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Vollständiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universität München zur Erlangung des akademischen Grades einer

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr.-Ing. habil. Florian Seitz
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Abstract

Earth Observation (EO) is decisive to monitor and assess the climate change via remote
sensing technologies. The satellite-based sensors help to elucidate the factors affecting the
Earth’s atmosphere with atmospheric composition sensors (ACS). The latter detect and
record the spectral information and then, by means of radiative transfer models (RTMs),
the composition of the atmosphere can be retrieved in a subsequent step.

The ultimate generation of ACS have achieved extraordinary spatial, temporal and spec-
tral resolutions. Furthermore, the so called hyperspectral sensors contain a vast amount of
high spectral resolution data. The challenge of processing hyperspectral data is twofold:
on the one hand, it is crucial to boost the performance of the processing algorithms in
order to achieve near-real-time (NRT) requirements. With the aim of obtaining high
performance computing (HPC), dimensionality reduction or acceleration techniques are
employed. On the other hand, after applying an acceleration technique, the accuracy
of the retrieved atmospheric parameters should be maintained over the spectral range.
The accurate information at fine spectral resolution is crucial to characterize the spectral
signatures and hence, to retrieve the truth atmospheric composition.

Through an in-depth investigation of the existing acceleration techniques for RTM com-
putations, this thesis provides improvements to several aspects of well-established acce-
leration techniques and the design of new methods to boost the processing algorithms
performance of benchmark hyperspectral RTMs. A widely-employed dimensionality re-
duction technique is the principal component analysis (PCA) for forward simulations of
the RTMs. In this thesis, a hybrid PCA technique is tested for ultraviolet (UV) region for
the TROPOMI instrument. In particular, PCA is applied to the input and output data
considering machine learning (ML) techniques to process the RTMs, providing a fast and
accurate implementation to enhance the hyperspectral processing chain.

The major contribution of this thesis is the design of a new acceleration technique
for hyperspectral RTMs called ”Cluster Low-Streams Regression” (CLSR) method. It is
based on the reduction of computationally expensive simulations of the fine resolution
RTM. Furthermore, the CLSR method is applied to important trace gases such as for
O3 in the Hartley-Huggins band, the O2 A- band near 765 nm, the near-infrared water
vapour bands (ρ-σ-τ - and the 0.8 µm bands) and the CO2 weak band for different types
of aerosols and clouds, achieving performance enhancements of 1-3 orders of magnitude
which clearly outperform other benchmark acceleration techniques.

The performance enhancements for hyperspectral RTMs achieved in this dissertation of-
fer an opportunity to the scientific community, as these techniques have the potential to be
implemented in future remote sensing applications and to further optimize the algorithms
used for the whole processing chain.
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Zusammenfassung

Die Erdbeobachtung (Earth Observation, EO) stellt ein wichtiges Werkzeug dar, mit
dessen Hilfe der Klimawandel durch den Einsatz von Fernerkundungstechnologien über-
wacht und wissenschaftlich bewertet werden kann. Mit Satelliten-getragenen Instrumenten,
den sog. Atmosphärenspektrometern zur Beobachtung der Atmosphärenzusammensetzung
(Atmospheric Composition Sensors, ACS), ist es möglich, diejenigen physikalischen Größen
näher zu beleuchten, die einen Einfluss auf unsere Erdatmosphäre haben, da sich mit diesen
Instrumenten die spektralen Signaturen im Strahlungsfeld der Atmosphäre lokalisieren
lassen. Im nachfolgenden Schritt werden dann Strahlungstransfermodelle (Radiative Trans-
fer Models, RTMs) dazu verwendet, aus diesen Beobachtungen die chemische Zusammen-
setzung der Atmosphäre extrahieren zu können.

Mit der jüngsten Generation von ACS wird inzwischen eine außerordentlich hohe räum-
liche, zeitliche und spektrale Auflösung erreicht. Ferner wird durch diese sog. hyper-
spektralen Sensoren eine gewaltige Menge an Beobachtungsdaten bereitgestellt. Somit
gibt es zwei große Herausforderungen bei der Verarbeitung dieser hyperspektralen Daten:
Einerseits ist es erforderlich, dass die Leistungsfähigkeit der Verarbeitungsalgorithmen in
einer Weise gesteigert werden kann, dass sie die Anforderungen an eine nahezu Echtzeit-
Prozessierung der Daten erfüllen können. In diesem Kontext werden im Höchstleistungs-
rechnen (High Performance Computing, HPC) Techniken der Dimensionsreduzierung oder
andere Beschleunigungstechniken verwendet. Andererseits sollte nach Anwendung einer
bestimmten Beschleunigungstechnik auch die Genauigkeit der extrahierten atmosphäri-
schen Parameter über den verfügbaren Spektralbereich möglichst erhalten bleiben. Letzt-
lich bestimmt die feine spektrale Auflösung den überhaupt extrahierbaren Informationsge-
halt, so dass einer genauen Erfassung der spektralen Signaturen eine entscheidende Rolle
für eine wahrheitsgetreue Ermittlung der Atmosphärenkomposition zukommt.

Beginnend mit einer detaillierten Gegenüberstellung der in der Literatur existieren-
den RTM-Beschleunigungsmethoden, werden in der vorliegenden Arbeit mehrere Aspek-
te von bereits etablierten Beschleunigungstechniken weiter verbessert. So werden ganz
neue Methoden entworfen, mit denen die Verarbeitungsgeschwindigkeit von Benchmark
Hyperspektral-RTMs weiter gesteigert werden kann. Eine weit verbreitete Technik zur
Dimensionsreduzierung im Kontext von RTM Vorwärtssimulationen ist die Hauptkompo-
nentenanalyse (Principal Component Analysis, PCA). In der vorliegenden Arbeit wird eine
hybride PCA-Technik zur Verwendung im ultravioletten Spektralbereich von TROPOMI
entwickelt und näher untersucht. Im Besonderen wird dabei so vorgegangen, dass die PCA
sowohl auf die Eingangs- als auch die Ausgangsdaten angewandt wird, bei gleichzeitigem
Einsatz von Techniken des maschinellen Lernens (ML) zur Verarbeitung mit den RTMs.
Auf diese Weise lässt sich sowohl eine schnelle als auch präzise Implementierung bewerk-
stelligen, mit welcher eine Leistungssteigerung der hyperspektralen Verarbeitungskette
erreicht werden kann.

Der Hauptbeitrag dieser Dissertation besteht in der Entwicklung einer neuen Beschleu-
nigungstechnik, der sogenannten ,,Cluster Low-Streams Regression ” (CLSR) Methode, die
für hyperspektrale RTMs eingesetzt werden kann. Die Methode basiert auf der Reduktion
der Berechnungszeiten für die rechenintensiven Strahlungstransfersimulationen, wie sie für
spektral fein auflösende RTMs erforderlich sind. Weiter wird die CLRS Methode auf eine
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Anzahl wichtiger Spurengase angewandt, wie z. B. für O3 in der Hartley-Huggins-Bande,
die O2-A-Bande bei 765 nm, die Nahinfrarot-Wasserdampf-Banden (sog. ρ-σ-τ -Banden
und das 0.8 µm-Band) sowie für ein schwaches Absorptionsband von CO2, jeweils bei
Vorhandensein verschiedener Aerosol- und Wolkentypen. Es wird gezeigt, dass sich mit
der CLRS-Methode Beschleunigungsfaktoren von einer bis zu drei Größenordnungen erzie-
len lassen, wodurch andere Benchmark-Beschleunigungstechniken klar übertroffen werden.

Die in dieser Dissertation erzielten Steigerungen der Performanz für hyperspektrale
RTMs sind für die Wissenschaftsgemeinde von Interesse, da diese Techniken für zukünftige
Fernerkundungsanwendungen das Potenzial besitzen, die in der gesamten Prozessierungs-
kette verwendeten Algorithmen weiter optimieren können.
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1 Introduction

1.1 Motivation

The Earth’s atmosphere is affected by a synergy of natural phenomena and anthropogenic
actions that together form a very complex system. Human impact on the Earth’s at-
mosphere has shifted from local to global scale over the last century due to population
growth [1]. Understanding and interpreting its influences is a crucial step towards build-
ing a more sustainable future. In this endeavour, remote sensing fundamentally helps to
elucidate the factors that are affecting the Earth’s atmosphere and ultimately the climate
change. Therefore, the retrieval of atmospheric constituent’s distributions and surface
properties from surface-based, airborne and satellite remote sensing instruments plays
a vital role in monitoring the Earth’s atmosphere and understanding the chemical and
physical processes therein [2]. Accordingly, policy makers could not only establish new
environmental laws required to minimize the anthropogenic impact on the environment
and climate [3], but also obtain scientific evidence on the effectiveness of the measures.

Earth observation (EO) from space, i.e., by satellite composition sensors based remote
sensing, is fundamental for globally and continuously monitoring the atmosphere. There
are currently more than 150 EO satellites in orbit [4] carrying passive sensors. The passive
atmospheric composition sensors (ACS) detect and record the radiance that is emitted or
reflected from the Earth’s atmosphere or surface in the wide spectral region (0.3 – 3 µm).
The information about the atmosphere is then retrieved from the spectral data by using
the so called atmospheric processors, i.e., codes which are specifically designed to invert
ACS measurements that detect the uniqueness of the spectral signature. There has been
significant advances in the capabilities of the existing and new sensors based on a more
sophisticated spatial, spectral and temporal resolution [5]. In addition, the hyperspectral
sensors that combine information from several spectral bands, have improved significantly
due to the recent developments in optics sensors and measurement techniques. Therefore,
the new generation of ACS on-board EO satellites, deliver a massive amount of hyperspec-
tral data that has to be stored and analysed. For example, the TROPOsperic Monitoring
Instrument (TROPOMI) on board the Copernicus Sentinel 5 Precursor (S5P) satellite [6]
has a spatial resolution of two orders of magnitude higher, providing 21 million level 1B
(L1B) spectra per day, i.e., almost 8 milliard spectral points [7]. Therefore, extracting
the information about geophysical parameters (level-2 data) from spectral radiance distri-
butions (level-1 data) turns out to be a major computational challenge and requires high
performance computing (HPC).

The gradual increase of high resolution spectral data presents a twofold challenge. First,
that the amount of satellite data is increasing faster than the computational power [8].
Thus, new efficient techniques have to be developed for next generation atmospheric pro-
cessors to cope with these high efficiency requirements; and second, that it is crucial to
achieve the near real time (NRT) requirements for processing the hyperspectral data [9].

Radiative transfer models (RTMs) are key components of the retrieval algorithms to
process the hyperspectral data and to ultimately retrieve the atmospheric constituents
of the atmosphere. However, the application of the RTMs are the major performance
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2 1. Introduction

bottleneck in the processing chain due to the thousands of spectral lines to be retrieved.
Accurate and timely simulating of hyperspectral data is a challenging task. The simplest
manner to simulate spectra is by accounting for the fine spectral grid or the so called
line-by-line (LBL) resolution, so that afterwards the spectra are convolved with the spec-
tral response function (SRF), also referred to as slit function, obtaining smooth spectra
which does not change its shape significantly. Nevertheless, the information content of the
atmosphere decreases as the slit function becomes wider. Colosimo et al. [10] showed that
the simulations with better spectral resolution generally lead to an increase in the total
amount of information that can be retrieved. Therefore, it is crucial to be able to obtain
as higher spectral resolution data as possible in order to obtain the information about the
fine structure of the spectrum. Such high resolution satellite remote sensing observations
are extremely useful for diagnosing the impact of the atmospheric constituents on a global
scale allowing detection of small-scale sources and increasing the fraction of cloud-free
observations.

Dimensionality reduction techniques are an essential part of the big data analysis to
overcome the redundancies found in the hyperspectral data and to cope with current and
future data flows. In this regard, acceleration techniques for hyperspectral RTMs have
to be developed [11]. Essentially, these techniques do not compute spectral radiances
in a LBL manner, i.e. with a fine grid spectral resolution, but rather they take into
account the interdependency between spectral channels or group them accordingly, thereby
reducing the total number of calls to RTMs. This motivates the development of exact
and approximate RTMs endowed with acceleration techniques. Thus, the overarching
challenge of the thesis is to develop accurate and high performance RTMs which would
cope with the current operational requirements of online data processing in the context
of atmospheric retrieval codes of trace gases and cloud properties. In this line, disruptive
development poses new value-added technology to overcome the difficulties of processing
the huge amount of data with current algorithms.

1.2 Objectives

It has become a challenging issue to process the vast amount of high resolution spectral
data of the new generation of EO sensors. This thesis focuses on the enhanced implemen-
tation of hyperspectral processing algorithms in the context of high resolution spectral
remote sensing data of the atmosphere. Within this framework, the overarching goal is to
investigate several dimensionality reduction techniques for LBL RTMs in different spec-
tral regions and to devise new acceleration methods that computationally improve the
state-of-the-art techniques without losing accuracy. Towards this far reaching goal, three
essential objectives have been specified in the following:

Objective 1: Gaining an in-depth overview of the existing acceleration techniques for
RTM computations.

This goal serves to explore acceleration techniques for RTMs commonly applied for real
purposes. Furthermore, it also helps to understand the relevance of the data reduction
methods to improve the efficiency of hyperspectral processing algorithms. To accomplish
this goal, a full peer-reviewed review has been written and is presented in Appendix A.2.

Objective 2: Applying established dimensionality reduction techniques for RTM sim-
ulations and upgrade them.

This objective aims at accurately applying well-known dimensionality reduction tech-
niques such as the principal component analysis (PCA) for forward simulations of the
RTMs. The ultimate goal is to upgrade the acceleration techniques for spectral bands of



1.3 Thesis Structure 3

interest and the accurate retrieval of aerosols and clouds. This can be accomplished, for
instance, by considering the feasibility of machine learning (ML) techniques to process the
RTMs with a hybrid PCA approach. This goal helps to better enhance the hyperspectral
processing chain, which plays a vital role in HPC of the RTMs to retrieve atmospheric
constituents.

Objective 3: Devising new acceleration techniques to boost the performance of com-
puting high resolution spectral data.

This objective goes a step further in the HPC of atmospheric composition sensors with
the research of acceleration techniques for hyperspectral data. The newly devised tech-
niques ultimately help to overcome the hyperspectral data redundancies and facilitate the
fast spectral processing for different atmospheres and spectral bands. They also enrich
the classical data-driven algorithms with the implementation of more efficient and fast
techniques.

1.3 Thesis Structure

This is a cumulative dissertation which includes four full peer-reviewed research articles,
one full peer-reviewed review and one peer-reviewed conference paper:

• A. del Águila, D. S. Efremenko, V. Molina Garćıa, and J. Xu. Analysis of Two
Dimensionality Reduction Techniques for Fast Simulation of the Spectral Radiances
in the Hartley-Huggins Band. Atmosphere, 10(3):142, 2019.
doi:10.3390/atmos10030142

• A. del Águila, D. S. Efremenko, T. Trautmann. A Review of Dimensionality Reduc-
tion Techniques for Processing Hyper-Spectral Optical Signal. Light and Engineer-
ing, 27, 3, 85–98, 2019. doi: 10.33383/2019-017

• A. del Águila, D. S. Efremenko, V. Molina Garćıa, M. Y. Kataev. Cluster Low-
Streams Regression Method for Hyperspectral Radiative Transfer Computations:
Cases of O2 A- and CO2 Bands. Remote Sensing, 12(8):1250, 2020.
doi: 10.3390/rs12081250

• A. del Águila, D. S. Efremenko. The Cluster Low-Streams Regression Method for
Fast Computations of Top-of-the-Atmosphere Radiances in Absorption Bands. 30th
International Conference on Computer Graphics and Machine Vision (Graphicon
2020). Part 2, pages short25–1–short25–9, 2020. doi: 10.51130/graphicon-2020-2-4-
25

• A. del Águila, D. S. Efremenko. Accuracy Enhancement of the Two-Stream Radia-
tive Transfer Model for Computing Absorption Bands at the Presence of Aerosols.
Light and Engineering, 29, 2, 79-86, 2021. doi: 10.33383/2020-078

• A. del Águila, D. S. Efremenko. Fast Hyper-Spectral Radiative Transfer Model
Based on the Double Cluster Low-Streams Regression Method. Remote Sensing,
13(3):434, 2021. doi: 10.3390/rs13030434

As for the structure of this thesis, Chapter 2 comprises the explanation of the physical
concepts of atmospheric radiative transfer. Chapter 3 covers the state-of-the-art existing
hyperspectral RTMs related to this dissertation. Chapter 4 attains the work achieved
within this thesis by summarizing the above mentioned research items and Chapter 5



4 1. Introduction

provides a summary of achievements, an overview of challenges and future work. The
appendices contain the full-publications for which this cumulative dissertation has been
organized, the related publications in which I am co-author and the list of abbreviations
and symbols.



2 Atmospheric Radiative Transfer

Atmospheric radiative transfer (RT) is fundamental for remote sensing applications in
the EO framework. In this context, the atmospheric RT describes the propagation of
the radiance through the atmosphere by taking into account the absorption, scattering or
emission processes of the radiance with the surface and/or the atmospheric features.

In this chapter, the foundations of atmospheric RT are summarized and the current
algorithms based on the radiative transfer equation (RTE) are analyzed.

2.1 Atmospheric Absorption Bands

The solar spectrum is defined as the distribution of electromagnetic (EM) radiation emitted
by the sun as a function of the incident wavelength λ on the top-of-the-atmosphere (TOA)
[12]. As a result of any particle in motion, the particle has a kinetic energy known as
translational energy (Wtra). The averaged translational energy of a single molecule in the
three-dimensional space is equal to kBB/2 where, kB is the Boltzmann constant and B
is the absolute temperature. Thus, the molecules composed by atoms have a rotational
energy (Wrot) due to its rotation over an axis through its center of gravity. In turn, there
exists the vibrational energy (Wvib) due to the bounding forces of the atoms composing
the molecules which permit them to vibrate about their equilibrium positions. These three
energy types are quantized and it is possible for a molecule to change its energy due to a
perturbation of the electrons of which it is composed [13]. The total energy (Wtot) of a
molecule can be expressed as follows:

Wtot = Wtra +Wrot +Wvib. (2.1)

When the molecules go through transitions from energy levels, the absorption or emission
of radiation takes place. Therefore, the spectra are originated from millions of vibrating
electrons and molecules that emit and absorb EM radiation in an unique set of energy
levels. The absorption bands are areas of the EM spectrum which are absorbed by atmo-
spheric gases (see Figure 2.1) in a specific wavelength range. The EM radiance interacts
with objects such as clouds, aerosols or trace gases in an unique combination of wavelengths
λ which results in an unique spectral signature.

In sum, the atmospheric absorption bands due to electronic transitions of molecular
and atomic oxygen and ozone occur mainly in the ultraviolet (UV) region, while those due
to the vibrational and rotational transitions of triatomic molecules such as H2O, O3 and
CO2 lie in the infrared (IR) region [13]. There is also little absorption in the visible (VIS)
region of the solar spectrum.

Satellite measurements consist of acquiring the high resolution spectra of the rotational-
vibrational bands of interest. Each absorption band has thousands of absorption lines
which are investigated through the high resolution spectroscopic data or hereafter called
hyperspectral data. The fine structure of the absorption bands gives information of the
composition of the atmosphere. Therefore, it is extremely important to obtain the best
possible resolution in order not to lose information about the atmosphere’s composition.

5



6 2. Atmospheric Radiative Transfer

Figure 2.1: Diagram of the atmospheric transmission in the EM spectrum and the main absorbing
gases [14].

The form of converting spectra into atmospheric composition is by means of RTMs. De-
termining atmospheric characteristics calls for considerable understanding of radiative
transfer. In the following section, a description of the basics of radiative transfer is given.

2.2 Physical Assumptions in Radiative Transfer Theory

The RT describes the propagation of EM radiation through the atmosphere taking into
account the interactions of the radiance with the atmospheric components and the Earth
surface. The physical assumptions in RT theory were based on quantitative predictions
rather than rigorous first-principle physical concepts based on Maxwell equations. Lommel
[15] made the first treatise of RT in 1889 with a derivation of the physical assumptions
that explained the light attenuation through a medium. More recently, in the book of
Mishchenko et al. [16], the physical assumptions to RT are explained in detail. The
interpretation of the RT theory from the physical point of view is possible to be performed
in several ways (see for instance [17, 18, 19, 20, 21, 22] and references therein). The main
assumptions under which the RT theory can be applied are summarized as follows [23]:

1. The radiation is assumed to propagate in the form of rays (ray optics approximation).
Although the wave properties of the light are taken into account when considering
scattering by a single particle (e.g. aerosol particle, water droplet or number density
fluctuations).

2. The rays are assumed to arrive at a given point from different directions being totally
incoherent and can therefore be summed algebraically regardless of the phases and
interference terms.

3. The RT theory assumes the measured parameters to be spatially and timely averaged
rather than localized values.

4. Radiation has the property of ergodicity, i.e. the average over time for a specific
realisation of a random scattering process is equivalent to the ensemble average.
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5. The atmospheric medium is assumed to be composed of randomly distributed scat-
terers, while the interaction between the ray and the medium is statistically inde-
pendent of the outcome of subsequent scattering events (this is the so-called Markov
process).

Following the above physical assumptions, the radiance of the RT can be integrated
yielding the amount of transferred energy. The simplicity of these physical assumptions
for RT leads to the development of efficient numerical models to simulate the scattered
radiance. In opposition to this approach, exists the microphysical approach which consid-
ers the RT as a propagation of EM waves in the discrete medium consisting of a set of
scatterers [19, 20].

2.3 The Radiative Transfer Equation

The description of the RT phenomenon mathematically is given by the RTE which can be
regarded as a balance equation for the amount of radiant energy going through a medium
[24]. The one-dimensional RTE for the scalar radiance I in an homogeneous, isotropic
plane-parallel atmosphere reads as follows [25]:

µ
dI

dr
(r,Ω) = −kextI(r,Ω) +

ksca

4π

∫

4π
P (r,Ω,Ω′)I(r,Ω′) dΩ′, (2.2)

where Ω = (µ, ϕ) is the direction of the light with µ = cos θ the cosine of the polar angle
and ϕ the azimuthal angle; the term kext and ksca correspond with the extinction and
scattering coefficients, respectively; and P is the single scattering phase function.

For the next step, the Equation 2.2 is transformed to the optical depth (τ) space con-
sidering that it is defined as the integral of the extinction coefficient along the path of the
light ray:

τ =

∫ r

r0

kextdr
′. (2.3)

which can be visualized in Figure 2.2. Thus, taking into account that dτ = kextdr and
that the extinction coefficient is the sum of the absorption and scattering coefficients
(kext = ksca + kabs), the RTE reads as follows:

µ
dI

dτ
(τ,Ω) = −I(τ,Ω) +

ω(τ)

4π

∫

4π
P (τ,Ω,Ω′)I(τ,Ω′) dΩ′, (2.4)

where ω is the single scattering albedo (also named SSA) which relates the scattering and
extinction coefficients in the form: ω = ksca

kext
). The SSA will depend on the medium and

the scattering properties of the material with which it interacts.

2.4 Solving the Radiative Transfer Equation with the Discrete
Ordinate Method

Most of the RTMs are based on the discrete ordinate method, in which the continuous
function of angular variables (the radiance in our case) is presented as a set of values
along discrete directions (discrete ordinates). The theory of discrete ordinate models has
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Figure 2.2: Scheme of the light attenuation of the radiance passing through a medium.

been described in [26, 27]. Additionally, other studies have applied the discrete ordinate
method in combination with the small-angle approximation [28, 29, 30, 31, 32, 33], which
computes the total radiance analytically as a sum of small angle parts and numerically by
the discrete ordinate method. In this dissertation, we focus on solving the RTE with the
discrete ordinate method. The basic steps to derive a numerical solution in the framework
of discrete ordinate method can be summarized as follows:

1. Let us consider the cosine azimuthal expansion of the radiance field and the phase
function providing an equation for the azimuthal component Im(τ, µ) to factor-out
the azimuthal dependency,

I(τ,Ω) =
M∑

m=0

Im(τ, µ) cosmϕ. (2.5)

2. The radiance field is discretized in the µ-domain by considering Ndo (discrete or-
dinates) Gaussian points µ per hemisphere and corresponding weights wi, where
i = 1, ..., Ndo.

3. An inhomogeneous atmosphere is described as a system of N homogeneous layers
(see Figure 2.3): τ1 < τ2 < ... < τN+1, where τ1 = 0 and τN+1 = τs at the surface
boundary condition. A layer l is delimited above by the level τl and below by the
level τl+1. Thus, the geometrical thickness is ∆τl = τl − τl+1.

4. The RTE can be rewritten in the discrete space as a system of differential equations:

d

dτ

[
i↑m (τ)

i↓m (τ)

]
= −Aml

[
i↑m (τ)

i↓m (τ)

]
+ bml(τ), τl+1 ≤ τ ≤ τl, (2.6)

where
[
i↑↓m (τ)

]
i

= Im(τ,∓µi) are the radiance vectors in the discrete ordinate space

for the upwelling (↑) and downwelling (↓) radiances, respectively. Aml is the layer
matrix and bml is the source vector (more details can be found in [34]).

The general solution of the linear system of differential equations (Equation 2.6) is a
linear combination of all the homogeneous solutions plus the particular solutions for the
assumed sources. For a medium with multiple layers, the continuity condition is imposed
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Figure 2.3: System of N -layers for an inhomogeneous atmosphere. The blue colour of the arrows
corresponds with the upwelling direction and the red colour with the downwelling
direction at the layer boundaries.

for the radiances across the layer interfaces. An alternative method to solve the system
of differential equations is by means of the Discrete Ordinate with Matrix Exponential
(DOME) method [26]. In this case, the linear system is treated as a boundary value
problem and the layer equation can be derived for each layer. Thus, integrating Equation
2.6, we obtain the following expression which relates the radiances at the boundaries (in
the following, we have neglected the azimuthal expansion term (m) for simplicity):

[
i↑l+1

i↓l+1

]
= e−Alτ̄l

[
i↑l
i↓l

]
+ eAlτ̄l

∫ τ̄l

0
eAltbl(t)dt. (2.7)

where t is a layer coordinate defined by t = τ − τl and 0 ≤ t ≤ τ̄l. Then, by multiplying
Equation 2.7 by eAlτ̄l we obtain:

−
[

i↑l
i↓l

]
+ eAlτ̄l

[
i↑l+1

i↓l+1

]
=

∫ τ̄l

0
eAltbldt. (2.8)

In order to evaluate the terms eAlτ̄l and eAlt, the eigenvalue decomposition method can
be applied with DOME [26] by using a spectral decomposition of the layer matrix Al as:

Al = VlΛlV
−1
l , (2.9)

where Vl is the eigenvector matrix and Λl is the eigenvalue matrix for the lth layer:

Λl = diag[λl1, . . . , λlNdo
]. (2.10)

Thus, Equation 2.9 would be of the form:

eAlt = Vle
ΛltV−1

l . (2.11)

The matrix exponential (e−Alτ̄l) is called propagator because if one-point for boundary
condition is given, then the solution from the bottom to the upper boundary can be
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propagated. By applying some transformations we can obtain a ready-to-compute system
of equations, i.e. by using Equation 2.11 into 2.8 and multiplying by V−1

l on the left side
we obtain the following:

−V−1
l

[
i↑l
i↓l

]
+ eAlτ̄lV−1

l

[
i↑l+1

i↓l+1

]
=

∫ τ̄l

0
eAltV−1

l bldt. (2.12)

This equation is unstable due to the positive exponentials. Therefore, we follow [35] to
exclude the exponents with positive powers and in order to find a computationally stable
solution for a multilayer atmosphere, we apply certain boundary layer conditions:

• The boundary condition at the TOA (l = 1) states that the downwelling diffuse

radiation is absent, i.e. i↓1 = 0.

• The surface boundary condition (at l = N) states that the upwelling radiance is:

i↑N = RN i↓N + pN , (2.13)

where R and p are the reflectivity matrix and the source term, respectively.

Thus, by rearranging the terms and applying some transformations, we obtain the following
system that relates the radiances at the boundary of the layer:

[
i↑l

i↓l+1

]
=

[
R↑lT

↑
l

T↓lR
↓
l

][
i↓l

i↑l+1

]
+

[
P↑l
P↓l

]
, (2.14)

where R↑↓l , T↑↓l and P↑↓l are the reflection, transmission and source terms, respectively.
The ready-to-compute formulas can be found in [34] in terms of Vl and ∆l.

Although there are several numerical techniques to solve the RTE, we are focused on
DOME due to the following reasons:

1. Algorithms based on the discrete ordinate method are generic: DOME provides a
numerically stable solution for the arbitrary values of τ , ω and phase function.

2. It is already implemented in RT models widely used in the scientific and professional
community, such as DISORT, libRadtran, SCIATRAN, LIDORT and others.

3. The method is convenient to be used as it has only one parameter that the user can
tune (namely, Ndo).

The DOME solves the RTE and, as other solvers, its performance depends on the
number of discrete ordinates (Ndo) used. Figure 2.4 shows the computational performance
for different number of discrete ordinates. It is to be noted that the computational time
for computing the eigenvalue solution increases as ≈ N2.5

do and the memory as N2
do. Thus,

it is pivotal to find efficient techniques to accelerate the retrieval of the RT solutions.
Approximate methods are used for that purpose. In the following chapter, an extended
description of the fast hyperspectral RTMs state-of-the-art is provided.
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Figure 2.4: Computational time (in seconds) vs. number of discrete ordinates (Ndo) for a RT
solver.





3 Hyperspectral Radiative Transfer Models

In hyperspectral remote sensing retrieval applications, the RT computations are the bot-
tleneck in the whole processing chain. The techniques of dimensionality reduction in atmo-
spheric sciences exploit the strong interdependency of the hyperspectral data. Therefore,
acceleration techniques have been developed for hyperspectral RTMs in order to reduce
the monochromatic computations. Essentially, the hyperspectral RTMs techniques do not
compute spectral radiances in a LBL framework but rather they take into account the
interdependency between spectral channels or group them accordingly, thereby reducing
the total number of calls to RTMs [36]. In this chapter, the relevant state-of-the-art of fast
hyperspectral RTMs for this thesis are reviewed. Some parts of this chapter are adapted
from the full peer-reviewed review of Appendix A.2 published in [7]. This chapter is di-
vided in three main blocks: First, the correlated-k model is presented and the subsequent
modifications based on it. Second, the PCA-based RTMs are reviewed from the input and
output point of view. Finally, the machine learning based RTMs are summarized with
recent examples of its application.

3.1 Correlated k-distribution Methods

The first approach in atmospheric and astrophysics sciences which avoids time consuming
LBL computations was developed by Ambartsumian [37] in 1936. In his aim to explore new
speed up RT calculations for the external layers of stars, he noted that the transmission
in an homogeneous atmosphere depends on the distribution of the absorption coefficients
(k) within a spectral interval rather on the spectral dependence of k with the wavelength
λ. Such concept was called the k-distribution approach. The method is based on the
cumulative frequency distribution of k, namely, G(k):

G(k) =

∫ k

0
f(k′)dk′, (3.1)

where f(k) is the distribution function for the absorption coefficients k in a spectral interval
∆λ which makes G lie between 0 and 1. As a matter of fact, the so-called k-distribution
is the inverse distribution k(G). Since G(k) (Equation 3.1) is a smooth function and k(λ)
has a strong variation with respect to λ, i.e. there will be many redundancies between
spectral points because they share the same k(λ), thus, it is beneficial from the numerical
point of view to replace the integration in λ-space by that in G-space in order to reduce
the number of computations (less number of quadrature points for numerical integration
are required).

Goody et al. [38] extended the k-distribution approach to the cases of inhomoge-
neous, multiple-scattering atmospheres assuming that there is a correlation between k-
distributions at different pressure levels, and they called it the correlated-k distribution
approach. That assumption was shown to be valid when there was strong and weak ab-
sorption on the limits. Several modifications of the k-distribution method were applied to
the thermal IR. Examples of this applications derived in different techniques such as the
opacity sampling method [39] or the multidimensional approach to k-distribution method

13



14 3. Hyperspectral Radiative Transfer Models

[40], where a general formulation of multidimensional k-distributions for the radiative heat
transfer is proposed. Also in this spectral region, Fomin has multiple contributions to the
field (e.g. [41, 42, 43]). Furthermore, André et al. [40] stated that all k-distribution
models, i.e. from the most accurate line-by-line up to the simplest correlated or Scaled-k
ones, are based on a restricted set of concepts shared by all of them. Several further
implementations to the correlated-k method have been utilized over the years. Some of
the most interesting are presented in chronological order in the following:

Exponential-sum fitting transmittance

The exponential sum fitting of transmittances (ESFT) method [44, 45] optimizes the
number of k values by fitting the transmission function T (u) for a given spectral range by
a sum of exponentials:

< T (u) >∼
W∑

i=1

wie
−kiu, (3.2)

being u the quantity of absorber, W the monochromatic wavelengths and wi the weights
(satisfying

∑W
i=1wi = 1 ). The latter are used to find the best fit that minimizes the least-

squares residuals. This technique was applied to accelerate the fast radiative transfer
simulations to: the IR water vapour and CO2 absorption spectrum to compute cooling
rates in the atmosphere (e.g. [46]); to the water vapour band in the IR and near-IR
(NIR) (e.g. [47]); and to the satellite channels of the five Advanced Very High Resolution
Radiometer (AVHRR) (e.g. [48]).

Spectral mapping

West et al. [49] developed the spectral mapping technique to improve the accuracy of the
correlated-k distribution method in the broadband range. Hence, they provide mapping
transformations that group together spectral regions with similar values of k. Specifically,
they tested the method for model atmospheres containing CO2 and H2O and obtained er-
rors of 1-2% compared to the LBL results when the number of k coefficients was about 100
times less than the number required for the LBL computations. Additionally, the spectral
mapping technique takes into account different gas mixtures and spectral variations of
the incident solar radiation. The first numerical implementation of this spectral mapping
technique was the spectral mapping atmospheric radiative transfer (SMART) model [50].

k-binning approach

Bennartz and Fischer [51] applied a modified version of the k-distribution approach where
the main differences were:

• They defined a mapping function for the considered spectral interval so that the
relation between the approximated absorption coefficients and the associated wave-
lengths is explicitly fixed for all layers, instead of deriving weights and averaged
absorption coefficients in layered atmospheres.

