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A B S T R A C T   

Materials whose microstructure is formed by random fiber networks play an important role both in biology and 
engineering. So far, it still remains unclear which geometric properties of the fiber network determine the 
macroscopic mechanical properties of such materials. This paper presents a computational study based on a large 
number of representative volume elements of random fiber networks. Our study reveals that the linear me
chanical properties of fiber networks (i.e., Young’s modulus and Poisson’s ratio) are largely determined by only 
four scalar key descriptors. These are the number of fibers per volume, the mean node valency, the mean fiber 
length, and the mean direction cosine between fibers adjacent to the same node. Number of fibers per volume 
and node valency were found to be responsible for around 80% of the variance of the mechanical properties, 
making them the two by far dominant microstructural descriptors. In the part of the configuration space covered 
by our study, we observed a linear or quadratic relationship between the above four scalar microstructural 
descriptors and the Young’s modulus. For the number of fibers per unit volume we propose a theoretical 
explanation for this simple relation.   

1. Introduction 

Fibrous materials are abundant both in nature (e.g., soft tissues such 
as ligaments and skin or wood), and in engineering (e.g., textile mate
rials, paper). Therefore, the development of numerical models to study 
their mechanical properties under divers mechanical loading conditions 
has received significant attention, in materials science, mechanical en
gineering, biomechanics and biophysics [1–18]. The key to computa
tional modeling of fibrous materials is often the ability to set up a so- 
called representative volume element (RVE) of their microstructure. 
The geometric features of these RVEs need to agree with the ones of the 
microstructure of the real materials with respect to relevant statistical 
descriptors [19–23]. If so, computational studies with the RVE can help 
understand the mechanical properties of the materials on the macroscale 
and also how certain changes of their microstructure could be used to 
optimize these. 

The microstructure of fibrous materials is often defined by a random 
network structure. Over the last decades, numerous stochastic 

algorithms were developed and applied to construct RVE of random 
heterogeneous media [24–28]. For detailed reviews of the current state 
of research in microstructure characterization, reconstruction ap
proaches and multi-scale modeling of heterogeneous materials the 
reader is referred to [29–32]. Generally, reconstruction of heteroge
neous materials is an optimization problem, which, due to its 
complexity, typically requires an iterative numerical solution. Among 
various numerical approaches, simulated annealing (SA) has received 
much attention. For SA, one defines a desired random microstructure by 
a set of so-called descriptors (each of which characterizes a specific 
geometric property of the microstructure). Then one typically starts with 
some random initial configuration and uses SA to adjust it by random 
steps until obtains a microstructures whose descriptors match the 
desired ones. SA was introduced for the reconstruction of dispersions of 
particles based on correlation functions [33]. Afterwards, the method 
was extended to the reconstruction of general random heterogeneous 
media [34], thereby becoming applicable to multidimensional, multi
phase and anisotropic structures. Since SA is a method that can be 
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adapted quite easily to a specific problem, many studies have been 
performed in the past on the basis of SA [35–38]. 

Despite the many computational studies that have been performed 
with fiber networks, it remains to date still unclear which descriptors of 
their microstructure exactly govern their mechanical properties on the 
macroscale. To address this question, we propose in this paper an al
gorithm for the construction of random fiber networks. We use this al
gorithm to construct a large variety of random RVEs and compute their 
mechanical properties by finite element simulations to identify the de
scriptors that mainly govern the mechanical properties of fiber networks 
on the macroscale. 

The present article is organized as follows. In Section 2, we briefly 
outline a large variety of different descriptors that can be used to 
characterize the geometry of fiber networks. In Section 3, we describe 
our algorithm to construct tailor-made RVE whose descriptors match the 
desired ones. In Section 4, we present the results of a computational 
study that reveal which of the large variety of considered descriptors are 
geometrically and mechanically most relevant. Finally, we summarized 
our results in Section 5. 

2. Descriptors 

Fiber networks consist of fibers connected to each other at so-called 
nodes. In order to characterize them or compare them with each other, 
one can use so-called descriptors. Each descriptor characterizes a 
different aspect of the geometry of the network. As we study herein 
random fiber networks, the descriptors are in general related to statis
tical properties of the networks. The major goal of this paper is to un
derstand which descriptors are primarily governing the mechanical 
properties of fiber networks. In general there is an infinite number of 
possible descriptors. As rigorous mathematical proofs about the rele
vance or irrelevance of a descriptor appear to date impossible in most 
cases, we have to adopt a heuristic strategy. That is, in the following we 
present a finite set of the most common descriptors for networks from 
Euclidean geometry and graph theory. The role of each of these de
scriptors will then be examined in a computational study. This way, we 
cannot make mathematically rigorous statements about the set of me
chanically relevant descriptors. However, we can at least address this 
question from a heuristic perspective that can be hoped to be sufficient 
especially for most purposes in materials research. 

2.1. Morphological descriptors 

Morphological descriptors are based on the geometry and topology 
of the network in the Euclidean space. With respect to fiber networks, 
the following ones are most prominent. 

Node density ρnode is the number of nodes (vertices) in the RVE Nnode 
divided by the volume of the RVE. 
Valency distribution pv is the probability distribution of valency 
across the nodes in the RVE. The valency of a node v is the number of 
fibers (edges) connected to that node. 
Fiber length distribution pl is the probability distribution of the 
Euclidean length of the fibers l in the RVE. 
Direction cosine distribution pc is the probability distribution for 
the cosine c of the angles between all pairs of fibers connected to the 
same node. It describes how much the orientation of fibers joining at 
the same node is correlated. 
Connectedness of the networks is a boolean descriptor which de
clares whether the fibers in the RVE are all connected to each other in 
some way, that is, whether between any pair of nodes in the network 
there exists at least one connection path along the fibers (edges) of 
the network. 
Pore-size distribution function ppore(r) describes in the fiber 
network the probability for a point in the void phase that the nearest 

point in the fiber phase is located at a distance of at least r (see also 
the more general discussion in [39]). 
Radial distribution function pr(r) is a function of distance which 
describes in a system of point-like particles the probability of finding 
particles in the distance of r from a reference particle [33]. In this 
work we apply this descriptor in two different ways to characterize 
the solid phase (fiber phase). First, we consider the nodes the rele
vant set of particle and compute the probability of finding nodes in 
the distance of r from each other denoted as pr− node(r). Second, 
pr− fiber(r) which is the probability of finding fiber segments in the 
distance of r from each other. To this end, we discretize all the fiber 
within the RVE into segments. Then we compute the distance of all 
pair of segments within the RVE based on their central points. 
Geometric moment invariants I are very common and powerful 
tools for the recognition of objects and patterns in image processing. 
For an image described by the scalar intensity function f(x, y, z) in 
three dimensions, the geometric moments are [40] 

