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Abstract: In the present work, a reduced-order modeling (ROM) framework based on a recurrent
neuro-fuzzy model (NFM) that is serial connected with a multilayer perceptron (MLP) neural network
is applied for the computation of transonic aileron buzz. The training data set for the specified
ROM is obtained by performing forced-motion unsteady Reynolds-averaged Navier Stokes (URANS)
simulations. Further, a Monte Carlo-based training procedure is applied in order to estimate statistical
errors. In order to demonstrate the method’s fidelity, a two-dimensional aeroelastic model based on
the NACA651213 airfoil is investigated at different flow conditions, while the aileron deflection and
the hinge moment are considered in particular. The aileron is integrated in the wing section without
a gap and is modeled as rigid. The dynamic equations of the rigid aileron rotation are coupled
with the URANS-based flow model. For ROM training purposes, the aileron is excited via a forced
motion and the respective aerodynamic and aeroelastic response is computed using a computational
fluid dynamics (CFD) solver. A comparison with the high-fidelity reference CFD solutions shows
that the essential characteristics of the nonlinear buzz phenomenon are captured by the selected
ROM method.

Keywords: nonlinear system identification; reduced-order model; neuro-fuzzy model; multilayer
perceptron neural network; transonic aileron buzz; unsteady aerodynamics

1. Introduction

Unsteady aerodynamic and aeroelastic phenomena, such as flutter, buffet and buzz, determine
the boundaries of the flight envelope of an aircraft. The latter phenomenon, also referred to as aileron
buzz, represents an aeroelastic phenomenon occurring in transonic flights. Aileron buzz is denoted as
a single degree-of-freedom flutter, characterized by self-excited and sudden vibration of the aileron,
yielding large amplitudes and potentially permanent damage of the aircraft structure. The associated
flow field typically involves shock waves dynamics and boundary layer separation. For viscous flows,
aileron buzz was classified by Lambourne [1] as Type A, B and C, depending on the free stream Mach
number and the location of the shock wave. Type A is caused by the interaction of shock-waves with
the boundary layer, typically encountered at Mach numbers slightly higher than the critical Mach
number. Type B results from the interaction of the shock-waves with the aileron movement at higher
Mach numbers, compared to Type A. Since for Type B no significant intervention with the boundary
layer is observed, it is commonly referred to as non-classical aileron buzz [2]. Type C buzz is associated
with supersonic flow over the entire control surface and shock wave development at the trailing edge
of the aileron [1,3].

In order to accurately capture the flow physics of aileron buzz, high-fidelity numerical methods
based on unsteady Euler or unsteady Reynolds-averaged Navier Stokes (URANS) simulations must be
employed [2,4]. However, due to the necessity to resolve the underlying flow mechanism associated
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to aileron buzz, the effort of comprehensive computational methods is time and cost consuming,
especially in an industrial context. Therefore, alternative methods, which ensure an efficient and
accurate computation of unsteady aerodynamic forces and moments while at the same time requiring a
lower computational effort, must be implemented. One possibility that has gained increasing attention
within the last years is the application of reduced-order models (ROMs) for accelerating aerodynamic
and aeroelastic computations. For efficient development of a ROM, computational fluid dynamics
(CFD)-based training data representing the input/output relationship of the underlying system are
exploited by the application of a linear or a nonlinear system identification approach. Therefore,
time-varying unsteady integral quantities can be predicted with sufficient accuracy. At the same time,
computational time can be significantly reduced compared to a full-order CFD simulation.

Based on research efforts within the last years, various linear and nonlinear system identification
methods for aerodynamic and aeroelastic applications, originated [5]. Focusing on aerospace
applications in particular, linear methods include the eigensystem realization algorithm (ERA) [6]
applied by Silva and Bartels [7], the auto-regressive with exogenous input (ARX) applied by Zhang
and Ye [8] and the auto-regressive with moving average (ARMA) model applied by Raveh [9].
Further, Hall et al. [10] and Iuliano et al. [11] applied ROM approaches based on Proper Orthogonal
Decomposition (POD) of steady or unsteady flow conditions in order to achieve a sufficient
system reduction.

