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Abstract: The electrification of the mobility and heating sectors will significantly change the electrical
behavior of households in the future. To investigate this behavior, it is important to include the
heating and mobility sectors in load profile models. Existing models do not sufficiently consider
these sectors. Therefore, this work aims to develop an integrated, consistent model for the electrical
and thermal load of private households and their mobility behavior. The model needs to generate
regionally distinct profiles depending on the building, household and resident type and should
be valid for Germany. Based on a bottom-up approach, a model consisting of four components is
developed. In an activity model based on a modified Markov chain process, persons are assigned to
activities. The activities are then allocated to devices in the electrical and thermal models. A mobility
model assigns distances to the journey activities. The results of the simulation to validate the model
shows an average annual energy consumption per household of 2751 kWh and a shape of the average
load profile, both in good agreement with the reference. Furthermore, the temporal distribution of
the vehicles to the locations is in accordance with the reference but the annual mileage is slightly
underestimated with 10,730 km.

Keywords: household load profile; mobility behavior; simulation; consumption behavior; bottom-up;
distribution grid; markov chain

1. Introduction

The energy transition is placing new demands on distribution grids in Germany. On the one hand,
many renewable energy systems, e.g., photovoltaic systems, have been installed and on the other
hand, load has also risen and is expected to rise further due to the electrification of the mobility and
heating sectors [1,2]. Both developments are mainly taking place in the distribution grid and especially
in low voltage grids [3]. Combined with digitalization, which enables producers and consumers
to be more easily controlled, these developments are leading to new challenges and opportunities
for electricity grids. Detailed simulation models are necessary to learn more about, and to develop
solutions for, these upcoming challenges. One crucial factor, therefore, is a realistic and accurate model
for the electrical consumption as well as mobility and heating demands of households, which are
or will be the main source of electrical load in low voltage grids. To achieve this, three interwoven
types of demand must be taken into account. First is the common electrical load of devices in the
household, for example, ovens, televisions, and laptops. Second is the heating demand for space
heating and hot water, which is increasingly frequently provided by heat pumps. The third is the
mobility demand of the inhabitants, which, in the future, can be fulfilled by electric cars. Since these
three demands are linked together via the user behavior, e.g., if the person of a single household is

Energies 2020, 13, 3843; doi:10.3390/en13153843 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en13153843
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/13/15/3843?type=check_update&version=3


Energies 2020, 13, 3843 2 of 32

driving to work, the electric and thermal load in the empty home normally decreases, an integrated
model shall be developed.

Due to the highly relevant nature of the problem, there is already a large number of models to
generate electric load profiles of households. The authors of [4] give a general overview of existing
models for this topic. Accordingly, those models can be classified in bottom-up and top-down
approaches. A common and very simple top-down method is to use a standard load profile (SLP).
These are average load curves based on long-term-measurements for weekdays and weekend days. The
German Association of Energy and Water Industrie (BDEW) provides an SLP for German households
in a temporal resolution of 15 min [5]. The main disadvantages of this method are its inaccuracy when
considering a small number of households and its relatively low temporal resolution [6]. Slightly
more precise top-down models are described in [7,8]. Reference [4] categorizes both as deterministic
statistical disaggregation models, because they use measured load profiles but disaggregate the profiles
to determine various appliance. The simple parametrization used in both cases is advantageous, as is
the low computing effort featured in one case. On the other hand, both cases lack detail and diversity.

Bottom-up models first calculate the electric demand of single devices and then aggregate or
extrapolate these values to obtain the total consumption of individual households or a larger geographic
area. They can be divided into statistical random, probabilistic empirical, and time-use-based
models [4]. Statistical random models use statistical data in combination with a random procedure
to achieve diversity. The authors of [9] developed such a model. Besides electric load profiles, it also
generates domestic hot water and space heating demand. This model was criticized by [4,10] because
of its simplicity and its meaningless validation. Reference [11] describes a probabilistic empirical model
that uses statistical total load curves and load curves of electric devices, as well as socioeconomic data,
as input data. Based on that data, the triggering probabilities of the devices are calculated. However,
the influence of the user’s presence was neglected [10]. Time-use-based models consider user presence
based on data from time-use-surveys to generate diversity. Time-use surveys measure the amount
of time people spend performing various activities through interviews and protocols. The authors
of [12] combined this method with a deterministic approach, by using the time-use data directly. Other
references like [13] use the data to calculate transition probabilities for a Markov chain beforehand,
from which they compute synthetic activity profiles. Afterwards, these profiles are linked with load
profiles of electric devices to determine the load profile of the household. The author of [10] decided
against using Markov chains and generated the synthetic activity profiles with the help of a probability
distribution instead.

The next step is to present some existing approaches of mobility models. Reference [14] describes
a deterministic model based on the 2008 “mobility in Germany” (MiD) study [15]. This study consists
of 30,000 daily mobility profiles which were clustered in user groups and various types of days.
The model randomly picks a profile for a person of the related user group and day. There is a large
variety of mobility models based on Markov chains similar to the previously-mentioned models for
load profiles [16–18]. An approach with three parking states and one driving state is utilized in [16].
Using time-use data, the model assigns one of the states to each car in every time step. Thus the
duration of the journey is determined. The distance is calculated by the average speed. A multiple
driving states Markov model with 13 different states is presented in [17]. Each driving state represents a
trip reason. Reference [18] uses a spatial Markov chain model that combines geographical information
system (GIS) data with a Markov chain process. The model distinguishes between three parking states:
Work, Home, and Other. Geospatial maps are used to estimate the distances of each journey. The
authors in [19] combined a trip chain model with a Markov chain model.

Models like [16–18] already used the mobility models to estimate future system perturbation
of electromobility. Thus, they combine mobility and electric load profiles in their models. The only
model which already combines mobility, heating demand and electric load profiles is [10]. However,
the used mobility model is highly simplified and the results are very questionable. It generates an
annual driving distance, ranging from 2000 to 18,000 km and averaging 3000 km, for each car present
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in the model. In comparison, the average value provided by the German Federal Motor Transport is
around 14,000 km [20].

The consideration of related work showed a wide variety of existing models, but also revealed
their deficits. Upon reviewing these, the requirements of the model developed in this paper can be
defined as follows:

• Consistent mobility, heating demand, and electric load profiles
• Regionally distinct results depending on the building, household, and resident type
• Mobility behavior consistent with city size
• Huge diversity of profiles
• High temporal resolution of one minute

By developing a model that meets these requirements, this paper helps to fill the research gaps
that remain after considering similar models.

The aim is to create an integrated bottom-up model, which can generate mobility, heating demand,
and electric load profiles. These profiles need to be consistent. For example, it is unlikely that
a one-person household will generate an electric peak load while the resident is traveling by car.
However, a peak load is very likely to occur when returning by switching on electrical appliances
and charging the electric vehicle. Therefore, it is important to link the profiles to activities in order to
achieve this consistency.

The model must reflect regional differences. Through different types of buildings, households,
and residents, regional differences must be producible. Thus, various types of settlements from
different regions can be simulated. In addition, there is a strong deviation of the mobility behavior
in rural and urban regions. The model must display this difference as well. To examine peak loads
and the corresponding grid load, the diversity of the load profiles is very important. Average load
profiles would be inappropriate for this purpose. The model must provide this diversity. At least for
the electric load profile, a temporal resolution of one minute is mandatory for the same reason.

The work is structured as follows: in chapter two, the methods of the individual model
components activity, electric load, thermal load, and mobility are described. Using a simulation of a
representative German settlement, the results of the model components are validated and discussed in
the third chapter. The paper ends with a short conclusion in chapter four.

2. Methodology

This section describes the model which is developed within this paper. It consists of four parts:
the activity model, the mobility model, the electric load model, and the thermal load model. The models
are also called generators in some cases. Figure 1 shows a general overview of the model. There are
two types of input data. On the one hand, there are input parameters that characterize the buildings,
households and persons the profiles will be generated for. On the other hand, there are probabilities
and distributions that characterize the activity and mobility behavior of different types of persons.
Those inputs are determined based on studies that are representative of German citizens. The data
inputs for the activity behavior are based on a time-use survey (ZVE) [21] and those for the mobility
behavior on the mobility study MiD. Using the input data, the activity model produces activity profiles
for each resident of the regarded building. The residents are referred to as agents. An agent group is a
group of agents with the same characteristics. The activity profiles are passed on to the other three
parts of the model. The electric load model links the activity profiles with profiles of electric devices
and trigger-probabilities to generate electric load profiles of the residential units. Residential units and
households are synonymous with this work. The thermal load model similarly assigns activities to a
demand for hot water. The heating demand is not coupled to the activity profiles. The mobility model
generates mobility profiles for the cars of each household based on the activity profile of its residents.
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Figure 1. General overview of the model.