mijk =

∫ ∞

− ∞

∫ ∞

− ∞

∫ ∞

− ∞
xiyjzkf (x, y, z)dxdydz, (1)  

where the exponents i, j and k are non-negative integers and 
r = i+j+k is the order of the moment. The low order moments have 
physical concepts. m000 can be interpreted as the mass of an object, 
x = m100/m000, y = m010/m000 and z = m001/m000 respectively as the 
coordinates of the center of mass in x-, y- and z-direction, and the 
second order moments m200,m020,m002 as the moments of inertia 
around the x-, y- and z- axis respectively. Accordingly, the so-called 
central geometric moments can be defined as [40] 

μijk =

∫ ∞

− ∞

∫ ∞

− ∞

∫ ∞

− ∞
(x − x)i

(y − y)j
(z − z)kf (x, y, z)dxdydz. (2) 

By the combination of different geometric moments, we can define 
various geometric moment invariants which are unchanged under a 
group of transformations such as translation, rotation and scaling [41]. 
A large list of geometric moment invariants can be found in [42]. The 
invariants of higher order are often extremely small compared to the 
invariants of lower order and are often neglected in image processing. 
Thus also we herein use only the first three invariants 

I1 = (μ200 + μ020 + μ002)
/
(μ000)

(5/3)
, (3)  

I2 = (μ2
200 + μ2

020 + μ2
002 + 2μ2

110 + 2μ2
101 + 2μ2

011)
/
(μ000)

(10/3)
, (4)  

I3 = (μ3
200 + μ3

020 + μ3
002 + 3μ200(μ2

110 + μ2
101)+ 3μ020(μ2

110 + μ2
011)

+ 3μ002(μ2
101 + μ2

011)+ 6μ110μ101μ011)
/
(μ000)

5
. (5) 

In our fiber networks, we assumed f to be a Dirac-type function with 
infinite intensity on the (infinitesimally thin) fibers and zero intensity 
everywhere else. For the practical calculation of the geometric moment 
invariants, the fibers were divided into a finite number of segments, each 
associated with a weight according to the segment length, and then an 
approximation of the moment invariants was calculated based on this 
discretization. 

2.2. Graph descriptors 

In mathematics, graphs are formed by a set of vertices (nodes) and 
edges (links or lines) connecting them. So-called simple graphs are 
graphs where no vertex is connected by an edge to itself and where the 
connection between two vertices is always established by exactly one 
(rather than in general several) edges. Undirected graphs are graphs 
where the connections between vertices are bidirectional. Apparently, 
one can interpret networks of thin fibers (on which we solely focus 
herein) from an abstract point of view as graphs. Doing so, the fibers 
play the role of the edges and the nodes the one of the vertices, and the 
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mathematical quantities that are usually applied to characterize graphs 
(graph descriptors) can be used to characterize also fiber networks. 
There are many different descriptors in graph theory [43–46], and it is 
not possible to study all of them in this paper. Rather we focus on a set of 
the most common ones briefly summarized in the following. 

Clique number is the number of vertices in the largest clique of a 
graph. A clique is a subset of a graph in which there is an edge be
tween each pair of vertices [45]. 
Domination number of a graph is the number of vertices in the 
smallest dominating set of that graph. A dominating set of a graph is 
a subset of the graph such that every vertex outside this subset is a 
neighbor of at least one vertex within the subset [43]. 
Independence number is the number of vertices in the largest in
dependent set of a graph. An independent set of a graph is a subset of 
vertices within which no pair of vertices is directly connected by an 
edge [45]. 
Chromatic number of a graph is the smallest number of colors 
needed to color the vertices of that graph such that the color of any 
two adjacent vertices is different [45]. 
Clustering coefficient in graph theory is a tool to indicate the ten
dency of the nodes to cluster together. It can be defined either for 
each node individually (local clustering coefficient) or for the whole 
graph (global clustering coefficient). The local clustering coefficient 
of a specific node is the ratio of the actual number of edges between 
its neighbors and the maximal possibly number of edges between its 
neighbors. The global clustering coefficient is the ratio of the number 
of closed triplets over the total number of triplets in the network. A 
triplet is a set of three vertices, at least one of which is connected to 
the other two. If also the other two are connected to each other, the 
triplet is called a closed triplet. The global clustering coefficient is 
well-known to be a measure of the clustering in the network [46] 
S-metric of a graph is the product of the valencies of all vertices [44]. 

Maximum eigenvalue of adjacency matrix: the adjacency matrix 
of a graph is a square matrix whose size equals the number of 
vertices. Its ij-elements are the numbers of edges connecting the i-th 
and j-th vertex. For the simple undirected graphs corresponding to 
fiber networks the adjacency matrix is a symmetric matrix of zeros 
and ones where the diagonal elements are all zero. Thus the adja
cency matrix has real eigenvalues. Its maximum eigenvalue is a 
frequently used descriptor to characterize graphs. [43] 
Maximum eigenvalue of Laplacian matrix: the Laplacian matrix 
equals the difference between the degree matrix and the adjacency 
matrix. The degree matrix of a graph is a square diagonal matrix 
whose ii-elements equal the valency of the i-th vertex. The number of 
subsets of the graph that are mutually not connected equals to the 
number of zero eigenvalues of the Laplacian matrix. Hence for a 
connected graph the Laplacian matrix has exactly one zero eigen
value. [43] 
Algebraic connectivity is the second smallest eigenvalue of the 
Laplacian matrix and always positive. It is well-known to charac
terize how well-connected a graph is. [45] 
Graph energy equals to the sum of all eigenvalues of the adjacency 
matrix [45]. 

