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Abstract

T cell responses to acute infection proceed along a course of distinct phases. Once antigen-

inexperienced T cells are activated, they increase exponentially through proliferation, giv-

ing rise to large numbers of short-lived cells with distinct effector functions. After clearance

of the pathogen, the T cell population substantially diminishes, leaving a small fraction of

viable cells. These long-lived memory cells protect the host against re-infection and thus

make a central contribution to adaptive immunity. The individual phases of the immune

response are defined both by the cellular phenotypic composition and by the respective

subset kinetics. Not only is a sound mechanistic understanding of these dynamics essential

for improving vaccination strategies and immunotherapies, it also serves as a basis in the

study of responses to chronic diseases and cancer. However, the fundamental mechanisms

of the immune response at the T cell level are controversial in the literature. Moreover,

there is a lack of studies that are quantitative, in vivo oriented, and comprehensive at

the same time. With this dissertation, I intend to contribute to a better quantitative

understanding of the mechanisms underlying T cell memory formation.

First, I address the problem of disentangling the influences of cell division and cell death

on the growth kinetics of a proliferating cell population. To this end, I present a novel

method that allows quantifying cell cycle speed of rapidly dividing cells in vivo. Moreover,

the average length of each individual cell cycle phase can be estimated. This approach

is based on labelling cells with a nucleoside analogue (NA) and subsequently measuring

their NA abundance and DNA content. The method does not depend on the specific

shape of the underlying phase length distributions, nor does it require knowledge of the

unknown kinetics by which NA labelling efficiency decreases after administration. Using

a stochastic simulation, I can validate the method and show that its assumptions are

legitimate. Finally, I apply the method to dividing T cell populations subjected to acute

infection, which yields results that I further use in the context of mathematical modelling.

In addition, I analyse time-resolved single-cell RNA sequencing (scRNA-seq) data from

cytotoxic T cells during acute infection. Utilising a variety of trajectory inference methods,

I derive developmental transitions between the identified phenotypes. The resulting differ-

entiation scheme is consistent with the progressive model of T cell differentiation, in which

long-lived memory-like cells become short-lived effector cells during infection-induced de-

velopment. Furthermore, I find that the cessation of cell division, i.e. cells dropping out

of cell cycle and entering a quiescent state, represents a major source of heterogeneity

during the immune response. Based on the inferred model topologies, I fit stochastic

compartment models to a variety of in vivo data at the single-cell level. These include

single-cell fate mapping data, cell cycle dropout kinetics inferred from scRNA-seq data,
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and phenotype-specific quantifications of division speed. The resultant cell cycle dropout

model, which explicitly accounts for a division stop of the cells, can consistently explain

the data, with all model parameters being identifiable. Even striking properties of the

data, such as a high Gini coefficient of the clone size distribution, are correctly reproduced

by stochastic simulations. Through model selection, I can show that the mechanistically

simplest model, in which all subsets begin to turn quiescent at the same time and rate,

best matches the data. Nevertheless, the model topology and the set of optimal param-

eters indirectly lead to the modelled subsets being in division to different extents. This

model prediction has been confirmed in a subsequent experiment.

Lastly, I extend the cell cycle dropout model beyond the acute phase of infection. For

this purpose, I employ a more complex model including cell death and division speed

dynamics. Utilising data at later time points after infection, I show that the contraction

of T cells is predominantly characterised by differences in proliferation and death rates

between memory-like cells and effector cells. Interestingly, the time-dependencies of these

rates seem to be very similar across the subsets.

In summary, I combine a variety of in vivo data at the single-cell level to infer mechanisms

of T cell responses to acute infection, up to the memory phase. Additionally, I present a

novel method to quantify cell cycle speed in vivo.



Zusammenfassung

T-Zell-Antworten auf akute Infektionen verlaufen in unterschiedlichen Phasen. Sobald

Antigen-unerfahrene T-Zellen aktiviert werden, vermehren sich diese exponentiell durch

Proliferation, wodurch eine große Anzahl kurzlebiger Zellen mit ausgeprägten Effektor-

Funktionen entsteht. Nach der Eliminierung des Pathogens nimmt die Größe der T-Zell-

Population stark ab, wobei ein geringer Anteil der Zellen überlebt. Diese langlebigen

Gedächtniszellen schützen den Wirt vor erneuter Infektion und leisten somit einen zen-

tralen Beitrag zur adaptiven Immunität. Die einzelnen Phasen der Immunantwort werden

sowohl durch die zelluläre phänotypische Zusammensetzung als auch durch die jeweilige

Kompartiment-Kinetik definiert. Ein fundiertes mechanistisches Verständnis dieser Dy-

namik ist nicht nur für die Verbesserung von Impfstrategien und Immuntherapien essen-

tiell, sondern dient auch als Grundlage der Erforschung von Immunantworten auf chro-

nische Krankheiten und Krebs. Die grundlegenden Mechanismen der Immunantwort auf

T-Zell-Ebene werden in der Literatur jedoch kontrovers diskutiert. Zudem mangelt es an

Studien, die gleichzeitig quantitativ, in vivo-orientiert und umfassend sind. Mit dieser Dis-

sertation möchte ich zu einem tieferen quantitativen Verständnis derjenigen Mechanismen

beitragen, die der T-Zell-Gedächtnisbildung zu Grunde liegen.

Zunächst gehe ich auf die Problematik ein, Einflüsse von Zellteilung und Zelltod auf die

Wachstumskinetik einer proliferierenden Zellpopulation voneinander zu trennen. Hierzu

stelle ich eine neue Methode vor, die es ermöglicht, Zellzyklusgeschwindigkeiten sich schnell

teilender Zellen in vivo zu quantifizieren. Zudem erlaubt es die Methode, die durchschnitt-

liche Dauer jeder einzelnen Zellzyklusphase abzuschätzen. Dieser Ansatz basiert auf der

Markierung von Zellen mit einem Nukleosid-Analogon (NA) und der darauffolgenden Mes-

sung der NA-Menge und des DNA-Gehalts der Zellen. Die Methode hängt weder von der

konkreten Form der zugrundeliegenden Verteilung der Phasenlängen ab noch erfordert

sie Kenntnisse über die unbekannte Kinetik, mit der die NA-Markierungseffizienz nach

Verabreichung abnimmt. Mithilfe einer stochastischen Simulation kann ich die Methode

validieren und die getroffenen Annahmen rechtfertigen. Schließlich wende ich die Methode

auf sich teilende T-Zell-Populationen während akuter Infektion an. Die so gewonnenen

Ergebnisse berücksichtige ich später im Rahmen von mathematischer Modellierung weiter.

Außerdem analysiere ich zeitaufgelöste Einzelzell-RNA-Sequenzierungsdaten (scRNA-seq-

Daten) zytotoxischer T-Zellen während akuter Infektion. Unter Verwendung diverser

Methoden der Trajektorien-Inferenz leite ich Differenzierungsübergänge zwischen den iden-

tifizierten Phänotypen ab. Das resultierende Differenzierungsschema ist konsistent mit

dem progressiven Modell der T-Zell-Differenzierung, in dem während infektionsinduzierter

Entwicklung langlebige gedächtnisähnliche Zellen zu kurzlebigen Effektorzellen werden.
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Darüber hinaus stelle ich fest, dass die Beendigung der Zellteilung, d.h. das Austreten

der Zellen aus dem Zellzyklus und der Übergang in einen ruhenden Zustand, eine wichtige

Quelle der Heterogenität während der Immunantwort darstellt. Basierend auf den abgelei-

teten Modelltopologien passe ich stochastische Kompartmentmodelle an eine Vielzahl von

in vivo-Daten auf Einzelzellebene an. Dazu gehören Einzelzell-Fate-Mapping-Daten, die

aus scRNA-seq-Daten abgeleitete Zellzyklus-Austritts-Kinetik und phänotypspezifische

Quantifizierungen der Teilungsgeschwindigkeit. Das resultierende Zellzyklus-Austritts-

Modell, das den Teilungsstopp der Zellen explizit berücksichtigt, kann die vorliegenden

Daten auf konsistente Weise erklären. Hierbei sind alle Modellparameter identifizierbar.

Selbst auffällige Eigenschaften der Daten, wie z.B. ein hoher Gini-Koeffizient der Klon-

Größenverteilung, werden durch stochastische Simulationen korrekt reproduziert. Durch

Modellselektion kann ich zeigen, dass das mechanistisch einfachste Modell, in dem alle

Kompartimente zur gleichen Zeit und mit der gleichen Rate beginnen, in den ruhen-

den Zustand einzutreten, die höchste Übereinstimmung mit den Daten erzielt. Dennoch

führen die Kombination aus Modelltopologie und dem Satz optimaler Parameter indirekt

dazu, dass sich die modellierten Kompartimente in unterschiedlichem Ausmaß in Teilung

befinden. Diese Modellvorhersage konnte in einem nachfolgenden Experiment bestätigt

werden.

Schließlich erweitere ich das Zellzyklus-Austritts-Modell über die akute Phase der Infek-

tion hinaus. Zu diesem Zweck verwende ich ein komplexeres Modell, welches den Zell-

tod und dynamische Teilungsgeschwindigkeiten der Zellen berücksichtigt. Mithilfe von

Daten zu späteren Zeitpunkten nach der Infektion zeige ich, dass die Kontraktion der

T-Zellen vor allem durch Unterschiede in den Proliferations- und Sterberaten zwischen

gedächtnisähnlichen Zellen und Effektorzellen geprägt wird. Interessanterweise scheinen

die Zeitabhängigkeiten dieser Raten zwischen den betrachteten Phänotypen sehr ähnlich

zu sein.

Insgesamt kombiniere ich eine Vielzahl von in vivo-Daten auf Einzelzell-Ebene, um die

Mechanismen von T-Zell-Antworten während akuter Infektion bis hin zur Gedächtnisphase

abzuleiten. Zusätzlich stelle ich eine neue Methode zur Quantifizierung der in vivo-

Zellzyklusgeschwindigkeit vor.
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Chapter 1

Introduction

In the last decade, immunotherapies with a direct or indirect focus on T cells were widely

successful in the treatment of cancer and chronic diseases. Of particular note is the use

of checkpoint inhibitors and adoptive T cell therapies. These sophisticated approaches all

have their origin in the improved comprehension of the immune system and its interacting

components. To better understand T cell responses in the context of chronic infection

or cancer, comparisons with responses to acute infection can be very beneficial. This

may allow phenotypic characterisation of early abnormalities throughout the response and

reveal their mechanistic causes. Also, the improvement of vaccination strategies requires

precise knowledge of the course of T cell responses to acute infection, which typically

lead to the establishment of immunological memory. The progression of T cell responses

occurs in distinct phases that differ both in kinetics and cellular phenotypic composition.

This thesis quantitatively addresses the mechanisms of cytotoxic T cell responses following

acute infection up to the memory phase.

The role of CD8+ T cells in adaptive immunity

The immune system can be broadly divided into two components that interact with each

other: the innate immune system and the adaptive immune system. The innate immune

system typically provides the first barrier to pathogens. Once pathogens have penetrated

the epithelial layers, phagocytic cells can recognise and engulf them. Depending on the

infiltrated organ, macrophages, neutrophils, dendritic cells, or monocytes, for example,

adopt this function; this is often accompanied by an inflammatory response in which

cytokines and chemokines are secreted, see [Owen et al., 2013]. Such pathogen-unspecific

responses are a prerequisite for triggering the adaptive immune response, which is initiated

in secondary lymphoid organs such as lymph nodes and spleen.

Pathogenic antigens are processed by professional antigen-presenting cells (APCs) and pre-

sented to the adaptive immune system via the major histocompatibility complex (MHC)

class I/II molecules. Dendritic cells in particular play a central role here. The B and T lym-

phocytes of the adaptive immune system have a highly specific receptor that recognises

foreign epitopes. An epitope represents the part of the presented antigen that potentially
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Figure 1.1: Signals necessary for the activation of näıve T cells. While co-stimulatory and
cytokine-induced signals are non-specific, stimulation via the TCR is highly antigen-specific.
Here, TCR and co-receptor are stimulated by professional antigen-presenting cells, e.g. dendritic
cells. (Figure adapted from [Neeve et al., 2019], modified)

binds to the specific receptor of the immune cell. CD4+ T helper cells are addressed via

the MHC II presentation pathway. In the case of CD8+ cytotoxic T cells, the presentation

of epitopes occurs via MHC I. Analogously to pathogenic antigen presentation of APCs,

the majority of cells in the body provide the immune system with a representation of their

cell-internal peptides via MHC I. Therefore, the MHC I pathway is particularly relevant

for controlling infections caused by viruses or intracellular bacteria. When a näıve, i.e.

antigen-inexperienced, CD8+ T cell encounters an antigen-presenting cell with cognate

peptide-MHC I complex, an immune response can be induced. However, a potent re-

sponse requires further signals, see Fig. 1.1 from [Neeve et al., 2019]. If the co-stimulatory

signal via the CD28 co-receptor of the T cell is missing, this leads to apoptosis of the T

cell, i.e. programmed cell death; if, on the other hand, the co-receptor of the T cell is

stimulated without proper TCR stimulus, there is no response at all, see [Murphy et al.,

2017]. For potent activation of the cell, a cytokine signal must be mediated in addition to

the stimulation of TCR and co-receptor, see [Curtsinger et al., 1999; Neeve et al., 2019].

In mice, there are about 100 to 1000 näıve T cells specific for a unique epitope, see [Obar

et al., 2008]. Generally, a single antigen has several epitopes. Thus, an infection leads

to a polyclonal T cell response. According to the current opinion in the field, almost all

specific CD8+ T cells are recruited into the immune response, cf. [Van Heijst et al., 2009].
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A typical acute infection consists of three phases, see [Khan et al., 2015]. During the acute

phase, T cells divide exponentially and eliminate the pathogen. The peak of the CD8+

T cell immune response is infection-dependent, but usually lies around 6 d to 9 d after

infection, see [De Boer et al., 2003; Porter et al., 2006; Schlub et al., 2009]. However, it

is not clear to what extent the immune response of CD8+ T cells is programmed (by cell-

intrinsic or -extrinsic factors) after initiation, or to what extent the response is dynamically

regulated by environmental signals, such as antigen concentration, see [Badovinac et al.,

2002; Buchholz et al., 2016; Khan et al., 2015]. Next, the contraction phase of the response

is initiated. At this point, approximately 90 % to 95 % of all cells die, cf. [De Boer et al.,

2001; Harty et al., 2008]. The surviving minority of the cells consists of memory cells,

whose numbers are kept stable in the memory phase by homeostatic proliferation. These

cells form an important part of the immunological memory and can initiate a rapid and

efficient immune response upon re-challenge with the same pathogen.

These three different phases of the immune response are characterised by different kinetics

in terms of proliferation and cell death. They are also distinguished by different cellular

compositions. For instance, the peak of the immune response is mainly dominated by

short-lived effector T cells (TEFs), which have an increased killing capacity of infected

cells. During the memory phase, long-lived central memory T cells (TCMs), effector

memory T cells (TEMs), and tissue-resident memory T cells (TRMs) are mainly present.

The TCM cells in particular are characterised by the fact that they circulate between blood

and lymphatic system during the memory phase, see [Khan et al., 2015]. This circulation

is regulated, among other factors, by the surface protein CD62L, which is at the same

time an important memory marker. Overall, it is unclear when exactly the individual

phenotypes arise and what their lineage relations are. Cells that are already memory-like

during the acute phase could thus be precursors of the later TCM and TEM cells and are

notationally referred to as TCMp and TEMp cells, respectively.

Mechanistic inference of T cell kinetics and diversification

From the above considerations, one fundamental question arises: what mechanisms drive

response heterogeneity at the single-cell level and how exactly do antigen-inexperienced

cells differentiate into the observed (highly specialised) phenotypes? In answering this

question, one is dealing with highly complex, dynamic in vivo processes, so data has to

be retrieved in the form of snapshot data, depicting the phenotypic T cell composition in

selected organs at different time points. In order to interpret these snapshot data jointly

under a particular set of biological hypotheses, data-driven mathematical modelling has

proven to be a valuable tool in immunology, see [Andrew et al., 2007]. In particular,
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deterministic compartment models are by far the most popular ones to date, as they are

based on simple ordinary differential equations (ODEs), on the one hand, and establish a

direct link to already existing biological concepts, such as immunological phenotypes, on

the other hand, see [Höfer et al., 2019]. In this sense, the models benefit from experimental

advances in immunostaining and fluorescence-activated cell sorting (FACS). In the case

of cell type compartments, the kinetics of the system can be captured in terms of cellular

programs such as proliferation, differentiation, and cell death. In the simplest case, these

processes are described in terms of constant rate processes, leading to linear equations.

Models of this type have been used, for example, by R. J. de Boer and colleagues to describe

population data of CD8+ T cells during acute infection up to the memory phase, see [De

Boer et al., 2003, 2001]. Here, the authors assumed that näıve cells initially enter a highly

proliferative activated state upon recruitment. From this state, they can then differentiate

into the memory compartment. After the acute phase has ended, these memory cells can

then be reactivated by transitioning into the activated compartment, similar to the näıve

cells before. Interestingly, it could be shown at the single-cell level in [Graef et al., 2014]

that single TCM cells indeed showed a similar response pattern as näıve cells did (see

below). However, R. J. de Boer and colleagues make no further statements about the

phenotypic composition of the activated compartment, while identifying important kinetic

parameters of the entire CD8+ T cell immune response.

P. D. Hodgkin and colleagues introduced another class of models by means of the cyton

model, see [Hawkins et al., 2007; Subramanian et al., 2008]. The primary aim was to

explain the kinetics of dividing T and B lymphocyte populations and the associated het-

erogeneity. Formally, the cyton model can be expressed via coupled generation-structured

integral equations. Alternatively, the equations can be reformulated as partial differential

equations (PDEs), see [De Boer et al., 2013]. Often, skewed distributions are chosen for

division- and survival-time, e.g. log-normal distributions. The first cell division is consid-

ered separately here, as there is in vitro evidence for the first cell division taking longer

than all subsequent divisions, see [Deenick et al., 2003; Dowling et al., 2014; Hawkins et al.,

2009]. The equations formulated in this way can then be solved numerically. Additionally,

in the cyton model, each cell is assigned a time until its next division and a time until

death. These times are assigned independently and stored in the cell’s cyton. This unit

thus decides the fate of the cell, depending on which of the two times is smaller, and at

the same time cancels the occurrence of the other process, i.e. censors it. The authors fit

their models mainly to a combination of population data and kinetic data concerning cell

division and cell death. The cyton model is considered in combination with the concept of

division destiny, also developed by P. D. Hodgkin, see [Hawkins et al., 2007; Turner et al.,
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2008]. In its original formulation, the division destiny represents the maximum number

of divisions a cell will undergo until it stops dividing. This “destiny” is programmed

early after activation and follows a distribution shaped by the cells under consideration

and their particular environmental conditions. Here, the sum of all stimuli a cell receives

seems to shape this distribution, see [Marchingo et al., 2014]. More recent studies by the

same group suggest that division destiny is likely to be a distributed time that a cell can

be in division rather than a sheer number of divisions, see [Heinzel et al., 2017]. In the

same study, the authors confirm a similar mechanism for regulating cell death and further

show that this mechanism is independent of the timer programming division destiny.

The exact differentiation hierarchies during primary infection are discussed controversially

in the literature. The most widely accepted model in the past has been the linear model

of differentiation, see [Opferman et al., 1999; Wherry et al., 2003]. Here, näıve cells

directly develop effector properties upon recruitment. During contraction, most of these

cells die, with a few surviving to mature into central memory cells. More recent modelling

studies inferring such a differentiation pathway based on population data and deterministic

compartment models can be found, for example, in [Crauste et al., 2017; Terry et al., 2012].

Likewise, the decreasing potential model should be mentioned at this point, suggested

by R. Ahmed and colleagues, see [Crotty et al., 2004], where recruited näıve cells also

immediately acquire effector properties after activation. These then continue to mature

under constant exposure to environmental stimuli. During this process, effector cells

can differentiate into memory-like cells. The potency of the resulting memory cells in

terms of long-lasting protective capacity strongly depends on the developmental stage of

the corresponding effector cell, cf. [Kalia et al., 2010]. The effector cells thus lose their

potential to generate potent memory cells in the course of their maturation. Terminal

effectors have finally lost this potential completely, while the authors claim that this very

last state of effector differentiation is related to higher antigen stimuli.

An important advance in the analysis of T cell differentiation is the experimental transition

to the single-cell level. By labelling cells with congenic markers or barcodes, it was possible

to trace the fate of individual näıve cells after infection in vivo, see [Buchholz et al., 2013;

Gerlach et al., 2013; Stemberger et al., 2007]. Here, single-cell fate mapping data showed

that despite overall T cell responses being robust and reproducible, individual responses

can be very heterogeneous in terms of clone size and phenotypic composition, cf. [Buchholz

et al., 2016]. These data thus directly rule out extreme formulations of a bifurcation model

in which whole clones are assumed to consist exclusively of one phenotype. Variants of the

bifurcation model, especially with a first asymmetric cell division, see e.g. [Chang et al.,

2007; King et al., 2012], are in principle compatible with these data. In [Gerlach et al.,
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2013], however, the authors exclude asymmetric cell division as the most important source

of heterogeneity in their data.

Contrary to the linear model, there is evidence for the reverse differentiation order of

the cells. In such a progressive model, TCMp cells downregulate CD62L early to enter

the TEMp or TEF compartment, cf. [Gattinoni et al., 2017]. In [Schlub et al., 2010,

2009], a division-linked differentiation concept was proposed, in which these diversifications

are induced by greater proliferation. Using single-cell fate mapping data together with

stochastic compartment modelling, the authors in [Buchholz et al., 2013] were able to

show through model comparisons that only a progressive model could be reconciled with

the stochasticity of their data. Here, cells differentiate from näıve → TCMp → TEMp →
TEF. Along the developmental pathway, division speed increases: according to the authors,

a higher proliferation rate results precisely from differentiation, which is conceptually very

different from the concept put forward in [Schlub et al., 2009]. The strength of the

approach taken in [Buchholz et al., 2013] is that the high informative single-cell progeny

data leads to a reliable identification of the model parameters by stochastic compartment

modelling and allows to confidently reject the vast majority of the tested topologies. First,

it needs to be highlighted that such data, even if only available for one time point, always

contain information about the underlying dynamics. This is because the initial condition

is known exactly. Furthermore, higher moments of the cell number distribution, such as

covariances, can be added to inform the model.

In a meta-study from [Miles et al., 2019], the authors examined several published data sets,

including data from [Buchholz et al., 2013], to see if they were more likely to be described

by a progressive or a linear model. They used deterministic compartment models and

found that progressive models systematically outperformed linear models. Nevertheless,

some simplifying assumptions were made in the original study from [Buchholz et al., 2013]

that should be viewed critically. First, exponential waiting times were implicitly assigned

to all processes. In contrast, it could be shown in a large number of in vitro studies that

cell divisions can be well described by log-normal distributions. As pointed out above, the

first cell division takes much longer than the subsequent ones, cf. [De Boer et al., 2005;

Deenick et al., 2003; Lee et al., 2008]. Especially for the first division, the variability,

described by a Markov process, could be strongly overestimated. Furthermore, rates for

differentiation and proliferation were assumed to be time-independent, i.e. the rates were

averaged over time. Cell death was disregarded for simplicity. Also, the exit of cells from

the cell cycle was not taken into account, i.e. the division rates were averaged over dividing

and quiescent cells. Furthermore, all considerations were restricted to the expansion phase

of the acute infection.
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A completely different way of looking at T cell diversification with single-cell resolution is

given by single-cell RNA sequencing (scRNA-seq) technologies. Not only because of the

experimental advances, but also because of the simultaneously evolving analysis tools, this

approach has proven to be enormously important in answering questions of cellular fate

decisions, cf. [Angerer et al., 2017; Griffiths et al., 2018; Luecken et al., 2019]. Here, for

example, developmental pathways can be revealed in vivo by trajectory inference methods.

The continuous nature of cell states is highlighted and phenotypic marker combinations

can be challenged, confirmed, or refined. For instance, in [Grassmann et al., 2020] we

were able to identify the progressive differentiation of CD8+ T cells during chronic infec-

tion. Other examples of application in the T cell context can be found, for example, in

[Lönnberg et al., 2018; Pace et al., 2018]. Furthermore, some approaches jointly evalu-

ate transcriptome and population data: in [Fischer et al., 2019], the authors developed a

probabilistic framework that, starting from discrete compartments, allows an estimation

of the underlying parameter dynamics.

The need to disentangle cell division and death

In the compartment models described above, mere absolute population data are not suf-

ficient to reliably allow simultaneous estimation of proliferation and death rates. At best,

only the difference of these rates for each compartment is determined by the cell number

data in terms of an effective growth rate. Although cell death does not appear to play

a major role in the onset of the immune response, there is a time interval in which cell

division and cell death possibly overlap, see [Garrod et al., 2012]. To mechanistically

describe the course of the immune response beyond the exponential phase, it is neces-

sary to disentangle these two mechanisms from each other using appropriate data. As it

seems sufficient to restrict the focus to only one of these processes, we have, in this work,

chosen to focus on cell division. For data-driven quantifications of cell death, we refer

to [Ganusov et al., 2013; Kranich et al., 2020; Owen et al., 2013]. During cell division,

mother cells progress through the phases G1 → S → G2 → M. During S-phase, doubling

of DNA content from diploid (2N) to tetraploid (4N) takes place. G1 and G2 represent

gap-phases, while mitosis occurs during M-phase. G2- and M-phase are often summarised

as G2M-phase. After having completed the cell cycle, daughter cells can either divide

further, i.e. re-enter G1-phase, or exit the cell cycle and become quiescent (G0-phase).

An important experimental approach to measuring cell cycle speed is provided by labelling

cells with a nucleoside analogue, e.g. 5-bromodeoxyuridine (BrdU). BrdU is a thymidine

analogue that is incorporated into the DNA of dividing cells during their S-phase. The

proportion of cells labelled with BrdU can be determined by subsequent FACS measure-
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ment. For in vivo studies, BrdU is either injected as a pulse or administered orally. The

exact degree of its toxicity and the possible influence on the analysis is controversial, see

[Ganusov et al., 2013] for a review of the literature on this topic. Within the framework of

a simple compartment model considering labelled and unlabelled cells, the labelling phase

dynamics of the proportion of BrdU+ cells only depends on labelling time and prolifer-

ation rate, but not on the death rate. Thus, division speed can be inferred directly, cf.

[Ganusov et al., 2013]. In our case of rapidly dividing cells during acute infection, BrdU

is not sufficient for quantitative analyses: Due to the possible time-dependence of division

speed, we cannot afford labelling over long periods, which is why BrdU must necessarily

be injected. After injection, the temporal-spatial labelling efficiency will not constantly

be given by 100 %. In case of short labelling times, BrdU mainly labels those cells that

are in S-phase at the time of administration. However, this measure is by no means infor-

mative about division speed of the cells. Here, it is mostly those cells that enter S-phase

during the availability of BrdU that matter. Since the above-mentioned labelling phase

model implicitly neglects the temporal extension of the S-phase, one would systematically

overestimate division speed. Dual-pulse chase experiments, in which another label, e.g.

5-Ethynyl-2’-deoxyuridine (EdU), is administered shortly before the time of analysis, at-

tempt to capture cells that newly enter S-phase, see [Gitlin et al., 2015]. We conclude

that mere BrdU measurements are insufficient for our particular objectives. However, for

long labelling periods and when looking at steady state systems (e.g. memory phase of

the immune response or hematopoiesis), BrdU is certainly a good approach to quantify

turnover rates.

Another common method to measure cell cycle speed in vivo is provided by CellTraceTM

Violet (CTV), or analogous intracellular fluorescent dyes. These are added to the cells

in vitro before transfer into the organism and are based on the amount of the substance

being approximately halved upon cell division. This results in typical profiles after subse-

quent FACS analysis, from which the generation-dependence of the cells can be inferred.

Using these data to fit simple generation-structured compartment models, one obtains the

proliferation rate of the cells, see [De Boer et al., 2005; Heinzel et al., 2017]. However, such

an approach is unsuitable for our purpose: After a maximum of seven to eight divisions

the dye gets diluted and thus can no longer be distinguished from the background. During

acute infection, however, cells can divide more than ∼ 15 times until day 8 post infection

(p.i.), see chapter 5. For a comprehensive overview of other experimental methods for

measuring division speed and their corresponding mathematical analysis, we refer to [De

Boer et al., 2013].
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In addition to informative data, the quantification of division speed also requires several

assumptions about the cell cycle. Such a model of the cell cycle can be defined, for

example, by assumptions regarding the distribution of the individual phase lengths and

their statistical dependencies. Probably the oldest and best-known model is the Smith-

Martin model, cf. [Smith et al., 1973]. This model divides the cell cycle into two phases

A and B, with the A-phase mainly being associated with the G1-phase and the B-phase

predominantly with the S- and G2M-phase. J. A. Smith and L. Martin found that a

model in which the A-phase carries the full stochasticity in the form of an exponential

waiting time distribution with the B-phase being constant best described their data. In

[De Boer et al., 2005], the authors reformulated this model in terms of a system of delay

differential equations. However, recent in vitro measurements show that the inter-division

time distribution (as well as the time-to-death distribution) of proliferating lymphocytes

can be well described by log-normal distributions, see [Deenick et al., 2003; Dowling et

al., 2014; Hawkins et al., 2009]. Therefore, there are several models with more realistic

assumptions, which are mostly limited to the in vitro case, see e.g. [Dowling et al., 2014;

Weber et al., 2014]. Complicating factors in building consistent (in vivo) models include

consideration of quiescence, knowledge of the exact distribution of phase lengths and their

statistical dependence, cell death, the unknown pharmacokinetics of nucleoside analogues

used, and variability in the underlying phase distributions.

Added value and overview of this thesis

Most of the experimental foundation for this thesis was established by my colleague Al-

bulena Toska and the laboratory of Veit Buchholz. The close collaboration of theory and

experiment was central to the findings presented in chapters 3, 4, and 5. Fig. 1.2 shows

a schematic order of the results presented in this thesis. In chapter 6, all results will be

discussed in detail. For further explanation of the utilised methods, we refer to chapter 2.

In chapter 3 of this thesis, we begin by presenting a newly developed method that allows

quantifying cell cycle speed of rapidly dividing cells in vivo. We apply the method to

dividing CD8+ T cell populations during various acute infections. The obtained results

are then further used during mathematical modelling in chapters 4 and 5 to ensure identi-

fiability of all kinetic model parameters. The formalism offers an important contribution

to quantitative immunological research and has already been published in [Kretschmer

et al., 2020].

Chapter 4 first focuses on the analysis of time-resolved scRNA-seq data from CD8+ T

cells during acute infection. Using a variety of trajectory inference methods, it can be
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Figure 1.2: Overview of this thesis. First, a novel cell cycle quantification method is presented
(chapter 3) which results in cell cycle estimates that are used further on. The analysis of
scRNA-seq data provides possible model topologies of CD8+ T cell differentiation during
acute infection (chapter 4, first part). Mathematical models based on the previously derived
topology are fitted to a variety of single-cell data to mechanistically explain the acute phase
of infection (chapter 4, second part). The best candidate model gets extended to also capture
the contraction phase of the immune response (chapter 5).

shown that cells differentiate mainly progressively during division. Moreover, the exit of

cells from the cell cycle can be identified as a major source of heterogeneity. Second,

stochastic compartment models with topologies consistent with the scRNA-seq data are

fitted to a variety of population data and kinetic data from the expansion phase of the

response. We provide a mechanistic understanding of how the simplest variant of the cell

cycle dropout model explains the observed heterogeneity. Furthermore, we make a model

prediction about the phenotypic cell cycle dropout dynamics, which can be confirmed in

a subsequent experiment.
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In chapter 5, we extend the cell cycle dropout model to the contraction phase of the

response by considering cell death and division speed dynamics. Using additional data at

later time points, T cell contraction shows to be mainly regulated by kinetic differences

across the subsets. Overall, by combining informative in vivo data at the single-cell level,

we can infer mechanisms underlying CD8+ T cell responses to acute infection, up to the

memory phase.
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Chapter 2

Methods

This chapter provides the basic methods which will be applied in chapters 4 and 5. These

methods can be broadly divided into two parts: first, methods for data-driven mathemat-

ical modelling, and second, methods for the analysis of scRNA-seq data. We begin by

outlining the framework of the mathematical modelling approach adopted in this work.

2.1 Data-driven mathematical modelling

We explain the mathematical formalism used in this thesis to capture the dynamics of

stochastic moments of (cell number) distributions, and how model parameters can be

estimated with the inclusion of informative data. The identifiability of the resulting pa-

rameters is addressed, as well as the comparison between different candidate models.

2.1.1 Stochastic modelling framework

In order to summarise an important part of our population data in chapters 4 and 5 in

terms of their stochastic moments, we need equations that capture their time evolution.

In the following, we will outline the derivation of these equations, based on the approach

and notation that have been put forward in [Lestas et al., 2008]. The central starting

point for this approach is the master equation, which is given by

dP (k, t)

dt
=
∑
i

[Wi(k − ri)P (k − ri, t)−Wi(k)P (k, t)] (2.1)

where P (k, t) denotes the probability of the n-dimensional state vector x(t) being realised

by the concrete state k at time t, subject to the initial condition x(t0) =: k0. In our case,

the state vector is represented by a collection of absolute cell numbers at time t, associated

to the respective cell type compartments under consideration. Wi(x(t)) represents the rate

by which the elementary reaction i occurs, as one of the m possible independent reactions.