At this point, the defined input parameters will be explained before the following subsections
describe the single components of the model in detail. The first parameter is the time range for
which the load profile will be generated. The maximum time range is one year and the minimum
time range is one day. Because of the temporal resolution of the used data sets, the activity and
the mobility model uses time steps of 10 min. For the load models, the activities are repeated to
achieve a temporal resolution of 1 min. The model is developed to generate load- and mobility-profiles
at the settlement level. Therefore a settlement, which contains buildings, which contain, in turn,
residential units, needs to be defined by certain parameters. Table A1 contains a description of these
parameters. The settlement itself is defined by the number of buildings and the city category (CC).
Through the city category, differences between the activity and mobility behavior of the rural and
urban populations are considered. A settlement must contain at least one building. The buildings are
characterized by parameters such as their age, type and living space. The number of residential units
within a building is a parameter as well. The parameter household size and type are responsible for
the assignment of agents to the residential units. Table 1 contains the allocation logic based on [21].
The input distinguishes between seven types of agents from which the households are built. The
parameters’ electric equipment, consumption level and the availability of a bathtub are important to
model the load behavior of a residential unit. The decision of whether the household owns a car is
implemented by another parameter.

Table 1. Allocation logic of household parameters to agents.

Household size 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 5
Household type 1 2 3 4 5 6 1 2 3 4 1 2 3 1 2 3 1 2 3

Full time working man 1 1 1 1 1 1 1 1 1
Full time working woman 1 1 1 1 1 1 1 1 1
Male pensioner 1 1
Female pensioner 1 1
Part time working man 1 1 1 1 1
Part time working woman 1 1 1 1 1
Children 1 1 1 2 2 2 3 3 3
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2.1. Activity Model

Time-use surveys are generally statistics, which include information about how people spend their
time. In this case, the time-use survey ZVE of the German Federal Statistical Office from 2012/2013
is used. Over 5000 representative households with more than 11,000 individuals were interviewed
during the survey. The interviews consisted of household interviews, personal interviews, and diaries,
which collected the detailed daily routine of the respondents in time steps of ten minutes for three days
(two weekdays and one weekend day). Within the household interview, attributes like the number of
individuals living in the household and the living space were determined. Personal information like
age, gender, and marital and social status was collected through personal interviews. The activities
from the collected diaries were clustered into 165 defined activity categories. The social status of the
respondents was clustered in categories (Freelancer, Civil Servant, Employee, Worker, Pupil/Student,
Pensioner, Unemployed) as well. Additionally, the data set contains information about the labor
situation (full-time, part-time) of each respondent and whether the person does shift work. [21,22]

Even though the data set was already prepared by the German Federal Statistical Office, some
interventions were necessary to make the data usable for a modified Markov process. Activities
lasting for a whole day—for example, if the person is sick in bed or away on a journey—had to be
removed, because they could lead the activity generator to a dead end. It affected only 0.004% of
the data. The journeys to and from work were removed as well to achieve a constant expenditure
of time for these activities. A Markov chain could not reach that requirement. Therefore, commutes
are subsequently inserted. Furthermore, the activity categories of the original data set (165) are
too extensive. Hence, they were clustered into 19 activity categories, which are shown in Table 2.
For example, the ZVE includes different types of work. e.g., main job, secondary job, etc. These are all
grouped together in the activity “Work”. Like in [10], days from Monday to Thursday are aggregated
because of their similar daily routine. As a result, the model distinguishes between four types of days
(ToD): Monday-Thursday, Friday, Saturday and Sunday.

Table 2. Activity categories used in the model.

ID List of Activities Impact on Location

01 Sleeping Presence/absence Home
02 Eating Presence/absence Home/work/other place
03 Hygiene and dressing Electricity and water consumption Home
04 Meal preparation Electricity consumption Home
05 Baking Electricity consumption Home
06 Dish-washing Electricity and water consumption Home
07 Cleaning up home Electricity and water consumption Home
08 Doing the laundry Electricity and water consumption Home
09 Ironing Electricity consumption Home
10 Watching TV Electricity consumption Home
11 Listening to the radio Electricity consumption Home
12 Using the computer Electricity consumption Home
13 Other activities at home Presence/absence Home
14 Working Presence/absence Home/work
15 Education Presence/absence Home/other place
16 Social contacts Presence/absence Home/other place
17 Other activities Presence/absence Other place
18 Not at home Presence/absence Other place
19 Other journey Presence/absence Other journey
20 Commute Presence/absence Commute

Based on the upper criteria shown in Table 3, 21 detailed agent groups are defined. The data set is
divided into partial diary data sets for each agent group, which can be found in Table 4.
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Table 3. Criteria to filter the time-use study representative for Germany (Zeitverwendungserhebung)
(ZVE) data.

Criteria Symbol Definition Area Distinctions

Gender / Male/female
Social status / Freelancer/civil servant/employee/

Worker/student/pensioner
Labour situation / Full time/part time
Shift work / Yes/no

Activity i {1, 2, . . . , 19} See Table 4
Activity after i j {1, 2, . . . , 19} See Table 4
Time of day t {1, 2, . . . , 144} 144 time steps with 10 min each
Activity duration T {1, 2, . . . , 144} Number of time steps t the activity i lasts
Type of day ToD {1, 2, 3, 4} Monday-Thursday (1), Friday(2),

Saturday (3), Sunday (4)

Table 4. Itemisation of the agent-groups.

Agent-Group Input p Detailed Agent-Groups

Full time working man 0.13 Male full-time freelancer
0.12 Male full-time civil servant
0.57 Male full-time employee
0.06 Male full-time worker with shift work
0.12 Male full-time worker without shift work

Full time working women 0.13 Female full-time freelancer
0.12 Female full-time civil servant
0.57 Female full-time employee
0.06 Female full-time worker with shift work
0.12 Female full-time worker without shift work

Male pensioner 1 Male pensioner

Female pensioner 1 Female pensioner

Part time working man 0.13 Male part-time freelancer
0.12 Male part-time civil servant
0.57 Male part-time employee
0.18 Male part-time worker without shift work

Part time working women 0.13 Female part-time freelancer
0.12 Female part-time civil servant
0.57 Female part-time employee
0.12 Female part-time worker without shift work

Children 1 Student

The cumulative activity transition probability pTR,j,t,ToD(i) is calculated by Equation (1) similar
to [13]. Therefore, the relative frequency is assumed as probability. Here, i is the activity during the
time step t, j is the activity during the previous time step t− 1 and ToD is the type of day. nj,t,ToD is the
number of persons who change on a day-type ToD and at time step t from activity j to another activity.
The counter variable k is used to determine the cumulative sum of the probabilities for each activity i.
Thus, nj,t,ToD(k) is the number of persons who change from activity j to activity k at t on ToD. If there
are no persons meeting the criteria, the probability is zero. The definition area for the variables j, t and
ToD is contained in Table 3.

pTR,j,t,ToD(i) =

∑i
k=1

nj,t,ToD(k)
nj,t,ToD

, nj,t,ToD 6= 0

0 , nj,t,ToD = 0
(1)



Energies 2020, 13, 3843 7 of 32

A typical Markov approach recalculates the activity based on probabilities for every time step
without having information about the activity of the previous time step. An example of the activity
sleeping can be used to illustrate the disadvantages of a Markov process. Assuming a constant
probability for sleeping of 0.98, the probability that an agent sleeps for six hours (36 time steps) would
be only 0.9836 = 0.48. Thus, in a regular Markov process, the probability that agents get up for a short
time and then continue sleeping is very high. To avoid this, the duration probability pTR,j,t,ToD(i) of
activities are additionally calculated by Equation (2). T is the duration of activity i and the counter
variable k runs from 1 to T. Thus, for each agent group 4-dimensional probability matrices for transition
and duration are calculated. These form the basis for the following modified Markov process.

pDU,i,t,ToD(T) =

∑T
k=1

ni,t,ToD(k)
ni,t,ToD

, nj,t,ToD 6= 0

0 , ni,t,ToD = 0
(2)

Figure 2 shows the procedure within the activity model. The model iterates over every agent
and time step. The first step is the refinement of the agent groups. Children and Pensioners can be
allocated explicitly. The remaining agent groups are refined based on the probabilities included in
Table 4. Thus, the inserted agent groups are allocated to the detailed agent groups of the ZVE.

