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Abstract: Polygenic adaptation in response to selection on quantitative traits has become an important
topic in evolutionary biology. Here we review the recent literature on models of polygenic adaptation.
In particular, we focus on a model that includes mutation and both directional and stabilizing selection
on a highly polygenic trait in a population of finite size (thus experiencing random genetic drift).
Assuming that a sudden environmental shift of the fitness optimum occurs while the population is in
a stochastic equilibrium, we analyze the adaptation of the trait to the new optimum. When the shift
is not too large relative to the equilibrium genetic variance and this variance is determined by loci
with mostly small effects, the approach of the mean phenotype to the optimum can be approximated
by a rapid exponential process (whose rate is proportional to the genetic variance). During this
rapid phase the underlying changes to allele frequencies, however, may depend strongly on genetic
drift. While trait-increasing alleles with intermediate equilibrium frequencies are dominated by
selection and contribute positively to changes of the trait mean (i.e., are aligned with the direction
of the optimum shift), alleles with low or high equilibrium frequencies show more of a random
dynamics, which is expected when drift is dominating. A strong effect of drift is also predicted for
population size bottlenecks. Our simulations show that the presence of a bottleneck results in a larger
deviation of the population mean of the trait from the fitness optimum, which suggests that more loci
experience the influence of drift.
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1. Introduction

Evolutionary adaptation is the process that natural populations experience to become suited to
their environment. Adaptation is driven by positive Darwinian selection, which leaves footprints
in the DNA of individuals. For the past almost 20 years numerous methods have been developed
to find evidence for positive selection in the genomes of natural populations [1–4]. The population
genetic models underlying these methods consider mostly single loci at which positive selection
acts, in particular in the context of genetic hitchhiking [5–7]. Occasionally, however, extensions of
single-locus models to multi-locus models were also investigated [8–10]. In recent years, due to
the advance of genome-wide association studies (GWAS), polygenic selection was studied using
quantitative genetics models that are formulated in terms of allele frequency changes in a large number
of loci across the whole genome. That is, in contrast to the single- and multi-locus cases, in polygenic
models, selection acts on a phenotypic trait, and a genotype-phenotype map is assumed to bridge the
gap to population genetics. Polygenic models include a very large number of selected loci that control
a phenotype [11].

For any type of adaptive scenario, positive selection has to be combined with other factors
characterizing the status of a natural population, to make the models more realistic and applicable
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to data. These complexities include genetic drift, which takes into account that populations have a
finite number of individuals. Furthermore, demographic changes such as varying population size may
be relevant, and positive selection in combination with population structure needs to be modeled to
describe typical phenomena, such as local adaptation, which has been an important topic in population
genetics in recent years [12–15].

Polygenic adaptation driven by a large number of weakly selected loci is not nearly as well studied
as the case of strong positive selection leading to selective sweeps [16]. Reviews by Pritchard et al.
(2010) [17] and Pritchard and Di Rienzo (2010) [18] drew the attention of population geneticists to this
type of selection. These papers predicted that allele frequencies change by small amounts when a
large number of genetic loci of minor effect sizes control a phenotypic trait. However, it is not obvious
whether polygenic adaptation may be so fast, as suggested by an increasing number of cases reported
in the recent literature.

Examples of very rapid adaptation in response to changes that are natural or due to human
activity include color variation in guppies [19], field mice [20] and peppered moth [21]; insecticide
resistance in Drosophila [22]; beak size changes in Darwin’s finches [23], and limb development in
Anolis lizards [24]. The genetic architecture underlying these phenotypic traits ranges from few genes
of major effect as in the peppered moth [25] to highly polygenic systems such as human height [26].

The analysis of models of polygenic adaptation has a relatively long tradition [27,28]. However,
it is beyond the scope of this paper to provide a comprehensive overview of the history of this field.
Instead we review the recent literature on theoretical advances on polygenic adaptation, and then
focus on a particular model along with few new results. De Vladar and Barton (2014) [29] and Jain
and Stephan (2015) [30] used a deterministic model to analyze the dynamics of adaptation after a
sudden environmental shift of the fitness optimum of a phenotypic trait in the absense of genetic
drift. According to Jain and Stephan (2017a, b) [31,32], this model predicts that rapid adaptation
may occur either through strong directional selection at a few loci (when the effect sizes of the alleles
at these loci are large relative to a scaled mutation rate), through weak selection at many loci with
small effect sizes or through a combination of these two modes. In the case of many loci with small
effects subtle allele frequency shifts are typical. However, all these studies assumed infinitely large
population sizes. This led to problems in defining the values of the allele frequencies at the time of the
environmental change, as the equilibrium allele frequencies of the deterministic model do not agree
with the frequencies typically observed in GWAS.