• They introduce the sensor’s spectral response function and the spectral variation of
the solar constant in the derivation of the relative weights of the single terms of the
k-distribution fit.

They obtained an improvement of 5-10 factor of the accuracy compared to the k-distribution
approach and accuracies of 1 and 0.1% for O2 and H2O, respectively. Later on, Bennartz
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and Preusker [52] solved the radiative transfer within the O2 A-band using a set of N k-
binning intervals for the Orbiting Carbon Observatory (OCO) satellite. The idea behind
was to subdivide the interval with the highest error in transmission compared to LBL
transmittances and process iteratively until reaching an user-defined threshold, as shown
in Figure 3.1. Boesche et al. [53] applied a combination of doubling-adding [54] and k-
binning methods for the O2 A-band obtaining errors of 0.11% and 0.31% for polarized and
reflected light, respectively.

Figure 3.1: Schematic representation of the k-binning approach [52].

Double-k method

Duan et al. [55] separated the radiation field into single-scattering component (ISS) and
multiple-scattering component (IMS) as a sum:

I = ISS(λ) + IMS(λ). (3.3)

They performed LBL computations of the single-scattering radiance because it is less
computationally expensive although the dependency with the absorption coefficient is
less smooth than for the multiple-scattering (see Figure 3.2). The multiple-scattering
radiances at specific absorption coefficients k(λi) were computed with a reduced number
of layers and/or streams in a forward RTM [55] which also contributes to a reduction in the
computational time. They called this method the double-k method because of the double
integration of absorption optical depths to: (1) the total absorption optical depth k and
(2) the absorption optical depth from the TOA to the scattering layer k′ [56]. Hence, the
multiple-scattering contribution is computed as follows:

IMS = g(k)fk(k
′/k), (3.4)

where g and fk are analytical functions whose coefficients are derived from the radiances
fitting with different values of k and k′. In this form, they account for the vertical distribu-
tion of the atmosphere as well as for the distribution of scattering matter. They achieved
an accuracy of 0.5% with 28 calculations of the RTM for the O2 A- band and all-sky
conditions. This supposed a thousandfold reduction in the forward RTM calculations.
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Figure 3.2: Multiple- and single-scattering compontents (MS and SS, respectively) of the radiance
as a function of the O2 A absorption coefficients for the double-k approach [55].

Optimal spectral sampling

Moncet et al. [57] designed the Optimal Spectral Sampling (OSS) method as an extension
of the ESFT technique for modelling radiances in the IR, microwave and also useful for
VIS and UV. The main advantage is that the accuracy with respect to the LBL model is
selectable. Further, this technique can be applied for gas mixtures varying with altitude
by selecting spectral points rather than the actual absorption cross-sections. The selection
of the spectral points and accuracy with respect to the LBL model is explained in these
four steps explained in [56]:

1. Select uniformly spaced spectral locations for a sensor channel.

2. Compute the radiances with the LBL model at those spectral locations for atmo-
spheric representative profiles, surface conditions and viewing geometries.

3. Convolve the monochromatic radiances with the instrument slit function.

4. Compute the root mean square difference between the weighted sum of monochro-
matic radiances and the mean channel radiance for a given node. The optimal
weights are obtained by least squares regression technique.

Linear-k method

Hasekamp and Butz [58] developed a technique called the linear-k method, in order to
reduce the number of spectral computations of the multiple scattering radiance (IMS)
which depended on the total absorption optical thickness τabs and its normalized vertical
distribution n. The latter distribution is closely related to the k-distribution technique
and spectral mapping methods described above. Therefore, the radiance has the form:

IMS(λ) = IMS(τabs(λ),n(λ)). (3.5)
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Accordingly, for a vertical homogeneous atmosphere, the radiance of Equation 3.5, de-
pends smoothly on absorption optical thickness and only a few calculations of τabs are
needed. This technique is based on a spectral binning method which accounts for the
vertical distribution of the absorption optical thickness by a linear approximation. The
errors reported for the three bands of the OCO instrument are below 0.13%, 0.6% and
0.12% for O2 A-, weak CO2 and strong CO2 bands, respectively for a thin case (AOD =
0.3).

Low streams interpolation method

The low streams interpolation (LSI) method was developed by O’Dell [59]. The approach is
similar to the double-k method but it also considers the Stokes components of the radiance.
Both methods make a differentiation between high-accuracy RTM and low-accuracy RTM.
In the case of the double-k approach, multiple-scattering and single-scattering RTMs are
computed, being the latter computed in a LBL manner. However, the LSI method uses
the concept of low streams (LS) for the low-accuracy RTMs because two-streams are used
for the approximated radiance computations. The parametrization of the radiances as a
dependence of the optical components is nevertheless similar to that defined in the double-
k approach. The accuracy in the context of the RTM based on discrete ordinates (Ndo)
or streams, is mainly dependent on the number of streams taken for the computations.

O’Dell found a correlation between the gas absorption optical depth τgas and the relative
errors. Thus, the relative error was analyzed as:

f(τgas) =
ILS(τgas)− IMS(τgas)

IMS(τgas)
. (3.6)

Figure 3.3 shows an example of the relative errors obtained for the O2 A- band and CO2

band for different atmospheric scenarios.

Figure 3.3: Relative errors of the two-stream model as a function of the gas optical depth (τgas)
for the O2 A-band (red) and CO2 band (blue) [60].

However, he encountered a major drawback: the dependence of f(τgas) and τgas is
non-linear and consequently, the application of the regression model requires a binning
of the τgas values [60]. To overcome this drawback, O’Dell devised a two-dimensional
interpolation of radiance errors in spectral bins [59] in terms of τgas, τ

′
gas (gas absorption

optical depth from the TOA down to the layer in the atmosphere where the scattering
optical depth equals some critical value [59]), which is defined similarly to k′ from the
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double-k approach [55]; and ξ, which corresponds with the multiple scattering error term
as the ratio:

ξ =
τ ′gas
τgas

. (3.7)

Once the errors are calculated, the corrected LBL radiances from the LS radiances are
obtained as follows:

I =
ILS

1 + f(τgas)
. (3.8)

The only Stokes parameter that we are referring to in this Section is focused on the first
Stokes parameter (I) for simplicity. For the application to other Stokes parameters, see
[59]. As a result of the application of the LSI method, the retrievals from the greenhouse
gases observing satellite (GOSAT) and OCO measurements were accelerated by 1-2 orders
of magnitude with errors less than 0.1% for most of the atmospheres.

All the correlated-k-based methods described above strive to reduce the computational
cost of LBL calculations although there are still some drawbacks in their application:
(1) we need to assume a perfect correlation over the atmospheric column between the k
spectra at each height; (2) including more k terms will improve the accuracy but at a
higher computational cost; and (3) in order to capture the variability of the atmosphere,
the correlated-k methods have to be called numerous times to provide accurate reference
spectra.

3.2 Principal Component Analysis (PCA)-based RTMs

The essential elements of the retrieval algorithms in atmospheric composition sensors are
the RTMs. They convert the optical parameters of the atmosphere (input space) into
the spectral radiances (output space) as explained in Section 2. In fact, the acceleration
techniques based on PCA can be broadly classified into two main groups: data reduc-
tion of optical parameters and data reduction of spectral radiances. Natraj et al. [11]
devised an approach which employs PCA to the RTMs in order to accelerate the LBL
computations. Independently, Liu et al. [61] developed a PCA approach for accelerating
hyperspectral sensors which was called the principal component-based radiative transfer
model (PCRTM). Both studies lie on the application of PCA to the RTMs. Nevertheless,
there are two main differences into the application of the PCA approach:

1. The data set to which the PCA is applied is different: Natraj et al. make use of the
optical data (input) while Liu et al. uses the spectral data (output).

2. They use a different approach to select the wavelengths to be computed in the
reduced data set of RTMs.

The main concept of PCA analysis is extracted from the review [7] (Appendix A.2) and
is summarized as follows:

Let y = (y(λ1), y(λ2), ..., y(λW )), y ∈ R1×W be a row-vector of atmospheric radiances
at W wavelengths {λw}w=1,...,W . A set of S spectra are collected in a matrix Y ∈ RS×W
whose i-th row entries are yi. Thus, yi can be expressed in the new basis as follows:

yi = ȳ +

W∑

k=1

tikfk, (3.9)
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where ȳ = 1
S

∑S
i=1 yi is the average spectrum, tik is the kth coordinate of vector yi in the

new basis and fk ∈ R1×W is the kth basis vector. The spectrum yi can be projected onto
the K-dimensional subspace (K < W ) by means of PCA as:

yi ≈ ȳ +
K∑

k=1

tikfk, (3.10)

which can be rewritten in matrix form as:

Y ≈ Ȳ + TF, (3.11)

where Y ∈ RS×W , F ∈ RK×W and T ∈ RS×K is the matrix whose entries are {tik}k=1,...,K
i=1,...,S .

Hereinafter, the so-called principal components (PCs) or empirical orthogonal functions
(EOFs) correspond with the basic vectors F which are taken as the eigenvectors related to
the K most significant eigenvalues of the covariance matrix cov(Y,Y) ∈ RW×W . Hence,
the principal component scores correspond with the coordinates tik in the new basis and
the corresponding matrix T.

The mathematical formulation and physical concepts of the input and output PCA
techniques are explained in Chapter 4.2 and [36] (Appendix A.1). Therefore, the main
PCA applications to the input and output space for RTMs are adapted from the research
article [36] in the following.

PCA applied to the input optical data space

Natraj et al. [11] aim to reduce the residual errors between the high-accurate and low-
accurate RTMs in a reduced space of optical parameters by taking into account the spec-
trally varying scattering properties of the aerosols. In this regard, the following features
apply:

• They use as low-accurate RTM a two-stream model (i.e. Ndo = 1) while for the
high-accurate RTM they use multiple streams (i.e. Ndo ≥ 2) for the RTM.

• The spectral intervals are grouped into bins based on τgas and ω of the top layer [56].

• The dependency of the correction factor on the optical parameters is modelled by a
second order Taylor expansion about the mean value of the optical parameters [62].

Figure 3.4 illustrates the methodology described above for the input data set containing
optical parameters of the atmosphere. This method was first applied for simulating the O2

A-band spectra obtaining an accuracy of 0.3% and one order of magnitude improvement
in speed [11]. This technique has been applied to other spectral bands such as the CO2

band with accuracies better than 0.1% and more than 50 fold acceleration [63] and for
the GOSAT instrument [64] where the radiance residuals did not exceed 0.01% and there
was an acceleration of 2 orders of magnitude compared to LBL calculations [65]. On the
one hand, Kopparla et al. [66] extended this PCA technique to the wide spectral range
(0.3-3000 nm) maintaining an overall accuracy of 0.01%. In this case, the spectral range
was divided into 33 spectral regions depending on dominant gas absorptions within the
field. On the other hand, for the same region Kopparla et al. [67] introduced a spectral
binning approach together with the PCA for atmospheres containing aerosols. In this
case, the choice of the bins was sensitive to the complexity of the spectral region and
can lead to consecutive subdivisions of bins until the preferred accuracy level is achieved.
They obtained residuals of 0.1%. Efremenko et al. [62] parallelized the PCA-based RTM
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computations where as much as half of the computational time was due to the PCA
itself, showing that no further acceleration of this technique was possible according to
Amdahl’s law [68]. Other examples are the application of PCA combined with (i) other
techniques such as the k-distribution (e.g. [69] for cloud properties retrieval) or (ii) look-
up tables (LUTs) of corrections to accelerate the RTMs [70]. In the latter research, PCA
is applied to the optical measurements in the UV region (Hartley-Huggins band) by the
Ozone Monitoring Instrument (OMI) with a specific spectral binning criteria based on
the similarities in the logarithm of the total optical depth of gas absorption profiles (Γg).
Then, LUTs are generated to correct the RT approximations performed using a scalar
RTM with 4 streams and 24 layers. Finally, the accuracy achieved is approximately of
0.03% from PCA computations of the high-accuracy radiances obtaining an acceleration
of more than 2 orders of magnitude.

Figure 3.4: Schematic representation of the PCA-based RTM for the input optical data set.

PCA applied to the output spectral data space

The output spectral reduction technique based on PCA is mainly based on mapping the
spectral radiances into a lower-dimensional subspace and obtaining a set of EOFs. This
approach requires a set of precomputed EOFs which is derived from a training data set
of simulated or measured spectra. Then, the full-resolution spectrum can be reproduced
by computing only the radiances at selected wavelengths. The choice of the wavelengths
is generally different for each approach. For instance, Liu et al. [61] perform a spectral
sampling which is illustrated in Figure 3.5 by using a correlation function as follows:

• The correlation coefficients are computed for the radiance values and then converted
to vector angles by an arccosine function.

• The spectral data is rearranged according to the magnitudes of the correlation coef-
ficients.

• The monochromatic radiances are selected by choosing predictors with equal dis-
tances in the values of the correlation coefficients.
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Figure 3.5: (Left) Arccosine of correlation coefficients as a function of wavelength. (Right)
Rearranged arccosine of correlation coefficients according to their magnitudes.

Figure 3.6 represents the PCA-based RTMs for output spectral space. The data set of
spectra is divided into training data set and validation data set. By applying PCA and the
correlation analysis to the training set, the system of EOFs is computed and a subset of
spectral points is chosen (spectral sampling), respectively. These two outputs are stored
and used for computing PC scores for the validation data set. The spectra in the full
wavelength range are restored and the error of this reconstruction can be estimated. If the
error is larger than required, the number of generated spectra and the number of principal
components are increased. The main output of the training phase are EOFs and spectral
sampling, which allow to process new data in the online phase.

Figure 3.6: Schematic representation of the PCA-based RTM for the output spectral data set.

In [61], it was noted that the slit function convolution operator and the PCA are linear.
Therefore the PC scores of the convolved spectra are linear functions of monochromatic
radiances. Then at the training stage, the corresponding weighting factors of linear de-
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pendency are stored together with the system of EOFs and spectral sampling. Authors
claim that for an IR spectrum ranging from 650 cm−1 to 3000 cm−1 this representation for
convolved spectra reduces the number of monochromatic computations from a few thou-
sands to a few hundreds. The PCRTM approach proved to be efficient and implemented
in different instruments: NAST-I and AIRS [61] and several spectral ranges such as for
the solar spectral region (PCRTM-SOLAR) [71] and for the IR to UV-VIS [72] obtaining
relevant speed improvements. Moreover, the PCA-based RTM to spectral data has been
included in several packages such as the RTTOV fast RTM (PC RTTOV) by means of
a regression scheme [73] which reproduces the LBL radiances in a much higher degree of
accuracy at less computational effort. Another application of PCA to the output space is
given by Hollstein and Lindstrot [74], where they test several spectral sampling techniques
such as equal sampling and random walks for the selection of the radiances. A recent
study combines PCA for the input and output space. The method is called spectral data
compression (SDCOMP) RTM which simulates hyperspectral resolution radiances in the
solar and IR regions. They use PCA twice obtaining relative errors less than 0.2% and
approximately three orders of magnitude faster than numerically exact RT computations
[75].

3.3 Neural Networks (NN)-based RTMs

The first to use neural networks (NN) methods to accelerate the RT computations were
Key and Schweiger [76] in 1998 for broadband calculations. Later on, Schawander et al.
[77] implemented a NN for the VIS and UV spectral ranges computations. In this case,
a RTM is used to calculate radiances at a few selected wavelengths (only 7) at high-
accuracy while the NN restores the complete spectrum by learning this task with more
than 20000 index values for all kinds of atmospheres. A scheme of the structure of the NN
used for modelling RTMs is in Figure 3.7. The input layer had nine neurons consisting of
transmittances at seven wavelengths, solar zenith angle and total ozone. The output layer
had 153 neurons of high-spectral resolution transmittances. The weights of the NN were
refined from the comparison of the errors between the output and the target values. The
computational performance of their approach was reduced by a factor of more than 20.
Several techniques have also utilized NN for approximating solar radiation (e.g. [78, 79]),

Figure 3.7: Scheme the structure of a NN used for RTMs in [77].
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to process the EO satellite data [80], or for the geostationary satellite MTSAT-1R and
ADEOS-II/GLI [81]. Additionally, [82] reported that the NN reproduced the convolved
spectra with a mean absolute error below 1% for the O2 A-band. As for the 350-1050 nm
spectral range, [83] reproduced with a NN the data acquired by the picosatellite for remote
sensing and Innovative Space Missions (PRISM) imaging spectrometer taking 5 ms per
spectrum, while the computations based on monochromatic RTMs generally take 10 min
per spectrum (i.e. it provides around three order of magnitude performance enhancement).
One of the latest applications of NN for fast hyperspectral RTM simulations is given by Le
et al. [84]. They performed computations at a small fraction of hyperspectral wavelengths
and extended them across the entire spectral range. The results were compared with PCA
model for the OCO-2 simulations, obtaining relative errors less than 0.5% compared to
high-accurate computations.

In sum, the computationally expensive RTMs in atmospheric remote sensing can be
substituted by NN in order to obtain a multi-fold performance enhancement. However,
there are some drawbacks of such an approach as:

• Requirements of extensive computations of the training data sets.

• Restriction to certain atmospheric model with predefined parameters (such as atmo-
spheric layers or fixed slit functions) of the training procedure.

• Loss of generality, i.e., the NN might not reproduce implicit properties of the radiance
field such as the symmetry relationship with respect to the incident and viewing polar
angles.

• Robustness issue: Large errors might not be captured by the NN-based RTM.

These drawbacks might lead to non-physical results such as the violation of the reciprocity
principle for the radiance field [85] which have to be treated carefully.





4 Summary of the Work

The objectives of the thesis proposed in Chapter 1, have been accomplished in four journal
articles, one review and one conference paper, all of which are peer-reviewed and I am the
first author. This chapter provides a summary of the peer-reviewed contributions except
for the review since it has been previously summarized in Chapter 3. In the following,
the research articles previously published are adapted and summarized in this Chapter as
follows:

• Section 4.1 outlines the general considerations of the simulations performed for all
the peer-reviewed contributions. Additionally, the software interfaces and the RT
code used in the dissertation are integrated in a scheme.

• In Section 4.2, a hybrid PCA technique is developed for fast simulation of the spectral
radiances in the Hartley-Huggins band. The content of this section is adapted from
the journal article in Appendix A.1.

• In Section 4.3, a new acceleration technique called the Cluster Low-Streams Regres-
sion (CLSR) method is implemented for the O2 A- and CO2 bands. This technique
is compared with a PCA-based RTM in terms of accuracy and computational perfor-
mance. The content of this section is adapted from the journal article in Appendix
A.3.

• In Section 4.4, the CLSR method is further analysed and tested for other spectral
bands and atmospheric scenarios. The content of this section is adapted from the
journal articles in Appendix A.4 and A.5.

• In Section 4.5, two modifications of the CLSR method are proposed: (i) to further
improve the computational performance (double CLSR method) of the hyperspectral
RTMs and (ii) to alternatively estimate aerosols’ spectra based on the clear sky
spectra. The content of this section is adapted from the journal article in Appendix
A.6.

The general structure of the sections comprises a motivation for each study, data
overview, methodology, results and conclusions.

4.1 General Considerations

This section summarizes the general considerations of this thesis for the spectral simula-
tions. First, the atmospheric and gaseous considerations are presented followed by the RT
simulations. Finally, the software interfaces used to simulate the spectra of the atmosphere
are related and integrated into a scheme.

Atmospheric considerations

The reflected spectral radiances at the TOA are considered for all the studies. In general,
for all the simulations the atmosphere is discretized with a step of 1 km between 0 and 25

25
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km, and a step of 2.5 km between 25 km and 50 km, resulting in 35 layers. The chosen
altitude grid is used for the purpose of comparing the computational speed of different
models. The boundary conditions at the bottom are defined by the Lambertian surface
with an albedo of 0.3. The solar zenith angle, the viewing zenith angle and the relative
azimuth angle are 45◦, 35◦ and 90◦, respectively.

Regarding the simulated atmospheric scenarios, the following possibilities can be found
in the research journals:

• Clear sky: This scenario corresponds to an atmosphere without clouds and aerosols,
i.e. only Rayleigh scattering.

• Aerosols and clouds: The simulated aerosols and clouds are obtained from the optical
properties of aerosols and clouds (OPAC) database [86].

Gaseous considerations

The high spectral resolution computations of the TOA radiances in the Hartley–Huggins
(280 – 335 nm), O2 A-band (755 – 775 nm), water vapour (770 – 1000 nm) and CO2 band
(1590 – 1620 nm) are simulated. The gaseous absorptions for the O2 A-, water vapour and
CO2 bands are computed with the LBL model Py4CAtS [87], while the ozone absorption
cross-sections in the Hartley-Huggins band are taken from the high-resolution transmission
molecular absorption database (HITRAN) [88]. Hence, the absorption coefficients are pre-
computed and stored. Continuum (also referred to as collision-induced absorption (CIA)
[89, 90]) contributions to molecular absorption are not taken into account.

The Rayleigh cross-sections and depolarization ratios are computed as in Bodhaine et
al. [91], while the pressure and temperature profiles are obtained from the US standard
model atmosphere [92]. The computations are performed for the unit solar irradiance at
the TOA.

Radiative transfer model simulations

Many existing RTMs are based on the discrete ordinate method [93]. The radiative transfer
solver used for all simulations is based on the discrete ordinates with matrix exponential
(DOME) method [26, 34] as explained in Chapter 2. The model is supplied with the left
eigenvector approach [94, 34] based on the scaling transformation [95, 96].

In this method, the number of discrete ordinates (streams) in the polar hemisphere Ndo

controls the computational time and accuracy. The model is called multi-stream (MS)
when Ndo ≥ 2 and low-stream (LS) otherwise. Specifically, the case Ndo = 1 is the two-
stream (TS) model. The simplest RTM is the single-scattering (SS) model, which solves
the radiative transfer equation neglecting the integral term [97], i.e. the multiple-scattering
events, and the solution can be derived analytically without using the discrete ordinate
method. The boundary value problem for the multilayer atmosphere is solved by using
the matrix operator method [98], which merges layers into a single layer. The radiance
along a viewing direction is computed by using the false discrete ordinate method [99, 94].
Regarding the TS model, two comments are in order:

• the radiation field is found as a sum of the single-scattering solution and the multiple-
scattering term;

• in the multiple-scattering computations the delta-M scaling method [100] is applied,
while for the single-scattering term the exact phase function (TMS-correction) is
used [101].
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In addition, when we refer to line-by-line (LBL) computations, we are referring to com-
putations on a fine spectral resolution grid.

Software interfaces

The software package used in this thesis for the RT solver is PYDOME, which is a Python
library for radiative transfer computations implemented in python3 and relies on the
NumPy library [102]. The RT code has been developed at the German Aerospace Center
(DLR) for the simulation of satellite-based measurements of reflected and scattered so-
lar radiation in the UV and VIS spectral ranges [103]. This tool incorporates the DOME
solver ([26, 34]) (see Chapter 2) and other approximate solvers such as the single-scattering
and the two-stream solvers. The processing chain of PYDOME has three main steps:

1. Physical adapter

2. Radiative transfer solver

3. Post-processing

In the first step, the physical parameters of the atmosphere are prepared in order to cal-
culate the optical properties to finally be included as input into the code. Thus, physical
parameters such as the atmospheric profiles of the temperature, pressure, gas concentra-
tion, aerosols, clouds etc. are taken into account for computing the optical properties:
optical thickness, single scattering albedo, and phase functions, which are the input of
PYDOME. The latter are computed by using the molecular cross-sections. In order to
obtain the gaseous absorption parameters, the HITRAN database is used as input of the
Py4CAts model [87] to get the LBL gaseous absorption cross-sections. For cases such as
ozone absorption in the UV region, the pre-convolved cross-sections from HITRAN can be
used directly. The scattering cross-sections are obtained with the model of Bodhaine et al.
[91] for Rayleigh scattering. Once the absorption and scattering cross-sections of the atmo-
sphere are computed, the aerosol or cloud optical properties can be included in the model.
Therefore, the aerosol absorption/scattering cross-sections are modelled with the OPAC
database [86] and by means of an interpolation module, the aerosol absorption/extinction
properties for the vertical profiles of the atmosphere are obtained.

For the second step, the RT solver is applied using as input the optical properties gen-
erated above. The radiance field is obtained as a function of the location and observation
geometry. As previously mentioned, the exact solver employed is the DOME solver based
on the 1-D scalar RTM for coupled atmosphere-ocean systems.

The post-processing step depends on the relevant values to be derived for a certain
application. For instance, the convolved spectra is required for numerous applications.
Hence, the convolved radiance is obtained for a specific space-borne instrument spectral
response. Furthermore, the performance of the RT code can be improved with a new
module to be included for accelerating the hyperspectral computations.
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Figure 4.1 shows a scheme for the integration of the PYDOME solver with the additional
software interfaces for computing atmospheric properties.

Figure 4.1: Diagram of the software interfaces used for the thesis.

4.2 Analysis of Two Dimensionality Reduction Techniques:
Hybrid PCA Approach

4.2.1 Motivation

The new generation of atmospheric composition satellites require efficient dimensionality
reduction techniques for fast simulation of the spectral radiances. In this work ([36], cf.
Appendix A.1), we investigate the efficiency of two acceleration techniques based on the
principal component analysis (PCA). First, we exploit the PCA to map the data set of
optical properties (input space) of the atmosphere to a lower-dimensional subspace to
finally derive a faster RTM by means of a correction function. Second, the spectral data
(output space) are also accelerated by representing the hyperspectral data via a subset of
empirical orthogonal functions (EOFs) and a combination of a spectral splitting approach.
In this context, we propose a hybrid PCA approach which combines the dimensionality
reduction techniques on the input and output data set to improve the hyperspectral data
performance in the Hartley-Huggins band for simulating TROPOMI signals in the UV
spectral range, which is typically used for ozone retrievals [104].

4.2.2 Data overview

The backscatter signal of the TROPOMI instrument and the spectra are computed with
a spectral resolution of 0.125 nm in the spectral interval between 290 and 335 nm. The
spectra and the first three EOFs of the TROPOMI data are illustrated in Figure 4.2
together with the explained variance. The simulations are performed for a clear sky model
atmosphere and a Lambertian surface albedo of 0.1. The total optical property inputs are
given by Rayleigh scattering [91] by atmospheric molecules and trace gas absorption. The
Brion–Daumont–Malicet cross sections are used for ozone. The atmosphere is discretized
into 14 layers. The top of the atmosphere is at 50 km. The solar zenith angle, viewing
zenith angle and relative azimuth angle are 45◦, 35◦ and 90◦, respectively.
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Figure 4.2: (Left) First three orthogonal functions computed in the Hartley-Huggins band.
(Right) Explained variance in percentage as a function of the principal component
index for the Hartley-Huggins band simulation.

4.2.3 Methodology

Hybrid PCA-based RTM

The hybrid PCA-based RTM consists in the combined application of PCA for the input
and output spaces. A schematic representation of both techniques is given in Figure
4.3. Note that, although both techniques are often called the same (namely “PCA-based
RTMs”), they are fundamentally different. In the first case, PCA is applied to a data set
of optical parameters, comprising the total optical thicknesses and the single scattering
albedos for all given atmospheric layers and wavelengths. In the second case, PCA is
applied to the data set of spectral radiances. In the next, both techniques are explained
in detail.

Figure 4.3: Schematic representation of the data processing in (left) the input space reduction
technique with PCA and (right) output space reduction technique with precomputed
EOFs.
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Input space reduction technique

Considering a discretization of the atmosphere in L layers, we define an N -dimensional
vector xw, for each wavelength {λw}w=1,...,W , by

xT
w = [ln τ1 (λw) , . . . , ln τL (λw) , lnω1 (λw) , . . . , lnωL (λw)] , (4.1)

where τk and ωk are the optical thickness and the single-scattering albedo of the k-
th layer, respectively, and N = 2L. Thus, the vector xw encapsulates the wavelength
variability of the optical parameters, which are the input parameters of the radiative
transfer code. By using PCA, we find an M -dimensional subspace spanned by a set of
linear independent vectors (empirical orthogonal functions, EOFs) {qk}Mk=1 such that the
centered (mean-removed) data xw − x̄ lie mainly on this subspace, i.e.

xw ≈ x̄ +

M∑

k=1

ywkqk, w = 1, . . . ,W, (4.2)

where ywk are the principal component (PC) scores.

Let us define a correction function f (xw) as follows:

f(xw) = ln
IMS(xw)

ILS(xw)
, (4.3)

where ILS(xw) is the radiance provided by the approximate model (here LS stands for “low-
streams” and refers to either SS or TS models), and IMS(xw) is the radiance simulated
by the MS model. Introducing ∆xw =

∑M
k=1 ywkqk, we consider the Taylor expansion of

f (xw) around x̄ in the direction ∆xw up to fourth order. For computational simplicity,
we neglect the mixed directional derivatives and use central differences to approximate the
directional derivatives. Since M < N (and in practice M � N), it leads to a substantial
reduction of the computational time. Once the correction function is computed, the results
of the approximate RTM can be converted into those of the MS RTM by using Equation
(4.3).

Output space reduction technique

Let y = [y (λ1) , y (λ2) , . . . , y (λW )] be a row-vector of radiances at W set of wavelengths
{λw}w=1,...,W . A set of S spectra is assembled into a matrix Y whose i-th row is yi. Then,
a spectrum yi can be represented in a new basis system as follows:

yi = y +

W∑

j=1

tijfj . (4.4)

Here, y =
S∑
i=1

yi/S is the sample mean of the spectra (the average spectrum), tij is

the j-th coordinate of the vector yi in the new basis system and the j-th basis vector
is fj = [fj (λ1) , fj (λ2) , . . . , fj (λW )]. Next, the spectrum yi is projected onto the J-
dimensional subspace (J < W ) as follows:

yi ≈ y +
J∑

j=1

tijfj , (4.5)
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The transformation (4.5) can be done by using PCA [105]. Then the basic vectors fj
in Equation (4.5) are referred to as “principal components” (PCs) or empirical orthogo-
nal functions (EOFs), while the coordinates tij in the new coordinate system are called
“principal component scores”.

In order to reconstruct the full resolution spectrum, the previous theory reveals a linear
relationship between PC scores and monochromatic radiances:

y (λ) ≈ ȳ (λ) + t1f1 (λ) + . . .+ tJ fJ (λ) . (4.6)

This approach requires a set of precomputed EOFs which is derived from a training
data set of simulated spectra. Hence, for a given set of J EOFs and J spectral points it
is possible to obtain a closed linear system of J equations:





y (λ1) = ȳ (λ) + t1f1 (λ1) + . . .+ tJ fJ (λ1) ,

y (λ2) = ȳ (λ) + t1f1 (λ2) + . . .+ tJ fJ (λ2) ,

...

y (λJ) = ȳ (λ) + t1f1 (λJ) + . . .+ tJ fJ (λJ) .

(4.7)

The key point here is that the radiance values in J spectral points {λj}j=1,...,J are
represented through the same EOFs. Then, by solving Equation (4.7) we obtain the PC
scores, and by using Equation (4.5) the full spectrum at W spectral points can be readily
restored.

As for the selection of the monochromatic wavelengths, the method proposed is the
spectral sampling from Liu et al. [61] (see Chapter 3). Thus, by applying PCA and
correlation analysis to the training data set, the system of EOFs is computed and an
appropriate subset of spectral points is chosen. These two outputs are stored and used
later for computing the PC scores for the validation data set.

4.2.4 Results

Input space reduction

To reduce the variability of the optical parameters, we divided the spectral range 290–
303 nm in disjoint regions. Three cases were considered using the TS and SS models as
approximate spectra. Thus, the best agreement with the MS solution was found for the
third case (see [36]), in which three sub-intervals are considered: 290-303 nm, 303-321 nm
and 321-335 nm. The input space reduction technique is applied to the second and third
sub-intervals while for the first one we use the SS model. In Figure 4.4a the spectra of
the RTMs are plotted while in Figure 4.4b the corrected TS and SS spectra are shown for
the third case. This means that the information about the MS solution is contained in
the optical data and can be retrieved by using machine learning algorithms, and the input
space reduction technique can be considered as representative of them.

We analyzed the dependency of the errors and computational time in terms of the
number of PCs and the order of the Taylor series. We found that the errors decrease when
M and the expansion order of the Taylor series increase. However, the computational
performance behaves in an opposite way. Therefore, we found the optimal compromise
between accuracy and computational performance for M=3 and 2 orders of expansion for
the TS model.
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Figure 4.4: (a) Spectral radiance computed with the single-scattering, two-stream and multi-
stream models; (b) Spectral radiance after applying the correction within the intervals
303–321 nm (blue area) and 321–335 nm (red area).

Output space reduction

The efficiency of the output space reduction technique is tested for a data set consisting of
2 × 105 spectra (see [36]). The data set of spectra is divided into a training data set and
a validation data set. By applying PCA to the training data set, the system of EOFs is
computed. After applying the spectral sampling, J = 30 wavelengths were identified and
the EOFs and J wavelengths are saved in the memory and reused for computing PC scores
for the validation data set. The spectra at a full resolution are restored using Equation
(4.6). Finally, the mean relative error of the spectra is 0.00023% with a standard deviation
of 0.12%. Using J = 30 spectral points provides a performance enhancement of about 12
times. A higher amount of principal components (J > 30) assures a higher accuracy and
a more robust result.

Hybrid PCA approach

The accuracy and computational performance as a result of combining the input and
output space reduction techniques is shown in Table 4.1 [36].

Table 4.1: Acceleration factor and mean error (in %) for the input space reduction method, the
output space reduction method and a combination of both methods.

Input Space Reduction Output Space Reduction Combined Use

Acceleration factor 13 12 18.2

Mean error 0.05 0.00023 0.05
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The output space reduction technique is applied to accelerate the computations of the
approximate solution (in this case the TS model) exhibiting that the combined use of both
methods (hybrid PCA approach) results in an efficient approach to accelerate the input
and output data without losing accuracy.

4.2.5 Conclusions

The following main conclusions can be extracted from this study ([36] in Appendix A.1):

• The input optical space reduction technique does not require a precomputed data
set and can be regarded as a sort of RTM with ad hoc learning. The output spectral
space reduction technique can be applied to real measurements. Both techniques
achieve an order of magnitude speed improvement.

• The combination of both techniques is called the hybrid PCA approach, which uses
the output space reduction technique to speed up the TS computations in the frame-
work of the input space reduction technique, providing an overall speedup factor of
about 20. The hybrid technique is as accurate as the input technique applied sepa-
rately.

