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The interaction between hyperons and nucleons has a wide range of applications in

strangeness nuclear physics and is a topic of continuing great interest. These interactions

are not only important for hyperon-nucleon scattering but also essential as basic input

to studies of hyperon-nuclear few- and many-body systems including hypernuclei and

neutron star matter. We review the systematic derivation and construction of such

baryonic forces from the symmetries of quantum chromodynamics within non-relativistic

SU(3) chiral effective field theory. Several applications of the resulting potentials are

presented for topics of current interest in strangeness nuclear physics.
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1. INTRODUCTION

Strangeness nuclear physics is an important topic of ongoing research, addressing for example
scattering of baryons including strangeness, properties of hypernuclei, or strangeness in infinite
nuclear matter and in neutron star matter. The theoretical foundation for such investigations are
interaction potentials between nucleons and strange baryons such as the 3 hyperon.

Nuclear many-body systems are (mainly) governed by the strong interaction, described at the
fundamental level by quantum chromodynamics (QCD). The elementary degrees of freedom of
QCD are quarks and gluons. However, in the low-energy regime of QCD quarks and gluons are
confined into colorless hadrons. This is the region where (hyper-)nuclear systems are formed. In
this region QCD cannot be solved in a perturbative way. Lattice QCD is approaching this problem
via large-scale numerical simulations: the (Euclidean) space-time is discretized and QCD is solved
on a finite grid [1–4]. Since the seminal work of Weinberg [5, 6] chiral effective field theory (χEFT)
has become a powerful tool for calculating systematically the strong interaction dynamics for low-
energy hadronic processes [7–9]. Chiral EFT employs the same symmetries and symmetry breaking
patterns at low-energies as QCD, but it uses the proper degrees of freedom, namely hadrons instead
of quarks and gluons. In combination with an appropriate expansion in small external momenta,
the results can be improved systematically, by going to higher order in the power counting, and
at the same time theoretical errors can be estimated. Furthermore, two- and three-baryon forces
can be constructed in a consistent fashion. The unresolved short-distance dynamics is encoded in
χEFT in contact terms, with a priori unknown low-energy constants (LECs).

The NN interaction is empirically known to very high precision. Corresponding two-nucleon
potentials have been derived to high accuracy in phenomenological approaches [10–12]. Nowadays
the systematic theory to construct nuclear forces is χEFT [13, 14]. (Note however that there are still
debates about the Weinberg power counting schemes and how it is employed in practice [15–17]).
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In contrast, the YN interaction is presently not known in such
detail. The scarce experimental data (about 35 data points for
low-energy total cross sections) do not allow for a unique
determination of the hyperon-nucleon interaction. The limited
accuracy of the YN scattering data does not permit a unique
phase shift analysis. However, at experimental facilities such as J-
PARC in Japan or later at FAIR in Germany, a significant amount
of beam time will be devoted to strangeness nuclear physics.
Various phenomenological approaches have been employed
to describe the YN interaction, in particular boson-exchange
models [18–23] or quark models [24–26]. However, given
the poor experimental data base, these interactions differ
considerably from each other. Obviously there is a need for a
more systematic investigation based on the underlying theory
of the strong interaction, QCD. Some aspects of YN scattering
and hyperon mass shifts in nuclear matter using EFT methods
have been covered in Savage and Wise [27] and Korpa et al.
[28]. The YN interaction has been investigated at leading
order (LO) in SU(3) χEFT [29–31] by extending the very
successful χEFT framework for the nucleonic sector [13, 14]
to the strangeness sector. This work has been extended to
next-to-leading order (NLO) in Petschauer and Kaiser [32],
Haidenbauer et al. [33, 34] where an excellent description of
the strangeness −1 sector has been achieved, comparable to
most advanced phenomenological hyperon-nucleon interaction
models. An extension to systems with more strangeness has
been done in Haidenbauer et al. [35, 36] and Haidenbauer and
Meißner [37]. Systems including decuplet baryons have been
investigated in Haidenbauer et al. [38] at leading order in non-
relativistic χEFT. Recently calculations within leading order
covariant χEFT have been performed for YN interactions in
the strangeness sector [39–43] with comparable results (see also
[44]). It is worth to briefly discuss the differences between the
covariant and the heavy-baryon approach. In the latter, due to the
expansion in the inverse of the baryon masses, some terms are
relegated to higher orders. Also, it can happen that the analytic
structure is distorted in the strict heavy-baryon limit. This can
easily be remedied by including the kinetic energy term in the
baryon propagator [45]. In what follows, we will present results
based on the heavy-baryon approach.