Assign activity i

Insert commute

Create location vector

Agent-Group refinement

Harmonization of the activity and 

the location vector

Assign activity duration T

ZVE data

Activity transition 

probabilities 𝑓(𝑖, 𝑗, 𝑡, 𝑇𝑜𝐷)

Activity duration probabilities

𝑓(𝑖, 𝑗, 𝑡, 𝑇𝑜𝐷)

Processing of location vector

Assign locations to indefinite 

entries

Set home entries within a 

working-time-block to work

Post processing of the

location vector to meet the

requirements

Start

End

MiD data

Probabilities of commute 

time

𝑓(𝐶𝐶)

Figure 2. Flowchart of the activity model.

For the first activity and its duration, real values from the ZVE-data set from a respondent
of the corresponding agent group are used. After the first activity ends, the actual algorithm
starts by generating a single uniformly distributed random number r within the interval 0 and 1.
The probabilities for a transition from the present activity to another activity for the present time
step and ToD are extracted out of the transition probability matrix pTR. The result is a vector with
19 entries. Each entry represents an activity. The algorithm iterates over the activity-entries to find the
first entry which is greater than or equal to r. This is the new activity i. Afterward, the duration of
the new activity is determined similarly. Another random number r is generated. The probabilities
for the duration of the present activity, time step, and ToD are selected from the duration probability
matrix pDU . The algorithm assigns the duration of the new activity based on the probability matrix.
After the activity has ended, the algorithm is repeated until the last time step is reached. The activity
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vector is the result of the first part of the model. In every time step, the agent is linked to one of the
activities from Table 2. Afterward, the missing commutes are added to achieve a constant duration
for that activity. The first and the last time step of all working-time-blocks are determined. Within a
working-time-block, which is the range of time in which the agent works, there can be interruptions
like eating or other activities. The algorithm recognizes these blocks. The commute from home to work
starts at the first entry of the working-time-block. The commute back home is included backward
starting from the last entry of the block. The duration-distribution of the commute is based on the
mobility data introduced in Section 2.4. The used distribution depends only on the city category.

The next step is to link the activities to locations. The location of each agent at each time step is
stored in a location vector. The model distinguishes between five locations: “at home”, “at work”,
“other location”, “other journey”, and “commuting”. Commuting includes the way from and to work.
Most of the activities can be explicitly coupled to one location. Table 2 contains the assumed, possible
locations for each activity. For example sleeping (ID = 01) is explicitly linked to the location at home.
Other activities like eating (ID = 02) can not be unambiguously assigned to a location. Agents can eat
at home, at work or at other locations. The model assigns these indefinite locations by checking the
locations before and after them. For example, if the agent is at work before and after the activity eating,
he will remain there to eat. Table A2 contains the used assignments.

It is assumed that the agent does not return home within a working-time-block. Thus, every
location-entry in the mobility vector which is home between the way to work and the way back home
is corrected to the location at work.

For the mobility model, a meaningful location profile is very important. To achieve that, the
following requirements are defined:

1. Transitions between at home, at work, and another location require a journey (commute or
another journey) among it.

2. Direct transitions from home to another location to home are allowed.
3. The duration of the other journey from home to another location has to be equal to the following

trip back home.

The first requirement is necessary to avoid that the car, which may be used for a later trip within
the mobility model, is led to a dead end. The second requirement is defined, because there are activities
linked to other locations that do not require a journey. For example, another activity contains sports.
It is not necessary to change the location to go jogging. The activity can start and end at home, even
though it happens at other locations. To generate realistic distances in the mobility model, the third
requirement is mandatory. Section 2.4 will further explain the necessity of requirements 1 and 3.
The algorithm scans the location vector and checks whether the requirements are fulfilled. If not, the
vector is processed to meet them. Missing journeys with a duration of one-time step are included in
case of a violation of requirements 1 and 2. If necessary, the travel times are reduced or extended to
meet the third requirement.

The last step of the activity model is the harmonization of the activity and the location vector.
Every entry in the activity vector with a location at work or at another place is set to not at home
(id = 18). Activity entries with a location, other journey, or commute are changed to the activity with
the same name. The outputs of the activity model are an activity vector and a location vector.

2.2. Thermal Load Model

In addition to electricity, thermal energy is needed in all households. Therefore, thermal energy is
also part of the described model. The thermal load model consists mainly of modules regarding the
use of thermal energy at home. The first module is heating and the second one is hot water.

The module for heating demand is rather simple and is described in detail in [23]. Therefore the
specific heating demand of the building, which depends on age, level of refurbishment, and type is
the starting point. Based on this value, according to [24,25], using the standard load profile procedure
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for gas customers, the annual space heating requirement is distributed over the individual days of
the year, taking into account the weighted temperature of the last three days and the type of building.
This gives a space-heating requirement for each day of the year. The standard load profile for gas is
used since heating dominates the gas consumption and gas is an energy source which is delivered just
in time to many customers. Unfortunately, there is not much data available for district heating, which
would be another good source for heating demand profiles. The model also takes into account that
new buildings only need to be heated from an average daytime temperature below 14 °C and older
buildings from less than 15 °C. In the last step, the daily heating requirements are distributed over the
day using distribution functions according to [26]. This results in a heat demand profile in an hourly
resolution for the chosen building.

The second module, for hot water, is quite similar to the electric load model in Section 2.3 and takes
the different activities into account. Instead of the probabilities of using electrical devices, however,
tapping probabilities of the individual hot water tapping points derived from the previously generated
activity profiles are used here. The consumption values per tapping event, i.e., required volume flow
rate and tapping duration, are taken from [27]. The required heat demand is derived from the required
volume flow rate and the tapping temperature, which is dependent on the respective draw-off point.
In order to maintain realism, restrictions based on the frequencies of use in [28], the shower and the
bathtub are used per person, maximally once a day. In addition, calibration factors are used to adjust
the consumption. The modeling of the usage is similar to the electrical one. There are possibilities
for all activities (see Table 2), which are related to hot water consumption, like cleaning up home
or dish-washing, that hot water is needed. In this case, the selected possibilities are compared to a
random number. Retrieval of the withdrawal point only takes place if the random number exceeds a
certain value. The possibilities were calibrated according to the demands in [29].

2.3. Electric Load Model

The Electric Load Model is based on the described Activity Generator and aims to generate an
electrical load profile for the given household with a high time resolution of one minute, and also an
allocation of the power to the three phases which are common in the German electricity grid.

Besides the activity profiles, there are two main inputs for this model which are needed for each
household. First, energy efficiency class, which affects the energy consumption of all devices. It is
possible to select a low, medium, or high energy efficiency class. This parameter is used to select the
corresponding load profiles and load values later on. The second parameter is the level of electrical
equipment, which is used to determine how many electrical devices are present in the household.
The three possibilities ‘low’, ‘medium’, or ‘high’ are selectable in this case as well. The number of
devices also depends on the number of inhabitants and varies from eleven (one person, low level) to 29
(five persons, high level) within one household. Typical devices are television(s), stereo(s), computer(s),
oven, kettle, dishwasher or refrigerator(s). The number of devices is based on [30] but was adjusted
since in the model a wider variety of different household types are simulated.

For modelling the load profiles, all devices except lighting can generally be divided into three
different groups considering their usage. First, there are devices which are always on, like routers or
refrigerators, second, there are devices which are only used during an activity e.g., microwave, toaster
or coffee machine, and third, there are devices which are started by an activity but continue using
electricity afterwards e.g., washing machine, dryer or dishwasher.