4.3 The Cluster Low-Streams Regression (CLSR) Method for
Hyperspectral Radiative Transfer Computations

4.3.1 Motivation

Current atmospheric composition sensors provide a large amount of hyperspectral reso-
lution data. There are accurate acceleration techniques such as PCA-based RTMs that
reduce the number of monochromatic computations. In this line, we developed a new
acceleration technique to further improve the state-of-the-art techniques in a study pub-
lished in [60] that can be found in Appendix A.3. The motivation of developing a new
acceleration technique was twofold: first, to find an alternative method which provides
faster and accurate results for processing hyperspectral radiative transfer computations
and second, we found that the LSI method (see Chapter 3) by O’Dell [59] was subject of
improvement. Therefore, we developed a method based on the clustering of the spectral
radiances computed with a LS RTM and the regression analysis performed for the LS and
MS RTMs within each cluster. Specifically, we found that the dependence between the
low- and multi-stream radiances is almost linear (see Figure 4.5) and it seemed reasonable
to cluster the spectral points according to the radiance values computed with a low-stream
RTM, rather than with the optical properties. Hence, this motivated the development of
the Cluster Low-Streams Regression (CLSR) method, in order to decrease the errors of
the regression estimates and further accelerate the whole computational performance of
the techniques. Moreover, a detailed comparison between the PCA-based RTMs and the
CLSR method is provided.

4.3.2 Data overview

For this study we consider the reflected spectral radiance at the TOA of two spectral bands.
In the O2 A-band the spectral sampling is 0.001 nm in the spectral range 755–775 nm, while
in the CO2 band the spectral sampling is 0.0015 nm in the spectral interval 1590–1620 nm.
Thus, on each band, 20,000 spectral points are considered.
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Figure 4.5: Radiance computed with the multi-stream model as a function of radiances computed
by using the low-stream models (two-stream and single-scattering models) for the
O2 A- and CO2 bands. The figure corresponds to the ‘Aerosol 2’ scenario.

For the simulations, 5 atmospheric scenarios are considered: ‘Clear sky’, ‘Aerosol 1’,
‘Aerosol 2’, ‘Cloud 1’ and ‘Cloud 2’. The ‘Clear sky’ scenario corresponds to an atmosphere
without clouds and aerosols. In the ‘Aerosol 1’ and ‘Aerosol 2’ scenarios, the atmosphere
contains the clean continental and the polluted continental aerosols taken from the OPAC
database [86], respectively. In the ‘Cloud 1’ and ‘Cloud 2’ scenarios, a continental clean
cumulus cloud with cloud optical depths τ = 10 and τ = 20, respectively. In both cases, the
cloud top height is 5 km and the cloud geometrical thickness is 1 km. As an overview of the
data, Figure 4.6 shows the spectral radiance for three atmospheric scenarios (‘Clear sky’,
‘Cloud 1’ and ‘Cloud 2’).

Figure 4.6: Radiance spectra computed by using the multi-stream RTM for three atmospheric
scenarios: ‘Clear sky’ (black), ‘Cloud 1’ (purple) and ‘Cloud 2’ (blue). The upper
panel corresponds to the O2 A-band, while the bottom panel is for the CO2 band.
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4.3.3 Methodology

The CLSR method

The Cluster Low-Streams Regression (CLSR) method [60] can be formulated as follows.

1. Consider a high resolution spectrum {ILS(λi)}Ni=1 computed at N spectral points
{λi}Ni=1 by means of a low-stream RTM.

2. Sort the radiance set {ILS(λi)}Ni=1 in ascending order, and let {ÎLS,i}Ni=1, with ÎLS,i ≤
ÎLS,i+1, be the sorted radiance set (Figure 4.7a).

3. Consider C clusters in {ÎLS,i}Ni=1 with NC = N/C radiance points (Figure 4.7b), and

let the c cluster be defined by the radiance set {ÎcLS,i}NC
i=1 for c = 1, ..., C.

4. Select n equidistant radiance points in the c cluster, i.e. {IcLS,q}nq=1, and for the corre-

sponding wavelengths compute the multi-stream radiances {IcMS,q}nq=1 (Figure 4.7c).

5. Assume that in each cluster c we have the linear relationship

ÎcMS,i = αcT̂ ci + βcÎcLS,i + γc, i = 1, ..., NC , (4.8)

where αc, βc and γcare the regression coefficients of the c-th cluster, and T̂ is the
corresponding direct transmittance.

6. Compute the regression coefficients αc, βc and γc as a solution to the least square
problem

(αc, βc, γc) = arg min
αc,βc,γc

n∑

q=1

[
I
c
MS,q −

(
αcT̄ cq + βcĪcLS,q + γc

)]2
. (4.9)

7. Use the values of (αc, βc, γc) found in the previous step to restore the multi-stream
radiances {ĨMS,i}Ni=1 for all the spectral points according to Equation (4.8) (Fig-
ure 4.7d).

Here, the “hat” notation Î refers to the sorted radiances, the “bar” notation I refers to
the equidistant radiances entering the regression model, and the “tilde” notation Ĩ refers
to the predicted radiances. Please note that the total number of regression points, and
thus the number of calls of the multi-stream model, is nC.

Efficiency and computational performance estimations

To estimate the accuracy of the acceleration techniques, we consider the residual error for
the radiance at each spectral point λi:

∆Ires,i =
ĨMS,i − IMS,i

Icont
MS

· 100, (4.10)

where ĨMS,i is the predicted radiance calculated with either the PCA-based RTM (as
explained in 4.2.3) or the CLSR method (cf. Equation (4.8)), while Icont

MS is the radiance
without absorption (i.e., the continuum radiance, which is used to avoid radiance values
close to zero in the denominator of Equation (4.10), when strong gas absorption is present
[67]). The mean relative error is computed as follows:
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Figure 4.7: Scheme of the Cluster Low-Streams Regression (CLSR) method [60]. (a) Sorted
radiance of the low-stream (LS) model in ascending order (blue line). (b) Division of
the LS radiance in equal clusters C in the sorted domain. (c) Zoom for one cluster
and the selected regression points of the multi-stream (MS) radiance (red crosses).
(d) Reconstruction of the MS spectra: the predicted radiance is computed for all the
spectral points (dashed red line).

ε =

∑N
i=1 |∆Ires,i|

N
. (4.11)

Additionally, the median and interquartile range (IQR) of the residual are computed.

To estimate the performance enhancement, we define the speedup factor as the ratio
between the computational time of a multi-stream LBL calculation to that of a certain
acceleration technique. To exclude the hardware-related factors from our analysis, we
estimate the speedup factor for the PCA-based RTM as [65]:

SPCA =
tMS ×N

tLS ×N + tPCA + (2M + 1)(tMS + tLS)
, (4.12)

where tMS and tLS are the computational times for a single monochromatic calculation
corresponding to the multi- and low-stream RTMs, respectively, while tPCA is the com-
putational time of the PCA. Please note the PCA-based RTM requires 2M + 1 calls to
the multi-stream model. On the other hand, the speedup factor for the CLSR method is
defined by

SCLSR =
tMS ×N

tLS ×N + tLSM × C + tMS × n× C
, (4.13)
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Estimation of the required parameters for the acceleration techniques

In order to select the optimal number of PCs, we compute the explained variance ratio of
the optical data, which accounts for the variance associated with a given number of PCs.
The results in Figure 4.8(left) show that in all scenarios almost 99% of the optical data
variance can be explained within the first four PCs. To select the number of clusters and
regression points for the CLSR method, we estimate the mean error (cf. Equation (4.11)).
As an example, we illustrate in Figure 4.8(right) the mean errors for the ‘Aerosol 2’
scenario. The results show that 4–5 clusters and 3–5 regression points guarantee a small
mean error.

Figure 4.8: (Left) Explained variance ratio in percentage as a function of the number of PCs
for all the atmospheric scenarios: ‘Clear sky’, ‘Aerosol 1’, ‘Aerosol 2’, ‘Cloud 1’ and
‘Cloud 2’; and the two spectral bands O2 A- and CO2 bands; (Right) Dependence
of the number of clusters and number of regression points with the mean error in
percentage for the CO2 band for the ‘Aerosol 2’ scenario. The low-stream model
used is the two-stream model.

4.3.4 Results: PCA vs. CLSR

Accuracy evaluation

The residuals (Equation (4.10)) and interquartile ranges corresponding to the PCA-based
and CLSR methods, as well as for the TS and SS models, are shown in Figure 4.9 [60].
The main results that can be extracted from the Figure are that: (i) the TS model with
the PCA-based and CLSR methods yields accurate results, (ii) the efficiency of the PCA-
based method decreases when increasing the optical thickness, and (iii) both the TS and
the SS models with the CLSR method provide reasonable accuracies. Furthermore, the
IQRs help us to identify outliers. Thus, the smaller IQRs mean that the acceleration
technique effectively captures the full range of the TOA radiance variations. In general,
lower IQRs are more frequent for the CLSR method compared to the PCA method.

In sum, the residuals for the TS model in the O2 A-band are above 1% for the PCA-based
method and below 0.01% for the CLSR method, while they yield comparable accuracies
in the CO2 band (residuals are below 0.1% for the PCA-based method and below 0.01%
for the CLSR method). On the other hand, the residuals for the SS model with the PCA-
based method are higher than those corresponding to the TS model while, the residuals
of the TS and SS models with the CLSR method are comparable (they are below 0.2% in
the O2 A-band and below 0.1% in CO2 band).
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Figure 4.9: Comparison of the residuals for the methods PCA and CLSR for all the atmospheric
scenarios (grey: ‘Clear sky’; blue: ‘Aerosol 1’; red: ‘Aerosol 2’; green: ‘Cloud 1’;
yellow: ‘Cloud 2’) and gases (O2 A- and CO2 bands), when the LS model is (a) the
TS model or (b) the SS model. Note the differences in scales for the PCA technique
for the O2 A-band with the rest of cases. The orange values on top of each box
indicate the median values and the black values correspond to the IQR value.

Computational performance

The computational efficiency is compared for the CLSR method against the PCA-based
method. The speedup factors computed by using Equations (4.12) and (4.13) for the
PCA-based and CLSR methods, respectively, are given in Table 4.2 [60].

The efficiencies of the TS model with the CLRS and the PCA-based method are compa-
rable. In contrast, the computational performance of the SS model with the CLSR method
is much higher than that with the PCA-based method due to the neglect of multiple scat-
tering computations. Comparing the speedup factors of this study with those of other
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Table 4.2: Speedup factor of the PCA-based (SPCA) and CLSR methods with: the two-stream
model (STS

CLSR) and single-scattering model (SSS
CLSR).

SPCA STS
CLSR SSS

CLSR

534 505 1294

authors (e.g. [59]), we find that our values are of the order of their speedup factors and
one order of magnitude higher when considering the SS model for the CLSR technique.

Convolved spectra

The high resolution spectra in the O2 A-band are convolved with the slit functions cor-
responding to Global Ozone Monitoring Experiment (GOME)-2 and TROPOMI instru-
ments, while the radiance spectra in the CO2 band are convolved with the GOSAT slit
function. In this paper [60], slit functions are modelled with a Gaussian function. The cor-
responding full widths at half maximum (FWHM) are listed in Table 4.3. The FWHM
considered for the O2 A-band are based on pre-launch calibrations [106] and for the CO2

band on [107].

Table 4.3: Spectral ranges and FWHM of the Gaussian slit functions of the instruments used in
the study: TROPOMI, GOME-2 and GOSAT.

Instrument Spectral Range FWHM

TROPOMI 710–775 nm 0.183 nm
GOME-2 590–790 nm 0.51 nm
GOSAT 1.56–1.69 µm 0.2 cm−1

The examples of convolved spectra corresponding to the ‘Cloud 1’ scenario are shown
in Figure 4.10. Tables 4.4 and 4.5 show the mean relative errors for the PCA-based
(εPCA) and CLSR (εCLSR) methods for the O2 A-band and the CO2 band, respectively. In
addition, the residuals for non-convolved spectra are shown for comparison. For the clear
sky and aerosol scenarios the accuracies of both methods are comparable, while for cloud
scenarios the CLSR method is more accurate. Please note the residuals estimated for the
convolved spectra are very close to those for the non-convolved ones and hence, the value
of residuals according to Equation (4.10) is robust.

4.3.5 Conclusions

The main results obtained from this study published in [60] (cf. Appendix A.3) are:

• In general, the CLSR method shows more accurate results than the PCA-based
RTMs. However, the PCA-based binned approaches and the CLSR method are
comparable in terms of accuracy.

• The CLSR method requires more calls to the MS RTM than the PCA-based model
although the speedup factors are very similar, with slightly better results for the
CLSR method.

• The CLSR method can be used either in conjuction with the TS or the SS model pro-
viding a performance enhancement of almost two orders of magnitude while keeping
the maximum error below 0.1%.
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Figure 4.10: Convolved spectra for the multi-stream model and the two acceleration methods
for the ‘Cloud 1’ scenario using PCA and CLSR methods for the sensors GOME-2,
TROPOMI and GOSAT. For GOME-2 and TROPOMI the O2 A-band spectra are
convolved, while for GOSAT the CO2 spectra are convolved.

Table 4.4: Mean relative error ε for the convolved spectra compared with the multi-stream spectra
for the PCA-based and CLSR methods and for the different atmospheric scenarios
considered for the O2 A-band. In all cases, the low-stream model considered is the
two-stream model. The instruments analyzed are GOME-2 and TROPOMI, which are
compared with the non-convolved values.

Scenario
O2 A-Band

GOME-2 TROPOMI Non-Convolved

εPCA(%) εCLSR(%) εPCA(%) εCLSR(%) εPCA(%) εCLSR(%)

Clear sky 0.021 0.004 0.021 0.004 0.022 0.006
Aerosol 1 0.049 0.007 0.050 0.007 0.061 0.011
Aerosol 2 0.837 0.019 0.837 0.019 0.856 0.026
Cloud 1 1.23 0.011 1.23 0.011 1.24 0.017
Cloud 2 2.92 0.006 2.92 0.006 2.93 0.009

4.4 Application of the CLSR Method to other Spectral Bands
and Aerosols

4.4.1 Motivation

The idea of the CLSR method is to perform LBL computations by using a fast TS RTM
and then to refine results by using the correlation model for the TS and reference MS
RTMs. This approach was successfully applied to the O2 A-band and the weak CO2 band
for several atmospheric scenarios in [60], such as clear sky, aerosols and clouds. The re-
sults were compared with the PCA-based RTMs showing an improvement over the last
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Table 4.5: Mean relative error ε for the convolved spectra compared with the MS spectra for the
PCA-based and CLSR methods and for the different atmospheric scenarios considered
for the CO2 band. In all cases, the LS model considered is the TS model. The
instrument analyzed is GOSAT, which is compared with the non-convolved values.

Scenario
CO2 Band

GOSAT Non-Convolved

εPCA(%) εCLSR(%) εPCA(%) εCLSR(%)

Clear sky 0.0003 0.0003 0.0006 0.0006
Aerosol 1 0.0075 0.0067 0.010 0.012
Aerosol 2 0.035 0.012 0.044 0.017
Cloud 1 0.011 0.007 0.013 0.008
Cloud 2 0.011 0.005 0.016 0.006

in terms of accuracy. Therefore, we have extended in the studies published in [108] and
[109] (refer to Appendix A.4 and A.5, respectively) the CLSR method to other spectral
bands: Hartley-Huggins and water vapour for several atmospheric models containing dif-
ferent aerosol types in order to test the applicability of the method to a higher number of
atmospheres and spectral ranges.

4.4.2 Data overview

The study is focused on the UV region with the Hartley-Huggins band, and in the IR
region with the O2 A-, water vapour and CO2 bands. Table 4.6 summarizes the spectral
bands examined with their corresponding spectral range, spectral resolution and number
of spectral points to be simulated.

Table 4.6: Spectral ranges, resolutions and number of spectral points for the absorption bands
used in this study.

Band Spectral range Spectral resolution Number of spectral points
(nm) (nm)

Hartley–Huggins 280–335 0.18 300
O2 A 755–775 0.0010 20,000

Water vapour 770–1000 0.0058 40,000
CO2 1590–1620 0.0015 20,000

For modelling the aerosol properties, the OPAC database [86] is used. The aerosol
optical thickness (AOD) and the single scattering albedo (SSA) are summarized in Table
4.7 (extracted from [108, 109]).

Table 4.7: Values of AOD (SSA) at the middle of the spectral range for the spectral bands and
aerosol types considered.

Aerosol type Hartley-Huggins O2A Water vapour CO2

Tropospheric 0.133 (0.950) 0.018 (0.947) 0.015 (0.942) 0.010 (0.936)
Continental clean 0.42 (0.959) 0.20 (0.962) 0.17 (0.959) 0.08 (0.958)

Urban 4.28 (0.940) 0.46 (0.935) 0.35 (0.929) 0.16 (0.913)
Desert 0.71 (0.932) 0.20 (0.953) 0.20 (0.950) 0.19 (0.945)

Continental polluted 2.4 (0.951) 1.2 (0.960) 0.9 (0.957) 0.4 (0.950)
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Figure 4.11 [109] shows an overview of the LBL radiances of two aerosols for the MS
and TS RTMs for the different absorption bands. Note that both pairs of spectra have a
similar spectral behaviour and this allows to establish a regression model between the low-
and multi-stream radiances, which is subject to the CLSR method considered further.

Figure 4.11: TOA radiances computed for the absorption bands: Hartley- Huggins, O2 A-, water
vapour and CO2 bands for two aerosol cases: (blue) polluted aerosol and (red)
clean continental aerosol. Solid lines correspond to the MS RTM while dashed lines
correspond to the TS RTM.

4.4.3 Methodology

The CLSR method is described in detail in [60]. Therefore, only the most important
Equation of the CLSR method is shown in matrix form. Using the same notation as in
Section 4.3, we can rewrite Equation 4.8 as follows:

Y = A ·X, (4.14)

where





Y =
[
ÎcMS,i

]
,

A = [αc, βc, γc] ,

X =
[
T̂ ci , Î

c
TS,i, 1

]
.

(4.15)

Finally, we find the regression coefficients as a solution to the following least squares
problem:

A = arg min
A

n∑

q=1

[
I
c
MS,q −Y

]2
. (4.16)

Finally, we can restore the spectra of the MS radiances {ĨMS,i}Ni=1.
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4.4.4 Accuracy performance

Spectral residuals of the CLSR method for several atmospheric scenarios

The residuals (cf. Equation (4.10)) are computed for different numbers of regression points
per cluster in the case of the CLSR method. Figure 4.12 shows these residuals for the
clear sky and polluted aerosol cases (see [108]).

Figure 4.12: Box plots of the residuals for the CLSR method for (a) the clear sky scenario and
(b) the polluted aerosol in the following absorption bands: Hartley-Huggins, O2

A-, water vapour and CO2 bands. The orange and black values on top of each box
indicate the median values and the IQR values, respectively.

From Figure 4.12 we can infer that the residuals gradually decrease with the number
of spectral points. In fact, they are significantly reduced when switching from 1–2 to 3
regression points. Therefore, the median values remain almost constant from 3 regression
points. This trend is identical to the one found in [60] for different atmospheric scenarios.
Note that the scale of residuals for the water vapour band is one order of magnitude higher
than for the Hartley-Huggins, O2 A- and CO2 bands.
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Accuracy of the two-stream model equipped with the CLSR method for aerosol cases

Figure 4.13 and Figure 4.14 (see [109]) show the probability density and the cumulative
probability distribution of residuals, respectively, for four bands and 5 aerosol models.
Note that most of the highest probabilities of the residuals are found below 0.005% for the
Hartley-Huggins, O2 A- and CO2 bands. However, the probability density of the water
vapour band shows a wider distribution than for the other bands. From the cumulative
probability distributions, the following conclusions are drawn:

Figure 4.13: Probability density of the residuals for the CLSR method for the following absorption
bands: Hartley- Huggins, O2 A-, water vapour and CO2 bands. The color of the
lines represents the type of aerosol: (grey) tropospheric; (blue) continental clean;
(red): urban; (green): desert; (yellow): polluted.

• For the Hartley-Huggins band and for all aerosol types, the 90% of the residuals are
below 0.05%.

• For the O2 A-band, the 90% of the probability for the urban and tropospheric aerosol
are below 0.02% while the for the other aerosols, the residuals are higher.

• For the CO2 band and the tropospheric aerosol, most of their residuals are below
0.01%. Regarding the continental clean and desert aerosols, 90% of the residuals
are below 0.03% and for urban and polluted aerosols are below 0.05%. The reason
these latter aerosols present higher errors might be that they have higher AODs and
this influences their values. This also occurs for the water vapour band and those
specific aerosols.

• Similarly to the other spectral bands, more than 80% of the residuals in the water
vapour band presents an accuracy below 0.05% for all aerosols. However, their
influence on the water vapour band is more pronounced.
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Figure 4.14: Cumulative probability distribution of the residuals for the CLSR method for the
following absorption bands: Hartley-Huggins, O2 A-, water vapour and CO2 bands.
The color of the lines represents the type of aerosol: (grey) tropospheric; (blue)
continental clean; (red) urban; (green) desert; (yellow) polluted.

4.4.5 Computational performance

Table 4.8 shows the number of calls to TS and MS RTMs and the speedup factors with
respect to the multi-stream LBL simulations for the Hartley-Huggins, O2 A-, water vapour
and CO2 bands [109].

Table 4.8: Summary of number of calls, computational time and speedup factors for the Hartley-
Huggins, O2A-, CO2 and water vapour bands with LBL and CLSR methods.

Hartley-Huggins O2 A- and CO2 Water vapour

LBL CLSR LBL CLSR LBL CLSR

Number of calls to MS RTM 300 20 20000 20 40000 20
Number of calls to TS RTM — 300 — 20000 — 40000

Speedup factor — 15 — 1000 — 2000

We have used 5 clusters and 4 regression points for the simulations of the CLSR method
for all the spectral bands. The same number of CLSR method computations applied to
the different absorption bands (with different number of spectral points), provide different
speedup factors. For instance, the speedup factor for the Hartley-Huggins band is around
15, while for the O2 A- and CO2 bands, the speedup is of 1000. Presumably, the water
vapour band has more spectral points in the LBL RTM so that with 20 calls to the MS
RTM, we obtain a much superior speed of 2000 compared with the LBL.
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4.4.6 Conclusions

The conclusions of these studies published in [108, 109] (Appendix A.4 and A.5, respec-
tively) can be summarized in the following points:

• The accuracy of the TS model can be enhanced by using the CLSR method, which
exploits the linear relationship between the TS and MS RTMs.

• The efficiency of the approach has been tested for computing the TOA radiances in
four spectral bands at the presence of aerosols. The error of the computations is
generally below 0.05% and robust with varying aerosol properties.

• The number of calls to the time-consuming MS RTM has been reduced by 1-3 orders
of magnitude, depending on the spectral band.

4.5 Fast Hyper-Spectral Radiative Transfer Model Based on the
Double Cluster Low-Streams Regression Method

4.5.1 Motivation

The performance enhancement due to the CLSR method is about two orders of magni-
tude. However, that performance can be further enhanced with a modification of the
CLSR method. Specifically, by applying the CLSR twice, once to reconstruct the TS
spectra by means of the SS approximation and the second, to reconstruct the MS RTM
by means of the TS spectra obtained in step one. Another modification to the CLSR
method consists of providing efficient computations for atmospheric scenarios containing
aerosols. In particular, using the clear sky conditions for computing the aerosol spectra in
the framework of the CLSR method. The results are published in [110] and can be found
in Appendix A.6.

4.5.2 Data overview

To check the efficiency of the proposed modifications of the CLSR method, we consider
high spectral resolution computations of the TOA radiances in the Hartley–Huggins (315
nm), O2 A-band (760 nm), water vapour (885 nm) and CO2 band (1610 nm). The optical
properties of aerosols are computed by using the OPAC database [86]. The following
aerosol types are considered: tropospheric, continental clean, urban, desert and continental
polluted. For this study, clouds are not taken into account. The values of the AOD, SSA
and asymmetry factor (g) are summarized in Figure 4.15.

4.5.3 Methodology

The CLSR vs. the double CLSR method

In the double CLSR method, the TS spectra are computed also by applying the CLSR
technique. In this case, as an approximate model, we use the SS RTM. Thus, the algorithm
can be described as follows:

Step 1: We compute the LBL spectra {ISS(λi)}Ni=1 by using the SS RTM and apply
sorting and clustering to the space of SS radiances. Assuming a regression model between
SS and TS radiances within each cluster z, we obtain

Step 1 : ÎzTS,i = azT̂ zi + bz ÎzSS,i + dz, i = 1, ..., NZ , (4.17)
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Figure 4.15: Overview of the optical properties (AOD, SSA and g) obtained from the OPAC
database for the aerosol types: tropospheric, clean continental, urban, desert and
polluted. Each vertical line corresponds with the middle wavelength of the spectral
bands in order: Hartley–Huggins, O2 A-, water vapour and CO2 bands.

with number of radiance points NZ = N/Z and cluster index z. The regression coefficients
[az, bz, dz] are found as a solution of the following least squares problem

A = arg min
A

n∑

q=1

[
I
z
TS,q −Y

]2
, (4.18)

where A = [az, bz, dz] and Y =
[
ÎzTS,i

]
. By knowing the regression coefficients, the TS

spectra {ĨTS,i}Ni=1 can be restored from {ISS(λi)}Ni=1 at high spectral resolution.

Step 2: We apply the CLSR method as described in Section 4.3 using the TS spectra
computed in Step 1.

Figure 4.16 shows a schematic representation of the CLSR and double CLSR methods
[110]. Note that the TS spectra derived at Step 1 by using the CLSR method differ from
those computed by the TS RTM in a LBL manner. However, the possible bias obtained
in the double CLSR method at Step 1 is removed by the regression model at Step 2.

Improvement to aerosol schemes

To compute the spectrum in the case of the atmosphere with aerosol, the CLSR and double
CLSR methods can be applied [110]. For this case, the regression model (Equation (4.14))
is used, in which

Y = [Iaer
MS] (4.19)

and the original X- matrix is substituted by

X0 = [T, Iaer
TS , 1] , (4.20)
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Figure 4.16: Scheme of the CLSR method vs. the double CLSR method.

where the upper index ’aer’ explicitly indicates that the computations are performed for
the aerosol case. In this regard, alternative formulations of the CLSR method can be
considered. For instance, taking the X- matrix as

X1 =
[
T, Iclear

MS , 1
]
, (4.21)

we obtain a method, which converts the MS clear sky spectra into spectra corresponding

to the aerosol conditions. The upper index ‘clear’ indicates that the computations are
performed for the clear sky case. The possible benefit of such a scheme is that the clear
sky spectra can be precomputed and stored in LUTs and perform the computations offline,
while the computations for actual aerosol properties can be performed online.

Alternatively, we consider the X-matrix in the following form:

X2 =
[
T, Iclear

TS − Iaer
TS , I

clear
MS , 1

]
. (4.22)

In this case, the regression model is supplied with the first order perturbation computed

by using the TS RTM. As a matter of fact, in this case, we do not expect performance
enhancement compared to the X0-scheme. The question is if the error can be reduced by
involving precomputed LUTs for clear sky cases as compared to the original X0-scheme.
Note that for all these cases, the MS RTM for the aerosol scenarios is called for a few
spectral points.

4.5.4 Results

Accuracy results: single vs. double CLSR

Figure 4.17 shows the probability density function of the spectral residuals ∆Ires (cf.
Equation 4.10) for both methods and the four spectral bands. The main conclusions that
can be drawn from the figure are the following:

• More than 70% and 60% of the residuals are below 0.01% for the single and double
CLSR methods, respectively, for all bands, with the exception of the water vapour
band.
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• The residuals of the water vapour band present a wider distribution in comparison
with the other spectral bands.

• The probability densities are almost indistinguishable for both acceleration methods,
demonstrating that both techniques provide accurate results among the different
spectral bands.

Figure 4.17: Probability density function of the residuals for the single CLSR (grey) and the
double CLSR (blue) methods for the Hartley–Huggins, O2 A-, water vapour and
CO2 bands and for the tropospheric aerosol case.

It can be observed that the accuracy of the CLSR method is slightly higher than that
of the double CLSR method. This result can be expected, since the TS spectra used
in the double CLSR method are approximate and obtained from the SS spectrum (see
Figure 4.16).

Figure 4.18 shows the cumulated probability functions of the CLSR and double CLSR
methods for all spectral bands. Over 90% residuals are less than 0.05% in the case of the
Hartley–Huggins band and 0.01% in the case of the CO2 band. Higher differences can
be seen between the CLSR and double CLSR methods for the O2A- and water vapour
bands. For these bands, over 90% of the CLSR residuals are less than 0.025%. Meanwhile,
the double CLSR provides slightly larger errors: over 60% and 80% of the residuals are
less than 0.05% for the O2 A- and water vapour band, respectively. However, these
residual values are still low and of the same order as those obtained by using the PCA-
based RTMs. For instance, in Liu et al. [75] PCA was applied to optical parameters and
spectral radiances yielding an error lower than 0.2% in the solar region (775–920 nm).
Kopparla et al. [67] combined the PCA technique for optical parameters and the spectral
binning for accurate computations in the case of aerosols. The residuals were below 0.01%
for the O2 A-band, which are of the same order as our results.
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Figure 4.18: Same as Figure 4.17, but for the cumulated probability of the residuals.

Computational performance: single vs. double CLSR

In this section, we analyse the computational performance of the single and double CLSR
methods. Tables 4.9–4.11 show the number of calls to the SS, TS and MS RTMs, computa-
tional times and corresponding acceleration factors with respect to the MS LBL simulations
(see [110]).

For the single CLSR method, 5 clusters and 4 regression points per cluster are used.
Hence, computations for each absorption band involve 20 MS RTM calls, while the number
of TS RTM calls is equal to the number of spectral points in the high resolution LBL
computations (i.e., 300, 20,000 and 40,000 calls to the TS RTM for the Hartley–Huggins,
O2 A- and CO2 and water vapour band, respectively). As can be seen in Tables 4.9–4.11,
the TS RTM imposes the computational burden of the single CLSR method for the O2

A-, CO2 and water vapour bands, consuming up to 70% of the whole computation time.

At the first step of the double CLSR method, 8 clusters and 4 regression points are
used. Thus, the TS RTM is called for 32 spectral points. In the case of the double CLSR,
the SS RTM is utilized for the LBL computations, resulting in an additional performance
enhancement by 2 times for the O2A- and CO2 bands and 3 times for the water vapour
band. We note that in the double CLSR, the computational burden corresponds to the
MS RTM, while the computation times related to the TS and SS RTMs are three and two
orders of magnitude lower than those of the MS RTM, respectively. In the case of the
Hartley–Huggins band, the computational burden is still due to the MS RTM [36] and the
double CLSR does not further improve the performance.

As a final remark, the accuracy is crucial to determine the number of calls needed
for the CLSR methods, and we could improve it by increasing the number of calls to
the RTM models. However, this would add a computational burden to the simulations,
while providing little improvement in the accuracy. Several tests have been performed by
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Table 4.9: Summary of number of calls, computational time and acceleration factors for the
Hartley–Huggins band. The computational times marked in red indicate the com-
putational burden.

RTM LBL Single CLSR Double CLSR

MS 300 20 20
Number of calls TS 0 300 32

SS 0 0 300

MS 35 2.32 2.32
Computation time (s) TS 0 0.048 0.005

SS 0 0 0.006

Total computational time (s) 35 2.37 2.33
Acceleration factor – 14.8 15.0

Table 4.10: Same as for Table 4.9 but for the O2A- and CO2 bands.

RTM LBL Single CLSR Double CLSR

MS 20,000 20 20
Number of calls TS 0 20,000 32

SS 0 0 20,000

MS 2320 2.32 2.32
Computation time (s) TS 0 3.2 0.005

SS 0 0 0.4

Total computational time (s) 2320 5.52 2.725
Acceleration factor – 420 850

Table 4.11: Same as for Table 4.9 but for the water vapour band.

RTM LBL Single CLSR Double CLSR

MS 40,000 20 20
Number of calls TS 0 40,000 32

SS 0 0 40,000

MS 4640 2.32 2.32
Computation time (s) TS 0 6.4 0.005

SS 0 0 0.8

Total computational time (s) 4640 8.72 3.13
Acceleration factor – 532 1482

increasing the number of calls to the SS RTM or TS RTM but the errors are of the same
order of magnitude as the actual values.

Further improvements to aerosol schemes

The efficiency of the CLSR method for various configurations outlined in Section 4.5.3
is examined for several OPAC aerosol models. The results obtained using X1 and X2

(corresponding to Equations (4.21) and (4.22), respectively) are compared against the
original CLSR method in which the matrix X0 (Equation (4.20)) is used. The mean
absolute relative errors are shown in Figure 4.19 [110].

In general, mean relative absolute errors are below 0.05% for all aerosol types and bands
when using the original X0-configuration for the CLSR method. However, these errors are
slightly higher for the water vapour band due to its higher spectral complexity.
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Figure 4.19: Mean absolute relative error in % for the four spectral bands and all aerosol types.
Each group of bars corresponds to one of the Xi-matrix (i = 0, 1, 2) (Equations
(4.20)–(4.22)) used in the CLSR method.

In sum, we present two alternative configurations to the original X0, in order to obtain
more accurate results for: (1) low aerosol loading conditions with the X1 configuration for
all bands; and (2) the Hartley–Huggins, water vapour and CO2 bands with the X2 con-
figuration.

Combined application of single vs. double CLSR for aerosol scenarios

The single and double CLSR methods are tested for the full set of aerosol models and
Xi-configurations. The probability density functions of the residuals for the tropospheric
aerosol model are shown in Figures 4.20 and 4.21.

The conclusions drawn from the comparison of the two figures can be summarized
as follows:

• The residual distributions of the single CLSR method are narrower than those of
the double CLSR method, meaning that the single CLSR method is more accurate.
However, in general, the residuals are below 0.01% for both methods and all spectral
bands, except for the water vapour band, where the residual distributions are slightly
wider and still below 0.05%. The distributions are not biased.

• For the Hartley–Huggins, O2 A- and CO2 bands, the residuals are below 0.05% for
both single and double CLSR methods. Regarding the water vapour band, the resid-
uals are below 0.05% and 0.1% for the single and double CLSR method, respectively.
Similar accuracies were achieved in Kopparla et al. [67] for the water vapour band
using the PCA-based RTM.