Recognizing this problem, the studies published in the past few years [33–37] include genetic drift
(due to finite population size) into their polygenic models. Simons et al. (2018) [35] proposed a model
of selection that simultaneously acts on multiple traits (pleiotropy). For a single trait their model is
identical to the one we discuss below. Stetter et al. (2018) [36] and Thornton (2019) [37] used extensive
forward simulations to analyze a model (though with relatively few selected loci) that also includes
neutral loci linked to selected ones. This enables them to study genetic hitchhiking in a (potentially)
polygenic context. Stetter et al. (2018) [36] also investigated the effect of different demographies and
genetic architectures of the trait. The model of Höllinger et al. (2019) [33] is different from ours in that
the loci controlling a trait are not explicitly given, but instead a genome-wide mutation rate is used as
a proxy. Despite this difference, their main conclusions on the modes of rapid adaptation are very
similar to our predictions (see previous paragraph).

Here we first review the work of John and Stephan (2020) [34] in which we described a stochastic
treatment of the equilibrium phase before the shift of the fitness optimum. This led to a reasonable
definition of allele frequencies at the timepoint of the environmental change. Second, we present a
new analysis of adaptation in response to selection in the rapid short-term phase after the optimum
shift based on diffusion theory. Finally, of the additional factors influencing a natural population
(listed above), we study the effect of varying population size by computer simulation.
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2. Model and Analysis

2.1. Deterministic Model of a Single Quantitative Trait

We begin by describing briefly the model of a quantitative trait that has been used by de Vladar
and Barton (2014) [29], Jain and Stephan (2015, 2017a, b) [30–32], and John and Stephan (2020) [34].
We consider a perfectly heritable trait that is controlled additively (no dominance or epistasis) by
l unlinked, diallelic loci in a very large population of diploids. If the phenotypic effect of the
trait-increasing allele, called + allele, at locus i is γi

2 and that of the – allele is −γi
2 , the mean phenotype

c1, the genetic variance c2 and the skewness c3 are given by [31]

c1 =
∑l

i=1
γi(pi − qi) =

∑l

i=1
γi(2pi − 1) , (1)

c2 = 2
∑l

i=1
γ2

i piqi , and (2)

c3 = 2
∑l

i=1
γ3

i piqi (qi − pi) , (3)

where pi is the frequency of the + allele at locus i and qi = 1− pi is that of the – allele. We assume that
the effect sizes are exponentially distributed with mean γ. Furthermore, the fitness of an individual
with trait value z has a Gaussian shape centered about the fitness optimum z0

w(z) = e−
s
2 (z−z0)

2
, (4)

where s measures the strength of selection on the trait. 1/s is assumed to be much larger than the
phenotypic variance [35]. Without loss of generality, we also assume 0 < z0, and require that z0 < lγ.
The latter condition ensures that the population mean converges to a stationary state close to the
optimum [30]. In a randomly mating population, the change in allele frequency at the ith locus due to
selection and mutation is then given by

dpi

dt
= −sγipiqi∆c1 −

sγ2
i

2
piqi(qi − pi) − µpi + νqi , i = 1, . . . , l, (5)

where ∆c1 = c1 − z0 is the deviation of the mean phenotype from the fitness optimum. The first term
on the right-hand side of Equations (5) describes directional selection toward the phenotypic optimum,
the second term accounts for stabilizing selection in the vicinity of the optimum [38], and the last two
terms for mutation [39,40]. Here, µ represents the mutation rate from the + to the – allele and ν that of
the – to the + allele. In agreement with the latter authors, we assume equal forward and backward
mutation rates µ = ν in our analysis of this model.

2.2. Stochastic Analysis

To apply our polygenic model to a population of finite size N, we first analyze it under equilibrium
conditions. Then, while the population is in equilibrium, we introduce an optimum shift from z0 to z f ,
and allow the population to adapt to the new optimum. In both cases analytical results are obtained
based on standard diffusion theory [41]. At the end of this paper, we study the effect of demography
(population size changes) on polygenic adaptation, using computer simulations. The simulation
procedure is described in John and Stephan (2020) [34].