3. Construction of representative volume elements 

To examine the respective importance of the various descriptors 
introduced in the previous section, we studied a large number of 
representative volume elements (RVEs) with fiber networks and exam
ined how the descriptors of these fiber networks correlated with their 
mechanical properties. To minimize finite size effects in our RVEs, we 
developed an algorithm mimicking a periodic material structure. This 
algorithm placed around the main RVE some additional identical ghost 
RVEs (Fig. 1) that were taken into consideration only when in our main 
RVE descriptors had to be evaluated at nodes or fibers connected across 
the boundaries of our main RVE. In general, we focused on the con
struction of isotropic networks. 

To study the correlation between network descriptors and network 
properties it is necessary to construct networks whose geometry com
plies with certain predefined values or distributions of the descriptors of 
interest. To construct such networks we adopted the procedure 
described in the following subsections. 

3.1. Generation of initial network 

To construct tailor-made RVEs, we started from fiber networks with a 
random initial configuration. To speed up the stochastic optimization 
procedure used subsequently to transform this initial configuration into 
one exhibiting the desired values and distributions of the descriptors of 
interest, we ensured that already in the initial configuration some de
scriptors of the network agreed with the desired ones, namely, its 
connectedness, valency distribution, maximum fiber length and node 
density. We chose these descriptors because it is easy to directly 
construct networks where these descriptors take on desired values and 
distributions so that it would be a waste of computational time to 
include these descriptors in the stochastic optimization algorithm 
described below. Rather this algorithms can then easily be constrained 
in such a way that it maintains over all iterations the initial values and 
distributions for these descriptors. To prescribe the above mentioned 
descriptors already in the otherwise random initial configuration we 
applied the following procedure. 

3.1.1. Node density, connectedness, maximal fiber length 
First, we defined a cubic domain of edge length LRVE for our RVE to 

be constructed. To keep finite size effects acceptably small, we generally 
imposed without loss of generality LRVE/3 as a hard constraint for the 
maximum fiber length (lmax). To keep this constraint already in the 
initial configuration and ensure a largely homogeneous initial configu

Fig. 1. RVE (center) and surrounding ghost RVEs used to mimic a periodic 
material structure and to minimize finite size effects. 
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ration, we uniformly divided the RVE into a set of 63 = 216 subdomains. 
In the next step, we computed the number of nodes Nnode = ρnodeL3

RVE 
corresponding to the desired node density and distributed them as 
equally as possible among the subdomains to ensure a largely homo
geneous initial configuration (Fig. 2(b)). Note that an exactly equal 
distribution was not always possible given the predefined node density 
and number of subdomains, which could be achieved only if in certain 
cases some subdomains were assigned one node more than others. 

In the third step, we connected the nodes within each subdomain by 
a random polygon chain of initial fibers (Fig. 2(c)), which automatically 
complied with the given maximum length due to the above chosen edge 
length of the subdomains. 

In the fourth step, we interconnected in each subdomain one node 
with one node in a neighboring subdomain such that a connected 
network was achieved (Fig. 2(d)) and the added fibers did not violate the 
maximum length criterion. 

3.1.2. Valency distribution 
Let the valency of node i be vi and pv(vi) be the desired probability 

distribution. The maximum valency allowed is vmax, then the number of 
fibers in the network should be 

Nfiber = Nnode
/

2
∑vmax

k=1
pv(vk), (6) 

Having computed this quantity, fibers were randomly added be
tween pairs of nodes in the network, checking each time whether the 
maximum length criterion was satisfied and also whether the respective 
addition of a fiber helped to bring the actual valency distribution closer 
to the desired one pv(vi). Only if so, fibers were actually added. Other
wise another connection between a random pair of nodes was examined. 
To account for the periodic boundary conditions of our RVE, we allowed 
also connections from a node inside our RVE to a node in one of the 
neighboring ghost RVEs (Fig. 1). If such connections were established, 
the node in the ghost RVE was effectively replaced for all further con
siderations of the network connectivity by its periodic counterpart 
within the RVE. 

3.2. Simulated annealing 

In the previous sections, we pointed out how to construct RVEs of 

connected fiber networks with a maximal fiber length and a prescribed 
node density and valency distribution. Here we point out how to 
transform these RVEs into a final configuration in which also the fiber 
length distribution and the direction cosine distribution match desired 
target distributions. To this end, we use the simulated annealing (SA) 
method [34,4]. SA is a (global) stochastic optimization method. The idea 
of the approach is to define a cost function 

E =
∑Nd

k=1
wk⋅Ek. (7)  

that becomes minimal if all Nd descriptors of interest of the RVE match 
their target values or distributions. Ek is the cost function (energy 
function) of the k-th descriptor and wk its scalar weight. For reasons 
discussed in more detail below, it turned out to be sufficient for our 
purposes to consider only two descriptors in (7), namely, the fiber length 
distribution and the direction cosine distribution. Following [4], we 
defined the cost function of the k-th descriptor via the Cramer-von Mises 
test, that is, 

Ek =
1

12Nk
+

∑Nk

i=1

[
2i − 1
2Nk

− ck(xki)

]2

, (8) 

Here we assume that the k-th descriptor is a probability density 
distribution with Nk realizations xki across the whole network, ordered 
such that xk1 < xk2 < xk3 < …. For example, if the k-th descriptor is the 
fiber length distribution, Nk is the number of fibers in the network, and 
xki is the length of the i-th fiber. ck is the cumulative target distribution of 
the k-th descriptor. 

Once a cost function E has been defined that becomes minimal if the 
network has reached a state where the descriptors match their targets, 
one uses in SA a procedure of random evolution steps with the aim to 
decrease E down to its (ideally global) minimum. In our work we used 
two different types of evolution steps described in the following. 

Step type 1 applies a random displacement vector (with a constraint 
for its maximal absolute value) to a randomly selected vertex (node) 
in the network (Fig. 3(b)). 
Step type 2 deletes a pair of fibers and then adds a new one in such a 
way that the valency of all the affected nodes remains unaltered. For 
the configuration in Figs. 3(a), the two alternative ways to 

Fig. 2. Four steps to establish an initial random network in (a) a given RVE with (b) a desired node density, (c) maximum fiber length and (d) connectedness.  

Fig. 3. Herein, in each SA evolution step, the (a) current configuration is altered either by (b) the random displacement of some node or by (c,d) deleting and 
subsequently adding a pair of fibers in a way that keeps the valency of all nodes unaltered. 
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accomplish such a step (once a pair of fibers to be deleted has been 
chosen) are depicted in Fig. 3(c) and (d). For step type 2 we generally 
checked whether it altered the connectedness of the network and 
admitted only such steps of type 2 that did not. 