• In the case of the low aerosol load, the probability density functions are similar for all
Xi-configurations. However, as the aerosol load increases, the residual distributions
for the X1 configuration provided by the single and double CLSR methods sometimes
become biased for the water vapour band.
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Figure 4.20: Probability density of the residuals for the single CLSR method and for several ma-
trix configurations: X0, X1 and X2. Each plot represents the absorption bands:
Hartley–Huggins, O2 A-, water vapour and CO2 bands. The case presented corre-
sponds to the tropospheric aerosol.

Figure 4.21: Same as Figure 4.20, but for the double CLSR method.
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4.5.5 Conclusions

The major conclusions that can be drawn from the study published in [110] (refer to
Appendix A.6) are:

• The double CLSR further improves the computational performance of the original
CLSR method by two (O2 A- and CO2 bands) and three times (water vapour band),
yet keeping the error below 0.05% for all spectral points on a high resolution grid.

• The second modification of the CLSR method allows to reproduce the LBL spectra
with low aerosol load based on the information of the clear sky spectra. With such a
configuration we obtained absolute relative errors below 0.05% for all spectral bands
while enhancing the computational performance by three orders of magnitude.

• The new configurations of the second modification have been tested for both CLSR
and double CLSR methods, revealing similar probability density functions.
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5.1 Summary

This thesis aims to research and design modern acceleration techniques for hyperspectral
RTMs with potential for remote sensing applications. To this end, the overarching objec-
tive proposed is to investigate several dimensionality reduction techniques for LBL RTMs
in different spectral regions and to devise new acceleration methods that computationally
improve the state-of-the-art techniques without losing accuracy. In this framework, the
specific objectives were pointed out in Chapter 1 which have been achieved on the basis
of the work specified in Chapter 4. This thesis provides significant contributions to the
performance enhancement for atmospheric composition sensors. In summary, the major
achievements of this thesis are outlined:

• The main dimensionality reduction techniques for processing hyperspectral RTMs
are reviewed and compiled in the full-peer review in Appendix A.2. It has been shown
that the concept of dimensionality reduction in the framework of hyperspectral RTMs
implicitly entails addressing the strong interdependencies of hyperspectral data. In
addition, it has been also shown that numerous RTMs exploit PCA for hyperspectral
modelling which are called PCA-based RTMs. Nevertheless, the specific features of
the algorithms are based on different principles, i.e., in some studies the PCA is
applied to the input optical data and in others to the output spectral data although
in the end they are all referred to as ”PCA-based”. Following this line of research,
we identified the need to investigate further how to combine these techniques, which
led us to the next point.

• An innovative hybrid PCA-based RTM approach has been developed for the Hart-
ley-Huggins band for the TROPOMI instrument. The approach consists of applying
twice the PCA method: (1) to the input optical data and (2) to the output spectral
data of the sensor. The novel addition to the PCA method is the combined applica-
tion for the input and output data together with the application of ML techniques
to the latter. Thus, the number of computations has been reduced for both input
and output and the performance enhancement is upgraded. This hybrid approach
was devised for the UV spectral region and other independent studies (e.g. [75])
have used it to extend to the wide spectral range.

• A new acceleration technique called CLSR method has been developed. It is based
on the clustering of the spectral radiances computed with a low-stream RTM (i.e.,
an approximate RTM which is either single-scattering or two-streams) and regres-
sion analysis performed to the low-stream and multi-stream RTMs. The method has
shown to provide a performance enhancement of 1-2 orders of magnitude with accu-
racies below 0.01% for two important spectral bands: O2 A- and CO2 bands and for
several atmospheric scenarios including clouds and aerosols. These values outper-
form the state-of-the-art acceleration techniques, which is an asset to be considered
for the future development of atmospheric sensors.

55
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• Two modifications have been implemented in the CLSR method to (1) boost its
performance and (2) include variations for aerosols. For the first modification, the
CLSR method was applied twice for accelerating the approximate LBL RTM. Addi-
tionally, the double CLSR method was extended to other spectral bands such as the
Hartley-Huggins and water vapour bands, obtaining a performance enhancement in
the latter case of 3 orders of magnitude while maintaining the errors below 0.05% for
all spectral points. The second modification of the CLSR method permits to repro-
duce LBL spectra with low aerosol load based on the clear sky spectra information.
This implies that if we would have the clear sky spectra precomputed, the aerosol
spectra can be retrieved significantly faster.

Thus, in this thesis a set of new acceleration techniques has been developed which helps
to boost the performance of RTMs in the hyperspectral processing chain.

5.2 Discussion

This section compares the newly developed acceleration techniques within this thesis with
other available acceleration techniques in the literature. For the comparison, the accelera-
tion factors of each method are gathered in Table 5.1 for the different spectral regions. In
this analysis, we consider the studies covering absorption bands in the 280–3000 nm spec-
tral range. The table is part of the analysis for the full-peer reviewed article of Appendix
A.6. This comparison aims to highlight the variability of acceleration factors when the
techniques are applied to different spectral bands. Thus, the main conclusions that can
be drawn from the comparison are as follows:

• For simulations in the Hartley–Huggins band, PCA techniques, linear embedding
methods (LEM) and double CLSR have been applied. The double CLSR does not
further improve the performance, since the computational burden is due to the MS
RTM computations (see Section 4.5). The highest acceleration factor is provided by
the hybrid PCA-based RTM method described in [36], in which PCA is applied to
both optical parameters and spectral radiances. The performance enhancement in
this case is up to 18 times.

• There are several studies in which fast RTMs for the O2 A- and CO2 bands (either
weak or strong) have been designed. In general, all considered techniques provide
acceleration factors of about 2 orders of magnitude. For example, those based on
artificial NN [84] provide an acceleration factor of 250. In contrast, the CLSR and
double CLSR methods provide accelerations of 505 and 850, respectively, for the
named bands, which places them among the highest values.

• The water vapour band represents a challenge for acceleration techniques due to
its complicated spectral structure. Therefore, the accuracy of the acceleration tech-
niques is generally lower than for the O2 A-band. For the water vapour band, the
double CLSR method provides an acceleration factor of about 3 orders of magnitude
(acceleration factor of 1500), while the k-distribution [42] and PCA-based RTMs
[67] achieve lower acceleration factors, of one order of magnitude. Therefore, the
double CLSR method provides superior acceleration factors for the water vapour
band compared to the state-of-the-art techniques.

We can note that the acceleration factors are ambiguous. As mentioned in previous
chapters, the acceleration factors of the RTMs depend not only on the acceleration tech-
nique but also on the number of discrete ordinates Ndo used for the reference RTM. In
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Table 5.1: Acceleration techniques for RTMs compared with those of this thesis (bottom). Each
row corresponds with an acceleration method, its corresponding spectral region, accel-
eration factor (computed with respect to the LBL model) and reference. Note that the
some of the acceleration factors are given in one or two order of magnitude indicated
as 10× and 100×, respectively.

Acceleration Technique Band/Spectral Region Acceleration Factor Reference

k-distribution H2O, CO2 , O3, and O2 10× ∗ Fomin [42]
double-k approach O2 A 1000 Duan [55]

LSI O2 A, CO2 weak, CO2 strong 45 b, 210 c O’Dell [59]
PCA O2 A, CO2 weak, CO2 strong 50 Natraj et al. [63]
PCA 290–340 nm 10 Spurr et al. [111]
LEM 325–335 nm 10 Efremenko et al. [62]
PCA 325–335 nm 2 Efremenko et al. [112]
PCA 300–3000 nm 10× Kopparla et al. [67]
PCA O2 A, CO2 weak, CO2 strong 100× Somkuti et al. [65]

k-distribution + PCA O2 A 342 Molina Garćıa et al. [113]
NN O2 A, CO2 weak, CO2 strong 250 d Le et al. [84]

LEM NO2 (425–450 nm) 12 e Doicu et al. [114]
SDCOMP a 750–920 nm 1000 d Liu et al. [75]

PCA a Hartley-Huggins 18 del Águila et al. [36]

CLSR O2 A, CO2 weak 505 del Águila et al. [60]

Hartley-Huggins 15 del Águila et al. [110]

double CLSR O2 A, CO2 weak 850 del Águila et al. [110]

Water vapour 1500 del Águila et al. [110]

a PCA is applied twice, (1) to the optical properties and (2) the radiance data set.
b Nadir observations.
c Glint observations.
d The relative computational efficiency with respect to the accurate simulations is considered.
e Relative to the k-distribution method.
∗ It is estimated from the information found in the reference.

turn, the required number of Ndo depends on aerosol properties, surface properties, ge-
ometry and the required accuracy. Therefore, different number of streams or atmospheric
parameters are used for the reference RTM in the different studies and it is important to
state the number of Ndo taken into account on each study.

It is worth noting in this section, the advantages and disadvantages of the acceleration
methods of this thesis as well as other aspects to consider:

• The main advantage of the CLSR method over the k-distribution approach is that in
the former cross-validation can be used, i.e., for adding an extra point to the cluster
it is only necessary to add a new exact computation into the CLSR method and if
the accuracy is acceptable for the specific use, then the solution is found. If this
it not the case, one can simply add more points to the cluster and perform a new
iteration.

• The acceleration factors of the PCA-based models and the single CLSR method are
very similar, with slightly better results for the CLSR method although the difference
is not significant. One advantage is that the CLSR method does not have to deal
with the eigenvalue problem as the PCA-based RTMs do.

• One annotation of the acceleration techniques developed in the thesis is that they
are tested for specific spectral bands instead of taking the wide spectral range. This
is not a problem since most of the remote sensing applications are focused on specific
spectral ranges or windows. However, an unified acceleration technique with appli-
cation to the whole spectral range would be desirable for theoretical applications.
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In addition, there should be tunable parameters of the acceleration method in or-
der to obtain a balance between accuracy and acceleration necessary for the specific
application.

• In an initial step in the development of the acceleration techniques of this thesis,
the exact LBL RTM computations have to be computed a priori. However, once the
acceleration methods are tested for several atmospheric scenarios and spectral bands,
this can be automatized and no a priori exact spectra would be needed. Indeed, this
is the ultimate purpose of these acceleration methods.

• The integration of the acceleration techniques into PYDOME RT code would be a
future step. In this case, it is of great importance to take into account the archi-
tecture of the RTM, i.e., there are some RTMs such as MODerate resolution atmo-
spheric TRANsmission (MODTRAN), that have build-in acceleration techniques.
Alternatively, the acceleration technique could be implemented separately from the
open-source code. The latter case would be integrated into PYDOME for validation
purposes.

5.3 Outlook

The newly developed acceleration RTMs have different potential applications. The tech-
niques can be easily integrated into future sensors and be the reference for the development
of future algorithms. Some of the potential practical benefits of the accelerations methods
described in the previous section are as follows:

• For efficient and fast LUT generation, the CLSR method can be used in order to
reduce the number of calls to the computationally expensive LBL RTM. Therefore,
the single and double CLSR methods could potentially be incorporated into the
generation of LUT radiance fields in a fine resolution grid.

• To reduce the size of LUTs and interpolation errors, it seems beneficial to implement
the CLSR method in conjunction with gradient-based LUT generators [115, 116].

• The results of accelerations obtained with the both CLSR methods have the poten-
tial to be applied in NRT applications of aerosol computations or aerosol retrieval
algorithms.

Apart from the benefits encountered for the acceleration methods, there are a few po-
tential topics worth investigating further for the development of future fast hyperspectral
RTMs and related applications for EO sensors. The main items are outlined in the fol-
lowing:

• Computing the Stokes parameters is of great interest in order to have full information
of the spectra. Future studies might take into account the polarization by means of
the vectorized solution of the RTE.

• In order to enhance the acceleration of the approximate RTM, a more efficient
method could replace it. This could be carried out by using the asymptotic radiative
transfer theory for optically thick media and the diffuse approximation instead of the
two-stream RTM. Further, this replacement would be of great interest to be applied
for the CLSR method for modelling the Stokes parameters.
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• Combining several acceleration techniques would be an interesting topic of research.
The combined use of the CLSR method, PCA-based methods and correlated k-
distribution would be a worthy direction of research to see if the hybrid fast RTM
methods have any impact on the acceleration.

• Coupling the CLSR method with ML techniques within the hyperspectral RTMs
framework would be worth exploring for future works. Recent studies have shown
that the accuracy of hyperspectral RT simulations can be improved by applying ML
techniques. In this framework, NNs are used as universal approximators which re-
place time-consuming RTMs. Thus, an item of relevance for future investigations
would be to replace the regression model of the CLSR method with a NN. A signif-
icant reduction in the number of calls to the MS RTM would be expected with the
consequent acceleration.
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(A.d.Á: Ana del Águila; D.S.E: Dmitry S. Efremenko; V.M.G: Vı́ctor Molina Garćıa; J.X.:
Jian Xu)
As stated in the article, the author contributions are the following: The TROPOMI data

75



76 A. Publications

generation was done by J.X., the investigation and simulations were done by A.d.Á. The
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Abstract: The new generation of atmospheric composition sensors such as TROPOMI is capable
of providing spectra of high spatial and spectral resolution. To process this vast amount of spectral
information, fast radiative transfer models (RTMs) are required. In this regard, we analyzed the
efficiency of two acceleration techniques based on the principal component analysis (PCA) for
simulating the Hartley-Huggins band spectra. In the first one, the PCA is used to map the data set of
optical properties of the atmosphere to a lower-dimensional subspace, in which the correction function
for an approximate but fast RTM is derived. The second technique is based on the dimensionality
reduction of the data set of spectral radiances. Once the empirical orthogonal functions are found,
the whole spectrum can be reconstructed by performing radiative transfer computations only for a
specific subset of spectral points. We considered a clear-sky atmosphere where the optical properties
are defined by Rayleigh scattering and trace gas absorption. Clouds can be integrated into the model
as Lambertian reflectors. High computational performance is achieved by combining both techniques
without losing accuracy. We found that for the Hartley-Huggins band, the combined use of these
techniques yields an accuracy better than 0.05% while the speedup factor is about 20. This innovative
combination of both PCA-based techniques can be applied in future works as an efficient approach
for simulating the spectral radiances in other spectral regions.

Keywords: PCA; data-driven algorithms; Hartley-Huggins band; dimensionality reduction
techniques; two-stream; multi-stream

1. Introduction

The new generation of atmospheric composition sensors such as the TROPospheric Ozone
Monitoring Instrument (TROPOMI) delivers a great amount of data. Extracting the information
about geophysical parameters (e.g., trace gas concentrations) from spectral radiances requires
high-performance computing. The key component of retrieval algorithms is the radiative transfer
models (RTMs), which convert optical parameters of the atmosphere (i.e., input space) into spectral
radiances (i.e., output space). In hyper-spectral remote sensing retrieval applications, the radiative
transfer computations are the bottleneck in the whole processing chain. In this regard, acceleration
techniques for hyper-spectral RTMs have to be developed [1]. The correlated k-distribution [2],
the exponential-sum fitting transmittance [3], the radiance sampling method [4], and the optimal
spectral mapping method [5] are examples of them. Essentially, these techniques do not compute
spectral radiances in a line-by-line manner, but rather they take into account the interdependency
between spectral channels or group them accordingly, thereby reducing the total number of calls
to RTMs.

Atmosphere 2019, 10, 142; doi:10.3390/atmos10030142 www.mdpi.com/journal/atmosphere
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In the RTM development, there has been a rapid rise in the use of the data reduction concept, e.g.,
the principal component analysis (PCA). The acceleration techniques based on PCA can be broadly
categorized into two groups: data reduction of optical parameters (input space reduction) and data
reduction of spectral radiances (output space reduction).

The input space reduction technique was proposed by Natraj et al. [6], and its main idea is to
reproduce the residual between the accurate and the approximate RTMs in the reduced space of optical
parameters. This approach has the following attributes:

• the approximate model is a two-stream radiative transfer model, while the accurate model is a
multi-stream radiative transfer model;

• the PCA is used to reduce the dimensionality of the optical parameters of the atmospheric system;
• the dependency of the correction factor on the optical parameters is modeled by a second-order

Taylor expansion about the mean value of the optical parameters.

Previously, this approach was applied for simulating the spectra in the O2 A-band [6], the Huggins
band [7], and the CO2 bands [8,9]. Kopparla et al. [10] applied a similar approach to modeling
the radiances in the wide spectral range (0.3–3000 nm). In all cases, authors reported that the
root-mean-square errors of the computed radiances are about 0.3%, yet achieving almost a 10-fold
increase in speed.

In the output space reduction technique, the principal component analysis (PCA) is used to map
the spectral radiances into a lower-dimensional subspace and to obtain a set of empirical orthogonal
functions. The spectrum at full spectral resolution can be reproduced by computing the radiances only
at certain wavelengths. Such an approach is used in several fast RTMs (e.g., PCRTM [11], RTTOV [12]
and others [13,14]) and retrieval algorithms [15,16]. To select the most representative spectral subsets,
the spectral sampling methods are used (see, e.g., [11,14] and references therein).

Note that, although both techniques are often called the same (namely “PCA-based RTMs”),
they are fundamentally different. In the first case, PCA is applied to a data set of optical parameters,
comprising the total optical thicknesses and the single scattering albedos for all given atmospheric
layers and wavelengths. In the second case, PCA is applied to the data set of spectral radiances.

In the current study, we investigate the efficiency of the dimensionality reduction technique
of optical parameters in the Hartley-Huggins band and improve upon the methods to maximize
the advantages of the data reduction concept. First, we examine the efficiency of the input space
reduction technique for simulating TROPOMI signals in the ultraviolet spectral range, which is
typically used for ozone retrieval [17]. As approximate models, we consider the two-stream model
and the single-scattering model. The spectral splitting is applied to improve the accuracy of the
method. Second, we analyze the effect of including higher-order terms in the Taylor expansion of the
correction function. Third, we apply the output space reduction technique to the data set of synthetic
TROPOMI spectra and analyze the possible benefits of it. Fourth, we show how the input space
reduction technique can be used in conjunction with the output space reduction method. The paper is
organized as follows. In Section 2 we explain the input space reduction technique. The output space
reduction and the spectral sampling techniques are described in Section 3. In Section 4, we evaluate
the performance of these methods and discuss the combined usage of them.

2. Input Space Reduction Technique

2.1. Radiative Transfer Models

Many existing RTMs are based on the discrete ordinate method [18]. The number of streams
(discrete ordinates) in the polar hemisphere, Ndo, is an important parameter controlling the
computational time and accuracy. Thus, RTMs are called “multi-stream” if Ndo ≥ 2 and “two-stream”
(TS) if Ndo = 1. The simplest analytical RTM is the single-scattering (SS) model, in which multiple
scattering events are neglected. The TS and the SS RTMs are considerably faster than the multi-stream
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models [7]. However, they suffer from a lack of accuracy. TS and SS models are taken in this study as
approximate models for fast computations of the spectral radiances. Then the multi-stream model is
applied to correct them.

In this study, the multi-stream model is based on the discrete ordinate method with matrix
exponential (DOME) [19–21] with 16 streams per hemisphere. Regarding the two-stream model,
two comments are in order:

1. the radiation field is found as a sum of the single-scattering solution and the multiple
scattering term;

2. in the multiple scattering computations the delta-M truncation method [3] is applied, while for
the single-scattering term the exact phase function is used [22].

2.2. Correction Function in the Reduced Input Space

Considering a discretization of the atmosphere in L layers, we define an N-dimensional vector
xw, for each wavelength {λw}w=1,...,W , by

xT
w = [ln τ1 (λw) , . . . , ln τL (λw) , ln ω1 (λw) , . . . , ln ωL (λw)] , (1)

where τk and ωk are the optical thickness and the single-scattering albedo of the k-th layer, respectively,
and N = 2L. Thus, the vector xw encapsulates the wavelength variability of the optical parameters,
which are the input parameters of the radiative transfer code. By using PCA, we find an M-dimensional
subspace spanned by a set of linear independent vectors (empirical orthogonal functions) {qk}M

k=1
such that the centered (mean-removed) data xw − x̄ lie mainly on this subspace, i.e.,

xw ≈ x̄ +
M

∑
k=1

ywkqk, w = 1, . . . , W, (2)

where ywk are the principal component (PC) scores.
Let us define a correction function f (xw) as follows:

f (xw) = ln
L (xw)

LA (xw)
, (3)

where LA (xw) is the radiance provided by the approximate model (here A stands for “approximate”
and refers to SS and TS models), and L (xw) is the radiance simulated by the multi-stream model.
Introducing ∆xw = ∑M

k=1 ywkqk, we consider the Taylor expansion of f (xw) around x̄ in the direction
∆xw up to fourth order. For computational simplicity, we neglect the mixed directional derivatives
and use central differences to approximate the directional derivatives. Since M < N (and in practice
M� N), it leads to a substantial reduction of the computational time. The final result for the correction
function reads as

f (xw) ≈ f (x̄) +
1
2

M

∑
k=1

(
f +
k − f−k

)
ywk +

1
2

M

∑
k=1

(
f +
k − 2 f (x̄) + f−k

)
y2

wk+

+
1

12

M

∑
k=1

(
f +2
k − 2 f +

k + 2 f−k − f−2
k

)
y3

wk+

+
1

24

M

∑
k=1

(
f +2
k − 4 f +

k + 6 f (x̄)− 4 f−k + 2 f−2
k

)
y4

wk,

(4)

where f±n
k = f (x̄±nqk), being h either k or k + 1. Once the correction function is computed, the results

of the approximate RTM can be converted into those of the multi-stream RTM by using (3). A schematic
representation of the input data processing is shown in Figure 1
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To improve the accuracy of the input space reduction technique, PCA can be combined with the
clustering of the data space, involving a two-step procedure [23]: (1) clustering of the input data space
into disjoint regions (groups of wavelengths), and (2) dimensionality reduction within each region by
using PCA. Thus, each region (group of wavelengths) is characterized by its own orthogonal basis,
and so, by its own set of correction factors. If P is the number of disjoint regions, then (2M + 1)P calls
of the multi- and two-stream models are required to compute the correction function.

Figure 1. Schematic representation of the data processing in the input space technique with principal
component analysis (PCA).

3. Output Space Reduction Technique

3.1. PCA Description

Let y = [y (λ1) , y (λ2) , . . . , y (λW)] be a row-vector of radiances at W wavelengths {λw}w=1,...,W .
A set of S spectra is assembled into a matrix Y whose i-th row is yi. Then, a spectrum yi can be
represented in a new basis system as follows:

yi = y +
W

∑
j=1

tijfj. (5)

Here, y =
S
∑

i=1
yi/S is the sample mean of the spectra (the average spectrum), tij is the j-th

coordinate of the vector yi in the new basis system and fj =
[

f j (λ1) , f j (λ2) , . . . , f j (λW)
]

is the j-th
basis vector. Next, the spectrum yi is projected onto the J-dimensional subspace (J < W) as follows:

yi ≈ y +
J

∑
j=1

tijfj, (6)
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or in matrix form:
Y ≈ Ȳ + TF, (7)

where Y = {y, . . . , y}, F =
{

f1, f2, . . . , fJ
}T and T is the matrix whose entries are

{
tij
}j=1,...,J

i=1,...,S.

The superscript T stands for “transpose”. The transformation (6) can be done by using PCA [24].
Then the basic vectors fj in (6) are referred to as “principal components” (PCs) or empirical orthogonal
functions (EOFs), while the coordinates tij in the new coordinate system and the corresponding matrix
T are called “principal component scores”. Considering a spectral decomposition of the covariance
matrix cov (Y, Y) ≡ CY :

CY = EΛET, (8)

where E is the eigenvector matrix and Λ is the diagonal matrix of eigenvalues, the EOFs are taken as J
eigenvectors related to the J most significant eigenvalues. The PC scores are then computed as follows:

T = (Y− Ȳ) FT. (9)

3.2. Reconstruction of the Full Resolution Spectrum

Let us consider a method of reconstruction of the full resolution spectrum containing W spectral
points using J monochromatic radiances, given J < W. Assume that we have precomputed a data
set of spectra. By applying PCA to it, EOFs are obtained. The theory of PCA discussed in Section 3.1,
reveals a linear relationship between PC scores and monochromatic radiances:

y (λ) ≈ ȳ (λ) + t1f1 (λ) + . . . + tJfJ (λ) . (10)

This approach requires a set of precomputed EOFs which is derived from a training data set of
simulated spectra. Hence, for a given set of J EOFs and J spectral points, it is possible to obtain a
closed linear system of J equations:





y (λ1) = ȳ (λ) + t1f1 (λ1) + . . . + tJfJ (λ1) ,

y (λ2) = ȳ (λ) + t1f1 (λ2) + . . . + tJfJ (λ2) ,
...

y
(
λJ
)

= ȳ (λ) + t1f1
(
λJ
)

+ . . . + tJfJ
(
λJ
)

.

(11)

The key point here is that the radiance values in J spectral points {λj}j=1,...,J are represented
through the same EOFs. Then, by solving (11) we obtain the PC scores, and by using (6) the full
spectrum at W spectral points can be readily restored.

The number of principal components J can either be tuned empirically or chosen by using
semi-empirical rules (see e.g., [25]). Essentially, the number J depends on the desired level of variance
to be captured by the principal components.

3.3. Spectral Sampling

Regarding the choice of wavelengths, in [11] a method is proposed for selecting the location of
monochromatic wavelengths by using a correlation function. This method involves the following steps:

1. the correlation coefficients are computed for the radiance values and then converted to vector
angles by an arccosine function;

2. the spectral data are rearranged according to the magnitudes of the correlation coefficients;
3. the monochromatic radiances are selected with equal distances in the space of correlation

coefficients.
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In [14], alternative techniques such as the equal sampling method and the optimization technique
are considered.

To summarize, the output space reduction technique can be used in the following way.
For the input data set containing optical parameters of the atmosphere for a set of wavelengths,
the monochromatic radiative transfer solver is called for each wavelength. That produces a data set
of spectra which is divided into a training data set and a validation data set. By applying PCA and
the correlation analysis to the training set, the system of EOFs is computed and an appropriate subset
of spectral points is chosen (that is the spectral sampling procedure). These two outputs are stored
and used later for computing the PC scores for the validation data set. The spectra at the full spectral
resolution are restored using (10) and the error of this reconstruction is estimated. If the error is larger
than required, then the number of preserved principal components J is increased. The schematic
representation of the output space reduction technique is shown in Figure 2.

Figure 2. Schematic representation of the data processing in the output space reduction technique with
precomputed empirical orthogonal functions.

4. Results

4.1. Dimensionality Reduction of the Optical Parameters in the Hartley-Huggins Band

In this section, we simulate the backscatter signal of the TROPOMI instrument. The spectra are
computed with a spectral resolution of 0.125 nm in the spectral interval between 290 and 335 nm,
incorporating the longer part of the Hartley band (200–310 nm) and the shorter part of the Huggins
band (320–360 nm). Thus, each spectrum contains 361 spectral points.

The simulations are performed for a clear sky model atmosphere and a Lambertian surface
albedo of 0.1. The total optical property inputs are given by Rayleigh scattering [26] by atmospheric
molecules and trace gas absorption. Additional cloud properties are neglected in the simulated spectra.
To represent cloudy scenes, the effective scene approximation [27] can be used, assuming clouds as
Lambertian reflectors. In this case, the cloud top is treated as a reflecting surface characterized by
internal surface closure [28]. The Brion–Daumont–Malicet cross sections are used for ozone. Regarding
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other trace gas species in the spectral range of interest, SO2 and NO2 absorptions are very weak
compared to that of ozone, and thus both species are not included in the model. The atmosphere is
discretized into 14 layers. The top of the atmosphere is at 50 km. The solar zenith angle, viewing zenith
angle and relative azimuth angle are 45◦, 35◦ and 90◦, respectively. The simulations are performed on
a personal computer with 16 GB RAM and processor Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz.

Firstly, we compute the radiances of the three RTMs. Figure 3a shows the simulated spectra
computed with the multi-stream, TS and SS models. As expected, the TS and SS radiances are
inaccurate with maximum errors of about 10% and 30%, respectively. Since the predicted radiances
of TS and SS models are inaccurate, three steps are followed in order to improve the accuracy and
the computational time: (1) the full spectrum is divided into disjoint regions to apply PCA to each
region; (2) a correction function is computed for the different number of PCs and spectral regions;
(3) the Taylor expansion up to fourth-order is computed for each spectral region.

Thus, following step (1), we distinguish between three cases depending on the division of the
spectral regions:

• Case 1: considering the whole spectral range of 290–335 nm.
• Case 2: considering two intervals of 290–303 nm and 303–335 nm.
• Case 3: considering three intervals: 290–303 nm, 303–321 nm and 321–335 nm.

Figure 3b illustrates the spectra when this method is applied to the whole spectral range of
290–335 nm (Case 1). Although the accuracy of the TS model is significantly improved, the mean
relative errors are still high (reaching 52% and 2.8% for the SS and TS models, respectively). Note that,
due to the high variability in the optical properties over the whole spectral range, the use of input
space reduction leads to worse results for the SS model as compared to the TS model.

To reduce the variability of the optical parameters, we compute the spectral range 290–303 nm
just by using the single-scattering model (without applying PCA) since the mean error was below 1%.
The remaining spectral interval 303–335 nm is computed as before (Case 2). The results are shown in
Figure 3c. The gray region corresponds to the domain in which the dimensionality reduction of optical
parameters is applied. In this case, the errors are below 3% for the SS model and 0.8% for the TS model.

Finally, in Case 3, three sub-intervals are considered. The single-scattering model was applied
to the spectral range 290–303 nm as in Case 2. The input space reduction technique was applied to
the remaining two sub-intervals: 303–321 nm and 321–335 nm. Figure 3d shows good agreement
between the multi-stream model and the corrected SS/TS models. Note that the accuracy and the
computational time strongly depend on the number of preserved principal components (M) and the
order of the Taylor expansion, as indicated in Table 1 for Case 3. Here the main conclusion is that the
error decreases when M and the expansion order of the Taylor series increase and vice versa.

In all the considered cases, the TS model is more accurate than the SS model. This result is expected
since the TS model includes the SS model and estimates the multiple scattering term (approximately,
though). The accuracy of the SS and TS models is significantly improved by the correction procedure
in (3). This means that the information about the multi-stream solution is contained in the optical data
and can be retrieved by using machine learning algorithms, and the input space reduction technique
can be considered as representative of them. Here we are confronted with the ad hoc learning, i.e., the
algorithm extracts the most informative part of the data and predicts the correct solution using the
computations in the reduced data space.
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Figure 3. (a) Spectral radiance computed by the single-scattering (SS), two-stream (TS) and multi-stream
models; (b) Spectral radiance after applying the correction to the whole spectra (Case 1); (c) Spectral
radiance after applying the correction within the interval 303–335 nm (Case 2); (d) Spectral radiance
after applying the correction within the intervals 303–321 nm and 321–335 nm (Case 3). The different
spectral regions are separated by shaded areas: the gray area refers to the interval 303–335 nm; the blue
area refers to the interval 303–321 nm, and the red area refers to the interval 321–335 nm. For estimating
the correction function, M = 4 principal components and Taylor expansion up to the second term were
used.

The explained variances of the first PC score in the spectral region 303–321 nm and 321–335 nm
are 98.32% and 99.76% respectively, while those for the second PC score in the same regions are 1.63%
and 0.21%, respectively. The correction functions are highly correlated with the first PC score and
depend smoothly on the first PC score, as shown in Figure 4. However, as it follows from Table 1,
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the use of just one PC score leads to a loss in accuracy. Therefore, the correction function is highly
sensitive to the high order PC scores and the classical methods of estimating the appropriate number
of PC scores may fail.

Table 1. The mean error in percentage (%) for the single-scattering and two-stream models, in Case 3:
for 303–321 nm and 321–335 nm, depending on the number of principal components (PCs) (M) and
derivatives (expansion order) computed.

M Expansion Order Single-Scattering Two-Stream

303–321 nm 321–335 nm 303–321 nm 321–335 nm

1

1 3.02 1.19 0.67 0.088
2 1.43 1.07 0.19 0.081
3 1.07 1.10 0.19 0.087
4 1.11 1.06 0.18 0.068

2

1 2.40 0.41 0.67 0.088
2 1.19 0.24 0.09 0.082
3 1.09 0.25 0.10 0.087
4 0.59 0.18 0.11 0.069

3

1 2.35 0.33 0.67 0.042
2 1.03 0.15 0.09 0.036
3 1.02 0.18 0.10 0.046
4 0.46 0.14 0.10 0.038

4

1 2.34 0.29 0.67 0.034
2 1.03 0.11 0.09 0.029
3 1.02 0.13 0.10 0.039
4 0.46 0.11 0.11 0.034
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Figure 4. Corrector vs. the first principal component score for (left) the SS model and (right) the TS
model. The plots correspond to Case 3 for the spectral regions 303–321 nm and 321–335 nm.

The computational times are listed in Table 2 for Case 3 since it provides the most accurate spectral
radiances among the three cases. Two conclusions follow from the table:

1. the increase in the number of PC scores results in the increase of the computational time. However,
this increase is not significant (0.05 s per PC score, i.e., ≈1% from the total computational time).
Therefore, it is recommended to choose M ≥ 3.
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2. the TS model is 40 times slower than the SS model for simulating the approximate spectra.
However, the overall computational times differ by a factor of 2. Given that the TS model is
more accurate than the SS model (as it has been shown in Table 1), it is recommended to use the
TS model.

Note that the computational time for the multi-stream model called for each spectral point is
∼6.8 s. Thus, the input space reduction technique provides the performance enhancement of about
10 times depending on the model used, the number of PC scores, M, and the expansion order of the
Taylor series.

Table 2. Computational time in seconds for computing the approximate spectrum (LA), corrected
radiances (L), and the total time (Total) for each model in Case 3. In addition, the number of calls to
multiple scattering (MS) radiative transfer model (RTM) is indicated. The computations depend on the
number of PCAs (M) and the order of Taylor expansion.