Before matching activities and devices to a load profile, the load profiles for the devices are
needed. If possible, measured load profiles are used [31–33]. Due to a lack of load profile data, not all
devices could be modeled by using real profiles. Therefore, in addition, plausible load profiles have
been generated or the devices were modeled using a base load superimposed with a random noise
signal. The latter is used for devices that are either on or off like televisions. Table 5 gives an overview
of all devices, the corresponding activities and the dependency as well as their modeling.
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Table 5. Overview of the electrical devices, the corresponding activities, dependencies and the type of
electrical model.

ID Device Activity Dependency el. Model

1 Router - Always on Base value
2, 3 Refrigerator 1, 2 - Always on Load profile
4 Freezer - Always on Load profile
5 Rest - Always on Base value
6 Lighting All activities at home Presence at home Base value
7 Hairdryer Hygiene and dressing Direct Base Value
8 Stove Meal preparation Direct Load profile
9 Oven (cooking) Meal preparation Direct Load profile
10 Kettle Meal preparation Direct Base value
11 Microwave Meal preparation Direct Base value
12 Toaster Meal preparation Direct Base value
13 Coffee machine Meal preparation Direct Base value
14 Oven (baking) Baking Indirect Load profile
15 Dishwasher Dish-washing Indirect Load profile
16 Vacuum cleaner Cleaning up home Direct Base value
17 Washing machine Doing the laundry Indirect Load profile
18 Dryer Doing the laundry Indirect Load profile
19 Iron Ironing Direct Base value
20, 21 TV 1, 2 Watching TV Direct Base value
22 DVD player Watching TV Direct Base value
23 Game console Watching TV, other activities at home Direct Base value
24, 25 Stereo 1, 2 Listening to the radio Direct Base value
26, 27 Computer 1, 2 Using the computer Direct Base value
28–30 Laptop 1–3 Using the computer, working Direct Base value

For generating the load profiles of the households the model iterates first over all households, and
begins by creating the profiles for those devices which are always on and independent of the activities.
Therefore, if the device is available due to the level of electrical equipment and the number of people,
a load profile according to the efficiency class is randomly selected.

Second, for all other devices a load profile, or alternatively a base load value and a noise value,
are chosen with regard to the efficiency class per device. Next, the activity profiles of all household
members are summed up for all people present at home. This results in a matrix including all time
steps of the simulation and the number of people who are performing different activities at home.
Using this information, the matching of activities and usage of electric devices starts. Figure 3 gives an
overview of the whole process.

During the iteration over all time steps, the algorithm checks if there is a change in the activities
of the inhabitants. If there is a change, the relevant devices for this activity are taken into account.
Depending on the type of activity, devices are either directly linked to the activities, e.g., watching
television, or there are probabilities that devices are used. Cooking is an excellent example of this, as the
usage of several devices for the same activity is possible. The following devices have possibilities that
can vary over the day: stoves, ovens, kettles, microwaves, toasters or coffee machines. Assuming that
the agents cook more extensively on Sundays at noon, the switch-on probabilities for kitchen appliances
(stove, oven) are increased by 30% during this period. Since there is a lack of data, these possibilities
were assumed as constant for the other devices and adjusted during the development of the model.
So depending on coincidence, none or multiple devices are in use. To avoid unrealistic behavior,
e.g., that the oven, which could be used for meal preparation as well as for baking is not used twice at
the same time, an additional restriction for this device is added. So if the oven is in use for baking,
it cannot be used for cooking at the same time.

Next is the differentiation between activities with direct and indirect dependencies on electricity
consumption. For direct dependencies, the load profile is selected for the whole time of the activity
and also ends with the activity. In contrast, load profiles of indirectly dependent devices also start
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with activity but continue until the selected process is stopped. For example, a washing machine is
not stopped after the activity doing the laundry is over, but after the chosen program of the washing
machine is finished.

Start

End

Definition of energy

efficiency class and level

of electrical equipment Input data

Load profiles of activity

dependent devices

Available devices, 

Load profiles/values of devices

Load profile per 

household

Probabilities of device usage

Load profiles of activity

independet devices

Activity vector

Figure 3. Flow chart of the electrical model.

As mentioned at the beginning of this chapter, lighting is modeled in a different manner. Basically,
there are two different types of lighting. First, activity-independent lighting, which corresponds
to the number of people who are at home and awake. Second, activity-dependent lighting, which
corresponds to the activities of the inhabitants. Therefore each activity is linked with power for lighting,
which depends also on the efficiency class of the household. Additionally, the global irradiation by the
sun is taken into account to decide if the lighting is in use or not. Therefore for each household, an
individual threshold value of irradiation is determined, below which lighting is turned on. The value
of the threshold is chosen randomly for each household with a Gaussian distribution around the mean
of 50 W/m² with a standard deviation of 10 W/m². If the global irradiation is below this threshold
value, the light is switched on. If the value is above the threshold the lighting is reduced to a value
between 0–7% with a uniform distributed random number, to model that some lights might be turned
on during the day even though it is bright outside. The mentioned numbers result from different
sensitivities that were done during the development process of the model.

Neglected devices e.g., mobile phones, printers, electric toothbrushes, further kitchen appliances
etc. are taken into account by a constant load. Per consumption level and agent 6 W are assumed.
In addition, for some appliances, such as microwave, television, stereo, etc. standby loads are
implemented. These vary between 1 and 2 W and only have an effect if the corresponding devices are
switched off.

After this process is finished all load profiles of the components are summed up to a household
load profile. Electrical load profiles of the circulation pumps for heating and hot water were also
added to this household load profile. The pump profiles were modeled with regard to heating demand,
as described in [34]. See [23] for a more detailed explanation. At this step, the load profiles of the
components and devices were also allocated to the three phases of the electricity system.

The described process is carried out in every household.

2.4. Mobility Model

The first steps of the mobility model, linking activities with locations, are actually implemented
within the activity model because of their retroactive effect on the activity vector. Therefore, the mobility
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model of this work contains only the modal split and the allocation of distances and consumptions to
the journeys made by car.

Even though the ZVE contains durations of the activities related travel, it includes neither
distances for these journeys nor information about the modal split. Therefore, the mobility model is
based on the nationwide survey MiD which researches the travel behavior of households in Germany.
The study is carried out every five years on behalf of the Federal Ministry of Transport and Digital
Infrastructure. The central aim of the MiD is to obtain reliable and representative information on the
day-to-day travel of individuals and households. This work uses the version from 2017. The study
consists of seven partial data sets. Only the data sets for individuals and journeys were used for the
model. The data set for individuals contains information about the size of the municipality a person
lives in. Information on the purpose, type of transport, duration, and distance of a journey is provided
by the data set for journeys.

The data is filtered based on the criteria shown in Table 6. Some journeys with unrealistic speeds
are removed beforehand. The results of the data preparation process are several matrices containing
probability distributions. For this, a similar approach as in Equations (1) and (2) is used. To calculate
the already mentioned distribution of the duration for the activity commuting, the data set is filtered
to extract all commutes. Afterwards, the probability matrix is calculated out of the remaining data by
using the criteria traveling time TT and city category CC. The modal split is determined separately for
commuting and other travel. Therefore the criteria are T, city category CC and number of cars ncar.

Table 6. Criteria to filter the MiD data.

Criteria Symbol Distinctions

Type of journey / Commute, other journey
By car / Journey is covered by car
Number of cars ncar Number of cars the household owns
Distance / Distance of a journey
Speed / Average speed of a journey
Travel time TT Clustered into 11 time intervals:

0 < t1 ≤ 10 min, 10 min < t2 ≤ 20 min, . . . , t11 > 100 min
City category CC Four categories equal to the input data Table A1

The distances are not assigned over probabilities. A matrix containing average distances
depending on city category and travel time is determined. For the distances of other journeys,
a deterministic approach is chosen. The journeys are clustered based on the criteria travel time and city
category. The speeds of the resulting clusters are saved so that the model can deterministically pick a
random one. The distance is then calculated by using the duration of the journey and the randomly
picked speed.