The occurred reaction i causes a discrete change of the state according to x(t) −→ x(t)+ri,

where ri characterises the reaction-specific replacement of the state. The phenomenological
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equation 2.1 provides the time evolution of the probability of the system state x(t) = k

at time t by a simple balance consideration. In this thesis we are looking at reaction

processes in the context of cells, and therefore assume both Wi(x(t)) ≥ 0 and x(t) ≥ 0, for

all times t. Using eq. 2.1 and the definition of the expectation value, it can be concluded

that

d〈x(t)〉
dt

=
∑
k

k
dP (k, t)

dt

=
∑
k,i

[kWi(k − ri)P (k − ri, t)− kWi(k)P (k, t)]

=
∑
k,i

(k + ri)Wi(k)P (k, t)−
∑
k,i

kWi(k)P (k, t)

=
∑
i,k

riWi(k)P (k, t) =: 〈f(x(t))〉, (2.2)

where from the second to the third line k = k′ + ri was substituted and subsequently

relabelled back to k′ −→ k, leaving the sum unaffected. Eq. 2.2 shows that the dynamics

of the mean state vector can be written as the mean of some function f(x(t)). If Wi(xj)

is linear in all xj , f can be expressed in the form

f(x(t)) = Ax(t) + f0, (2.3)

where A is a n× n matrix, containing all the reaction parameters and f0 is a vector with

constant entries. Since in our case we will only consider simple rate processes such as cell

division, cell death, and differentiation, the assumption of linearity is appropriate. Then,

eq. 2.2 can be rewritten as
d〈x(t)〉

dt
= A〈x(t)〉+ f0, (2.4)
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thereby providing n coupled equations for the first moment of the individual cell types

xi(t). In the same way, equations for the second moment of the cell number distribution

can be derived as

d
〈
x(t)x(t)T

〉
dt

=
∑
k

kkT
dP (k, t)

dt

=
∑
k,i

(k + ri)(k + ri)
TW (k)P (k, t)−

∑
k,i

kkTWi(k)P (k, t)

=
∑
k,i

(
kkT + rir

T
i + krTi + rik

T
)
Wi(k)P (k, t)−

∑
k,i

kkTWi(k)P (k, t)

=
∑
k,i

(
krTi + rik

T + rir
T
i

)
Wi(k)P (k, t)

=
∑
k

kfT(k)P (k, t) +
∑
k

f(k)kTP (k, t) +
∑
k,i

rir
T
i Wi(k)P (k, t)

=
〈
x(t)f(x(t))T

〉
+
〈
f(x(t))x(t)T

〉
+

〈∑
i

rir
T
i Wi(x(t))

〉
. (2.5)

Considering that the covariance Σ is defined by

Σ(t) =
〈
x(t)x(t)T

〉
− 〈x(t)〉

〈
x(t)T

〉
, (2.6)

and the fact that

〈
f(x(t))x(t)T

〉
=
〈

(f(x(t))− 〈f(x(t))〉) (x(t)− 〈x(t)〉)T
〉

+ 〈f(x(t))〉
〈
x(t)T

〉
, (2.7)

eq. 2.5 can be rewritten in terms of the covariance as

dΣ(t)

dt
=
〈

(f(x(t))− 〈f(x(t))〉) (x(t)− 〈x(t)〉)T
〉

+

+
〈

(x(t)− 〈x(t)〉) (f(x(t))− 〈f(x(t))〉)T
〉

+

+

〈∑
i

riWi(x(t))rTi

〉
. (2.8)

Again, assuming linearity, there holds f(x(t))−〈f(x(t))〉 = A (x(t)− 〈x(t)〉) and therefore,

dΣ(t)

dt
= AΣ(t) + Σ(t)AT +

∑
i

riWi (〈x(t)〉) rTi . (2.9)

Together, equations 2.4 and 2.9 form a closed system of exact equations due to the linearity

assumption 2.3, while for non-linear f , truncation schemes must be employed. Making use
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of the symmetry property of the covariance matrix, i.e. Σij = Σji, this leads to (3n+n2)/2

equations. Equations of higher moments, such as skewness and kurtosis, can be derived

analogously. In this thesis, however, we only consider the dynamics up to the covariance,

as it turns out that higher moments are no longer informative due to a strong bias.

In chapters 4 and 5 we discuss the cell cycle dropout model in great detail, see Fig. 4.9B

for a scheme of the model topology. The corresponding state vector of this model is given

by

x(t) = (N1, ...,N5,CTCMp,CTEMp,CTEF,TCMp,TEMp,TEF)T,

where the five näıve states N1 to N5 represent auxiliary compartments that allow for non-

exponential activation mechanisms. The waiting time associated with the entire process

N1 → ... → N5 is distributed according to the convolution of the individual exponential

distributions. In this case, the convolution is given by a generalised Erlang distribution.

In our case, the explicit inclusion of näıve cells into the state vector implies f0 = 0.

The remaining compartments represent the actual memory, effector-memory, and effector-

phenotypes, each in the configurations cycling (marked with a “C”) and non-cycling.

By definition, only the cycling compartments participate in cell division, while only the

non-cycling ones are assigned a death rate. For notational simplicity, we will abbreviate

the ith component of the state vector above by xi. Let pi denote the proliferation rates

of xi, i ∈ {6, 7, 8}, and dj the corresponding death rates, j ∈ {9, 10, 11}, respectively.

Differentiation rates associated with transitions xi −→ xj are defined as ri�j . After

applying eq. 2.4 on this particular choice of elementary reactions, we obtain the following

equations for the means of the cell numbers:

˙〈x1〉 = −r1�2〈x1〉
˙〈x2〉 = r1�2〈x1〉 − r2�3〈x2〉
˙〈x3〉 = r2�3〈x2〉 − r3�4〈x3〉
˙〈x4〉 = r3�4〈x3〉 − r4�5〈x4〉
˙〈x5〉 = r4�5〈x4〉 − r5�6〈x5〉
˙〈x6〉 = 2r5�6〈x5〉 − 〈x6〉(r6�7 − p6 + r6�9)

˙〈x7〉 = r6�7〈x6〉 − 〈x7〉(r7�8 − p7 + r7�10)

˙〈x8〉 = r7�8〈x7〉+ 〈x8〉(p8 − r8�11)

˙〈x9〉 = r6�9〈x6〉 − 〈x9〉(d9 + r9�10)

˙〈x10〉 = r7�10〈x7〉 − 〈x10〉(d10 + r10�11) + r9�10〈x9〉
˙〈x11〉 = r8�11〈x8〉 − d11〈x11〉+ r10�11〈x10〉. (2.10)
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In practice, we set r1�2 = r2�3 = r3�4 = r4�5 = r, in order to enforce an Erlang-

distributed time for recruitment and first cell division with shape parameter k = 4 (number

of transitions) and rate parameter r. The coefficient of variation (CV) of the initial net

waiting time is given by 1/
√
k. Hence, the CV is effectively reduced by 50 % compared to

an exponential distribution with k = 1. The need to remove variability will be discussed

in chapter 4. Applying eq. 2.9 on this same system of reactions gives the equations for the

covariance matrix. Here we refer to appendix B for the resulting set of equations. Note

that moment equations can also be derived by applying the equivalent formalism based

on the probability generating function, see for example [Thattai et al., 2001].

Instead of working with the entries of the covariance matrix directly, we have chosen to

work with the CVs and the pairwise (Pearson) correlations ρij . These measures lead to

more independent summary statistics and are thus better suited for model fitting. They

can be computed from the covariance matrix elements as

CVi =

√
Σii

〈xi〉
=

σi
〈xi〉

, (2.11)

ρij =
Σij√

Σii

√
Σjj

=
Σij

σiσj
(i 6= j). (2.12)

Whenever we are interested in moments of sums of individual state vector components,

the following rules apply:

〈xi + xj〉 = 〈xi〉+ 〈xj〉, (2.13)

var(xi + xj) = var(xi) + var(xj) + 2 cov(xi, xj), (2.14)

cov(xi + xj , xk) = cov(xi, xk) + cov(xj , xk). (2.15)

This is relevant for our considerations insofar as we have to calculate the moments of

the experimentally observed phenotypes. In the model, these phenotypes are composed of

several sub-compartments xi. For our single-cell progeny data, the initial condition is given

by x0 = (1, 0, ..., 0)T. The exact knowledge of the initial state provides a central added

value here. At this point, it should be emphasised that the choice of this methodology to

quantify the stochasticity of the corresponding data is entirely based on the findings in

[Buchholz et al., 2013]. In the course of this work, we will consider dynamic rates, such as

pk = pk(t) and rl�m = rl�m(t). This corresponds to Wi being explicitly time-dependent,

i.e. Wi = Wi(x(t), t). Note that this modification has no effects on the derivation of the

moment equations above and that the Markovian property of the system is preserved at

every point in time.
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The above considerations were all coded in MATLAB (version R2020a). First, code that

derives analytical expressions of the moment equations based on the particular choice

of elementary reactions was written. For this purpose, the Symbolic Math ToolboxTM

was used. Equations were passed to MATLAB’s ODE solver, which then calculated a

numerical solution for a fixed set of parameters on the time interval [0; tend] and the above

initial condition. Depending on the particular case, tend varied between 8 d and 60 d.

MATLAB’s standard ODE solver for non-stiff equations, ode45, was called with default

parameters. This solver is based on a pair of explicit Runge-Kutta formulas of orders four

and five, more precisely the Dormand-Prince pair, see [Dormand et al., 1986].

2.1.2 Parameter estimation

Let D = {(t1, y1), ..., (tN , yN )} be the data set under consideration, including N data

points. Here, yi represent the measured observables at corresponding time points ti. It

is assumed that the time points are not affected by experimental noise. In our particular

case, the yi are given by moments of the TCMp, TEMp, and TEF cell number distribu-

tions and their relative population sizes. Also, kinetic properties such as cell cycle speed

and fractions of cycling cells contribute here. We can compute all these observables for a

given choice of parameter set θj , j ∈ {1, ...,M}, in terms of the considerations above, i.e.

by solving the moment equations for the mean and the covariance matrix. Let fi(ti, θ),

i ∈ {1, ..., N}, denote these computed observables associated with the corresponding mea-

surements yi. Assuming additive and normally distributed measurement noise ε with zero

mean and parameter-dependent variance σ2(θ), i.e. εi ∼ N (0, σ2i (θ)), the relation between

data and model can be expressed as yi = fi(ti, θ) + εi. In the following, we outline how

the optimal parameter set θopt can be obtained under these assumptions.

Least-squares fitting

For the above considerations, the likelihood function LD(θ) reads

LD(θ) =
N∏
i=1

1√
2πσ2i (θ)

exp

(
−(yi − fi(ti, θ))2

2σ2i (θ)

)
. (2.16)
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The optimal parameter set θopt is thus obtained by maximising the likelihood function.

Defining the log-likelihood function, lD(θ) := ln(LD(θ)), the same strategy holds, as the

logarithm is a strictly monotone function. Hence we get,

θopt = argmaxθ lD(θ)

= argmaxθ ln

((
1√
2π

)N ( N∏
i=1

1

σi(θ)

)
exp

(
−

N∑
i=1

(yi − fi(ti, θ))2

2σ2i (θ)

))

= argmaxθ

[
−N ln

(√
2π
)
−

N∑
i=1

ln(σi(θ))−
1

2

N∑
i=1

(
yi − fi(ti, θ)

σi(θ)

)2
]
. (2.17)

The first term in eq. 2.17 is θ-independent and consequently does not affect the optimi-

sation procedure. Furthermore, if we assume constant errors σi, minimising the negative

log-likelihood yields

θopt = argminθ

N∑
i=1

(
yi − fi(ti, θ)

σi

)2

. (2.18)

Thus, the sum in eq. 2.18 represents the maximum likelihood estimator for Gaussian

distributed errors. Moreover, if the model only depends linearly on the parameters, this

sum of squares follows a χ2-distribution of N −M degrees of freedom, cf. [Hastie et al.,

2009].

All errors related to the fate mapping data were calculated using the bootstrap method,

see [Efron et al., 1993], utilising N = 105 bootstrapped samples. Uncertainties regarding

fractions of cycling cells and proliferation rates were estimated in terms of the standard

error of the mean (SEM). The error of the cell cycle dropout fractions in chapter 4 was

estimated during least-squares fitting since too few data points were available. The inclu-

sion of uncertainty estimations into the fitting problem is explained below. Least-squares

fitting was performed with MATLAB’s function lsqnonlin (version R2020a), MATLAB’s

standard function for non-linear least-squares fitting problems. Here, we used the trust-

region-based variant Trust-Region-Reflective Least-Squares Algorithm. During parameter

estimation, parameters were constrained to the interval [0;∞]. Furthermore, central finite

differences were used. The tolerances of the objective function, as well as the step size

were chosen to be 10−4, whereby the maximum number of function evaluations was 104.

The maximum number of iterations per fit was set to 102. To find the global minimum of

the objective function, starting values were chosen randomly. For this purpose, the Latin

hypercube method was used, see [McKay et al., 2000], to enable efficient screening of the

multidimensional parameter space. When compiling the random sample of N = 103 pa-
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rameter sets using MATLAB’s function lhsdesign, hypercubes of edge length a = 10 were

generated, thereby covering the subspace of all biologically relevant parameter values.

Estimation of uncertainties

As mentioned before, we had to estimate the error associated with fractions of cycling

cells in chapter 4. In this case we have σi = σi(θ) = θj , i.e. the error is considered as

an additional parameter. The second term in eq. 2.17 must therefore be included in the

optimisation procedure. The extended least-squares sum is thus given by

θopt = argminθ

N∑
i=1

[
2 ln(σi(θ)) +

(
yi − fi(ti, θ)

σi

)2
]
, (2.19)

where constant σi can actually be omitted in the sum. Optimisations of this form can also

be handled with MATLAB’s standard function lsqnonlin. However, since this function is

passed unsquared summands of the form
√

2 ln(σi), problems arise for error values smaller

than one. To avoid this, we rewrite eq. 2.19 as

θopt = argminθ

N∑
i=1

[
2 ln(σi(θ)) +

(
yi − fi(ti, θ)

σi(θ)

)2
]

= argminθ

N∑
i=1

[
2 ln(Cσi(θ))− 2 ln(C) +

(
yi − fi(ti, θ)

σi(θ)

)2
]

= argminθ

N∑
i=1

[√
2 ln(Cσi(θ))

2
+

(
yi − fi(ti, θ)

σi(θ)

)2
]
, (2.20)

introducing a constant and large scaling factor C � 1. From the second to the third line

we excluded the constant offset of N ln(C) from the negative log-likelihood. In our case

eq. 2.20 together with the choice of C = 104, has proven to be robust for all considerations

made in this thesis. Notably, the least-squares sum now depends on the explicit choice of

C.

Identifiability of model parameters and predictions

It shall be assumed that the sum in 2.18 or 2.19 gives a value of χ2
min at the global minimum,

i.e. at θ = θopt ∈ RM . Note that with this choice of notation we do not want to imply that

the sum obeys a χ2-distribution. Since we consider a non-linear fitting problem, we use

the profile likelihood method, see [Venzon et al., 1988], to estimate confidence intervals
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of the single components of θopt. Here, projections of M -dimensional regions around the

global minimum that are bounded by fixed ∆χ2 = χ2(θ) − χ2
min are considered. Given

one degree of freedom, the 68 % quantile of the χ2-distribution corresponds to ∆χ2
0.68 ≈ 1,

while the 95 % quantile is associated with ∆χ2
0.95 ≈ 4. In practice, for the 95 % confidence

bounds of parameter θj , we fix this parameter in the vicinity of its optimal value θj,opt

and perform least-squares fitting regarding the remaining M − 1 parameters. This will

result in χ2 > χ2
min, by definition of the global minimum. By systematically increasing or

decreasing θj , upper and lower bounds are gained whenever the critical value of χ2
min + 4

is reached. Plotting χ2 over θj gives the profile likelihood of parameter θj .

Confidence intervals of model predictions were similarly addressed in terms of prediction

profile likelihoods, also known as predictive likelihoods. This concept was discussed thor-

oughly in [Hinkley, 1979] and was applied to ODE-based dynamic models in [Kreutz et al.,

2012]. Here, an artificial data point is added to the fitting problem with a sufficiently large

weight to be considered in the minimisation procedure, while excluding its contribution

from the likelihood computation. This additional data point represents a possible realisa-

tion of our observable near the global minimum, whose confidence interval we intend to

calculate. Now the value of this variable is successively increased or decreased around its

best fit value for fixed time t. In this way a profile likelihood is obtained which leads to

confidence intervals of desired confidence levels.

The calculation of profile likelihoods was coded in MATLAB (version R2020a). As before,

lsqnonlin was used for non-linear least-square fitting with the same choice of parameters

as above. The fixed parameter was incremented or decremented with a relative step size

of 0.5 % of its value at the global minimum. The initial condition of the fitting procedure

was set to the parameter solution of the previous minimum. Also, the (reduced) parameter

set at the global minimum was checked for each value of the fixed parameter of interest.

Predictive likelihoods were computed in a similar fashion, with additionally setting errors

of “artificial” data points to σ = 10−2. 68 % confidence bounds for the model predictions

were obtained this way, see section 4.7.

Model selection

All model comparisons in this work are based on the corrected Akaike information criterion

(AICc), cf. [Akaike, 1974]. Here, the term “correction” refers to the consideration of
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finite sample sizes N . Let M denote the number of model parameters and LD(θopt) the

maximum likelihood of this same model. Then, the AICc reads

AICc = 2M − 2 ln(LD(θopt)) +
2M2 + 2M

N −M − 1
. (2.21)

When performing least-squares fitting, we do not calculate the likelihood explicitly. In-

stead, we calculate θ-dependent parts of the negative log-likelihood that we denoted with

χ2
min so far. Considering the exact relation between χ2

min and the likelihood, we get

AICc = χ2
min + 2M +

2M2 + 2M

N −M − 1
, (2.22)

where χ2
min arises either from eq. 2.18 or eq. 2.19, depending on whether uncertainties

have been included in the fitting procedure or not. The last two terms in eq. 2.22 penalise

increased model complexity and counteract the decision for overfitted models. The over-

line emphasises that the given measure misses some of the constant terms irrelevant to

the optimisation. However, in practice, we look at differences between AICc values, and

hence these constant contributions cancel out. For simplicity, we omit the over-line from

now on when referring to the AICc measure. When using the AICc for model selection,

the best model is associated to a minimal AICc of AIC
(min)
c . Differences with respect to

this best model and candidate model j are considered as ∆AICc
(j) = AIC

(min)
c −AICc

(j).

The exponential exp(∆AICc
(j)/2) is referred to as the relative likelihood of model j with

respect to the best model. In the field of systems biology, the consensus is that a model

j can be confidently rejected during selection, if |∆AICc
(j)| & 10, while differences of

|∆AICc
(j)| . 4 are considered not to be relevant for decision; for differences in between,

no reliable decisions can be made, see [Burnham et al., 2002].

In the case of a very large number of nested candidate models, we used the forward

selection method for model selection, see [Fröhlich et al., 2019; Hastie et al., 2009]. Here,

one starts from the simplest model and systematically expands it to more complex models

until the selection criterion (here AICc) cannot be improved any further. However, this is

a greedy method that does not guarantee to find the model with the smallest AICc among

all candidate models.

2.2 Single-cell RNA-sequencing analysis

This section presents the methods that were used to analyse scRNA-seq data. The data

is represented by a time series of OT-I T cell transcripts during acute Listeria mono-
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cytogenes–OVA (L.m.-OVA) infection at day 4.5, 8, and 12 p.i. Cells were harvested

primarily from the spleen but at day 12 p.i. could also be obtained from the lymph nodes.

Data preprocessing and analysis were mainly performed in Python (3.8) using the package

SCANPY (version 1.7.1), see [Wolf et al., 2018]. SCANPY offers a variety of implemen-

tations of state-of-the-art methods and is based on the AnnData class (version 0.7.5), see

[Wolf et al., 2018]. AnnData defines a data type that is used to store a variety of data

efficiently and in a scalable manner. In the following, details on the concrete analysis steps

and used methods are provided.

2.2.1 Data preprocessing and quality control

We briefly comment on how the underlying count matrices were gained and outline our

choice of cells for the subsequent analysis procedure. We mainly followed the preprocessing

guidelines presented in [Luecken et al., 2019].

Generation of count matrices

Library preparation was achieved using a droplet-based approach by 10X Genomics. For

this purpose, the Chromium Single Cell 3’ & Gel Bead Kit v3 was utilised. In addi-

tion, libraries of spleen and lymph nodes were pooled at each time point using Hashtag

oligonucleotides (HTOs), thereby attaching an organ-specific label to the surface of the

cells. Following the same principle, antibody-derived tags (ADTs) were also used to label

important surface proteins such as CD127 and CX3CR1. Both the HTOs and the ADTs

were obtained from Biolegend. The pooled libraries were then paired-end-sequenced on

an Illumina Novaseq 6000 S2 sequencer. All experimental steps were carried out by my

colleague Albulena Toska. Alignment to the mouse reference genome GRCm38 (release

8.4) was done by the 10X Genomics software Cell Ranger (version 3.1.0) using default

parameters. In addition, Cell Ranger performed counting of unique molecular identifiers

(UMIs), basic filtering of cells, and demultiplexing with respect to gene expression, HTO,

and ADT counts. The resulting .bam-files were then processed by the software tool velo-

cyto (version 0.17.17), called with default parameters to provide count matrices for spliced

and unspliced mRNA molecules, respectively, see [La Manno et al., 2018]. The obtained

.loom-files were the basis of all subsequent considerations, while the matrices were concate-

nated across time points. Of course, the HTO and ADT information were not considered

as gene dimensions here.
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Basic filtering of cells and genes

Starting with 17502 cells, we first removed 525 cells that had signatures different to T

cells. For example, erythrocytes and B cells, expressing high levels of Hba-a1 or Cd74

and Ighm, were excluded. Moreover, cells were filtered out that expressed less than 300

genes. Dying cells were classified as cells having mitochondrial gene counts above 7.5 %

of their total counts and were excluded from the analysis. The organ label was assigned

to each cell based on its respective HTO counts. Thresholds were defined individually

for each time point and each HTO label, ranging between 2 to 120. Cells that could not

be assigned any label were removed. In contrast, cells that were positive for more than

one HTO label were not initially removed, but were assigned the label “multiplet”. This

way, 1424 cells were classified as inter-HTO doublets. Below we explain the subsequent

considerations regarding these cells. Overall, 3000 cells were excluded by this choice of

filters, while 14502 cells remained. In addition, gene filters were set to 20 counts for spliced

and to 10 counts for unspliced mRNA molecules giving rise to 10766 remaining genes in

the expression matrix.

Removal of doublets

In order to remove doublets, we used the Python package Solo (version 0.6), see [Bernstein

et al., 2020]. Solo partially consists of a variational autoencoder that both embeds the

cells under consideration and also serves as a first pre-trained classifier. A neural network,

which learns to distinguish doublet states from measured cell states then acts as an addi-

tional classifier. The doublet states are obtained from the measured cells by simulations,

assuming that the fraction of doublets in the data set is small. Therefore, no training data

needs to be specified within this semi-supervised approach. Nevertheless, the accuracy

improves by providing labelled data. While the previous considerations allowed us to re-

liably identify cells positive for two (or more) HTOs as inter-HTO doublets, they did not

provide information on doublets within the same HTO class. To identify these intra-HTO

doublets, we applied Solo on each sample individually, thereby providing a list of known

doublets. As recommended by the authors, we passed cell- and gene-filtered count ma-

trices to the tool for this purpose. In this way, Solo identified 2213 intra-HTO doublets,

in addition to the 1424 previously classified inter-HTO doublets. Notably, the intra-HTO

doublets showed significant overlap with the inter-HTO doublets in dimensionally reduced

embeddings (not shown). On day 4.5 p.i. only a few doublets could be classified this

way. We suspect that the strong cell cycle activity at day 4.5 compared to the other time

points might be a possible confounding factor in the analysis. This is because cells in
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their G2M-phase are naturally hard to distinguish from real doublets. However, this is no

severe problem as the day 4.5 time point had the smallest cell number and therefore the

smallest fraction of doublets to be expected. Removing all doublets (inter- and intra-HTO

doublets) gave rise to 10865 cells being available for downstream analysis. Finally, gene

counts were per-cell normalised and (log+1)-transformed.

Cell cycle classification

Cell cycle classification was performed according to SCANPY’s working flow. To this end,

we used the cell filtered matrix from above but considered it first with raw count data.

Genes were filtered out that were expressed in less than three cells. Counts were (log+1)-

transformed and scaled, i.e. gene counts were set to zero mean and unit variance. Then,

based on Seurat’s standard vignette, see [Satija et al., 2015], a continuous S and G2M

score was calculated for each cell. For this purpose, a list of S- and G2M-phase genes was

taken from [Tirosh et al., 2016]. The classification was done using both S and G2M scores

and a linear decision boundary in this two-dimensional space by employing the identity

function. Cells for which both scores had been negative were assigned a G0/G1 label. All

labels were saved in the previously manipulated AnnData object.

Highly variable genes

Most of the downstream analyses were not based on the full set of genes, but only on

highly variably expressed ones. We classified genes as being highly variable or not, using

the R (version 3.6.1) package scran (version 1.12.1), see [Lun et al., 2016]. Here, the

functional relation between variance and mean is estimated based on the normalised and

log-transformed expressions. The functional relation obtained in this way is interpreted as

the technical variance. The biological component of the variance is defined as the differ-

ence between the observed and the estimated variance. Genes with the highest biological

variance and a false discovery rate below 0.05 are classified as highly variable. Applying

scran to our data resulted in 3496 genes being classified as highly variable.

2.2.2 Dimensionality reduction, clustering, and visualisation

To visualise and interpret the high-dimensional data set at hand, its dimensions need to

be reduced. In addition, cells must be identified with known immunological phenotypes

to infer possible developmental transitions between them. Therefore, we briefly outline all

essential methods that were used to achieve this.
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Uniform manifold approximation and projection

The Uniform Manifold Approximation and Projection (UMAP) method was used to vi-

sualise our data, see [McInnes et al., 2018]. In contrast to principal component analysis

(PCA), cf. [Pearson, 1901], UMAP is a non-linear method based on manifold learning.

The authors claim that their method is particularly robust and preserves global proper-

ties of the data extremely well. Like many other methods, UMAP utilises the k-nearest

neighbour (kNN) graph representation of the data. kNN graphs are directed graphs that

store information about neighbourhood relationships of cells from high dimensional space.

Here, k refers to the number of neighbours considered per cell and thus defines a scale

of locality. We computed kNN graphs utilising SCANPY’s implementation with k = 30

neighbours and n = 50 principal components (PCs). Note that computing this graph

based on n = 50 PCs can ideally be considered as noise removal since relevant biologi-

cal effects can possibly be captured in the first few PCs. In our analyses, UMAPs were

computed with default parameters (version 0.5.1).

Clustering

We used the Leiden algorithm, see [Traag et al., 2019], to cluster cells in an unsupervised

fashion. It addresses the community detection problem by directly maximising the modu-

larity of the kNN graph hierarchically. The modularity of a graph is a scalar between zero

and one that quantifies the connectivity of nodes within a cluster (number of intra-edges)

compared to the connectivity of nodes across different clusters (number of inter-edges),

taking into account the actual size of the clusters. While at the start each cell is assigned

a different cluster label, labels are changed iteratively in a greedy fashion until there is

no further modularity gain. Cells belonging to the same cluster are summarised as super-

cells and the procedure is repeated. Depending on the specified resolution parameter r, a

final number of cluster labels is obtained. Hence the number of resulting clusters has no

biological meaning per se and is controlled by the resolution. The Leiden algorithm repre-

sents a conceptual refinement of the Louvain algorithm, see [Blondel et al., 2008]. This is

because an additional step in the algorithm guarantees that all sub-parts of a cluster will

be connected. In this work, we used SCANPY’s implementation of the Leiden algorithm

(version 0.8.1) based on the previous kNN graph and a resolution parameter of r = 0.8.
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Cluster annotation

Gene expression was visualised by plotting (log+1)-transformed raw counts. Expression

profiles of known marker genes and cell cycle classification labels were compared with the

obtained Leiden clusters. In addition, differential expression testing was performed across

the Leiden clusters, assuming the clusters have biological significance. Here, SCANPY’s

standard implementation was used with default parameters, utilising unpaired t-tests while

p-values were corrected in terms of the Benjamini-Hochberg procedure, see [Benjamini et

al., 1995]. Altogether, this allowed for accurate annotation of the available clusters.

2.2.3 Trajectory inference

The central focus of our analyses lies in the inference of developmental pathways. Of

particular relevance are transitions between whole cell clusters, as we would like to utilise

these findings in the context of compartment modelling. Since it is important to approach

this matter in an unbiased fashion, we only considered methods that did not require prior

knowledge of directionality, e.g. in terms of a “root cell”. Below we briefly present these

methods.

RNA velocities

To derive differentiation pathways during acute infection, we used the method of RNA

velocities, see [La Manno et al., 2018]. Fitting a simplified transcription model to spliced

and unspliced counts of a fixed gene Y , the degradation rate of Y can be inferred by con-

sidering cells that are in steady state with respect to Y . Under certain assumptions, an

RNA velocity can be calculated for each cell concerning gene Y . This velocity is positive

in case of upregulation and negative for downregulation of gene Y . Such consideration

for all genes provides an extrapolation of a cell’s state into its near future, which can be

projected into a (non-linear) embedding of choice. This model will be referred to as the

deterministic model in the following. The underlying transcription model was modified in

[Bergen et al., 2020] such that the steady state assumption mentioned above is no longer

required. This was achieved by taking into account full transcription dynamics. In chap-

ter 4, we will exclusively present results from this dynamic model. This is because the

dynamic model seems to be slightly more robust compared to the deterministic model,

especially at the boundaries of the embedding. Overall, the results of both models were

very similar, suggesting that the steady state assumption seems to hold approximately (at

least for the driver genes). RNA velocities were computed with scVelo (version 0.2.3), i.e.
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the SCANPY-compatible Python package from [Bergen et al., 2020]. To this end, first and

second moments of gene expression for spliced and unspliced counts were computed based

on the previous kNN graph (k = 30). Note that whenever considering embeddings that

were based on ∼ 100 cell cycle genes only, we instead considered kNN graphs that resulted

from a reduced number of PCs (n = 3). The velocity graph was obtained from the RNA

velocities by taking into account cosine similarities between the velocity vector of one cell

and its distance vector with respect to another cell. Therefore, this graph contains infor-

mation about transition probabilities between cells. Directions of developmental pathways

were projected into UMAP embeddings, cf. [La Manno et al., 2018], and averaged on a

grid.

Partition-based graph abstraction

Partition-based graph abstraction (PAGA) directly addresses our problem of inferring

transitions between clusters, see [Wolf et al., 2019]. To this end, PAGA assumes (Lei-

den) clustered kNN graphs. The method compares the number of inter-edges between two

different partitions with the expected number that is obtained by randomly connecting

half-edges (thereby forming full edges). The latter procedure is considered the null model

of the method, allowing to test for disconnectedness between partitions. Based on fur-

ther heuristic considerations, a measure of connectivity is defined, which is represented

graphically as the thickness of connections between two partitions. Utilising RNA veloc-

ities, PAGA can be used to map transitions between clusters. Similarly, as in the RNA

velocity method above, a transition matrix is concluded. An overall transition measure

from cluster i to j is obtained by summing up cellular transitions. Considering the inverse

transition j to i results in a difference between these transition measures. t-tests are used

to decide whether differences are significant, with the sign of the differences determining

the respective transition direction. Although PAGA tends to overestimate the number

of inter-edge connections within its null model, it has been shown to provide highly ro-

bust results, as demonstrated in the meta-study by [Saelens et al., 2019]. With PAGA

being part of SCANPY’s standard functions, we used PAGA to map connections between

clusters with a connectedness threshold of α = 0.05. When mapping transitions using

precomputed velocity transitions from the dynamic model, we applied the same threshold.
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CellRank

Based on the inferred directionality from RNA velocities, the SCANPY-compatible Python

package CellRank (version 1.2.0) offers further applications, see [Lange et al., 2020]. Im-

portantly, uncertainties of the RNA velocities are included and stochasticity of fate deci-

sions is taken into account. The latter is achieved via Markov state modelling, whereby

Markov chains are broken down into individual macrostates. Mathematically this is re-

alised by using a generalised version of the Perron-cluster cluster analysis (G-PCCA),

cf. [Reuter et al., 2018]. These macrostates can represent either initial, final, or tran-

sient states. For cells associated with transient states, absorption probabilities can be

calculated, i.e. probabilities to translate into the respective terminal states. Velocity-

kernel-based transition matrices were computed using the deterministic mode. Three final

states were chosen manually. Absorption probabilities with respect to these final states

were computed using default parameters, which gave rise to fate maps. Additionally, genes

were inferred whose expression correlated with transitioning into the respective terminal

lineages. Genes that showed high correlations and/or were known to have significant bio-

logical relevance were selected and their expression was plotted along pseudo-time. Here,

RNA velocity pseudo-time was chosen which is based on the previously mentioned velocity

graph.

CytoTRACE

As an alternative method to infer developmental trajectories in an unbiased way, we used

the R package CytoTRACE (version 0.3.3), see [Gulati et al., 2020]. Analysing a large

number of scRNA-seq data sets with annotated differentiation pathways, the authors have

identified the number of expressed genes per cell as a robust correlate for stemness. The

authors take advantage of this result in the following way: First, those genes are identified

that show a high correlation with the number of expressed genes per cell. Based on

these genes, a score is calculated for each cell. This score is normalised to take values

between zero (differentiated) and one (undifferentiated). The CytoTRACE score obtained

in this way thus captures the relative degree of differentiation of the cells. While this

approach is entirely heuristic, the underlying reasons for the number of expressed genes

per cell correlating so well with stemness remain unclear. In our analysis, we used the

CytoTRACE package with default parameters while treating the time series data as one

batch. To this end we provided a preprocessed but unnormalised count matrix as the

recommended working flow suggests.
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Chapter 3

Quantifying cell cycle speed

In this chapter, we present a method that allows the calculation of mean cell cycle lengths

of rapidly dividing cells in vivo. We begin by explaining the mathematical framework of

this formalism. The results and assumptions of the method are validated using stochas-

tic simulations. We then apply the new method to quantify the cell cycle of dividing

T cell subpopulations during acute infection. Those results will be considered in the next

chapters during mathematical modelling of single T cell responses. This method was incor-

porated into the previously published manuscript [Kretschmer et al., 2020], where it was

used to show that cell cycle speed of memory precursor cells is more strongly modulated

by antigen availability than cell cycle speed of effector cells.

3.1 Quantification of cell cycle lengths

Here we look at a population of cells that grows due to cell division. The cell cycle length

Tdiv of a single cell should obey the general and unknown distribution D(Tdiv), which

results from the convolution of the individual phase distributions. We assume that the

individual cell cycle phases are totally uncoupled. This assumption will be discussed later

in chapter 6. On the level of individual cells, we can assign each cell an age a and a time-

until-next division δ, such that a+ δ = Tdiv. After the transient phase, the system is in a

state of equilibrium, which we would like to study in more detail below. In this section,

we provide a simple experimental setup and an associated mathematical formalism to it.