3. Results

We consider the following scenario. At equilibrium, the population mean fluctuates around a state
close to the fitness optimum z0, until the optimum is shifted suddenly to a new value z f . While the
analysis of the equilibrium phase is similar to the treatment in John and Stephan (2020) [34], a new
approach for the adaptive phase is presented.
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3.1. Stochastic Equilibrium between Drift, Mutation and Selection

In the polygenic case most of the loci are assumed to have small effects such that γi < γ̂,

where γ̂ = 2
√

2µ
s [29]. To analyze the equilibrium fluctuations mentioned above, we recall that in

the deterministic case the trait mean may change much faster after a perturbation than the allele
frequencies [30]. Therefore, it is convenient to express Equations (5) as follows:

d∆c1

dt
= −

s
2

c3 − sc2∆c1 − 2µc1 (6)

and
dpi

dt
= −sγipiqi∆c1 −

sγ2
i

2
piqi(qi − pi) + µ(qi − pi), i = 1, . . . , l− 1. (7)

Equation (6) is derived by summing over the Equations (5) and using the definitions of the
cumulants (Equations (1)–(3)). Assuming that ∆c1 is a fast variable on the time scale of the allele
frequencies pi (Gardiner 1990 [42], chapt. 6.4), we obtain ∆c̃1 by putting the left-hand side of Equation (6)
to zero. Then, in quasi-equilibrium the deviation of the population mean from z0 is approximately

∆c̃1 ≈ −

s
2 c̃3 + 2µz0

s̃c2 + 2µ
, (8)

where tilde indicates the quasi-equilibria of the cumulants involved. The variance is relatively
constant [30]. The skewness term varies with time but may be neglected if we assume that the effect
sizes are very small (see Equation (3)). The latter assumption has been made by John and Stephan
(2020) [34] (see their Equation (8)).

Equation (8) predicts that in equilibrium the trait mean does not converge completely to the
fitness optimum. In this model the allele frequencies of Equations (5) approach stable equilibrium
states that are incompatible with the fitness optimum (see de Vladar & Barton 2014 [29], Figure 2 and
Appendix B).

The expected change of the allele frequency pi may be approximated as

E
{
∆pi

}
≈ −sγipiqi∆c̃1 −

sγ2
i

2
piqi(qi − pi) + µ(qi − pi) , (9)

where ∆c̃1 is relatively constant. Furthermore, the variance of the change in pi accounting for the effect
of drift is

Var
{
∆pi

}
≈

piqi

2N
. (10)

Using diffusion theory (Ewens 2004 [41], chapt. 4.5), this leads to the equilibrium frequency
distribution of the trait-increasing allele pi at locus i:

f (pi) ≈ Cp2β−1
i q2β−1

i exp
(
−2αγi∆c̃1pi − αγ

2
i piqi

)
, (11)

where C is the normalization constant (omitting index i for locus i), α = 2Ns, and β = 2Nµ is the scaled
mutation rate. C is approximately given by [34]

C−1
≈ B(2β, 2β)

[
1− αγi∆c̃1 − αγ

2
i

β

4β+ 1

]
, (12)

where B denotes the beta function.
We compared the theoretical results with simulations using the following set of parameter values:

s = 0.1, N = 2× 104, l = 200, µ =10−5, γ = 0.01 and z0 = 0.2. These values were taken from the literature
on polygenic adaptation in humans [26,35]. The stationary mean deviation is slightly negative and
agrees reasonably well with the value predicted by Equation (8). Our simulations of the demographic
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model yielded in equilibrium (before the bottleneck; see Section 3.3) ∆c̃1 = − 0.0022, c̃2 = 0.0089 and
c̃3 = −5×10−5, such that Equation (8) predicts ∆c̃1 = −0.0016.

3.2. Adaptation after a Sudden Shift of the Fitness Optimum

We assume that a population is in equilibrium when the fitness optimum z0 is suddenly shifted
to a new value z f > z0, where z f < lγ. We analyze the dynamics of the alleles at all loci until the
population has adapted to the new optimum, i.e., until the population mean has reached a value close
to z f . Since the trait mean responds rapidly to the shift of the fitness optimum, it may be approximated
by an exponential process whose rate is proportional to the equilibrium genetic variance [30]:

∆c1(t) ≈ ∆c1(0)exp(−sc2(0)t) , (13)

where ∆c1(0) = c1(0) − z f . The variable t is measured in generations such that t = 0 is the timepoint
when the fitness optimum shifts to its new value.