It is important to note that neither of the above two types of random 
steps changes the connectedness nor the valency nor the node density of 
the network (which we ensured to match their respective targets already 
in the initial configuration). However, other descriptors such as length 
and direction cosine between neighboring fibers change. After each 
random step, we computed ΔE, the change of the cost function E. Using a 
Metropolis algorithm as already [34], the probability to accept the step 
was computed in the i-th evolution step as 

pi
accept(ΔE) =

{
1 ΔE ≤ 0,
exp(− ΔE/Ti), ΔE > 0. (9) 

Here Ti is a temperature-like parameter. If the energy of a proposed 
random step decreases or at least not increases the cost function E, it is 
always accepted in the Metropolis algorithm. However, to avoid getting 
trapped in local minima, it is essential to endow the algorithm with the 
ability to perform at least with some likelihood also steps into an 
energetically unfavorable directions. This ability is ensured by the 
temperature parameter Ti. The higher Ti the more likely it is that the 
Metropolis algorithm every so often performs also energetically 

unfavorable steps. Typically, one starts with high Ti to give the algo
rithm the chance to explore large parts of the state space and decreases 
Ti then with an increasing number of random evolution steps [47]. 
Different approaches are used in the literature for this so-called cooling 
schedule. We applied the power function 

Ti = T0⋅di− 1
r , (10)  

with the initial temperature T0 and dr being the temperature decay-rate. 
SA is stopped if either a predefined maximal number of random evolu
tion steps imax is reached or the cost function is lower than a predefined 
threshold Etarget . We used a combination of both conditions (for details 
see Fig. A.12). 

3.3. Definition of RVE set used in our study 

As discussed already in [4], fiber length, valency and direction cosine 
distributions have been reported at several occasions to affect the me
chanical properties of fiber networks. It appears mechanically plausible 
that also the number of fibers plays an important role. For a given 
valency distribution this number can be expressed equivalently by the 
node density. The primary objective of this study is identifying the de
scriptors governing the mechanical behavior of fiber networks. There
fore, we decided to construct for our study a large set of RVEs which 
sampled specifically variations with respect to the above four de
scriptors, namely, valency distribution, fiber length distribution, direc
tion cosine distribution and number of fibers in the RVE. 

To this end, we discretized the space of possible valency, fiber length, 
and direction cosine distributions by a set of trial distributions illus
trated in Fig. 4. The algebraic formulae for these distributions denoted 
by Vi, Lj and Ck with i = 1,2,…,5, j = 1,2,…,6 and k = 1,2,…,5 are 
specified in Appendix B. The set of trial functions was defined heu
ristically, though in a manner that allowed us to sample with a relatively 
small number of trial functions a large part of the possible shapes these 
functions typically take on in real physical systems. To this end, we 
included for each descriptor at least a constant, two linear and a 
quadratic trial function. Moreover, we allowed an independent variation 
of the number of fibers Fq with q = 1,2 between the two specific values 
F1 = 4000 and F2 = 8000. Note that we numbered the considered dis
tributions such that the mean value of the respective descriptor increases 
monotonically with their subscript. For instance, L1 refers to the distri
bution with the smallest average length and L6 to the distribution with 
largest one. 

Our definition of trial functions allowed us to define 300 types of 
different RVE, each characterized by a specific choice of the descriptors 
Vi,Lj,Ck,Fq. These different types of RVE are referred to in the following 
by the abbreviations V1L1C1F1,V2L1C1F1,…, V5L6C5F2, respectively. It is 
worth mentioning that SA did not converge satisfactorily for the com
bination of V3,V4 and V5 with C1 and C4, suggesting that these types of 

Fig. 4. Trial (a) valency distributions V1,…,V5 (b) fiber length distributions L1,…, L6 and (c) direction cosine distributions C1,…,C5.  

Table 1 
Possible combinations of Vi, Lj and Ck.   

C1  C2  C3  C4  C5  

V1  ✓a ✓✓b ✓✓ ✓✓ ✓✓ 
V2  ✓ ✓ ✓ ✓ ✓ 

V3  — ✓ ✓ — ✓ 
V4  — ✓ ✓ — ✓ 
V5  — ✓ ✓ — ✓  

a ✓✓: L1,…,L6. 
b ✓: L2,…,L5. 

Table 2 
Values for parameters used in SA (see Section 3.2).  

Parameter Value 

T0  1 
dr  0.9 

imax  1,000,000 
Etarget for each descriptors  0.01 

Maximal displacement step size LRVE/20   
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RVE cannot exist due to a violation of intricate, problem-intrinsic geo
metric constraints. Similarly, RVE with fiber length distributions of L1 
and L6 could be constructed only for V1 in combination with all 
considered direction cosine distributions except C1. RVE types that 
could be constructed with F1 could always be constructed also with F2. 
Hence, among the theoretically possible 300 different RVE types only 
168 could be constructed, which are summarized in Table 1. For each 
RVE type, 15 different random realizations were generated by the pro
cedure described in Section 3. Thereby, we used the SA parameters from 
Table 2 for the construction of all the 2520 RVEs considered in our 
study. Fig. 5 illustrates the construction of one specific such RVE (of type 
V5L2C2F1). Starting from a random initial configuration, SA yields an 
RVE where the descriptors of interest closely match the prescribed target 
distributions. 

4. Results 

4.1. Descriptors governing mechanical properties 

To understand the influence of the descriptors of the network 
structure on the network’s mechanical properties, we discretized the 
network RVE generated as described in Section 3.3 by finite beam 

elements, to which we assigned a circular cross section with a diameter 
of LRVE/50, a Young’s modulus of Ef = 79 GPa and a Poisson’s ratio of 
νf = 0.44. These values are deliberately chosen to resemble those of 
nanoporous gold as a possible application case. Yet, the exact choice of 
these parameters is largely irrelevant for the following discussion as long 
as they enable in principle all relevant deformation modes of the 
network in a physically realistic range, which we confirmed to be the 
case. Fibers were discretized using beam finite elements based on the 
Timoshenko beam theory. At the intersection points of fibers, both 
translations and rotations were coupled, i.e., rigid joints were assumed. 
Applying periodic boundary conditions to our RVE according to [48], we 
computed their (effective, homogenized) Young’s modulus E and Pois
son’s ratio ν by the method suggested in [28]. 

