA Tabelle xy Ermittlung von Mittelwert, Std.-Abw., Minimum, Maximum, Perzentile (25/50/75)

Kruskal-Wallis Test IL-8/CCL5

Ränge						
LPS / Blocker		Ν	Mittlerer Rang			
IL-8/21%O2/Col1	ohne LPS	8	7,88			
	mit LPS	9	25,33			
	mit LPS und Blocker	9	27,67			
	Blocker	9	10,00			
	Gesamt	35				
IL-8/3%O2/Col1	ohne LPS	8	8,50			
	mit LPS	9	24,56			
	mit LPS und Blocker	9	27,78			
	Blocker	9	10,11			
	Gesamt	35				
IL-8/3%O2/control	ohne LPS	8	12,88			
	mit LPS	9	20,22			
	mit LPS und Blocker	9	25,89			
	Blocker	9	12,44			
	Gesamt	35				

Tabelle A45: Kruskal-Wallis Test IL-8 ELISA Rangermittlung

Statistik für Test ^{a,b}								
	IL-8/21%O2/Col1	IL-8/3%O2/Col1	IL-8/3%O2/control					
Kruskal-Wallis H	25,915	24,089	10,404					
df	3	3	3					
Asymptotische Signifikanz	0,000	0,000	0,015					

a. Kruskal-Wallis-Test b. Gruppenvariable: LPS / Blocker

Tabelle A46: Kruskal-Wallis-Test zu IL-8 (p<= 0.05) Rangermittlung

Ränge					
LPS / Blocker		Ν	Mittlerer Rang		
CCL5/21%O2/Col1	ohne LPS	6	6,83		
	mit LPS	6	18,00		
	mit LPS und Blocker	6	19,00		
	Blocker	6	6,17		
	Gesamt	24			
CCL5/3%O2/Col1	ohne LPS	6	6,83		
	mit LPS	6	16,50		
	mit LPS und Blocker	6	17,50		
	Blocker	6	9,17		
	Gesamt	24			
CCL5/3%O ₂ /control	ohne LPS	6	10,17		
	mit LPS	6	15,50		
	mit LPS und Blocker	6	14,83		
	Blocker	6	9,50		
	Gesamt	24			

Tabelle A47: Kruskal-Wallis Test CCL5 ELISA Rangermittlung

Statistik für Test ^{a,b}						
CCL5/21%O ₂ /Col1 CCL5/3%O ₂ /Col1 CCL5/3%O ₂ /control						
Kruskal-Wallis H	17,367	10,107	3,467			
df	3	3	3			
Asymptotische Signifikanz 0,001 0,018						

a. Kruskal-Wallis-Test b. Gruppenvariable: LPS / Blocker

Tabelle A48: Kruskal-Wallis-Test zu CCL5 (p<= 0.05) Rangermittlung

Mann-Whitney-Test IL-8/CCL5

LPS / Blocker		N	Mittlerer Rang	Rangsumme
IL-8/21%O2/Col1	ohne LPS	8	4,50	36,00
	mit LPS	9	13,00	117,00
	Gesamt	17		
IL-8/3%O2/Col1	ohne LPS	8	4,50	36,00
	mit LPS	9	13,00	117,00
	Gesamt	17		
IL-8/3%O2/control	ohne LPS	8	6,75	54,00
	mit LPS	9	11,00	99,00
	Gesamt	17		

Tabelle A49.1.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei IL-8 Berechnungsgrundlage

LPS / Blocker		N	Mittlerer Rang	Rangsumme
CCL5/21%O2/Col1	ohne LPS	6	3,50	21,00
	mit LPS	6	9,50	57,00
	Gesamt	12		
CCL5/3%O2/Col1	ohne LPS	6	4,17	25,00
	mit LPS	6	8,83	53,00
	Gesamt	12		