Lande (1976) [28] was first in deriving Equation (13) assuming that the genetic variance is constant
(see Equations (17a) and (18a) in Lande (1976) [28]). Numerical simulations with different population
sizes show a change in the speed of the approach to the optimum (Figure 1), where c2(0) accounts for
the drift effect in the equilibrium phase (Equation (10)) and ∆c1(0) is nearly independent of population
size (as ∆c̃1 is close to zero).

Figure 1. Approach of ∆c1(t) to the new optimum for three different population sizes. Simulation data
is compared with the theoretical expectation (solid curve) given by Equation (13). The new fitness
optimum is z f = 0.5. The mean deviation and genetic variance just before the optimum shift are
∆c1(0) = (−0.304, −0.304, −0.303) and c2(0) = (0.0045, 0.0066, 0.0089) for N = 5000, 10,000 and 20,000,
respectively. 200 independent loci are simulated with 200 iterations for averaging.

Equation (13) characterizes the short-term phase of polygenic adaptation [31]. The short-term phase
is the time until the phenotypic mean reaches a value close to the new optimum. It lasts about (sc2(0))

−1

generations. Thus, it may be very short when the variance is large. According to Equation (14) of John
and Stephan (2020) [34], this is the case when the number of loci controlling the trait is large and/or
the scaled mutation rate β is not too small. Indeed, genetic variance may be much reduced below
the deterministic value of lγ2 when the mutation parameter is small such that the distribution (11) is
extremely U-shaped.
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Next we describe the stochastic changes of the frequencies of the trait-increasing alleles pi using a
diffusion approximation (similar to the approach of Stephan et al. (1992) [7]). The differential operator
Li of the Kolmogorov backward equation is

Li = (−sγipi(1− pi)∆c1(t))
∂
∂pi

+
pi(1− pi)

4N
∂2

∂p2
i

. (14)

In contrast to Equation (5), the drift term of this operator includes only the effect of directional
selection; i.e., in the rapid initial phase when the population is far from the new fitness optimum stabilizing
selection and mutation are much less important than directional selection [30,31]. Furthermore, note
that this drift term contains the time-dependent function ∆c1(t) defined in Equation (13). To derive
equations for the lowest-order moments of the allele frequencies we use the equation (Ewens 2004 [41],
chapt. 10.4)

d
dt

E
{
f , t

}
= E

{
L( f ), t

}
, (15)

where L is an appropriately defined differential operator (see above) and f a twice differentiable
function. Inserting pi and p2

i into Equation (15) for the function f leads to the following ordinary
differential equations (ODEs)

d
dt

E
{
pi
}
= −sγiE

{
pi(1− pi)

}
∆c1(t) , (16)

d
dt

E
{
p2

i

}
= −2sγiE

{
p2

i (1− pi)
}
∆c1(t) +

1
2N

E
{
pi(1− pi)

}
. (17)

Combining these two ODEs yields

d
dt

E
{
pi(1− pi)

}
= −sγiE

{
pi(1− pi)

}
∆c1(t) + 2sγiE

{
p2

i (1− pi)
}
∆c1(t) −

1
2N

E
{
pi(1− pi)

}
. (18)

The system of Equations (16) and (18) cannot be solved as the moment expansion does not break
up. Nonetheless, Equation (18), in combination with Equation (2), suggests that the contribution of
individual loci to genetic variance decreases with increasing genetic drift (i.e., lower population size).
Numerical simulations comparing the allele frequency changes at loci with similar effect sizes support
this expectation. We can clearly see that the smallest population shows only a minor directional change
in allele frequency indicating a stronger impact of genetic drift (Figure 2).