First, we consider the time-until-next division representation, then we progress to the age

representation. Both approaches will be used in the course of this work. Assumptions and

approximations made in this section are discussed in the following sections with the aid

of a stochastic simulation.

3.1.1 Experimental framework

Let us consider the experimental design that is depicted in Fig. 3.1A: At t0 = 0, mice

are injected a nucleoside analogue (NA) that gets incorporated into the cells’ genomes



32 CHAPTER 3. QUANTIFYING CELL CYCLE SPEED

iiiiii

viviv

DNA content

2N 4N

B
rd
U

ne
ga
tiv
e

po
si
tiv
e

B

2N 4N

B
rd
U

ne
ga
tiv
e

po
si
tiv
e

DNA content

iv vi

C

A

G M2G M2S

t = 0 tBrdU ttm

BrdU available
analysis:
BrdU
DNA

G M2G1 S

Figure 3.1: Sketch of the experimental setup and an example of the resulting data used
for quantifying cell cycle speed. (A) Experimental setting that consists of BrdU labelling
and subsequent measurement of the DNA content of the cells. Shown are the extreme cell
configurations that give contributions to gate iii (see (B)), whose cells carry information about
the average cell cycle speed. Here, tm denotes the time point of measurement, while tBrdU

represents the time at which the BrdU concentration is no longer sufficient to label cells so
that they are considered positive in the subsequent FACS analysis. (B) Gate notation (red)
and BrdU/DNA profile for double-positive thymocytes with an analysis time of tm = 4.0 h.
(C) Same conditions as in (B), with measurement time point of tm = 0.5 h. (Experiments
conducted by Sabrina Bortoluzzi and Marc-Schmidt-Supprian)

during DNA synthesis in S-phase. For the purpose of illustration, we will choose the

thymidine analogue bromdesoxyuridin (BrdU) as representative example1. After injection,

degradation of BrdU begins, where labelling efficiency is an unknown function of time. By

1Another experimentally very common nucleoside analogue is 5 - ethynyl - 2’- deoxyuridine (EdU).
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tBrdU we mean the time at which BrdU is no longer present in the required concentration

necessary to label cells such that they will be classified as BrdU+ during measurement.

At measurement time tm, the analysis takes place, measuring BrdU and DNA content

of the cells. This is done within the framework of FACS staining and subsequent flow

cytometric analysis. The DNA content characterises the state of the cell within its cell

cycle: diploid DNA content (2N) corresponds to the G1-phase, while tetraploid content

(4N) indicates the G2- or M-phase. DNA content in between corresponds to the S-phase.

As mentioned before, the idea of NA labelling and subsequent DNA content measurement

is by no means novel, cf. [Weber et al., 2014]. The decisive contribution on our part is

the quantitative analysis of these data in the context of in vivo experiments of rapidly

dividing cells. Here we circumvent the unknown degradation kinetics of BrdU. Moreover,

we are able to estimate the means of all phase length distributions without making strong

assumptions about the exact shape of these distributions, see the following sections.

Fig. 3.1B shows the typical BrdU/DNA profile of such an experiment for the measurement

time tm = 4.0 h. This time point was adapted to the kinetic properties of the dividing

cell population. In this case, CD4+ and CD8+, i.e. double-positive, thymocytes were

considered. The quadrants of the plot are numbered counter-clockwise. During progression

through the S-phase, cells synthesise DNA and consequently increase their DNA content

from 2N to 4N . After division, a discrete jump in DNA content from 4N to 2N takes

place. As soon as the S-phases of the cells overlap with the BrdU availability window,

cells become positive for BrdU. Since the BrdU label is inherited, cells remain in one

of the upper quadrants also after division. BrdU dilution can be neglected, as we are

only following one cell division at most. It should be noted that due to the limited BrdU

availability, at an unknown (point in) time, cells stop incorporating BrdU. This effect leads

to the convenient “gap” along the labelled DNA axis and allows for precise identification

of the cells in gate iii. At the same time these cells are of particular interest, since they

represent exactly those daughter cells that originate from mother cells whose S-phase

overlapped with the BrdU availability window and which then divided in the course of the

experiment. Hence, this gate captures information about the average speed at which cells

divide. After having formalised this intuition, we get back to more practical considerations

in section 3.2.

3.1.2 Mathematical description

Let pssG2M
be the distribution of G2M lengths TG2M in steady state. Throughout this thesis

we consider the G2M-phase as a whole and do not break it down into its two sub-phases

G2 and M. Furthermore, let psstnd(δ) be the steady state distribution of cells having a time-
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to-next division (tnd) of δ left. Assuming, cells become positive for BrdU immediately

upon incorporation, the probability of a cell being in gate iii at measurement time (see

Fig. 3.1B for gate notation) can be written as

Pr(gate iii) =

∞∫
0

dTG2M

max(tm,TG2M)∫
TG2M

dδpssG2M(TG2M)psstnd(δ), (3.1)

where this exact choice of integral bounds corresponds to all possible cell configurations

required to contribute to that gate, see Fig. 3.1A. This is also the reason why the length

of the G2M-phase plays a role here at all. Assuming that the distribution of G2M lengths

is sufficiently well described by a Dirac-function, then this allows us to simply account for

the outer integral by replacing TG2M with its mean value in the boundaries of the inner

integral. Thus we get

Pr(gate iii) ≈

max(tm,〈TG2M
〉)∫

〈TG2M
〉

dδpsstnd(δ). (3.2)

In order to proceed, the so far unknown function psstnd(δ) must be known. The concrete

functional form can be derived from a variant of the von Foerster equation, c.f. [Von

Foerster, 1959], with the steady state constraint added. Based on [Dowling et al., 2005],

we provide a detailed derivation in supplementary information A. The analytical solution

reads

psstnd(δ) = cecδ

1− 2

δ∫
0

dδ′D(Tdiv=δ′)e−cδ
′

 , (3.3)

where c is interpreted as an average growth factor of the population. The relation between

c and the division-time distribution D(Tdiv) follows from eq. 3.3 and the fact that the

distribution psstnd must vanish at infinity, i.e. lim
δ→∞

psstnd(δ) = 0, since we implicitly assume

that all cells are dividing2. Hence we get the relation

∞∫
0

dδ′D(Tdiv = δ′)e−cδ
′

=
1

2
. (3.4)

2This assumption can be easily released by defining D̃(Tdiv) as the division-time distribution of dividing
cells only, thereby excluding finite contributions from Tdiv = ∞, c.f. [Powell, 1956].
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For synchronous cell division of inter-division time T0, that is D(Tdiv) = δD(Tdiv − T0),
where δD denotes the Dirac-function, it follows directly that

c =
ln(2)

〈D(Tdiv)〉
. (3.5)

For distributions with finite variability, eq. 3.5 holds only approximately. Interestingly,

this approximation also applies to realistic distributions with moderate to large variability,

which we will show in section 3.3. In the following, we will abbreviate 〈D(Tdiv)〉 =: 〈Tdiv〉.

Let us further assume that the division-time distribution has the property of being zero

for small waiting times. Put differently, there exists a minimum division-time Tmin
div with

D(Tdiv < Tmin
div ) = 0. Conceptually this is not a strong assumption, since, as we dis-

cussed in chapter 1, observed in vitro division-time distributions suppress small division-

times. Considering times-to-next division δ that are smaller than Tmin
div , eq. 3.3 simplifies to

ptnd(δ|δ < Tmin
div ) = cecδ. Thus we can express the probability of cells having a time-to-next

division in between δ1 and δ2 as

psstnd(δ1 < δ < δ2) =

δ2∫
δ1

dδpsstnd(δ|δ < Tmin
div ) = ecδ2 − ecδ1 , (3.6)

while assuming δ1 < δ2 < Tmin
div . This expression is also obtained, if we try to use a

distribution that manifestly incorporates the approximation property. For example, if we

again consider synchronous cell division from before, eq. 3.6 follows directly, where the

minimum division-time is given by Tmin
div = T0. Eq. 3.6 defines a very handy expression

since the full distribution of division-times has cancelled out and the only link to it is

given by relation 3.5.

Let us return to our experimental setting. Our next goal is to use these considerations

to write down the probability of a cell being in the informative gate iii during time of

measurement. Eq. 3.6 allows calculating the number of mother cells at t0 = 0 that will

give rise to two daughter cells in gate iii at time tm. Defining the initial cell number

N(t=0) =: N0, this number of mother cells reads N0p
ss
tnd (〈TG2M〉 < δ < tm). Since the

population further grows between t0 and tm, the probability to find a cell in gate iii at tm

is given by

Pr(gate iii) =
2N0p

ss
tnd (〈TG2M〉 < δ < tm)

N(t=tm)
. (3.7)
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Here, the correct normalisation N(t=tm) directly follows from the definition of c as the

mean growth factor of the population. Hence, we get

N(t=tm) = N0ectm . (3.8)

Inserting eq. 3.8 into eq. 3.7 finally gives the primary equation

Pr(gate iii) = 2
(

1− ec(〈TG2M
〉−tm)

)
, (3.9)

meaning that if the left-hand side of eq. 3.9 is measured, the parameter of interest c can be

computed. However, this requires knowledge about the mean length of the G2M-phase, see

section 3.2. Note that gate probabilities translate into gate frequencies for large numbers

of cells, which, in practice, will always be the case for our flow cytometric measurements.

3.1.3 Intuitive limit of the primary equation

It is convenient to manipulate eq. 3.9 even further to develop a more intuitive understand-

ing of this formalism. To this end, consider eq. 3.9 for small exponents, i.e.

c (〈TG2M〉 − tm)� 1. The Taylor expansion up to first order leads to the approximation

Pr(gate iii) ≈ 2ctm − 2c〈TG2M〉. (3.10)

Additionally, the probability of a cell to be in G2M-phase at the beginning of the experi-

ment is, by means of eq. 3.6, given by

psstnd(0 < δ < 〈TG2M〉) = ec〈TG2M
〉 − 1 ≈ c〈TG2M〉 =: fG2M, (3.11)

which, at the same time, is the fraction of cells being in G2M-phase at any time in steady

state, particularly at t = t0. Hence we can identify the factor in eq. 3.10 with fG2M and

get

Pr(gate iii) ≈ 2ctm − 2fG2M. (3.12)

Formula 3.12 has a very intuitive interpretation. The first term describes all cells that have

divided during the experiment. However, gate iii is formed by a subset of these cells. We

have to subtract those cells that were in G2M-phase at the beginning of the experiment.

Even though these cells also divide, they do not incorporate BrdU since their S-phase had

taken place before the experiment started. The second term in the approximation formula

represents these very cells. It should be emphasised that this last approximation only

served the purpose of illustration, especially since the original eq. 3.9 can always be used.
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3.1.4 Analogue consideration of age representation

Instead of working with the object psstnd(δ), we can alternatively consider the age represen-

tation. The corresponding distribution is given by pssage(a) and captures the probability of

cells having an age a in steady state. Then, in complete analogy to the previous formula-

tions, the probability of cells to be found in gate iii at measurement time reads

Pr(gate iii) =

∞∫
0

dTG2M

max(tm−TG2M
,0)∫

0

dapssG2M(TG2M)pssage(a), (3.13)

where the boundaries of the inner integral refer to t = tm. Hence no further normalisa-

tion factor needs to be considered in this representation. Assuming peaked G2M length

distributions as before, we get

Pr(gate iii) ≈

max(tm−〈TG2M
〉,0)∫

0

dapssage(a). (3.14)

The exact form of pss(a) can be derived from the von Foerster equation, cf. [Von Foer-

ster, 1959], employing steady state assumptions. Unlike for pss(δ), we do not provide a

derivation for pss(a), since the derivations are structurally very similar. For a complete

derivation we refer instead to [Stukalin et al., 2013]. The analytical expression is given by

pssage(a) = 2ce−ca
∞∫
a

da′D(Tdiv=a′) (3.15)

and the boundary condition reads

2

∞∫
0

daD(Tdiv=a)e−ca = 1, (3.16)

which leads to the already mentioned relation 3.5. The probability of encountering a cell

of age a that lies in the interval [a1, a2], is given by

pssage(a1 < a < a2) =

a2∫
a1

dapssage(a) = 2
(
e−ca1 − e−ca2

)
. (3.17)
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Again, we assumed the existence of a minimal division time Tdiv for which D(Tdiv <

Tmin
div ) = 0 holds, and consider ages that satisfy a1 < a2 < Tdiv. Evaluating eq. 3.17 at the

age configurations relevant for gate iii, we find

Pr(gate iii) = 2
(

1− e−c(tm−〈TG2M
〉)
)
, (3.18)

which corresponds exactly to our result from eq. 3.5 in the time-to-next division represen-

tation. The two representations in terms of time-until-next division and age are equivalent.

Expressions derived within one formalism can always be converted into expressions derived

from the other formalism by simple algebraic manipulations. From now on, we use both

representations together. To this end, we choose the representations in such a way that

the derived equations are as compact as possible from the start.

3.2 Resolving cell cycle phases

We have found a way to calculate mean cell cycle lengths using eq. 3.9 and relation 3.5.

However, eq. 3.9 depends on the mean G2M length. Therefore, we still have to provide

a complete system of equations. To continue, we must relate the mean G2M length to

another gate probability. For this purpose, gates i and vi, in which cells of tetraploid

DNA content are found, could be used in principle (see Fig. 3.1B for gate notations).

Conceptually, the same time tm that we considered in eq. 3.9 can be used to establish

additional gate probabilities. On average, the G2M length is short compared to the overall

cell cycle length. This means that if we measure long enough to accumulate enough cells

in primary gate iii, gate vi will be empty and thus uninformative. Gate i, on the other

hand, will not be empty, but we could not identify its cells reliably. This is because its

cells will be continuously connected to the neighbouring gate ii, containing (late) S-phase

cells. Hence, establishing the gate threshold along the DNA axis is difficult to achieve

in practice. Therefore, we generally recommend inferring the fraction of G2M-phase cells

by evaluating DNA content histograms. For example, the Watson pragmatic curve fitting

algorithm could be used for this purpose, see [Watson et al., 1987].

However, we find that using two distinct time points of measurement, an early one, tem, and

a later one, tlm, significantly improves the accuracy of our method. Furthermore, this allows

calculating all other cell cycle phase lengths. Fig. 3.1C shows why the early time point is

better suited to quantify the G2M length: since all S-phase cells get BrdU-labelled, the

unlabelled cells with tetraploid DNA content located in gate vi can be identified reliably.

This holds for all time points that are smaller than the average G2M length. Of course,
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this choice of experimental design comes with the disadvantage of combining information

from two mice and hence introduces some external variability. Nevertheless, we think this

is a reasonable approach, especially since the G2M-phase contribution to the overall cell

cycle is rather small (in the context of T cells). In principle, one can also circumvent this

problem by adding another DNA label to the experimental setup with a substance other

than BrdU, e.g. EdU. One chooses the late time point tlm as the time point of analysis

and administers EdU shortly before the analysis at time tlm− tem. In this way, information

about the G2M-phase is obtained from the same mouse. For simplicity, however, we will

switch back to our exemplary experimental design from Fig. 3.1A.

As in the previous section, we can write,

Pr(gate vi) =

∞∫
0

dTG2M

max(TG2M
−tem,0)∫

0

dδpssG2M(TG2M)psstnd(δ)

≈ ecmax(〈TG2M
〉−tem,0) − 1, (3.19)

where the same approximation scheme was applied as before. Here, our steady state

formula was evaluated directly at measurement time. Together, equations 3.9 and 3.19

form a closed system. However, we are interested in resolving the full cell cycle in terms

of all its phases. To this end, we choose to infer the average G1 length in addition. For

this purpose, it is advisable to consider gate iv at the early time point tem. Analogously

we conclude that

Pr(gate iv) =

∞∫
0

dTG2M

∞∫
0

dTG1

TG1∫
max(0,tem−TG2M

)

da pssG2M(TG2M)pssG1
(TG1)pssage(a)

≈ 2
(

e−cmax(tem−〈TG2M
〉,0) − e−c〈TG1

〉
)
. (3.20)

Altogether, this gives us the following closed system of coupled equations

Pr(gate iii) ≈ 2
(

1− e−c max(tlm−〈TG2M
〉,0)
)
,

Pr(gate vi) ≈ ecmax(〈TG2M
〉−tem,0) − 1,

Pr(gate iv) ≈ 2
(

e−cmax(tem−〈TG2M
〉,0) − e−c〈TG1

〉
)
,

〈TS〉 = 〈Tdiv〉 − 〈TG1〉 − 〈TG2M〉,

c ≈ ln(2)

〈Tdiv〉
, (3.21)
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whose implications shall be discussed in more detail now. As we have presented our

formalism in a problem-oriented manner, it is clear that it can be adapted to a variety

of experiments. These include for example extensions to dual-pulse-chase experiments,

involving two different labellings such as BrdU and EdU, see e.g. [Gitlin et al., 2015]. In

the further discussion, however, we refer to the experimental setup from Fig. 3.1A.

It is important to note that the system of equations 3.21 does not depend on the full cell

cycle distribution, nor on any relation between the individual phase length distributions.

Likewise, the unknown BrdU degradation kinetics does not enter the equations. In ad-

dition, we take advantage of the fact that BrdU has only a short availability to uniquely

classify cells in gate iii. This is due to labelled cells of diploid DNA content being separated

from those cells being in S-phase through the gap. Note that the gap will be preserved

even if gate iii cells re-enter S-phase and start synthesising DNA. In principle, one could

even calculate pharmacokinetic parameters of BrdU by setting up gate probabilities for the

middle gates ii and v. One of the reasons why our equations do not depend on the BrdU

availability is related to the specific choice of our gate probabilities: gates ii and v indeed

depend on the time-dependent BrdU labelling efficiency, as well as on the mean length of

the S-phase. However, since we obtain the latter simply by covering the other phases and

the overall cell cycle speed, we do not utilise these gates. Nevertheless, it should be kept

in mind that these gates in principle provide information about the pharmacokinetics of

BrdU, or the respective NA under consideration.

So far, we have not given any details on the choice of the experimental parameters tem

and tlm. tem should be as small as possible to prevent the cells from leaving the gates iv

and vi. Nevertheless, it is necessary to choose tem big enough so that S-phase cells have

the opportunity to incorporate BrdU. We think that tem ≈ 0.5 h is an adequate choice of

the early time point since respective cells are rather rapidly classified as positive during

analysis, given BrdU was available. The later time point tlm depends on the division

behaviour of the cells under consideration. It is advisable to wait long enough such that

a sufficient number of cells can enter gate iii. This also means that a sufficient number

of mother cells can enter the S-phase after BrdU availability has ceased. This leads to

better identification of gate iii cells due to the resulting gap. However, if the waiting time

considerably exceeds the mean G1 length, cells in gate iii will re-enter S-phase and hence

will leave the gate upon DNA synthesis. Furthermore, the validity of our approximation

scheme can no longer be guaranteed when evaluated at times bigger than Tmin
div . In our

case of very rapidly dividing cells, tlm ≈ 3.0 h has proven to be a good experimental choice.
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A final point to be addressed is the estimation of quantification errors. Our method

is, partly by design, very sensitive to gate iii frequencies at time tm. Therefore, the

false positive classification of cells in this gate represents the largest error source. This

misclassification is driven by limited sensitivity regarding DNA content measurements.

Cells that have incorporated BrdU but have not divided during the experiment, could

contaminate gate iii in principle. This especially holds for cells that have not synthesised

enough DNA yet to be distinguished from labelled daughter cells. On the other hand, this

number of cells will be small in case of many cells entering S-phase after availability of

BrdU has ceased, i.e. for large time intervals tm−tBrdU. Visually, this is addressed in terms

of the gap which should be sufficiently large to avoid misclassification of this kind. Given

identifiability of the labelled daughter cells, cell cycle speed can be calculated separately

for each data point of gate iii, while gate frequencies obtained from the early time points

are averaged across mice. Here, the resulting standard error of the mean seems to be a

justified measure of the error. However, in cases where a clear identification of gate iii

is difficult due to large noise, for example, such an approach should be considered with

caution. Resulting standard errors should rather be interpreted as lower error bounds. In

the next sections, we will focus on other possible confounding effects, which we are going

to address in terms of stochastic simulations.

3.3 Application to simulated data

Next, we want to simulate the experiment shown in Fig. 3.1A. This allows to determine the

optimal experimental parameters as well as to check the accuracy of our method. Later

we will verify specific assumptions of our formalism that we have made in section 3.1.

3.3.1 Stochastic simulation

First, we want to show exactly how the simulated data are obtained. Let Ddiv(Tdiv) and

Di(Ti), i ∈ {G1,S,G2M}, be the distributions of new born cells, satisfying a = 0. To

avoid confusion, we have added indices to the distributions. In the presence of cell death,

new born cells are also assigned a death-time Tdeath according to Ddeath(Tdeath). In steady

state, the system’s kinetics is fully described in terms of pss(δ, Tdiv, λ), where λ is defined

as the remaining life-time, λ := Tdeath−a, following the notation of [Dowling et al., 2005].

Again, note that in the presence of cell death, λ will only be the remaining life-time if,

and only if, λ < δ. Otherwise, the cell will divide at δ and hence give rise to two daughter

cells. The opposite argument holds for the interpretation of δ. In the following, we will

not consider this phenomenon of censorship notationally.



42 CHAPTER 3. QUANTIFYING CELL CYCLE SPEED

tt0 tss

A

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8
G1

t [h]

pr
ob
ab
ilit
y
de
ns
ity
fu
nc
tio
n

S
G2M

Tdiv

B

Figure 3.2: Simulation scheme to obtain equilibrium distributions by iteration. (A) All kinetic
properties of the mother cell are initialised at time point t0. Green nodes correspond to cell
divisions and red crosses represent cell deaths. The system is propagated in time such that the
distribution pss can be inferred at time tss. This distribution is then used to initialise mother
cells in a subsequent simulation. Iteratively, the full steady state distribution is thus obtained.
(B) Plot of the cell cycle phase distributions (coloured) and total length distribution (black)
for parameter set 1 from Table 3.1.

To our knowledge, there is no analytical expression for the equilibrium distribution pss in

the presence of cell division and death. Therefore, we must access this distribution via

simulating whole trees of cells, which is schematically shown in Fig. 3.2A. Here, a mother

cell’s time-to-next division gets initialised with its division-time, while its remaining life-

time gets initialised with its death-time, i.e. pss0 (δ, Tdiv, λ) = pss(δ = Tdiv, Tdiv, λ = Tdeath).

In principal, any distribution type could be used here. For fixed parameters, the system

is simulated until the desired point in time. Due to technical reasons, we find it easier

to follow a division tree up to five generations and then use the full distribution thus

obtained as the initialisation of the mother cells in the next simulation. Iteratively, the

desired equilibrium distribution pss can be obtained in this way after only a small number

of iterations.

The shape of the division-time and death-time distributions are assumed to be log-normal,

as this distribution has been shown to describe in vitro data of proliferating lymphocyte

populations accurately, cf. [Deenick et al., 2003; Dowling et al., 2014; Hawkins et al.,

2009]. Throughout this analysis, we consider the exemplary set of parameters that have

been estimated in [Dowling et al., 2014]. Here, the authors fitted a log-normal division-

time model to in vitro data of stimulated OT-I T cells. Interestingly, the authors could also

identify the variance of the inter-division-time distribution. Parameter set 1 in Table 3.1
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parameter set 1 est. 1 err. 1 set 2 est. 2 err. 2

µ(Tdiv) 10.13 h 10.3 h 1.7 % 8.55 h 8.2 h 4.1 %
µ(TG1) 2.84 h 2.9 h 2.1 % 3.11 h 2.8 h 10.0 %
µ(TS) 5.83 h 5.9 h 1.2 % 4.84 h 4.6 h 5.0 %
µ(TG2M) 1.46 h 1.5 h 2.7 % 0.59 h 0.7 h 18.6 %

σ(Tdiv) 1.43 h 1.71 h
σ(TG1) 0.76 h 1.03 h
σ(TS) 1.09 h 1.23 h
σ(TG2M) 0.54 h 0.45 h

Table 3.1: Simulation parameters (means and standard deviations of the respective phase
length distributions) assuming log-normal distributions and their corresponding estimates using
our method. Parameter set 1 was taken from [Dowling et al., 2014], while parameter set 2
stems from [Kretschmer et al., 2020]. Relative errors of quantification refer to the simulation
parameters.

shows the estimated parameters. In contrast to the authors of this study, we assume

that the individual cell cycle phases follow independent log-normal distributions. We

decided to distribute the total variability of the cell cycle among the individual phases

according to their means. Fig. 3.2B shows the division-time distribution as well as the

individual phase distributions for parameter set 1 under consideration. Note that realistic

distributions, such as this one, satisfy our basic assumption of a lag in the overall division-

time distribution. We could allow even more variability here, which might be true for the

in vivo case.

Neglecting cell death for the moment, Fig. 3.3 illustrates the transition of the system

to steady state, based on the marginal distribution psstnd(δ) for which the exact formula,

eq. 3.3, was solved numerically. Normalised histograms based on N = 105 mother cells

were plotted for different numbers of iterations, while n = 0 represents the initialisation

step in terms of a log-normal division-time distribution. Already after a few divisions

(n = 1), probability mass is shifted to smaller time-to-next divisions. After only three

iterations, the discrepancy between exact and estimated distribution is small, while after

ten iterations they completely coincide. The number of iterations needed for convergence

depends mainly on the variability of the underlying distributions.

Now that we have established the correct starting distribution, we can proceed with the

actual simulation of our DNA-labelling experiment. To this end, we first initialise a suf-

ficient number of mother cells with δ, Tdiv, and λ. Then we assign them phase lengths

drawn from the log-normal distributions DG1 , DS, and DG2M. Here we employ the con-
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Figure 3.3: Simulation of the equilibrium distribution by iteration. Normalised histograms
of the equilibrium distribution for different numbers of iterations (blue) and exact solution
(red). N = 105 mother cells were initialised with parameter set 1 from Table 3.1, cell death
was neglected.

straint of rejecting drawn values that result in a sum that exceeds the overall cell cycle

length Tdiv. Hence the individual phase distributions are only approximately log-normal.

The effective joint distribution p(Ti, Tdiv) with enforcement of Ti < Tdiv is of the form

p(Ti, Tdiv) =



p(Ti)p(Tdiv)
∞∫
0

dTi
∞∫
Ti

dTdiv p(Ti)p(Tdiv)

Ti < Tdiv

0 else,

(3.22)
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while Ti is for example given by Ti = TG2M+TS. The resulting deviations from log-normal

distributions are minimal in our case.

For δ < λ, two daughter cells are born, where δ and λ are given by Tdiv and Tdeath,

respectively. The individual phases are assigned in the same way as for the mother cells.

In the simulation, we assume that finite overlap of a mother cell’s S-phase with the BrdU

availability window results in getting BrdU-labelled immediately. This label will then be

inherited upon cell division. Furthermore, it is assumed that labelling efficiency follows

a Heaviside function Θ(tBrdU − t), i.e. BrdU is fully available until tBrdU, after which it

becomes unavailable immediately. Now each initial cell configuration at t0 can be assigned

a particular gate (or eventually two different gates in case of different daughter cells) at

tm. Normalising the respective gate counts with the overall number of cells at tm leads to

the desired gate frequencies. In the stochastic limit, these gate frequencies become robust

with respect to stochastic fluctuations and hence can be interpreted as gate probabilities.

Finally, white Gaussian noise is added to the BrdU and the DNA signal to increase the

similarity between simulated and measured plots. Note that we have assumed that DNA

content gets synthesised linearly upon progression through S-phase. However, in reality,

DNA replication might follow more complex dynamics. At the same time, BrdU intensity

is discrete in our model. A cell is either positive or negative and the irreversible transition

from negative to positive happens as a “jump”. The apparent continuity on this axis is

created exclusively by the added noise. This simulation was implemented in MATLAB

(version R2020a). In addition, the Flow Cytometry GUI (version 1.3.0.0) was used to

visually match the plots to the experimental FACS plots, cf. [Steinberg, 2021].

Fig. 3.4 shows the simulation results for a BrdU availability window of tBrdU = 0.75 h,

considering N = 15000 mother cells at t0 = 0 and different measurement time points tm,

ranging from 0.5 h to 5.0 h. It can be seen that the unlabelled cells in gate vi are rapidly

leaving the gate. 2.0 h after BrdU administration, there are still too few cells in gate iii

to allow for quantification. Only after 3.0 h, enough cells have been collected such that

reliable statements can be made about the average cell cycle speed. Cells that entered

S-phase after degradation of BrdU are found at the left edge of gate iv, i.e. just below the

“gap”. From 3.0 h to 5.0 h, cells continue to accumulate in this gate, as their mean G1-

phase has not yet been completed. This type of visualisation supports the experimenters in

choosing their measurement time points given prior knowledge about the kinetic behaviour

of their cells, e.g. from the literature or a pilot experiment.

Another important parameter is the availability of BrdU. This can be manipulated ex-

perimentally by administering BrdU several times, e.g. every 0.5 h. Fig. 3.5 shows the
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Figure 3.4: Simulated time series of BrdU/DNA profiles for different time points of analysis.
Simulations are based on N = 1.5 · 103 mother cells, neglecting cell death. Red gates identify
those cells that contribute to the quantification procedure. Corresponding fractions result
from larger simulations of N = 106 mother cells. BrdU availability was assumed to be 0.75 h.
Simulation parameters are given by set 1 from Table 3.1.

BrdU/DNA profiles for a fixed measurement time of 3.0 h and different time intervals of

BrdU availability. At a minimal availability of only 6 min, the “gap” is pronounced most.

At an availability of 2.0 h, the labelled daughter cells in gate iii are no longer identifiable.

At a permanent availability (tBrdU ≥ tm), every cell in S-phase is reliably labelled. Since

the G2M cells in gate vi have already divided, any unlabelled cell is necessarily a mother

cell in G1-phase (gate iv). For permanent BrdU availability, this gate does not show any

overlap with S-phase cells. Overall, we find that an availability between 0.5 h and 1.0 h

fits our mouse data best. Therefore, we leave the availability for all subsequent simulations
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Figure 3.5: Simulated BrdU/DNA profiles for different assumptions about BrdU availability
and fixed measurement time of 3.0 h post BrdU administration. The last choice of BrdU
availability corresponds to unlimited availability during the measurement period. Simulations
are based on N = 1.5 · 103 mother cells, neglecting cell death. Simulation parameters are given
by set 1 from Table 3.1.

at tBrdU = 0.75 h. Although this sounds like a relatively short time, this trend is consis-

tent with results presented in [Matiasova et al., 2014]. In this study, the authors assessed

the availability of BrdU after intraperitoneal injection in rodents, including mice. They

concluded that BrdU is only fully available for about 15 min after administration to mice

and then degrades rapidly. The pharmacokinetics of BrdU certainly depends on many

other experimental parameters, e.g. injection dose and type of administration. However,

this study reinforces our impression that BrdU is only capable of efficiently labelling cells

a short time after administration.
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3.3.2 Back-calculation of simulation parameters

Some approximations were made to quantify the mean division-time 〈Tdiv〉. These include

the assumption of a peaked G2M length distribution and the existence of a minimum

division-time Tmin
div . It was also assumed that eq. 3.5 represents an accurate approximation

for the relation between mean growth factor c and mean division-time 〈Tdiv〉, even in the

case of variable division-time distributions. Moreover, it was implicitly assumed that cell

death effects do not play any major role in our estimation scheme. To determine the

precision of our method, we solve the system of equations 3.21 using the simulated data

shown in Fig. 3.4. The simulated gate frequencies (marked in red) have emerged from

the stochastic limit based on parameter set 1 from Tab. 3.1. In addition, we applied this

approach to parameter set 2, shown in the same table3. This second set stems from in vivo

measurements quantified with the same method and was published in [Kretschmer et al.,

2020]. Briefly, these are cell cycle parameters that origin from CD62L+ OT-I memory T

cells after immunisation. The total variance of the cell cycle was chosen arbitrarily here so

that the CV of the distribution is 0.2, i.e. higher than the CV corresponding to parameter

set 1. As with parameter set 1, this variance was then divided among the cell cycle phases

according to their mean lengths.

Table 3.1 shows the quantification results as well: For both parameter sets, accurate

estimates of the ground truth are obtained. Relative errors are computed with respect to

the true parameter value, i.e. err(p) = |ptrue− pest.| / ptrue. For the mean cell cycle length,

we get relative errors of 1.7 % (set 1) and 4.1 % (set 2). The slightly worse accuracy

for estimates corresponding to parameter set 2 is related to its significantly bigger CV

of the division-time distribution. The estimation of the mean phase lengths, especially

of the G2M-phase, is significantly affected by the variability. In practice, the G2M-phase

is the least relevant phase in terms of contribution to the overall cell cycle length. The

method thus proves to be accurate, especially for estimating mean cell cycle lengths. This

is particularly important as the method was mainly designed for this purpose.

3.4 Stability analysis

Since the quantification formalism has proven successful with simulated data, several con-

ceptual assumptions need to be revisited. It was outlined earlier that the accuracy of

our method decreases with bigger variabilities in the division-time distribution. This was

3Simulated gate frequencies associated with parameter set 2 are given by 0.014 (gate vi, early time point),
0.430 (gate iv, early time point) and 0.361 (gate iii, late time point).
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Figure 3.6: Stability analysis of the quantification procedure with respect to variability in the
underlying distributions for parameter set 1 in Tab. 3.1. (A) Relative error of the approximative
formula 3.5, relating mean growth factor and mean of division-time distribution for varying CVs
of the division-time distribution and phase distributions. Errors were computed by numerically
solving integral equation 3.4. (B) Relative error of cell cycle estimates were accessed via
simulated data for varying CVs of the division-time distribution and phase distributions. As
before, simulations were based on N = 106 mother cells and a BrdU availability of 0.75 h.

to be expected, especially since the equations are only exact in the case of non-variable

distributions. Here we want to examine more systematically the stability with respect to

variability in the underlying distributions. To this end parameter set 1 from Tab. 3.1 is

used, i.e. the division-time distribution is assumed to be log-normal. First, we examine the

variability regime in which formula 3.5 is a good approximation of the relation between

c and the division-time distribution Ddiv(Tdiv). For this purpose, we make use of the

exact relation given by eq. 3.4. The relevant integral equation for c is solved numerically,

leading to a relative error of the approximative formula which only contains the mean of

the overall distribution. Fig. 3.6A shows this error for increasing CVs of Ddiv(Tdiv). For

CVs smaller than 0.1 the approximative formula is exact. The error non-linearly increases

with increasing variability up to a CV of ∼ 0.4. From there on, the error grows almost

linearly with the variability.