Tabelle A50.1.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei CCL5 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
IL-8/21%O2/Col1	ohne LPS	8	4,50	36,00
	mit LPS und Blocker	9	13,00	117,00
	Gesamt	17		
IL-8/3%O2/Col1	ohne LPS	8	4,50	36,00
	mit LPS und Blocker	9	13,00	117,00
	Gesamt	17		
IL-8/3%O2/control	ohne LPS	8	6,13	49,00
	mit LPS und Blocker	9	11,56	104,00
	Gesamt	17		

Tabelle A49.2.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei IL-8 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
CCL5/21%O2/Col1	ohne LPS	6	3,50	21,00
	mit LPS und Blocker	6	9,50	57,00
	Gesamt	12		
CCL5/3%O2/Col1	ohne LPS	6	4,17	25,00
	mit LPS und Blocker	6	8,83	53,00
	Gesamt	12		

Tabelle A50.2.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei CCL5 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
IL-8/21%O2/Col1	ohne LPS	8	7,88	63,00
	Blocker	9	10,00	90,00
	Gesamt	17		
IL-8/3%O2/Col1	ohne LPS	8	8,50	68,00
	Blocker	9	9,44	85,00
	Gesamt	17		
IL-8/3%O2/control	ohne LPS	8	9,00	72,00
	Blocker	9	9,00	81,00
	Gesamt	17		

Tabelle A49.3.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei IL-8 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
CCL5/21%O2/Col1	ohne LPS	6	6,83	41,00
	Blocker	6	6,17	37,00
	Gesamt	12		
CCL5/3%O2/Col1	ohne LPS	6	5,50	33,00
	Blocker	6	7,50	45,00
	Gesamt	12		

Tabelle A50.3.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei CCL5 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
IL-8/21%O2/Col1	mit LPS	9	8,33	75,00
	mit LPS und Blocker	9	10,67	96,00
	Gesamt	18		
IL-8/3%O2/Col1	mit LPS	9	8,22	74,00
	mit LPS und Blocker	9	10,78	97,00
	Gesamt	18		
IL-8/3%O2/control	mit LPS	9	7,67	69,00
	mit LPS und Blocker	9	11,33	102,00
	Gesamt	18		

Tabelle A49.4.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei IL-8 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
CCL5/21%O2/Col1	mit LPS	6	6,00	36,00
	mit LPS und Blocker	6	7,00	42,00
	Gesamt	12		
CCL5/3%O2/Col1	mit LPS	6	6,33	38,00
	mit LPS und Blocker	6	6,67	40,00
	Gesamt	12		

Tabelle A50.4.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei CCL5 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
IL-8/21%O2/Col1	mit LPS	9	14,00	126,00
	Blocker	9	5,00	45,00
	Gesamt	18		
IL-8/3%O2/Col1	mit LPS	9	13,33	120,00
	Blocker	9	5,67	51,00
	Gesamt	18		
IL-8/3%O2/control	mit LPS	9	11,56	104,00
	Blocker	9	7,44	67,00
	Gesamt	18		

Tabelle A49.5.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei IL-8 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
CCL5/21%O2/Col1	mit LPS	6	9,50	57,00
	Blocker	6	3,50	21,00
	Gesamt	12		
CCL5/3%O2/Col1	mit LPS	6	8,33	50,00
	Blocker	6	4,67	28,00
	Gesamt	12		

Tabelle A50.5.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei CCL5 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
IL-8/21%O2/Col1	mit LPS und Blocker	9	14,00	126,00
	Blocker	9	5,00	45,00
	Gesamt	18		
IL-8/3%O2/Col1	mit LPS und Blocker	9	14,00	126,00
	Blocker	9	5,00	45,00
	Gesamt	18		
IL-8/3%O2/control	mit LPS und Blocker	9	13,00	117,00
	Blocker	9	6,00	54,00
	Gesamt	18		

Tabelle A49.6.: Mann-Whitney-Tests (Paarvergleiche) zum LPS Vergleich bei IL-8 Berechnungsgrundlage

LPS / Blocker		Ν	Mittlerer Rang	Rangsumme
CCL5/21%O2/Col1	mit LPS und Blocker	6	9,50	57,00
	Blocker	6	3,50	21,00
	Gesamt	12		
CCL5/3%O2/Col1	mit LPS und Blocker	6	9,00	54,00
	Blocker	6	4,00	24,00
	Gesamt	12		