To investigate the effect of valency distribution, fiber length distri
bution, direction cosine distribution and the number of fibers on me
chanical properties, we divided the 2520 RVEs generated according to 
Section 3.3 into categories. ViLjCkFq denotes a category of an RVE where 
all the four descriptors match their respective target distributions. That 
is, the RVE category includes the 300 RVE types V1L1C1F1,V2L1C1F1,…, 
V5L6C5F2. Analogously, by leaving out one or several of the descriptors 
in the list, we denote an RVE category where only the listed descriptors 
were fixed to certain target distributions and the others were allowed to 

Fig. 5. (a) A random initial configuration is transformed by SA into an (b) RVE of type V5L2C2F1 where (c) valency, fiber length and direction cosine distributions 
closely match their respective target distributions. 
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vary freely among all distribution functions included in our study. For 
example, LjCk denotes a category of RVEs where the length distribution 
matches Lj and the direction cosine distribution Ck, whereas all the other 
descriptors may be arbitrary (within the set of distributions and values 
considered herein). As there are altogether 30 different RVE types of the 
category LjCk, denoted by L1C1,L1C2,L1C3, …, L6C5, our study includes 

for each of these RVE types 2520/30 = 84 realizations (in case all 
combinations of remaining descriptors be available for the subsets of 
this category). In the extreme case that all descriptors are allowed to 
vary freely among the distributions included in this study, we denote the 
respective RVE category (or type) by ‘–’, including all 2520 RVE 
generated in our study. As illustrated also in Fig. 6, there are altogether 

Fig. 6. For the 16 different RVE categories considered in this study, we computed for (a) the Young’s modulus and (b) the Poisson’s ratio the relative variances and 
maximal deviations from their mean values, averaged across all RVE types belonging to the respective RVE category. Apparently, fixing the four descriptors valency 
distribution, fiber length distribution, direction cosine distribution and the number of fibers reduced the statistical variance of the mechanical properties to 
nearly zero. 

Fig. 7. (a) Young’s modulus of a representative selection of RVE types normalized by the number of fibers Fq (and the homogenized mean Young’s modulus Eref =

27.3 MPa of the RVE type V2L3C2F1); (b) fixing more and more descriptors, the relative variance (σ2) of the Young’s modulus in the resulting RVE categories (boxes) 
decreases by the percentage indicated next to the lines that connect an RVE category with one that results from fixing a further descriptor. 
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16 RVE categories, which are listed on the very left of Fig. 6. For each 
RVE category, we computed for all RVE types belonging to it the mean 
values of Young’s modulus and Poisson’s ratio as well as the variances of 
these quantities (normalized by their respective mean value) (σ2). For 

each RVE category the average variance across all the RVE types 
belonging to it is plotted in Fig. 6. Moreover, we computed in each RVE 
category for each RVE type belonging to it for all samples the maximal 
absolute values of the relative deviations of Young’s modulus and 

Fig. 8. Young’s modulus monotonically increases with the mean valency and monotonically decreases with both mean fiber length and mean direction cosine for a 
number of representative RVE types. The Young’s modulus in (a)–(c) is normalized to the Young’s modulus of EV3L3C3F1 = 77.3 MPa and in (d)–(f) to Eref as 
defined above. 

Fig. 9. Mean values of (a) the normalized variance σ2 and (b) the maximal absolute value of the relative deviation Δmax averaged over all RVE types in the two RVE 
categories ‘–’ and ViLjCkFq. The mean values of these descriptors of all 2520 RVEs are as follows: Domination No.= 1.11e3, Independence No.= 1.84e3, Chromatic 
No.= 4.40, Clique No.= 3.06, Clustering Coefficient = 0.01, S-metric = 1.90e5, Energy of Graph = 5.41e3, Algebraic Connectivity = 0.16, Max. Eig. value of Adj. 
Mat.=4.12, Max. Eig. value of Lap. Mat = 8.65. 
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Poisson’s ratio from their mean values. This quantity Δmax was averaged 
for each RVE category and plotted in Fig. 6. 

In general, the larger σ2 and Δmax for a category, the less do the 
descriptors fixed for this specific RVE category determine the mechan
ical properties of a network. By contrast, in the theoretical extreme case 
that σ2 and Δmax are zero, the descriptors fixed in the related RVE 
category fully determine the mechanical properties of the fiber network 
(at least in the theoretical case that for each RVE type an infinite number 
of realizations is included in the study). 

Fig. 6 reveals that for the RVEs in the category ‘–’, the relative 
variance of Young’s modulus across all the subset is as big as 188.9%. By 
contrast, if all the four descriptors valency distribution, fiber length 
distribution, direction cosine distribution and the number of fibers are 
fixed, that is, in the category ViLjCkFq, the relative variance of the 
Young’s modulus is as small as 0.5%. For Poisson’s ratio the relative 
variance in the category ViLjCkFq takes on the similarly low value of 
0.3%. However, for Poisson’s ratio the relative variance even in the 
category of RVE without any geometric constraints is only 2.6%. 
Together, this leads to the following main conclusions: Poisson’s ratio of 
(initially stress-free) isotropic random fiber network generally exhibits a 
relatively low statistical variance with a mean value of around 0.25. By 
contrast Young’s modulus strongly depends on the geometry of the fiber 
network. Nevertheless, the four descriptors valency distribution, fiber 
length distribution, direction cosine distribution and the number of fi
bers together suppress around 99.5% the variance of the linear-elastic 
mechanical properties of fiber networks. 

Fig. 7(a) analyzes specifically the effect of Fq by plotting for a 
representative selection of RVE types on the Young’s modulus 

normalized by the number of fibers. Apparently, this ratio is (except for 
minor supposedly mainly statistical deviations) constant for each RVE 
type. In other words, if the other descriptors are fixed, Young’s modulus 
is directly proportional to the number of fibers. This simple law can also 
be understood analytically. Imagine an RVE with a specific size and Fq 

fibers. The network in this RVE can be modeled as an elastic spring S. 
Increasing the number of fibers, for example, by a factor of two can be 
constructed as process where we add another random fiber network of 
the same type into the RVE so that the RVE volume is then occupied by 
two interpenetrating random fiber networks. As these are of the same 
type, they exhibit the same elastic properties. That is, the RVE harbours 
then two elastic springs of the kind of S that act in parallel, increasing 
Young’s modulus by a factor of two. By contrast, as both elastic systems 
of type S exhibit the same deformation behavior, Poisson’s ratio is not 
expected to change if the number of fibers increase by a factor of two. 
This explains the very low sensitivity of Poisson’s ratio to variations of 
number of fibers observed in our study. Of course, this illustrative 
explanation is applicable to any scaling factor for Fq, yielding directly 
the simple linear relation between Fq and Young’s modulus observed in 
Fig. 7(a). 