Figure 4 shows a simplified flowchart of the mobility model. The model iterates through every
agent of the settlement. In the first step, the model assigns the agent a means of transport and a
distance for the commute. The distance is determined by using the average distances out of the data
set. The decision on the choice of transport mode is based on the probabilities of the modal split for
commuting. Thus, it depends on the travel time TT, city category CC and the number of cars ncar the
household owns. Afterwards, the model iterates through the location vector to find every journey
(commute, other journey) of the agent. For the other journeys, the modal split probabilities based
on the MiD are used to decide if the trip is made by car. The information on every journey made
by the car is extracted to a logbook table. The logbook contains the time step and location where
every drive begins and ends. If a household has two agents who are authorized to drive but only one
vehicle, the logbooks must be harmonized. Therefore, the agent with the higher travel time within
the regarded time range is prioritized. The prioritized agent may always use the car. The other agent
may only use the car if the prioritized agent is not disturbed by it. Afterward, the distance of every
journey within the logbook is determined. As mentioned before, a deterministic approach is used for
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this. The model selects a real speed from the MiD-data with the same city category and travel time
and calculates the distance of the journey. Exceptions are drives from home to another location and
back again. For those cases, the same distance is selected for outward and return journeys. In the
last step, each drive is assigned to an electrical consumption in kWh. A simple consumption model
based on measured values out of [35] is used for this purpose. In this reference, the consumption of
electric vehicles was determined as a function of average speed, outside temperature, and vehicle
class. The model interpolates a suitable consumption based on the measured values as a function of
the three influencing variables. The electrical consumption of each drive is stored in the logbook of the
vehicle. The results of the mobility generator are logbooks and mobility profiles of every car within
the settlement.
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Figure 4. Flow chart of the moblity model.

3. Results and Discussion

The following chapter gives an overview of the resulting activity, load, and mobility profiles from
the described model. Since the focus of this paper is on the generation of the activities, the resulting
electrical loads, and the corresponding mobility demand of the modeled agents, a detailed explanation
of the thermal model is not shown in this paper. For the other models, the results are shown and
compared to literature values and similar models.

The validation of the activity and the electric model is based on one simulation for 300 houses with
940 Households. Therefore, representative distributions for Germany based on [23] are assumed for
the input parameters on household and building levels. The input parameters were already described
in Section 2. A whole year is simulated. Concerning activities and electrical behavior, the city category
only affects the duration of the commute. The influence is therefore considered negligible and the
city category is assumed to be one, i.e., small cities with less than 20,000 inhabitants. The chosen
distribution for the input parameters is given in Table A1. The input parameters described in Section 2
are defined based on distributions representative for Germany [36,37]. Thus, a representative German
settlement is created. These distributions originate from the already mentioned study ZVE [21] and a
population, building, and housing census of the statistical offices of Germany [38]. The values are
included in Table A1. Exceptions are the distributions of the number of households within a building,
the living space, and the specific heating demand. Those depend on the building type. Therefore, a
detailed presentation is omitted at this point. The description of the used methodology to reproduce
the distribution for these parameters can be found in [23].
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To validate the mobility model, a simulation is carried out for each of the four city
categories. In contrast to the first simulation, only 107 buildings with 357 households are simulated.
Each simulation uses the same distributions already used in the first simulation and representative for
Germany. One vehicle is assigned to each household. Thus, only the variable city category is varied.
This allows a clear validation of the sensitivity of the city category.

3.1. Activitiy Model

This subsection describes the results of the activity model. The main result of this model is an
activity profile that contains an activity for every agent and time step within the simulated settlement
and time range.

To validate the results, the average characteristics of all agents within the simulated settlement
are considered. Figure 5 shows the frequency distribution for the number of activity changes.
The distribution of the simulated agents is compared with the distribution of individuals from the
ZVE data. The similar shape of the curves clarifies that the synthetic activity profiles cover almost
the entire spectrum of the ZVE profiles. There are a few days with very few or very many changes.
The relative frequency of days in the range of 0 to 18 activity changes is very similar. After that
range, the distributions are slightly shifted. The ZVE distribution reaches its maximum at 19 activity
changes, while the simulation reaches its maximum at 20 changes. The range with many changes is
underrepresented by the simulation. Overall, the synthetic distribution can be described as slightly
compressed compared to the ZVE curve. The average activity changes per day are 21 in both cases.
The consistency is accepted as sufficient.
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Figure 5. Relative frequency distribution of days with n activity changes of the simulation and the ZVE.

The annual percentage of activities is compared in Figure 6. Most of the activities fit very well.
The absolute deviation for almost all activities is significantly below 1%. However, the activities
working and not at home have a higher deviation from the ZVE data. By assuming that activities
located at home are prohibited during the working-time-blocks, the activity profiles were subsequently
edited. This explains the higher proportion of the activity working (absolute deviation is 2%).
However, this percentage is then no longer available for the activities clearly located at home,
e.g., sleeping. The insertion of missing journeys and the extension of return journeys are carried
out at the expense of the activities not at home. This explains the 1.5% lower share of the activities not
at home. The activities related to travel fit very well, although the commute was completely inserted
afterwards. Excepting the activities working and not at home, it can be concluded that the activity
generator reproduces the activities of the original data over the whole year very well. The significant
deviations are caused by the restrictions necessary to generate a plausible mobility profile and are
therefore tolerated. The remaining deviations are negligible.
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Figure 6. Annual share of activities of the simulation and the ZVE.

Besides the percentage of activities, it is also particularly important when the activities occur. Later
on, this will have a major influence on the shape of the electric load profiles. Therefore, the average
layered course of the activities is examined in Figure 7. The y-axis shows the percentage of agents that
perform an activity at a given time. The x-axis contains the time of day. The different types of days are
considered separately. Figure 7 shows the diagram for Sunday.
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Figure 7. Average layered course of the activities for Sunday, above: simulation, below: ZVE.

The diagrams of the other types of days are shown in Figures A1–A3. The top diagram depicts
the synthetic activity profiles, while a corresponding diagram for the ZVE-data is plotted below.
Immediately noticeable is the smoothing of the synthetic curves. It can be explained by the sample
size, because the generated data set contains significantly more day profiles than the ZVE-data set.
The comparison confirms the deviations already noted in Figure 6. Not at home is slightly under-,
and working is slightly overestimated. However, the temporal progressions match very well.
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3.2. Thermal Load Model

The thermal model is not the main scope of this paper. Therefore only some key results are shown
in this chapter. First, the results for the heating demand are shown and described.

3.3. Electric Load Model

In this section, the results of the electric load model are presented and validated. Different scopes
are necessary to fulfill all requirements regarding a realistic load profile for load flow calculations.
First, the energy consumption of different households and devices is analyzed. Second, focus is placed
upon the shape of an average power profile. Finally, the occurrence of simultaneous power peaks,
which are very important for simulations and gradients of the profiles, are discussed. To give an
overview of how different a single profile is compared to an SLP, see Figure 8. Figure 8 makes it clear
that a single profile has much higher peaks, e.g., profile 1 at around 4 a.m., but that there are times
where there is almost no energy demand. This is also the reason why the SLP is not suitable for a
detailed simulation of less than around 150 households [6].
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Figure 8. Exemplary synthetic load profiles in comparison to the German standard load profile
of households.

After the general overview, one key indicator of the model quality is the energy consumption
per household (HH). Table 7 gives an overview of the annual energy consumption for different
households from the literature. The first study [39] was conducted by the energy agency North
Rhine-Westphalia in 2015 and included 522,000 households. In addition to the total consumption,
the shares of different devices were also analyzed. Regarding this study, the consumption ranged from
1714 kWh for one person to 5317 kWh for five persons. In other studies, the range was a bit smaller
(1500 to 5000 kWh) [40] but a distinction was made between single and multi-family houses. For this
study, more than 226,000 households were analyzed. The last and most recent study [41] from Destatis
only provides data for one- and two-person households, and households with more than two persons.
All values are for households without electrical heating since this is not part of the described model.
Finally, the resulting energy demand per household type of simulation is also added to the table.

Table 7. Energy consumption per household in Germany in literature and simulation.