Next, we investigate the accuracy of the calculated cell cycle parameters as a function

of the variability in the underlying distributions. For this purpose, we simulate data

for different variabilities in the total cell cycle length, analogous to the previous section,

and back-calculate the underlying cell cycle parameters. By comparing the calculated

parameters with the true parameters, a relative quantification error is obtained. Fig. 3.6B
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parameter exponential
(strong)

log-norm.
(moderate)

log-norm.
(strong)

µ(Tdeath) 12.0 h 20.0 h 12.0 h
σ(Tdeath) 12.0 h 5.0 h 3.0 h

µ(Tdiv) 10.3 h 9.9 h 10.7 h
µ(TG1) 2.9 h 2.8 h 2.9 h
µ(TS) 5.9 h 5.6 h 6.4 h
µ(TG2M) 1.5 h 1.5 h 1.5 h

Table 3.2: Parameters of death-time distributions for strong exponential, and moderate or
strong log-normal cell death, respectively. Shown are cell cycle estimates in the presence of
these death mechanisms and for division parameters from Tab. 3.1 (set 1).

shows this error as a function of the CV of the division-time distribution. Notably, the

error of the mean cell cycle length never exceeds 20 %. For extreme CVs close to one, the

error even decreases. This can be explained by the fact that the total error is made up

of different errors and that these can in principle cancel each other out. Even the error

shown in Fig. 3.6A contributes here. The error of the G2M-phase is of similar magnitude,

although no such cancellation effects seem to occur here for extreme CVs. The errors of

the S- and G1-phase grow more rapidly with increasing variability. However, this is not

relevant for the quantification of the mean cell cycle length, especially since the equations

for gate iii and iv form an independent system of equations and hence do not depend on

the mean G1 or S length. Nevertheless, one should keep in mind that the individual phase

lengths can be extremely error-prone in case of large variabilities. These findings also hold

for parameter set 2 from Tab. 3.1 as we have already shown in [Kretschmer et al., 2020].

3.5 Cell death effects

At last, it needs to be shown that cell death has no particular influence on our quantifica-

tion procedure. In the simulation, we can introduce arbitrary cell death mechanisms. In

the following, we will switch on such mechanisms while keeping the same parameters for

cell division, namely set 1 from Tab. 3.1. Table 3.2 shows three different possibilities of

death-time distributions Ddeath(Tdeath), which govern the times-to-death of newborn cells.

Hence, these distributions represent the uncensored distributions. We consider strong

exponential, and moderate or strong log-normal cell death mechanisms with given param-

eters from Tab. 3.2. Log-normal cell death is conceptually the more relevant mechanism

here, especially since live-cell imaging data of lymphocytes suggest heavy-tailed distribu-
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tions; the major difference compared to division-time distributions seems to be the absence

of a lag time, leading to more variability, see for example [Zhou et al., 2018].

The effects of cell death can alter the gate frequencies in principle and thus confound

the quantification scheme. The main focus here is on a change in the marginal steady

state distribution psstnd(δ), which initialises experiments to measure BrdU/DNA profiles.

Fig. 3.7 shows the marginal distributions psstnd(δ) and pssrl (λ) in the presence of the above

mentioned death-time distributions.

In case of exponential cell death, the steady state distribution of remaining life-time pssrl (λ)

equals the death-time distribution Ddeath(Tdeath), see Fig. 3.7A. This is due to the memo-

rylessness property of the exponential distribution. We have indeed shown in appendix A,

that the inclusion of constant death rates into the von Foerster equation will always cancel

out as soon as the equation is translated to the steady state level. Hence, this result was to

be expected. Every other distribution than the exponential distribution naturally implies

age-dependent death behaviour. For moderate log-normal cell death, the steady state dis-

tribution differs from the death-time distribution mainly by being shifted towards smaller

ages (comparison not shown). This can be explained by the fact that cells in steady state

have an average age bigger than zero and are therefore more likely to die than newborn

cells. It should be mentioned that, to our knowledge, there is no solution to the general

form of pssrl (δ) in the presence of both cell division and death. For solutions considering

log-normal cell death without cell division, we refer to [Dowling et al., 2005]. Neverthe-

less, the presence of moderate log-normal cell death has almost no effects on the analogous

steady state distribution of cell division psstnd(δ), see Fig. 3.7B. Finally, Fig. 3.7C clearly

shows that in the case of strong log-normal cell death, only small deviations in the psstnd(δ)

distribution are obtained, especially for small to medium δ between about 0 h and 8 h.

On the other hand, pssrl (λ) changes strongly compared to the corresponding distribution

for newborn cells (not shown).

The finding that in the presence of cell death the distribution psstnd(δ) and consequently

also pssage(a) change only minimally, is of central importance, since they cannot be adjusted

for. Additionally, to rule out any effects on the quantification scheme, data was simulated

for all three conditions of cell death that were discussed above4. As previously, these

simulated data were then used to calculate the underlying parameters. Table 3.2 shows

the quantified parameters, with cell cycle parameters taken from set 1 from Table 3.1 as

before.

4For exponential death we get the same gate fractions as for the absence of cell death. For moderate
log-normal death the resulting gates give 0.069 (gate vi), 0.358 (gate iv) and 0.206 (gate iii). Strong
log-normal death gives 0.066 (gate vi), 0.336 (gate iv) and 0.186 (gate iii)
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Figure 3.7: Remaining life-time (left) and time-until-next division distribution (right) during
steady state in the presence of strong exponential (A), and moderate (B) or strong (C)
log-normal cell death. Simulations are based on division- and death-time distributions with
parameters shown in Tab. 3.1 (set 1) and Tab. 3.2, respectively.

Exponential cell death, as strong as it may be, has no impact on the simulated gate

frequencies, especially since the distribution of time-to-next division remains unchanged.
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Hence, there is no change in the calculated parameters. Note that (exponential) cell

death can of course have a great influence on the cell numbers and thus on reaching the

stochastic limit of the simulation. Since we already started from a large number of initial

cells, simulation parameters did not have to be readjusted here. For both moderate and

strong log-normal death, we obtain deviations of less than 5 % for the mean cell cycle

length and less than 10 % for the mean phase lengths.

3.6 Application to in vivo data

Now that all conceptual considerations have been clarified, the method can be used to

quantify division speed of rapidly dividing T cells following acute infection. In this the-

sis, we deal with two types of T cells that differ in their TCR: OT-I T cells and P14 T

cells, derived from OT-I and P14 transgenic mice, respectively. While OT-I cells form a

high-affinity binding with the ovalbumin-derived peptide SIINFEKL, P14 cells bind to the

GP33 epitope. The pathogens used in the experiments express one of these peptides, so

their presentation induces a highly specific T cell response. In the case of OT-I cells, the

wild-type pathogen must be genetically modified to additionally express SIINFEKL. This

is taken into account by the additional suffix “OVA” in the pathogen’s name. Here, we

quantify cell cycle lengths of OT-I cells subject to Listeria monocytogenes–OVA (L.m.-

OVA) and influenza-OVA infection. P14 cells were used in the context of lymphocytic

choriomeningitis Armstrong (LCMV Arm) infection. All these infections are classified as

acute infections. In this application, we will also briefly explain how additional kinetic

properties, such as the presence of non-dividing G0 cells or generation-resolved measure-

ments, can be embedded in our formalism.

3.6.1 Cell cycle speed of P14 T cells during acute LCMV Arm infection

The experiments on which this subsection is based were conducted by my colleague Al-

bulena Toska. Mice were infected with LCMV Arm and analysed at day 4.5 p.i. The

experimental parameters were chosen such that the early measurement time point was at

0.5 h (two mice available) and the late one at 3.0 h (four mice available). In addition, the

phenotype of the P14 cells was measured in terms of TCF1. TCF1 is a memory T cell

marker and allows for classification between TCF1+ memory progenitor (CMp) cells and

effector-associated (EFF) cells. At day 4.5 after infection, one would expect that most of

the cells are still dividing. This could indeed be confirmed by the analysis of scRNA-seq

data. It was found that in this particular infection, about 90 % of the cells are still in

division at day 4.5 p.i. In section 4.2, we will discuss the origin and the significance of
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CMp EFF

gate iv gate vi gate iii gate iv gate vi gate iii

0.393 0.010 0.317 0.259 0.010 0.495
0.373 0.027 0.289 0.251 0.008 0.449

0.265 0.489
0.222 0.462

Table 3.3: Measured gate fractions of P14 cells following acute LCMV Arm infection at day
4.5 p.i. The data for gates iv and vi (see Fig. 3.1B for gate notation) are based on an early
measurement time of 0.5 h, while gate iii was considered at 3.0 h post BrdU injection. Pheno-
typic classification was performed using the memory marker TCF1. (Experiments conducted
by Albulena Toska)

this result in more detail. Here we briefly show how such information can be integrated

in our quantification method.

Suppose that in steady state there is a fraction of quiescent G0 cells, q, where possible

time-dependencies of q during measurement are neglected. There is no reliable way to

distinguish those cells from dividing G1 cells since both groups of cells will mix in gate

iv. Let fi be the gate fraction of gate i at the time point of analysis. We are interested

in the gate fraction f ′i of cycling cells only. Hence we must adjust the normalisation N

to N ′ = (1 − q)N . The cell counts of the respective gates remain the same, except for

gate iv, which includes non-cycling cells. This results in the following modification of the

former gate fractions,

f ′i =


fi − q
1− q

i ∈ gate iv

fi
1− q

else,

(3.23)

which consistently ensures that
∑

i f
′
i = 1.

Table 3.3 shows the raw data containing the uncorrected fractions fi. Quiescent cells were

considered by employing correction 3.23. Since we had no information about phenotype-

specific quiescence behaviour, it was assumed that qCMp = qEFF. Since nearly all cells are

in division at this early time point, we consider this approximation adequate. Throughout

this work, gates iv and vi (see Fig. 3.1B for gate notation) are summarised by their mean

frequencies (early time point). For each measurement of the gate iii frequency (late time

point), the system of equations 3.21 is solved separately. The resulting parameters are

then averaged. The standard error of the mean (SEM) is chosen as an estimate for the

error of the total cell cycle length.
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Figure 3.8: Cell cycle phase-resolved quantification results of cycling P14 T cells at day 4.5
post LCMV Arm infection. Based on the data in Table 3.3, this figure shows the mean phase
lengths for CMp and EFF cells. Contributions of quiescent cells were removed by means of
eq. 3.23. Standard error of the mean and composition of the overall cell cycle in terms of the
individual phases are shown. (Experiments conducted by Albulena Toska)

Based on Tab. 3.3 and the correction for quiescent cells by means of eq. 3.23, mean cell

cycle lengths were quantified. Fig. 3.8 shows the results at day 4.5 p.i. for CMp and EFF

cells, respectively. The SEM of the overall cell cycle is depicted and the contribution of the

individual phases to the overall cycling length is shown. While CMp cells on average need

9.5 h to fully complete a cycle, EFF cells only need 5.5 h. The discrepancy between these

lengths and the lengths that would result if one assumes that all cells are cycling is only

about 10 %. The relative G1-phase contribution of the memory cells is larger by a factor

of 1.8 compared to the effector cells. This percentage increase is mainly accompanied

by a relative decrease of the S-phase, as the G2M-phase remains short. The G1-phase

thus provides the largest percentage difference between the two phenotypes, or between

rapidly and more slowly dividing cells. Nevertheless, it should be pointed out that the

division speed of CMp cells is also considerably high. However, it is difficult to define

a physiological limit for the maximum proliferation rate. To our knowledge, the fastest

dividing mammalian cells were reported during early embryogenesis in mice. Here, average

division times of 5 h must be reached in a certain time interval to explain the cell numbers

counted from histology data, cf. [Snow, 1977]. In very specific spatial and temporal ranges,

certain cells can even complete their cell cycles in 2 to 3 h on average, see [Mac Auley

et al., 1993; Snow, 1977]. However, it should be added that these special cell divisions

only involve DNA synthesis, not protein synthesis. The finding that memory cells divide

more slowly than effector cells was already indicated in [Buchholz et al., 2013] and could

be confirmed in [Kretschmer et al., 2020] using this same quantification method.
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These cell cycle quantifications will be of great relevance later in chapter 4, especially

since they represent an important component for the mathematical modelling approach.

This is because these results define kinetic differences between memory and effector cells.

Together with the stochasticity of the model, they play an important role in explaining

the fate mapping data shown later.

3.6.2 Cell cycle speed of OT-I T cells during acute L.m.-OVA infection

Now the analogous situation for the L.m.-OVA case shall be considered. Since data at later

time points are available for this infection, this system is suitable for studying the contrac-

tion phase. In particular, this means that we cannot further neglect the time-dependence

of proliferation in the form of a time-averaged rate. Therefore, experiments were con-

ducted by Albulena Toska in complete analogy to the previous section, now including the

time point of 8 d p.i. in addition to the time point of 4.5 d p.i. Phenotypic classification

of OT-I cells into CMp and EFF cells was performed using the memory marker CD62L.

For this system, we even possessed data on phenotypic quiescence behaviour. Day 4.5 p.i.

yielded qCMp(4.5 d) = 2 % and qEFF(4.5 d) = 5 %, while day 8 gave qCMp(8 d) = 60 %

and qEFF(8 d) = 73 %. As before, we refer to section 4.2 for a comprehensive derivation

of those results. Here, the previous thoughts from subsection 3.6.1 about the inclusion of

quiescent cells become highly relevant, since by day 8 p.i. most cells have stopped divid-

ing. We do not want to average kinetic parameters over non-cycling cells because those

cells will be taken into account manifestly in terms of our model topology in chapter 4.

Also, we would like to point out that in the case of time-dependent rates, we assume

that the steady state condition is always satisfied. This is to be expected, especially since

the dynamics of cell division occur on a much larger time scale than the transient phase

to equilibrium. This is especially true for rapidly dividing cells, a comparatively slowly

changing rate, and sufficiently asynchronous cell division. These criteria are always met

in our in vivo setting.

Results for the average phase lengths are obtained using the data from Tab. 3.4 and pheno-

typic fractions of quiescent cells. Fig. 3.9A shows that the mean cell cycle lengths are given

by 8.7 h for the CMp and 5.8 h for the EFF cells at day 4.5 p.i. Within the uncertain-

ties, this corresponds to the calculated values during LCMV Arm infection (see previous

subsection). During L.m.-OVA infection, the G1-phase takes up a larger proportion of the

total cell cycle length compared to the LCMV Arm case. For CMp cells, the G1-phase, on

average, is even larger than the S-phase. In addition, CMp cells divide more slowly than

EFF cells. Again, the phenomenon that the slower CMp cells are characterised by a rel-
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CMp EFF

gate iv gate vi gate iii gate iv gate vi gate iii

0.597 0.073 0.274 0.506 0.048 0.411
0.195 0.361
0.238 0.480
0.245 0.462

0.736 0.029 0.074 0.825 0.011 0.074
0.653 0.007 0.084 0.724 0.011 0.095
0.665 0.028 0.053 0.747 0.011 0.063

0.082 0.092

Table 3.4: Measured gate frequencies of OT-I cells following acute L.m.-OVA infection at day
4.5 (top) and 8 p.i. (bottom). The data for gates iv and vi are based on an early measurement
time of 0.5 h, while gate iii was considered at 3.0 h post BrdU injection. Phenotypic classifi-
cation was performed using the memory marker CD62L. (Experiments conducted by Albulena
Toska)

atively longer G1-phase is evident. As before, the G2M-phase occupies equal proportions

between CMp and EFF cells.

Meanwhile, Fig. 3.9B shows the same parameters for the later time point of 8 days p.i.

For the CMp cells, we obtain a mean cell cycle length of 11.9 h, while for the EFF cells

we again get a shorter length of 8.9 h. Notably, both CMp and EFF cells slow down

their proliferation rates compared to day 4.5 p.i., as would be expected given the lack

of stimulatory signals on day 8 p.i. Again, the speed differences must be due to slowing

down, as cell cycle dropout effects have already been taken into account. It appears as if

EFF cells slow down more than CMp cells (cell cycle length ratios compared to day 4.5 p.i.

given by 1.6 vs. 1.3). Assuming that the most significant difference between day 4.5 and 8

p.i. is antigen availability, this result was not expected: in [Kretschmer et al., 2020] it has

been shown that the absence of antigen causes stronger effects on the CMp than the EFF

cell cycle. However, this could be due to system-specific effects as there was no replicating

pathogen present, and antigen was administered only once. Also, other differences than

antigen availability may play a significant role when comparing day 8 with day 4.5 p.i.,

for example, cytokine concentrations, which are considered to have a bigger impact on

effector cells.

Another striking result is the phase composition of the cell cycle at day 8 p.i. The largest

proportion of the cell cycle is accounted for by the S-phase, while the G1-phase does not

contribute significantly (∼ 5 %). The G1-phase seems to be even shorter than the G2M-
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Figure 3.9: Cell cycle phase-resolved quantification results of OT-I T cells at day 4.5 (A)
and day 8 (B) post L.m.-OVA infection. Mean phase lengths for CMp and EFF cells are
shown. Gate frequencies in Tab. 3.4 have been corrected for contributions from quiescent
cells. Standard error of the mean and individual phase contributions to the overall cell cycle
are shown. (Experiments conducted by Albulena Toska)

phase, which is very unusual at first. We suspect that an overcorrection of the non-cycling

cell contributions has taken place. If we assume that all cells are in division, then we

obtain average cell cycle lengths of 30.0 h for the CMp cells and 33.7 h for the EFF cells.

The corresponding G1 fractions are then given by 61 % (CMp) and 70 % (EFF), since

the cells in G0 also contribute here. This illustrates once again that although such a

correction is necessary, it also introduces additional variability, especially since the data

for the G0 proportions come from other mice than the actual gate measurements. In this

sense, the mean division-time results in Fig. 3.9B may be slightly or even moderately

underestimated. That is, cells may cycle even slower.

The cell cycle speed quantifications presented in this subsection will be used further in

chapter 5. They not only demonstrate differences in phenotypic kinetics but also allow

the use of dynamic proliferation rates. Moreover, they are absolutely necessary for the

identification of death rates during contraction phase, as will be shown in chapter 5.

3.6.3 Cell cycle speed of OT-I T cells during acute influenza-OVA in-

fection

As a last application example, we would like to show the special case of adding generation

information to the data. The results in this section are based on data from Stephen

J. Turner’s lab (Monash University) obtained by Jasmine Li. The experimental setup

differs only slightly from that shown in Fig. 3.1A: Before the OT-I cells are transferred,

they are prepared to incorporate CellTraceTM Violet (CTV). Similar to carboxyfluorescein
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succinimidyl ester (CFSE), this is a fluorescent dye. During cell division, this dye dilutes

and thus enables the assignment of cells to a specific generation according to the number

of processed cell divisions. Typically, up to eight cell divisions can be tracked through flow

cytometric analysis, cf. [De Boer et al., 2005; Heinzel et al., 2017]. In this way, generation-

resolved BrdU/DNA profiles of OT-I cells from the spleen and mediastinal lymph nodes

(MLNs) were collected after intranasal influenza-OVA infection at 2.5 days p.i. Again,

0.5 h and 3.0 h were chosen as early and late time points for FACS analysis after BrdU

administration, assuming that all cells are dividing.

First, we will show how generation-dependent cell cycle lengths are calculated based on the

experiment described above. For simplicity, the G2M-phase shall be neglected, especially

since it has already been established before that this phase hardly contributes to the total

cell cycle length in the context of rapidly dividing CD8+ T cells. The extension of the

approximate formula 3.12 by the generation information and for neglected G2M-phase

gives

Pr(gate iii)(j)n(j) ≈ 2c(j−1) tmn
(j−1) (j > 1). (3.24)

Here, n(j) is the absolute number of cells in generation j at time tm. c(j) denotes the

constant growth rate of cells in generation j. The generation-dependent growth rates can

be converted into mean division times by using eq. 3.5. By definition, the undivided cells

belong to generation zero. The relation in eq. 3.24 is obvious because the number of cells

in gate iii of generation j depends on the cell cycle speed of the previous generation j− 1.

In the limit of large cell numbers, we have Pr(gate iii)(j) = f
(j)
gate(iii), which is measured

directly. The quotient n(j)/n(j−1) is also available from the data, since it equals f (j)/f (j−1),

while f (j) denotes the fraction of cells in generation j among cells across all generations.

This gives us a scheme of equations of the form

f
(1)
gate(iii)

f (1)

f (0)
= 2c(0) tm,

f
(2)
gate(iii)

f (2)

f (1)
= 2c(1) tm,

...

f
(M)
gate(iii)

f (M)

f (M−1)
= 2c(M−1) tm,

f
(>M)
gate(iii)

f (>M)

f (M)
= 2c(M) tm, (3.25)

where M denotes the last generation up to which cells are reliably classifiable. The division

speed in the last equation of system 3.25 becomes uninformative since the corresponding
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Figure 3.10: Generation-resolved cell cycle quantification results of OT-I T cells, 2.5 days
after influenza-OVA infection. (A) Generation-dependent cell cycle lengths for cells harvested
from the spleen (left) and mediastinal lymph nodes (right). The individual results per mouse,
the mean of each generation, and the corresponding standard error are shown. Unpaired,
two-tailed t-tests were used to decide whether mean differences between generations were
significant. All significant differences are shown, see legend for p-value thresholds. (B) The
same conditions as in (A), but here a paired t-test was used instead, assuming the data are
not independent. (Experiments conducted by Jasmine Li and Stephen Turner)

data is only available for all generations bigger than M , denoted by (> M). With a

suitable choice of gating strategy, both factors of the left-hand sides of the equations are

easily accessible. Hence the equations fully decouple and the c(j) can be calculated for all

j < M .
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In our case, we had M = 5 such that division speed up to generation four could be quanti-

fied based on five mice. Fig. 3.10A shows the results for spleen and MLN cells, respectively.

Here, per-mouse quantifications are shown, together with the generation mean as well as

its SEM. As mentioned before, generation zero cells correspond to those cells that have

not yet divided at time tm. All significant differences between those means are indicated,

using unpaired t-tests. If we compare the spleen with the MLNs, we notice that the cells

in the spleen generally cycle more slowly on average. In both organs, the first cell division

is the slowest and the most variable, whereby this effect is most pronounced in the MLNs.

While in the spleen it appears as if the cells divide faster with ascending generation, such

an effect is not recognisable in the MLNs. Fig. 3.10B shows the same quantifications,

whereby the assumption of statistical independence of the results within the respective

generations was not made. Therefore, the respective mouse membership was additionally

plotted for each set of results. A paired t-test was used to test for differences between

generations. Even within a mouse, a downward trend in cell cycle duration across gener-

ations is now recognisable, but there are many exceptions to this, especially in the spleen

between generations one and three.

The outlined results can be interpreted in different ways. To begin with, the observation

that the first cell division is the longest corresponds exactly to our expectations. This

has already been very well documented for T cells, see [Deenick et al., 2003; Lee et al.,

2008]. If we first consider spleen cells only, the most direct hypothesis would be that cells

gain speed during their first divisions. Alternatively, there could be high variability in cell

cycle length, which is then inherited upon division. This would also lead to slower cells

being found in smaller generations. A third possible explanation arises if one assumes

that cells in lower generations have not yet undergone many cell divisions at the time of

measurement because they were recruited late into the immune response. Then, one would

further conclude that these late-recruited cells divide more slowly compared to cells that

have been recruited earlier. At the same time, it could be true for the MLN cells that

they divide rapidly despite late recruitment. Here one could speculate that this could be

related to differences in antigen availability between spleen and MLNs. Furthermore, when

looking at the results per mouse, one notices that the cell cycle lengths differ systematically

between the mice. This could be due to variations in infectious doses, for example.

These results will not be used further in the course of this work. Nevertheless, they repre-

sent an interesting application example for our formalism. In particular, this application

illustrates the flexibility of the presented method and its added value for the formulation

of biological hypotheses, which can then be verified or falsified in subsequent experiments.
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Chapter 4

Mechanistic insights into CD8+ T

cell responses to acute infection

In this chapter, we address the central question of this thesis: how do näıve T cells respond

to acute infections in terms of their differentiation behaviour, and what are the dominating

mechanisms that drive the observed variability at the single-cell level? We approach this

question in an unbiased manner by analysing scRNA-seq data from CD8+ T cells subject

to acute infection. We conclude possible developmental trajectories, which then form the

basis of data-driven mathematical modelling. Models are fitted to a variety of informative

single-cell data. An important component of this data is given by population data derived

from single näıve CD8+ T cells, so-called single-cell fate mapping data. The in vivo

data used in this work are based on two different acute infection models, namely Listeria

monocytogenes–OVA (L.m.-OVA) infection and lymphocytic choriomeningitis Armstrong

(LCMV Arm) infection. Our working hypothesis is that different acute infections obey the

same model topology, whereby the underlying parameters can differ arbitrarily. Therefore,

we never combine data across different infections when estimating parameters, but only

transfer conceptual insights. In this chapter, model topologies are concluded from scRNA-

seq data, subject to L.m.-OVA infected mice, while mathematical modelling is performed

based on LCMV Arm data.

4.1 Extraction of model topologies

In this section, we conclude possible differentiation pathways from the analysis of single-

cell transcriptomes of OT-I T cells subject to infection with L.m.-OVA. These bacteria

lead to an acute infection of the host and, as they grow intracellularly, induce increased

activation of the CD8+ T cell pathway of the immune system. Our data are based on the

droplet-based technology of 10X Genomics and include the time points of day 4.5, 8, and

12 after infection. All experiments were planned and conducted by my colleague Albulena

Toska. As our major analysis tool, we used the Python package SCANPY, see [Wolf et al.,

2018] and refer to section 2.2 for more technical details on the analysis and working flow.
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Figure 4.1: Uniform manifold approximation and projection (UMAP) of the data, indicating
the individual time points after infection (A), the respective organs (B), the cell cycle stage
(C), and cluster annotations (D). Clustering was performed using the Leiden algorithm. An-
notations were concluded through comparison with the expression of known marker genes and
by differential expression testing. Here, central memory precursors are denoted with CMp and
effector memory precursors with EMp, respectively.

4.1.1 Dimensionality reduction and overview

We begin with an overview of the data, referring to the methods section 2.2 for all necessary

details regarding the preprocessing. To this end, we use the uniform manifold approxi-

mation and projection (UMAP) method, which provides a descriptive visualisation of the

data through robust dimensionality reduction, see [McInnes et al., 2018]. Fig 4.1A shows

the resulting UMAP embedding with the batch label being plotted. The individual time

points are lined up from right to left, with little overlap between the time points day 4.5

and 8, while day 8 and 12 have a more significant intersection in the embedding. It should

be noted here that no batch correction was performed, especially since all batches are

based on the same experiment and the same experimenter. Only fractions of mitochon-

drial gene counts were regressed out within the framework of a linear model. The fraction
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of mitochondrial genes is a measure of cell stress or cell death. Unlike conventional mRNA,

mitochondrial mRNA can be kept in the cell even in the case of porous cell membranes.

In the course of the experiment, different waiting times occurred during the preparation

of the batches, which likely affected the proportion of mitochondrial genes at the time

of analysis. Fig. 4.1B shows the distribution of the cells with respect to the organ from

which they originated. While the majority of the cells stem from the spleen, on day 12

p.i. there is a considerable proportion of lymph node cells. This is because only a few

cells could be obtained from the lymph nodes at earlier time points experimentally. The

classification of the cells concerning their cell cycle stage is depicted in Fig. 4.1C. It can be

seen that at the early stage almost all cells are in division. At day 8 p.i. this is only true

for a small part, while on day 12 p.i. almost all cells have become quiescent. Fig. 4.1D

shows the annotated Leiden clusters subject to a resolution parameter of r = 0.8, while

the concrete choice of annotations is justified below. For the given resolution, the cycling

cells break down into three clusters that contain all relevant phenotypes as central memory

precursors (CMp), effector-memory precursors (EMp), and effector cells. The center of

the embedding is characterised by early and non-cycling CMp, EMp, and effector cells,

while the left-hand side of the UMAP contains their corresponding matured subsets. Here,

the terminology early vs. late is mostly based on the observation that day 8 cells are on

average less differentiated compared to cells at day 12 p.i. Interestingly, we find a small

disconnected cluster that mainly contains cells from the late lymph node, exhibiting a

strong central memory (CM) signature.

To justify the previously annotated Leiden clusters, we focus on the expression of some

exemplary phenotypic marker genes, shown in Fig. 4.2A and B. Fig. 4.2A shows the log-

expression of known memory genes, while Fig. 4.2B depicts important effector genes. The

gene Dapl1 is highly co-expressed with the more prominent memory marker Sell (related

to the surface marker CD62L). Overall, the expression plots imply a vertical phenotypic

gradient. This gradient even seems to hold for the cell cycle clusters based on the ex-

pression of Slamf6 and Cx3cr1, although the cell cycle signature is dominating the overall

transcriptome. When testing for differentially expressed genes across different Leiden clus-

ters, this impression becomes more sound (results not shown). Given the annotations from

Fig. 4.1, the dot plot shown in Fig. 4.2C confirms the choice of annotations: The early ac-

tivated cluster differs from the other clusters regarding the expression of T cell activation

markers. Interestingly, a slightly increased activation signature is also found in the divid-

ing CMp/EMp cells. Both the cycling activated cluster and the cycling CMp/EMp cluster

are characterised by a memory signature. The cycling effector cells on the other hand are

clearly distinguished by an even stronger expression signature of genes as Klrg1, Cx3cr1,

Gzma, and Gzmb. The last two genes are also expressed by memory cells. Together with
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Figure 4.2: Log-expression of exemplary memory marker genes (A) and effector genes (B)
mapped into the UMAP embedding. While the upper part of the UMAP is exclusively occupied
by effector cells, the lower part is mainly occupied by memory and effector-memory cells. The
phenotypic gradient thus runs from bottom to top. (C) Dot plot showing the expression of
chosen genes related to CD8+ T cell activation, cell cycle activity, and memory or effector
signatures across the annotated Leiden clusters. Expression is based on unnormalised log-
counts.

the observation that all cells express Prf1, this indicates that memory cells might also

possess killing capacity, as it has been shown for instance in [Barber et al., 2003]. Early

and late CMp/EMp cells can mainly be identified by their higher levels of Cd27, as well

as their expression of Il7r. In particular, Il7r expression seems to increase strongly as the

memory-like cells continue to mature from day 8 to day 12 p.i. As expected, the CM cells
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from the lymph nodes exhibit the strongest memory signature. We observed that typical

effector marker genes such as Gzma generally lead to good expression signals in scRNA-seq

data, which makes the early and late effector cells identifiable more easily. Here the late

effector cells at day 12 p.i. show a reduced Gzma expression compared to the day 8 effec-

tor cells. At day 12 p.i. the effector cells are subject to cell death. The decreased Gzma

expression may reflect a reduced functionality and hence a reduced killing capacity of the

cells through apoptosis. On the other hand, downregulation of Gzma at day 12 p.i. might

also be linked to differentiation, which will be addressed in section 4.1.2. In section 4.2,

we will provide arguments why we think that the cells that have been classified to be in

G0/G1-phase are predominantly in G0-phase.

Next, we utilised principal component analysis (PCA) to get a quantitative understanding

of the various sources of heterogeneity in the data, cf. [Pearson, 1901]. Fig. 4.3 depicts the

data after the transformation projected onto the first two principal components. Fig. 4.3A

shows a line-up of the individual time points along the direction of biggest variance (PC1).

Looking at the cell cycle phases (Fig. 4.3B), we can identify cell division as the major

source of variance in the data. Cell cycle activity naturally correlates with the number of

expressed genes (Fig. 4.3C). Although the number of total counts and thus the number

of expressed genes can often be related to technical variance, we can confirm our previ-

ous statement by looking at the loadings of PC1 (not shown), which exhibits many cell

cycle genes such as Mki67. The second biggest source of variance is given by phenotypic

differences between the cells. This can be concluded from the loadings underlying PC2,

which show typical immunological marker genes as Gzma and Gzmb among the top ten

positively signed loadings. The negative loadings are mainly given by ribosomal genes

which commonly dominate the signatures of memory cells. Fig. 4.3D shows the fraction

of ribosomal gene counts per cell, thereby defining a phenotypic gradient.

4.1.2 Trajectory inference

Now we want to establish lineage relationships between the clusters just presented, which

have already been identified with known phenotypes. To this end, we now present some

methods that approach this fundamental question in an unbiased way. For conceptual as

well as technical details regarding those methods we refer to subsection 2.2.3.

Inferring developmental pathways using RNA velocities

To infer developmental trajectories, we utilised RNA velocities, which were established in

[La Manno et al., 2018]. This method takes advantage of the fact that cell differentiation
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Figure 4.3: Principal component analysis (PCA) showing the time points (A), the cell cycle
class labels (B), the number of expressed genes per cell (C), and the fraction of ribosomal
gene counts per cell (D). Cell cycle activity represents the largest contribution to the overall
variance in the data (variance ratio ∼ 11 %). The second-largest source of variance is given
by phenotypic differences between the cells, with high levels of ribosomal gene counts being
typical for memory cells (variance ratio ∼ 4 %).

processes occur on the same time scale as the life cycle of mRNA molecules. Based on

the ratio of spliced to unspliced mRNA counts, each cell can be assigned its first time-

derivative, i.e. its velocity, with respect to any expressed gene. Considering all genes

and projecting the overall velocity into an embedding of choice, one thus obtains an

interpretable extrapolation of the cell’s state into its near future. Using the dynamic

velocity model that was put forward in [Bergen et al., 2020], we computed RNA velocities

for our data. This extended model captures the whole transcription dynamics and avoids

the strong steady state assumption of the original model.
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Figure 4.4: RNA velocities based on the dynamic velocity model for all cells (A) and the
individual time points (B, C, D). Velocities per time point were computed separately and
projected into the joint embedding shown in (A).