For the RVE category Fq, that is, the one with fixed number of fibers, 
Fig. 7(b) illustrates how fixing more and more descriptors suppresses in 
a step-wise manner nearly the whole variance of Young’s modulus. 
Apparently, the mechanically most important single descriptor in this 
process is the valency distribution, which alone reduces the variance of 
the mechanical properties by nearly 90% when fixed. In fact, this 
interpretation qualitatively still holds if we examine in Fig. 7(b) arbi
trary transitions from one RVE category to another by fixing one addi
tional descriptor. In every case, fixing the valency distribution reduces 

Fig. 10. Comparison of (a) normalized variance σ2 and (b) the maximal absolute value of the relative deviation Δmax for the first three geometric moment invariants 
I1, I2 and I3 of the RVEs in the two categories ’—’ and ViLjCkFq. 

Fig. 11. Comparison of (a) spatially average normalized variance σ2 and (b) the spatially averaged maximal absolute value of the relative deviation Δmax of cpore(r)
, cr− node(r) and cr− fiber(r) for RVEs of the categories ‘—’ and ViLjCkFq. 
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the variance more than fixing any other descriptor. This justifies the 
conclusion that the valency distribution is generally more important 
than fiber length distribution and direction cosine distribution. 

In order to better understand the influence of the remaining de
scriptors on the mechanical properties of fiber networks, Young’s 
modulus is plotted in Fig. 8(a)–(c) for a number of representative RVE 
types. 

Fig. 8 illustrates that changes in the valency distribution are asso
ciated with changes of Young’s modulus by more than one order of 
magnitude whereas changes in the fiber length and direction cosine 
distributions typically have a much smaller effect. As the indices of the 
descriptor distributions increase with their mean values, Fig. 8(a)–(c) 
demonstrate for a representative selection of RVEs that Young’s 
modulus increases with the mean valency Vmean but decreases with mean 
fibers length Lmean and mean direction cosine Cmean. To quantify this 
dependence, Fig. 8(d)–(f) uses a special post-processing of the results of 
our computational study. Thereby, we first specified a certain descriptor 
of interest (either valency, fiber length or direction cosine distribution) 
for which we studied its relation to Young’s modulus. To do so, we 
selected from the 16 RVE categories listed in Fig. 6 the ones where the 
respective descriptor of interest was fixed. For example, if valency dis
tribution is selected as the descriptor of interest, these are the eight 
categories Vi,ViLj,ViCk,ViFq,ViLjCk,ViLjFq,ViCkFq,ViLjCkFq. For each of 
these categories, we defined subcategories containing the RVE types 
where the descriptor of interest was varies across all its possible distri
butions while all the other descriptors were kept constant at specific 
values. For example, the category ViFq was divided into a subcategory 
containing the RVE types V1F1,V2F1,V3F1,V4F1,V5F1 (varying the 
descriptor of interest Vi and keeping Fq constant at F1), and another 
subcategory with the RVE types V1F2,V2F2,V3F2,V4F2,V5F2 (varying 
the descriptor of interest Vi and keeping Fq constant at F2). For each 
subcategory we computed for all RVE realizations included in our study 
Young’s modulus normalized by the mean Young’s modulus within that 
category Eref as well as the mean value of the descriptor of interest. We 
excluded subcategories where not all RVE types were available because 
they could not be constructed (see Table 1). The results are depicted in 
Fig. 8(d)–(f), where the descriptor of interest was chosen to be the 
valency distribution, fiber length distribution and direction cosine dis
tribution, respectively. Interestingly, Fig. 8(d) reveals a quadratic rela
tion between the Young’s modulus and the mean value of the valency 
distribution. This relation is remarkably linear between the Young’s 
modulus and the mean values of the fiber length distribution and the 
direction cosine distribution (Fig. 8(e) and (f), respectively). The box 
plots illustrate the statistical deviations from the mentioned relationship 
in each of the above defined subcategories. The apparently very small 
size of the boxes reveals that the defined function almost completely 
characterizes the relation between the considered descriptors and 
Young’s modulus. This observation is remarkable because it means that 
in discussing the relation between microstructure and mechanical 
properties of the RVEs, one can focus not only on four key descriptors in 
the form of probability distributions but in fact largely on mean values. 
In other words, the linear mechanical properties of the RVEs are largely 
determined by the number of fibers (per volume) and the scalar mean 
values of the valency, fiber length and directioncosine distribution. 
From Fig. 8(d)–(f) it is also apparent that, as discussed already above, 
mean valency is of much higher importance than mean fiber length and 
mean direction cosine with respect to the resulting material stiffness. 
Fig. 8(e) and (f) cover a large part of the range within which fiber length 
and direction cosine can be varied in a physically and geometrically 
reasonable way. Yet, they display variations of Young’s modulus only by 

approximately a factor two and three, respectively. By contrast, in Fig. 8 
(d) we observe a factor of almost 70. Additionally, it is worth mentioning 
that the valency range up to slightly above five is well-suited for random 
fiber networks. However, for ordered ligament systems with hexagonal 
cells or tetrahedral cells even higher mean valencies may appear (for 
example six for a uniform cubic mesh and twelve for a uniform tetra
hedral mesh), which underlines even more impact on Young’s modulus 
that can in principle be realized in networks of ligaments by varying the 
mean valency. 

As revealed already by Fig. 6, Poisson’s ratio is nearly constant across 
the different RVE types, which is why we omit a detailed discussion of its 
minor dependencies on the different descriptors. We note, however, that 
we have shown already above that Poisson’s ratio can be expected to be 
(nearly) independent on the number of fibers Fq. Given that Fq is 
generally responsible for a large part of the variations of the mechanical 
properties observed in this study, the insensitivity of Poisson’s ratio to it 
may explain why Poisson’s ratio generally exhibits only relatively small 
variations in the RVE studied herein. 