In contrast, accurate nonlinear methods which are required for capturing large amplitude motions
or separated flows still represent a challenging tasks, even with already existing methods [12].
So far, several ROM approaches have been applied by Zhang et al. [13,14] and Glaz et al. [15] for the
representation of flutter and Limit-Cycle Oscillations (LCOs). Further, nonlinear methods originated
based on Wiener models [16], radial basis function (RBF) neural networks [14], multilayer perceptron
(MLP) neural networks [17,18] and Kriging interpolation [15] achieved a sufficient nonlinear system
representation. In addition, a multi-kernel RBF neural network has been applied by Zhang et al. [19]
for modeling unsteady aerodynamics including varying flow conditions. Further, Volterra and basic
neural networks applied by Paula et al. [20] and Faller et al. [18] yield sufficient results concerning
three-dimensional flow field and unsteady aerodynamic load prediction. Moreover, ROMs based on
fuzzy logic [21,22] yield accurate and reliable results for capturing weak aerodynamic nonlinearities as
well as small perturbation flow characteristics.

Considering buzz aerodynamics in particular, only a small amount of studies represents the
computation of aileron buzz by means of system identification methods. Fusi et al. [23] developed a
state-space ROM and further employed a continuous-time system identification based on a genetic
algorithm for the analysis of non-classical aileron buzz. For the representation of the nonlinear
aerodynamic characteristics, a polynomial function of the system input is added to the linear structure.
Further, Zafar et al. [24] used a describing function technique with multiple inputs for the investigation
of the aileron buzz phenomenon under varying flow conditions.

In the present study, a ROM approach based on a recurrent neuro-fuzzy model (NFM) that is
serially connected with a multilayer perceptron (MLP) neural network [12] is applied for the analysis
of non-classical aileron buzz. Due to the use of local linear models (LLM), the NFM was found to be
less prone to simulation instabilities compared to RBF or MLP neural networks [25]. However, with an
increasing non-linearity, the identification of the input/output relation becomes difficult, especially
if both linear and nonlinear characteristics must be reproduced. Therefore, a MLP neural network is
applied as a nonlinear correction of the NFM’s response in order to ensure an overall robust model.
Prior studies by Winter and Breitsamter [5] yield accurate results of the connected ROM approach for
modeling nonlinear flow-induced characteristics in the transonic flight regime. The coupled NFM-MLP
network is conditioned using a data set computed by forced-motion URANS simulations. In order
to account for statistical errors resulting from the random model initialization, a Monte-Carlo-based
training procedure is applied according to Winter and Breitsamter [12]. The performance of the trained
ROM is demonstrated by considering the NACA651213 airfoil with an integrated control surface at
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transonic buzz condition. Therefore, a high-fidelity model of the aeroelastic system is defined by
coupling the CFD aerodynamic model with the dynamics of the rigid aileron.

2. Reduced-Order Model Approach

In order to identify the underlying characteristics of the aerodynamic and aeroelastic system,
a data set including the characteristic features of the system must be defined for an efficient ROM
construction. For this purpose, unsteady CFD simulations are performed for predefined flow
conditions, while the selected rigid body degree of freedom (DoF) of the structure, in particular
the aileron structure, is excited by means of an user-defined signal, covering the amplitude and
frequency range of interest. Due to the external motion, a time-series of forces and moments acting on
the investigated structure, results. Combining the training signal, which represents the system input,
with the CFD-based output, the merged data set can be employed for ROM training purposes [5].

The applied NFM-MLP-based ROM is based on a time-discrete external dynamics filtering
approach. Based on this approach, a nonlinear function F of current system inputs combined
with previous, time-delayed system inputs and outputs can be defined for the representation of
the underlying dynamic system [5]. For the representation of the unknown function F, the NFM and
MLP neural network are arranged in a series connection. An illustration of the connected ROM is
given in Figure 1.

Figure 1. Illustration of the combined recurrent local linear neuro-fuzzy model and multilayer
perceptron neural network [12].