M Order Single-Scattering Two-Stream

LA L Total Number of MS Calls LA L Total Number of MS Calls

1

1 0.0043 0.227 0.231 3 0.175 0.268 0.434 6
2 0.0043 0.251 0.255 3 0.175 0.297 0.477 6
3 0.0043 0.416 0.420 5 0.175 0.494 0.674 10
4 0.0043 0.418 0.422 5 0.175 0.493 0.673 10

2

1 0.0043 0.276 0.280 5 0.175 0.320 0.485 10
2 0.0043 0.306 0.310 5 0.175 0.354 0.533 10
3 0.0043 0.526 0.531 9 0.175 0.605 0.784 18
4 0.0043 0.514 0.519 9 0.175 0.595 0.775 18

3

1 0.0043 0.325 0.329 7 0.175 0.370 0.536 14
2 0.0043 0.350 0.354 7 0.175 0.288 0.577 14
3 0.0043 0.619 0.623 13 0.175 0.700 0.877 26
4 0.0043 0.627 0.632 13 0.175 0.711 0.891 26

4

1 0.0043 0.363 0.367 9 0.175 0.409 0.572 18
2 0.0043 0.401 0.406 9 0.175 0.452 0.629 18
3 0.0043 0.711 0.715 17 0.175 0.794 0.970 34
4 0.0043 0.726 0.730 17 0.175 0.813 0.991 34

4.2. Principal Component Analysis of the Data Set of Spectral Radiances

In this section, we examine the efficiency of the output space reduction technique. For that
purpose, we generate a data set consisting of 2 × 105 spectra. The following parameters are varied
for the generation of radiance spectra: the solar zenith angle, the viewing zenith angle, the relative
azimuth angle, the surface albedo, the ozone total column, the surface height, and the temperature.
The smart sampling technique [29] based on Halton sequences [30] is employed to optimally cover
the multi-dimensional input space and to concurrently minimize the number of samples generated to
represent the output space.

The data set of spectra is divided into a training data set and a validation data set (see Figure 2).
By applying PCA to the training data set, the system of EOFs is computed (see Figure 5 left). The right
plot in Figure 5 shows that almost 99.9% of the variance in the output data can be explained just with
J = 2 principal components.

Figure 6 illustrates the spectral sampling procedure [11]. The left panel in Figure 6 shows an
example of the arccosine function of the correlation coefficients as a function of the wavelength, while
the right panel in Figure 6 shows the resulting plot with rearranging the arccosine function of the
correlation coefficients. By using this technique, J = 30 wavelengths are identified.
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Figure 5. (Left panel): First three orthogonal functions computed in the Hartley-Huggins band. (Right
panel): explained variance in percentage as a function of the principal component index for the
Hartley-Huggins band simulation.
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Figure 6. (Left panel): Arccosine of correlation coefficients as a function of wavelength. (Right panel):
Rearranged arccosine of correlation coefficients according to their magnitudes.

Next, the EOFs and J wavelengths are saved in the memory and reused for computing PC scores
for the validation data set. The spectra at a full resolution are restored using Equation (10). Figure 7
shows one example of the restored spectrum in the Hartley-Huggins band. The histogram of the
relative error of the restored spectra from the validation data set is shown in Figure 8. The mean relative
error of the spectra is 0.00023% with a standard deviation of 0.12%. Using J = 30 spectral points
provides a performance enhancement of about 12 times. A higher amount of principal components
(J > 30) assures a higher accuracy and a more robust result.
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Figure 8. A histogram of the relative error of the restored spectra from the validation data set.

4.3. Combined Use of Input and Output Space Reduction Techniques

In this section, we examine the combined use of the input and output space reduction techniques.
The input space reduction technique is used with the parameters corresponding to the case in Table 2
marked with a gray color, namely:

• the number of preserved principal components is M = 3,
• the correction function is expanded in Taylor series up to the second order,
• the two-stream model is used for computing the approximate solution; and for that, the two-stream

model is called for each spectral point (i.e., W = 361 times).

In this case, the computations of the TS solutions require ∼30% of the total computational time.
The output space reduction technique is applied to accelerate the computations of the approximate

solution. For that, the data set of the spectra computed by using the two-stream solution has been
generated and analysis similar to that from Section 4.2 is conducted. To ensure a robust result, J = 30
spectral points are chosen. Table 3 summarizes the acceleration factors and mean errors for both
methods when they are applied separately and jointly.
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The input space reduction technique provides a speedup factor of about 13. The output space
reduction technique accelerates the two-stream computations by 12 times, practically making this part
negligible in terms of overall computational time. The resulting acceleration factor is about 18. Note
that the combined use of two techniques does not compromise the robustness of the scheme keeping
the error below 0.05%.

Table 3. Acceleration factor and mean error for the input space reduction method, the output space
reduction method and a combination of both methods for the best configuration (i.e., three PC scores
and the second order expansion).

Input Space Reduction Output Space Reduction Combined Use

Acceleration factor 13 12 18.2
Mean error 0.05 0.00023 0.05

Hence, the results presented in Table 3 exhibit that the combined used of both methods results in
an efficient approach to accelerate the input and output data without losing accuracy.

5. Summary

In this work, we have examined in detail the efficiency of two acceleration techniques based on
the principal component analysis (PCA) for simulating the spectral radiances in the Hartley-Huggins
band. The first technique is based on the input space reduction, in which the correction function for
approximate radiative transfer models is applied. The second technique deals with the analysis of
the precomputed data sets of spectra. By estimating the set of empirical orthogonal functions and
most relevant (representative) spectral points, it is possible to reproduce a spectrum at full spectral
resolution by performing radiative transfer simulations only for a subset of wavelengths.

The first technique does not require a precomputed data set and therefore can be regarded as a
sort of RTM with ad hoc learning. The second technique can be applied to the real measurements, and
therefore, the instrumental features like detector degradation can be easily taken into account. It has
been shown that both techniques achieve an order of magnitude speed improvement.

An innovative method which combines these PCA-based techniques has been introduced to
increase the computational efficiency of radiative transfer models. The output space reduction
technique is used to speed up the two-stream computations in the framework of the input space
reduction technique, providing an overall speedup factor of about 20. The combined method is just as
accurate as the input space reduction technique, applied separately.

In our future works, we plan to examine the efficiency of the proposed approach for other spectral
bands and to investigate the overall performance enhancement of the ozone retrieval algorithms.
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PC Principal Component
RTM Radiative Transfer Model
SS Single Scattering
TROPOMI TROPospheric Ozone Monitoring Instrument
TS Two-Stream
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Abstract

Hyper-spectral sensors take measurements in the narrow contiguous bands across the elec-
tromagnetic spectrum. Usually, the goal is to detect a certain object or a component of the
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outlines the dimensionality reduction techniques in the context of hyper-spectral remote
sensing of the atmosphere. The dimensionality reduction excludes redundant information
from the data and currently is the integral part of high-performance radiation transfer
models. In this survey, it is shown how the principal component analysis can be applied
for spectral radiance modelling and retrieval of atmospheric constituents, thereby speeding
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ABSTRACT

Hyper-spectral sensors take measurements in the 
narrow contiguous bands across the electromagnetic 
spectrum. Usually, the goal is to detect a certain ob-
ject or a component of the medium with unique 
spectral signatures. In particular, the hyper-spectral 
measurements are used in atmospheric remote sens-
ing to detect trace gases. To improve the efficiency 
of hyper-spectral processing algorithms, data reduc-
tion methods are applied. This paper outlines the di-
mensionality reduction techniques in the context of 
hyper-spectral remote sensing of the atmosphere. 
The dimensionality reduction excludes redundant 
information from the data and currently is the in-
tegral part of high-performance radiation transfer 
models. In this survey, it is shown how the principal 
component analysis can be applied for spectral ra-
diance modelling and retrieval of atmospheric con-
stituents, thereby speeding up the data processing 
by orders of magnitude. The discussed techniques 
are generic and can be readily applied for solving 
atmospheric as well as material science problems.

Keywords: passive remote sensing, hyper-spec-
tral data, principal component analysis, full-physics 
machine learning, trace gas retrieval

1. INTRODUCTION

Hyper-spectral sensors record the transmitted or 
reflected radiance in the narrow contiguous bands 
across the electromagnetic spectrum. The goal is 
to detect a certain object or a component of the 

medium, which has a unique spectral signature, i.e. 
a fingerprint. Hyper-spectral imaging has emerged 
as one of the most powerful technologies in vari-
ous fields including astronomy, mineralogy, agricul-
ture, medicine and chemistry. For instance, hyper-
-spectral data (sometimes referred to as hypercube 
data or as an image cube) are used in astronomy and 
Earth remote sensing to create a spatially-resolved 
spectral image allowing more accurate recogni-
tion and classification of the objects in the instru-
ment field of view. At the same time, significant 
data storage and computational power are required 
to process the hyper-spectral information and to re-
trieve a certain parameter of the scattering medium.

In this survey we are focused on hyper-spec-
tral remote sensing of the atmosphere. The pas-
sive atmospheric composition sensors (ACS) de-
tect and record the radiance reflected by the Earth 
atmosphere in the ultraviolet (UV), visible (VIS), 
and thermal infrared (IR) regions. The informa-
tion about the atmosphere is then retrieved from the 
spectral data by using the so called atmospheric pro-
cessors, i.e. codes which are specifically designed 
to invert ACS measurements [1]. Extracting the in-
formation about geophysical parameters (level‑2 
data) from spectral radiance distributions (level‑1 
data) turns out to be a major computational chal-
lenge and requires high performance computing 
(HPC) [2].

The recent developments in optics, sensor de-
sign and measurement techniques significantly im-
prove the characteristics of hyper-spectral ACS, 
such as the spatial resolution and the signal-to-noise 
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ratio. Table shows a comparison between previ-
ous generation instruments like the Global Ozone 
Monitoring Experiment (GOME and GOME‑2) 
and the newest, the TROPOspheric Monitoring In-
strument (TROPOMI) [3] on board of the Coperni-
cus Sentinel 5 Precursor (S5P) satellite. The spatial 
resolution of TROPOMI is two orders of magni-
tude higher, providing 21 million level‑1B spec-
tra per day, i.e. almost 8 milliards spectral points, 
while the signal-to-noise ratio in the UV/VIS chan-
nels reaches the values of about 1500. Fig. 1 shows 
the example of a retrieved map of tropospheric ni-
trogen dioxide (NO2) from S5P measurements (the 
data is freely available at https://s5phub.copernicus.
eu/dhus). Observe that air pollution emitted by big 
cities and shipping lanes is clearly visible. With the 
high resolution data it is possible to detect air pollu-
tion over individual cities as well as to locate where 
pollutants are being emitted, and so, identifying pol-
lution hotspots. Such high resolution satellite re-
mote sensing observations are extremely useful for 
diagnosing the impact of atmospheric constituents 
on a global scale, in particular, allowing detection of 
small-scale sources, and increasing the fraction of 

cloud-free observations. However, the high spatial 
resolution of the state-of-the-art ACS results in very 
challenging data volumes to be processed – ​240 TB 
(terabyte) per year of level‑1 data.

In fact, the amount of satellite data increases 
faster than the computational power [4]. The remote 
sensing data is recognized as Big Data [5] since 
it satisfies Doug Laney’s 3V criterion: significant 
growth in the volume, velocity and variety. New 
efficient techniques have to be developed for next 
generation atmospheric processors to cope with 
these high efficiency requirements.

The radiative transfer modelling (RTM) is the 
key component and the major performance bot-
tle-neck in the atmospheric processors. Further-
more, the hyper-spectral RTMs involve a hierar-
chy of nested computational loops [6] as shown 
in the pseudo-code in Fig. 2. Recent surveys such as 
those provided by V. Natraj [7] and D. Efremenko 
et al. [8, 9] showed that a significant performance 
enhancement can be achieved by optimizing the 
framework in which the radiative transfer solver is 
called rather than accelerating the RTM solver it-
self. In fact, the efficiency of monochromatic radia-

tive transfer solvers hardly 
can be further improved 
[10]. Several attempts 
have been made to opti-
mize loops over ground 
pixels and geometry (see, 
e.g., [11, 12, 13, 14] and 
references therein). Cur-
rently the loop over wave-
lengths (which expresses 
the hyper-spectral pro-
cessing) remains the most 
computationally demand-
ing part.

The essential part of 
the Big Data analysis is 
the dimensionality reduc-

Table. Characteristics of Atmospheric Composition Sensors

Instrument GOME GOME‑2 TROPOMI

Platform ERS‑2 MetOp (A, B, C) Sentinel 5 Precursor

Spatial resolution (km2) 320x40 80x40 7x3.5

Amount of level‑1 data 
(TB per year) 0.8 4.2 240

Operational 1995–2011 2006-present 2017-present

Fig. 1. Example of 
Sentinel‑5P tropo-
spheric nitrogen 
dioxide (NO2) 
measurements on 
1.04.2019 (data is 
freely available at 
https://s5phub.co-
pernicus.eu/dhus)
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tion procedures which are related in the context of 
RTMs to the loop over wavelengths. The principal 
component analysis (PCA) is one of the famous rep-
resentatives of them. PCA was proposed in 1901 by 
K. Pearson [15] and today has become an integral 
part of hyper-spectral RTMs.

In this regard, many efforts have been made 
to develop hyper-spectral RTMs which explicitly 
take into account the interdependency and statistical 
relations between level‑1 and level‑2 data [16]. The 
motivation of this survey is to present basic con-
cepts of dimensionality reduction for design of at-
mospheric processors in a systematic way and to put 
in one context recent developments in this field.

2. DIMENSIONALITY REDUCTION

2.1. Heritage from the k-Distribution 
Technique

The techniques of dimensionality reduction in at-
mospheric science and astrophysics were preceded 
by methods which exploit a strong interdepen-
dency in the hyper-spectral data, although do not 
use PCA explicitly. Ambartsumian [17] noted that 
the transmission within a spectral interval does not 
dependent on the line-by-line (LBL) variation of 
the absorption coefficient k with respect to wave-
lengthλ , but rather on the distribution of absorp-
tion coefficient within the spectral interval. Such 
concept is called the k-distribution approach. It is 
based on the cumulative frequency distribution of 
k, namely, ( )G k ; as a matter of fact, the inverse dis-
tribution ( )k G  is the k-distribution function. Since 
( )G k  is a smooth function and ( )λk  has a strong 

variation with respect to λ , it is beneficial from 
the numerical point of view to replace the integra-
tion in λ -space by that in G-space (less number of 
quadrature points for numerical integration is re-
quired). This method was extended by Goody et al. 
[18] to the cases of inhomogeneous atmosphere as-
suming that there is a correlation between k-distri-
butions at different pressure levels, and that is the 
correlated-k distribution method. Other techniques 
(e.g. exponential sum fitting [19], spectral map-

ping [20], k-binning approach [21], opacity sam-
pling method [22], multi-dimensional k-distribu-
tion method [23], and fast k-distribution models 
[24, 25]) use similar ideas although based on a more 
elaborative mathematical basis. In [26], a modifica-
tion of the k-distribution technique was considered, 
in which the integration is performed in the origi-
nal λ  -space. In [27], an empirical procedure based 
on uniform spectral grids was proposed for choos-
ing the most representative spectral points in LBL 
computations. Together, the studies related to the 
k-distribution function outline that the hyper-spec-
tral radiances can be modelled by much fewer num-
ber of monochromatic computations than required 
by the LBL-framework, thereby providing a basis 
to dimensionality reduction of the problem.

2.2. Basic Concept of Dimensionality 
Reduction

In simple words, dimensionality reduction means 
representing the initial data set with less number of 
parameters than it is initially represented. It can 
be considered as one of the lossy data compres-
sion paradigms [28]. Dimensionality reduction is 
crucial for stable and high-performance processing 
of spectral measurements. It excludes redundant in-
formation from the initial dataset, reduces the num-
ber of independent parameters and improves the ef-
ficiency of machine learning.

There is a distinction between linear and non-lin-
ear techniques for dimensionality reduction. A more 
detailed review can be found in [29, 30, 31, 32] 
and references therein. Linear and non-linear tech-
niques have been inter-compared in [33]. Results 
of these numerical experiments reveal that non-lin-
ear techniques perform well on selected artificial 
tasks. However, they hardly outperform PCA on re-
al-world tasks. Similar conclusions were reported 
in [34], where several methods for dimensional-
ity reduction were inter-compared in the context of 
accelerating radiative transfer performance. Bear-
ing in mind that no obviously superior method has 
emerged in the benchmarking studies (increasingly 
time-consuming and sophisticated dimensionality 

Fig. 2.  Hierarchy of computational loops, in which the radiative transfer solver is called
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reduction techniques lead to more accurate results, 
and vice versa) our analysis will be limited with the 
classical PCA.

2.3. Principal Component Analysis

Although the dimensionality reduction tech-
niques are well-known and covered by many sta-
tistical libraries (e.g., scikit-learn [35] for Python), 
we make a short mathematical exposition to put the 
above considerations in a proper context. For clar-
ity, we specify sizes of matrices using the nota-
tion rows columns×∈ . Let ( ) ( ) ( )( )1 2, ,...,λ λ λ= Wy y yy , 

1×∈ WRy , be a row-vector of atmospheric radiances 
at W  wavelengths { } 1, ,

λ
= …w w W . A set of S  spectra are 

assembled into a matrix ×∈ S WRY  whose i -th row 
is iy .Then, iy  can be represented in a new basis sys-
tem as follows:

1
.

=

= +∑
W

i ik k
k

ty y f

Here, 
1

/
=

= ∑
S

i
i

Sy y , 1×∈ WRy  is the sample mean 

of the spectra (the average spectrum), ikt  is the thk  
coordinate of the vector iy  in the new basis sys-
tem and ( ) ( ) ( )( ) 1

1 2, ,...,λ λ λ ×= ∈ W
k k k k Wf f f Rf  is 

the thk  basis vector. Noting that high-dimensional 
real data are often situated on or near a lower-di-
mensional manifold, the spectrum iy can be pro-
jected onto the K -dimensional subspace ( <K W ) 
as follows:

1
,

=

≈ +∑
K

i ik k
k

ty y f  	 (1)

or in matrix form for the initial dataset:

,≈ +Y Y TF  

where { }, , ×= … ∈ S WRY y y ,

 { }T
1 2, ,..., ×= ∈ K W

K RF f f f , ×∈ S KRT  is the matrix 

whose entries are { } 1, ,

1, ,

= …

= …

k K
ik i S

t . Hereinafter the super-

script T  stands for ‘’transpose’’. The transforma-
tion (1) can be done using dimensionality reduc-

tion techniques, such as PCA [15]. In the latter, 
basic vectors kf  in (1) are referred to as ‘’principal 
components’’ (PCs) or empirical orthogonal func-
tions (EOFs) and are taken as K  eigenvectors re-
lated to the K  most significant eigenvalues of the 

covariance matrix ( )cov , ×∈ W WRY Y . The coordi-

nates ikt  in the new coordinates system and the cor-
responding matrix T  are called ‘’principal compo-
nent scores’’.

3. PRINCIPAL COMPONENT-BASED 
RADIATIVE TRANSFER MODEL FOR 
HYPER-SPECTRAL SIGNALS

The most conceptually simple approach uses 
the training data set of spectra in order to establish 
a set of EOFs by using PCA and then to restore hy-
per-spectral signal in W spectral points by using K 
monochromatic radiances. Naturally, we have K<W.

The theory of PCA briefly discussed in the previ-
ous section reveals a linear relationship between PC 
scores and monochromatic radiances:

( ) ( ) ( ) ( )1 1 ... .λ λ λ λ= + + + K Kt ty y f f  	 (2)

Hence, for a given set of K EOFs and K spectral 
points it is possible to obtain a closed linear system 
of K equations:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1

2 1 1 2 2

1 1

... ,

... ,
...

... .

λ λ λ λ
λ λ λ λ

λ λ λ λ

 = + + +


= + + +


 = + + +

K K

K K

K K K K K

t t

t t

t t

y y f f

y y f f

y y f f

 	 (3)

The key point here is that the radiance values 
in K spectral points are represented through the 
same EOFs. Then, by solving (3) we obtain PC 
scores 1,... Kt t , and, by using (2), the full spectrum 
in W spectral points can be readily restored.

This approach requires a set of precomputed 
EOFs which is derived from a training data set of 
simulated or measured spectra. Fig. 3 shows the ex-
ample of the PCA applied to the dataset of spec-
tra computed in the Hartley-Huggins band used for 
ozone retrieval. The data set consists of 105 spectra. 
The following parameters are varied for the gener-
ation of reflectance spectra: the solar zenith angle, 
the viewing zenith angle, the relative azimuthally 
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angle, the surface albedo, the ozone total column, 
the surface height, and the temperature. The right 
plot in Fig. 3 shows that almost 99.9 % of the vari-
ance in the data can be explained just with 5 princi-
pal components.

To obtain best efficiency, the parameters of 
this scheme, such as K and a set of chosen wave-
lengths, have to be tuned empirically. The num-
ber K  depends on the desired level of variance 
to be captured by the principal components. Sev-
eral semi-empirical rules have been proposed for 
the optimal number of principal components (e.g. 
the broken stick model [36]). However, there is no 
universal rule for the selection of K ; the choice is 
application-specific. 

Regarding the choice of wavelengths, in [37] 
a method is proposed for selecting the location of 
monochromatic wavelengths by using a correla-
tion function. In particular, this method involves the 
following steps:

–  The correlation coefficients are computed for 
the radiance values and then converted to vector an-
gles by an arccosine function;

–  The spectral data is rearranged according 
to the magnitudes of the correlation coefficients;

–   The monochromatic radiances are selected by 
choosing predictors with equal distances in the val-
ues of the correlation coefficients.

The schematic representation of the principal 
component-based hyper-spectral radiative trans-
fer model is shown in Fig. 4. For the input data set 
containing optical parameters of the atmosphere for 
a set of wavelengths, the monochromatic radiative 
transfer solver is called. To obtain the most repre-
sentative dataset, the smart sampling method [38] 
is recommended based on Halton sequences [39]. 
That produces a data set of spectra, which is divided 
into training data set and validation data set. By ap-
plying PCA and the correlation analysis to the train-
ing set, the system of EOFs is computed and a sub-

set of spectral points is chosen (spectral sampling), 
respectively. These two outputs are stored and used 
for computing PC scores for the validation data set. 
The spectra in the full wavelength range are re-
stored using Eq. (2) and the error of this reconstruc-
tion can be estimated. If the error is larger than re-
quired, the number of generated spectra and the 
number of principal components) are increased. The 
main output of the training phase are empirical or-
thogonal functions and spectral sampling (marked 
with red in Fig. 4), which allow to process new 
data in the online phase (as shown in Fig. 5).

In [37], it was noted that the slit function con-
volution operator and the PCA are linear. There-
fore the PC scores of the convolved spectra are lin-
ear functions of monochromatic radiances. Then at 
the training stage, the corresponding weighting fac-
tors of linear dependency are stored together with 
the system of EOFs and spectral sampling. Authors 
claim that for an infrared spectrum ranging from 
650 cm‑1 to 3000 cm‑1 this representation for con-
volved spectra reduces the number of monochro-
matic computations from a few thousands to a few 
hundreds.

Fig. 3. (Left) Mean 
spectrum and first 
three empirical 
orthogonal functions 
computed in the 
Huggins band; (right) 
explained variance in 
percentage as a func-
tion of the principal 
component index

Fig. 4. Schematic representation of the PCA-based radia-
tive transfer model with precomputed empirical orthogonal 

functions – ​offline phase
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The presented approach proved to be effi-
cient and implemented in several packages (e.g. 
PCTRM [37], RTTOV [40] and others [41, 42]). 
The main drawback is that it requires time consum-
ing computations of the training data set.

4. PRINCIPAL COMPONENT 
ANALYSIS IN THE FRAMEWORK 
OF DIFFERENTIAL OPTICAL 
ABSORPTION SPECTROSOPY

In this section we consider the application of 
the PCA in the framework of the differential opti-
cal absorption spectroscopy (DOAS) [43]. DOAS 
is widely used to retrieve the trace gas content. The 
main advantages of this technique are the simplic-
ity and robustness as it is able to filter out the influ-
ence of factors, which are not taken into account 
properly in the RTM. The main idea of DOAS con-
sists in the fact that the absorption caused by gases 
leads to a strong spectral signatures in the spectral 
radiances, while the influence of multiple scatter-
ing and other factors is usually smooth in the wave-
length space. Following [44], the radiance reflected 
by the atmosphere consisting of Ng gas species with 
absorption coefficients ,σ abs g  is represented using 
the weak absorption Beer-Lambert law as

( ) ( ) ( ) ( ),
1

ln RRS ,λ σ λ λ λ
=

= − − −∑
gN

g abs g
g

y S P  	 (4)

where gS  is the number density of gas g along the 

optical path (also referred to as the slant column 
density), ( )λP  is the polynomial term which repre-
sents the impact of Rayleigh and aerosol/cloud scat-
tering as well as the surface reflectance, while RRS 
is a term representing the rotational Raman scatter-
ing [45, 46]. In the conventional DOAS, Sg is re-
trieved through least squares fitting that minimizes 
the residual between the measured (left part of Eq. 
(4)) and simulated (right part of Eq. (4)) radiance 
spectra. Then Sg in converted into the vertical col-
umn density (Ωg) though the air mass factor (AMF). 
The latter is computed at a single wavelength as-

suming a prescribed vertical profile of gas g [47, 
48].

In [49] the modification of the DOAS approach 
was proposed for retrieving the SO2 total column. 
The PCA is applied for the measured spectra in re-
gions with no significant SO2, e.g. the equatorial 
Pacific:

( ) ( ) ( )
1

ln ln .λ λ λ
=

= +∑
K

k k
i

ty y f  	 (5)

In this way, the EOFs capture the variability of 
the data caused by physical processes (i.e. Rayleigh 
and Raman scattering and ozone absorption). In ad-
dition, the features of the instrument (e.g. the in-
strumental degradation, the slit function and mea-
surement artefacts) are implicitly accounted for 
by EOFs. That is the training phase. Then, for pol-
luted regions with SO2, representation (5) will pro-
duce a residual which is associated with SO2 con-
tent. Thus,

( ) ( ) ( ) ( )
2

2

SO
1 SO

ln
ln ln

λλ λ λ
=

∂
= + +Ω

∂Ω∑
K

k k
i

t
y

y y f ,	 (6)

where 
2SOΩ is the SO2 vertical column density. The 

derivative in the last term can be estimated either 
by finite differences or by using linearized radiative 
transfer models [50, 51]. Then 

2SOΩ  can be readily 
retrieved from Eq. (6).

This method has been applied to the Ozone 
Monitoring Instrument (OMI) [52] data in the spec-
tral range (310–340) nm. As the high order principal 
components represent the noise rather than a useful 
signal, the truncation over the principal components 
also acts as a filter. To reconstruct the spectral radi-
ances, at least 20–30 principal components were re-
quired while in the presence of relatively strong SO2 
signals that number could be reduced to 8. Authors 
claim that the noise in the data was decreased by 
factor of 2 thereby providing greater sensitivity 
to anthropogenic sources of SO2.

So far, there are no reports of applying the sim-
ilar approach to other trace gases. One reason for 
that is the difficulty of obtaining the system of EOFs 
for regions without a certain trace gas. The second 
reason is that, strictly speaking, representation (6) 
is approximate. For SO2 it works correctly and the 
residual is associated with the SO2 signal. For other 
trace gases representation (6) might be not valid and 
more elaborated approach is required.

Fig. 5 The same as in Fig. 4, but online phase
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5. DIMENSIONALITY REDUCTION IN 
RTMS WITH MACHINE LEARNING

5.1. General Consideration

Following [53], the inverse problem is solved 
by reducing it to an exercise in optimization. The 
main idea behind this method is to find the state 
vector that minimizes the residual between simu-
lated data and measurements. A non-linear inverse 
problem is solved iteratively [54, 55]. Assuming an 
a priori state vector x, a non-linear forward model 
is linearized about x. Then, the linearized model 
can be easily inverted and a new estimation for the 
state vector can be found. This iterative approach is 
widely used for trace gases retrieval as well as for 
estimating aerosol and cloud properties [56]. How-
ever this inversion method is very time-consuming, 
due to repeated calls to complex radiative transfer 
forward models that simulate radiances and Jaco-
bians (i.e. matrices of the first-order partial deriv-
atives of spectral radiances with respect to x), and 
subsequent inversion of relatively large matrices. 
These considerations motivate the development of 
alternative inversion techniques for remote sensing 
real-time applications, which are based on machine 
learning and therefore sometimes referred to as ful-
l-physics inverse learning machines (FP-ILM) [57].

5.2. The Concept of Learning Machines for 
Atmospheric Retrievals

Machine learning algorithms do not consider the 
optimization problem explicitly. Rather, they learn 
from a given dataset and make predictions regarding 
parameters of interest. Conceptually, the machine 
learning algorithm consists of a training phase, 
wherein the inversion operator is obtained using 
synthetic data generated by the radiative transfer 
model, which expresses the “full-physics” compo-
nent, and an operational phase, in which the inver-
sion operator is applied to real measurements. Here 
the main advantage over the classical optimiza-
tion approach is that the time-consuming training 
phase involving complex radiative transfer model-
ling is performed off-line; the inverse operator itself 
is robust and computationally simple.

Fig. 6 is a schematic representation of the pos-
sible implementation of the learning machine. Dur-
ing the training phase, a training dataset is com-
puted using a full-physics forward model, which 

in our case is the radiative transfer model. In or-
der to capture the essential features of the simu-
lated data and to avoid “over-dimensionality” (the 
so-called Hughes effect [58]), the simulated spec-
tral data are compressed using an appropriate di-
mensionality-reduction technique. The mapping 
between the dimensionality-reduced spectral sim-
ulations and the parameter of interest is captured 
via machine learning.

5.3. Machine Learning Based on the Linear 
Regression Schemes

In the retrieval algorithms based on linear re-
gression, the following representation for the re-
trieved parameter x is exploited:

( )
1

,λ
=

= +∑
W

w w
w

x c l y  

where c  is the linear offset and wl  are the regres-
sion coefficients. The principal component regres-
sion (PCR) method employs the linear regres-
sion model between x and the principal component 
scores of the spectral radiance:

1
;

=

= +∑
K

k k
k

x c l t  

As K << W, the dimension of the linear regres-
sion model (and the corresponding inverse problem) 
is reduced. Moreover, since the instrument noise 
does not affect PC scores of low order, the whole in-
version scheme is more stable.

For noisy data, the set of eigenvectors F  must 
be computed for the matrix Y e+C C , rather than 
for YC , where eC  is the noise covariance matrix. 
In this case, the PC scores for the noisy data are cor-

Fig. 6. Schematic representation of the machine learn-
ing retrieval algorithm which exploits the dimensionality 

reduction of the spectral radiances
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related and are therefore called ‘’projected princi-
pal components’’ [59]. If the statistics of the noise 
is unknown, the noise covariance matrix can be es-
timated by making some assumptions (e.g., Gaus-
sian noise) or by using the following approxima-
tion e α≈C I , where I  is the identity matrix and 
α  is the regularization parameter. This proce-
dure reduces the impact of high-order principal 
components.

The kernel ridge regression (KRR) algorithm 
[60] generalizes the PCR method; KRR has been 
used for predicting atmospheric profiles from the 
IASI (the infrared atmospheric sounding interfer-
ometer) instrument [61]. One drawback of the PCR 
and KRR models is that the basis vectors F  charac-
terize the measurements Y , while information con-
tained in X  is not taken into account. An alter-
native model that gets round this drawback is the 
partial least squares regression (PLSR) [62]. In [62, 
64], it was shown that PLSR leads to model-fitting 
with fewer PCs than required with PCR. In its turn, 
the PLSR approach can be generalized to the case 
when we are retrieving a set of correlated parame-
ters (e.g., the temperature profile) rather than a sin-
gle variable x . The corresponding method is then 
referred to as canonical correlations [65]. The use of 
canonical correlations in atmospheric sciences ap-
plications is summarized in [66].

The approach based on the PCR has been suc-
cessfully applied for solving the problems of vol-
canic plume-height retrieval from GOME‑2 [67] 
and TROPOMI measurements [68], as well as CO2 
retrieval from GOSAT measurements [69, 70].

6. DIMENSIONALITY REDUCTION 
OF INPUT OPTICAL DATA

6.1. Spectra Simulation

An efficient technique using the dimensional-
ity reduction of the optical data has been proposed 
in [71]. This method relies on the local lineariza-
tion of the radiative transfer model with respect 
to input parameters using finite differences. To re-
duce the number of radiative transfer model calls 
for estimating finite difference values, the lineariza-
tion is done in the reduced data space. The method 
can be summarized as follows. We introduce a cor-
rection function as follows:

( ) ( ) ( )ln[ / ].λ λ λ=w w a wQ y y  	 (7)

Here y  is the radiance computed with a full ra-
diative transfer model, while ay  is the radiance 
computed with an approximate model (e.g., the two-
stream model). Then, for the atmosphere consisting 
of L layers, we consider a state vector 2 1+∈ L

w Rx  
containing optical parameters for all layers, i.e.,

 

where sct,σ i  and abs,σ i  are is the scattering coefficient 
and the absorption coefficient in the i th layer, re-
spectively, while ρ  is the surface albedo. Thus, the 
wavelength variability of the optical parameters, 
representing the radiative transfer code input pa-
rameters, is encapsulated in the vector wx . Note, 
that the phase function is assumed to be constant 
within a given spectral interval and therefore not in-
cluded in the vector wx . By applying the 
PCA to { } 1=

W
w w

x , we obtain

( )
1 1

,    1/ .
= =

≈ + =∑ ∑
K W

w wk k w
k w

Wtx x f x x  

Fig. 7 shows the results of PCA for input op-
tical data in the Huggins band (315–335 nm) and 
O2A band (755–775 nm). Optical data is taken from 
[72]. Note that four principal components are suffi-
cient to capture 99.9 % variability of the datasets.

Now, let us assume that ( )wQ x  can be approxi-
mated sufficiently well by its Taylor expan-
sion around x , that is, 
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where ∇Q  and 2∇ Q  are the gradient and the Hes-
sian of Q , respectively. By using central differences 
to approximate the first and the second-order direc-
tional derivatives in (8), we obtain
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From (9) and (7) it is apparent that the compu-
tation of the correction factor requires 2 1+K  calls 
of the full- and two-stream models. Note that if we 
estimated the correction function using finite differ-
ences in the initial data space, that would require 
2L+1 calls of the full- and two-stream models. As 
a result and taking into account that usually ,K L  
we are led to a substantial reduction of the compu-
tational time.

This approach has been applied for simulating 
the spectra in the O2A band [71], the Huggins band 
[34], and CO2 bands [73, 74]. Kopparla et al [75] 
applied the similar approach for modelling the ra-
diances in the UV/Vis/NIR spectral range (0.3–
3000) nm. In all cases authors reported that the root 
mean square errors of the computed radiances are 
of order 0.01 %, yet achieving almost a 10-fold in-
crease in speed. The big advantage of this method 
is that unlike previously considered techniques, 
this one does not require precomputed databases of 
spectra.