Source 1-P HH 2-P HH 3-P HH 4-P HH 5-P HH Year

EA.NRW [39] 1714 2812 3704 4432 5317 2015
Stromspiegel, SFH [40] 2300 3000 3600 4000 5000 2019
Stromspiegel, MFH [40] 1500 2100 2600 3000 3600 2019
Destatis [41] 2005 3205 4856 2017
Simulation 1708 2835 3330 4215 5315 -
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For a better understanding, the results of the simulation and [39] are visualized in Figure 9a.
On the left side, the different household sizes and the overall average, resulting from the modeled
settlement, is shown. Here the overall energy consumption only deviates by 2.5%. In this scenario,
households with one, two, or more than four persons have a slightly higher, and the other households
a slightly lower energy demand than in [39]. The black lines also show a large variation between
households in the same group. For example, in the simulation demand of a single-person household
varies from 608 to 4247 kWh, which shows that the model produces realistic results. On the right side
of Figure 9b, a percentage of annual energy consumption per device group of the simulation and the
chosen study is shown. Overall, the figure indicates a good behavior of the model, even though there
are some deviations of a maximum of 4% per group. Most obvious is the deviation at “other”, which
is higher in the simulation. This group also includes the additional load per agent, which represents
devices like mobile phones, tablets, or printers, in the model. This is also an explanation of why the
“office” is slightly underrepresented. The circulating pumps in our model are underestimated, but
this is part of the thermal model, which is not a focus of this paper. In total, the energy demand per
household type as well as the allocation to different device groups is very close to the results of [39].
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Figure 9. Distribution of electricity consumption: (a) annual electricity consumption depending on
household size, (b) percentage of device groups.

Besides the overall energy consumption and the usage of different devices, the resulting profile
of the households is fundamental for the usage in a load flow calculation model. To validate the
model, two different sources are used. First is the SLP, which is used for billing and procurement,
and dates from the year 1999 [5]. In contrast to that, the University of applied sciences Berlin (HTW)
describes 74 representative load profiles with a temporal resolution of one second [42]. In Figure 10
the two references and the modeled profile are shown for four types of days (Monday–Thursday,
Friday, Saturday and Sunday) since these types of days are different regarding the user behavior.
Unfortunately, the SLP does not distinguish between Monday–Thursday and Friday. In general, all
profiles have a similar shape, with the lowest load in the early morning hours. Afterwards, at around
6 am, the load starts to increase with a peak at noon, which is higher during the weekend, since there
are more people cooking at home. This peak is mostly followed by a dip in the afternoon before the
load reaches its peak in the evening at around 7 p.m. For comparison and illustration purposes in the
following figures, all load profiles were aggregated to 15 min resolution.
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Figure 10. Comparison of average synthetic load profiles with standard load profiles and reference data.

Comparing the two reference profiles shows that there is not a clear “right” profile. The biggest
difference occurs on weekdays during noon, where there is a peak in the SLP but none in the HTW
profile. The potential reasons for this difference are manifold, starting with the fact that the SLP dates
from 1999, whereas the HTW profiles were measured in 2010 and are therefore perhaps closer to
contemporary usage patterns. On the other hand, the SLP is still in use in the accounting processes
of grid management. For these types of days, the modeled profile largely falls between the reference
profiles, and somewhat closer to HTW. Exceptions are the flatter slope in the morning hours, resulting
in a lower morning load, and the comparatively higher evening peak. On Fridays, the modeled profile
has a slightly higher demand in the afternoon than on the other weekdays. On Saturdays, the modeled
profile has a lower peak at noon, but a higher load in the night hours starting from 8 pm. Overall, the
simulated profile is quite close to the reference profiles for Saturdays. On the last subfigure, Sunday,
the peak at noon is underestimated, in contrast to the other profiles.

To examine the modeled profile in more detail, Figure 11 shows the allocation of the power to
different device groups. Starting from the bottom, the base loads like circulating pumps, routers, and so
on, are displayed. The first bigger load forming the shape of the profile is lighting (light blue), which is
mostly on in the morning and evening hours. Cooking equipment also contributes to the evening peak,
alongside higher usage of entertainment equipment, like televisions or stereos, and lighting. On the
whole, the modeled profile is similar to the reference ones. The shape fits quite well even though there
are some smaller deviations. In total, the modeled profiles are closer to the newer HTW profile than to
the SLP, which is quite old. Since there is no right or wrong behavior for this shape, and also taking
into account that the behavior of people has changed over years since 1999, the result seems to be
appropriate for the planned usage.



Energies 2020, 13, 3843 19 of 32

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time of day

0

100

200

300

400

500

600
E

le
c

tr
ic

 p
o

w
e

r 
in

 W

Sum curve

Computers

Entertainment

Hairdryer

Dishwasher

Vacuum cleaner

Dryer

Washing machine

Iron

Stove

Oven

Coffee machine

Toaster

Microwave

Kettle

Lighting

Freezer

Refrigerator

Rest

Router

Circulation pump (dw)

Circulation pump (hw)

Figure 11. Layered load profiles of devices for Sunday.

The last two important indicators which are compared are the occurring simultaneous peak
power and the resulting gradients from one minute to the other. The maximal simultaneous power
of households describes the maximum concurrent peak load for a number of households. Since not
all houses use their maximal power at the same time, this value decreases rapidly with the number
of households. If there is only one household connected to the grid, the grid must be able to deal
with the maximum power of this household. If there are more houses connected, the maximum
occurring power s(nHH) at a time is lower than the sum of the individual peak powers. To calculate
this value, n profiles were summed up and divided by the number of households, as in Equation 3.
This process was carried out 10,000 times and the maximum of each combination was saved. From
these 10,000 results, the 95% quantile was used to calculate a realistic value. [43] This procedure was
performed for the results of the described model and also for the load profiles modeled by [42]. In
literature, an approximation for the simultaneity factor is often used [43,44]. Equation (4) calculates
the simultaneity factor, which describes which percentage of the individual maxima are occurring
at the same time at a given number of households. To get the resulting power per household, this
value must be multiplied with the peak power per household. Within the DIN 18015 [45] this value is
estimated to be 14.5 kW for one house without electric heating or water preparation.

s(nHH) =
PHH,occ,max(nHH)

nHH
(3)

s(nHH) = 0.06 + (1− 0.06)× (nHH)
−0.75 × Pmax (4)

The results of the simultaneous peak power are shown in Figure 12a. The results of the described
model are quite close to the ideal curve calculated by using [44]. The peak power for one household is
17.1 kW instead of 14.5 kW. In contrast, the results of the data from [42] have a peak power of 31.6 kW,
which is around two times as high. For all these calculations, the one-minutes values were used.
The curve of all three lines is similar and is falling rapidly. At ten households, the simultaneous power
of the modeled load profiles is only 3.3 kW, which is less than 20% of the overall peak. In total, this
figure shows that the resulting peak powers and their simultaneous occurrence are reasonable for
performing load flow calculations.

The last important indicator is the occurrence of gradients, which describes the change of power
from time step to time step. Low gradients are characteristic of a very constant load profile, which
typically occurs at night. High gradients indicate a strongly fluctuating load profile and occur in
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households mostly through switching power-intensive devices on or off. This value is very important
for all control strategies since it is much easier to control a stable system than a system with high
gradients. For this value, the data of [42] is again used as a benchmark. In Figure 12b the share of the
gradients are shown in 10 W steps. Most of the gradients (~70%) are around ± 10 W for both data sets.
The described model has more gradients −10–0 W, but slightly fewer higher gradients in the area of
±50–100 W. In total, both curves look very similar and therefore the power changes look reasonable.
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Figure 12. (a) Simultaneous peak power depending on the number of households, (b) distribution of
gradients in the range −200 W to 200 W.

To sum up the results of the electrical load model based on the modified Markov activity model,
the results are validated with data from literature and other models in the fields of energy consumption
per household group and energy consumption per device group. In these fields, the results look
reasonable. In the next step, the average profile of many households was investigated and compared
to the SLP and HTW data. Unfortunately, there is no right profile to benchmark the results. In general,
the generated results are close to or between the benchmark data. Lastly, the most important indicators,
the simultaneous peak power and the occurrence of gradients, were analyzed and compared to other
data. Both indicators appear accurate with regard to the comparison values. Therefore, the aim of the
model, the creation of electrical load profiles for different households based on the activities of the
persons living in the houses, is fulfilled.