The training of the nonlinear system identification approach is basically composed of three main
steps, which are briefly discussed in the following. In the first stage of the NFM-MLP training, the NFM
is independently trained by means of the local linear model tree (LOLIMOT) algorithm [25]. A local
linear neuro-fuzzy model including N local linear sub-models can be expressed as follows:

ŷ =
N

∑
i=1

[wi0 + wT
i · (x− ci)] · ψi(x, ci, Σi) (1)

with ŷ defining the scalar output of the NFM related to the input vector x. The model parameters of
the ith LLM are given by the respective weights (wi0, wi), the centers ci and basis function widths Σi.
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Further, ψi is defined as a fuzzy membership function composed of Gaussians based on the Euclidean
distance between the input vector and the center ci of the ith neuron. [12] Each LLM is connected to
a single membership function. Based on the LOLIMOT algorithm, the structure and the parameters
of the NFM are optimized. In particular, the structure optimization is accomplished by defining a
sufficient number of LLM and neurons. The LOLIMOT training procedure can be divided in five steps,
which are briefly introduced in the following.

1. Model Initialization: As a first step, a global linear model (ψ1 = 1, N = 1) is calculated by
estimating the NFM weights (wi0, wi) by means of a local linear least-squares algorithm [25].
Therefore, the available CFD training data set is applied.

2. LLM error estimation: Within the next step, the worst performing local linear model is
located by means of a locally-defined loss function, which is evaluated for all available models
(i = 1, .., N). The LLM yielding the highest prediction error is selected for the subsequent
splitting procedure [12]. If only the global model is available, it is automatically chosen for
further refinement.

3. LLM refinement: The LLM which shows the lowest performance is divided into two models using
an axis-orthogonal split [25]. For each resulting model, the centers (ci), widths (σ) and weights
(wi0, wi) must be re-computed. The centers are defined as the centers of the corresponding jth
hyperrectangle, while the widths are determined by defining the input space extension of the
LLM scaled by a factor kσ [12]. According to Nelles [25], kσ is chosen as 1/3. The linear weights
are determined by the application of the local weighted least-squares optimization.

4. Error evaluation: In order to evaluate the best splitting configuration, a loss function is applied.
Therefore, in contrast to the weight estimation procedure in training step one, the available
validation data set is applied. Based on the error evaluation, the partition-setup yielding the
lowest error is chosen for the last training step.

5. Termination: The aforementioned training steps are repeated until the relative change of the error
as calculated in the previous step becomes smaller than a user-defined value. As an alternative,
the splitting process can be terminated by defining a maximum number of LLMs [12].

Considering time-series prediction tasks, the NFM input vector x is defined based on
(time-delayed) inputs (q(k),...,q(k−m)) and outputs y, whereat the latter are used for initial parameter
estimation. Therefore, no iterative feedback is performed within the training process of the NFM.

Within the second step of the NFM-MLP training, a NFM simulation is performed based on the
available training data set. Therefore, within each considered time step the NFM is applied in order to
obtain the next prediction output. By means of the input vector x, the output of the NFM ŷ is processed
in a recurrent manner. Based on the training and simulation step, two output data sets containing the
original training response and a multi-step ahead time-series prediction are available for the following
application [12].

The last step of the overall NFM-MLP training process includes the individual training of the
MLP neural network. A MLP network with a single hidden layer composed of M neurons can be
expressed as follows:

ỹ =
M

∑
i=0

giφi(
q

∑
k=0

Gikvk), v0 = 1 (2)

In Equation (2), ỹ is denoted as the output of the MLP network based in the input vector v.
Considering the serial connected ROM, the input vector of the MLP network is obtained by combining
the (time-delayed) inputs and the (time-delayed) outputs of the NFM. Since the complete output
of the NFM is already available, the information of the current considered time step (k) ŷ(k) is
summarized in the MLP input vector. Therefore, the corresponding MLP output includes only
known information. The respective linear and nonlinear weights (gi and Gi) of the MLP network
are initialized using the Nguyen-Widrow method and are optimized by means of a backpropagation



Aerospace 2020, 7, 162 5 of 17

approach combined with a Levenberg-Marquardt optimization algorithm. Due to the serial model
structure, a dynamically stable response is guaranteed, since the MLP output ỹ is not processed in
a recurrent manner. Therefore, the MLP can be considered as a nonlinear correction of the NFM
output [12].