According to [49–51], the ratio of the fiber radius to the fiber length 
plays an important role for the mechanical properties and deformation 
of random fiber networks. In networks with higher values of this ratio, 
stretch is the dominant deformation mode which causes the network to 
deform affinely. In contrast, if the ratio is small, bending is the pre
dominant deformation mode and the network deforms non-affinely. In 
order to analyse the dependence of our conclusions in this section on 
geometrical properties of the fibers such as their slenderness ratio, we 
repeated the studies discussed in this section with networks with a fiber 
diameter of LRVE/500. The results are presented in Appendix C. They 
exhibit some minor quantitative differences to the ones obtained with a 
fiber diameter of LRVE/50 but are qualitatively similar, underlining thus 
the robustness of our conclusions. 

4.2. Relation between morphological descriptors and graph descriptors 

In Section 4.1 we demonstrated that a set of four geometric de
scriptors nearly fully determines the mechanical properties of random 
fiber networks. However, such networks can also be interpreted as 
mathematical graphs, the nodes forming the vertices of the graph and 
the fibers its edges. Mathematical graph theory provides a host of de
scriptors for graphs. It is instructive to study the relation between such 
graph descriptors and the four geometric descriptors on which Section 
4.1 focuses. In this section we examine the graph descriptors introduced 
in Section 2. As classical graph theory works with finite rather than 
infinite graphs, most descriptors from graph theory cannot deal with the 
assumed periodicity of the considered RVEs. Therefore, we evaluated 
them only within the RVE, ignoring the fibers cutting through the 
boundaries of the RVE. 

In order to investigate the dispersion of graph descriptors, we eval
uated the aforementioned statistical quantities σ2 and Δmax also for a 
host of graph descriptors and compared the results for the two extreme 
cases, the RVE category ‘–’ and the RVE category ViLjCkFq. The results 
are illustrated in Fig. 9. The ones related to ViLjCkFq are the mean values 
of the 168 types RVE belonging to the category. 

Fig. 9 reveals that fixing the four descriptors valency distribution, 
fiber length distribution, direction cosine distribution and number of 
fibers reduces σ2 and Δmax for all graph descriptors substantially. Except 
for the clustering coefficient, all graph descriptors seem to be almost 
fully determined in an implicit manner by fixing the four dominant 
morphological descriptors, underlining once more their key role in 
characterizing properties of the fiber network. 
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4.3. Role of other morphological descriptors 

We have established now that fiber length distribution, valency 
distribution, direction cosine distribution and number of fibers are the 
four morphological descriptors that nearly fully determine the me
chanical properties (and indeed also graph properties) of fiber networks. 
In this section we analyze, to which extent they determine also the other 
morphological descriptors introduced in Section 2. The first three geo
metric moment invariants, I1, I2 and I3 [42] are computed for the RVE 
types within the two RVE categories’—’ and ViLjCkFq. Analogously to 
the previous sections, the mean values of the normalized variance σ2 and 
the maximal absolute value of the relative deviation Δmax averaged over 
all RVE types in these two categories are plotted in Fig. 10. Apparently, 
fixing the four above identified morphological main descriptors de
termines also the three first geometrical moment invariants nearly 
completely. Higher order moments exhibit very small values compared 
to the first three ones. They are typically considered as of minor 
importance compared to the first three ones and thus skipped here. 

Furthermore, the pore-size distribution function ppore(r), the radial 
distribution function of the nodes pr− node(r) and the radial distribution 
function of the fibers pr− fiber(r) have been studied in this work. To 
determine the pore-size distribution function, we chose 1000 random 
points inside the void-phase of the RVE and computed their respective 
distance to the closest fiber. Then the probability distribution of dis
tances was approximated in a discrete manner by dividing the occurring 
interval of 0 < r/LRVE < 0.12 into 24 bins with equal width. A similar 
calculation was performed for pr− node(r) and pr− fiber(r) by dividing the 
occurring interval 0 < r/LRVE < 2 into 25 equal-sized bins. For the 
computation of pr− fiber(r), fibers were divided into segments with a 
maximum length of 5%LRVE. In order to compute statistical quantities 
comparable to σ2 and Δmax above, we first converted the probability 
density functions (PDFs) ppore(r), pr− node(r) and pr− fiber(r) into associated 
cumulative (CDFs) distribution functions cpore(r), cr− node(r) and cr− fiber(r). 
For these, we calculated σ2 and Δmax separately in each bin used for the 
discretization of the distributions and introduced in general for the 
characterization of a CDF c(r) the averaged quantities 

σ2(c(r)) =
1
Lc

∫ r=Lc

r=0
σ2(c(r))dr, (11)  

Δmax(c(r)) =
1
Lc

∫ r=Lc

r=0
Δmax(c(r))dr. (12) 

Here, Lc = 0.12LRVE for c(r) = cpore(r) and Lc = 2LRVE for c(r) =
cr− node(r) and c(r) = cr− fiber(r). Fig. 11 compares σ2 and Δmax for the 
mentioned distribution functions for the RVEs in the categories ‘—’ and 
ViLjCkFq. Apparently also ppore(r), pr− node(r) and pr− fiber(r) are at least to a 
large extent implicitly determined by fixing the four morphological 
main descriptors identified above. 

5. Conclusions 

Studies of the mechanical properties of heterogeneous random media 
have attracted substantial interest over the last two decades. A key 
question in this area is which descriptors of the microstructure of such 
media determine to which extend their mechanical properties. Specif
ically for networks of fibers or ligaments, this has remained unclear so 
far. Such networks play an important role in biophysics and soft matter 
physics but also in materials research, in particular with respect to 
nanoporous metals [52–56]. The microstructure of the latter differs from 
the fiber networks usually studied in biophysics by the fact that it is 
formed by a network of ligaments with a considerable thickness and 

variation in shape. Yet both fiber networks in biophysics and ligament 
networks as occurring in nanoporous metals appear to share important 
common properties. For example, in biophysics, it has been suggested 
that fiber length distribution, valency distribution and direction cosine 
distribution play important roles in the mechanical behavior of collagen 
fiber networks [4]. And also for nanoporous metals it has been found 
that characteristics such as node valency or ligament length have 
important effects on the macroscopic mechanical properties [57–60]. 
Yet, so far it remains unclear to which extend these findings in separate 
areas of materials science are related to each other and which other 
descriptors are important determinants of the mechanical properties. 