Tabelle A50.6.: Mann-Whitney-Test (Paarvergleiche) zum LPS Vergleich bei CCL5 Berechnungsgrundlage

Friedmann-Test IL8/CCL5

Ränge				
LPS / Blocker		Mittlerer Rang		
ohne LPS	IL8/21%O2/Col1	1,25		
	IL-8/3%O2/Col1	2,63		
	IL-8/3%O ₂ /control	2,13		
mit LPS	IL-8/21%O2/Col1	1,67		
	IL-8/3%O ₂ /Col1	2,89		
	IL-8/3%O ₂ /control	1,44		
mit LPS und	IL-8/21%O ₂ /Col1	1,44		
Blocker	IL-8/3%O2/Col1	3,00		
	IL-8/3%O ₂ /control	1,56		
Blocker	IL-8/21%O ₂ /Col1	1,00		
	IL-8/3%O ₂ /Col1	2,44		
	IL-8/3%O ₂ /control	2,56		
Tabelle A51: Frie	dman-Test für IL-8			

Ränge				
LPS / Blocker		Mittlerer Rang		
ohne LPS	CCL5/21%O2/Col1	1,33		
	CCL5/3%O2/Col1	3,00		
	CCL5/3%O ₂ /control	1,67		
mit LPS	CCL5/21%O2/Col1	2,00		
	CCL5/3%O2/Col1	2,83		
	CCL5/3%O ₂ /control	1,17		
mit LPS und	CCL5/21%O2/Col1	2,00		
Blocker	CCL5/3%O2/Col1	2,67		
	CCL5/3%O ₂ /control	1,33		
Blocker	CCL5/21%O2/Col1	1,33		
	CCL5/3%O2/Col1	3,00		
	CCL5/3%O ₂ /control	1,67		

Tabelle A52: Friedman-Test für CCL5

Wilcoxon-Test IL-8/CCL5

Ränge						
	Mittlerer					
LPS / Blocke	r		Ν	Rang	Rangsumme	
ohne LPS	IL-8/3%O2/Col1 – IL-8/21%O2/Col1	Negative Ränge	0 ^a	0,00	0,00	
		Positive Ränge	8 ^b	4,50	36,00	
		Bindungen	0°			
		Gesamt	8			
mit LPS	IL-8/3%O2/Col1 – IL-8/21%O2/Col1	Negative Ränge	1 ^a	6,00	6,00	
		Positive Ränge	8 ^b	4,88	39,00	
		Bindungen	0°			
		Gesamt	9			
mit LPS und	IL-8/3%O2/Col1 – IL-8/21%O2/Col1	Negative Ränge	0^{a}	0,00	0,00	
Blocker		Positive Ränge	9 ^b	5,00	45,00	
		Bindungen	$0^{\rm c}$			
		Gesamt	9			
Blocker	IL-8/3%O ₂ /Col1 – IL-8/21%O ₂ /Col1	Negative Ränge	0^{a}	0,00	0,00	
		Positive Ränge	9 ^b	5,00	45,00	
		Bindungen	0 ^c			
		Gesamt	9			

				Mittlerer	
LPS / Blocke	r		N	Rang	Rangsumme
ohne LPS	IL-8/3%O2/control-IL-8/21%O2/Col1	Negative Ränge	2 ^a	1,50	3,00
		Positive Ränge	6 ^b	5,50	33,00
		Bindungen	0°		
		Gesamt	8		
mit LPS	IL-8/3%O2/control - IL-8/21%O2/Col1	Negative Ränge	5ª	5,20	26,00
		Positive Ränge	4 ^b	4,75	19,00
		Bindungen	0°		
		Gesamt	9		
mit LPS	IL-8/3%O2/control-IL-8/21%O2/Col1	Negative Ränge	4 ^a	4,75	19,00
und Blocker		Positive Ränge	5 ^b	5,20	26,00
		Bindungen	0°		
		Gesamt	9		
Blocker	$IL-8/3\%O_2/control-IL-8/21\%O_2/Col1$	Negative Ränge	0 ^a	0,00	0,00
		Positive Ränge	9 ^b	5,00	45,00
		Bindungen	0°		
		Gesamt	9		

a. IL-8/3%O₂/control < IL-8/21%O₂/Col1 b. IL-8/3%O₂/control > IL-8/21%O₂/Col1 c. IL-8/3%O₂/control = IL-8/21%O₂/Col1