With respect to the application case described in Section 3.1, the system input q of the combined
NFM-MLP ROM is defined by the aileron deflection angle δ, whereas the aerodynamic force acting
on the aileron, represented by the hinge moment coefficient CMH , defines the system output ỹ.
Therefore, the system identification approach for the representation of the predicted hinge moment
coefficient C̃MH can be written as follows, with k being defined as the current considered discrete time
step (tk+1 = tk + ∆k):

C̃MH (k) = F






δk
δk−1

...
δk−m

 ,


CMH ,k−1
CMH ,k−2

...
CMH ,k−n



 (3)

In Equation (3), m ∈ N and n ∈ N refer to the maximum dynamic delay-orders for the respective
input and output quantities. In order to avoid stability issues, the maximum output delay should be
chosen larger or equal to the maximum input delay [5].

3. Structural and Numerical Setup

3.1. Structural Model

In order to investigate the performance of the NFM-MLP-based ROM concerning the prediction
of aileron buzz aerodynamics, the aforementioned system identification procedure is applied to the
NACA651213 airfoil with an integrated aileron. The aeroelastic model in the present work represents
the coupling between the structural degree of freedom of the aileron, defined by the aileron deflection
angle δ and the aerodynamic response, given by the hinge moment MH . The structural model is
represented by a fixed two-dimensional wing section with a reference length of cre f = 1 m. The aileron
is hinged by the three-quarter chord location (xH = 75%) and its degree of freedom is modeled as
rigid. Therefore, structural elastic and dissipative contributions are neglected in the present study.
The motion of the aileron is described by the aileron deflection angle δ(t) about the hinge point,
whose dynamics are expressed by the following one-degree of freedom equation:

IH δ̈(t) + kδ(t) = MH(t) (4)

Here, IH denotes the aileron mass moment of inertia about the hinge line and k is defined as a
spring constant. In the present study, k is assumed to be zero, since the aileron is only constrained
by the hinge point. Further, a downward deflection of the aileron is indicated by a negative δ and
vice versa.

For the aeroelastic investigation, the structural model including the aileron deflection is
implemented in ANSYS Fluent by means of a local mesh deformation mechanism. In particular,
the deformation is accomplished by building up the airfoil shape by overlaying the thickness
distribution of the airfoil with a parametrically defined camber line yc according to [26]. The camber
line associated to the aileron is defined by a third-order polynomial function, which is parameterized
in order to allow for an update of the control surface deflection and the control of its minimum and
maximum amplitude. The resulting parameterization is defined as follows:

yc =

 0 0 ≤ x ≤ xH and t < tH
−δ̇sin(2π f (t−tH)(x−xH)3

(1−xH)3 x ≥ xH and t ≥ tH
(5)
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with t and tH defining the current time and the start time of the deflection, respectively. The current
position of surface nodes on the aileron is indicated by x, whereas the deflection angle is defined by
δ. In Figure 2, the geometry of the NACA651213 airfoil with the implemented positive and negative
aileron deflection is visualized.

Figure 2. Geometry of the NACA651213 airfoil with integrated aileron deflection.

In Figure 3, the flow field including the respective aileron motion is visualized by Mach number
contour plots. Therefore, four time steps of a single buzz period TBuzz are selected.

Figure 3. Mach number contour plots showing the buzz cycle of the NACA651213 airfoil (Ma∞ = 0.82,
Re = 20.7× 106, α = −1◦, δ = ±12◦). TBuzz refers to the buzz period.

In order to verify the implemented buzz modeling approach, a numerical test case has been
conducted and compared to experimental results as obtained by Erickson [27]. Therefore, the buzz
flow conditions has been defined as Ma∞ = 0.82, Re = 20.7× 106 and α = −1◦ with a minimum and
maximum deflection angle of δmin,max = ±9◦. In Figure 4, a comparison between the experimental and
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numerical results in terms of a variation of the local shock position with varying deflection angle is
visualized for a single aileron deflection period. As it can be seen, a sufficient agreement is achieved.
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Figure 4. Comparison of numerical and experimental results in terms of varying aileron angle and
shock position with time (NACA651213 airfoil, Ma∞ = 0.8, Re = 20.7× 106, α = −1◦, δ = ±9◦).