To answer these questions, we performed a large computational 
study including more than 2500 RVEs. Using simulated annealing [33], 
we constructed these RVEs sampling a large part of the physically 
reasonable configuration space. As expected, we observed in finite 
element models a large variance of Young’s modulus and Poisson’s ratio 
among these 2520 RVEs. However, we also observed that fixing four 
morphological key descriptors to specific values or probability distri
butions reduced this variance by more than 99%. These four key de
scriptors are the number of fibers per volume (i.e., the fiber density), the 
node valency distribution, the fiber length distribution, and the direc
tion cosine distribution. We demonstrated that the four key descriptors 
did not only largely determine the mechanical properties but also a host 
of other morphological or graph-theory-based descriptors. We thus 
conclude that the number of fibers per volume, the node valency dis
tribution, the fiber length distribution, and the direction cosine distri
bution are the key properties of networks of (thin) fibers both with 
respect to mechanics and geometry. 

Remarkably, we observed that the number of fibers per volume is 
(nearly) linearly related to Young’s modulus of fiber networks, which we 
could also explain by a simple theoretical analysis. Interestingly, we 
observed that also the effect of valency, fiber length and direction cosine 
distribution on Young’s modulus can be captured to a very large extent 
by a simple linear or quadratic relationship between the mean values of 
these distributions and Young’s modulus. Thereby stiffness increases 
with mean valency and decreases with mean fiber length and mean di
rection cosine. This finding is in excellent agreement with [61], where 
based on a different approach already previously a remarkably simple 
ascending relationship between mean valency and stiffness was reported 
specifically for nanoporous metals. 

Given that for valency, fiber length and direction cosine distribution 
apparently mainly the mean values matter for the stiffness of the 
network, one can summarized our study as follows: the mechanical 
properties of fiber networks are largely determined by four scalar de
scriptors, which are the number of fibers per volume and the mean 
valency, mean fiber length and mean direction cosine. Among these four 
scalar descriptors the former two are by far dominant whereas the latter 
two are modulators of minor importance. Generally, we found that the 
dependence of Young’s modulus on the four key descriptors was much 
stronger than the dependence of Poisson’s ratio. 

The identification of four simple scalar descriptors for characterizing 
the mechanical properties of fiber networks can be expected to be an 
important step to understand the relation between microstructure and 
macroscopic mechanical properties of materials consisting of random 
fiber networks. It should, however, be kept in mind that this study has 
also certain limitations. First, it focuses on linear mechanical properties 
(Young’s modulus and Poisson’s ratio) of isotropic fiber networks only. 
A generalization to nonlinear anisotropic materials is a natural next step. 
Since the macroscopic material behavior is strongly influenced by 
microstructural defects [62–64], large deformation, plasticity and fail
ure of random fiber networks is a promising area of future research. 
Second, our study largely relies on a computational approach. A 
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promising next step is underpinning its main findings by a careful 
theoretical analysis unraveling the rationale behind the role of the 
different descriptors. 
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Appendix A. Summary of simulated annealing method 

See Fig. A.12. 

Fig. A.12. Flow chart of the simulated annealing algorithm used herein.  
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Appendix B. Definition of considered distributions for valency, fiber length and direction cosine 

The probability distribution functions (PDFs) for the valency, fiber length and direction cosine used in this article are defined by algebraic 
equations in the following. 

B.1. Valency distributions 

V1(v) =
1

15
(6 − v), (B.1)  

V2(v) = −
1

35
v(v − 6) (B.2)  

V3(v) =
1
6
, (B.3)  

V4(v) =
1

15
(v − 1), (B.4)  

V5(v) =

⎧
⎨

⎩

0 v⩽3,

−
1
22

(v − 3)(v − 9) 3 < v,
(B.5)  

where v (v = 1,2,…,6) represents the node valency. 

B.2. Fiber length distributions 

L1(l) =
4

0.34(
1
3
− l)3

, (B.6)  

L2(l) = −
200

9
(l −

1
3
), (B.7)  

L3(l) =
10
3
, (B.8)  

L4(l) = −
2000

9
(l −

1
3
)(l −

1
30
), (B.9)  

L5(l) =
200

9
(l −

1
30

), (B.10)  

L6(l) =
4

0.34(l −
1
30

)
3
, (B.11)  

where l = r/LRVE is a normalized fiber length with ( 1
30⩽l⩽1

3). The minimum of l = 1
30 prevents having the fibers of very short length. 

B.3. Direction cosine distributions 

C1(c) =
1
2
(1 − c), (B.12)  

C2(c) =
{
− c − 1⩽c⩽0,
c 0 < 1, (B.13)  

C3(c) =
1
2
, (B.14)  

C4(c) =
3
4
(1 − c2), (B.15)  

C5(c) =
1
2
(1+ c), (B.16)  

where c ( − 1⩽c ≤ 1) is the cosine of the angle between a pair of fibers adjacent to the same network node. 

I. Davoodi Kermani et al.                                                                                                                                                                                                                     



Computational Materials Science 199 (2021) 110711

14

Appendix C. Relation between morphological descriptors and mechanical properties of the networks with fiber diameter of LRVE/500 

The studies shown in Section 4.1 were performed also for networks with a fiber diameter of LRVE/500 (ten times smaller than the one used in 
Section 4.1). As shown in the following, this changes the results quantitatively, but not qualitatively, underlining the robustness of our conclusions. 

See Figs. C.13–C.15. 

Fig. C.13. For the 16 different RVE categories considered in this study, we computed for (a) Young’s modulus and (b) Poisson’s ratio the relative variances and 
maximal deviations from their mean values, averaged across all RVE types belonging to the respective RVE category. Apparently, fixing the four descriptors valency 
distribution, fiber length distribution, direction cosine distribution and number of fibers reduced the statistical variance of the mechanical properties nearly to zero. 

Fig. C.14. (a) Young’s modulus for a representative selection of RVE types normalized by the number of fibers Fq (and the homogenized mean Young’s modulus 
Eref = 9.4e3 MPa of the RVE type V3L3C3F1); (b) fixing more and more descriptors, the relative variance (σ2) of Young’s modulus in the resulting RVE categories 
(boxes) decreases by a percentage indicated next to the lines connecting an RVE category with one resulting from fixing one more descriptor, respectively. 
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