In [76], the efficiency of input and output space 
dimensionality reduction techniques was analyzed 
for simulating the Hartley-Huggins band. The 
hybrid usage of these techniques was proposed. 
The output space reduction and the spectral sam-
pling methods are applied to the two-stream solu-
tion by using corresponding lookup tables, while 
multi-stream solution computations are performed 
within the input data reduction framework, de-
scribed in this Section. It was found that the com-
bined use of these techniques yields accuracy better 
than 0.05 % while the speedup factor is about 20.

6.2. Retrieval in the Reduced Input Data Space

Since the atmospheric retrieval problem is se-
verely ill-posed, a physically correct result can be 
obtained only by using a regularization procedure. 
The latter takes into account some a priori informa-
tion. In this context, dimensionality reduction of the 
input data space can be regarded as a special type of 
regularization, i.e. the retrieved parameters should 
obey a certain dependency reproduced by a chosen 
set of EOFs.

Timofeyev et al. [77] applied the dimensional-
ity reduction technique to parameterize the aerosol 
extinction coefficient for incorporation into the in-
version algorithm, in which the corresponding PC 
scores rather than aerosol extinction dependence 
were retrieved. The system of EOFs was defined for 

a dataset of aerosol extinction coefficients computed 
on the base of Mie theory [78] and algorithms for 
particle ensembles. Finally, in [79] the dimension-
ality reduction is performed in the input (tempera-
ture and humidity profiles) and output spaces (spec-
tral radiances), while artificial neural networks are 
used to establish the interdependency between PC 
scores. Since the number of independent parameters 
is reduced, such scheme is more robust and efficient 
than the conventional one.

7. DIMENSIONALITY REDUCTION 
OF HYPER-SPECTRAL DATA IN 
CLASSIFICATION PROBLEMS

Dimensionality reduction plays an important 
role in classification algorithms applied to the hy-
per-spectral data. On-line anomaly detection and 
object recognition in remote sensing imagery is 
extremely important for forest fire and volcanic 
activity monitoring. In such kind of applications 
we are confronted with the classification problem. 
In a reduced data space, the number of variables 
used in classification is smaller, yet their value 
is higher than that in the original space. There-
fore, the classification algorithms (e.g. K-nearest 
neighbour) are more robust and efficient [80, 81]. 
PCA can be used to visualize the hyper-spectral 

Fig. 7. The explained variance in percentage as a function 
of the principal component index in the Huggins band and 

the O2A band

Fig. 8. A schematic representation of the PCA-based clas-
sification algorithms applied to the hyperspectral data
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data on a 2D plane, thereby identifying regions 
with certain features. The concept of combined us-
age of PCA with classifiers is illustrated in Fig. 8. 
Such an approach is used not only in space-borne 
data processing, but also in other fields, such as 
material science [82, 83], tobacco industry [84] and 
food production [85].

8. CONCLUSIONS

In this review, several techniques of hyper-spec-
tral data processing have been considered. They 
are all based on the dimensionality reduction pro-
cedure. It has been shown that the principal com-
ponent analysis can be utilized in several ways for 
hyper-spectral modelling. Therefore it seems that 
the nomenclature “PCA-based radiative transfer 
model” is not appropriate since it does not charac-
terize the specific features of the algorithm (e.g., pa-
pers [40, 49, 75] present absolutely different mod-
els, although all of them are “PCA-based”).

It has been shown that the concept of dimension-
ality reduction gives the framework for formulating 
hyper-spectral RTM that directly takes into account 
a strong interdependency in the hyper-spectral data. 
Further research needs to examine more closely 
how to combine techniques outlined in this review. 
For instance in [86], a hybrid approach comprising 
the correlated-k method and the dimensionality re-
duction of the input data has been described. Such 
models are extremely important for processing re-
mote sensing Big Data in the current missions, and 
becoming a mainstream in the development of next 
generation atmospheric processors.

The discussed principles of data reduction of 
hyper-spectral data are generic and can be applied 
in various applications, including material sci-
ence and electron spectroscopy due to the similar 
methodologies adopted in these fields [87]. In ad-
dition, PCA is a perspective tool for analysing hy-
per-spectral optical data in medicine. In particular, 
recent studies have shown that the dimensionality 
reduction of data cubes can improve the recogni-
tion and classification algorithms, which would be 
extremely important for optical early disease diag-
nostics [88].
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Abstract: Current atmospheric composition sensors provide a large amount of high spectral resolution
data. The accurate processing of this data employs time-consuming line-by-line (LBL) radiative
transfer models (RTMs). In this paper, we describe a method to accelerate hyperspectral radiative
transfer models based on the clustering of the spectral radiances computed with a low-stream RTM
and the regression analysis performed for the low-stream and multi-stream RTMs within each cluster.
This approach, which we refer to as the Cluster Low-Streams Regression (CLSR) method, is applied
for computing the radiance spectra in the O2 A-band at 760 nm and the CO2 band at 1610 nm for five
atmospheric scenarios. The CLSR method is also compared with the principal component analysis
(PCA)-based RTM, showing an improvement in terms of accuracy and computational performance
over PCA-based RTMs. As low-stream models, the two-stream and the single-scattering RTMs are
considered. We show that the error of this approach is modulated by the optical thickness of the
atmosphere. Nevertheless, the CLSR method provides a performance enhancement of almost two
orders of magnitude compared to the LBL model, while the error of the technique is below 0.1% for
both bands.

Keywords: hyperspectral data; fast radiative transfer models; acceleration techniques; regression;
O2 A-band; CO2 band; GOSAT; TROPOMI

1. Introduction

Radiative transfer models (RTM) are a key part of the remote sensing algorithms, which are used
to retrieve atmospheric parameters from Earth observation data. The new atmospheric composition
sensors with high spatial and spectral resolution require accurate and efficient computational
algorithms. An accurate method to simulate spectral radiances in the absorption bands is the
line-by-line (LBL) approach [1]. However, due to the high spectral variability of the gas absorption
coefficient k in the absorption bands, the LBL-approach is very time-consuming because it requires up
to several thousands of monochromatic computations per absorption band. In this regard, specifically
designed hyperspectral RTMs are required. They reduce the number of monochromatic computations
considerably without compromising accuracy. The basic idea behind the hyperspectral RTMs is to
get rid of redundancies in hyperspectral data. This principle can be traced back to Ambartsumian [2],
who noted that the transmission within a spectral interval does not depend on the LBL variation of
k, but rather on the distribution of values of k within the spectral interval. This idea was used in the
k-distribution method [3–6], in which the wavelengths are grouped into a smaller number of bins
with similar values of k, and the LBL calculations are replaced by a smaller set of radiative transfer
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simulations. In [7,8], the transmission function for a given spectral interval is fitted by a sum of
exponentials, while the corresponding fitting coefficients are computed from a reduced number of
monochromatic computations. A similar approach is described in Moncet et al. [9], where the fitting
weights and the most representative wavelengths are chosen appropriately.

The state-of-the-art hyperspectral RTMs employ dimensionality reduction techniques such as
principal component analysis (PCA). In [10,11], PCA is applied to the spectral radiance data to
establish a set of empirical orthogonal functions (EOFs), so that an arbitrary spectrum at full spectral
resolution can be reconstructed as a weighted sum of EOFs. The weights are found by performing
monochromatic simulations at a reduced number of wavelengths. To accelerate the computations in
the O2 A-band, Natraj et al. [12] proposed a fundamentally different PCA-based radiative transfer
model, in which the dimensionality of the optical properties data is reduced. A two-stream radiative
transfer model was used as an approximate model, and the dependency of the corresponding
correction factor on the optical parameters was modeled by a second-order Taylor expansion about
the mean value of the optical parameters in the reduced optical data space. This approach was
extended to other dimensionality reduction techniques [13] and spectral ranges [14–16]; moreover,
it was implemented in conjunction with PCA for spectral radiances [17] and with the k-distribution
method [18]. The errors of these approaches are usually below 0.1% for the spectral radiances, while
the performance enhancement may reach several orders of magnitude depending on the spectral
region and the required level of accuracy.

In Efremenko et al. [19] it was shown that, after parallelizing the PCA-based RTM computations,
as much as half of the computational time is due to the PCA itself; consequently, according to Amdahl’s
Law [20], no further acceleration of a PCA-based RTM is possible. In this regard, it is of great interest
to develop acceleration techniques for hyperspectral RTM computations that do not exploit PCA.
A possible candidate, which deserves this purpose, is the low streams interpolation method proposed
by O’Dell [21]. In this method, (i) each spectral point is assigned to a specific bin according to the
values of the gas optical depth, (ii) an approximate two-stream model is used to compute the radiances
at all spectral points, and (iii) the two-stream radiances are corrected to the multi-stream radiances by
calling a multi-stream model only once for each bin. In this paper, we propose the so-called Cluster
Low-Streams Regression (CLSR) method, in which (i) wavelengths are grouped according to the
radiance values obtained with the approximate model (rather than the optical properties), and (ii) the
single-scattering and the two-stream models are used as approximate models. The CLSR method is
tested against the PCA-based RTM for the O2 A-band at 760 nm and the weak CO2 band at 1610 nm.
These spectral bands are of great interest for retrieving aerosol and cloud parameters [22], as well as
CO2 concentrations [23].

The paper is organized as follows. In Section 2, the methodology is presented, including the
descriptions of the PCA-based RTM adopted in our research and the CLSR method. In Section 3,
the accuracy and efficiency of the CLSR method for several atmospheric scenarios in the O2 A- and
weak CO2 absorption bands are analyzed and compared with the PCA-based RTM. In addition,
the accuracy of the radiance spectra convolved with the slit functions corresponding to GOME-2 [24],
TROPOMI on board Sentinel 5-P [25] and GOSAT [26] instruments is examined. The paper concludes
with a summary.

2. Methodology

2.1. Reference Radiative Transfer Model

As a reference RTM, the scalar method of discrete ordinates with matrix exponential (DOME) [27]
is used. The model is supplied with the left eigenvector approach [28–30] based on the scaling
transformation [31,32]. In this method, the number of discrete ordinates (streams) in the polar
hemisphere Ndo controls the computational time and accuracy. The model is called multi-stream
(MS) when Ndo ≥ 2 and low-stream (LS) otherwise. Specifically, the case Ndo = 1 is the two-stream
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model. The simplest RTM is the single-scattering model, which solves the radiative transfer equation
neglecting the integral term [33].

The gaseous absorptions for the O2 A- and CO2 bands are computed with the LBL model
Py4CAtS [34], while the gas absorption cross-sections are taken from the HITRAN 2016 database [35].
The uncertainties in the spectroscopic parameters are not considered because their role is irrelevant for
this study [36]. Continuum (also referred to as collision-induced absorption (CIA) [37,38]) contributions
to molecular absorption are not taken into account. We note that the CIA process gives a broad
and smooth contribution [39] and hence, does not impose difficulties for the regression techniques
considered in this study.

2.2. Study Cases

We consider the reflected spectral radiance at the top of the atmosphere (TOA). In our simulations,
the atmosphere is discretized into 35 layers with a step of 1 km between 0 and 25 km, and a step of
2.5 km between 25 km and 50 km. We assume a Lambertian surface with an albedo of 0.3. The solar
zenith angle, the viewing zenith angle and the relative azimuth angle are 45◦, 35◦ and 90◦, respectively.

In the O2 A-band the spectral sampling is 0.001 nm in the spectral range 755–775 nm, while in
the CO2 band the spectral sampling is 0.0015 nm in the spectral interval 1590–1620 nm. Thus, on each
band, 20,000 spectral points are considered. The Rayleigh cross-sections and depolarization ratios are
computed as in [40], while the pressure and temperature profiles correspond to the US standard model
atmosphere [41]. The computations are performed for the unit solar irradiance at the TOA.

We define 5 atmospheric scenarios: ‘Clear sky’, ‘Aerosol 1’, ‘Aerosol 2’, ‘Cloud 1’ and ‘Cloud 2’.
The ‘Clear sky’ scenario corresponds to an atmosphere without clouds and aerosols. In the ‘Aerosol 1’
and ‘Aerosol 2’ scenarios, the atmosphere contains the clean continental and the polluted continental
aerosols taken from the OPAC database [42], respectively. The aerosol optical depths at the middle
of the absorption bands are shown in Table 1. In the ‘Cloud 1’ and ‘Cloud 2’ scenarios, a continental
clean cumulus cloud with a modified Gamma size distribution [42,43]:

p(a) ∝ aα exp
[
− α

γ

(
a

amod

)γ]
,

is considered. The size distribution parameters are amod = 4.8 µm, α = 5 and γ = 2.16, the droplet
size ranges between 0.02 and 50.0 µm, and the cloud optical depths are τ = 10 (‘Cloud 1’) and τ = 20
(‘Cloud 2’). In both cases, the cloud-top height is 5 km and the cloud geometrical thickness is 1 km.

The number of streams considered for the multi-stream model is the same for all scenarios.
We might need a different number of streams for different scenarios, but in order to simplify and
ensure convergence of relative errors for all cases, we use 32 streams.

Table 1. Aerosol optical thickness used in the simulations for O2 A- and CO2 bands at the middle of
the corresponding absorption band.

O2 A-Band (760 nm) CO2 Band (1610 nm)

Aerosol 1 0.2 0.08
Aerosol 2 1.2 0.41

2.3. PCA-Based RTM

Since a PCA-based RTM can be implemented in several ways (e.g., [12,13,15–17,44,45]),
we describe below the main features of the PCA-based RTM used in this paper. The idea of the
method is to refine the two-stream solution by a correction function estimated in the reduced space
of the optical properties. Considering a discretization of the atmosphere in L layers, we define a
2L-dimensional vector xw for each wavelength {λw}W

w=1, by

xT
w = [ln τ1(λw), . . . , ln τL(λw), ln ω1(λw), . . . , ln ωL(λw)] , (1)
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where τk and ωk are the optical thickness and the single-scattering albedo of the k-th layer, respectively.
Thus, the vector xw encapsulates the wavelength variability of the optical parameters, which are the
input parameters of the radiative transfer code. By applying PCA, a M-dimensional subspace is found
which is spanned by a set of linear independent vectors (empirical orthogonal functions) {qk}M

k=1 such
that the centered (mean-removed) data xw − x̄ lie mainly on this subspace, i.e.,

xw ≈ x̄ +
M

∑
k=1

ywkqk, w = 1, . . . , W, (2)

where ywk are the principal component (PC) scores.
Following Natraj et al. [12], we introduce a correction function

f (xw) = ln
IMS(xw)

ILS(xw)
, (3)

where ILS(xw) is the radiance provided by the low-stream RTM, and IMS(xw) is the radiance simulated
by the multi-stream model. Setting ∆xw = ∑M

k=1 ywkqk, we consider a second-order Taylor expansion of
f (xw) around x̄ in the direction ∆xw. Approximating the directional derivatives with central differences
(see [13,17] for mathematical details) we obtain

f (xw) ≈ f (x̄) +
1
2

M

∑
k=1

[ f (x̄+qk)− f (x̄−qk)]ywk +
1
2

M

∑
k=1

[ f (x̄+qk)− 2 f (x̄) + f (x̄−qk)]y2
wk. (4)

Please note, since M < 2L (and in practice, M� 2L), the estimation of the correction function in
the reduced data space is much faster than in the original space. Also note that the total number of
calls of the multi-stream RTM is 2M + 1. Once f (xw) is computed, the low-stream radiances can be
converted into the multi-stream radiances by using Equation (3). Finally, the predicted multi-stream
radiance ĨMS can be expressed as follows:

ĨMS = ILS exp[ f (xw)]. (5)

In del Águila et al. [17], it was shown that a higher order expansion of f (xw) in Equation (4) does
not substantially improve the accuracy of the solution. In our simulations, an appropriate value for M
is found iteratively, i.e., M is increased until the approximation error is sufficiently small.

2.4. Regression Relationship between Multi-Stream and Low-Stream Models

The LBL computations can be accelerated by finding a regression relationship between the
multi-stream radiances and the optical parameters. In O’Dell [21], the correction function of the
low-stream radiance as a function of the gas optical thickness τgas, i.e., the relative error

f (τgas) =
ILS(τgas)− IMS(τgas)

IMS(τgas)
,

was analyzed (Figure 1). The idea is to compute f (τgas) at certain values of τgas, and then to use a
regression model for computing f (τgas) at the remaining values of τgas. However, for the present
application, such an approach has two major drawbacks:

1. the dependence of f (τgas) on τgas is non-linear and, therefore, the application of the regression
model requires a binning of the τgas values;

2. in a mathematical sense, f (τgas) is not a function (for a value of τgas, there are several values of
f (τgas)) and therefore, even for a fine binning, the regression model will be not accurate.

To overcome these drawbacks, O’Dell [21] devised a regression model based on the so-called
adjusted gas optical thickness, defined as the gas optical thickness from the TOA down to the layer in
the atmosphere where the scattering optical depth equals some critical value.
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Figure 1. Relative errors of the two-stream model as a function of the gas optical depth (τgas) for the
O2 A-band (red) and CO2 band (blue). Left panel corresponds to the ‘Aerosol 1’ scenario, while right
panel shows the results for the ‘Cloud 1’ scenario. Note that left Y axis refer to CO2 while right Y axis
refer to O2 A-band.

A similar idea, which we exploit in the following, is to use a regression model for the radiances
computed by a low-stream RTM rather than in the τgas-space. Figure 2 shows a comparison between
the multi- and low-stream radiances for the ‘Aerosol 2’ scenario. Although the errors of the low-stream
RTM are significant (e.g., they may reach 200%), the low- and multi-stream radiances have a similar
spectral behaviour. Moreover, as shown in Figure 3, the dependence between the low- and multi-stream
radiances is almost linear. In this respect, it seems reasonable to cluster the spectral points according to
the radiance values computed with a low-stream RTM (rather than according to the optical properties)
and to establish a regression model between the low- and multi-stream radiances within each cluster.
In order to decrease the errors of the regression estimates, an additional wavelength-dependent
parameter will be included in the regression model: the direct transmittance T.

Figure 2. Spectral radiances for the ‘Aerosol 2’ scenario computed by using the multi-stream
(black), the two-stream (gray) and the single-scattering (light gray) RTMs: (upper panel) O2 A-band,
(lower panel) CO2 band.
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Figure 3. Radiance computed with the multi-stream model as a function of radiances computed by
using the low-stream models (two-stream and single-scattering models) for the O2 A- and CO2 bands.
The figure corresponds to the ‘Aerosol 2’ scenario.

2.5. Cluster Low-Streams Regression Method

The Cluster Low-Streams Regression (CLSR) method can be formulated as follows.

1. Consider a high-resolution spectrum {ILS(λi)}N
i=1 computed at N spectral points {λi}N

i=1 by
means of a low-stream RTM.

2. Sort the radiance set {ILS(λi)}N
i=1 in ascending order, and let { ÎLS,i}N

i=1, with ÎLS,i ≤ ÎLS,i+1, be the
sorted radiance set (Figure 4a).

3. Consider C clusters in { ÎLS,i}N
i=1 with NC = N/C radiance points (Figure 4b), and let the c cluster

be defined by the radiance set { Îc
LS,i}

NC
i=1 for c = 1, ..., C.

4. Select n equidistant radiance points in the c cluster, i.e., {Ic
LS,q}n

q=1, and for the corresponding

wavelengths compute the multi-stream radiances {Ic
MS,q}n

q=1 (Figure 4c).
5. Assume that in each cluster c we have the linear relationship

Îc
MS,i = αcT̂c

i + βc Îc
LS,i + γc, i = 1, ..., NC, (6)

where αc, βc and γcare the regression coefficients of the c-th cluster, and T̂ is the corresponding
direct transmittance.

6. Compute the regression coefficients αc, βc and γc as a solution to the least square problem

(αc, βc, γc) = arg min
αc ,βc ,γc

n

∑
q=1

[
Ic

MS,q −
(

αcT̄c
q + βc Īc

LS,q + γc
)]2

. (7)

7. Use the values of (αc, βc, γc) found in the previous step to restore the multi-stream radiances
{ ĨMS,i}N

i=1 for all the spectral points according to Equation (6) (Figure 4d).

Here, the “hat” notation Î refers to the sorted radiances, the “bar” notation I refers to the
equidistant radiances entering the regression model, and the “tilde” notation Ĩ refers to the predicted
radiances. Please note that the total number of regression points, and thus the number of calls of the
multi-stream model, is nC.



Remote Sens. 2020, 12, 1250 7 of 19

Figure 4. Scheme of the Cluster Low-Streams Regression (CLSR) method. (a) Sorted radiance of the
low-stream (LS) model in ascending order (blue line). (b) Division of the LS radiance in equal clusters
C in the sorted domain. (c) Zoom for one cluster and the selected regression points of the multi-stream
(MS) radiance (red crosses). (d) Reconstruction of the MS spectra: the predicted radiance is computed
for all the spectral points (dashed red line).

2.6. Efficiency and Computational Performance Estimation

To estimate the accuracy of the acceleration techniques, we consider the residual error for the
radiance at each spectral point λi:

∆Ires,i =
ĨMS,i − IMS,i

Icont
MS

· 100, (8)

where ĨMS,i is the predicted radiance calculated with either the PCA-based RTM (cf. Equation (5)) or
the CLSR method (cf. Equation (6)), while Icont

MS is the radiance without absorption (i.e., the continuum
radiance, which is used to avoid radiance values close to zero in the denominator of Equation (8),
when strong gas absorption is present [15]). The mean relative error is computed as follows:

ε =
∑N

i=1 |∆Ires,i|
N

. (9)

Additionally, the median and interquartile range (IQR) of the residual are computed. Essentially, these
parameters serve as robust metrics to evaluate the variability of the residuals in the corresponding
spectral band, thereby with a lower sensitivity to single outliers [16].

To estimate the performance enhancement, we define the speedup factor as the ratio between
the computational time of a multi-stream LBL calculation to that of a certain acceleration technique.
To exclude the hardware-related factors from our analysis, we estimate the speedup factor for the
PCA-based RTM as [16]

SPCA =
tMS × N

tLS × N + tPCA + (2M + 1)(tMS + tLS)
, (10)

where tMS and tLS are the computational times for a single monochromatic calculation corresponding
to the multi- and low-stream RTMs, respectively, while tPCA is the computational time of the PCA.
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Thus, the numerator in Equation (10) is the time required for the LBL computations. Please note the
PCA-based RTM requires 2M + 1 calls to the multi-stream model.

The speedup factor for the CLSR method is defined by

SCLSR =
tMS × N

tLS × N + tLSM × C + tMS × n× C
, (11)

where tLSM is the computational time needed for the least-squares method according to Equation (7). Recall
that the total number of regression points and the corresponding calls of the multi-stream model is nC.

3. Results and Discussion

3.1. Performance of the Low- and Multi-Streams Models

In this section, we assess the performance of the low- and multi-stream RTMs before applying the
acceleration techniques. The spectral radiances for three atmospheric scenarios (‘Clear sky’, ‘Cloud 1’
and ‘Cloud 2’) are illustrated in Figure 5.

Figure 5. Radiance spectra computed by using the multi-stream RTM for three atmospheric scenarios:
‘Clear sky’ (black), ‘Cloud 1’ (purple) and ‘Cloud 2’ (blue). The upper panel corresponds to the O2

A-band, while the bottom panel is for the CO2 weak band.

Tables 2 and 3 provide the mean relative errors of the low-stream RTMs with respect to the
multi-stream RTM for the O2 A- and CO2 absorption bands, respectively. Table 4 shows the
computational performance for a different number of discrete ordinates Ndo. The results show that
(i) the relative errors of the single-scattering model are higher than those of the two-stream model,
(ii) the relative error increases as the optical thickness of the atmosphere increases, and (iii) the speedup
factors of the single-scattering model are considerably higher than those of the two-stream model.
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Table 2. Mean relative error ε for the low-stream models (single-scattering and two-stream models)
compared with the multi-stream model for the O2 A-band.

Scenario Single-Scattering Model Two-Stream Model

ε (%) ε (%)

Clear sky 3.4 0.14
Aerosol 1 36 1.0
Aerosol 2 78 4.6
Cloud 1 93 7.1
Cloud 2 93 1.4

Table 3. Mean relative error ε for the low-stream models (single-scattering and two-stream models)
compared with the multi-stream model for the CO2 weak band.

Scenario Single-Scattering Model Two-Stream Model

ε (%) ε (%)

Clear sky 0.203 0.004
Aerosol 1 14.7 0.40
Aerosol 2 55.5 2.1
Cloud 1 97.56 6.13
Cloud 2 97.91 2.00

Table 4. Computational time in seconds of the radiative transfer solution as a function of the number
of streams, and speedup factors with respect to the case Ndo = 32.

Ndo Time (s) Speedup Factor

0 0.4 5800
1 3.2 725
2 12.4 187.1
4 34.4 67.4
8 110 21

16 550 4.2
32 2320 -

3.2. Acceleration Techniques: Accuracy Evaluation

3.2.1. Spectral Residuals

The residuals (cf. Equation (8)) are computed for (i) different numbers of principal components in
the case of the PCA-based RTM, and (ii) different numbers of regression points per cluster in the case
of the CLSR method. Figure 6 shows these residuals for the ‘Cloud 2’ and the ‘Aerosol 2’ scenarios.

From Figure 6 the following conclusions can be drawn.

1. The residuals decrease when increasing the number of PCs and regression points.
2. The interquartile range for the CLSR method is substantially reduced when switching from 1–2 to

3 regression points for the CO2 band, and from 3 to 4 regression points for the O2 A-band.
3. In both spectral bands, the interquartile range for the PCA-based RTM decreases gradually with

the number of principal components.
4. The residuals in the O2 A-band are systematically higher than those in the CO2 band.

This behaviour is more pronounced when the gas optical thickness is large, thus resulting in larger
discrepancies for the PCA-based RTM and almost negligible discrepancies for the CLSR approach.

5. In the O2 A-band, the median values of the residuals Equation (8) are higher than 2%. The median
values remain almost constant with the number of principal components and regression points.
However, the median values as well as the interquartile range for the PCA method are generally
higher than those of the CLSR method. This trend remains coherent using the single-scattering
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RTM instead of the two-stream RTM, although the residuals are substantially higher for the
PCA-based RTM.

Figure 6. Box plots of the residuals with respect to the continuum in percentage for (upper panels) the
PCA model and (bottom panels) the CLSR method, when the low-stream model is (a) the two-stream
model for the ‘Cloud 2’ scenario or (b) the single-scattering model for the ‘Aerosol 2’ scenario. The red
boxes indicate the O2 A-band while the blue boxes indicate the CO2 band. Box description: the upper
and lower limits of the box represent the interquartile range (IQR), which is (Q3 − Q1) being Qi the
i-th quartile; the upper and lower whiskers indicate (Q3 + 1.5·IQR) and (Q1 − 1.5·IQR), respectively;
the orange line inside the box represents the median; the orange values on top of each box indicate the
median values and the black values correspond to the IQR value.

3.2.2. Estimation of the Required Parameters for the Acceleration Techniques

In order to select the optimal number of PCs, we compute the explained variance ratio of the
optical data, which accounts for the variance associated with a given number of PCs. The results in
Figure 7 show that in all scenarios almost 99% of the optical data variance can be explained within
the first four PCs. Moreover, from Figure 6a we can infer that (i) the convergence of the two-stream
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radiances is reached for 4-5 PCs, while (ii) the convergence of the single-scattering radiances requires
4-7 PCs (Figure 6b).

Figure 7. Explained variance ratio in percentage as a function of the number of PCs for all the
atmospheric scenarios: ‘Clear sky’, ‘Aerosol 1’, ‘Aerosol 2’, ‘Cloud 1’ and ‘Cloud 2’; and the two
spectral bands (O2 A- and CO2 bands). The red color corresponds to the O2 A-band and the blue color
to the CO2 weak band. The different dashing of the lines indicates the different atmospheric scenarios.

To select the number of clusters and regression points for the CLSR method, we estimate the mean
error (cf. Equation (9)). As an example, we illustrate in Figure 8 the mean errors for the ‘Aerosol 2’
scenario. The results show that 4–5 clusters and 3–5 regression points guarantee a small mean error.

Figure 8. Dependence of the number of clusters and number of regression points with the mean
error in percentage for the CO2 band for the ‘Aerosol 2’ scenario. The low-stream model used is the
two-stream model.
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3.2.3. Accuracy of the CLSR and PCA-Based Methods

In this section, we assess the accuracy of the PCA-based and CLSR methods. The residuals
(Equation (8)) and interquartile ranges corresponding to the PCA-based and CLSR methods, as well as
for the two-stream and single-scattering models, are shown in Figure 9.

Figure 9. Comparison of the residuals for the methods PCA and CLSR for all the atmospheric scenarios
(grey: ‘Clear sky’; blue: ‘Aerosol 1’; red: ‘Aerosol 2’; green: ‘Cloud 1’; yellow: ‘Cloud 2’) and gases (O2 A-
and CO2 bands), when the low-stream model is (a) the two-stream model or (b) the single-scattering
model. Note the differences in scales for the PCA technique for the O2 A-band with the rest of cases.
The orange values on top of each box indicate the median values and the black values correspond to
the IQR value.
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The results can be summarized as follows:

1. For both low-stream models and cloudy scenarios, (i) the residuals of the PCA-based method
in the O2 A-band are substantially larger than those of the CLSR method (on average, for the
two-stream model in the O2 A-band, the residuals are above 1% for the PCA-based method
and below 0.01% for the CLSR method), while (ii) the PCA-based and CLSR methods yield
comparable accuracies in the CO2 band (on average, for the two-stream model in the CO2 band,
the residuals are below 0.1% for the PCA-based method and below 0.01% for the CLSR method).
Please note similar results were established in previous studies, i.e., the errors of the PCA-based
method generally increase with the optical depth [16]. The superiority of the CLSR method is also
demonstrated by the interquartile ranges: these are much smaller for the CLSR method.

2. For both O2 A- and CO2 bands, (i) the residuals of the single-scattering model with the PCA-based
method are higher than those corresponding to the two-stream model, while (ii) the residuals of
the two-stream and single-scattering models with the CLSR method are comparable (on average,
for the single-scattering model, the residuals of the CLSR method are below 0.2% in the O2 A-band
and below 0.1% in CO2 band, while for the two-stream model the corresponding errors are below
0.01% in both spectral bands).

Thus, (i) the two-stream model with the PCA-based and CLSR methods yields accurate
results, (ii) the efficiency of the PCA-based method decreases when increasing the optical thickness,
and (iii) both the two-stream and the single-scattering models with the CLSR method provide
reasonable accuracies.

Please note the considered atmospheric scenarios implicitly involve a set of assumptions which
causes differences between RTM calculations and actual (physically realistic) atmospheric conditions.
Furthermore, the discrete ordinate method itself is an approximate technique which in principle
should be validated against rigorous analytical methods [46]. However, we use the same atmospheric
definition inputs for comparing acceleration techniques.

3.3. Acceleration Techniques: Computational Performance

In this section, we evaluate the computational efficiency of the CLSR method and compare it
with the PCA-based method. The speedup factors computed by using Equations (10) and (11) for the
PCA-based and CLSR methods, respectively, are given in Table 5. Since the single-scattering model
with the PCA-based method provides large errors (see Figure 9b), the table includes the speedup
factor SPCA for the two-steam model with the PCA-based method, as well as for the two-stream and
single-scattering models with the CLRS method, STS

CLSR and SSS
CLSR, respectively.

Table 5. Speedup factor of the PCA-based (SPCA) and CLSR methods with: the two-stream model
(STS

CLSR) and single-scattering model (SSS
CLSR).

SPCA STS
CLSR SSS

CLSR

534 505 1294

According to the optimal values of the PCs and regression points and clusters, the number of calls
to the multi-stream model for the PCA-based method is 9, for the two-stream model with the CLSR
method 12, and for the single-scattering model with the CLSR method 20. The computational time
to perform the PCA calculation tPCA is 3 orders of magnitude higher than that of the least-squares
calculation tLSM. However, since the most time-consuming part is due to the number of calls to the
multi-stream model, the efficiencies of the two-stream model with the CLRS and the PCA-based
method are comparable. In contrast, the computational performance of the single-scattering model
with the CLRS method is much higher than that with the PCA-based method due to the neglect of
multiple scattering computations. Comparing the speedup factors of this study with those of other
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authors (e.g., [21]), we find that our values are of the order of their speedup factors and one order of
magnitude higher when considering the single-scattering model for the CLSR technique.

3.4. Computation of Convolved Spectra

In this section, we examine the efficiency of the CLSR method for computing convolved spectra.
The high-resolution spectra in the O2 A-band are convolved with the slit functions corresponding
to GOME-2 and TROPOMI instruments, while the radiance spectra in the CO2 band are convolved
with the GOSAT slit function. In this paper, slit functions are modeled with a Gaussian function.
The corresponding full widths at half maximum (FWHM) are listed in Table 6. The FWHM considered
for the O2 A-band are based on pre-launch calibrations [47] and for the CO2 band on [48].

Table 6. Spectral ranges and FWHM of the Gaussian slit functions of the instruments used in the study:
TROPOMI, GOME-2 and GOSAT.

Instrument Spectral Range FWHM

TROPOMI 710–775 nm 0.183 nm
GOME-2 590–790 nm 0.51 nm
GOSAT 1.56–1.69 µm 0.2 cm−1

The examples of convolved spectra corresponding to the ‘Cloud 1’ scenario are shown in Figure 10.
The computations are performed by using the PCA-based and the CLSR methods (in conjunction with
the two-stream model) as well as the LBL approach. Tables 7 and 8 show the mean relative errors for
the PCA-based (εPCA) and CLSR (εCLSR) methods for the O2 A-band and the CO2 band, respectively.
In addition, the residuals for non-convolved spectra are shown for comparison. For the ‘Clear sky’ and
aerosol scenarios the accuracies of both methods are comparable, while for cloud scenarios the CLSR
method is more accurate. Please note the residuals estimated for the convolved spectra are very close
to those for the non-convolved ones and the value of residuals according to Equation (8) are robust.