Figure 2. Average allele frequency p(t) after the optimum shift at loci with effect size around 0.01.
A total of 200 independent loci are simulated. p(t) is obtained by averaging 200 simulation runs. This
yields p(0) ≈ 0.5 for all loci.
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We used simulations to explore the effect of genetic drift on allele frequencies in more detail.
Of particular interest are the frequency shifts δpi of the alleles during the short-term phase (defined
above). Since we assume that z f > z0 and thus ∆c1(0) < 0, the allele frequencies pi(t) are expected
to increase with time (see Equation (16)). In the deterministic case, the allele frequency shifts at the
end of the short-term phase (i.e., after (sc2(0))

−1 generations) for sufficiently small effect sizes are
approximately [34]

δpi ≈ −γipi(0)qi(0)∆c1(0)
1− e−1

c2(0)
. (19)

Equation (19) suggests that the allele frequency shift at a locus depends strongly on the compound
parameter γipi(0)qi(0). This is similar to the one-locus case, where the product of p and q determines
the speed of allele frequency change. The compound parameter increases with the effect size and is
greatest for initial frequencies that are intermediate. Furthermore, Equation (19) predicts that after
an environmental change the allele frequencies shift coherently into the same direction. This is an
important property of polygenic selection because it may help detecting this type of selection, although
the frequency shifts at individual loci are in general small.

Including genetic drift, however, leads to a more complex picture of polygenic adaptation.
As shown in Figure 1, we find a good agreement between Equation (13) and the simulation for the
deviation ∆c1 of the population mean from the optimum within the short-term phase. For the allele
frequencies, however, we get a reasonable agreement of the deterministic prediction of Equations (19)
and simulations only when the effect sizes are sufficiently large and allele frequencies at the time of the
environmental shift are intermediate. As revealed by Equations (16) and (18), the reason is that genetic
drift slows down the increase of the allele frequencies and hence reduces the expected differences
between the allele frequencies at the end of the short-term phase and those at t = 0. As a consequence,
while trait-increasing alleles with intermediately high equilibrium frequencies contribute positively to
changes of the trait mean (i.e., are aligned with the direction of the optimum shift), alleles with low or
high frequencies may not stay aligned with the optimum shift.

3.3. Effects of Demography on Polygenic Adaptation

We simulated a simple demographic model with a major bottleneck and subsequent recovery
(as inferred from human polymorphism data; Schiffels & Durbin 2014 [43]). The question we ask in
this section is to what extent genetic variance, which is a determinant of the speed of adaptation of a
polygenic trait (see Equation (13)), is affected by demography.

We started the simulations in the distant past with a population size N = 2× 104. N is assumed
to be constant for several thousand generations (such that the population reached an approximate
equilibrium state) before it decreased instantaneously to a much lower number of individuals (Figure 3a).
The population then stayed at this bottleneck size (of 3000 individuals) for 5000 generations before
it instantaneously changed back to the constant size of 2× 104. 100 generations ago population size
increased instantaneously to 6 × 105. This recent recovery phase was not considered by John and
Stephan (2020) [34].

We obtained the following results (Figure 3b). In the pre-bottleneck phase c1 is close to the fitness
optimum z0 = 0.2, such that ∆c1 is slightly negative (−0.0022). During the bottleneck c1 decreases to
an average value such that ∆c1 is considerably more negative (−0.0031) than before the bottleneck.
This amounts to an approximate 41% increase in the absolute size of ∆c1 after the bottleneck. In the
third phase, after population size recovered to 2× 104, c1 remains lower than at the beginning of the
bottleneck. Thus, due to the bottleneck effect the population mean of the trait deviates from the fitness
optimum more than before the bottleneck. This observation is caused by genetic drift. Indeed, drift
reduces the genetic variance. It drops from 0.0089 to 0.0051 during the bottleneck, which corresponds
to a decrease of about 43% at the end of the bottleneck phase (relative to its value at the beginning of
the bottleneck) and may thus have a considerable effect on the speed of adaptation (Figure 3b). This
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is qualitatively in agreement with Equation (8). The dramatic increase of population size in the last
100 generations had almost no effect on the trait mean.

Figure 3. (a) Demography describing the change in effective population size for the past 25,600
generations (adapted from Schiffels & Durbin 2014 [43]). The bottleneck phase starts 5600 generations
ago when the population size suddently decreased from the stationary value of 2×104 to 3000 individuals.
The bottleneck phase lasts for 5000 generations. After the recovery from the bottleneck (600 generations
ago) population size is constant for 500 generations, before it dramatically increased 100 generations
ago to its current size. (b) Mean and variance of a quantitative trait as a function of time. The curves
were obtained by averaging 2000 simulation runs.