Numerous advanced few- and many-body techniques have
been developed to employ such phenomenological or chiral
interactions, in order to calculate the properties of nuclear
systems with and without strangeness. For example, systems
with three or four particles can be reliably treated by Faddeev-
Yakubovsky theory [46–49], somewhat heavier (hyper)nuclei
with approaches like the no-core-shell model [50–55]. In the
nucleonic sector many-body approaches such as Quantum
Monte Carlo calculations [56–58], or nuclear lattice simulations
[59–61] have been successfully applied and can be extended
to the strangeness sector. Furthermore, nuclear matter is
well described by many-body perturbation theory with chiral
low-momentum interactions [62–64]. Concerning 3 and 6

hyperons in nuclear matter, specific long-range processes
related to two-pion exchange between hyperons and nucleons
in the nuclear medium have been studied in Kaiser and
Weise [65] and Kaiser [66]. Conventional Brueckner theory

[67–69] at first order in the hole-line expansion, the so-called
Bruecker-Hartree-Fock approximation, has been widely applied
to calculations of hypernuclear matter [20, 24, 70, 71] employing
phenomenological two-body potentials. This approach is also
used in investigations of neutron star matter [72–74]. Recently,
corresponding calculations of the properties of hyperons in
nuclear matter have been also performed with chiral YN
interaction potentials [37, 75, 76].

Employing the high precision NN interactions described
above, even “simple” nuclear systems such as triton cannot
be described satisfactorily with two-body interactions alone.
The introduction of three-nucleon forces (3NF) substantially
improves this situation [77–80] and also in the context of infinite
nuclear matter 3NF are essential to achieve saturation of nuclear
matter. These 3NF are introduced either phenomenologically,
such as the families of Tuscon-Melbourne [81, 82], Brazilian
[83], or Urbana-Illinois [84, 85] 3NF, or constructed according
to the basic principles of χEFT [78, 86–94]. Within an EFT
approach, 3NF arise naturally and consistently together with
two-nucleon forces. Chiral three-nucleon forces are important
in order to get saturation of nuclear matter from chiral
low-momentum two-body interactions treated in many-body
perturbation theory [63]. In the strangeness sectors the situation
is similar: Three-baryon forces (3BF), especially the 3NN
interaction, seem to be important for a satisfactorily description
of hypernuclei and hypernuclear matter [58, 95–103]. Especially
in the context of neutron stars, 3BF are frequently discussed.
The observation of two-solar-mass neutron stars [104, 105] sets
strong constraints on the stiffness of the equation-of-state (EoS)
of dense baryonic matter [106–110]. The analysis of recently
observed gravitational wave signals from a two merging neutron
stars [111, 112] provides further conditions, by constraining the
tidal deformability of neutron star matter.

A naive introduction of 3-hyperons as an additional baryonic
degree of freedomwould soften the EoS such that it is not possible
to stabilize a two-solar-mass neutron star against gravitational
collapse [113]. To solve this so-called hyperon puzzle, several ad-
hoc mechanisms have so far been invoked, e.g., through vector
meson exchange [114, 115], multi-Pomeron exchange [116] or
a suitably adjusted repulsive 3NN three-body interaction [117–
119]. Clearly, a more systematic approach to the three-baryon
interaction within χEFT is needed, to estimate whether the 3BF
can provide the necessary repulsion and thus keep the equation-
of-state sufficiently stiff. A first step in this direction was done in
Petschauer et al. [120], where the leading 3BFs have been derived
within SU(3) χEFT. The corresponding low-energy constants
have been estimated by decuplet saturation in Petschauer et al.
[121]. The effect of these estimated 3BF has been investigated in
Petschauer et al. [121] and Kohno [122].

In this review article we present, on a basic level, the
emergence of nuclear interactions in the strangeness sector
from the perspective of (heavy-baryon) chiral effective field
theory. After a brief introduction to SU(3) χEFT in section
2, we present how the interaction between hyperons and
nucleons is derived at NLO from these basic principles for two-
baryon interactions (section 3) and for three-baryon interactions
(section 4). In section 5, applications of these potentials are briefly
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reviewed for YN scattering, infinite nuclear matter, hypernuclei,
and neutron star matter.

2. SU(3) CHIRAL EFFECTIVE FIELD
THEORY

An effective field theory (EFT) is a low-energy approximation to
a more fundamental theory. Physical quantities can be calculated
in terms of a low-energy expansion in powers of small energies
and momenta over some characteristic large scale. The basic idea
of an EFT is to include the relevant degrees of freedom explicitly,
while heavier (frozen) degrees of freedom are integrated out.
An effective Lagrangian is obtained by constructing the most
general Lagrangian including the active degrees of freedom, that
is consistent with the symmetries of the underlying fundamental
theory [6]. At a given order in the expansion, the theory is
characterized by a finite number of coupling constants, called
low-energy constants (LECs). The LECs encode the unresolved
short-distance dynamics and furthermore allow for an order-by-
order renormalization of the theory. These constants are a priori
unknown, but once determined from one experiment or from
the underlying theory, predictions for physical observables can
be made. However, due to the low-energy expansion and the
truncation of degrees of freedom, an EFT has only a limited range
of validity.