Fig. 4.4A shows the velocities projected into the previous UMAP embedding. It can be

seen that cells straightforwardly progress through the cell cycle clusters, thereby losing

memory potential, e.g. in terms of Slamf6 expression. Once the cells stop cycling, they

move vertically with respect to the phenotypic gradient, i.e. they seem to maintain their

phenotype. The left edge of the UMAP, where the late effectors and the late EMp cells

intersect, we interpret as cell death. The dynamics of the small fraction of CM cells remain

largely unresolved. Overall, it is remarkable that the cell cycle takes up a large amount

of the overall dynamics. This is also reflected in the fact that the actual velocity genes,

i.e. the genes that can in principle contribute to the vector field shown, contain a large

number of cell cycle genes in addition to important regulatory genes for differentiation

(velocity genes not shown).
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α= 0.05, while the transition matrix was gained by utilising RNA velocities computed from
the dynamical model. Dashed lines indicate possible transitions that can neither be excluded
nor confirmed.

Computing the velocities separately per batch and mapping them into their joint UMAP

embedding, leads to the results shown in Fig. 4.4B, C, and D. Fig. 4.4B and C could

be interpreted in such a way that the memory precursor cells exit the cell cycle sooner

than the effector cells. Moreover, at day 8 p.i. almost all cells that are still cycling are

characterised by a strong effector signature. The only major discrepancy with regard

to the simultaneous calculation from A is found on day 12 p.i. While no differentiation

takes place in the velocity calculation including all cells, progressive differentiation can

be recognised in the individual day 12 computation (Fig. 4.4D). The terminal points of

differentiation most likely indicate cell death. The reason for this discrepancy could be

that at earlier time points than day 12 p.i., cell cycle effects mask the possibly more

subtle effects of differentiation. At day 12 p.i., cell cycle genes are no longer found in the

velocity genes, which could mean that the transitions then become visible. However, this

is difficult to assess because differentiation and cell division are closely linked biologically.

For this reason, we do not think that simply regressing out cell cycle effects is a meaningful

approach for this data set. In section 4.2, we give another reason why we advise against

this strategy.
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Mapping transitions between clusters with PAGA

Partition-based graph abstraction (PAGA) addresses our question even more precisely, as

it directly considers relationships between whole (Leiden) clusters, see [Wolf et al., 2019].

PAGA offers the possibility of mapping connectivities and transitions between the clus-

ters. The latter application option uses the transition matrix from the (dynamic) velocity

model. Applying PAGA on our data, we get the results shown in Fig. 4.5, which provide

both the PAGA connectivities and the transitions for a rather small threshold parameter

of α = 0.05. Here, α sets a threshold, below which all edge connections are suppressed. A

small choice for α thus also takes into account edges of lower connectivity to ensure that

we do not miss possibly relevant transitions here. In terms of connectivities (Fig. 4.5A),

the first notable feature is that the cell cycle super-cluster, as well as the quiescent cell

super-cluster, are strongly connected within each super-cluster. This agrees well with

the UMAP representation of the data, except for the connection cyc. CMp/EMp - CM,

which is not present in the two-dimensional UMAP visualisation. On the other hand, this

connection is found to be particularly weak by PAGA. Probably the biggest conceptual

difference between PAGA and the UMAP visualisation is given by the absence of the con-

nection between the cyc. CMp/EMp and early CMp/EMp clusters. This connection is

clearly visible in the UMAP. Looking at the transitions, the overall picture is very similar

to the RNA velocities projected into the UMAP, up to the discrepancies mentioned above.

In particular, despite increased connectivity between quiescent cells of mixed phenotypes,

there are only transitions between clusters of the same phenotype found by PAGA. Inter-

estingly, PAGA shows a transition from cyc. CMp/EMp to the CM cluster. However, this

transition is classified as very weak and disappears for default thresholds of α = 0.1.

Inferring fate maps using CellRank

Considering the uncertainties of RNA velocities and taking into account the stochasticity

of differentiation processes, the tool CellRank allows to analyse possible fate decisions

more confidently, see [Lange et al., 2020]. Although this method uses RNA velocities1, it

avoids over-interpreting them and thus forms an important complement. Fig. 4.6 shows

the results of CellRank applied to our data set. Fig. 4.6A depicts the three possible ter-

minal states that were manually selected. These include late effectors, late CMp/EMp

cells, and CMs. The highlighted cells represent cells most representative of their cluster

1Note that conceptually, CellRank only depends on a kernel in order to derive the transition matrix. This
kernel does not necessarily need to rely on RNA velocities. Newer implementations of CellRank (version
1.3.0) also allow for estimation of transition matrices based on CytoTRACE scores for example.
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Figure 4.6: CellRank-based fate maps assigning absorption probabilities to each transient
cell, that is, probabilities to transition into one of the terminal states. (A) Leiden clusters
that have been selected as terminal states throughout this analysis. Shown are cells that are
considered highly representative of the respective terminal states. (B) Fate map, indicating
the absorption probabilities of the cells, i.e. the probability of a cell transitioning into one of
the terminal states shown in (A). Here, the probabilities are translated into distances with
respect to the three possible fates (corners of the triangle). (C) Absorption probabilities for
the respective terminal states projected into the UMAP embedding.

according to CellRank. Fig. 4.6B represents a fate map: the distance of each transient

cell to the respective terminal states (endpoints of the triangle) reflects the relative prob-

ability of transitioning into these states. It is noticeable that the cycling activated cluster

is very close to the CMs, that the early CMp/EMp cells are very closely linked to the

late CMp/EMp cells, and that the early effector cluster is connected to the late effector

endpoint. In contrast, the cycling effectors appear to be able to transition into late ef-

fectors, as well as (albeit to a much lesser extent) into late CMp/EMp cells. A similar

bifurcation appears to exist for the cycling CMp/EMp cells: these can transition either

into late effectors or into CM cells. Fig. 4.6C shows the absolute absorption probabil-

ities for the transient cells projected into the UMAP embedding. Although the overall

impression is very similar to the RNA velocities projected into the UMAP embedding,
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Figure 4.7: Expression profiles of identified lineage drivers for each of the terminal states
shown in Fig. 4.6. Cells were ordered in ascending order according to their RNA velocity
pseudo-time. Shown are driver genes that are key regulators involved in late effector (A), late
CMp/EMp (B), and CM (C) fate decisions.

some aspects are better resolved with CellRank. For example, it is indicated that the

very early activated cells become the later CMs. This also fits well with the expression

of the memory genes Slamf6 and Satb1, cf. Fig. 4.2. This is a very important finding as

it suggests differentiation within the cell cycle cluster. Thus, differentiation starts from

memory precursor cells that begin to divide upon activation. A small fraction of them

exit the cell cycle early on to become central memory cells. That part that divides longer

then loses memory potential and becomes effector-like. It should be noted that according

to CellRank, dividing effector cells partially seem to have a re-differentiation potential to

late CMp/EMp cells. However, a transition to CM cells is not supported by the method.

In addition to providing fate maps, CellRank also allows for the identification of driver

genes that correlate strongly with the cells transitioning into one of the respective terminal

states. Here, we selected three genes per terminal state that were among the top 10
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regarding their positive correlation. Only for the CM cells, we additionally considered the

important genes Sell and Tcf7, as the correlating genes for the memory fate have been

mainly dominated by ribosomal genes. Fig. 4.7 shows the expression of such genes for the

terminal states, while cells were ordered according to their RNA velocity pseudo-time. As

a matter of fact, not all states reach the end of pseudo-time because their effective distance

to the root in terms of a random walk on the velocity graph is not the same. Fig. 4.7A

contains three genes that were identified as being lineage drivers for the late effector

fate. As mentioned earlier, Klrg1 and Cx3cr1 are known to be terminal effector markers,

while Gzma can also be expressed in memory-like cells, as they also seem to possess

killing capacity. For late effectors, these genes are expressed in a strictly monotonically

increasing manner, with a rapid increase for late pseudo-times. Similarly, among the

CMp/EMp specific genes, Il7r can be identified. The gene Cd3d encodes a part of the T

cell receptor (TCR). It seems that at least this component of the TCR is downregulated

later by memory-like cells than by effector cells. A possible reason for this could be

that CMp/EMp cells are even more dependent on the antigen stimulus mediated by the

TCR, whereas late effectors, in contrast, are increasingly controlled by cytokine signals,

cf. [Kretschmer et al., 2020]. Ctla2a is not further known as an important immunological

marker gene. However, it is reported to be a tissue-specific secretory factor, see [Zhang

et al., 2015]. As classical memory genes we show Ccr7, Sell, and Tcf7, where Ccr7 could

be identified by CellRank. All three genes reconfirm the central memory properties of the

CM cluster. Here, Ccr7 and Sell are important homing genes that regulate cell migration,

while Tcf7 encodes a known transcription factor involved in longevity.

Relative stemness scores from CytoTRACE

As an alternative approach to the differentiation question, we have used CytoTRACE, see

[Gulati et al., 2020]. This method utilises the number of expressed genes per cell, which

the authors have identified as a surprisingly good correlate for stemness. A normalised

score is calculated from those genes that highly correlate with the number of expressed

genes per cell. This score takes values between zero (relatively differentiated) and one

(relatively undifferentiated). Fig. 4.8A shows the number of expressed genes per cell

projected into the UMAP embedding. Generally, dividing cells are expected to express a

larger number of genes. Within the dividing cells, however, the highest values are reached

by cells in the center of the cluster. Within the non-dividing cells no statements can be

made. Fig. 4.8B shows the corresponding CytoTRACE scores. As expected, cells with

the highest scores are located at the bottom of the cycling activated cluster. Notably, the

gradient progresses directly through the cell cycle clusters. Cells seem to exit the division
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Figure 4.8: CytoTRACE scores indicating the directionality of differentiation in an unbiased
manner. (A) Number of expressed genes per cell as the starting point in the calculation of
CytoTRACE scores. (B) CytoTRACE score of the data set based on the number of expressed
genes per cell, quantifying relative degrees of differentiation between the cells. Cells can
undergo developmental changes moving from high (most undifferentiated) to low (terminal
states) scores.

cluster parallelly, i.e. no phenotypic transitions are recognisable on day 8 p.i. At day 12

p.i., however, there is a clear differentiation gradient from late CMp/EMp cells to late

effectors. Nevertheless, in our view, a gradient in CytoTRACE scores does not necessarily

translate into differentiation. Rather, high scores are indicative of higher differentiation

potential, as the CytoTRACE scores were designed to quantify the stemness of the cells.

Interestingly, the majority of the CM cells are also assigned increased scores. This is

consistent with the stem cell character of mature memory cells during homeostasis.

Conclusion of model topologies

Next, we condense the obtained results into a basic model topology. Overall, it is striking

that an essential part of the differentiation dynamics is determined by the exit of cells from

the cell cycle. Since it is not clear per se to what extent proliferation and differentiation

are coupled, we manifestly incorporate this mechanism into the model scheme. So far, we

have been able to gather some indications that the earliest activated cells have memory-

like gene signatures. These cells might partially stop dividing very early on to mature

and become central memory cells. The other part of the cells seems to continue cycling,

thereby differentiating progressively to acquire effector functions. Generally, cells seem to

be able to stop proliferating at any developmental stage. By doing so, they mainly retain

their phenotype. A part of the dividing effector cells constitutes an exception. Those cells

still have the potential to acquire memory-like (mainly effector-memory-like) properties.
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Figure 4.9: Basic model topologies derived from scRNA-seq-based trajectory inference. (A)
Full scheme of the cell cycle dropout model including the contraction phase, motivated by
time series data until day 12 p.i. Black arrows mark reactions that are more strongly indicated
by the data. Red arrows, on the other hand, represent directions of differentiation that could
potentially occur. Cell death was additionally introduced since our fate mapping data shows a
significant decrease in population size between day 8 and 12 p.i., see section 5.3. (B) Simplest
possible model variant to describe the expansion phase of an acute infection until day 8 p.i.

Likewise, it cannot be ruled out that transitions across phenotypes can still take place

at a later stage, such as day 12 p.i. If this is the case, then these transitions tend to be

progressive (Fig. 4.4D and 4.8B). Nevertheless, we do not want to exclude the possibility

of back-differentiation, especially since weak differentiation processes may not be resolved

for the reasons already mentioned above.

Fig. 4.9A depicts a graphical summary of these considerations until day 12 p.i. Here, red

arrows stand for uncertain transitions or transitions that could not be ruled out. On the

other hand, black arrows mark transitions that could be inferred more confidently from

the analysis in this section. Fig. 4.9B provides the simplest imaginable model topology

aiming to capture the dynamics until day 8 p.i. Later we will state that small extensions of

this model suffice to describe all heterogeneity observed in the (single-) cell fate mapping

data and measured differences in cell cycle speed between the subsets.

Finally, we want to address the relationship between gene expression level and protein

level. This is an important point as the classification of the population data used to fit

our mathematical models is based exclusively on protein markers. The markers chosen

here differ depending on the infection model. For LCMV Arm, TCF1 (the protein associ-

ated with the gene Tcf7) and CX3CR1 are used to classify cells, while in the L.m.-OVA
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Figure 4.10: Correspondence between mRNA and (surface) protein level for cells at day 12
p.i. projected into the joint UMAP embedding. (A) Log-counts of mRNA abundance for
important marker genes used for phenotypic classification of cells in the FACS. (B) Respective
log-counts of the corresponding surface protein levels based on antibody-derived tags (ADTs).
(Experiments conducted by Albulena Toska)

case, CD62L, and CD27 are used respectively. The concrete phenotyping scheme is the

following: TCMp (TCF1+/CX3CR1− or CD62L+/CD27+), TEMp (TCF1−/CX3CR1−

or CD62L−/CD27+) and TEF (TCF1−/CX3CR1+ or CD62L−/CD27−). It should be

added that this is a standard scheme in the field, cf. e.g. [Hikono et al., 2007; Martin

et al., 2018]. We have observed in our data that CD62L positive cells often represent a

subset of TCF1 positive cells, i.e. CD62L seems to be a more exclusive memory marker.

However, at very early time points after infection (around 3 d), CD62L is a problematic

marker, as the surface protein is initially cleaved upon activation; the biological signifi-

cance of this effect could be that it is favourable for the host if early activated cells are

not directed into the lymph nodes, but move straight to the site of infection, see [Yang

et al., 2011]. However, the mRNA level is not affected by CD62L “shedding”.

By considering the mRNA level, we systematically anticipate the classification state ob-

tained in FACS measurements. Hence, we would like to briefly show that our previous

conclusions remain legitimate. To this end, Fig. 4.10 shows different marker genes both

at the mRNA level (Fig. 4.10A) and the surface protein level (Fig. 4.10B). In both cases,

the logarithmised counts are shown as an example for the day 12 time point in the joint

UMAP representation. When comparing the two levels, it is immediately apparent that
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Figure 4.11: UMAP embedding based on 96 cell cycle genes from [Tirosh et al., 2016],
showing the phase scores (A, B), the resulting classification label (C), and the time point
after infection (D).

there is sufficiently good agreement between mRNA and protein levels. This indicates

that the conclusions previously drawn at the mRNA level could be transferred at least

approximately to the protein level for our considerations.

4.2 Inferring quiescence from scRNA-seq data

So far, we have interpreted the data as if the cells classified as G0/G1 were mainly in

G0-phase. This would consequently mean that almost all of the G1 cells would have

been classified incorrectly as S- or G2M-phase cells. In the following, this point shall be

discussed in more detail. To this end, let us consider the same data in a reduced feature

space that is spanned by 96 cell cycle genes from [Tirosh et al., 2016], i.e. in cell cycle

space. The same set of S- and G2M-phase genes was used to compute the previous phase

scores. Recomputing the UMAP embedding based on these genes leads to Fig. 4.11. As

expected, in this embedding the cells cluster with respect to their cell cycle phase label
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Figure 4.12: RNA velocities from the dynamic velocity model computed exclusively on cell
cycle genes from [Tirosh et al., 2016] and projected into the UMAP embedding showing cell
cycle phase labels. Velocities were computed based on all cells (A), a combination of batches
(B), and on cells from individual batches (C, D). In all cases, velocities were projected into
the joint UMAP representation. Differentiation in this subspace of genes indicates progression
through cell cycle stages, whereas vanishing velocities imply quiescence.

(Fig. 4.11C), which is determined by the combination of S- and G2M scores (Fig. 4.11A

and 4.11B). Overall, the S and G2M cells form a subcluster which mainly consists of day

4.5, and to a lesser extent, of day 8 cells (Fig. 4.11D).

Next, we recomputed RNA velocities based on these same cell cycle genes. Fig. 4.12A

shows the results for the inclusion of cells from all time points into the velocity calculation.

We recognise closed differentiation trajectories in the smaller subcluster, descriptively

mapping progression through the cell cycle. This is because non-zero velocities in this

particular space are likely linked to cycling activity. Therefore, we conclude that the

actual G1 cells are probably contained in the smaller subcluster and thus must have been

classified incorrectly. On the other hand, the cells classified as G0/G1 predominantly

consist of quiescent G0 cells. Note, that this argument is not affected by the fact that
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Figure 4.13: Fraction of cycling cells for different time-points of infection inferred from
scRNA-seq data. Here, cells classified as G0/G1 were interpreted as G0 cells based on RNA
velocities in cell cycle space, i.e. representations as shown in Fig 4.12. (A) Fractions of cycling
cells inferred from scRNA-seq data from OT-I T cells during acute L.m.-OVA infection were
confirmed measuring phosphorylated retinoblastoma protein (phospho-Rb). The scRNA-seq
based results and the phospho-Rb measurements were conducted at the same time points after
infection. (B) Fractions of cycling cells derived from multiple scRNA-seq data sets of P14
cells during acute infection with LCMV Arm. If more than one data set per time point was
available, the mean is shown. The analysis was performed by Albulena Toska based on her
own and published data. (L.m.-OVA related experiments conducted by Albulena Toska; LCMV
Arm data from [Kurd et al., 2020] (day 3, 4, 6 and 7 p.i.), [Yao et al., 2019] (day 4.5 and 7
p.i.), Albulena Toska (day 6 p.i.) and [Chen et al., 2019] (day 8 p.i.))

the gene list from [Tirosh et al., 2016] only considers S and G2M genes, which indeed

may not be strongly expressed during G1-phase. However, low expression of S and G2M

genes does not imply that there may be no regulation of these genes during G1-phase.

This regulation (first derivative) is exactly quantified by the RNA velocities. Also, we

know from the results shown in Fig. 3.6 that the G1-phase is definitely relevant in terms

of average length. Fig. 4.12B, C, and D show the corresponding RNA velocities when

calculated on subsets of time points. The closed-loop structure within the cycling cells

remains preserved. Overall, these results are consistent with the study conducted in

[Schwabe et al., 2020]. Here, the authors have shown that progression of cells through the

cell cycle happens on cyclic-planar trajectories in gene expression space; all changes in the

transcriptome related to other processes than cell cycle were shown to occur orthogonally

to these dimensions.
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The previous considerations allow for extracting fractions of quiescent cells from the data

by simply counting the cells that were classified as G0/G1 for the individual time points.

These fractions are depicted in Fig. 4.13A (black). The error was estimated within our

mathematical modelling framework to be discussed in section 4.5. My colleague Albuena

Toska was able to validate these conclusions by FACS-based measurements of phosphory-

lated retinoblastoma protein (phospho-Rb) (red) at the same time points after infection.

The standard error of the mean was used to quantify the uncertainties of the measurement.

Here, a cell is positive for phospho-Rb if, and only if, it is cycling. Compared to other

often used markers, such as KI67 (gene name Mki67), phospho-Rb has the advantage that

it is degraded more rapidly and thus negative cells with respect to this marker are more

reliably in G0-phase, cf. [Gookin et al., 2017].

Fig. 4.13B shows the corresponding fractions of cycling cells for seven time points during

acute LCMV Arm infection. The results are based on 11 published scRNA-seq data sets

and one data set generated by Albulena Toska herself. The associated publications are

given by [Yao et al., 2019], [Chen et al., 2019], and [Kurd et al., 2020]. Comparing the

two kinetics shown in Fig. 4.13A and B, it is noticeable that in both cases, the majority

of the cells seem to exit their cell cycle in a relatively narrow time interval. The precise

knowledge of the proportion of dividing cells is not only important for calculating average

cell cycle speed, as we have already outlined in section 3.6, but will also play a vital role

in explaining the heterogeneity of the population data introduced in the following section.

Finally, we would like to emphasise that the possibly incorrect classification of the actual

G1 cells in the scRNA-seq data could be related to the rapid division speed of the cells and

thus be T cell specific. Likewise, it cannot be ruled out that the cells can enter the S-phase

cluster very quickly after having completed their G1-phase. Such rapid transitions might

not be resolved by UMAP. However, the high level of agreement between our outlined

interpretation and the subsequent phospho-Rb measurements (Fig. 4.13A) rather indicates

an incorrect classification of the majority of the G1 cells in the T cell context. It should

also be noted that the contribution of the G1-phase to the average cell cycle length was

shown to be relatively large during L.m.-OVA infection at day 4.5 p.i. (cf. Fig. 3.9A from

section 3.6.2).

4.3 Summarising the data

At this point, we would like to give a brief overview of the data used to fit our mathematical

models in this chapter. The data essentially consists of three parts: the phenotypically
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classified fate mapping data, cell cycle quantifications from BrdU/DNA experiments, and

the dropout kinetics derived from the scRNA-seq analyses. In this chapter, all data for the

modelling refers to the LCMV Arm infection. This infection is particularly suitable for

modelling because, compared to the L.m.-OVA infection, it has some additional features

that severely constrain model selection, as will be explained later.

The fate mapping data originate from the laboratory of Veit Buchholz and were collected

by Theresa Busch and Lorenz Kretschmer. Single näıve P14 cells were transferred into

C57BL/6 (“black 6”) recipient mice. Mice were infected with LCMV Arm, which causes

activation of these P14 cells. The activated cells begin to divide and differentiate, thereby

inheriting their congenic marker that uniquely determines their clone membership. The

experimental basis was already established in [Buchholz et al., 2013]. Importantly, the

special design of the congenic matrix allows the use of up to seven individual näıve cells

per recipient. At day 8 p.i., the spleens of the mice were FACS-analysed and clonal sizes

and phenotypic compositions were determined. The previously described markers TCF1

and CX3CR1 were used for this purpose, defining the subsets TCMp, TEMp, and TEF.

These experiments resulted in a total of 40 recovered clones on day 8 p.i. The added value

of these data is that a recovered clone is based on exactly one cell, i.e. the initial condition

is precisely known. We have summarised these data in terms of subset-specific moments

of the cell number distributions. Here, we considered the means, coefficients of variations,

and pairwise Pearson correlation coefficients. In addition to the single-cell fate mapping

data just described, Albulena Toska also collected fate mapping data from bulk transfers

at day 8, 7, 6, and 4.5 after infection. In each case, 130, 1000, 5000, and 50000 näıve

cells were transferred, respectively. Relative subset sizes were then determined from these

data.

The second important input for the modelling are the cell cycle quantification results from

section 3.6. The results belonging to LCMV Arm have already been shown in Fig. 3.8.

Unfortunately, these quantifications cannot be adopted directly for the modelling because

the fate mapping data and the BrdU/DNA experiments were carried out with different

virus strains. The newer strain used for the cell cycle speed quantifications is charac-

terised especially by higher absolute division speed and prolonged cycling activity of the

cells, leading to higher progeny numbers. However, we assume here that ratios of the rates

between subset fractions are comparable across virus strains. Therefore, we only include

the calculated ratio of rates, pCMp/pEFF, on day 4.5 after infection into the fitting proce-

dure. This also seems reasonable to us, particularly since we work with time-independent

division rates in the model and only this one time point has been available. Later in chap-
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ter 5, we will look at time-dependencies of division rates in more detail by considering

absolute quantification results.

The third and last important component of the modelling is the cell cycle dropout kinetics,

which in the LCMV Arm case is based exclusively on scRNA-seq data and has already

been shown in Fig. 4.13. This is essential since we manifestly integrate the exit of cells

from the cell cycle into the model topology. A reliable estimation of the parameters would

be impossible in such a model without these data.

4.4 Scope of the progressive model of differentiation

Before we implement the exit of cells from the cell cycle into our model topology, let us

first consider an effective description within the framework of the progressive model of

differentiation. We do this for two reasons: first, this model has already proven reliable in

the past for describing the acute phase of CD8+ T cell responses, cf. [Buchholz et al., 2013],

and second, it is included as a sub-model in our proposed model topology, see Fig. 4.22.

Since we strongly follow [Buchholz et al., 2013] in the choice of summary statistics of the

data and the formalism of stochastic modelling in general, we find it very instructive to

look at this particular limit. Within the progressive model, näıve cells differentiate directly

into long-lived TCMp cells upon activation. TCMp cells then further transition into TEMp

cells, which in turn differentiate into short-lived TEFs. Furthermore, fitting the model to

data from acute L.m.-OVA infection revealed in [Buchholz et al., 2013] that memory cells

divide more slowly on average than the subsequent compartments with effector potential.

The progressive model allows for six elementary reactions to happen in a stochastic fash-

ion, three of which are given by differentiation and three by proliferation. All reactions are

described with constant rates, thereby assuming exponential waiting time distributions.

Mathematically, moment equations for the means and the covariance matrix of the cell

number distributions are solved for the initial condition of one näıve cell at t = 0. Pa-

rameter estimation was done by weighted least-squares fitting with errors of the moments

being estimated via bootstrapping, see [Efron et al., 1993]. Errors of the relative subset

sizes were estimated in terms of pooled standard deviations. The model was only fitted

to the fate mapping data described in the previous section. For details, we refer to the

methods section 2.1. The results associated with the best model fit are shown in Fig. 4.14.

Here, näıve cells were not included in the calculation of the moments (Fig. 4.14A, B, and

C), but were added to the TCMp compartment when considering relative population sizes.

Overall, the progressive model can describe the means, CVs, and pairwise correlations, as
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Figure 4.14: Best fit results for the progressive model of differentiation fitted to single-cell
progeny and population data from acute LCMV Arm infection. Corresponding parameter
values are given in Tab. 4.1. Shown are the dynamics of the moments (A, B, C) and relative
population sizes (D) for the respective compartments. All data used for estimating parameters
are shown. (Single-cell fate mapping experiments conducted by Veit Buchholz, Theresa Busch,
and Lorenz Kretschmer; relative subset sizes measured by Albulena Toska)

well as the phenotypic composition at earlier time points. Especially the remarkably high

CVs, which are around ∼ 4 for all subsets, are reproduced correctly.

Although the model curves are very well fitted to the data, the model explains the ob-

served stochasticity in the wrong way. This becomes clear when looking at the underlying

model parameters of this best fit, shown in Table 4.1, including their profile likelihood-

based confidence bounds, see [Venzon et al., 1988]. In contrast to [Buchholz et al.,

2013], it is noticeable that the effective proliferation rates of all subsets do not differ

from each other within their 95 % confidence intervals. The ratio of differentiation rates
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parameter best fit 95 % CI

pTCMp 1.12 d−1 [0.78; 2.22] d−1

pTEMp 1.22 d−1 [0.46; 1.82] d−1

pTEF 1.23 d−1 [0.00; 1.48] d−1

rN�TCMp 0.10 d−1 [0.06; 0.21] d−1

rTCMp�TEMp 0.46 d−1 [0.20; 1.63] d−1

rTEMp�TEF 0.07 d−1 [0.03; 0.60] d−1

Table 4.1: Best fit parameters for the progressive model of differentiation, as it was used
in [Buchholz et al., 2013]. The model was fitted to single-cell progeny data subject to acute
LCMV Arm infection at day 8 p.i. 95 % confidence intervals (CIs) were computed in terms of
the profile likelihood method. Corresponding model fits are depicted in Fig. 4.14.

rTEMp�TEF/rTCMp�TEMp, however, agrees well with [Buchholz et al., 2013] (0.15 vs. 0.20).

On the other hand, the recruitment rate rN�TCMp ≈ 0.1 d−1 corresponds to average wait-

ing times of ∼ 10 d, being even bigger than the actual time point of measurement. In

forward simulations until day 8 p.i. based on these parameters, a substantial proportion

of the näıve cells are thus not activated at all (simulations not shown). This is in clear

contradiction to experimental observations from [Van Heijst et al., 2009]. Here, the au-

thors transferred uniquely labelled näıve cells and measured the number of recruited cells

during infection under various conditions (e.g. pathogen and infection dose). They con-

cluded that nearly all cells get recruited upon acute infection. Also in [Schlub et al., 2010]

the authors could show that even for large numbers of transferred cells, the fraction of

unrecruited cells always stayed smaller than 0.1 %. Moreover, R. Ahmed and colleagues

measured viral kinetics during LCMV Arm infection in the spleen and showed that at the

peak of the T cell response, most of the virus had already been eradicated, see [Lau et al.,

1994]. Therefore, it is very unlikely that a substantial part of the näıve cells could still

be recruited in the absence of antigen. The model thus incorrectly explains the increased

variability in the data (increased compared to the L.m.-OVA data from [Buchholz et al.,

2013]) by the recruitment of the cells into the immune response. Also, the analysis of the

scRNA-seq data in section 4.1 has shown that a major contribution to the overall vari-

ability in the data arises from cell cycle effects, suggesting model topologies as depicted

in Fig. 4.9. In the next section, we address the variability of the single-cell fate mapping

data in more detail and show how to explain it in a biologically consistent way.
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4.5 The cell cycle dropout model

The previous considerations have shown that the progressive model of differentiation highly

overemphasises the process of recruitment and first division when explaining the observed

variability. Based on the scRNA-seq data analyses, it appears that cell cycle dropout

effects play a major role in the overall dynamics of the response. We want to include irre-

versible division stops in our model topology by considering each of the three phenotypes

TCMp, TEMp, and TEF being either cycling or non-cycling. First, we focus on the sim-

plest possible scheme that does not contradict the previous trajectory inference analyses

from section 4.1.2. The resulting model scheme has already been shown in Fig. 4.9B.

Next, we would like to counteract the model’s tendency to explain the entire variability

by the initial recruitment rate rN�TCMp. To do this, we replace the exponential waiting

time distribution with a heavy-tailed Erlang distribution to limit the variability of this

process. Conceptually, this seems even more reasonable when considering that the first cell

division is known to take significantly longer than all subsequent divisions, cf. [De Boer et

al., 2005; Deenick et al., 2003; Lee et al., 2008]. As a matter of fact, the available data do

not allow reliable discrimination between recruitment and first cell division. Accordingly,

suppressing arbitrarily short waiting times for the combination of these two processes

makes sense biologically. Indeed, there is experimental in vitro evidence that time to

(first) division is not exponentially distributed but rather follows skewed distributions

as log-normal or Gamma-distributions, see [Dowling et al., 2014; Hawkins et al., 2009;

Robert et al., 2021]. Even in vivo, mathematical modelling based on carboxyfluorescein

succinimidyl ester (CFSE) could show that the time to first division is unlikely to be

the main driver of variability in individual T cell responses, see [Gerlach et al., 2013].

Mathematically, we can realise the Erlang distribution by introducing n näıve auxiliary

compartments being linked by n− 1 transitions of identical rates, i.e. rN1�N2 = ... =

rNn−1�Nn . The CV of the effective waiting time distribution is given by 1/
√
n− 1 with

mean waiting time (n − 1)/rN1�N2 . In our case, we choose n = 5 and thus halve the CV

of the original exponential distribution. The transition to the dividing memory precursors

is then set to be instantaneous, i.e. rN5�CTCMp → ∞, whereby two cells flow into the

CTCMp compartment (first cell division). It should be noted that the choice of n = 5 has

proven successful in our case, especially as this achieves average waiting times that are

in line with biological expectations, see later. Note that model selection alone does not

necessarily address this question, as unrealistically high variabilities are not penalised as

we have seen previously. In this sense, the choice of n = 5 should be understood as rather

pragmatical.
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All rates in the model are constant in time throughout this chapter, except for the cell cycle

dropout rate rC�Q. This time-dependence must be introduced especially in an exponential

model, as cells would otherwise leave the cycling compartments earlier than observed (see

Fig. 4.13). For the time-dependence, we choose a simple step function of the form

r
(i)
C�Q(t) =


0 t < T

(i)
dropout

r̃
(i)
C�Q t ≥ T (i)

dropout,

(4.1)

while i ∈ {TCMp,TEMp,TEF}. Cells are thus initially kept in the cycling compartments,

where they can exit at a constant rate after reaching the subset-specific time T
(i)
dropout. To

further reduce model complexity, we make some assumptions for now. First, we set the cell

cycle dropout behaviour of all phenotypes equal, i.e. T
(i)
dropout = Tdropout and r̃

(i)
C�Q = r̃C�Q

for all i. Although this seems a questionable assumption, we will see later in section 4.7

that this does not necessarily mean that all subsets share the same fractions of cycling

cells at times bigger than Tdropout. Also, for simplicity, we assume that TEMp and TEF

cells divide with the same rate. We denote the proliferation rates as pCMp and pEFF,

respectively. Also we neglect cell death during the acute phase of the infection.