3.2. CFD-Solver

In order to account for viscous effects and boundary layer interaction, an URANS approach is
selected in the present study. The simulations capturing the buzz phenomenon are performed using
ANSYS Fluent. Both the training and validation data time-series of the integral aerodynamic quantities
are computed using the same CFD setup. ANSYS Fluent solves the URANS equations in conservation
form using a shock-capturing finite-volume method. The temporal integration is performed using a
first order implicit dual-time stepping approach, while the spatial discretization is achieved using a
Roe flux-difference splitting (FDS) scheme. The reconstruction of the gradients is accomplished by
means of a least squares cell-based scheme. In order to account for efficient turbulence modeling,
the standard Spalart-Allmaras turbulence model is applied. The mesh deformation for the respective
aileron motion of the NACA651213 test case is implemented by means of a dynamic mesh deformation,
which is defined by a user defined function.

4. Application

4.1. Training Data Generation

For an efficient training of the ROM, an amplitude-modulated pseudo-random binary signal
(APRBS) [12] is selected for the excitation of the aileron structure. The signal used in the present work
is shown in Figure 5. For the following application, the minimum and maximum amplitude (δ) of the
signal are chosen as δ = ±12◦. According to a study proposed by Steger and Bailey [4], aileron buzz of
the NACA651213 airfoil appears between a minimum and maximum aileron deflection amplitude of
δmin = −12◦ and δmax = +9◦, respectively. Therefore, the selected training signal covers the amplitude
range of interest. Further, according to Steger and Bailey [4], aileron buzz of the NACA651213 airfoil is
characterized by varying freestream conditions. Therefore, in the present study three different flow
conditions are considered, defined by a freestream Mach number of Ma∞ = [0.8, 0.82, 0.83], a Reynolds
number of Re = 20.7× 106 and an angle of attack of α = −1◦. For the first and third condition the
initial aileron deflection is constrained to δstart = 0◦, whereas the deflection of the second condition is
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defined by δstart = 4◦. Further, the corresponding reduced frequencies of the selected buzz conditions
are summarized in Table 1:

Table 1. Corresponding reduced frequencies kred,Buzz of selected buzz conditions.

Ma∞ 0.8 0.82 0.83

kred,Buzz 0.67 0.76 0.79

For the training of the ROM the flow condition defined by Ma∞ = 0.82, Re = 20.7 × 106,
α = −1◦ and δstart = 0◦ is selected, whereas the remaining conditions are used for the subsequent
application process.
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Figure 5. Time series of the training signal (APRBS) for the excitation of the ailerons structural degree
of freedom.

The hybrid computational grid for the viscid aerodynamic and aeroelastic investigations was
built using ICEM CFD. The grid is composed of structured cells around the airfoil surface and in the
farfield, while the cells around the aileron are unstructured in order to allow for the implementation
of large grid deformations. In order to guarantee a solution that is independent from the spatial
resolution, a grid sensitivity study was conducted based on the steady state computation (Ma∞ = 0.8,
Re = 20.7× 106, α = 0◦, δstart = 0◦) of CMH (see Figure 6).
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Figure 6. Grid convergence study with regard to the hinge moment coefficient CMH (NACA651213
airfoil, Ma∞ = 0.8, Re = 20.7× 106, α = 0◦, δ = 0◦).
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In this regard, in total four grids with the respective halved and doubled number of elements have
been investigated. Since the relative error between the grids containing 12.48× 105 and 24.96× 105

elements is given as 0.65% with respect to CMH , the grid with 12.48× 105 was chosen to be adequate
for the following study. Based on a subsequent convergence study, the nondimensional time step for
the simulations has been defined as ∆τ = 0.135, corresponding to a physical time step of ∆t = 0.0005 s.

4.2. Nonlinear System Identification

Based on the computed input and output CFD data set, the NFM-MLP-based ROM is trained
according to the workflow discussed in Section 2. Therefore, several hyperparameters are defined
for the NFM-MLP ROM. The number of neurons for the MLP network containing two hidden layers
has been chosen as [5, 2] for the respective first and second hidden layer. Based on the LOLIMOT
algorithm, the splitting procedure of the local linear models (LLMs) is terminated using an error
threshold of 1%, resulting in a maximum number of 20 LLMs. The maximum dynamic delay orders
(m, n) for the input and output quantities are defined by applying the Lipschitz index as proposed by
He and Asada [28]. In the present study, the iteration process for both delays is terminated due to a
relative change of the Lipschitz index over one iteration of 1%. Based on this approach, both m and n
are defined as 150.