Figure 10. Convolved spectra for the multi-stream model and the two acceleration methods for the ‘Cloud 1’
scenario using PCA and CLSR methods for the sensors GOME-2, TROPOMI and GOSAT. For GOME-2 and
TROPOMI the O2 A-band spectra are convolved, while for GOSAT the CO2 spectra are convolved.
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Table 7. Mean relative error ε for the convolved spectra compared with the multi-stream spectra for
the PCA-based and CLSR methods and for the different atmospheric scenarios considered for the O2

A-band. In all cases, the low-stream model considered is the two-stream model. The instruments
analyzed are GOME-2 and TROPOMI, which are compared with the non-convolved values.

Scenario

O2 A-Band

GOME-2 TROPOMI Non-Convolved

εPCA(%) εCLSR(%) εPCA(%) εCLSR(%) εPCA(%) εCLSR(%)

Clear sky 0.021 0.004 0.021 0.004 0.022 0.006
Aerosol 1 0.049 0.007 0.050 0.007 0.061 0.011
Aerosol 2 0.837 0.019 0.837 0.019 0.856 0.026
Cloud 1 1.23 0.011 1.23 0.011 1.24 0.017
Cloud 2 2.92 0.006 2.92 0.006 2.93 0.009

Table 8. Mean relative error ε for the convolved spectra compared with the multi-stream spectra for
the PCA-based and CLSR methods and for the different atmospheric scenarios considered for the CO2

band. In all cases, the low-stream model considered is the two-stream model. The instrument analyzed
is GOSAT, which is compared with the non-convolved values.

Scenario

CO2 Band

GOSAT Non-Convolved

εPCA(%) εCLSR(%) εPCA(%) εCLSR(%)

Clear sky 0.0003 0.0003 0.0006 0.0006
Aerosol 1 0.0075 0.0067 0.010 0.012
Aerosol 2 0.035 0.012 0.044 0.017
Cloud 1 0.011 0.007 0.013 0.008
Cloud 2 0.011 0.005 0.016 0.006

4. Conclusions

In this study, we developed the Cluster Low-Streams Regression (CLSR) method for fast
radiative transfer simulations of the O2 A- and CO2 absorption bands. The CLSR method exploits
a strong close-to-linear relationship between the radiances computed with a low-stream model
(which is either the two-stream or the single-scattering model) and the radiances computed with
the multi-stream model. The spectral points are grouped in several clusters according to the values of
the low-stream radiances. For each cluster, the regression model is established between the low-stream
and multi-stream models, where the corresponding regression coefficients are found by using the
least-squares method. This approach can be regarded as a variation of the low-streams interpolation
method explained in [21], in which the binning is performed in the space of gas optical depths.

The CLRS method was compared with the PCA-based RTM in several atmospheric scenarios.
For the ‘Clear sky’ scenario, the performance of both acceleration methods is comparable. For the
cloud scenarios, the CLSR method shows more accurate results than the PCA-based method. However,
to improve the performance of the PCA-based method, in [14–16] the optical depth binning technique
was applied, i.e., the spectral points were grouped into bins according to the optical depth values
and the PCA-based method was applied independently for each bin. Such an approach improves the
accuracy of the PCA-based method, although at the cost of increasing the number of multi-stream
computations. Comparing the results of [14–16] with the results obtained in our study, we can conclude
that the PCA-based binned approaches and the CLSR method are comparable in terms of accuracy.

Our analysis has shown that, although the CLSR method requires more calls to the multi-stream
model than the PCA-based model, the corresponding speedup factors are very similar, with slightly
better results for the CLSR method. However, this difference is not significant. In addition, we note
that the CLSR method does not require to deal with the eigenvalue problem as the PCA-based RTMs
do. The CLSR method can be used in conjunction with either the two-stream or the single-scattering
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model providing a performance enhancement of almost two orders of magnitude while keeping the
maximum error below 0.1% (note that the use of the single-scattering model instead of the two-stream
model within the framework of the PCA–based method drastically reduces the accuracy).

As future goals, following [18,49] we plan to extend the CLSR method for computing the Stokes
parameters and analyze the possibility of hybrid use of the CLSR method, the PCA-based method and the
correlated k-distribution technique. It is also planned to analyze different atmospheric scenarios such as
cirrus clouds [50] as well as the efficiency of the CLRS method for improving the accuracy of other types
of approximate models. In this case, one can expect reducing the number of regression points if instead of
the single scattering model, the double scattering approximation is considered [51]. For optically thick
media, as an approximate model, asymptotic radiative transfer models can be used [52].
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Abbreviations

The following abbreviations are used in this manuscript:

CLSR Cluster Low-Streams Regression
DOME Discrete Ordinates with Matrix Exponential
EOF Empirical Orthogonal Function
FWHM Full Width at Half Maximum
GOME-2 Global Ozone Monitoring Experiment–2
GOSAT Greenhouse gases Observing SATellite
HITRAN HIgh-resolution TRANsmission molecular absorption database
IQR InterQuartile Range
LBL Line-By-Line
LS Low-Streams
LSM Least-Squares Method
MS Multi-Streams
OPAC Optical Properties of Aerosols and Clouds
PC Principal Component
PCA Principal Component Analysis
Py4CAts Python for Computational ATmospheric Spectroscopy
RTM Radiative Transfer Model
TOA Top Of the Atmosphere
TROPOMI TROPOspheric Monitoring Instrument
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Abstract. Atmospheric composition sensors provide a huge amount of data.
A key component of trace gas retrieval algorithms are radiative transfer mod-
els (RTMs), which are used to simulate the spectral radiances in the absorption
bands. Accurate RTMs based on line-by-line techniques are time-consuming. In
this paper we analyze the efficiency of the cluster low-streams regression (CLSR)
technique to accelerate computations in the absorption bands. The idea of the
CLRS method is to use the fast two-stream RTM model in conjunction with the
line-by-line model and then to refine the results by constructing the regression
model between two- and multi-stream RTMs. The CLSR method is applied to
the Hartley-Huggins, O2 A-, water vapour and CO2 bands for the clear sky and
several aerosol types. The median error of the CLSR method is below 0.001 %,
the interquartile range (IQR) is below 0.1 %, while the performance enhancement
is two orders of magnitude.

Keywords: Radiative transfer model, Regression model, Line-by-line model

1 Introduction

The information about the atmospheric trace gases can be retrieved from the spectral
radiances measured at the top of the atmosphere. The key component of atmospheric
retrieval algorithms are the radiative transfer models (RTMs). Accurate simulations in
the absorption bands are based on the so called line-by-line (LBL) model [1], which
requires thousands of monochromatic RTM computations per absorption band due to
strong spectral variability of the absorption coefficient. Alternatives to computationally
expensive LBL models are the k-distribution method [2, 3] and the principal component
analysis (PCA)-based RTMs [4–9], in which the redundancies in hyper-spectral data are
eliminated and the spectrum can be computed by using a small number of RTM calls.
These methods are reviewed in [10].
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In our recent work [11], the Cluster Low-Streams Regression (CLSR) method was
developed to accelerate hyper-spectral computations. The idea of the CLSR method
is to perform LBL computations by using a fast two-stream RTM and then to refine
results by using the correlation model for the two-stream and reference multi-stream
RTMs. This approach was applied to the O2A-band and the weak CO2 band for different
atmospheric scenarios. The results were compared with the PCA-based RTMs showing
an improvement over the last in terms of accuracy. Note that the idea of improving
accuracy of two-stream models was exploited in numerous theoretical studies (see e.g.
[12, 13] and references therein).

In this study, the CLSR method is extended to ozone Hartley-Huggins band and
the water vapour band in the ultra-violet and near infrared spectral ranges, respectively.
Additionally, the CLSR method is applied to several atmospheric models containing
different aerosol types.

2 Methodology

2.1 Data overview

We consider the computations of the reflected spectral radiances at the top of the at-
mosphere (TOA) in the Hartley-Huggins, O2A-, water vapour and CO2 bands. Table 1
summarizes the spectral bands examined with their corresponding spectral range, spec-
tral resolution and number of spectral points to be simulated. As a reference RTM,
we use the discrete ordinates with matrix exponential (DOME) method [14, 15]. The
number of discrete ordinates (streams) in the polar hemisphere Ndo regulates the com-
putational performance and accuracy. In the following, the model is called multi-stream
(MS) when Ndo ≥ 2 and low-stream (LS) otherwise. Following previous analysis in
[16], the multi-stream RTM with Ndo = 32 discrete ordinates is used as a reference
RTM.

The gaseous absorption coefficients for the O2A-, water vapour and CO2 bands
are computed with the LBL model Py4CAtS [17], while the ozone absorption cross-
sections in the Hartley-Huggins band are taken from the HITRAN 2016 database [18].
Rayleigh scattering is modeled as proposed in [19].

Table 1. Spectral ranges, spectral resolution and number of spectral points for the absorption
bands used in this study.

Band Spectral range Spectral resolution Number of
(nm) (nm) spectral points

Hartley-Huggins 280 — 335 0.0188 2932
O2A 755 — 775 0.0010 20000

Water vapour 770 — 1000 0.0058 40000
CO2 1590 — 1620 0.0015 20000

The atmosphere is discretized into 35 layers with a step of 1 km between 0 and
25 km, and a step of 2.5 km between 25 km and 50 km. For all the simulations, we
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assume a Lambertian surface with an albedo of 0.3. The solar zenith angle, the viewing
zenith angle and the relative azimuth angle are 45◦, 35◦ and 90◦, respectively.

The atmosphere can contain one of the aerosols from the OPAC database [20], op-
tical properties of which are summarized in Table 2 and Table 3 .

Table 2. Aerosol optical thickness (AOD) in the middle of the spectral range for the spectral
bands and aerosol types considered.

Aerosol type Hartley-Huggins O2A Water vapour CO2

(315 nm) (760 nm) (885 nm) (1610 nm)
Tropospheric 0.133 0.018 0.015 0.010

Continental clean 0.42 0.20 0.17 0.08
Urban 4.28 0.46 0.35 0.16
Desert 0.71 0.20 0.20 0.19

Continental polluted 2.4 1.2 0.9 0.4

Table 3. Single scattering albedo (SSA) for each spectral band and aerosol type.

Aerosol type Hartley-Huggins O2A Water vapour CO2

Tropospheric 0.950 0.947 0.942 0.936
Continental clean 0.959 0.962 0.959 0.958

Urban 0.940 0.935 0.929 0.913
Desert 0.932 0.953 0.950 0.945

Continental polluted 0.951 0.960 0.957 0.950

Figure 1 shows the radiance spectra computed by using the multi-stream and the
low-stream (i.e. two-stream) RTMs for the different absorption bands. The computa-
tions are perfomed using the LBL-framework. Note that both spectra have a similar
spectral behavior. Hence, it is possible to establish a regression model between the low-
and multi-stream radiances, which is a subject to the CLSR method considered further.

2.2 Cluster Low-Streams Regression (CLSR) method

The Cluster Low-Streams Regression (CLSR) method is described in detail in [11] and
can be summarized as follows:

First, let us consider a LBL spectrum {ILS(λi)}Ni=1 computed at N spectral points
{λi}Ni=1 by means of a low-stream RTM. We sort the radiances in ascending order
and consider C clusters in the sorted radiance set (with NC = N/C radiance points).
Secondly, we select n equidistant radiance points in each cluster and we compute the
multi-stream radiances for the corresponding wavelengths {IcMS,q}nq=1. Assuming that
in each cluster c there is a linear relationship between low- and multi-stream radiances,
we get
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Fig. 1. Top of the atmosphere radiances computed for the absorption bands: Hartley-Huggins, O2

A-, water vapour and CO2 bands for one aerosol case. Black lines correspond to the multi-stream
RTM while purple lines correspond to the two-stream RTM.

ÎcMS,i = αcT̂ c
i + βcÎcLS,i + γc, i = 1, ..., NC , (1)

where αc, βc and γc are the regression coefficients of the c-th cluster and T̂ is the
corresponding direct transmittance. Equation (1) can be also written as follows:

Y = A ·X (2)

with Y =
[
ÎcMS,i

]
, A = [αc, βc, γc] and X =

[
T̂ c

i , Î
c
LS,i, 1

]
. Finally, we find the

regression coefficients as a solution to the following least square problem:

A = arg min
A

n∑

q=1

[
I
c

MS,q − Y
]2
. (3)

In this way, we can restore the spectra of the multi-stream radiances {ĨMS,i}Ni=1. Here,
the “hat” notation Î refers to the sorted radiances, the “bar” notation I refers to the
equidistant radiances entering the regression model and the “tilde” notation Ĩ refers to
the predicted radiances. The total number of regression points, and thus the number of
calls to the multi-stream RTM, is nC. Note that unlike the k-distribution method, the
CLSR method provides a spectrum at the same spectral resolution as the LBL approach.
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3 Simulations

3.1 Simulations of the absorption bands by using the CLSR method for the clear
sky atmosphere

In this section we apply the CLSR method to simulate absorption bands. In addition to
O2A- and CO2 bands analyzed in [11], we consider Hartley-Huggins and water vapour
bands.

To estimate the accuracy of the CLSR method, we compute the residuals, the median
and interquartile range (IQR). The residual for the radiance is computed at each spectral
point λi as follows:

∆Ires,i =
ĨMS,i − IMS,i

Icont
MS

· 100, (4)

where ĨMS,i is the radiance calculated with the CLSR method (cf. Eq. (1)), while Icont
MS

is the radiance without absorption (i.e. the continuum radiance, which is used to avoid
radiance values close to zero in the denominator of Eq. (4), when strong gas absorption
is present [11, 7]).

Figure 2 shows the residuals of the CLSR method for different number of regression
points per cluster for the four bands considered.
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Fig. 2. Box plots of the residuals for the CLSR method for the clear sky scenario in the following
absorption bands: Hartley-Huggins, O2 A-, water vapour and CO2 bands. The orange and black
values on top of each box indicate the median values and the IQR values, respectively.

The residuals gradually decrease with the number of spectral points. In fact, they
are significantly reduced when switching from 1––2 to 3 regression points. Therefore,
the median values remain almost constant from 3 regression points. This trend is iden-
tical to the one found in [11] for different atmospheric scenarios. Note that the scale
of residuals for the water vapour band is one order of magnitude higher than for the
Hartley-Huggins, O2A- and CO2 bands.
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3.2 Application of the CLSR method in the case of aerosols: accuracy results

In our previous work, we applied the CLSR method to the O2A- and CO2 bands for sev-
eral atmospheric scenarios like aerosols and clouds at different heights and thicknesses.
In this paper we examine the application of the CLSR method for several aerosol types
and we extend the analysis to the Hartley-Huggins and water vapour bands. The com-
putations are performed for the aerosol types outlined in Section 2.1.

Figure 3 shows the residuals for four bands and 5 aerosol models.
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Fig. 3. Residuals for the CLSR method for the following absorption bands: Hartley-Huggins, O2

A-, water vapour and CO2 bands. The color of the boxes represents the type of aerosol: (grey)
tropospheric; (blue) continental clean; (red): urban; (green): desert; (yellow): polluted. Note the
different scale for the water vapour band compared with the other absorption bands.

Note that the residuals for the Hartley-Huggins, O2A- and CO2 bands are substan-
tially smaller than those for the water vapour band. However, the median residuals are
below 0.001 % and the results of the CLSR model are not biased.

In general, we conclude that the efficiency of the CLSR method is comparable to
that of alternative methods like PCA-based RTMs (e.g. [7]) and our previous studies
([11]).

3.3 Assessment of the CLSR computational efficiency

In this section we analyse the computational performance of the CLSR method. Table
4 shows the number of calls to two- and multi-stream RTMs, the computational time
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and the corresponding speedup factor with respect to the multi-stream LBL simulations
for the O2A-band. The computational time for monochromatic computations for the
TS RTM is tTS =1.6e-4 s, while for the MS RTM with Ndo = 32 discrete ordinates
per hemisphere is tMS =0.12 s, i.e., around three order of magnitude larger. However,
most of the computational burden is still due to the MS RTM, and the computations of
the approximate spectrum with a high spectral resolution by using the TS RTM is not
a performance bottleneck in the whole CLSR processing chain. The results show that
using the matrix of coefficients X with 5 clusters and 4 regression points for the CLSR
method is 420 faster than using the LBL model. The speedup factor is of the same order
of magnitude as in [21].

Table 4. Summary of number of calls, computational time and speedup factors for the O2A-band
with LBL and CLSR methods.

LBL CLSR
Number of calls to MS RTM 20000 20
Number of calls to TS RTM 0 20000

Time for MS RTM (s) 2320 2.32
Time for TS RTM (s) 0 3.20

Total computational time (s) 2320 5.52
Speedup factor — 420

4 Conclusions

In this study, we have analysed the efficiency of the Cluster Low-Streams Regression
(CLSR) method to accelerate spectral computations in several absorption bands. The
CLSR method exploits the linear relationship between the low-stream and multi-stream
models, where the corresponding regression coefficients are found by using the least-
squares method. In our simulations several OPAC aerosol models have been considered.
We reproduced the spectra with a median error below 0.001 % as compared to the
reference multi-stream line-by-line model and IQR values below 0.1%. Thus, the errors
present low variation and stability.

The number of calls to the multi-stream model was reduced by 3 orders of magni-
tude (e.g. from 20000 to 20 calls in the case of O2A-band). The resulting performance
enhancement is about 400 times. Note, that since the CLSR method is two orders of
magnitude faster than the LBL model, it can be used for computations of the aerosol
spectra in near-real-time applications.

In our future work, we plan to extend the CLSR method by using the asymptotic
radiative transfer theory [22] and the diffuse approximation [23] instead of the two-
stream RTM. Also it is of high interest to apply the CLSR method for modelling of the
Stokes parameters.
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(A.d.Á: Ana del Águila; D.S.E: Dmitry S. Efremenko)
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ABSTRACT

The two-stream model is the fastest radiative 
transfer model among those based on the discrete 
ordinate method. Although its accuracy is not high 
enough to be used in applications, the two-stream 
model gets more attention in computationally de-
manding tasks such as line-by-line simulations 
in the gaseous absorption bands. For this reason, 
we designed the cluster low-streams regression 
(CLSR) technique, in which a spectrum comput-
ed with a two-stream model, is refined by using 
statistical dependencies between two- and multi-
stream radiative transfer models. In this paper, we 
examine the efficiency of this approach for com-
puting Hartley-Huggins, O2 A-, water vapour and 
CO2 bands at the presence of aerosols. The numer-
ical results evidence that the errors of the CLSR 
method is not biased and around 0.05 %, while 
the performance enhancement is two orders of 
magnitude.

Keywords: cluster low-streams regression 
method, hyperspectral data, regression model, ra-
diative transfer, aerosol models, line-by-line model

1. INTRODUCTION

Optical sensors with high spectral resolution are 
attracting increasing attention in atmospheric sci-
ence. The measurements of the spectral radiances in 
the absorption bands carry information about trace 
gas concentrations, and often, about their profiles. 

As a matter of fact, due to the high spectral resolu-
tion, it is possible not only to retrieve this informa-
tion, but also to filter out the influence of aerosols, 
clouds, and ground surface on the retrieval result 
(e.g. [1, 2, 3]).

The radiance scattered by the terrestrial atmo-
sphere can be computed by means of the radiative 
transfer models (RTMs). The fastest RTM among 
those based on the discrete ordinate method is the 
two-stream model, in which the radiances aver-
aged over the polar hemispheres are considered [4]. 
However, the error of the two-stream model may 
reach tens of percent [5] which exceed the accept-
able error level in atmospheric remote sensing ap-
plications [6]. Note that several techniques were 
developed to improve the accuracy of two-stream 
model (see e.g. [7, 8] and references therein).

Accurate simulations in the absorption bands 
are based on the so called line-by-line (LBL) mod-
el [9], which requires thousands of monochromat-
ic RTM computations per absorption band due 
to strong spectral variability of the absorption co-
efficient. Alternatives to computationally expen-
sive LBL models are the k-distribution method 
[10, 11] originally proposed by Ambartsumyan 
[12], the k-binning approach [13] and the principal 
component analysis (PCA)-based RTMs [14, 15, 
16, 17, 18]. In the latter case, the two-stream mod-
el is used to compute a spectrum in a LBL manner 
and then a correction function is estimated in a re-
duced basis of optical parameters. These methods 
are reviewed in [19, 20]. Note that the k-distribu-
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tion method is suitable for computing a spectrum 
convolved with an instrument slit function.

In our recent work [21], the Cluster Low-
Streams Regression (CLSR) method was devel-
oped to accelerate hyper-spectral computations. The 
idea of the CLSR method is to perform LBL com-
putations by using a fast two-stream RTM and then 
to refine results by using the correlation model for 
the two-stream and reference multi-stream RTMs. 
This approach was applied to the O2 A-band and the 
weak CO2 band.

In this paper, the CLSR method is extended 
to ozone Hartley-Huggins band and the water va-
pour band in the ultra-violet and near infrared spec-
tral ranges, respectively. Additionally, the CLSR 
method is applied to several atmospheric models 
containing different aerosol models.

2. METHODOLOGY

2.1 Data Overview

The reflected spectral radiances at the top of the 
atmosphere (TOA) are considered for this study. 
We have focused our study in the ultra-violet re-
gion with the Hartley-Huggins band, and in the in-
frared region with the O2 A-, water vapour and CO2 
bands. Table 1 summarizes the spectral bands exam-
ined with their corresponding spectral range, spec-
tral resolution and number of spectral points to be 

simulated. As a reference RTM, we use the discrete 
ordinates with matrix exponential (DOME) method 
[22, 23]. The number of discrete ordinates (streams) 
in the polar hemisphere doN  regulates the compu-
tational performance and accuracy. In the follow-
ing, the model is called multi-stream (MS) when 

2doN ≥  and low-stream (LS) otherwise. In particu-
lar, the case 1doN =  corresponds to the two-stream 
(TS) model. Also note that the computational time 
increases with doN  increase, and hence, the two-
stream model presents the lowest computational 
time. Following previous analysis in [24], the multi-
stream RTM with 32doN =  discrete ordinates is 
used as a reference RTM.

Fig. 1. Extinction coefficient profile for the O2 A-band 
and all aerosol models

Table 1. Spectral Ranges, Spectral Resolution and Number of Spectral Points  
for the Absorption Bands Used in this Study

Band Spectral range,
nm

Spectral resolution,
nm

Number of
spectral points

Hartley-Huggins 280–335 0.1800 300
O2 A 755–775 0.0010 20000

Water vapour 770–1000 0.0058 40000
CO2 1590–1620 0.0015 20000

Table 2. AOD in the Middle of the Spectral Range for the Spectral Bands  
and Aerosol Types Considered

Aerosol type Hartley-Huggins
(315 nm)

O2 A
(760 nm)

Water vapour
(885 nm)

CO2
(1610 nm)

Tropospheric 0.133 0.018 0.015 0.010
Continental clean 0.42 0.20 0.17 0.08

Urban 4.28 0.46 0.35 0.16
Desert 0.71 0.20 0.20 0.19

Continental polluted 2.4 1.2 0.9 0.4
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The gaseous absorption coefficients for the O2 
A-, water vapour and CO2 bands are computed with 
the LBL model Py4CAtS [25], while the ozone ab-
sorption cross-sections in the Hartley-Huggins band 
are taken from the HITRAN2016 database [26]. 
Rayleigh scattering is treated as in [27].

The atmosphere is discretized into 35 layers with 
a step of 1 km between 0 and 25 km, and a step of 
2.5 km between 25 km and 50 km. For all the simu-
lations, we assume a Lambertian surface with an al-
bedo of 0.3. The solar zenith angle, the viewing ze-
nith angle and the relative azimuth angle are 45°, 
35°, and 9°, respectively.

For modelling the aerosol properties, the OPAC 
database [28] is used. The aerosol optical thick-
ness (AOD) and the single scattering albedo 

(SSA) and are summarized in Table 2 and Table 3, 
respectively.

Fig. 1 provides an example of the extinction co-
efficients profile for the O2 A-band and all aerosol 
models considered in this study. The chosen extinc-
tion profiles are in agreement with recent data pro-
vided by TROPOMI [29].

Fig. 2 shows the radiance spectra of two aerosol 
models computed by using the multi-stream (MS, 
solid lines) and the two-stream (TS, dashed lines) 
RTMs for the different absorption bands. The com-
putations are performed using the LBL-framework. 
Note that both pairs of spectra have a similar spec-
tral behaviour. It allows us to establish a regression 
model between the low- and multi-stream radianc-
es, which is a subject to the CLSR method consid-
ered further.

Fig. 2. Top-of-the-atmosphere (TOA) radiances computed for the absorption bands: Hartley- Huggins, O2 A-, water vapour 
and CO2 bands for two aerosol cases: (blue) polluted aerosol and (red) clean continental aerosol; solid lines correspond 

to the multi-stream (MS) RTM while dashed lines correspond to the two-stream (TS) RTM

Table 3. SSA for Each Spectral Band and Aerosol Type Considered

Aerosol type Hartley-Huggins O2 A Water vapour CO2

Tropospheric 0.950 0.947 0.942 0.936
Continental clean 0.959 0.962 0.959 0.958

Urban 0.940 0.935 0.929 0.913
Desert 0.932 0.953 0.950 0.945

Continental polluted 0.951 0.960 0.957 0.950
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2.2. Cluster Low-Streams Regression (CLSR) 
Method

The theory of the Cluster Low-Streams Regres-
sion (CLSR) method can be found in [21]. The 
method can be described as follows. Let us consider 
a low-stream RTM spectrum ( )LS iI λ  for 1,...,i N=

iλ  spectral points. First, we sort the radiances in as-
cending order and consider C clusters in the sort-
ed radiance set (with /CN N C=  radiance points). 
Secondly, we select n equidistant radiance points in 
each cluster in the sorted space and we compute the 
multi-stream radiances for the corresponding wave-
lengths ,

c
MS qI  for 1,...,q n= . Therefore, assuming 

that there is a linear relationship between the low- 
and multi-stream radiances in each c  cluster, we ob-
tain the following regression equation:

, ,
ˆ ˆ ˆ , 1,...,c c c c c c
MS i i LS i CI T I i Nα β γ= + + = ,	 (1)

where cα , cβ , and cγ  are the regression coefficients 
of the с-th cluster, ˆ c

iT  is the direct transmittance 
for the corresponding cluster, which is defined as 

( )ˆ expT τ= − , where τ  is the total optical thickness. 
Equation (1) can be written in a matrix form:

Y A X= ⋅ ,	 (2)

with ,
ˆc
MS iY I =   , , ,c c cA α β γ =   , and 

,
ˆ ˆ[ , ,1]c c
i LS iX T I= . We find the regression coefficients 

as a solution of the least-squares problem:

2

,
1

argmin
n

c
MS q

q
IA Y

=

 = − ∑ .	 (3)

Hence, we can restore the spectra of the multi-
stream radiances ,MS iI  for 1,...,i N= . The “hat” no-
tation I



 refers to the sorted radiances, the “bar” no-
tation I  refers to the equidistant radiances entering 
the regression model and the “tilde” notation I  re-
fers to the predicted radiances. The total number 
of regression points, and thus the number of calls 
to the multi-stream RTM, is nC. Note that unlike 
the k-distribution method, the CLSR method pro-
vides a spectrum at the same spectral resolution as 
the LBL approach.

Fig. 3. Probability density of the residuals for the CLSR method for the following absorption bands:  
Hartley- Huggins, O2 A-, water vapour and CO2 bands

(colour of the lines represents the type of aerosol: grey – ​tropospheric; blue – ​continental clean;  
red – ​urban; green – ​desert; yellow – ​polluted)
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3. SIMULATIONS

3.1. Accuracy of the Two-Stream Model 
Equipped with the CLSR Method

In this section we apply the two-stream mod-
el equipped with the CLSR method to simulate the 
spectra in Hartley-Huggins, O2 A- and CO2, and 
water vapour bands at the presence of aerosols. 
To estimate the accuracy of the method, the resid-
uals, the probability density and cumulative prob-
ability distribution are computed. The residual for 
the radiance is estimated at each spectral point iλ  
as follows:

100CLSR LBL
res cont

LBL

I II
I
−∆ = ⋅ , 	 (4)

where CLSRI  is the radiance calculated with the 
CLSR method (Eq. (1)) for every spectral point, 
while LBLI  and cont

LBLI  are, respectively, the LBL radi-
ance with and without absorption (i.e. the continu-
um radiance, which is used to avoid radiance values 
close to zero in the denominator of Eq. (4), when 
strong gas absorption is present [18, 21]).

Fig. 3 shows the probability density of residu-
als for four bands and 5 aerosol models. Note that 
most of the highest probabilities of the residuals are 
found below 0.005 % for the Hartley-Huggins, O2 

A- and CO2 bands. However, the probability density 
of the water vapour band shows a wider distribution 
than for the other bands. Therefore, with the infor-
mation obtained from the probability density func-
tions, we conclude that the residuals of the CLSR 
method are not biased.

Fig. 4 shows the cumulative probability distri-
bution for the four bands and 5 aerosol models. The 
main conclusions that can be drawn from the figure 
are presented below.
 For the Hartley-Huggins band and for all 

aerosol types, the 90 % of the residuals are below 
0.05 %.
 For the O2 A-band, the 90 % of the probabil-

ity for the urban and tropospheric aerosol are be-
low 0.02 % while for the other aerosols, the residu-
als are higher.
 For the CO2 band and the tropospheric aerosol, 

most of their residuals are below 0.01 %. Regard-
ing the continental clean and desert aerosols, 90 % 
of the residuals are below 0.03 % and for urban 
and polluted aerosols are below 0.05 %. The reason 
these latter aerosols present higher errors might be 
that they have higher AODs and this influences their 
values. This also occurs for the water vapour band 
and those specific aerosols.
 Similarly to  the other spectral bands, more 

than 80 % of the residuals in the water vapour band 

Fig. 4. Cumulative 
probability distribution 
of the residuals for 
the CLSR method for 
the following absorp-
tion bands: Hartley-
Huggins, O2 A-, water 
vapour and CO2 bands 
(colour of the lines 
represents the type of 
aerosol: grey – ​tropo-
spheric; blue conti-
nental clean; red – ​ur-
ban; green – ​desert; 
yellow – ​polluted)
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present the accuracy below 0.05 % for all aerosols. 
However, their influence on the water vapour band 
is more pronounced.

In general, polluted and urban aerosols for the 
O2A, water vapour and CO2 bands are the ones 
providing higher residuals, and this is due to the 
higher AOD for those aerosol types. To sum up, 
the 90 % of the cumulated probability for all spec-
tral bands is below the accuracy of 0.05 %, which 
is in agreement with recent results for the same 
region (e.g. [30]). The accuracy of the two-stream 
model equipped with the CLSR method is com-
parable to that of alternative methods like PCA-
based RTMs (e.g. [18]) and our previous studies, 
[21].

3.2 Assessment of the CLSR Computational 
Efficiency

In this section, we analyse the computational 
performance of the CLSR method in comparison 
with the LBL model. Table 4 shows the number of 
calls to TS and MS RTMs and the speedup factors 
with respect to the multi-stream LBL simulations 
for the Hartley-Huggins, O2 A-, water vapour, and 
CO2 bands.

We have used the vector of coefficients X  with 5 
clusters and 4 regression points for the CLSR meth-
od for all the spectral bands. The same number of 
CLSR method computations, applied to the differ-
ent absorption bands with different number of spec-
tral points, provides different speedup factors. For 
instance, the speedup factor for the Hartley-Hug-
gins band is around 15, while for the O2 A- and CO2 
bands the speedup is of 1000. Presumably, the wa-
ter vapour band has more spectral points in the LBL 
RTM so that with 20 calls to the MS RTM, we ob-
tain a much superior speed of 2000 compared with 
the LBL. The speedup factors obtained in this study 
are of the same order of magnitude for other studies 
as for the Hartley-Huggins band (e.g. [15]), the O2 
A- and CO2 band (e.g. [30, 31]).

4. CONCLUSIONS

It has been shown that in the case of line-by-line 
(LBL) simulations, the accuracy of the two-stream 
model can be enhanced by using the CLSR tech-
nique, which exploits the linear relationship be-
tween the two-stream (TS) and multi-stream (MS) 
models, while the corresponding regression coef-
ficients are found by using the least-squares meth-
od. The efficiency of this approach has been tested 
for computing the top-of-the-atmosphere radiances 
in Hartley-Huggins, O2 A-, water vapour, and CO2 
bands at the presence of aerosols.

Five OPAC aerosol models with different optical 
properties have been considered in simulations. The 
error of the computations is generally below 0.05 % 
and robust with varying aerosol properties.

The number of calls to  the time-consuming 
multi-stream model has been reduced by 1–3 orders 
of magnitude, depending on the spectral band. For 
example, for the O2 A- and CO2 bands, the number 
of MS RTM calls is reduced from 20000 calls to 20 
calls with respect to the LBL model. The resulting 
performance enhancement is about two-orders of 
magnitude, and the two-stream model in conjunc-
tion with the CLSR method can be used for compu-
tations of the aerosol spectra in near-real-time ap-
plications or in aerosol retrieval algorithms, which 
take into account the uncertainty in aerosol model 
selection [32].

Finally, we note that the similar idea based on 
the CLSR technique can be applied to other ap-
proximate RTMs (e.g. based on the asymptotic ra-
diative transfer theory [33] and the diffuse approx-
imation [34]), which will be the topic of our future 
research.
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the reference multi-stream fine-resolution computations. The error of such an approach
is below 0.05%. In addition, it is analysed how the CLSR method can be adopted for
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discussed how the precomputed data for clear sky conditions can be reused for computing
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Abstract: Fast radiative transfer models (RTMs) are required to process a great amount of satellite-
based atmospheric composition data. Specifically designed acceleration techniques can be incor-
porated in RTMs to simulate the reflected radiances with a fine spectral resolution, avoiding time-
consuming computations on a fine resolution grid. In particular, in the cluster low-streams regression
(CLSR) method, the computations on a fine resolution grid are performed by using the fast two-stream
RTM, and then the spectra are corrected by using regression models between the two-stream and
multi-stream RTMs. The performance enhancement due to such a scheme can be of about two orders
of magnitude. In this paper, we consider a modification of the CLSR method (which is referred to as
the double CLSR method), in which the single-scattering approximation is used for the computations
on a fine resolution grid, while the two-stream spectra are computed by using the regression model
between the two-stream RTM and the single-scattering approximation. Once the two-stream spectra
are known, the CLSR method is applied the second time to restore the multi-stream spectra. Through
a numerical analysis, it is shown that the double CLSR method yields an acceleration factor of about
three orders of magnitude as compared to the reference multi-stream fine-resolution computations.
The error of such an approach is below 0.05%. In addition, it is analysed how the CLSR method can
be adopted for efficient computations for atmospheric scenarios containing aerosols. In particular,
it is discussed how the precomputed data for clear sky conditions can be reused for computing
the aerosol spectra in the framework of the CLSR method. The simulations are performed for the
Hartley–Huggins, O2 A-, water vapour and CO2 weak absorption bands and five aerosol models
from the optical properties of aerosols and clouds (OPAC) database.