4.5.1 Best fit results

We now fit the model described above to the fate mapping data, to cell cycle quantifica-

tions, and to the dropout kinetics inferred from the scRNA-seq data. In addition to the

previously mentioned parameters, we additionally fit an absolute and time-independent

error for the fractions of cycling cells since some of the data points are based on one

data set only. Overall, our model is parametrised in terms of eight parameters. Techni-

cally, we proceed in the same way2 as in section 4.4, additionally adjusting the objective

function with respect to the error contributions. The resulting best fit parameters and

their confidence bounds are shown in Tab. 4.2. Let us first consider the corresponding

model fits of the moments, shown in Fig. 4.15. The dynamics of the mean cell numbers

(Fig. 4.15A) show a reduced increase at about 5 d p.i., as the cells then begin to stop

cycling. The memory cells are most affected by these cell cycle dropout effects. Their

growth rate almost becomes zero, as the net efflux rate from the CTCMp compartment is

bigger than its proliferation rate. The näıve cells were again counted with the TCMp cells,

since literature predominantly states that cells are TCF1+ during their first few cell divi-

sions, see for instance [Lin et al., 2016]. The high CVs measured are correctly described

2Importantly, the inclusion of time-dependent rates does not require an adjustment of the formalism since
all derivation steps in section 2.1.1 still hold and the Markovian property is preserved.
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Figure 4.15: Best model fit of the cell cycle dropout model, corresponding to the parameters
given in Table 4.2. Shown are the estimated moments of the cell number distribution over
time after LCMV Arm infection and the summary statistics of the single-cell progeny data used
for fitting (A, B, C). In addition, bulk transfer-based relative population sizes from earlier
time points were included in the fitting procedure (D). (Single-cell fate mapping experiments
conducted by Veit Buchholz, Theresa Busch, and Lorenz Kretschmer; relative subset sizes
measured by Albulena Toska)

(Fig. 4.15B), although the CV of the TCMp cells is underestimated by the model. In our

model, this is closely related to the fact that differentiation starts with two dividing mem-

ory precursor cells by having combined recruitment and first division. This considerably

reduces variability. Nevertheless, we consider this approach to be useful and believe that

there may well be other early mechanisms that generate variability at this point. These

could be based on asymmetric cell division or irregularities in the first cell division, for

example, and will not be investigated further in this work. The measured correlations

of TCMp -TEMp and TCMp -TEF are overall subject to large uncertainties (Fig. 4.15C).
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Figure 4.16: Best model fit of the cell cycle dropout model, with underlying parameters
given in Table 4.2. Shown are the best model fits related to cell cycle kinetics of the LCMV
Arm infection model and the data used for fitting. (A) Fitted fraction of cycling cells across
all cells (black) and contributions of the respective cycling compartments (coloured) to the
overall kinetics. Uncertainties of the scRNA-seq based dropout fractions were estimated dur-
ing parameter estimation, assuming an absolute and constant error. (B) CMp/EFF ratio of
proliferation rates at day 4.5 p.i. inferred from our cell cycle quantification method (blue) and
the resulting model outcome (red). (Experiments conducted by Albulena Toska)

The TEMp -TEF correlation, on the other hand, could be determined relatively sharply

from the data, as higher cell numbers were available for these subsets. From day 2 p.i.

onwards, this model correlation is larger than the other two. Such dynamics was to be

expected, as the correlation will always be high if one subset differentiates into another

subset with a similar (or smaller) proliferation rate. This can be seen by considering that

large proliferation rates of the target compartment make the influx due to differentiation

less relevant. Therefore, after a certain waiting time, the subsets will decorrelate. By

construction, the TEMp and TEF proliferation rates are identical, which leads to an in-

creased correlation of these two cell types after a short time. The relative population sizes

(Fig. 4.15D) are also well described by the model.

Let us consider the second part of the model fits related to cell cycle kinetics. Fig. 4.16A

shows the fitted cell cycle activity for all cells (black) and the respective contributions of

the dividing cell types (coloured). The plotted fractions refer to all cells in the system,

i.e. the total curve is the sum of all individual contributions. It can be seen that the näıve

starting cell has on average transitioned fully into the CTCMp compartment at day 4

p.i. This is consistent with the mean waiting time of activation and first cell division of

approx. 3.8 d. The progressive differentiation hierarchy can be seen in the kinetics. At
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parameter best fit 95 % CI

rN1�N2 1.06 d−1 [0.82; 1.52] d−1

pCMp 1.05 d−1 [0.85; 1.25] d−1

pEFF 1.76 d−1 [1.46; 1.99] d−1

rCTCMp�CTEMp 0.28 d−1 [0.17; 0.49] d−1

rCTEMp�CTEF 0.08 d−1 [0.05; 0.12] d−1

r̃C�Q 1.33 d−1 [0.95; 1.84] d−1

Tdropout 5.24 d [4.74; 5.73] d
error(frac. cycling) 0.08 [0.05; 0.16]

Table 4.2: Best fit parameters for the cell cycle dropout model fitted to data from acute
LCMV Arm infection. Corresponding fits and data are shown in Fig. 4.15 and 4.16. 95 %
confidence intervals (CIs) were calculated based on the profile likelihood method.

day 5.2 p.i., the subsets then enter their respective quiescent states at a rate of 1.3 d−1,

or continue to divide or differentiate. In the model, most of the cells that are still dividing

at day 8 p.i. are accounted for by CTEMp cells. In the scRNA-seq analyses, on the other

hand, the majority of these cells were determined by CTEF cells. This discrepancy could

indicate e.g. difficult discrimination of these two subsets in the scRNA-seq data or even a

limp comparison between bulk and single-cell level. The direct comparison of the different

infection models could also play a role here and should possibly be omitted. The absolute

error of the data was estimated to be approx. 8 %. Overall, the kinetics are described

remarkably well. It is noticeable that at the earliest time point on day 3 p.i., the fraction

of dividing cells is smaller than on the following days. This could be related to extrinsic

variability, e.g. mouse-to-mouse variability. On the other hand, it could be related to

a very early exit of individual clones or the TCMp subset as a whole. We will discuss

such scenarios in more detail in section 4.6. Fig. 4.16B shows the ratio of quantified

proliferation rates of CMp to EFF at day 4.5 after infection and the corresponding model

fit. The estimated rates are 1.1 d−1 for the CMp cells and 1.8 d−1 for the EFFs. We

conclude that the model has some freedom here and that the ratio of the rates seems to

be a fairly independent data point that can be easily described by the model.

4.5.2 Simulating clone size distribution and composition

So far, we have found a model that explains the (single-) cell fate mapping data, the

measured proliferation differences between the subsets, and the dropout kinetics with

biologically reasonable parameters. In the following, we show Gillespie simulations based

on these parameters, see [Gillespie, 1977]. This examination is of great importance, as good

model fits do not necessarily imply consistency of forward simulations with the data, which



4.5. THE CELL CYCLE DROPOUT MODEL 91

data
model

100 102 104

# TEMp

simulation 2

100

101

102

103

104

105

106

100 102

# TCMp

100

101

102

103

104

105

106

100

101

102

103

104

105

106

100 102 104

# TEF

data
model

100 102 104

# TEMp

simulation 4

100

101

102

103

104

105

106

100 102

# TCMp

100

101

102

103

104

105

106

100

101

102

103

104

105

106

100 102 104

# TEF

100 102 104

# TEMp

simulation 1

100

101

102

103

104

105

106

#
to
ta
l

100 102

# TCMp

100

101

102

103

104

105

106

100

101

102

103

104

105

106

100 102 104

# TEF

data
model

data
model

100 102 104

# TEMp

simulation 3

100

101

102

103

104

105

106

#
to
ta
l

100 102

# TCMp

100

101

102

103

104

105

106

100

101

102

103

104

105

106

100 102 104

# TEF

Figure 4.17: Representative Gillespie simulations for the cell cycle dropout model based on
the best fitting parameters shown in Tab. 4.2. Here, the absolute size of a clone was plotted
against the absolute number of TCMp, TEMp, and TEF cells, respectively. The number of
simulated clones corresponds to the number of measured clones. (Experiments conducted by
Veit Buchholz, Theresa Busch, and Lorenz Kretschmer)

has already been illustrated in section 4.4. Fig. 4.17 shows four representative simulation

results evaluated at day 8 p.i., where the number of simulated clones corresponds to

the number of measured clones (n = 40). The absolute size of a clone was plotted over

the absolute number of cells of the respective phenotype in a log-log plot. Zeros were

plotted on the axes. First, let us focus on the data (black): In the distribution of clone

sizes, it is immediately apparent that three clones are strongly distinguished from the

rest by their increased cell numbers (“giants” vs. “dwarfs”). In this sense, three clones

out of 40 account for about 95.8 % of the total cell numbers. This dichotomy is a key
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characteristic of the LCMV Arm data set and is not found to this extent in the L.m.-OVA

data analysed in [Buchholz et al., 2013], see chapter 5. Furthermore, one of these three

giants is characterised by the fact that it has no TCMp cells. These are highly constraining

features of the data that were not explicitly considered in their summary statistics during

parameter estimation.

Given the four simulation results (red), one observes that the dichotomy pattern is re-

produced extremely well. The simulations are even able to produce giants that have no

memory cells on day 8 p.i. The mechanistic basis of a giant in the model is mainly given

by particularly early completion of the first cell division. The mean value of the associated

waiting time distribution is 3.8 d, while the standard deviation is 1.9 d. This can give very

early activated cells a proliferative advantage of more than two days over average cells.

However, there is a second independent effect that modulates clone size: after activation,

those clones become large that make the transition from slower CTCMp cells to the faster

CTEMp compartment very rapidly. That this transition occurs immediately is rather

rare, since rCTCMp�CTEMp/(rCTCMp�CTEMp +pCMp) ≈ 0.21, i.e. a CTCMp cell will divide

much more often than differentiate into the faster CTEMp compartment. However, if

such a transition occurs immediately (for both CTCMp cells), then this results in a clone

having no TCMp cell at all. At later time points, which are characterised by increased

cell numbers, the inherent model stochasticity is only of minor relevance for the question

of whether a clone becomes a giant or not.

We want to emphasise that small differences in division-time (or division speed) can cause

enormously large differences in cell numbers under exponential growth. However, the ex-

perimentally observed gap in clone size between about 102 and 104 cells is probably a

consequence of the small number of measured clones. In the model, there is no general

mechanism preventing clones from acquiring cell numbers in this range. Indeed, the simu-

lations show that the complete continuum of clone sizes can in principle be occupied. This

prediction would have to be checked in future experiments.

The simulated correlation patterns of the dwarfs are also consistent with the data. How-

ever, the model is not able to explain the observed continuity in the size of small clones

without any TCMp cells, particularly between 101 and 102 cells (see cells on the y-axis

of the middle plots of Fig. 4.17). This is because the model too rarely generates clones

without any TCMp cells. This in turn is closely linked to the fact that the first cell di-

vision directly generates two CTCMp cells. However, if this first cell division is removed

from the model, the variabilities of the TEMp and TEF compartments exceed the mea-

sured CVs enormously (results not shown). We suspect that modelling of stochasticity in
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Figure 4.18: Inequality measures to quantify the dichotomy observed in the clone size dis-
tribution of the LCMV Arm single-cell fate mapping data at day 8 p.i. Simulation results are
based on parameters shown in Tab. 4.2 and N = 104 simulated clones. (A) Gini coefficients of
the total clone size and compartment size distributions. (B) Generalised entropy index of the
total clone size distribution for typical choices of α. Bigger α increase the sensitivity of the
measure with respect to the occurrence of giants. (Experiments conducted by Veit Buchholz,
Theresa Busch, and Lorenz Kretschmer)

the context of Markov processes could be the reason for this behaviour, since exponential

waiting times systematically overestimate the variabilities.

A robust way of quantifying the earlier described dichotomy in the data is provided by

the Gini coefficient G, cf. [Gini, 1912], defined as

G =

∑N
i,j |xi − xj |
2N2〈x〉

, (4.2)

where x denotes the distributed quantity of interest and xi its observations. The Gini

coefficient takes values between zero and one, while G = 1 corresponds to maximal in-

equality. In our case, we are interested in the clone size distribution. Fig. 4.18A shows the

Gini coefficient of the data and the simulation (N = 104 clones), with the uncertainties of

the data being calculated by the bootstrap method. It can be seen that there is a good

agreement for the total cell number distribution, as well as for the TEMp and TEF cell

number distributions. For the TCMp cells, however, we encounter the same problem that
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we have explained before: here we lack variability, which is reflected in the fact that the

model underestimates the CV of the TCMp cells at day 8 p.i., see Fig. 4.15B.

Another inequality or redundancy measure is given by the generalised entropy index

GE(α), see [Cowell, 2000], defined by

GE(α) =



− 1

N

N∑
i

ln

(
xi
〈x〉

)
α = 0

1

N

N∑
i

xi
〈x〉

ln

(
xi
〈x〉

)
α = 1

1

Nα2 −N

N∑
i

[(
xi
〈x〉

)α
− 1

]
α 6∈ {0, 1},

(4.3)

where the parameter α offers a possibility to make the index more sensitive to the occur-

rence of smaller or larger clones. Here, the measure for bigger α (α > 1) becomes more

sensitive to the occurrence of giants. The range of possible index values is given by [0,∞],

where zero stands for maximum equality, i.e. a δD-peaked distribution of clone sizes. The

resulting entropy indices for typical choices of α are depicted in Fig. 4.18B, where we

restrict ourselves to the total clone size. In the case of α = 0, the index measures the

mean log deviation. Here we have the biggest discrepancy between simulations and data

(uncertainties based on the bootstrap method). For α = 1, the measure equals the Theil

index, see [Theil, 1967], and α = 2 is proportional to the squared CV of the distribution.

The latter is particularly sensitive to large clone sizes and here we have the best agreement

between data and model. One reason for this is that the CV was directly considered for

model fitting. Furthermore, the other measured moments are of course also dominated by

the three giants in the data. This leads to a strong overemphasis of the large clones during

parameter estimation and is reflected in increasingly better matches between simulation

and data for bigger α.

4.5.3 Identifiability of estimated parameters

In this section, we briefly comment on the identifiability of all estimated model parameters.

Fig. 4.19A shows an overview of the local minima found in the optimisation. Here, the fits

were plotted over their respective χ2
min-values and sorted in descending order according to

their negative log-likelihoods. The waterfall plot is based on N = 103 fits, with the initial

parameter values chosen using the Latin hypercube method, cf. [McKay et al., 2000]. The

lowest value of χ2
min ≈ 112 is obtained by a substantial subset of possible starting values,

indicating that this fit might be associated with the global minimum. The parameters
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Figure 4.19: Visualising the identifiability of the parameters for the simplest variant of the cell
cycle dropout model. (A) Waterfall plot based on N = 103 starting points in parameter space
subject to Latin hypercube sampling. (B) Profile likelihoods leading to the 95 % confidence
intervals shown in Tab. 4.2. Differences in χ2 are measured with respect to χ2

min, i.e. the value
at the global minimum shown in (A). All eight model parameters are identifiable in this way,
where dashed lines indicate the confidence bounds.

of this best fit and their 95 % confidence intervals have already been shown in Table 4.2.

The confidence bounds were determined using the profile likelihood method, cf. [Venzon et

al., 1988]. The profile likelihoods of all eight parameters underlying the cell cycle dropout

model, including the estimated error for the scRNA-seq-based fractions of the cycling cells,

are shown in Fig. 4.19B. The dashed lines mark the parameter bounds to which ∆χ2 = 4

applies. All parameters have both an upper and a lower bound and are thus identifiable.
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Figure 4.20: Systematic comparison between extensions made to the basic cell cycle dropout
model scheme from section 4.5. (A) Most complex model variant of the cell cycle dropout
model. Here, five additional transitions are considered (red). Furthermore, different dropout
times between memory-like and effector-associated cells are allowed. Together with the simplest
model scheme, this results in 64 possible candidate models to be tested. (B) Differences in
corrected AIC-values with respect to the basic model for all 64 possible combinations. The
candidate models have been sorted by their AIC difference in ascending order and their number
of parameters is shown. Dashed lines represent differences in corrected AIC-values of four and
ten, respectively.

4.6 Model selection

We have previously argued that the simplest variant of the cell cycle dropout model is to

be favoured over more complex models. We now want to justify this in a systematic way.

To this end, we compare it with modified versions. Our approach is guided primarily by

the fact that any possible model extension must be consistent with the scRNA-seq data

analyses. Therefore, these represent a strong constraint to be met in the model selection

process. Since all models are fitted to the same data, a formal comparison using the

(corrected) Akaike information criterion (AICc) is suitable, cf. [Akaike, 1974].

4.6.1 Extensions of the basic model scheme

There are two possibilities to extend the model scheme shown in Fig. 4.9 that are con-

sistent with the scRNA-seq trajectory inference from section 4.1.2. First, additional

transitions between the compartments can be inserted and second, the dropout rate can

be considered phenotype-specific. Reasonable hypothetical transitions between the sub-
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sets include CTEF → TEMp, TCMp → TEMp, TEMp → TEF, TEF → TEMp, and

TEMp → TCMp. Fig. 4.20A graphically depicts these additional transitions. For the

parametrisation of the time-dependent dropout rate, we could assign Tdropout and r̃C�Q

a respective subset label. These two parameters are both well identifiable. Within their

95 % confidence bounds, they are highly dependent on each other, since big rates r̃C�Q

imply short times Tdropout and vice versa. That is why we restrict ourselves only to the

dropout time for simplicity, i.e. Tdropout = T
(i)
dropout, i ∈ {CMp,EFF}. Altogether, this

formally results in 26 = 64 different candidate models (Fig. 4.20A).

As a result, the simplest model has the smallest AICc-value of 137.1 for eight parameters

and a total of 25 data points. Hence, all other models are compared to this best model.

We follow the convention that candidate models with differences of ∆AICc < 4 cannot be

rejected and models leading to ∆AICc > 10 can be rejected, see [Burnham et al., 2002].

For models in between, no clear decision can be made. Fig. 4.20B graphically depicts

the results of all model comparisons with respect to the best model. Model indices were

assigned in ascending order with increasing ∆AICc. The colour encodes the number of

model parameters, ranging from npar. = 9 to npar. = 14. The dashed lines indicate differ-

ences of delta ∆AICc = 4 and delta ∆AICc = 10, respectively. The models are grouped

according to their complexity without exception. Simple models with one additional pa-

rameter cannot be distinguished from the best model, with one exception. For all models

with two additional parameters, no clear decision can be made. Models with three or

more additional parameters can be rejected with one exception (model with index 22 and

∆AICc = 8.4). This model contains two additional transitions that are progressive.

In summary, minor extensions of the proposed cell cycle dropout model in terms of two

additional parameters cannot be rejected. First, this means that simple models are sys-

tematically preferred, and second, that models of the same complexity class are not dis-

criminated by the data. Furthermore, the simple models lead to acceptable model fits.

We conclude that the scRNA-seq-based inference of differentiation topologies has already

functioned as an efficient preselection process. In the following, we will focus on the

simplest model variant, which has already been discussed in more detail.

4.6.2 Comparison of different time-dependencies

So far, we have used the step function proposed in eq. 4.1 as the time-dependence of the

cell cycle dropout rate rC�Q. Since this concrete choice seems arbitrary, we want to test

some other conceivable time-dependencies for comparison. For this purpose, we focus on

sigmoid functions, whose derivatives are non-negative at every point in time. We set the
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Figure 4.21: Implementation of sigmoidal functions as possible choices for the underlying
time-dependence of the cell cycle dropout rate. (A) Best fit results of the time-dependent
dropout rate for a selection of rescaled and shifted sigmoid functions (coloured) with two
parameters each. Also shown are the step function used so far (black) and a constant rate
(grey). (B) Same plot as in Fig. 4.16A for the choice of the error function instead of the
step function shown in (A). The resulting dropout kinetics is now differentiable at any point
in time.

image of the functions in the range [0; r̃C�Q] and shift the functions in time such that a

point symmetry of the curves with respect to the point (Tdropout, 1/2 r̃C�Q) is achieved.

All curves are thus characterised by two parameters, which, however, cannot directly be

compared to each other. Defining τ := t− Tdropout, our choice of functions reads

rlogisticC�Q (τ) =
1

2

(
1 +

1

1 + e−τ

)
r̃C�Q, (4.4)

rerfC�Q(τ) =
1

2
(1 + erf(τ)) r̃C�Q =

1

2

1 +
2√
π

τ∫
0

dz e−z
2

 r̃C�Q, (4.5)

rabsC�Q(τ) =
1

2

(
1 +

τ

1 + |τ |

)
r̃C�Q, (4.6)

rtanhC�Q(τ) =
1

2
(1 + tanh(τ)) r̃C�Q =

1

2

(
1 +

eτ − e−τ

eτ + e−τ

)
r̃C�Q. (4.7)

Fig. 4.21A shows the time-dependent dropout rate of the respective best fit result for

the different functions (coloured) and the previous step function (black). In addition,

a model was chosen that ignores the time-dependence of the rate (grey). As a result,

our previous step function model has the overall smallest AICc-value. In the following,
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parameter best fit 95 % CI

rN1�N2 1.08 d−1 [0.83; 1.54] d−1

pCMp 1.07 d−1 [0.87; 1.25] d−1

pEFF 1.78 d−1 [1.48; 2.00] d−1

rCTCMp�CTEMp 0.28 d−1 [0.17; 0.48] d−1

rCTEMp�CTEF 0.08 d−1 [0.04; 0.12] d−1

r̃C�Q 1.45 d−1 [1.01; 2.05] d−1

Tdropout 5.28 d [4.65; 5.92] d
error(frac. cycling) 0.08 [0.05; 0.16]

Table 4.3: Best fit parameters for the cell cycle dropout model fitted to data from acute
LCMV Arm infection. In contrast to the parameters shown in Tab. 4.2, the underlying model
is based on a differentiable choice for the dropout rate given by the error function, cf. eq. 4.5.
Note that the parametrisation of the dropout rate in terms of r̃C�Q and Tdropout has a different
meaning now and cannot directly be compared to the estimations in the previous table. 95 %
confidence intervals (CIs) are based on profile likelihoods.

the other candidate models are compared to this same model. The constant model is

associated with ∆AICc = 17.4. The error of the scRNA-seq-based fractions of cycling

cells is estimated to be 0.27. If the error is bounded to 0.1, the result is ∆AICc = 45.0.

Thus, the constant model can be clearly rejected.

For the other models we get 0.1 ≤ ∆AICc ≤ 3.4. The best model in terms of AIC is

the error function model with ∆AICc = 0.1. All models lead to comparable-looking fits.

Table 4.3 shows the estimated parameters of the best fit for the error function model as a

representative of the four sigmoid functions shown. The corresponding dropout kinetics are

shown in Fig. 4.21B, exhibiting differentiable kinetics around Tdropout. A comparison with

the parameters of the step function model shows that the parameter sets differ only slightly.

The data, therefore, do not offer any possibility to distinguish between the different choices

of time-dependencies. We therefore retain the step function used, as it allows an easier

interpretation of the results obtained. However, we will return to the error function model

in section 4.7.

4.6.3 Clonal cell cycle dropout model

Next, we would like to investigate the extent to which the overall variability in the data

may be due to kinetic variability between different clones. There is evidence from in vitro

studies that a major contribution to heterogeneity in dividing T and B cell populations can

be explained by the concept of “division destiny”, see [Heinzel et al., 2017; Marchingo et

al., 2014; Turner et al., 2008]. In its most recent formulation, an activated cell is assigned a
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Figure 4.22: Topology of a clonal dropout model in which the two clones exit the cell cycle
at fixed but different times. The additional source of variability is controlled via the dichotomy
parameter p. In the limit of p→ 0, the original model is obtained. By construction, all other
parameters between the two model branches are identical.

maximum time to divide before dying or becoming quiescent. This time is distributed, with

the underlying parameters of the distribution depending on cell type, stimulus conditions,

etc. In our case, although all clones exit the cell cycle at the same time, they do not enter

it at the same time: due to the highly variable recruitment at the beginning (standard

deviation of waiting time given by 1.9 d), there can be considerable differences between

clonal cycling times. We now want to emphasise these clonal differences to a larger extent

and study the resulting model response.

To this end, we retain the basic model topology but extend it such that recruited cells

enter one of the two submodels shown in Fig. 4.22. A possible biological factor influencing

this decision could be given, for example, by the initial antigen stimulus that the näıve

cells are receiving. The only difference between the two submodels is the dropout time.

Therefore, the dropout time is assigned a clonal label, i.e. Tdropout = T
(i)
dropout, i ∈ {1, 2}.

Without loss of generality, we set T
(1)
dropout < T

(2)
dropout. The parameter p represents the

proportion with which the cells after recruitment belong to the clone whose cells divide

longer. The underlying idea is that the dichotomy in the data could be better represented

by two extremes in the cycling times: for example, cells can either become giants with a

probability of p or they become dwarfs with a probability of 1− p. In the limit of p→ 0,

our previous model is obtained.
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In the best fit, the essential parameter p is estimated to be 78 %, with a difference in

dropout times of ∆Tdropout = 1.5 d. Thus, the model does not represent the dichotomy

property of the data in a desirable way. In the data, only 3/40 = 7.5 % of the clones are

accounted for by giants. The parameters p and T
(i)
dropout are not determined by the strong

inequality of clone sizes. Applied to this particular case, this model does not add any

conceptual value and, compared to our previous model, results in ∆AICc = 8.5.

In case of not estimating the dichotomy parameter p, but setting it directly to p = 7.5 %,

the result is ∆Tdropout = 0.4 d, i.e. the clones hardly differ from each other and we obtain

almost the same results as in the basic model. This indicates that the introduction of an

additional clonal source of variability in terms of the specific choice depicted in Fig. 4.22 is

not further necessary. It seems as if there is already enough variability in the recruitment

process, even though the CV of the associated waiting time distribution has already been

halved. This assumption can be checked by removing all variability from the recruitment

process, i.e. replacing the Erlang distribution with a delta distribution. In this case,

we obtain a complete recruitment/first cell division at 2.9 d p.i. with dropout times of

T
(1)
dropout = 5.0 d and T

(2)
dropout = 6.7 d, i.e. a difference of about 1.7 d. Interestingly, the

dichotomy parameter is now estimated to be p = 9 %. This is exactly in the expected

range, especially considering that the observed value of 7.5 % is subject to a Poisson error.

The 95 % confidence interval for p lies between 0.2 % and 23.5 %. The lower bound is so

close to zero because small values of p always produce large values of T
(2)
dropout close to 8 d

p.i. This allows a very small proportion of recruited cells to be in exponential growth for

a very long time, thus producing a high dichotomy level.

Overall, we find that some form of clonal variability in the cycling time is needed to explain

the observed heterogeneity consistently. Our data cannot discriminate between this time

being at the beginning of the expansion phase (recruitment and first cell division) or the

end of it (division destiny). However, with our basic model we have provided enough

clonal variability so that adding more variability does not improve the fits. Of course, by

considering only two different clonal dynamics, our tested model has been rather extreme.

In principle, these considerations could be extended by discretising the dropout time to fit

whole histograms to the data. However, this would lead to expensive calculations within

the moment equations approach. We also want to emphasise that a similar skewness in the

clone size distribution could also be created by a clonal distribution of cell cycle speed.

Nevertheless, it would most probably not be possible to distinguish between these two

mechanisms based on the given data.
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4.7 Predicting phenotypic cell cycle dropout dynamics

The observations so far have strengthened the impression that the cell cycle dropout

model reliably captures the essential degrees of freedom relevant to the dynamics during

the early phase of infection. Indeed, all model parameters have been identifiable. In

order to test the predictive power of this model, we focus on phenotype-specific cell cycle

dropout effects. To this end, we must recall the following assumption we made: at time

Tdropout, all cells start to become quiescent at the same rate r̃C�Q, regardless of their

current phenotypes. Within our model, we can now ask how the proportions of cycling

cells per phenotype behave for times t > Tdropout, as we initially had no available data to

address this question.

Fig. 4.23A shows these same fractions over time. Up to t = Tdropout, all cells are cycling

by definition. After this time has passed, the fractions decrease in a subset-specific man-

ner, which needs to be explained: Despite our assumption about the phenotype-unspecific

dropout behaviour, cells proliferate and differentiate further after Tdropout is exceeded.

Consequently, the net influx and efflux into the respective cycling compartments are dif-

ferent for each subset. For example, no cells differentiate into the cycling memory compart-

ment for times beyond Tdropout, but some cells differentiate out. Although they keep on

dividing, we have pCMp/(r̃C�Q + rCTCMp�CTEMp + pCMp) ≈ 0.40. Therefore, the dividing

fraction decreases exponentially. In contrast, the CTEMp cells receive an influx from the

CTCMp compartment, proliferate more strongly, but pass on a proportion to the CTEF

compartment. The CTEF compartment has the biggest influx and the smallest efflux, as

being located at the end of the differentiation topology. This explains the hierarchy of

decays in Fig. 4.23A. For day 6 p.i. (dashed line), a prediction was made for this hierarchy.

This same prediction was verified by my colleague Albulena Toska in a subsequent exper-

iment. For this purpose, she measured phenotypic proportions of dividing cells at day 6

after LCMV Arm infection using phospho-Rb. However, since she used a different virus

strain for this purpose, which has turned out to lead to faster and longer-lasting cell divi-

sions, only ratios of these proportions can be compared with the model prediction. This

comparison is shown in Fig. 4.23B. The errors of the data (blue) were estimated using the

standard error of the mean, while the errors of the model prediction (red) were calculated

using prediction profile likelihoods, cf. [Kreutz et al., 2012]. The hierarchy of decrease

in the cycling compartments is thus correctly predicted by the model, although there is

an overlap of the ratios within the 68 % confidence intervals. However, this was to be

expected, especially since the exit of the cells from the cell cycle at Tdropout = 5.2 d was

too close to the time of the validation experiment. For slightly later time points, e.g.
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Figure 4.23: Model predictions of phenotype-specific cell cycle dropout dynamics. (A) Frac-
tion of cycling cells per phenotype (across all cells of the same phenotype) over time. The
dashed line indicates day 6 p.i., i.e. the time point associated with the model prediction. (B)
Ratios of modelled kinetics from (A) evaluated at day 6 p.i. including 68 % confidence intervals
(red) and phospho-Rb-based measurements of these same ratios (blue). (C) Same as in (A)
but using an error-function-shaped time-dependence of the cell cycle dropout rate. Associ-
ated parameters have been shown in Tab. 4.3. (D) Model results including 68 % confidence
bounds, corresponding to the kinetics from (C). This is not a model prediction, as this result
was only obtained after the measurement. (Experiments conducted by Albulena Toska)

day 7 or 8 p.i., there is no overlap in the model predictions. Therefore, we recommend

re-measuring on one of these two days.
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Models with continuous time-dependent dropout rates allow cells to stop dividing earlier.

Therefore, they might address the above problem, related to the early measurement at

day 6 p.i., better. The previously discussed model with the error function as the chosen

time-dependence shall be used as a representative example of such a model, see Tab. 4.3

for the estimated model parameters. Fig. 4.23C confirms the presumed increased distance

between the TCMp curve and the TEMp/TEF curves at day 6 p.i. The resulting ratios are

shown in Fig. 4.23D. Here we see a significant difference in the dropout hierarchy between

the TCMp cells and the effector-associated cells within the 68 % confidence intervals.

These results were obtained after the actual measurement and therefore do not represent

proper predictions. Nevertheless, this analysis confirms that the timing of 6 d p.i. was

merely chosen too early.

4.8 Analysis of variability contributions

As a final point, we would like to investigate to what extent the overall variability of our

stochastic model can be related to individual variability-generating mechanisms. Overall,

there are three major sources of variability that need to be distinguished: the inherent

stochasticity of the model resulting from exponentially distributed waiting times of the

individual reactions (i), clonal variability caused by recruitment and first cell division (ii),

and variability arising from differences in cell cycle speed between memory and effector

subsets (iii). All three mechanisms have already been discussed in detail. However, we

would like to better understand their individual contribution to the coefficients of variation.

To this end, we remove the variability of each of the mechanisms (ii) and (iii) separately, re-

fit the model and compare the CVs with those of the full model. When removing the clonal

variability, the underlying Erlang distribution is replaced by a Dirac-function, with the

location of the peak being estimated. The variability associated with cell cycle differences

is obtained by setting the two proliferation rates equal. Furthermore, the recruitment rate

is set to the best fit result of the full model so that the model cannot compensate for the

loss of variability in terms of smaller recruitment rates.

Fig. 4.24A shows the resulting CV-dynamics for the case where both sources (ii) and (iii)

have been removed. These must be compared with the CVs of the original model shown

in Fig. 4.24D. The estimated and constant time of recruitment is 2.9 d. The inherent

stochasticity of the model is by far not sufficient to compensate for the other two mech-

anisms, despite the highly variable exponential waiting time distributions. If we again

consider differences in cell cycle speed, the CVs of the TEMp and TEF compartments

increase. In contrast, the CV of the TCMp cells decreases since their division speed is
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Figure 4.24: Effects of different variability-generating mechanisms of the cell cycle dropout
model on the coefficients of variation. The model was re-fitted upon removal of individual
mechanisms. CVs at day 8 p.i. are shown in numbers. (A) Clonal variability related to
recruitment and first cell division, as well as variability caused by differences in cell cycle
speed across subsets, were removed. (B) Variability caused by initial recruitment and first cell
division was removed. (C) Proliferation rates of CMp and EFF subsets were set equal, thereby
eliminating variability caused by differences in cell cycle speed. (D) Original model with full
variability for reference.

now correctly described. In the previous case, division speed of the TCMp cells was highly

overestimated, which lead to an increased CV. The reason for this is that an overestimation

of the TCMp proliferation rate is not as significant as an underestimation of the TEMp

and TEF rate. This is because at day 8 p.i. the latter compartments are much stronger

represented in number. If we consider the opposite case of variable recruitment and equal
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division speeds, we can conclude that recruitment makes a larger contribution to the vari-

ability, see Fig. 4.24C. An additional consideration of different proliferation rates strongly

separates the CV of the TCMp cells from that of the effector-associated cells.

We find that the mechanism of recruitment, despite considering non-exponential waiting

times, makes the largest contribution to the overall variability. This is particularly inter-

esting as this source of variability is clonal. At the same time, it should be noted that the

different division speeds of the subsets act as a strong amplifier of this very first source

of stochasticity. Especially in a model in which the cells cannot be in division for an

arbitrarily long time, the early differentiation from the slower CTCMp compartment into

the much faster CTEMp compartment plays a decisive role. The model CVs for equal

proliferation rates are not sufficient to explain the strong dichotomy (see section 4.5.2) of

the data. However, precise quantification of the variability contributions is not possible in

this framework, as the compared CVs of the different conditions are not additive.



Chapter 5

Model extensions beyond the acute

phase of infection

In the previous chapter, we have presented a model that correctly explains the hetero-

geneity of individual CD8+ T cell responses during the expansion phase of infection. This

model is now extended to the contraction phase of the response. In the first part of this

chapter, we restrict all considerations to the early phase of contraction. Then, we give an

outlook on the full contraction phase, at the end of which the memory phase is initiated.

To this end, we consider immune responses following L.m.-OVA infection since data points

are available at late time points. This also gives us the opportunity, to apply our cell cy-

cle dropout model to a different acute infection. It should be emphasised again that our

central working hypothesis is that acute infections follow the same mechanisms, although

the particular parameter values describing them can generally be very different.