Tabelle A54: Wilcoxon-Test IL-8

LPS / Blocker	r		N	Mittlerer Rang	Rangsumme
ohne LPS	IL-8/3%O2/control-IL-8/3%O2/Col1	Negative Ränge	5 ^a	3,00	15,00
		Positive Ränge	3 ^b	7,00	21,00
		Bindungen	0°		
		Gesamt	8		
mit LPS	IL-8/3%O2/control-IL-8/3%O2/Col1	Negative Ränge	9 ^a	5,00	45,00
		Positive Ränge	0 ^b	0,00	0,00
		Bindungen	0^{c}		
		Gesamt	9		
mit LPS und	IL-8/3%O2/control-IL-8/3%O2/Col1	Negative Ränge	9 ^a	5,00	45,00
Blocker		Positive Ränge	0^{b}	0,00	0,00
		Bindungen	0°		
		Gesamt	9		
Blocker	IL-8/3%O2/control-IL-8/3%O2/Col1	Negative Ränge	4 ^a	4,00	16,00
		Positive Ränge	5 ^b	5,80	29,00
		Bindungen	$0^{\rm c}$		
		Gesamt	9		

 $\label{eq:linear} \hline $$ a. IL-8/3\%O_2/Coll$ b. IL-8/3\%O_2/Coll$ b. IL-8/3\%O_2/Coll$ c. IL-8/3\%O_2/Coll$ c. IL-8/3\%O_2/Coll$ c. IL-8/3\%O_2/Coll$ Tabelle A55: Wilcoxon-Test IL-8$$

Ränge						
	Mittlerer					
LPS / Block	er		Ν	Rang	Rangsumme	
ohne LPS	CCL5/3%O2/Col1 -	Negative Ränge	0 ^a	0,00	0,00	
	CCL5/21%O2/Col1	Positive Ränge	6 ^b	3,50	21,00	
		Bindungen	0°			
		Gesamt	6			
mit LPS	CCL5/3%O2/Col1 -	Negative Ränge	1ª	1,00	1,00	
	CCL5/21%O2/Col1	Positive Ränge	5 ^b	4,00	20,00	
		Bindungen	0°			
		Gesamt	6			
Blocker	CCL5/3%O2/Col1 -	Negative Ränge	0 ^a	0,00	0,00	
	CCL5/21%O ₂ /Col1	Positive Ränge	6 ^b	3,50	21,00	
		Bindungen	0°			
		Gesamt	6			

a. CCL5/3%O₂/Col1 < CCL5/21%O₂/Col1 b. CCL5/3%O₂/Col1 > CCL5/21%O₂/Col1 c. CCL5/3%O₂/Col1 = CCL5/21%O₂/Col1

Tabelle A56: Wilcoxon-Test CCL5

Ränge Mittlerer Rang LPS / Blocker Rangsumme ohne LPS CCL5/3%O2/control -Negative Ränge 2^a 2,00 4,00 CCL5/21%O2/Col1 Positive Ränge 4^b 4,25 17,00 0^c Bindungen Gesamt 6 mit LPS CCL5/3%O2/control -19,00 Negative Ränge 5^a 3,80 1^{b} CCL5/21%O2/Col1 Positive Ränge 2,00 2,00 0^{c} Bindungen Gesamt 6 Blocker CCL5/3%O2/control -2^a 5,00 Negative Ränge 2,50 CCL5/21%O2/Col1 4^b Positive Ränge 4,00 16,00 $0^{\rm c}$ Bindungen Gesamt 6

a. CCL5/3%O₂/control < CCL5/21%O₂/Col1 b. CCL5/3%O₂/control > CCL5/21%O₂/Col1 c. CCL5/3%O₂/control = CCL5/21%O₂/Col1