3.4. Mobility Model

This chapter validates the results of the mobility model. Important mobility parameters of the
agents and the vehicles, such as the mobility rate, the kilometrage and the duration of the journey,
are compared with the values given in the MiD [46]. The validation is carried out with a view to the
future use of the model. The weightings specified in the MiD are taken into account. For general
comparisons, the distribution of vehicles among the city categories based on the MiD data is used and
the simulation results are weighted accordingly. Table 8 contains the distribution for weighting the
results of the different city categories based on the vehicle distribution in the MiD. With the help of the
weightings, the results were combined to achieve a distribution representative for Germany.

Before considering the characteristics of the vehicles in the next step, important mobility
parameters of the agents will be briefly discussed at this point. The overall values of the simulations
are compared to those of the MiD [46] in the upper part of Table 9. If available, the related value of the
mobility panel (MOP) [47] is attached. MOP is another mobility study representative for Germany.
The average values are on a daily basis. The mobility rate generated by the model is, compared to the
MiD, about 9% overestimated. That means too many agents are assigned to activities related to travel
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in the activity model. However, it is very close to the value of the MOP. The daily travel time and
the number of journeys per mobile agent lay between the values of the two studies. The comparison
shows that although the simulated values differ from the MOP, the studies themselves show noticeably
different results. It can be stated that the simulated mobility behavior of the agents lies well between
the results of the studies and is therefore assumed as valid.

Table 8. Distribution of vehicles among the city categories based on MiD.

Percentage in % City Category Description

42.07 1 Rural region: ≤50.000 residents
20.19 2 City: from 50.000 to 450.000 residents
19.2 3 Large city: from 450.000 to 650.000 residents

18.54 4 Metropolis: ≥650.000 residents

Table 9. Average mobility parameters per day.

Parameter Unit MiD Sim MOP

Mobility rate of agents % 85 92.3 91.3
Travel time per mobile agent min 100 91.3 83
Number of journeys per agent / 3.1 3.2 3.27
Number of journeys per mobile agent / 3.7 3.5 /

Mobility rate of cars % 59 75.6 /
Average number of drives per car / 1.9 2.2 /
Average kilometrage per car km 30 29.4 /
Average driving time per car min 46 56.94 /

The next step is to validate the mobility behavior of the vehicles. The generated mobility profiles
of the cars are the main output of the mobility model. Therefore, important parameters of the mobility
profiles are considered and evaluated at this point. Some important parameters are compared with
those of the MiD in the lower part of Table 9. The mobility rate of simulated cars is significantly
higher than in the MiD. The already discussed higher mobility rate of the agents is one reason for
that. Consequently, more trips are made by car. Another major reason is the assumption, that every
simulated household has only one vehicle. According to the MiD, 53% of households across Germany
own one car, 21% own two and 4% own more than 2 cars. This means that the cars in the model are
used by more drivers, which leads to a higher mobility rate of cars. These reasons are also responsible
for the higher number of drives in the model. The average daily kilometrage of the simulated cars
undercuts the MiD values slightly, even though the number of daily drives is lower and the cars are
underway around 10 min more per day. As a result, the average distance per drive is underestimated
by around 2 km in the simulation.

The layered percentage of vehicles at the five defined locations over the week is shown in
Figure 13a for the MiD data and Figure 13b for the simulated profiles. To outline the reference course
of the MiD, the information of the cars for which all routes were recorded within the study are used.
As some of the necessary information is not directly contained in the MiD and the study only includes
single days, some assumptions had to be made. The destinations are determined by the purpose of
the journey. The places between the journeys are determined using the start- and end locations of the
journeys. From the beginning of the day until the beginning of the first journey, a vehicle is located at
the starting point of the first journey. Using the destination of the last journey, the location at the end
of the day is determined similarly. As complete annual profiles are available for the simulated vehicles,
no further assumptions are necessary to create diagram Figure 13b.
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Figure 13. Layered percentage of cars at locations over the week: (a) MiD, (b) simulation.

In general, a clear similarity between the two diagrams can be identified. In both diagrams,
the commute occurs mainly on weekdays. On weekends, less than 1% of the cars commute to work.
In both cases, most vehicles are on their way to work around 8 a.m. The peaks are in the range between
4–5%. Deviating from the MiD, the maximum of the commute on Mondays is lower than on other
weekdays. At lunchtime, the proportion of commuting vehicles reaches a minimum. The minimum of
the MiD is below 1%. The simulated course is in the range between 1 and 2%. The return journeys
from the workplace are spread over the rest of the day and peak around 5–6 p.m. in both diagrams.
The shape of the other travel on weekdays is similar, too. In the afternoon, both diagrams reach
their peaks. However, the peaks of the simulation exceed those of the MiD. Accordingly, the travel
time of the simulated cars is slightly overestimated, which is consistent with the findings in Table 9.
Furthermore, the percentage of cars at the workplace is noticeably overestimated by the simulation even
though the shape of the curves is very close and reaches its maximum around 12 p.m. Additionally, the
cars of the simulation remain at the workplace longer, and more cars stay overnight. The percentage
of cars at other places is slightly underestimated within the simulation. However, the differences
between other places and at work balance each other out, so that the percentage of vehicles at home is
relatively similar. In total, more than 53% of the simulated cars and 58% of the cars of the MiD are
at home over the whole week. At the weekend, more vehicles are continuously at home. In general,
it can be concluded that the locations of the vehicles over the week differ in places from those of the
MiD. However, a good overall consistency is achieved.

To validate the kilometrage of the cars, the percentage of drives of the total number of drives
and of the total kilometrage is calculated as a function of the distance. To illustrate the share of long
trips, both shares are cumulative. The resulting curves are compared to those of the MiD data within
Figure 14a. The curves of the percentage of drives are very close. The simulated curve lays slightly
over the curve of the MiD. This already suggests that short distances are over-, and very long distances
are under-represented, because the simulated curve will reach 100% earlier. The curve of the driving
performance confirms this assumption. Almost 90% of the kilometrage is achieved with drives of less
than 100 km, whereas in the MiD this value is only 78%. The flattening of the simulated curve starting at
40 km indicates that trips with distances below 40 km are particularly overrepresented. This deviation
is partially caused by the underrepresentation of journeys with very long durations in the ZVE. Very
long drives can only be generated in the mobility model if the corresponding activities’ durations are
generated in the activity model. Furthermore, to achieve a consistent mobility profile, journeys are
inserted subsequently. These are assumed to have a constant duration of 10 min. Both reasons cause
an overrepresentation of short distances within the model.
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Figure 14. (a): Cumulative percentage of drives and kilometrage depending on the distance, (b): Annual
kilometrage of the simulated cars compared to the MiD.

Figure 14b compares the average annual kilometrage of the simulated cars with the estimated
kilometrage given in the MiD [46]. The four city categories are considered separately. Besides the
annual values, the range in which the simulated driving performance lies is shown. It becomes clear
that the model underestimates the total annual kilometrage. In the MiD, the kilometrage representative
for Germany is 14,700 km, whereas the simulated kilometrage is only 10,700 km. This means that the
total kilometrage is underestimated by around 4000 km. This also becomes clear when comparing
the kilometrage of the individual city categories. The deviation for city category 1 is still relatively
small. Just like in the MiD, the kilometrage decreases with the city category. In city categories 2
to 4, the difference is significant. The range of deviation of the simulation from the average shows
that vehicles with higher kilometrage are also represented in the model. The declarations already
mentioned for Figure 14a can be used at this point again. Due to the higher proportion of drives with
short distances and the underrepresentation of individual drives with very long distances, the total
annual kilometrage is underestimated. In [46] it is stated that in metropolitan regions the vehicle is
used significantly less than in rural regions. However, the annual kilometrage of both regions is only
slightly different. The reason for this is that metropolitan vehicles are used much more frequently for
drives over long distances. This behavior cannot be reproduced in the model, as only the commute and
the model split depend on the city category. Within the model, the duration of a journey is independent
of the city category. The deviations are actually not negligible. However, it must be considered
for which purposes the model is to be used, namely to investigate the electrical consumption of
households. Therefore, the home charging of electric vehicles will play an important role in the future
and this is to be investigated with the model. However, journeys over long distances will play a
subordinate role here, as the vehicles will have to access public charging points for this purpose.
Hence, the underrepresentation of long drives of the model is tolerated. Trips that are important for
home charging of electric vehicles are adequately represented.