In the present study, the available data set is segmented prior to the training procedure.
Therefore, 70% of the data are randomly chosen and used for the estimation of initial parameters,
whereas the remaining data is exploited for validation purposes in order to guarantee an accurate
model. In order to circumvent statistical errors originating from this random segmentation procedure,
a Monte Carlo-based training method is applied [12]. Therefore, the training of the NFM-MLP ROM
is performed by means of NMC = 10 Monte Carlo iterations. In the present work, the mean ȳ as well
as the standard deviation σ are considered in order to analyze the data obtained by the Monte Carlo
procedure. In order to guarantee a clear illustration of the results, all following diagrams only include
the mean response of all parallel trained NFM-MLP ROMs.

4.2.1. Aerodynamic System Identification

In a first step, the NFM-MLP ROM is applied for an aerodynamic investigation, without
considering any structural characteristics (IH = 0). Therefore, the flow condition is defined as
the training condition (Ma∞ = 0.82, Re = 20.7× 106, α = −1◦ and δstart = 0◦) with a minimum
and maximum deflection amplitude of δmin = −12◦ and δmax = +9◦, respectively. However, prior to
the aerodynamic application, the ROM is evaluated based on the training data itself by performing
multi-step ahead predictions. In Figure 7 the resulting hinge moment coefficient trend due to the
excitation as computed by the ROM compared to the CFD reference solution, is shown.

For error evaluation purposes, the fit factor Qi [12,29] is introduced in Equation (6).
Therefore, Qi is computed by defining the mean ROM response as the model output ỹ. A computed fit
factor of 100% indicates an exact agreement of the CFD and ROM results. The resulting fit factor for
the multi-step ahead prediction of the hinge moment coefficient is calculated as Q(CMH ) = 92.4%.

Qi = 100% ·
1−

√
∑Ns

s=1(yi(s)− ỹi(s))2√
∑Ns

s=1(yi(s)− ȳi(s))2

 (6)
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Figure 7. Hinge moment coefficient response caused by the APRBS excitation (NACA651213 airfoil,
Ma∞ = 0.82, Re = 20.7× 106, α = −1◦, δ = ±12◦). Besides the CFD reference solution, the simulation
result of the NFM-MLP ROM is shown.

Subsequent, the ROMs performance is investigated by means of harmonic pitch oscillations of the
aileron. Therefore, varying reduced excitation frequencies are considered (kred,Ex = [0.5, 0.6, 0.7, 0.8]),
which also include the reduced frequencies of the selected buzz cases (see Table 1).
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Figure 8. Responses of the hinge moment coefficient resulting from harmonic aileron pitching motion
with kred,Ex = [0.5, 0.6, 0.7, 0.8]. The results of the NFM-MLP ROM are compared to the reference CFD
solution (NACA651213 airfoil, Ma∞ = 0.82, Re = 20.7× 106, α = −1◦, δmin,max = −12/+9◦).



Aerospace 2020, 7, 162 11 of 17

The reference full-order CFD computations are employed using the aforementioned ANSYS
Fluent setup. In order to ensure a solution without any transient influence, several excitation periods
have been computed with both the CFD solver and the ROMs for each reduced frequency. Analog to
the previous study, the Monte Carlo procedure is applied in order to obtain the results presented below.
Therefore, as mentioned in the previous section, all following diagrams show the mean response
of the NFM-MLP ROMs. In Figure 8, a comparison of the ROM and the reference CFD results are
demonstrated for each considered reduced frequency. In addition, frequency domain responses using
a Fast-Fourier-Transformation (FFT) are visualized in Figure 9 for the selected excitation frequencies.
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Figure 9. Frequency domain responses of the hinge moment coefficient resulting from harmonic
aileron pitching motion with kred,Ex = [0.5, 0.6, 0.7, 0.8]. The results of the NFM-MLP ROM are
compared to the reference CFD solution (NACA651213 airfoil, Ma∞ = 0.82, Re = 20.7× 106, α = −1◦,
δmin,max = −12/+9◦).

As shown, the trained model is clearly able to reproduce the resulting hinge moment coefficient
of the test cases. Considering the fit factors summarized in Table 2, the high prediction capability
is emphasized.