4. Discussion

4.1. Summary

We analyzed polygenic adaptation in a finite population experiencing a sudden environmental
change (while in equilibrium). When the shift of the fitness optimum is not too large relative to the
genetic variance in the trait and the variance is mostly due to loci with small effects, we found that the
new optimum is approached exponentially at a rate proportional to the equilibrium genetic variance
before the optimum shift. This result agrees with Lande’s (1976) [28] prediction of the response of a
phenotypic trait to selection, which was obtained based on the infinitesimal model (i.e., a model with
an infinite number of loci with infinitesimally small effects). In contrast to the infinitesimal model, our
results were derived from a model that contains a large, but finite number of loci with finite effect sizes.

We also analyzed the underlying allelic dynamics of the phenotypic response to selection. Whereas
in a population of infinite size, the equilibrium frequencies of small-effect alleles are intermediate [29],
we found that genetic drift (in conjunction with symmetric mutation and selection) may lead to a
very different equilibrium distribution of allele frequencies. In relatively small populations and for
realistic mutation rates, this distribution is U-shaped. This has important consequences for the allelic
response to selection. Assuming that a sudden environmental shift of the fitness optimum occurs
while the population is in equilibrium, we studied the adaptation of the trait to the new optimum in
the short-term phase (which is defined by (sc2(0))

−1 generations). Only alleles with intermediately
high equilibrium frequencies contribute positively to changes of the trait mean (i.e., are aligned with
the optimum shift). In contrast, alleles with very low or high frequencies are subject to stronger drift
and thus may not stay aligned with the direction of the optimum shift.

The effect of genetic drift is also observed in population size bottlenecks. Simulating a bottleneck
with subsequent recovery we found that the phenotypic mean of a quantitative trait decreased with
the decreasing genetic variance during the bottleneck and was at the end of the bottleneck further way
from the fitness optimum (than before the bottleneck).
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4.2. Impact of Large-Effect Alleles

All the aforementioned results hold for the case when the shift of the fitness optimum is not too
large relative to the genetic variance in the trait and the variance is mostly due to loci with small
effects. In a very recent study, Hayward and Sella (2020) [44] have generalized some of these findings.
They found that when the environmental shift is large relative to the phenotypic standard deviation or
when loci of large effect contribute substantially to genetic variance, the initial exponential change of
the mean phenotype is similar as in the case of mostly small-effect loci. However, in contrast to the
small-effect case, this rapid phase is then followed by a long equilibration period determined by the
skewness of the phenotypic distribution, in which the mean phenotype approaches the new optimum.

When large-effect alleles play a substantial role, the allelic response to an environmental shift in
the fitness optimum is somewhat different from the case of mostly small-effect alleles [31]. Hayward
and Sella (2020) [44] have investigated these differences in detail. Since an allele’s contribution to
phenotypic change is proportional to its contribution to phenotypic variance before the shift, alleles with
moderate or large effect sizes make the greatest contributions to phenotypic change. In the prolonged
equilibration period, stabilizing selection on the trait transforms the small frequency differences that
have arisen through directional selection during the rapid initial phase between alleles aligned with the
shift and those opposed into a small excess of fixed aligned alleles relative to opposing ones. This excess
drives the population mean phenotype all the way to the new optimum. Thereby, the contributions of
large-effect alleles are dominated by the effects of fixed moderate-size alleles.

4.3. Do Selective Sweeps Occur in Polygenic Adaptation?

This question has been addressed by several authors [31,45–47]. Using the deterministic model
of Equations (5) Jain and Stephan (2017a) [31] found that selective sweeps may arise in restricted
parameter ranges, but only when most alleles have large effects. Indeed, strong selective fixations have
been observed in simulations in the initial rapid phase (see Figure 3 of Jain & Stephan 2017a [31]).
Furthermore, fixations driven by relatively weak selection may occur in the prolonged equilibration
period, but these would not lead to sweeps (i.e., substantial drops of local genetic diversity in the
neighborhood of selected sites). These findings agree with the study of Hayward and Sella (2020) [44].
They observed that in highly polygenic models large-effect alleles almost never sweep to fixation, while
alleles of moderate effects may go to fixation (see above). In general, in quantitative genetics models,
selective sweeps are rare [45–48]. However, this does not contradict Thornton’s (2019) [37] observation
of sweeps in cases in which the trait is not highly polygenic. This was also found by Jain and Stephan
(2017a) [31] when the number of loci controlling a trait was not large (see e.g., their Figure 3).
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