5.1 Available data and model extensions

The structure of the data is the same as in the previous chapter. Single-cell fate mapping

data from OT-I T cells during L.m.-OVA infection collected at day 8 and 12 p.i. are avail-

able. Cells were classified using the surface markers CD62L and CD27. In this way, n = 76

clones could be measured at day 8 and n = 93 clones at day 12 after infection. In addition,

relative population sizes collected at day 1, 2, 3, 4, 6, 8, and 12 p.i. were available. All these

data were obtained by Veit Buchholz and Dirk Busch and were published in [Buchholz

et al., 2013]. Fractions of dividing cells at day 4.5, 8, and 12 after infection corresponding

to the L.m.-OVA case have already been shown in Fig. 4.13. Here, the scRNA-seq-based

inference has given results very similar to the subsequent FACS validation by measuring

phospho-Rb. For parameter estimation, we opt for the FACS measurements here, as these

were based on a larger number of mice. Likewise, the division speed quantifications of

CMp and EFF subsets on day 4.5 and 8 p.i. are highly relevant. These have already been

shown in Fig. 3.9 and are based on experiments by Albulena Toska.
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In the following, we leave the model topology unchanged. In section 4.1.2, we have seen

that in the course of the immune response the respective phenotypes continue to mature,

while the cells mainly retain their phenotypes in terms of expression of relevant marker

genes as Slamf6, Cd27, Gzma/b, and Klrg1, see Fig. 4.2. We do not consider it necessary

to add another layer of compartments (e.g. by introducing the subsets TCM, TEM, and

late TEF). Especially because we do not have any data that distinguish these more mature

states from their respective precursor states. Based on the data mentioned above, we must

consider some necessary model extensions. To start with, we account for our measurements

that the proliferation rate of both CMp and EFF cells slows down from day 4.5 to 8 p.i.

First, we describe theses dynamics in terms of exponential decays. However, since a basic

exponential model overestimates the rate for early time points, we choose the following

form, given by

pi(t) =


ci t < τi

cie
−ki(t−τi) t ≥ τi,

(5.1)

i.e. cells initially divide at a constant rate ci until time τi. After that, the rate drops

exponentially with rate ki, while i denotes the subset label. A slowing down of cell cycle

speed together with the exit of cells from the cell cycle can, in extreme cases, stop cell

growth completely. However, since cell numbers decrease on average between day 8 and

day 12 p.i., death rates di must additionally be introduced. In the most general case we

have i ∈ {TCMp,TEMp,TEF}, assuming that only non-dividing subsets are affected by

cell death. The kinetics of the model parametrised in this way has the advantage that

one does not have to choose or estimate the onset of contraction (marked by the time at

which cell death becomes relevant). This is because cell death is naturally suppressed for

times smaller than Tdropout.

5.2 Determination of kinetic properties

In this section, it shall be investigated which model can best describe the initial contraction

phase. For this purpose, we rely on the model selection results from section 4.6 as far

as differentiation is concerned. Here, the emphasis is put on possible kinetic variants

in terms of cell division and cell death. In the previous section, the kinetically most

complex model was outlined. All subsets were assigned different constant death rates di

and different proliferation rates pi, each parametrised by the three parameters ci, τi, and
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Figure 5.1: Overview of possible kinetic variants of the cell cycle dropout model extended
to the early contraction phase. (A) Most general parametrisation scheme in which all three
subsets show different proliferative dynamics in terms of eq. 5.1 and different death rates.
(B) Output model of the forward selection procedure, in which all three compartments differ
in their initial proliferation rate c i and effector-associated cells have different death rates d i
compared to memory cells. The dynamics of proliferation in terms of τ and k is the same for
all subsets.

ki, see equation 5.1 for the choice of parametrisation. Fig. 5.1A depicts this model in its

most general form.

To determine the model with the smallest AICc-value, we use the forward selection method,

see [Fröhlich et al., 2019; Hastie et al., 2009]. We start from the simplest model in which

all three subsets have the same kinetics. This model has eight parameters less than the

previously described most complex variant. In case a separate parameter is assigned for

the CTEMp or the CTEF subset, the parameter of the respective other effector-associated

compartment is set to the same value. As a result, the forward selection is terminated in

the fourth step. This leads (in the order of the selected parameters) to an inclusion of

the parameters cTEMp, dTEMp, and cTEF, with AICc = 114.9 for the possibly1 best model,

see Fig. 5.1B. This means that the resulting model considers differences in death rates

between memory and effector-associated cells as well as differences in proliferation rates

between all three subsets. A difference in death rates between CMp and EFF cells was to

be expected, especially as it ensures the known short-lived nature of the latter cells. It is

also interesting that all subsets seem to slow down their cycling speed simultaneously. We

discuss the exact implications of this model in the next section when the best fit results

are shown.

1Forward selection is a greedy algorithm. Therefore, identification of the most appropriate model with the
smallest AICc-value among all candidate models is not guaranteed.
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Before we turn to the best model, let us consider other possible time-dependencies of the

proliferation dynamics. So as not to to overestimate the rate for early time points, we

retain our basic form of initially constant rate c up to time τ and subsequent k-dependent

decay. Defining t − τ =: τ̃ , this gives p(τ̃ ≤ 0) = c. We have tested the following three

alternative time-dependencies, given by

pcosech(τ̃ > 0) =
2c

ekτ̃ + e−kτ̃
, (5.2)

phyperb(τ̃ > 0) =
c

τ̃k + 1
, (5.3)

pGauss(τ̃ > 0) = c e−(kτ̃)
2
. (5.4)

Comparing these models to the exponential decay model from above, we get ∆AICc = 0.2

(hyperbolic cosecant), ∆AICc = 2.9 (hyperbole), and ∆AICc = 0.0 (Gaussian). Hence,

these different choices cannot be discriminated by the data.

5.3 Mechanisms of the early contraction phase

Next, we address the model obtained by forward selection using the exponentially decreas-

ing proliferation rate that has been outlined in the previous section. Fig. 5.2 shows the

best fit of this model in terms of the moments of the cell number distributions. It can

be seen that on average the cell numbers decrease for all subsets between day 8 and 12

p.i. (Fig. 5.2A). Thereby, the TCMp subset already experiences a decrease in mean cell

number at the estimated dropout time Tdropout = 4.5 d (cf. Tab. 5.1 for a complete list of

all estimated parameters including their 95 % CIs). The cycling part of the TCMp com-

partment can no longer compensate for the outflow given by differentiation and death. On

the other hand, the TEF compartment expands the longest, as it is the last state within

the linear differentiation hierarchy. Consequently, the TEMp and TEF cells only decrease

in number after their proliferation rates start to decrease exponentially at τ = 7.4 d and

hence cell death becomes dominant. Here, the death rate of TEMp/TEF cells is signifi-

cantly higher than that of TCMp cells (0.7 d−1 vs. 0.2 d−1). The peak of the modelled

CD8+ T cell response turns out to be located at t = 7.9 d p.i. with a mean cell number

of 1.6 · 104. This result is in line with measurements carried out in [Porter et al., 2006],

where the authors report peak times between 8 d to 9 d after L.m.-OVA infection.

In contrast, the CVs and correlation coefficients show little dynamics between day 8 and

12 p.i. In particular, the CV of the TCMp cells is underestimated at day 8 p.i. (Fig. 5.2B),

whereas it is correctly described at day 12 p.i. Mechanistically, this is also due to the fact
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Figure 5.2: Best fit results for the extended cell cycle dropout model fitted to single-cell
progeny data from day 8 and 12 post acute L.m.-OVA infection and kinetic data on cell cycle
activity and speed. Associated parameter values are given in Tab. 5.1. Shown are the dynamics
of the moments (A, B, C) and relative population sizes (D) of the respective compartments.
Relative compartment sizes were not used for model fitting. (Data from [Buchholz et al.,
2013])

that the initial proliferation rate of the TCMp cells (cTCMp = 1.5 d−1) is much higher than

the differentiation rate into the TEMp compartment (rCTCMp�CTEMp = 0.2 d−1). This

leads to less stochasticity in the initial response, which in turn leads to less variability in

the size of the mean TCMp cell numbers. In addition, the waiting time for recruitment

is relatively short, only about half a day on average, limiting the variability even further.

Except for the TCMp -TEF correlation (Fig. 5.2C), the model reproduces the stochasticity

of the data well. One way to reduce the TCMp -TEMp/TEF correlations within our

model would be to put more emphasise on the proliferative differences between TCMp

and TEMp/TEF cells. As already explained in section 4.5.1, the differentiation of a slow
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parameter best fit 95 % CI

rN1�N2 7.50 d−1 [5.55; 13.06] d−1

rCTCMp�CTEMp 0.23 d−1 [0.18; 0.35] d−1

rCTEMp�CTEF 0.04 d−1 [0.03; 0.06] d−1

Tdropout 4.48 d [4.43; 4.52] d
r̃C�Q 2.50 d−1 [2.27; 2.67] d−1

cTCMp 1.53 d [1.48; 1.59] d−1

cTEMp 2.48 d [2.43; 2.60] d−1

cTEF 2.71 d [2.63; 2.85] d−1

τ 7.40 d [6.88; 7.69] d
k 0.28 d−1 [0.23; 0.41] d−1

dCMp 0.19 d−1 [0.13; 0.29] d−1

dEFF 0.71 d−1 [0.63; 0.91] d−1

Table 5.1: Best fit parameters for the extended cell cycle dropout model, fitted to data from
acute L.m.-OVA infection. Corresponding model fits are shown in Fig. 5.2 and 5.3, respectively.
95 % confidence intervals are based on profile likelihoods.

dividing into a fast dividing subset leads to a decorrelation of these two subsets. In our

case, the only reasonable option to increase division speed differences between TCMp and

TEMp/TEF compartments would be given by an even higher effector proliferation rate.

In contrast, the absolute cell numbers would not be consistent with such a scenario. We

conclude that either the dynamics of the proliferation rate is not ideally chosen or that

dividing (effector) cells might already be affected by cell death as well.

Fig. 5.2D shows the relative population sizes obtained from bulk transfers. These were

not used during parameter estimation. Until day 8 p.i., the relative subset kinetics of the

phenotypes are surprisingly well described by the model. However, at day 12 p.i., relative

sizes of TEMp and TEF cells are not in line with the data. It should be noted again, that

the very early time points (t < 4 d) are affected by CD62L shedding, i.e. CD62L is cleaved

upon activation of näıve cells, see [Yang et al., 2011].

The kinetic characteristics related to cell cycle are shown in Fig. 5.3. Between day 4.5 and

8 p.i. the majority of the cells stop dividing (Fig. 5.3A, black curve). By day 12 p.i., almost

all cells become quiescent. The coloured curves show the phenotypic contributions and

mainly reflect the progressive hierarchy of differentiation. The estimated dropout time of

4.5 d has a strikingly narrow confidence interval of 0.1 d in length. Regarding the fit of

the proliferation rates (Fig. 5.3B), one can see that the effector rates are well described.

As the results show, the TEFs have a slightly increased rate compared to the TEMp cells.

In contrast, the TCMp rate is underestimated at day 4.5 p.i. As described above, one
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Figure 5.3: Best model fits of the cell cycle kinetics based on parameters shown in Table 5.1.
(A) Model curves of the cycling activity of all dividing compartments (coloured) and their
sum (black), with fractions referring to all cells. Data were gained in terms of phospho-Rb
measurements. (B) Model fits of the time-dependent proliferation rates for cycling memory
cells (grey) and effector cells (black). At the estimated time τ , proliferation rates begin to
decrease exponentially with decay rate k. Both parameters are identical for all compartments.
(Experiments conducted by Albulena Toska)

explanation is that for the low correlations between TCMp -TEMp/TEF there must be

a sufficiently large proliferative difference. However, this was not measured to the same

extent and could therefore indicate an inadequacy of the model. With regard to kinetics,

it is noticeable that the used data are highly informative as all kinetic parameters can

be determined with very narrow confidence intervals. In this way, even the death rates

underlying the early contraction phase can be identified, which otherwise would be difficult

to access experimentally.

Overall, we find that the dropout of cells from the cell cycle seems to be more relevant in

regulating cell numbers during the course of the immune response than a slowing down

of division speed. This is shown in terms of Tdropout < τ , i.e. at the time of slowing down

division speed, most cells are already no longer dividing. Consequently, this leads to a less

identifiable decay rate k compared to the other parameters (see Tab. 5.1).
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Figure 5.4: Representative Gillespie simulations of the extended cell cycle dropout model,
depicting the correlation structure of the respective phenotypes at day 8 and 12 p.i. Simula-
tions are based on the parameters shown in Tab. 5.1, where the number of simulated clones
corresponds to the number of measured clones. (Data from [Buchholz et al., 2013])

5.4 Simulation of clones and their correlation structure

Based on the parameters from Tab. 5.1, clones and their phenotypic composition are sim-

ulated according to Gillespie’s algorithm, cf. [Gillespie, 1977]. Simulations are evaluated

at day 8 and 12 p.i. in order to compare them with the corresponding single-cell fate map-

ping data. For day 8 p.i., n = 76 clones could be recovered experimentally, while 12 days

after infection n = 93 clones were measured. Compared to the LCMV Arm fate mapping

data from section 4.5.2, the clones in the L.m.-OVA case are larger and less variable in
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clone size. Despite cells exiting the cell cycle at about 5 d p.i. in both infections, cells are

recruited on average more than three days earlier during L.m.-OVA infection. This also

leads to a significant reduction of variability in the resulting clone sizes during L.m.-OVA

infection. The full correlation structure of the data and two representative simulations

per time point can be found in Fig. 5.4. At day 8 p.i., the correlation patterns between

simulation and data agree well (Fig. 5.4A). Only when looking at the absolute TEMp

versus TEF cell numbers (middle plots) there is a slight discrepancy. This shortcoming is

further emphasised during the transition to day 12 p.i. (Fig. 5.4B). Except for this feature,

the simulations robustly reproduce the observed correlation structure of the experiments.

Our analyses showed that for the TEMp -TEF correlation of absolute cell numbers at day

12 p.i., the discrepancy between simulation and data is difficult to solve, especially since the

Pearson correlations are already in good agreement (see Fig. 5.2C). At the simulation level,

however, we have more flexibility to deal with this. It turns out that a clonal variability in

the transition rate rCTEMp�CTEF solves this problem, while still describing the moments

correctly. Here, we consider a normal distribution of this transition rate with mean of

〈rCTEMp�CTEF〉 = 0.23 d−1 (best fit result) and CV = 0.5. It seems to be important that

the rate must be distributed from the beginning of the response. Considering a distributed

rate from day 8 p.i. onwards is not sufficient to reduce the discrepancy between data and

simulation. Fig. 5.5A shows the associated simulation results for day 8 p.i. These indicate

an improvement in the TEMp -TEF correlation without impairing the other correlations.

In particular, at day 12 p.i. (Fig. 5.5B), the data are now consistent with the simulation

results. Interestingly, considering other model parameters to be distributed is not useful

in this regard. The biological relevance of this observation could be related to increased

clonal heterogeneity within the TEMp compartment. Thus, there might be clones whose

TEMp cells rapidly differentiate into the TEF compartment, whereas other clones are more

prone to accumulate TEMp cells. The latter might then contract less strongly in size, for

example, and mature more into sustainable TEM cells. We will discuss this aspect later in

chapter 6. In the following, we again consider the contraction model without distribution

of the effector differentiation rate.

As in section 4.5.2, let us analyse the distribution of clone sizes using the Gini coefficient,

see [Gini, 1912], considering the original set of parameters with constant rCTEMp�CTEF

rate. To this end, we simulated N = 104 clones based on the parameters from Tab. 5.1

and computed the Gini coefficient using eq. 4.2. At day 8 p.i., the Gini coefficient of

total clone sizes in the data is given by G = 0.75, which is correctly described by the

model, see Fig. 5.6A. The trend in Gini coefficients for the different phenotypes is correctly

reproduced by the model, although the coefficient is slightly underestimated in the case
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Figure 5.5: As in Fig. 5.4 but with distributed transition rate CTEMp→CTEF. For this
purpose, a normal distribution with CV = 0.5 was chosen, where the mean corresponds to the
best fit result of the rate from Tab. 5.1. (Data from [Buchholz et al., 2013])

of the TCMp and TEF compartments. At day 12 p.i., the observed Gini coefficient is

given by G = 0.73. This overall coefficient, as well as the phenotype-specific coefficients,

are correctly described by the model (Fig. 5.6B). Notably, the variability of clone sizes in

the L.m.-OVA case is not overestimated by the model. This has not been clear yet as the

used model is based on a more detailed analysis of the LCMV Arm fate mapping data,

which were characterised by a much more unequal distribution (G = 0.91). Thus, no form

of bias is detectable in the model topology itself that would reduce its applicability in the

context of an L.m.-OVA infection.
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Figure 5.6: Gini coefficients of the total clone size and compartment size distributions at day
8 and 12 p.i. Simulations are based on the extended cell cycle dropout model for fixed, i.e.
not distributed, effector differentiation rate CTEMp→CTEF. N = 104 clones were simulated
with parameter values shown in Tab. 5.1. (Data from [Buchholz et al., 2013])

5.5 Late contraction and transition to memory phase

We have seen in the previous section that the extended cell cycle dropout model was indeed

capable of kinetically resolving the early contraction phase. From now on, we will refer to

this model extension as the early contraction phase model. All parameters of this model

were identifiable with narrow confidence intervals. Now, implications of these parameters

for the late contraction and entry into the memory phase are to be investigated. To this

end, the model is slightly extended, which will lead to the late contraction phase model.

Since no data at later time points are available, we have to rely on data from the literature.

We consider data from [Schlub et al., 2010] to be the most suitable for our purpose.

Here, the authors measured relative OT-I T cell population sizes from blood after atten-

uated and actA-deficient (Att.) L.m.-OVA infection, classified in terms of the memory

marker CD62L. The actA (actin assembly-inducing protein) gene is a virulent factor that

modulates intracellular growth of the bacteria; actA-deficiency in this context decreases

virulence by three orders of magnitude and inhibits cell-to-cell spread, see [Brundage et

al., 1993]. The immune response stays qualitatively comparable to the usual L.m.-OVA

infection, but is characterised by lower cell numbers and a shifted peak of the immune

response to day 6 to 7 p.i., see [Porter et al., 2006; Schlub et al., 2010]. We extend our
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Figure 5.7: Kinetics of absolute (A) and relative (B) compartment sizes up to the early mem-
ory phase after infection with (Att.) L.m.-OVA within the late contraction phase model. The
last three data points in (B) are based on infections with Att. L.m.-OVA, where classification
is performed using CD62L. (Mean cell numbers and relative subsets sizes up to day 12 p.i.
from [Buchholz et al., 2013] and relative subset sizes at day 20, 35, and 53 p.i. from [Schlub
et al., 2010])

relative population data from Fig. 5.2D to include three additional data points measured

at day 20, 35, and 53 p.i. Interestingly, the relative subset sizes of CD62L positive and

negative cells at day 35 and 53 p.i. are both given by approximately 50 %. We assume that

despite the mentioned differences between the infection variants at early time points, the

long-term behaviour of the response remains at least approximately comparable. Further-

more, we assume that the two organs blood and spleen can be compared to each other. In

[Crauste et al., 2017] the authors measured absolute numbers of CD8+ T cell responses in

the spleen after vaccinia virus infection. Cells were also classified in terms of the CD62L

marker. Strikingly, the authors find similar long-term kinetics regarding the percentages of

CD62L positive and negative cells: between day 40 and 90 post immunisation, the relative

subset sizes are roughly given by 50 % each. Therefore, we think that the combination of

data from the spleen and blood could be suitable for a first tentative analysis.

Interestingly, the first data point at day 20 p.i. is correctly described by our previous

model fit above (fit only shown until day 14 p.i.) with parameters given in Tab. 5.1.

However, for later time points, the model results become non-interpretable, especially as

the cell numbers incorrectly go towards zero due to continued cell death. Therefore, the

model must be further modified. An intuitive adjustment is the introduction of dynamic

death rates, i.e. di = di(t). In the simplest case, this dynamics is given by switching off

constant cell death at time τdeath to be estimated. This parameter is initially chosen to
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be the same for both subsets (CD62L+ and CD62L−). Furthermore, we assume that cells

do not start dividing again until day 53 p.i., which means that only programmed cell

death regulates the absolute cell number (for which we have no reference data) during

the contraction phase. The reason we neglect cell cycle re-entry at this point is that

turnover rates during the absence of antigen are reported to be small compared to the

death rate estimates above. For example, in [Parretta et al., 2008], an expected lifetime

(inverse of the daily turnover rate) of 90 d is estimated for CD8+ T cells in homeostatic

equilibrium, with 95 % confidence interval of [64; 133] d. This estimate is based on BrdU

measurements, evaluated under the steady state assumption p = d. As noted in chapter 1,

BrdU is a reliable method for measuring division speed of slowly dividing cells during

equilibrium. A clear compilation of comparable study results regarding this question,

including mathematical evaluation methods, can be found in [De Boer et al., 2013].

Utilising all relative population data available, the best fit parameters shown in Tab. 5.1

do not change significantly. This is because the relative kinetics up to day 12 p.i. were also

well described before, without considering them during model fitting. In addition, the late

time points (measured at t > 20 d p.i.) are relatively independent of the earlier ones and

taken into account by the parameter τdeath. The model fits for the absolute and relative

kinetics for CD62L+/− cells are shown in Fig. 5.7. It turns out that cell death stops at time

τdeath = 21.8 d p.i. The corresponding 95 % confidence interval is given by [20.5; 23.1] d.

In the case of modelling the decrease of death rates continuously, τdeath would naturally be

bigger. If one introduces phenotype-specific endpoints of death, then in the best fit these

are estimated to be identical. However, it is questionable whether the data even allow

for discrimination in this respect. A second interesting observation is that at the end of

cell death, there are about 13 cells left (Fig. 5.7A). These consist both of CD62L positive

(TCM) and negative (TEM) cells. This means that the number of cells after contraction

could have increased by about one order of magnitude compared to the beginning of the

immune response. Since we did not use any absolute cell numbers later than day 12 p.i.,

this is an indirect model prediction that could be tested experimentally. It should be

noted again that the memory phase is expected to be dominated by CD62L+ TCM cells.

Since the Att. L.m.-OVA infection data from [Schlub et al., 2010] explicitly challenge this

expectation, it remains open to what extent this result is affected by considering this

particular infection.
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Chapter 6

Discussion

In this thesis, we dissected cytotoxic T cell responses to acute infection in terms of their

differentiation pathways and their kinetics during expansion and contraction phase. Our

resultant cell cycle dropout model is a consequence of the joint consideration of various

in vivo data sets at the single-cell level. These include scRNA-seq data, single-cell fate

mapping data, and FACS-based quantification results of proliferation rates. The latter

originate from a formalism developed specifically for this purpose, which has applications

far beyond our problem formulation. Utilising these data, we could mechanistically ex-

plain the dynamics of individual T cell responses by stochastic differentiation models with

identifiable parameters.

Quantitative aspects of cell division

We have developed a method to quantify mean cell cycle lengths of rapidly dividing cells

in vivo. More precisely, the average length of each individual cell cycle phase can be

computed. The method is based on data retrieved from labelling cells with a nucleo-

side analogue such as BrdU and subsequent measurement of their DNA content. The

associated mathematical formalism does not require precise knowledge of the underlying

distribution of inter-division times, nor of pharmacokinetic properties of BrdU. With the

help of stochastic simulations, the accuracy of the method and its basic assumptions could

be validated. In particular, it could be shown that the method is valid even during cir-

cumstances of moderate division-time variability and of severe cell death. Likewise, the

formalism is flexible regarding experimental extensions and the incorporation of additional

kinetic properties, such as information about cell generation or the amount of quiescent

cells within the population.

The well-known Smith-Martin model, see [Smith et al., 1973], considers the S-phase of

the cell cycle to be almost constant, while all stochasticity is attributed to the G1-phase.

Using appropriate reporter mice and (single) cell imaging methods, (lag-) exponentially

distributed waiting times could be excluded in the context of B and T lymphocytes after

in vitro stimulation, see [Dowling et al., 2014; Pham et al., 2018]. Recently, P. D. Hodgkin

and colleagues were even able to show that a “converse” Smith-Martin model with constant
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G1-phase and variable S-phase describes data from dividing B lymphoma cell lines better

than the original Smith-Martin model, cf. [Pham et al., 2018]. In our model of the cell

cycle, we assume that all phase lengths are distributed according to general and unknown

distributions. In this sense, our model represents a generalisation of these approaches.

Our formalism can easily be extended to dual-pulse-chase experiments. Here, an additional

nucleoside analogue such as EdU is used, which is administered shortly before analysis, see

e.g. [Gitlin et al., 2015]. This would have the advantage that all information required for

quantifying average phase lengths could be obtained from the same mouse. The authors of

the study conducted in [Akinduro et al., 2018] use such a dual-pulse-chase experiment to

infer cell cycle speed of haematopoietic progenitor cells. In their model, the authors assume

that BrdU and EdU, immediately after administration, are no longer sufficiently available

to label S-phase cells. A measurement of the bio-availability of BrdU in [Matiasova et

al., 2014] concluded that BrdU is no longer available approx. 15 min after intraperitoneal

injection in mice and after 60 min in rats. Our analyses in mice have shown that BrdU is no

longer available after approx. 30 to 60 min after administration. Therefore, the assumption

made in [Akinduro et al., 2018] seems plausible at first but should be considered critically in

the case of rapidly dividing cells, as a significant fraction of cells might enter S-phase during

the experiment and thus the number of double-positive cells could be underestimated.

Another interesting proposal by P. D. Hodgkin and colleagues is based on the assumption

that individual cell cycle phases are “stretched”, see [Dowling et al., 2014]. Here, the total

cell cycle length follows a distribution, e.g. a log-normal distribution, where the relative

proportions of the individual phases are constant for each cell. In the same study, these

proportions are then estimated from in vitro data of dividing lymphocyte populations.

The modelling assumptions made in this study are in clear contradiction to ours, as we

assume independence of the individual phase lengths. We are not aware of any other

study that suggests a strong correlation of phase lengths. On the contrary, work by [Chao

et al., 2019] shows that the individual phase lengths obey statistically independent Erlang

distributions. However, this study did not consider populations of dividing lymphocytes.

It also remains open to what degree in vitro findings in this context apply to the in vivo

case.

A limitation of our method is that it does not allow for estimating variances of phase

length distributions. In [Weber et al., 2014], the authors also considered simultaneous

measurements of BrdU and DNA content to infer cell cycle speed. Here, the authors as-

sumed that individual phases obey independent delayed-exponential distributions. Since

experiments were carried out in vitro, BrdU could be removed from the experiment after
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30 min of labelling, thus circumventing the unknown BrdU pharmacokinetics. Under these

assumptions, the authors were able to derive equations for the different gate frequencies

in steady state, depending on their parametrisation scheme. By adding another nucleo-

side analogue, even the variance of the cell cycle length distribution could be estimated.

Although the assumptions made all seem realistic at first, it is not clear to what extent

they can be transferred to the in vivo level. Especially strong assumptions on the exact

shape of the distribution have to be viewed critically.

Our method showed that cells divide on average with a rate of p ≈ 3 d−1 at day 4.5

p.i. during the exponential growth phase. Here, CMp cells divide significantly slower

(pCMp = 1.9 d−1) than EFF cells (pEFF = 2.9 d−1). Interestingly, these results were iden-

tical for both L.m.-OVA and LCMV Arm infection. In [De Boer et al., 2001], the authors

estimated by mathematical modelling the overall proliferation rate in the LCMV Arm case

to be p = 3 d−1. Given their model, this number refers to the mean growth rate in the

interval between about 1 d and 6 d after infection, thus being consistent with our quantifi-

cation. For L.m.-OVA, we were able to calculate a slowing down of the mean division time

to p = 1.4 d−1 for the CMp cells and to pEFF = 1.9 d−1 for the EFFs at day 8 p.i., where

these estimates refer to cycling cells only. Overall, in this infection, it appears that the

exit of cells from the cell cycle, rather than the slowing down of division speed, regulates

cell numbers during the immune response. In [Kretschmer et al., 2020], using our method

for another model system, it was shown that just the opposite is the case. Here, however,

the entire amount of antigen was initially injected and no antigen replication took place.

Likewise, cells stopped dividing much later after immunisation. Therefore, we conclude

that the contribution of these two mechanisms in regulating cell number responses depends

on the particular infection under consideration.

Differentiation pathways of CD8+ T cells

Analysis of time-resolved CD8+ T cell transcriptomes during acute infection allowed the

identification of cell clusters with known immunological subsets. Furthermore, the ap-

plication of various published methods lead to the inference of possible differentiation

pathways between these clusters. Overall, we found that a cell cycle dropout model with

mainly progressive differentiation during division is most consistent with the data. Here,

cells seemed to primarily retain their phenotype upon exit from the cell cycle. From these

same data, we could further conclude the fractions of cells undergoing division at each time

point. These could then be validated in subsequent FACS experiments through phospho-

Rb measurements. Using these dropout kinetics, quantifications of division speed, and

stochastic moments of single-cell fate mapping data, we were able to fit stochastic models
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of T cell diversification during LCMV Arm infection that were consistent with the inferred

topologies above. Model selection revealed that simpler models were preferred by the data.

The simplest of these models, in which all subsets began to turn quiescent at the same

time and at the same rate, had the best AICc-value.

Overall, our results do not support the decreasing potential model, see [Crotty et al.,

2004]. In this model, effector cells continue to differentiate through accumulated stimuli

and lose the potential to generate sustainable memory cells thereby. In contrast, our data

suggest that cells at the root of differentiation express memory genes such as Slamf6,

Satb1, and Cd27 and in turn give rise to effector-like cells. These findings are consistent

with the study from [Lin et al., 2016]. Here, the authors were able to show that the first

few cell divisions were characterised by TCF1 positivity of the cells. Only after several

cell divisions did the cells lose this early memory marker. Therefore, our data are also

not consistent with the linear model of differentiation, cf. [Opferman et al., 1999; Wherry

et al., 2003], but best fit the progressive differentiation model, see [Buchholz et al., 2013;

Gattinoni et al., 2017]. However, it must be added that progressive differentiation seems

to take place mainly during cell division. After cells have become quiescent, it is difficult

to decide whether differentiation still occurs at all. Moreover, the model proposed in

[Buchholz et al., 2013] ignores the exit of cells from the cell cycle, which seems to be a

highly relevant source of variability in our data. An important addition to our analyses can

be found in [Pace et al., 2018], where chromatin dynamics were considered in addition to

transcriptional data. The authors conclude that näıve cells first acquire an early activated

state of highly proliferative capacity. These cells then either transition into early memory

precursor cells or down-regulate their stem cell characteristics and become effector cells.

Furthermore, they conclude that these early memory precursors can return to the early

activated state upon re-stimulation with antigen, emphasising their stemness properties.

Interestingly, in our analyses, we have also found a non-negligible proportion of transitions

from dividing TEF to quiescent TEMp cells. The TEF cells showed a strong Klrg1 and

Cx3cr1 signature, i.e. they most likely corresponded to terminally differentiated effector

cells. Cells that followed this developmental pathway could, according to our data, no

longer become TCMp cells. Transitions from TEF → TEMp were already discussed

in [Buchholz et al., 2013] and could not be rejected. In [Herndler-Brandstetter et al.,

2018] the authors were able to show that a significant part of the long-lived memory cells

had once expressed high levels of KLRG1, i.e. originated from KLRG1high cells. This

proportion of so-called ExKLRG1 cells became gradually smaller the more the memory

properties became predominant. The authors found that about 40 % of the KLRG1int

TEM compartment (intermediate intensity of KLRG1 expression) were based on such
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ExKLRG1 cells. Also during our model selection process, the TEF → TEMp transition

could not be excluded.

As mentioned above, our analyses have ruled out a linear differentiation model. In such

a model, näıve cells adopt an early effector phenotype directly after recruitment. The

majority of these cells die during contraction, while a small proportion of memory cells

remain. Since this scheme has not only been favoured in the past but still enjoys accep-

tance today, we would like to comment on it briefly. More recent models of this kind

can be found for example in [Crauste et al., 2017; Terry et al., 2012]. In [Crauste et al.,

2017], the authors studied CD8+ T cell responses during acute infection up to the mem-

ory phase. Their näıve → early effector → late effector → memory model describes the

measured absolute cell numbers well. Furthermore, in [Crauste et al., 2017], the authors

also tested the progressive model of differentiation from [Buchholz et al., 2013], which was

proposed to capture the expansion phase of the response. In [Crauste et al., 2017] this

model was fitted to contraction phase data where it showed poor performance. However,

the comparison of the models was done without a suitable adjustment of the progressive

model, e.g. by introducing death rates. In [Miles et al., 2019], a meta-study of progressive

vs. linear differentiation models was conducted. The authors conclude that progressive

models systematically outperform linear models when fitted to population data. Interest-

ingly, they observed that in the case of high numbers of transferred cells, linear models

increasingly perform better. One reason for this could be competition effects, which is why

the authors recommend rescaling the data. The authors mention that rescaling, however,

often leads to unrealistic parameters, such as mean lifetimes of näıve cells of more than

10 d (see below for discussion of reasonable recruitment times). In [Crauste et al., 2017],

indeed N = 2 · 105 cells were transferred, whereas in [Miles et al., 2019; Schlub et al., 2010]

considerable competition effects can be identified for transferred cell numbers of already

N ∼ 103 compared to smaller transfer numbers. These effects include kinetic shifts in

terms of phenotypic composition and overall size.

Heterogeneity in single T cell responses to acute infection

We have shown that the simplest variant of the cell cycle dropout model could explain

the expansion phase during acute infection and the resulting heterogeneity of single-cell

fate mapping data, as well as all available kinetic data on cell cycle activity and speed.

The model parameters were shown to be identifiable in terms of their confidence intervals.

Based on these parameters, forward simulations could reproduce the dichotomy of the

LCMV Arm clone size distribution and correctly reflected phenotypic composition of the

clones. Although all subsets started to become quiescent at the same time and rate,
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our model showed phenotype-specific cycling activity following the onset of cell cycle

dropout. This model prediction was confirmed in a subsequent experiment. Overall, the

heterogeneity between individual T cell responses in the model was generated by clonal

variability in the recruitment of cells, by subset-specific differences in division speed, and

by the inherent model stochasticity, with clonal variability making the largest contribution

here.

S. A. Teichmann and colleagues were able to identify early bifurcation of cells into T

helper 1 or T follicular helper cells in the case of differentiating CD4+ T cells during

malaria infection, see [Lönnberg et al., 2018]. Using TCR sequences, these bifurcations

could be observed in scRNA-seq data even at the clonal level. This is relevant for our

work as early bifurcation of T cells could also lead to a strongly dichotomous clone size

distribution (Gini coefficient of G = 0.91 for our LCMV Arm data). Concerning our data,

the rare and large clones would then be produced by one model branch, with the other

branch producing the much more abundant smaller clones. Such classes of models we

have tested (results not shown). They were indeed able to explain the strong dichotomy

in the data. The correlation patterns, on the other hand, were very poorly captured.