Keywords: hyper-spectral resolution; fast radiative transfer model; gaseous absorption; low-streams
regression; aerosols

1. Introduction

The operational processing of remote sensing data requires fast radiative transfer
models (RTMs), which simulate the radiance field scattered in the atmosphere. The high
spectral resolution simulation in the gaseous absorption bands is a demanding task. As the
gaseous absorption coefficient changes rapidly with wavelength, the accurate computations
based on a fine resolution grid may require thousands of calls to monochromatic RTMs.
To accelerate these computations, several techniques have been developed over the years.
For instance, the correlated-k models [1–4] take into account that the mean radiance across
a spectral range depends more on the distribution of the absorption coefficient than on its
variation in the spectral range. The state-of-the-art acceleration techniques are based on
predicting the spectrum by using a fast two-stream RTM (instead of relatively more time
consuming multi-stream RTMs) and then refining the result by introducing a correction
function. The latter can be estimated in the original basis of optical parameters, as in the
low-stream interpolation (LSI) method [5], or in the reduced basis, as in some principal
component analysis (PCA)-based RTMs [6–13]. Recently, we introduced the cluster low-
streams regression (CLSR) method, in which such a correction function is found in the
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space of radiances computed with a two-stream RTM [14]. This approach was applied to
the simulations in the O2A and the weak CO2 bands for different atmospheric scenarios,
including aerosols and clouds. It was shown that the error of the CLSR method did
not exceed 0.1%, while providing the speedup factor of about two orders of magnitude
compared to the line-by-line (LBL) model. Here, we refer to LBL computations as the
computations of the radiance field in a fine resolution grid. Therefore, to alleviate the
computational burden of the fine resolution radiances, a reduction in the number of
radiative transfer simulations is performed. Significant time can be saved by using the LBL
model to precompute hyperspectral radiances in different atmospheric conditions, to store
them in look-up-tables (LUT) for further use in the development of retrieval algorithms.
In this sense, LUT are implemented for monochromatic radiances while other applications
precompute the monochromatic transmittances or absorption cross sections (e.g., [15]).

Additional performance can be achieved by combining several acceleration techniques
or by using an acceleration method twice. For example, in the double k-approach, the inte-
gration is performed across the total absorption optical depth and the absorption optical
depth from the top of the atmosphere to the scattering layer [16]. The dimensionality reduc-
tion scheme based on PCA can be utilized twice, first, to the atmospheric optical properties
and then to the radiance datasets. Such a technique has been applied for simulations in the
UV range [12] and for the solar spectral range (the spectral data compression (SDCOMP)
method [17]). In Molina García et al. [11], the correlated-k method was used in conjunction
with the PCA-based RTM. A similar approach but for three dimensional computations was
applied in Doicu et al. [18]. In Kopparla et al. [19], the PCA-based RTM was combined
with a sort of spectral binning. Since the performance bottleneck of the CLSR method is
the two-stream RTM used for the LBL computations, our intention is to examine the effect
of the double application of the CLSR method.

In this paper, two modifications of the CLSR method are proposed. In the first
modification, the two-stream spectra are computed by using the CLSR method and the
single-scattering RTM as an approximate RTM. Thus, the CLSR method is applied twice.
Such a scheme is referred to as double CLSR. In the second modification, the influence of the
aerosols is modelled as a perturbation of the clear sky spectra. In this regard, a spectrum for
actual aerosol conditions is estimated from a spectrum computed for clear sky conditions
in the framework of the CLSR method.

The rest of the paper is organized as follows. In Section 2, we briefly outline the
CLSR method and describe the double CLSR method, as well as an improvement for the
aerosol scenarios. In Section 3, we present the results of the simulations and comparisons
between the single CLSR and double CLSR methods in terms of accuracy and computation
time. The obtained acceleration factors are compared with the state-of-the-art acceleration
techniques. In addition, the efficiency of the improved aerosol treatment in the single and
double CLSR method is analysed.

2. Methodology
2.1. Data Overview

To check the efficiency of the proposed modifications of the CLSR method, we consider
high spectral resolution computations of the top-of-the-atmosphere (TOA) radiances in
the Hartley–Huggins (315 nm), O2 A-band (760 nm), water vapour (885 nm) and CO2
band (1610 nm), as in our previous work [12,14]. The information about absorption
bands is summarized in Table 1. The corresponding absorption coefficients in the O2 A-,
water vapour and CO2 bands are computed with the LBL model Py4CAtS [20], while the
ozone absorption cross-sections in the Hartley–Huggins band are taken from the HITRAN
2016 database [21]. Hence, the absorption coefficients are pre-computed and stored. The
Rayleigh scattering coefficients are modelled as proposed in [22]. The atmosphere assumed
for the tests is the mid-latitude summer reference atmospheric model profile [23]. In our
simulations, the atmosphere is discretized with a step of 1 km between 0 and 25 km, and a
step of 2.5 km between 25 km and 50 km, resulting in 35 layers. The chosen altitude
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grid is used for the purpose of comparing the computational speed of different models.
The boundary conditions at the bottom are defined by the Lambertian surface with an
albedo of 0.3. The solar zenith angle, the viewing zenith angle and the relative azimuth
angle are 45◦, 35◦ and 90◦, respectively.

Table 1. Spectral ranges, resolutions and number of spectral points for the absorption bands used in
this study.

Band Spectral Range Spectral Resolution Number of
(nm) (nm) Spectral Points

Hartley–Huggins 280–335 0.18 300
O2 A 755–775 0.0010 20,000

Water vapour 770–1000 0.0058 40,000
CO2 1590–1620 0.0015 20,000

The radiative transfer solver used in the study is based on the discrete ordinates
with matrix exponential (DOME) method [24,25]. The number of discrete ordinates per
hemisphere (Ndo), often referred to as streams, controls the accuracy and performance of
the computations. The RTM is called multi-stream when Ndo ≥ 2. For the specific case
of Ndo = 1, the model is called two-stream. In the single-scattering approximation, the
multiple scattering term of the radiative transfer equation is neglected and the solution
can be derived analytically without using the discrete ordinate method. In calculations
involving aerosol single-scattering phase functions, the delta-M scaling [26] and the TMS-
correction [27] procedures are applied. The boundary value problem for the multilayer
atmosphere is solved by using the matrix operator method [28], which merges layers into a
single layer. The radiance along a viewing direction is computed by using the false discrete
ordinate method [8,29].

The optical properties of aerosols are computed by using the optical properties of
aerosols and clouds (OPAC) database [30]. The following aerosol types are considered:
tropospheric, continental clean, urban, desert and continental polluted. For this study,
clouds are not taken into account. The values of the aerosol optical depth (AOD), single
scattering albedo (SSA) and asymmetry factor (g) are summarized in Figure 1. For this study,
the atmospheric composition affects the accuracy results for the different aerosol types.
Therefore, we have included several types of aerosols with different optical properties in
order to test as many cases as possible.
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Figure 1. Overview of the optical properties (AOD, SSA and g) obtained from the OPAC database
for the aerosol types: tropospheric, clean continental, urban, desert and polluted. Each vertical line
corresponds with the middle wavelength of the spectral bands in order: Hartley–Huggins, O2 A,
water vapour and CO2 bands.

2.2. Acceleration Techniques
2.2.1. Summary of the Cluster Low-Streams Regression (CLSR) Method

The idea of the CLSR method is to obtain the spectrum corresponding to the reference
RTM by using the approximate RTM and the regression model between approximate and
reference RTMs [14]. The method can be summarized as follows:

We consider a LBL spectrum {ITS(λi)}N
i=1 computed at N spectral points {λi}N

i=1 by
means of the two-stream (TS) RTM. Then, the radiances are sorted in ascending order,
obtaining the set { ÎTS(λi)}N

i=1, which is split into C clusters. In each cluster containing NC =
N/C radiance points, we select n equidistant radiance points, and for the corresponding
wavelengths, we compute the radiances {Ic

MS,q}n
q=1 by using the multi-stream (MS) RTM.

Assuming a regression model between TS and MS radiances within each cluster c, we obtain

Îc
MS,i = αcT̂c

i + βc Îc
TS,i + γc, i = 1, ..., NC, (1)

where αc, βc and γc are the regression coefficients of the c-th cluster and T̂c
i is the correspond-

ing direct transmittance (T = exp(−τaer) with τaer being the total AOD). Equation (1) can
also be written in matrix form as follows:

Y = A · X, (2)

where




Y =
[

Îc
MS,i

]
,

A = [αc, βc, γc],

X =
[

T̂c
i , Îc

TS,i, 1
]
.

(3)
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The regression coefficients are found as a solution of the following least squares
problem:

A = arg min
A

n

∑
q=1

[
Ic

MS,q − Y
]2

. (4)

Finally, the MS radiances { ĨMS,i}N
i=1 are restored at full spectral resolution using

the TS radiances and the regression coefficients. The number of calls to the MS RTM
equals to nC. Note that the TS spectra are computed in a LBL framework, imposing a
performance bottleneck.

2.2.2. Double Cluster Low-Streams Regression Method

In the double CLSR method, the TS spectra are computed also by applying the CLSR
technique. In this case, as an approximate model, we use the single-scattering (SS) RTM.
Thus, the algorithm can be described as follows:

Step 1: We compute the LBL spectra {ISS(λi)}N
i=1 by using the SS RTM and apply

sorting and clustering to the space of SS radiances. Assuming a regression model between
SS and TS radiances within each cluster z, we obtain

Step 1 : Îz
TS,i = azT̂z

i + bz Îz
SS,i + dz, i = 1, ..., NZ, (5)

with number of radiance points NZ = N/Z and cluster index z. The regression coefficients
[az, bz, dz] are found as a solution of the following least squares problem

A = arg min
A

n

∑
q=1

[
Iz

TS,q − Y
]2

, (6)

where A = [az, bz, dz] and Y =
[

Îz
TS,i

]
. By knowing the regression coefficients, the TS

spectra { ĨTS,i}N
i=1 can be restored from {ISS(λi)}N

i=1 at high spectral resolution.

Step 2: We apply the CLSR method as described in the previous section (Section 2.2.1)
using the TS spectra computed in Step 1.

Figure 2 shows a schematic representation of the CLSR and double CLSR methods.
Note that the TS spectra derived at Step 1 by using the CLSR method differ from those
computed by the TS RTM in a LBL manner. However, the possible bias obtained in the
double CLSR method at Step 1 is removed by the regression model at Step 2.

Figure 2. Scheme of the CLSR method vs. the double CLSR method.
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2.3. CLSR Method: Improvement to Aerosol Scheme

It is important to include aerosols in the simulations, using a numerically efficient
RTM to quantify the impact of aerosol scattering [31]. To compute the spectrum in the
case of the atmosphere with aerosol, the CLSR and double CLSR methods can be applied.
For this case, the regression model (Equation (2)) is used, in which

Y = [Iaer
MS] (7)

and the original X- matrix is substituted by

X0 = [T, Iaer
TS , 1], (8)

where the upper index ’aer’ explicitly says that the computations are performed for the
aerosol case. However, as shown in Figure 3, the spectra for the clear sky atmosphere (i.e.,
Rayleigh atmosphere) with and without aerosols have a similar spectral behaviour, i.e., the
aerosol spectra depend almost linearly on the clear sky spectra. In this regard, alternative
formulations of the CLSR method can be considered. For instance, taking the X- matrix as

X1 =
[

T, Iclear
MS , 1

]
, (9)

we obtain a method, which converts the MS clear sky spectra into spectra corresponding
to the aerosol conditions. The upper index ‘clear’ indicates that the computations are
performed for the clear sky case. The possible benefit of such a scheme is that the clear
sky spectra can be precomputed and stored in LUTs and perform the computations offline,
while the computations for actual aerosol properties can be performed online.

Alternatively, we consider the X- matrix in the following form:

X2 =
[

T, Iclear
TS − Iaer

TS , Iclear
MS , 1

]
. (10)

In this case, the regression model is supplied with the first order perturbation com-
puted by using the TS RTM. As a matter of fact, in this case, we do not expect performance
enhancement compared to the X0-scheme. The question is if the error can be reduced by
involving precomputed LUTs for clear sky cases as compared to the original X0-scheme.
Note that for all these cases, the MS RTM for the aerosol scenarios is called for a few
spectral points.
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Figure 3. TOA radiances computed by using the MS RTM for the absorption bands: Hartley–Huggins,
O2 A-, water vapour and CO2 bands. Blue lines correspond to the case without aerosol, while the
black lines correspond to the specific case of desert aerosol.

3. Results and Discussion
3.1. Single CLSR vs. Double CLSR: Accuracy Results

In this section, we compare the single and double application of the CLSR method in
terms of accuracy. To assess it, we compute the relative error (residual) with respect to the
continuum at each spectral point in an LBL manner,

∆Ires =
ICLSR − Iref

MS
Icont
MS

· 100 (%), (11)

where ICLSR is the radiance calculated with either the CLSR method or the double CLSR
method, Iref

MS is the reference radiance with absorption, while Icont
MS is the radiance in the

continuum, i.e., without absorption, which is used to avoid values close to zero in the
denominator, as in [19]. Other metrics used to estimate the accuracy of the simulations
are the mean absolute relative error with respect to the continuum, the probability density
functions and the cumulated probability.

Figure 4 shows the probability density function of the spectral residuals ∆Ires for both
methods and the four spectral bands. The main conclusions that can be drawn from the
figure are the following:

• More than 70% and 60% of the residuals are below 0.01% for the single and dou-
ble CLSR methods, respectively, for all bands, with the exception of the water
vapour band.

• The residuals of the water vapour band present a wider distribution in comparison
with the other spectral bands.

• The probability densities are almost indistinguishable for both acceleration methods,
demonstrating that both techniques provide accurate results among the different
spectral bands.

It can be seen that the accuracy of the CLSR method is slightly higher than that of the
double CLSR method. This result can be expected, since the TS spectra used in the double
CLSR method are approximate and obtained from the SS spectrum (see Figure 2).
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Figure 4. Probability density function of the residuals for the single CLSR (grey) and the double
CLSR (blue) methods for the Hartley–Huggins, O2 A-, water vapour and CO2 bands and for the
tropospheric aerosol case.

Figure 5 shows the cumulated probability functions of the CLSR and double CLSR
methods for all spectral bands. Over 90% residuals are less than 0.05% in the case of the
Hartley–Huggins band and 0.01% in the case of the CO2 band. Higher differences can
be seen between the CLSR and double CLSR methods for the O2A- and water vapour
bands. For these bands, over 90% of the CLSR residuals are less than 0.025%. Meanwhile,
the double CLSR provides slightly larger errors: over 60% and 80% of the residuals are less
than 0.05% for the O2 A- and water vapour band, respectively. However, these residual
values are still low and of the same order as those obtained by using the PCA-based RTMs.
For instance, in Liu et al. [17] PCA was applied to optical parameters and spectral radiances
yielding an error lower than 0.2% in the solar region (775–920 nm). Kopparla et al. [19]
combined the PCA technique for optical parameters and the spectral binning for accurate
computations in the case of aerosols. The residuals were below 0.01% for the O2 A-band,
which are of the same order as our results.

In our previous paper on the CLSR method [14], the convolved spectra were computed,
showing errors of the same order as the non-convolved spectra. Here, the same conclusions
apply for the double CLSR method.
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Figure 5. Same as Figure 4, but for the cumulated probability of the residuals.

3.2. Single CLSR vs. Double CLSR: Computational Performance

In this section, we analyse the computational performance of the single and double
CLSR methods. Tables 2–4 show the number of calls to the SS, TS and MS RTMs, computa-
tional times and corresponding acceleration factors with respect to the MS LBL simulations.
We recall that, as the reference model, the MS LBL RTM with 32 streams is used.

For the single CLSR method, 5 clusters and 4 regression points per cluster are used.
Hence, computations for each absorption band involve 20 MS RTM calls, while the number
of TS RTM calls is equal to the number of spectral points in the high-resolution LBL
computations (i.e., 300, 20,000 and 40,000 calls to the TS RTM for the Hartley–Huggins, O2
A- and CO2 and water vapour band, respectively). As can be seen in Tables 2–4, the TS
RTM imposes the computational burden of the single CLSR method for the O2 A-, CO2
and water vapour bands, consuming up to 70% of the whole computation time.

Table 2. Summary of number of calls, computational time and acceleration factors for the Hartley–
Huggins band. The computational times marked in red indicate the computational burden.

RTM LBL Single CLSR Double CLSR

MS 300 20 20
Number of calls TS 0 300 32

SS 0 0 300

MS 35 2.32 2.32
Computation time (s) TS 0 0.048 0.005

SS 0 0 0.006

Total computational time (s) 35 2.37 2.33
Acceleration factor – 14.8 15.0
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Table 3. Same as for Table 2 but for the O2A- and CO2 bands.

RTM LBL Single CLSR Double CLSR

MS 20,000 20 20
Number of calls TS 0 20,000 32

SS 0 0 20,000

MS 2320 2.32 2.32
Computation time (s) TS 0 3.2 0.005

SS 0 0 0.4

Total computational time (s) 2320 5.52 2.725
Acceleration factor – 420 850

Table 4. Same as for Table 2 but for the water vapour band.

RTM LBL Single CLSR Double CLSR

MS 40,000 20 20
Number of calls TS 0 40,000 32

SS 0 0 40,000

MS 4640 2.32 2.32
Computation time (s) TS 0 6.4 0.005

SS 0 0 0.8

Total computational time (s) 4640 8.72 3.13
Acceleration factor – 532 1482

At the first step of the double CLSR method, 8 clusters and 4 regression points are
used. Thus, the TS RTM is called for 32 spectral points. In the case of the double CLSR,
the SS RTM is utilized for the LBL computations, resulting in an additional performance
enhancement by 2 times for the O2A- and CO2 bands and 3 times for the water vapour
band. We note that in the double CLSR, the computational burden corresponds to the
MS RTM, while the computation times related to the TS and SS RTMs are three and two
orders of magnitude lower than those of the MS RTM, respectively. In the case of the
Hartley–Huggins band, the computational burden is still due to the MS RTM [12] and the
double CLSR does not further improve the performance.

As a final remark, the accuracy is crucial to determine the number of calls needed
for the CLSR methods, and we could improve it by increasing the number of calls to
the RTM models. However, this would add a computational burden to the simulations,
while providing little improvement in the accuracy. Several tests have been performed by
increasing the number of calls to the SS RTM or TS RTM but the errors are of the same
order of magnitude as the actual values.

3.3. Computational Performance: State-of-the-Art Acceleration Techniques

In this section, we compare the CLSR and double CLSR methods against other state-
of-the-art acceleration techniques. Table 5 summarizes the spectral bands/regions and the
acceleration factors for the selected acceleration techniques, including this study. In this
analysis, we consider the studies covering absorption bands in the 280–3000 nm spec-
tral range.

Note that the acceleration factors depend not only on the method used, but also on
other aspects, such as the number of discrete ordinates Ndo used for the reference RTM.
In turn, the required number of Ndo depends on aerosol properties, surface properties,
geometry and the required accuracy. Therefore, the acceleration factors are ambiguous, as
different numbers of streams or atmospheric parameters are used for the reference RTM in
the different studies. Nevertheless, the following conclusions can be made:
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Table 5. Selected acceleration techniques with the corresponding spectral region or band, acceleration factor (computed
with respect to the LBL model) and their reference. Note that the acceleration factors are sometimes given in orders of
magnitude compared to the LBL approach. One or two order of magnitude are indicated as 10× and 100×, respectively.
The references are ordered chronologically.

Acceleration Technique Band/Spectral Region Acceleration Factor Reference

k-distribution H2O, CO2 , O3, and O2 10× * Fomin [32]
double-k approach O2 A 1000 Duan [16]

LSI O2 A, CO2 weak, CO2 strong 45 b, 210 c O’Dell [5]
PCA O2 A, CO2 weak, CO2 strong 50 Natraj et al. [33]
PCA 290–340 nm 10 Spurr et al. [34]
LEM 325–335 nm 10 Efremenko et al. [9]
PCA 325–335 nm 2 Efremenko et al. [35]
PCA 300–3000 nm 10× Kopparla et al. [19]
PCA O2 A, CO2 weak, CO2 strong 100× Somkuti et al. [36]

k-distribution + PCA O2 A 342 Molina García et al. [11]
PCA a Hartley-Huggins 18 del Águila et al. [12]

NN O2 A, CO2 weak, CO2 strong 250 d Le et al. [37]
LEM NO2 (425–450 nm) 12 e Doicu et al. [18]
CLSR O2 A, CO2 weak 505 del Águila et al. [14]

SDCOMP a 750–920 nm 1000 d Liu et al. [17]

double CLSR
Hartley-Huggins 15

This studyO2 A, CO2 weak 850
Water vapour 1500

a PCA is applied twice, (1) to the optical properties and (2) the radiance data set. b Nadir observations. c Glint observations.
d Computation times are not considered, only the relative computational efficiency with respect to the accurate simulations. e Relative
to the k-distribution method. * It is estimated from the information found in the reference, but the value does not appear explicitly.

1. For simulations in the Hartley–Huggins band, PCA techniques, linear embedding
methods (LEM) and double CLSR have been applied. The double CLSR does not
further improve the performance, since the computational burden is due to the MS
RTM computations (see Section 3.2). The highest acceleration factor is provided by
the method described in [12], in which PCA is applied to both optical parameters and
spectral radiances. The performance enhancement in this case is up to 18 times.

2. There are several studies in which fast RTMs for the O2 A- and CO2 bands (either
weak or strong) have been designed. In general, all considered techniques provide
acceleration factors of about 2–3 orders of magnitude, including those based on
artificial neural networks (NN) [37].

3. The water vapour band represents a challenge for acceleration techniques due to its
complicated spectral structure. Therefore, the accuracy of the acceleration techniques
is lower than for the O2 A-band. For this band, the double CLSR method provides an
acceleration factor of about 3 orders of magnitude, while the k-distribution [32] and
PCA-based RTMs [19] achieve lower acceleration factors, of one order of magnitude.

3.4. Further Improvements to Aerosol Schemes

In this section, the efficiency of the CLSR method for various configurations outlined
in Section 2.3 is examined for several OPAC aerosol models. The results obtained using X1
and X2 (corresponding to Equations (9) and (10), respectively) are compared against the
original CLSR method in which the matrix X0 (Equation (8)) is used. The mean absolute
relative errors are shown in Figure 6. In general, mean relative absolute errors are below
0.05% for all aerosol types and bands when using the original X0-configuration for the
CLSR method. However, these errors are slightly higher for the water vapour band due to
its higher spectral complexity.
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Figure 6. Mean absolute relative error in % for the four spectral bands, as well as for all aerosol types.
Each bar colour corresponds to an aerosol type, while each group of bars corresponds to one of the
Xi-matrix (i = 0, 1, 2) (Equations (8)–(10)) used in the CLSR method. Note that the scale of the water
vapour band is different from the rest of the spectral bands.

Almost in all cases, the X1 configuration is less accurate than the original CLSR
method. This result can be expected, as X1 carries no information about the radiances
of aerosols. However, for low aerosol load (tropospheric and clean aerosols), the errors
are of the same order or below 0.05% compared to the ones from X0. The advantage of
the X1 configuration is that it is based on spectra computed for the clear sky atmosphere.
The corresponding LUT, therefore, is independent on aerosol properties. By using the
CLSR method, the spectrum for actual aerosol conditions can be computed by calling MS
RTM at a few spectral points (in our case, 20 spectral points).

The X2 configuration comprises X0, which contains the spectra corresponding to the
TS RTM, and X2, which corresponds to TS and MS RTMs for clear sky scenarios. An im-
provement with respect to the original configuration is provided by the X2-configuration for
the Hartley–Huggins and CO2 bands, where absolute relative errors are of the same order
as for X0-configuration or below 0.01%. For the O2 A-band, there is almost no enhance-
ment compared to the original configuration. We have excluded the transmittance in the
numerical simulations for the CO2 band in order to obtain slightly more accurate results.

In sum, we present two alternative configurations to the original X0, in order to
obtain more accurate results for: (1) low aerosol loading conditions with the X1 configu-
ration for all bands; and (2) the Hartley–Huggins, water vapour and CO2 bands with the
X2 configuration.

3.5. Combined Application of the Single CLSR vs. Double CLSR Method for Aerosol Scenarios

Finally, the single and double CLSR methods are tested for the full set of aerosol
models and Xi-configurations. The probability density functions of the residuals for the
tropospheric aerosol model are shown in Figures 7 and 8.
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Figure 7. Probability density of the residuals for the single CLSR method and for several matrix
configurations: X0, X1 and X2. Each plot represents the absorption bands: Hartley–Huggins, O2 A-,
water vapour and CO2 bands. The case presented corresponds to the tropospheric aerosol.

Figure 8. Same as Figure 7, but for the double CLSR method.

The conclusions drawn from the comparison of the two figures can be summarized
as follows:

• The residual distributions of the single CLSR method are narrower than those of
the double CLSR method, meaning that the single CLSR method is more accurate.
However, in general, the residuals are below 0.01% for both methods and all spectral
bands, except for the water vapour band, where the residual distributions are slightly
wider and still below 0.05%. The distributions are not biased.
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• For the Hartley–Huggins, O2 A- and CO2 bands, the residuals are below 0.05% for both
single and double CLSR methods. Regarding the water vapour band, the residuals are
below 0.05% and 0.1% for the single and double CLSR method, respectively. Similar
accuracies were achieved in Kopparla et al. [19] for the water vapour band using the
PCA-based RTM.

• In the case of the low aerosol load, the probability density functions are similar for all
Xi-configurations. However, as the aerosol load increases, the residual distributions
for the X1 configuration provided by the single and double CLSR methods sometimes
become biased for the water vapour band.

4. Conclusions

In this study, we have proposed two modifications to the CLSR method for fast
computations of radiance spectra in absorption bands. In the first modification, the CLSR
method is used twice, the first time for assessing the spectra corresponding to the TS RTM,
and the second time for computing the spectra corresponding to the MS RTM. Our tests
reveal that the double CLSR method further improves the computational performance of
the original CLSR method by two (CO2 and O2A- bands) and three times (water vapour
band), yet keeping the error below 0.05% for all spectral points on a high resolution grid.
The designed approach has been compared with the state-of-the-art techniques found in the
literature. Although the acceleration factors are ambiguous, in our simulations, the double
CLSR method seems to provide a slightly higher performance than the PCA-based RTMs.

The second modification of the CLSR method is proposed for the atmospheric scenar-
ios involving aerosols. The LBL computations performed for clear sky scenarios can be
reused in the CLSR method as an approximate spectrum instead of the TS RTM, which is
then corrected by calling the RTM for the atmospheric model with aerosol, but in a few
spectral points. Therefore, by using the configuration of the CLSR method only with the
information of the clear sky spectra, we can reproduce the LBL spectra with low aerosol
load. We showed that in the case of low aerosol load, such a configuration provides abso-
lute relative errors below 0.05% for all spectral bands, while enhancing the computational
performance by three orders of magnitude. Low aerosol loading conditions occur when
the atmosphere is in practice mainly clean. As the aerosol load increases (e.g., for polluted
aerosol, with AOD equal to 5), the error also increases and reaches ∼0.2% for water vapour
band and ∼0.1% in the O2 A- and CO2 band. The new configurations have been tested
for both CLSR and double CLSR methods, revealing similar probability density functions.
These results have the potential to be applied in near-real-time applications of aerosol
computations or in aerosol retrieval algorithms considering an appropriate aerosol model
selection [38,39]. It also seems beneficial to implement the CLSR method in conjunction
with gradient-based LUT generators [40,41], to reduce the size of LUTs and interpolation
errors. Besides, the CLSR method provides an accurate alternative to the LUT interpola-
tion, which combines the regression and online RTM simulations. Therefore, the single
and double CLSR methods could potentially be incorporated into the generation of LUT
radiance fields in a fine resolution grid.

Our future work will be focused on coupling the CLSR method and machine learning
approaches. Recent studies have shown that the accuracy of hyperspectral radiative transfer
simulations can be improved by applying machine learning techniques (e.g., see [37]).
Essentially, NNs are used as universal approximators which replace time-consuming RTMs.
Further studies will be undertaken to replace the regression model with an NN, within the
framework of the CLSR method. By doing this, we expect to reduce the number of clusters
and spectral points for which the MS RTM is called.
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Abbreviations
The following abbreviations are used in this manuscript:

AOD Aerosol Optical Depth
CLSR Cluster Low-Streams Interpolation
DOME Discrete Ordinates with Matrix Exponential
HITRAN High-Resolution Transmission Molecular Absorption Database
LBL Line-By-Line
LEM Linear Embedding Methods
LSI Low-Streams Interpolation
LUT LookUp Table
MS Multi-Stream
NN Neural Network
OPAC Optical Properties of Aerosols and Clouds
PCA Principal Component Analysis
Py4CAts Python for Computational Atmospheric Spectroscopy
RTM Radiative Transfer Model
SDCOMP Spectral Data Compression
SS Single-Scattering
SSA Single Scattering Albedo
TOA Top-of-the-Atmosphere
TS Two-Stream
UV Ultraviolet
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• A. del Águila, D. S. Efremenko, T. Trautmann. A review of dimensionality reduc-
tion techniques for processing hyper-spectral optical signal. Light and Engineering,
27(3):85-98, 2019. doi: 10.33383/2019-017
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Ogren. 11 years continuous monitoring of the in-situ aerosol optical properties at
El Arenosillo observatory: emphasis on an extreme Saharan desert dust episode in
February 2016. Poster presentation.
European Aerosol Conference (EAC 2017), Zurich , 27.08.2017-01.09.2017
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Abbreviation Description

ACS Atmospheric Composition Sensors
AOD Aerosol Optical Depth
AVHRR Advanced Very High Resolution Radiometer
CIA Collision-Induced Absorption
CLSR Cluster Low-Streams Regression
DLR Deutsches zentrum für Luft- und Raumfahrt (German Aerospace Center)
DOME Discrete Ordinates with Matrix Exponential
EM ElectroMagnetic
EO Earth Observation
EOF Empirical Orthogonal Function
ESFT Exponential Sum Fitting of Transmittances
FWHM Full Widths at Half Maximum
GOME Global Ozone Monitoring Experiment
GOSAT Greenhose gases Observing SATellite
HITRAN HIgh-resolution TRANsmission molecular absorption database
HPC High Performance Computing
IR InfraRed
IQR InterQuartile Range
LBL Line-By-Line
LEM Linear Embedding Methods
LS Low Streams
LSI Low-Streams Interpolation
LUT Look-Up Table
L1B Level-1B
ML Machine Learning
MODTRAN MODerate resolution atmospheric TRANsmission
MS Multi-Stream
NIR Near InfraRed
NN Neural Network
NRT Near Real Time
OCO Orbiting Carbon Observatory
OMI Ozone Monitoring Instrument
OPAC Optical Properties of Aerosols and Clouds
OSS Optimal Spectral Sampling
PC Principal Component
PCA Principal Component Analysis
PCRTM Principal Component-based Radiative Transfer Model
PRISM Picosatellite for Remote sensing and Innovative Space Missions
PYDOME PYthon Discrete Ordinates with Matrix Exponential
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Abbreviation Description

Py4CAts Python for Computational Atmospheric Spectroscopy
RT Radiative Transfer
RTE Radiative Transfer Equation
RTM Radiative Transfer Model
RTTOV Radiative Transfer for TOVS
SDCOMP Spectral Data COMPression
SMART Spectral Mapping Atmospheric Radiative Transfer
SRF Spectral Response Function
SS Single-Scattering
SSA Single Scattering Albedo
S5P Sentinel 5 Precursor
TOA Top-of-the-Atmosphere
TROPOMI TROPospheric Ozone Monitoring Instrument
TS Two-Stream
UV UltraViolet
VIS VISible



D List of Symbols

Symbol Description

B absolute temperature
kabs absorption coefficient
k absorption coefficient
g analytical function
ϕ azimuthal angle
Im azimuthal component of the radiance
m azimuthal expansion term
f basis vector
kB Boltzmann constant
c cluster for the CLSR method
z cluster for the double CLSR method
t computational time
Icont continuum radiance
f (xw) correction function for PCA
µ cosine of the polar angle
G cumulative frequency distribution
M dimension of subspace using PCA
Ω direction of the light
T direct transmittance
f distribution function
Λ eigenvalue matrix
V eigenvector matrix
q empirical orthogonal functions

I equidistant radiances for the regression model
ξ error of bilinear interpolation
kext extinction coefficient
τgas gas absorption optical depth
l layer
A layer matrix
ILS low streams component of the radiance
Y matrix of atmospheric radiances
T matrix of atmospheric radiances in the new basis
A matrix of regression coefficients in the CLSR method
X matrix of the CLSR method
F matrix of the new basis
ε mean relative error
IMS multiple-scattering component of the radiance
n normalized vertical distribution
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176 D. List of Symbols

Symbol Description

K number of coordinates in the new basis
Ndo number of discrete ordinates
C number of clusters for the CLSR method
Z number of cluster for the double CLSR method
n number of equidistant radiance points on each cluster
N number of homogeneous layers
L number of layers
Nc number of radiance points on each cluster
J number of spectral points in the new basis
W number of wavelengths
τ optical depth
r path
θ polar angle

Ĩ predicted radiances
y principal component
u quantity of absorber
im radiance vector
R reflectivity matrix
α regression coefficient
β regression coefficient
γ regression coefficient
a regression coefficient
b regression coefficient
d regression coefficient
Ires residual error of the radiance
Wrot rotational energy
I scalar radiance
ksca scattering coefficient
S set of spectra
ω single scattering albedo
ISS single-scattering component of the radiance
P single scattering phase function

Î sorted radiance in ascending order
P source matrix
b source vector
SPCA speedup factor for the PCA-based RTM
SCLSR speedup factor for the CLSR method
s surface boundary condition
τabs total absorption optical thickness
Wtot total energy
T transmission matrix
Wtra translational energy
t vector in the new basis
y vector of atmospheric radiances or spectra
x vector of optical parameters
Wvib vibrational energy
λ wavelength
w wavelength index
wi weights
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