Table 2. Evaluation of fit factors for the application of harmonic aileron motions.

kred,Ex 0.5 0.6 0.7 0.8

Q(CMH ) 91.37% 92.89% 92.45% 91.06%
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4.2.2. Aeroelastic System Identification

Subsequent to the aerodynamic investigation, the ROM is employed for a coupled aeroelastic
investigation. Therefore, according to [30], the aileron moment of inertia is defined as IH = 0.554.
In the first step, the system identification is applied in order to represent a stable aeroelastic response.
Therefore, according to Fusi [31], the selected flow condition is defined by a free stream Mach
number of Ma∞ = 0.8, a Reynolds number of Re = 106 and an angle of attack of α = 0◦.
The recorded output of the CFD simulation and the computation of the ROMs are visualized in
Figure 10. The corresponding fit factor is calculated as Q(CMH ) = 94.78%, which emphasizes a good
correlation of both simulation results.
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Figure 10. Stable aeroelastic response of the hinge moment coefficient (NACA651213 airfoil, Ma∞ = 0.8,
Re = 106, α = 0◦). The result of the NFM-MLP ROM is compared to the reference CFD solution.

In a second step, the prediction capability of the ROM is employed at the selected buzz conditions
as described in Section 4.1. For the investigation, the CFD-based aeroelastic response and the ROM
output are compared in terms of aileron deflection angle and hinge moment coefficient. The first
considered condition is defined as the training condition, however the initial aileron deflection angle is
set to δstart = 4◦.
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Figure 11. Responses of the resulting aileron deflection angle and hinge moment coefficient at a selected
buzz condition (NACA651213 airfoil, Ma∞ = 0.82, Re = 20.7× 106, α = −1◦, δstart = −4◦). The results
of the NFM-MLP ROM are compared to the reference CFD solution.
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A comparison of the CFD and ROM results is visualized in Figure 11. As it can be seen, a slight
discrepancy is indicated for the first deflection periods, however, after the first time steps an accurate
agreement is visible. Considering the corresponding fit factor (see Table 3), a high prediction capability
is emphasized.

Subsequent, the trained ROM is applied towards the remaining considered buzz cases in order to
investigate the performance regarding varying Mach numbers which are not included in the training
range. In Figure 12, the CFD and ROM result for Ma∞ = 0.83, Re = 20.7× 106, α =−1◦ and δstart = 0◦ are
visualized. Compared to the test case included in the training range, a larger disagreement between the
CFD and ROM result is visible for the initial deflection periods. However, with proceeding simulation
time, a high agreement is clearly indicated, which is also emphasized by the corresponding fit factor.
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Figure 12. Responses of the resulting aileron deflection angle and hinge moment coefficient at a selected
buzz condition (NACA651213 airfoil, Ma∞ = 0.83, Re = 20.7× 106, α = −1◦, δstart = 0◦). The results of
the NFM-MLP ROM are compared to the reference CFD solution.

For the third test case condition, also a slight discrepancy is indicated for the first deflection
periods, while the compliance of the CFD and ROM results improves after the initial deflection periods
(see Figure 13). However, in comparison to the other test cases, a higher disagreement is indicated by
the corresponding fit factors. This issue might result from the selected Mach number, which deviates
more from the training condition (Ma∞ = 0.82) than the test case with Ma∞ = 0.83. However, based on
the results it is clearly visible that the NFM-MLP ROM is able to reproduce buzz conditions defined by
varying freestream parameters, which are not included in the training data, with sufficient accuracy.

Table 3. Evaluation of fit factors for the aeroelastic investigation (Re = 20.7× 106, α = −1◦).

Ma∞ 0.8 0.82 0.83

Qi(δ) 84.37% 90.89% 88.47%

Qi(CMH ) 85.12% 89.05 % 88.83%
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Figure 13. Responses of the resulting aileron deflection angle and hinge moment coefficient at a buzz
condition with time decay (NACA651213 airfoil, Ma∞ = 0.8, Re = 20.7× 106, α = −1◦, δstart = 0◦).
The results of the NFM-MLP ROM are compared to the reference CFD solution.