The reason for this is that for small clones the proportion of slower dividing TCMp cells

was greatly overestimated, while for large clones this proportion was underestimated,

respectively. Moreover, we could not find any evidence for such early bifurcations in our

scRNA-seq data. In the most extreme bifurcation model, a näıve cell gives rise to either

only memory-like cells or only effector cells. However, this view can already be rejected

by the single-cell fate mapping data itself, since these show that a clone generally contains

cells of all phenotypes, cf. [Buchholz et al., 2013; Gerlach et al., 2013; Stemberger et al.,

2007]. Regarding weakened forms of the bifurcation model, especially in combination with

a first asymmetric cell division, see [Chang et al., 2007], we cannot make any statement

because we have not tried models of this kind.

The stochasticity of our mathematical models integrates cell-intrinsic and cell-extrinsic

factors. Here, we have no way to distinguish these two sources of variability. However,

for clinical considerations, environmental influences on T cells and their modulation of

the immune response play an important role. This includes in particular stimulatory

signals caused by antigen, cytokines, and co-stimulus of the T cells, see [Curtsinger et

al., 1999; Kaech et al., 2001; Watts et al., 2003]. However, the extent to which these

signals quantitatively affect proliferation and differentiation behaviour is yet unknown. In

[Gerlach et al., 2013], the authors have also been able to establish the existence of small

and large clones by fate mapping data. They show that memory cells mainly arise from

smaller clones. In contrast, our modelling results suggested that, in absolute terms, all
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clone sizes contributed rather equally to the memory (precursor) pool, as indicated by low

correlations between total clone size and the absolute number of TCMp cells. In relative

terms, however, small clones showed a greater proportion of TCMp cells compared to large

clones. D. Zehn and colleagues have investigated the CD8+ T cell response after infection

with respect to different TCR ligand affinities, cf. [Zehn et al., 2009]. They observed that

even weak affinities caused robust activation. Moreover, they found that smaller affinities

led to faster progression through the differentiation program and to an earlier onset of

contraction. Here, strong antigen stimuli guaranteed stable long-term expansion during

response. Regarding our model scheme, this could mean that especially the absolute

proliferation rate of TCMp cells could strongly depend on the initial antigen stimulus.

This would explain on the one hand the higher cell numbers after higher affinity TCR

stimulation (L.m.-OVA vs. LCMV Arm) and on the other hand the effective differentiation

rate of the cells: even with stimulus-independent differentiation rates, differentiation into

the effector compartment would still occur less frequently in the case of high TCMp

proliferation rates. The sensitivity of the TCMp proliferation rate with respect to early

antigen availability has already been demonstrated in [Kretschmer et al., 2020].

We have noted that our model extends the progressive model of differentiation from [Buch-

holz et al., 2013] by explicitly accounting for the exit of cells from the cell cycle. Ignoring

this important mechanism and trying to explain the heterogeneity of the data without it

resulted in a mean waiting time for recruitment of about 10 d (95 % confidence interval

given by [5; 17] d) during LCMV Arm infection. This long waiting time did not even take

into account the first cell division. The model thus explained the entire variability in the

data through the initial recruitment process of näıve cells. Consequently, this would mean

that on day 8 p.i. a substantial part of the cells would not have been recruited into the

response yet. This is in direct conflict with experimental data: In [Van Heijst et al., 2009],

for example, it was shown in mice that almost all näıve cells were recruited during acute

infection. Also in [Schlub et al., 2010] it could be shown that even for high numbers of

transferred cells, less than 0.1 % of the cells remained unrecruited. Since the peak of the

CD8+ T cell response during LCMV Arm infection is already reached at about day 8 p.i.,

cf. [De Boer et al., 2003], cell recruitment must take place faster on average. Assuming

a deterministic compartment model of näıve, activated, and memory cells, R. J. de Boer

and colleagues estimated the mean recruitment time following LCMV Arm infection to

be between 1 to 2 d p.i., see [De Boer et al., 2001]. Even if one would consider the lower

bound of our estimated confidence interval for the mean recruitment time of 5 d, then the

measured CVs could no longer be described by the model. Hence, the progressive model

was not capable of explaining the observed heterogeneity in clone sizes.
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The data presented in [Bousso et al., 1999] identified the time to recruitment as a driver

of heterogeneity of a (polyclonal) T cell response, which is in line with our findings.

At the same time, the authors showed that clonal differences in cell cycle speed were

rather small. Precisely because we have found that most of the variability in our model

is clonal, the division destiny concept, proposed by P. D. Hodgkin and colleagues, is of

particular relevance to us. Here, after activation of the cell, a division destiny timer is

programmed to determine when the cell becomes quiescent; this follows a parameterised

distribution, which in turn depends on the specific stimulatory conditions of the cells, see

[Heinzel et al., 2017; Marchingo et al., 2014; Turner et al., 2008]. We were able to show

that increasing clonal variability in our model did not provide any improvement, as the

inherent stochasticity of the model, together with compartments dividing at different rates,

produced enough variability to describe the data. It may therefore be that P. D. Hodgkin

and colleagues were slightly overestimating the clonal variability of the immune response

because of not considering differentiation processes between the cells. Conceptually, this

would mean that a significant part of the variability arises during the immune response

and is not already programmed during initial stimulus.

Proliferation, death, and differentiation processes in our model are based on exponentially

distributed waiting times. Experimental in vitro data has shown that both cell division

and cell death obey log-normal distributions, see [Deenick et al., 2003; Dowling et al., 2014;

Hawkins et al., 2009]. Differentiation processes are certainly not memoryless either. In

[Robert et al., 2021] it was demonstrated for cell divisions that these could also be described

sufficiently well in terms of Gamma-distributions. Moreover, in vitro experiments have

shown that the first cell division takes longer than all subsequent divisions, cf. [De Boer

et al., 2005; Deenick et al., 2003; Lee et al., 2008]. Assuming that these findings can be

transferred directly to the in vivo level, it would be desirable for future considerations

to describe all model reactions with skewed waiting time distributions. This could be

achieved, for example, by replacing exponential distributions with Gamma-distributions,

as we have already done to describe recruitment and first cell division more realistically.

Here the problem arises that the introduction of Gamma-distributions for all reactions is on

the one hand computationally expensive and on the other hand variances will most likely

not be identifiable. A different approach to addressing these considerations is provided

by the cyton model, see e.g. [Hawkins et al., 2007]. Here, waiting times until division or

death, which are assumed to be independent, are described by log-normal distributions.

Furthermore, first cell divisions are considered separately to account for the evidence

mentioned above. Nevertheless, it is not clear a priori, how cell differentiation could be

included within this formalism. Of course, it also remains unclear whether variances could

be reliably estimated or not.
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Mechanisms of T cell contraction

We have extended the resultant cell cycle dropout model beyond the expansions phase

of the immune response to the early phase of contraction. To this end, we introduced

dynamic proliferation rates and constant death rates, assuming that only quiescent cells

are affected by cell death. Here, possible model variants were fitted to dropout kinetics,

quantified proliferation rates, and stochastic moments of single-cell fate mapping data in

the context of L.m.-OVA infection. The concrete form of kinetics was determined by model

selection. In the best model, all subsets were initially dividing with different rates, and

then slowed down proliferation in the same way. In addition, memory-like cells died at

a different rate than effector cells. The resulting model was consistent with all available

data up to day 12 p.i., with all parameters being identifiable. The relative subset sizes

were correctly described without having used them for parameter estimation. Forward

simulations reproduced both the clone size distribution and the correlation structure of

the data at day 8 and 12 p.i., except for the TEMp -TEF correlation at day 12 p.i. It

was found that distributing the effector differentiation rate CTEMp → CTEF between

clonal families lead to significant improvement in this regard. Next, we considered the full

contraction phase by adding published data of relative subset kinetics. We were able to

obtain a time estimate for the end of cell death, as well as an estimate of the number of

cells entering the memory phase.

In our model, we did not have to artificially introduce the onset of cell death and the

associated start of contraction within the framework of a two-phase model, as it was done

in [De Boer et al., 2003], for example. We estimated death rates of dCMp = 0.2 d−1 and

dEFF = 0.7 d−1, with the latter rate driving the contraction phase because of the much

larger proportion of effector cells. R. J. de Boer and colleagues estimated an overall death

rate of d = 0.5 d−1 for CD8+ T cells subject to LCMV Arm infection, cf. [De Boer et

al., 2001]. This roughly fits our result, especially when taking into account that L.m.-

OVA induces larger T cell responses than LCMV Arm. Furthermore, we found that cell

death would have to stop around 22 d p.i. to explain the data consistently. Based on one

recruited cell, this leads to a mean cell number of the order of 101 upon entry into the

memory phase. When considering the lower bound for the cessation time of cell death and

taking into account the CV of the mean total cell number, we would obtain a maximum of

about 1 % of cells surviving the contraction phase. This is contrary to the consensus in the

literature, which lies between 5 % to 10%, see e.g. [De Boer et al., 2001; Harty et al., 2008].

Therefore, we suspect that this discrepancy may result from considering data from the two

organs of blood and spleen together. Likewise, having combined the infections L.m.-OVA

and Att. L.m.-OVA could also play a role here. The major difference between these two
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infections is that Att. L.m.-OVA is characterised by reduced virulence due to deficiency

of the actA gene, being involved in intracellular growth of the bacteria, see [Brundage

et al., 1993]. This infection resulted in approximately equal fractions of memory cells and

effector cells during late contraction and early memory phase, see [Schlub et al., 2010].

In any case, absolute cell numbers from the spleen after L.m.-OVA infection would be

helpful to make more precise statements. In addition, even later time points (later than

60 d p.i.) would be highly interesting, as these, together with proliferation measurements,

would allow for quantitative description of the homeostatic memory phase in our model.

The TEMp -TEF correlation of the forward simulations evaluated at day 12 p.i. could be

significantly improved when having considered a distributed TEMp to TEF differentia-

tion rate. This could indicate that the TEMp compartment has been more heterogeneous

under the CD62L/CD27 classification scheme than expected. This might be in accor-

dance with the heterogeneity of the TEM compartment observed in [Milner et al., 2020].

Here, the authors considered CD62Llow memory cells, which could be divided into two

different subtypes with respect to CD127. CD62Llow/CD127low, so-called terminal TEMs

and CD62Llow/CD127high, so-called redefined TEMs. Terminal TEM cells showed, among

other characteristics, a higher upregulation of granzyme molecules and a reduced recall

proliferation capacity compared to redefined TEM cells. For our case, this could mean

that terminal TEMs differentiate into the TEF compartment at a higher rate, whereas the

redefined TEMs are more likely to be retained in their compartment and develop enhanced

homing potential. Thus, for future considerations, it would be highly interesting to gener-

ate analogous data with additional measurement of CD127. Another neglected possibility

in our approach could be coupling effects, as described, for example, in [Bocharov et al.,

2011]. Here, the authors fitted differentiation models to data, where the compartment size

by construction had a negative feedback on the differentiation rates of the previous down-

stream compartments. The authors stated that local resource considerations of expanding

cell clusters may be a biological cause here.

In this thesis, a variety of in vivo single-cell data were combined to infer mechanisms

of T cell responses to acute infection. The new insights form an important quantitative

contribution to the question of how immunological T cell memory is formed and thus have

implications for clinical considerations, such as improvement of vaccination strategies or

adoptive T cell therapies. Furthermore, the results presented in this work may provide a

basis for better characterisation of mechanisms underlying T cell responses during chronic

infection or cancer.
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Fröhlich, F., Loos, C., and Hasenauer, J. (2019). “Scalable Inference of Ordinary Differ-

ential Equation Models of Biochemical Processes”. Gene Regulatory Networks: Methods

and Protocols. Ed. by G. Sanguinetti and A. Huynh-Thu. New York: Springer New York,

pp. 385–422.

Ganusov, V. V. and De Boer, R. J. (2013). “A mechanistic model for bromodeoxyuridine

dilution naturally explains labelling data of self-renewing T cell populations”. J. R. Soc.

Interface 10.78, p. 20120617.

Garrod, K. R., Moreau, H. D., Garcia, Z., Lemâıtre, F., Bouvier, I., Albert, M. L., and
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422.

Kalia, V., Sarkar, S., and Ahmed, R. (2010). “CD8 T-Cell Memory Differentiation during

Acute and Chronic Viral Infections”. Memory T Cells. Ed. by M. Zanetti. New York:

Springer, pp. 79–95.

Khan, S. H. and Badovinac, V. P. (2015). “Listeria monocytogenes: a model pathogen

to study antigen-specific memory CD8 T cell responses”. Semin. Immunopathol. 37.3,

pp. 301–310.

King, C. G., Koehli, S., Hausmann, B., Schmaler, M., Zehn, D., and Palmer, E. (2012). “T

Cell Affinity Regulates Asymmetric Division, Effector Cell Differentiation, and Tissue

Pathology”. Immunity 37.4, pp. 709–720.

Kranich, J., Chlis, N. K., Rausch, L., Latha, A., Schifferer, M., Kurz, T., Foltyn-Arfa Kia,

A., Simons, M., Theis, F. J., and Brocker, T. (2020). “In vivo identification of apoptotic

and extracellular vesicle-bound live cells using image-based deep learning”. J. Extracell.

Vesicles 9.1.

Kretschmer, L., Flossdorf, M., Mir, J., Cho, Y. L., Plambeck, M., Treise, I., Toska, A.,

Heinzel, S., Schiemann, M., Busch, D. H., and Buchholz, V. R. (2020). “Differential

expansion of T central memory precursor and effector subsets is regulated by division

speed”. Nat. Commun. 11.1.



BIBLIOGRAPHY 137

Kreutz, C., Raue, A., and Timmer, J. (2012). “Likelihood based observability analysis and

confidence intervals for predictions of dynamic models”. BMC Syst. Biol. 6.1.

Kurd, N. S., He, Z., Louis, T. L., Milner, J. J., Omilusik, K. D., Jin, W., Tsai, M. S.,

Widjaja, C. E., Kanbar, J. N., Olvera, J. G., Tysl, T., Quezada, L. K., Boland, B, J. T.,

Huang, W. J., Murre, C., Goldrath, A. W., Yeo, G. W., and Chang, J. T. (2020). “Early

precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes

revealed by single-cell RNA sequencing”. Sci. Immunol. 5.47.

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lid-

schreiber, K., Kastriti, M. E., Lönnerberg, P., Furlan, A., Fan, J., Borm, L. E., Liu,

Z., Bruggen, D. van, Guo, J., He, X., Barker, R., Sundström, E., Castelo-Branco, G.,

Cramer, P., Adameyko, I., Linnarsson, S., and Kharchenko, P. V. (2018). “RNA velocity

of single cells”. Nature 560.7719, pp. 494–498.

Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., Lickert, H., Ansari,

M., Schniering, J., Schiller, H. B., Pe’er, D., and Theis, F. J. (2020). “CellRank for

directed single-cell fate mapping”. bioRxiv.

Lau, L. L., Jamieson, B. D., Somasundaram, T., and Ahmed, R. (1994). “Cytotoxic T-cell

memory without antigen”. Nature 369.6482, pp. 648–652.

Lee, H. Y. and Perelson, A. S. (2008). “Modeling T cell proliferation and death in vitro

based on labeling data: Generalizations of the Smith-Martin cell cycle model”. Bull.

Math. Biol. 70.1, pp. 21–44.

Lestas, I., Paulsson, J., Ross, N. E., and Vinnicombe, G. (2008). “Noise in gene regulatory

networks”. IEEE Trans. Automat. Contr. 53.Special Issue, pp. 189–200.

Lin, W. H. W., Nish, S. A., Yen, B., Chen, Y. H., Adams, W. C., Kratchmarov, R., Roth-

man, N. J., Bhandoola, A., Xue, H. H., and Reiner, S. L. (2016). “CD8+ T Lymphocyte

Self-Renewal during Effector Cell Determination”. Cell Rep. 17.7, pp. 1773–1782.
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Appendix A

Steady state solutions to the von

Foerster equation

This supplementary information contains an analytical derivation of the exact form of

psstnd(δ), that was used in section 3.1. psstnd(δ) is the distribution of times-until-next division

in steady state of a continuously growing population of cells. Derivation and notation were

adopted from [Dowling et al., 2005]. For a derivation of the analogous distribution in age

representation, pssage(a), we refer to [Stukalin et al., 2013].

Let us consider a population of asynchronously dividing cells with general division-time

distribution D(Tdiv). For a given cell, its total division-time Tdiv is a sum of its age a and

its time-to-next division δ. Here, the population density P depends on δ and Tdiv, i.e.

P = P (δ, Tdiv, t). At a given time t, its normalisation N(t) gives the current cell number

of the population

N(t) =

∞∫
0

dδ

∞∫
0

dTdivP (δ, Tdiv, t). (A.1)

For our purpose it is helpful to consider the marginal distribution Ptnd(δ, t), given by

Ptnd(δ, t) =

∞∫
0

dTdivP (δ, Tdiv, t). (A.2)

The actual distribution of time-to-next division is then defined via

ptnd(δ, t) =
Ptnd(δ, t)

N(t)
. (A.3)

In order to derive a partial differential equation (PDE) for Ptnd(δ, t) to first order, we start

from the total differential

dPtnd(δ, t) =
∂Ptnd(δ, t)

∂t
dt+

∂Ptnd(δ, t)

∂δ
dδ. (A.4)
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From eq. A.4 it can be concluded that

dPtnd(δ, t)

dt
=
∂Ptnd(δ, t)

∂t
− ∂Ptnd(δ, t)

∂δ
=: f(δ, t), (A.5)

where we have used that dδ/dt = −1. The function f(δ, t) captures the left-hand side of

the equation. In the presence of age-dependent division and age-independent cell death,

f takes the form1

f(δ, t) = 2D(Tdiv=δ)Ptnd(δ=0, t)− dPtnd(δ, t). (A.6)

This is because 2Ptnd(δ=0, t) takes into account all newly generated cells at time t. Weight-

ing these with D(δ), gives the division-induced influx of cells with time-until-next division

of δ. On the other hand, the second term represents exponential cell death occurring with

rate d 6= d(δ). It should be emphasised that in the presence of cell death many quantities

have a different interpretation. For example, δ can no longer be interpreted as the time-

until-next division in case Tdiv > Tdeath, i.e. if a cell dies before it divides. For the purpose

of simplicity, however, we refrain from adjusting the notation. Altogether, this leads to a

time-evolution of P , given by

∂Ptnd(δ, t)

∂t
= 2D(δ)Ptnd(0, t) +

∂Ptnd(δ, t)

∂δ
− dPtnd(δ, t). (A.7)

Eq. A.7 has a similar structure as the von Foerster equation, which was formulated in

terms of time and age, see [Von Foerster, 1959]. In steady state, solutions to eq. A.7 have

the form

Ptnd(δ, t) = N(t)psstnd(δ), (A.8)

1Note that here we deviate from [Dowling et al., 2005] by incorporating also cell death into the evolution
equation of Ptnd.
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i.e. the cell number captures the full time-dependence of the solution. The exact shape

of N(t) must be obtained. To this end, an equation for the normalisation N is derived,

starting from its definition A.1

d

dt
N(t) =

d

dt

∞∫
0

dδPtnd(δ, t) =

∞∫
0

dδ
∂Ptnd(δ, t)

∂t

(A.7)
=

∞∫
0

dδ

[
2D(δ)Ptnd(0, t) +

∂Ptnd(δ, t)

∂δ
− dPtnd(δ, t)

]

= 2Ptnd(0, t)

∞∫
0

dδD(δ) +

∞∫
0

dδ
∂Ptnd(δ, t)

∂δ
− d

∞∫
0

dδPtnd(δ, t)

= 2Ptnd(0, t) + Ptnd(δ, t)

∣∣∣∣δ=∞
δ=0

− dN(t), (A.9)

where from the third to the fourth line we used the known normalisation properties

of D and Ptnd. Furthermore, considering that a properly defined density must satisfy

lim
δ→∞

Ptnd(δ, t) = 0 and using eq. A.3, we get

d

dt
N(t) = Ptnd(0, t)− dN(t) = [ptnd(0, t)− d]N(t). (A.10)

Employing the steady state condition given by eq. A.8 on eq. A.10, we obtain the equation

that captures the dynamics of the cell number in steady state, i.e.

d

dt
N(t) = [psstnd(δ=0)− d]N(t). (A.11)

Defining the constant parameter c := psstnd(0) and the initial condition N0 := N(t=0),

eq. A.11 is solved by

N(t) = N0e(c−d)t. (A.12)

Eq. A.12 shows that although an age-dependent division-time distribution was assumed,

the long-term behaviour of the population size is characterised by exponential growth with

effective rate c − d. Now, the full ansatz of the steady state solution to eq. A.7 can be

expressed as

Ptnd(δ, t) = N(t)psstnd(δ) = N0e(c−d)tpsstnd(δ). (A.13)

Inserting this result into eq. A.7 gives

∂

∂t

(
N(t)psstnd(δ)

)
= 2D(δ)N(t)psstnd(0) +

∂

∂δ

(
N(t)psstnd(δ)

)
− dN(t)psstnd(δ). (A.14)
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Evaluating the derivatives and dividing the equation by N(t) 6= 0 (for all t), we obtain

the equation for psstnd, that is

dpsstnd(δ)

dδ
= cpsstnd(δ)− 2cD(δ). (A.15)

Note that in eq. A.15 the death rate d cancels out, which only holds for age-independent

death mechanisms. Eq. A.15 is solved by

psstnd(δ) = cecδ

1− 2

δ∫
0

dδ′D(δ′)e−cδ
′

 . (A.16)

Eq. A.16 depends on the full division-time distribution and the mean growth factor c.

From calculating the derivative it follows that

d

dδ
psstnd(δ) =

d

dδ
cecδ − d

dδ

2cecδ
δ∫

0

dδ′D(δ′)e−cδ
′


= c2ecδ − 2c2ecδ

δ∫
0

dδ′D(δ′)e−cδ
′ − 2cecδ

d

dδ

δ∫
0

dδ′D(δ′)e−cδ
′

= c2ecδ

1− 2

δ∫
0

dδ′D(δ′)e−cδ
′

− 2cecδD(δ)e−cδ

= cpsstnd(δ)− 2cD(δ), (A.17)

i.e. eq. A.16 indeed represents a solution to eq. A.15.



Appendix B

Moment equations of the cell cycle

dropout model

In this appendix, we provide the second-order moment equations for the cell cycle dropout

model specified in chapter 4. The given equations thus complement section 2.1.1 in which

the corresponding equations for the mean state vector x are provided. Hence, the same

considerations apply here. By using equation 2.9 all necessary equations for the symmetric

covariance matrix Σij are generated. The respective equations for the variances are given

by

Σ̇1,1 = r1�2〈x1〉 − 2Σ1,1r1�2

Σ̇2,2 = 2Σ1,2r1�2 − 2Σ2,2r2�3 + r1�2〈x1〉+ r2�3〈x2〉

Σ̇3,3 = 2Σ2,3r2�3 − 2Σ3,3r3�4 + r2�3〈x2〉+ r3�4〈x3〉

Σ̇4,4 = 2Σ3,4r3�4 − 2Σ4,4r4�5 + r3�4〈x3〉+ r4�5〈x4〉

Σ̇5,5 = 2Σ4,5r4�5 − 2Σ5,5r5�6 + r4�5〈x4〉+ r5�6〈x5〉

Σ̇6,6 = 4Σ5,6r5�6 + p6〈x6〉+ 4r5�6〈x5〉+ r6�7〈x6〉+ r6�9〈x6〉 − 2Σ6,6(r6�7 − p6 + r6�9)

Σ̇7,7 = 2Σ6,7r6�7 + p7〈x7〉+ r6�7〈x6〉+ r7�8〈x7〉+ r7�10〈x7〉 − 2Σ7,7(r7�8 − p7 + r7�10)

Σ̇8,8 = 2Σ7,8r7�8 + p8〈x8〉+ r7�8〈x7〉+ r8�11〈x8〉+ 2Σ8,8(p8 − r8�11)

Σ̇9,9 = 2Σ6,9r6�9 + d9〈x9〉+ r6�9〈x6〉+ r9�10〈x9〉 − 2Σ9,9(d9 + r9�10)

Σ̇10,10 = 2Σ7,10r7�10 + 2Σ9,10r9�10 + d10〈x10〉+ r7�10〈x7〉+ r9�10〈x9〉+ r10�11〈x10〉−

− 2Σ10,10(d10 + r10�11)

Σ̇11,11 = 2Σ8,11r8�11 − 2Σ11,11d11 + 2Σ10,11r10�11 + d11〈x11〉+ r8�11〈x8〉+ r10�11〈x10〉.
(B.1)

The equations for the off-diagonal elements, i.e. the covariances, read

Σ̇1,2 = Σ1,1r1�2 − Σ1,2r1�2 − Σ1,2r2�3 − r1�2〈x1〉

Σ̇1,3 = Σ1,2r2�3 − Σ1,3r1�2 − Σ1,3r3�4

Σ̇1,4 = Σ1,3r3�4 − Σ1,4r1�2 − Σ1,4r4�5
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Σ̇1,5 = Σ1,4r4�5 − Σ1,5r1�2 − Σ1,5r5�6

Σ̇1,6 = 2Σ1,5r5�6 − Σ1,6r1�2 − Σ1,6(r6�7 − p6 + r6�9)

Σ̇1,7 = Σ1,6r6�7 − Σ1,7r1�2 − Σ1,7(r7�8 − p7 + r7�10)

Σ̇1,8 = Σ1,7r7�8 − Σ1,8r1�2 + Σ1,8(p8 − r8�11)

Σ̇1,9 = Σ1,6r6�9 − Σ1,9r1�2 − Σ1,9(d9 + r9�10)

Σ̇1,10 = Σ1,7r7�10 − Σ1,10r1�2 + Σ1,9r9�10 − Σ1,10(d10 + r10�11)

Σ̇1,11 = Σ1,8r8�11 − Σ1,11r1�2 − Σ1,11d11 + Σ1,10r10�11

Σ̇2,3 = Σ1,3r1�2 + Σ2,2r2�3 − Σ2,3r2�3 − Σ2,3r3�4 − r2�3〈x2〉

Σ̇2,4 = Σ1,4r1�2 − Σ2,4r2�3 + Σ2,3r3�4 − Σ2,4r4�5

Σ̇2,5 = Σ1,5r1�2 − Σ2,5r2�3 + Σ2,4r4�5 − Σ2,5r5�6

Σ̇2,6 = Σ1,6r1�2 − Σ2,6r2�3 + 2Σ2,5r5�6 − Σ2,6(r6�7 − p6 + r6�9)

Σ̇2,7 = Σ1,7r1�2 − Σ2,7r2�3 + Σ2,6r6�7 − Σ2,7(r7�8 − p7 + r7�10)

Σ̇2,8 = Σ1,8r1�2 − Σ2,8r2�3 + Σ2,7r7�8 + Σ2,8(p8 − r8�11)

Σ̇2,9 = Σ1,9r1�2 − Σ2,9r2�3 + Σ2,6r6�9 − Σ2,9(d9 + r9�10)

Σ̇2,10 = Σ1,10r1�2 − Σ2,10r2�3 + Σ2,7r7�10 + Σ2,9r9�10 − Σ2,10(d10 + r10�11)

Σ̇2,11 = Σ1,11r1�2 − Σ2,11d11 − Σ2,11r2�3 + Σ2,8r8�11 + Σ2,10r10�11

Σ̇3,4 = Σ2,4r2�3 + Σ3,3r3�4 − Σ3,4r3�4 − Σ3,4r4�5 − r3�4〈x3〉

Σ̇3,5 = Σ2,5r2�3 − Σ3,5r3�4 + Σ3,4r4�5 − Σ3,5r5�6

Σ̇3,6 = Σ2,6r2�3 − Σ3,6r3�4 + 2Σ3,5r5�6 − Σ3,6(r6�7 − p6 + r6�9)

Σ̇3,7 = Σ2,7r2�3 − Σ3,7r3�4 + Σ3,6r6�7 − Σ3,7(r7�8 − p7 + r7�10)

Σ̇3,8 = Σ2,8r2�3 − Σ3,8r3�4 + Σ3,7r7�8 + Σ3,8(p8 − r8�11)

Σ̇3,9 = Σ2,9r2�3 − Σ3,9r3�4 + Σ3,6r6�9 − Σ3,9(d9 + r9�10)

Σ̇3,10 = Σ2,10r2�3 − Σ3,10r3�4 + Σ3,7r7�10 + Σ3,9r9�10 − Σ3,10(d10 + r10�11)

Σ̇3,11 = Σ2,11r2�3 − Σ3,11d11 − Σ3,11r3�4 + Σ3,8r8�11 + Σ3,10r10�11

Σ̇4,5 = Σ3,5r3�4 + Σ4,4r4�5 − Σ4,5r4�5 − Σ4,5r5�6 − r4�5〈x4〉

Σ̇4,6 = Σ3,6r3�4 − Σ4,6r4�5 + 2Σ4,5r5�6 − Σ4,6(r6�7 − p6 + r6�9)

Σ̇4,7 = Σ3,7r3�4 − Σ4,7r4�5 + Σ4,6r6�7 − Σ4,7(r7�8 − p7 + r7�10)

Σ̇4,8 = Σ3,8r3�4 − Σ4,8r4�5 + Σ4,7r7�8 + Σ4,8(p8 − r8�11)

Σ̇4,9 = Σ3,9r3�4 − Σ4,9r4�5 + Σ4,6r6�9 − Σ4,9(d9 + r9�10)

Σ̇4,10 = Σ3,10r3�4 − Σ4,10r4�5 + Σ4,7r7�10 + Σ4,9r9�10 − Σ4,10(d10 + r10�11)

Σ̇4,11 = Σ3,11r3�4 − Σ4,11d11 − Σ4,11r4�5 + Σ4,8r8�11 + Σ4,10r10�11

Σ̇5,6 = Σ4,6r4�5 + 2Σ5,5r5�6 − Σ5,6r5�6 − 2r5�6〈x5〉 − Σ5,6(r6�7 − p6 + r6�9)
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Σ̇5,7 = Σ4,7r4�5 − Σ5,7r5�6 + Σ5,6r6�7 − Σ5,7(r7�8 − p7 + r7�10)

Σ̇5,8 = Σ4,8r4�5 − Σ5,8r5�6 + Σ5,7r7�8 + Σ5,8(p8 − r8�11)

Σ̇5,9 = Σ4,9r4�5 − Σ5,9r5�6 + Σ5,6r6�9 − Σ5,9(d9 + r9�10)

Σ̇5,10 = Σ4,10r4�5 − Σ5,10r5�6 + Σ5,7r7�10 + Σ5,9r9�10 − Σ5,10(d10 + r10�11)

Σ̇5,11 = Σ4,11r4�5 − Σ5,11d11 − Σ5,11r5�6 + Σ5,8r8�11 + Σ5,10r10�11

Σ̇6,7 = 2Σ5,7r5�6 + Σ6,6r6�7 − r6�7〈x6〉 − Σ6,7(r6�7 − p6 + r6�9)−

− Σ6,7(r7�8 − p7 + r7�10)

Σ̇6,8 = 2Σ5,8r5�6 + Σ6,7r7�8 + Σ6,8(p8 − r8�11)− Σ6,8(r6�7 − p6 + r6�9)

Σ̇6,9 = 2Σ5,9r5�6 + Σ6,6r6�9 − r6�9〈x6〉 − Σ6,9(r6�7 − p6 + r6�9)− Σ6,9(d9 + r9�10)

Σ̇6,10 = 2Σ5,10r5�6 + Σ6,7r7�10 + Σ6,9r9�10 − Σ6,10(r6�7 − p6 + r6�9)−

− Σ6,10(d10 + r10�11)

Σ̇6,11 = 2Σ5,11r5�6 − Σ6,11d11 + Σ6,8r8�11 + Σ6,10r10�11 − Σ6,11(r6�7 − p6 + r6�9)

Σ̇7,8 = Σ6,8r6�7 + Σ7,7r7�8 − r7�8〈x7〉+ Σ7,8(p8 − r8�11)− Σ7,8(r7�8 − p7 + r7�10)

Σ̇7,9 = Σ6,7r6�9 + Σ6,9r6�7 − Σ7,9(r7�8 − p7 + r7�10)− Σ7,9(d9 + r9�10)

Σ̇7,10 = Σ6,10r6�7 + Σ7,7r7�10 + Σ7,9r9�10 − r7�10〈x7〉 − Σ7,10(r7�8 − p7 + r7�10)−

− Σ7,10(d10 + r10�11)

Σ̇7,11 = Σ6,11r6�7 − Σ7,11d11 + Σ7,8r8�11 + Σ7,10r10�11 − Σ7,11(r7�8 − p7 + r7�10)

Σ̇8,9 = Σ6,8r6�9 + Σ7,9r7�8 + Σ8,9(p8 − r8�11)− Σ8,9(d9 + r9�10)

Σ̇8,10 = Σ7,8r7�10 + Σ7,10r7�8 + Σ8,9r9�10 + Σ8,10(p8 − r8�11)− Σ8,10(d10 + r10�11)

Σ̇8,11 = Σ7,11r7�8 − Σ8,11d11 + Σ8,8r8�11 + Σ8,10r10�11 − r8�11〈x8〉+ Σ8,11(p8 − r8�11)

Σ̇9,10 = Σ6,10r6�9 + Σ7,9r7�10 + Σ9,9r9�10 − r9�10〈x9〉 − Σ9,10(d9 + r9�10)−

− Σ9,10(d10 + r10�11)

Σ̇9,11 = Σ6,11r6�9 − Σ9,11d11 + Σ8,9r8�11 + Σ9,10r10�11 − Σ9,11(d9 + r9�10)

Σ̇10,11 = Σ7,11r7�10 − Σ10,11d11 + Σ8,10r8�11 + Σ9,11r9�10 + Σ10,10r10�11 − r10�11〈x10〉−

− Σ10,11(d10 + r10�11). (B.2)

Together with the equations for the first moment (cf. eq. 2.10 in section 2.1.1), this gives a

set of 77 coupled ODEs in total, which were numerically solved using MATLAB’s standard

ODE-solver ode45.
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