Tabelle A57: Wilcoxon-Test CCL5

	Ränge				
				Mittlerer	
LPS / Blocke	r		Ν	Rang	Rangsumme
ohne LPS	CCL5/3%O2/control - CCL5/3%O2/Col1	Negative Ränge	6 ^a	3,50	21,00
		Positive Ränge	0^{b}	0,00	0,00
		Bindungen	0^{c}		
		Gesamt	6		
mit LPS	CCL5/3%O2/control - CCL5/3%O2/Col1	Negative Ränge	6 ^a	3,50	21,00
		Positive Ränge	0^{b}	0,00	0,00
		Bindungen	0^{c}		
		Gesamt	6		
Blocker	CCL5/3%O2/control - CCL5/3%O2/Col1	Negative Ränge	6 ^a	3,50	21,00
		Positive Ränge	0 ^b	0,00	0,00
		Bindungen	0°		
		Gesamt	6		

a. CCL5/3%O2/control < CCL5/3%O2/Coll b. CCL5/3%O2/control > CCL5/3%O2/Coll c. CCL5/3%O2/control = CCL5/3%O2/Coll Tabelle A58: Wilcoxon-Test CC

10. Danksagung

Einen außerordentlichen Dank möchte ich an meinen Doktorvater Univers.-Prof. A. Schilling richten, der mich in jedem Augenblick meiner Doktorarbeit gänzlich unterstützt, gefördert, gefordert und motiviert hat. Herzlichsten Dank für die tolle Betreuung, der damit verbundenen Arbeit sowohl wissenschaftlich, zeitlich, örtlich, gedanklich und persönlich. Ich danke Ihnen mit Stolz, dass ich meine wissenschaftlichen Arbeiten bei Ihnen durchführen durfte.

Ausdrücklich danken möchte ich auch den anderen Personen die mich auf diesem Wege unterstützt und begleitet haben. Dieser Dank gilt Univers.-Prof. H.-G. Machens, meinem Betreuer PD H. Hadjipanayi sowie ärztlichen Kolleginnen/Kollegen und den Mitarbeitern des Labors der Technischen Universität München. Vielen Dank für die Möglichkeit der Nutzung der Laboratorien, die Unterstützung, das Erlernen und die Durchführung zum wissenschaftlichen Arbeiten, sodass ich mit Freude und Neugierde forschen und mein Wissen zu jeder Tages- und Nachtzeit erweitern konnte. Vielen Dank für das in mich gesetzte Vertrauen.

Bedanken möchte ich mich ebenso bei Prof. K. Brandenburg, der uns den LPS Blocker zu Verfügung gestellt hat. Diese wissenschaftliche Zusammenarbeit und gegenseitige Unterstützung zeugen von Freude und Wissensdurst an medizinischem Fortschritt. Denn nur mit Zusammenarbeit, Wissensaustausch und gegenseitigem Vertrauen schaffen wir es den Horizont der Wissenschaft und Forschung wachsen zu lassen.

Ein besonderer Dank gilt ebenso meiner Familie und meinen Freunden. Hier möchte ich im Besonderen meinen geliebten Ehemann, meine Mutter und meinen Vater nennen, die immer mit unterstützenden Worten an meiner Seite standen, mich motiviert haben, geduldig waren und mich in schwierigen Zeiten neue Kraft sammeln ließen. Vielen Dank für Alles! An meine Kinder gerichtet - vielen Dank an Euch, ihr habt mir gezeigt was wirklich wichtig im Leben ist -.

Mit einem Zitat, das ich an alle meine zukünftigen Kolleginnen und Kollegen richte, möchte ich diese Arbeit gerne beenden:

> "In der Mitte von Schwierigkeiten liegen die Möglichkeiten" - Albert Einstein -