4. Conclusions

For the simulation and analysis of future challenges in the distribution grids a detailed knowledge
of the main sectors causing energy demand is necessary. Due to increasing electrification of the heating
and mobility sectors, they will join electrical load to form the three main categories of demand in the
future. Since the demands are dependent on structural data like city size, building and household type,
as well as the professional activity of the inhabitants, a model which can take these regional inputs
into account is required.
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Therefore an integrated model was built based on 20 main activities and taking different household
types (consisting of household sizes from one to five persons and different types of employment,
e.g., full-time, part-time or pensioner) into account. Having determined the activities, in further
steps the usage of electrical devices within the households is modeled to get the electrical load of the
households. Up to 30 electrical devices were taken into account per household. The resulting average
electrical demand of all household types is 2751 kWh. Both this result and the average electrical
demands of the individual household types fit well with the results of the different surveys used
as references. The demand per individual household is very diverse, accurately reflecting reality.
Beside the total energy demand, the shape of many profiles and the occurrence of simultaneous peak
loads, as well as load gradients, were also analyzed, and are in the same range compared to other
studies and measurements.

In a similar manner, the demand for drinking water is calculated. To obtain the whole heating
demand a building model is integrated in this model.

Lastly, the mobility demand is calculated based on the location of the activities. Therefore
five states (at home, at work, other place, another journey, and commute) were differentiated. With the
help of a consumption model and the speed of the drive, the energy demand is calculated. The average
car is driving 10,730 km per year, slightly below the German average, which results from the negligence
of multi-day journeys. The location of the vehicles is represented very well. The differences between
the city categories for mobility behavior are also in accordance with the reference data, showing a
higher kilometrage for smaller cities.

This all leads to consistent regionally different profiles with a high temporal resolution for the three
main sectors with respect to city category, settlement type (type of buildings) and so on. The individual
profiles are quite distinct from one another, but each provides an accurate depiction of a different
parameter combination, and when taken together provides an accurate depiction of a representative
larger settlement in Germany.

New research questions, such as when power peaks due to the electrification of vehicles and
heating systems may appear, can be explored using this consistent model of all major energy demands
in the private sector. By importing the profiles in additional models, like the energy system model for
distribution grids “GridSim” at the “Forschungsstelle für Energiewirtschaft e.V. (FfE)”, it is possible to
analyze different charging or operation behaviors in order to use the flexibility of these technologies.
One very actual question is, which charging strategy is most suitable for customers and electricity
grids at the same time? One possibility is shifting the demand of the electric vehicles into the night,
when the grid load is lower, or to shift the demand into times when there is a surplus of renewable
energies, like at noon on sunny days. To perform the mentioned analysis, consistent inputs such as
those from the presented model are necessary.

5. Data Availability

Several sample load and mobility profiles can be found in abbreviated form in JSON format at
opendata.ffe.de. Households with an average electric consumption were selected as examples for
major household types from the simulated settlement representative for Germany. Care was also taken
to ensure that thermal consumption and annual kilometrage were as average as possible. The period
of the profiles is one year and the temporal resolution is one minute.

Electric load profiles:
http://opendata.ffe.de/dataset/synthetic-sample-electric-load-profile-three-phase-by-household-
types-germany/
Thermal load profiles:
http://opendata.ffe.de/dataset/synthetic-sample-thermal-load-profile-by-household-types-
germany/
Mobility profiles:
http://opendata.ffe.de/dataset/synthetic-sample-mobility-profile-by-household-types-germany/

opendata.ffe.de
http://opendata.ffe.de/dataset/synthetic-sample-electric-load-profile-three-phase-by-household-types-germany/
http://opendata.ffe.de/dataset/synthetic-sample-electric-load-profile-three-phase-by-household-types-germany/
http://opendata.ffe.de/dataset/synthetic-sample-thermal-load-profile-by-household-types-germany/
http://opendata.ffe.de/dataset/synthetic-sample-thermal-load-profile-by-household-types-germany/
http://opendata.ffe.de/dataset/synthetic-sample-mobility-profile-by-household-types-germany/
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BDEW German Association of Energy and Water Industries (Bundesverband der Energie- und
Wasserwirtschaft)

CC City category
FfE Forschungsstelle für Energiewirtschaft e.V.
GIS Geographical information system
GridSim Simulation model of FfE for distribution grids
HTW University of applied sciences Berlin (Hochschule für Technik und Wirtschaft Berlin)
HH Household
MFH Multi family house
MiD Mobility in Germany (Mobilität in Deutschland)
MOP Mobility Panel
Sim Simulation
SFH Single family house
SLP Standard load profile
ToD Type of day
ZVE time-use survey (Zeitverwendungserhebung)

Appendix A

Table A1. Input Parameters at the level of settlement, building and residential.

Level Name Value Description Distrb. in %

Settlement City category 1 Rural region: ≤ 50.000 residents 100
2 City: from 50.000 to 450.000 residents 0
3 Large city: from 450.000 to 650.000 residents 0
4 Metropolis: ≥ 650.000 residents 0

Number of houses ≤ 1 Number of houses the settlement consists of /

Building Building type 1 One family house 57.77
2 Duplex house 2.67
3 Terraced house 6.67
4 Two family house 3.33
5 Apartment house (3–6 residential units) 8.33
6 Apartment house (7–12 residential units) 19.67
7 Apartment house ( ≤ 1 residential units) 2.67

Building age 1 Built before 1900 4.67
2 Built between 1900 and 1945 31.67
3 Built between 1946 and 1960 14
4 Built between 1961 and 1970 14.67
5 Built between 1971 and 1980 8
6 Built between 1981 and 1985 4
7 Built between 1986 and 1995 10
8 Built between 1996 and 2000 8.33
9 Built between 2001 and 2005 4.33
10 Built after 2006 0.33
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Table A1. Cont.

Level Name Value Description Distrb. in %

Building Number of
residential units ≤ 1 Numer of residential units within a building /

Living space / Living Space of the building in m2/RU /
Specific heating demand / Specific heating demand of the building in kWh/m2 /
Level of refurbishment 0 No refurbishment 33

1 Conventional refurbishment 33
2 Future-orientated refurbishment 34

Household Household size 1 Number of persons within the residential unit 37.13
2 33.19
3 14.47
4 10.43
5 4.79

Household type 1 see Table 4 29.36
2 44.04
3 13.19
4 9.57
5 1.17
6 2.66

Electric equipment 1 small 33
2 middle 33
3 full 34

Bathtub available yes The residential unit has a bathtub 70
no 30

Consumption level 1 Low consumption level for electricity and hot water 33
2 Medium consumption level for electricity and hot water 33
3 High consumption level for electricity and hot water 34

Car available yes/no The residential unit has a car 100

Table A2. Assignment of locations to activities with indefinite location.

Before After Present

Home Home Home
Home Work Home
Home Other location Home
Home Other journey Home
Home Commute Home
Work Home Work
Work Work Work
Work Other location Work
Work Other journey Work
Work Commute Work
Other location Home Work
Other location Work Work
Other location Other location Work
Other location Other journey Work
Other location Commute Work
Other journey Home Home
Other journey Work Work
Other journey Other location Other location
Other journey Other journey Other location
Other journey Commute Other journey
Commute Home Home
Commute Work Work
Commute Other location Other location
Commute Other journey Other journey
Commute Commute Work
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Figure A1. Average layered course of the activities for Monday till Thursday.
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Figure A2. Average layered course of the activities for Friday.
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Figure A3. Average layered course of the activities for Saturday.
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Figure A4. Layered load profiles of devices for type of day Monday-Thursday.
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Figure A5. Layered load profiles of devices for type of day Friday.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time of day

0

50

100

150

200

250

300

350

400

450

500

E
le

ct
ri

c 
p

o
w

e
r 

in
 W

Sum curve

Computers

Entertainment

Hairdryer

Dishwasher

Vacuum cleaner

Dryer

Washing machine

Iron

Stove

Oven

Coffee machine

Toaster

Microwave

Kettle

Lighting

Freezer

Refrigerator

Rest

Router

Circulation pump (dw)

Circulation pump (hw)

Figure A6. Layered load profiles of devices for type of day Saturday.
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