5. Computational Effort

All computations presented in this study have been performed on a workstation using a single
Intel Xeon 2.2 GHz processor. The CFD computations have been conducted using sixteen cores, whereas
the ROM results have been obtained using a single core. The computation of the APRBS forced-motion
CFD simulation for the generation of the training data set required approximately 1150 CPU hours.
In contrast to that, the training of the NFM-MLP ROM including the Monte-Carlo-based training
procedure was performed within two CPU hours. Thus, the overall computational effort for obtaining
the ROM training results is summed up to approximately 1152 CPU hours. Consequently, only the
unsteady CFD simulations of the training signal have a noteworthy contribution to the overall ROM
training process.

Due to the dependency of the oscillation period on kred,Ex, a different number of
computed time steps result for each of the harmonic motions with varying reduced frequencies
(kred,Ex = [0.5, 0.6, 0.7, 0.8]). Therefore, an averaged computation time of 48 CPU hours with ANSYS
Fluent is assumed for each simulation. Considering the number of applied cores, a total computational
time of 3072 CPU hours result. In addition, the computation of the coupled aeroelastic simulations for
each of the considered buzz test cases was carried out within approximately 36 CPU hours, resulting in
a total computational effort of 1728 CPU hours.

In contrast, the computation of the NFM-MLP ROM required on average two hours regarding
each harmonic aileron motion, resulting in a total computation time of 8 CPU hours. For the aeroelastic
simulations approximately 2.5 CPU hours were needed, yielding a total computation time of 10 CPU
hours. Therefore, in the present study a reduction of computational time for the aerodynamic and
aeroelastic investigations by a factor of 240 and 57.6 was achieved, considering the number of test
cases and the APRBS training effort. Regarding the application of the ROM itself without taking the
training effort into account, a reduction of computational time by two orders of magnitude is achieved.

6. Conclusions

In the present study, an identification-based reduced-order modeling approach based on a
recurrent neuro-fuzzy model (NFM) that is serially connected with a multilayer perceptron (MLP)
neural network has been applied to predict aerodynamic and aeroelastic characteristics associated to
non-classical aileron buzz. Therefore, suitable training and validation data sets with respect to various
flow conditions were provided based on the NACA651213 airfoil test case. The structural model is
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represented by a fixed two-dimensional airfoil geometry with an integrated, rigid aileron. A one-degree
of freedom aeroelastic model is implemented in the solver, which allows for an appropriate aeroelastic
coupling for the representation of non-classical aileron buzz.

The trained ROM was applied for an aerodynamic and subsequent aeroelastic investigation.
In particular, the aim of this study was the efficient prediction of the aileron deflection angle and the
corresponding response, defined by the hinge moment coefficient. Based on the results it was indicated
that the ROM is able to reproduce the motion-induced characteristics with sufficient accuracy. Further,
buzz test conditions outside the training range have been predicted by the ROM with a high degree of
accuracy. Besides, a reduction in computational time by a factor of 240 and 57.6 for the aerodynamic
and aeroelastic investigations, respectively, was achieved. Regarding the ROM application itself
without considering the training effort, computational time was reduced by a at least two orders of
magnitude for the aerodynamic and aeroelastic simulations.
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Nomenclature

α angle of attack, deg
δ aileron deflection angle, deg
Σi basis function widths of LLM
σ standard deviation
τ nondimensional time
ψi fuzzy membership function
ω angular frequency, 1/s
ci centers of LLM
CMH hinge moment coefficient
cre f reference chord length, m
F nonlinear function mapping
gi linear weights of the MLP neural network
Gi nonlinear weights of the MLP neural network
IH moment of inertia, kgm2

k discrete time step
k spring constant
kred 2π f · cre f /U∞, reduced frequency
kσ space extension factor of LLM
m dynamic delay order of NFM-MLP input vector
M number of neurons of MLP neural network
Ma∞ freestream Mach number
MH hinge moment, N/m
n dynamic delay order of NFM-MLP output
N number of LLM
NMC number of Monte Carlo iterations
Ns number of training samples
q input of NFM
Qi fit factor
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Re Reynolds number
t time, s
tH start time of deflection, s
U∞ freestream velocity, m/s
v input vector of MLP
wi weights of LLM
x input vector of NFM
x position of points on aileron surface
xH position of hinge point, %
ŷ scalar output of the NFM
ȳ mean deviation
ỳ mean ROM output
ỹ scalar output of NFM
yc camber line
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