The underlying theory of chiral effective field theory is
quantum chromodynamics. QCD is characterized by two
important properties. For high energies the (running) coupling
strength of QCDbecomes weak, hence a perturbative approach in
the high-energy regime of QCD is possible. This famous feature
is called asymptotic freedom of QCD and originates from the
non-Abelian structure of QCD. However, at low energies and
momenta the coupling strength of QCD is of order one, and a
perturbative approach is no longer possible. This is the region
of non-perturbative QCD, in which we are interested in. Several
strategies to approach this regime have been developed, such
as lattice simulations, Dyson-Schwinger equations, QCD sum
rules or chiral perturbation theory. The second important feature
of QCD is the so-called color confinement: isolated quarks and
gluons are not observed in nature, but only color-singlet objects.
These color-neutral particles, the hadrons, are the active degrees
of freedom in χEFT.

But already before QCD was established, the ideas of
an effective field theory were used in the context of the
strong interaction. In the 60’s the Ward identities related to
spontaneously broken chiral symmetry were explored by using
current algebra methods (e.g., [123]). The group-theoretical
foundations for constructing phenomenological Lagrangians in
the presence of spontaneous symmetry breaking have been
developed byWeinberg [5], Coleman et al. [124], and Callan et al.
[125]. With Weinberg’s seminal paper [6] it became clear how
to systematically construct an EFT and generate loop corrections
to tree level results. This method was improved later by Gasser
and Leutwyler [7, 126]. A systematic introduction of nucleons as
degrees of freedom was done by Gasser et al. [8]. They showed
that a fully relativistic treatment of nucleons is problematic, as

the nucleon mass does not vanish in the chiral limit and thus
adds an extra scale. A solution for this problem was proposed
by Jenkins and Manohar [127] by considering baryons as heavy
static sources. This approach was further developed using a
systematic path-integral framework in Bernard et al. [128]. The
nucleon-nucleon interaction and related topics were considered
by Weinberg [86]. Nowadays χEFT is used as a powerful tool
for calculating systematically the strong interaction dynamics of
hadronic processes, such as the accurate description of nuclear
forces [13, 14].

In this section, we give a short introduction to the underlying
symmetries of QCD and their breaking pattern. The basic
concepts of χEFT are explained, especially the explicit degrees
of freedom and the connection to the symmetries of QCD.
We state in more detail how the chiral Lagrangian can be
constructed from basic principles. However, it is beyond the
scope of this work to give a detailed introduction to χEFT and
QCD. Rather we will introduce only the concepts necessary for
the derivation of hyperon-nuclear forces. We follow [9, 13, 14,
129–131] and refer the reader for more details to these references
(and references therein).

2.1. Low-Energy Quantum
Chromodynamics
Let us start the discussion with the QCD Lagrangian

LQCD =
∑

f=u,d,s,c,b,t

q̄f
(

i /D−mf

)

qf −
1

4
Gµν,aG

µν
a , (1)

with the six quark flavors f and the gluonic field-strength
tensor Gµν,a(x). The gauge covariant derivative is defined by

Dµ = 1∂µ − igAa
µ

λa
2 , where Aa

µ(x) are the gluon fields and
λa the Gell-Mann matrices. The QCD Lagrangian is symmetric
under the local color gauge symmetry, under global Lorentz
transformations, and the discrete symmetries parity, charge
conjugation, and time reversal. In the following we will introduce
the so-called chiral symmetry, an approximate global continuous
symmetry of the QCD Lagrangian. The chiral symmetry is
essential for chiral effective field theory. In view of the application
to low energies, we divide the quarks into three light quarks u, d, s
and three heavy quarks c, b, t, since the quark masses fulfill a
hierarchical ordering:

mu,md,ms ≪ 1 GeV ≤ mc,mb,mt . (2)

At energies andmomenta well below 1GeV, the heavy quarks can
be treated effectively as static. Therefore, the light quarks are the
only active degrees of freedom of QCD for the low-energy region
we are interested in. In the following we approximate the QCD
Lagrangian by using only the three light quarks. Compared to
characteristic hadronic scales, such as the nucleon mass (MN ≈
939 MeV), the light quark masses are small. Therefore, a good
starting point for our discussion of low-energy QCD are massless
quarks mu = md = ms = 0, which is referred to as the chiral
limit. The QCD Lagrangian becomes in the chiral limit

L
0
QCD =

∑

f=u,d,s

q̄f i /Dqf −
1

4
Gµν,aG

µν
a . (3)
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Now each quark field qf (x) is decomposed into its
chiral components

qf ,L = PL qf , qf ,R = PR qf . (4)

using the left- and right-handed projection operators

PL = 1

2
(1− γ5) , PR = 1

2
(1+ γ5) , (5)

with the chirality matrix γ5. These projectors are called left- and
right-handed since in the chiral limit they project the free quark

fields on helicity eigenstates, ĥ qL,R = ± qL,R, with ĥ = Eσ · Ep /
∣
∣Ep
∣
∣.

For massless free fermions helicity is equal to chirality.
Collecting the three quark-flavor fields q = (qu, qd, qs) and

equivalently for the left and right handed components, we can
express the QCD Lagrangian in the chiral limit as

L
0
QCD = q̄Ri /DqR + q̄Li /DqL −

1

4
Gµν,aG

µν
a . (6)

Obviously the right- and left-handed components of the massless
quarks are separated. The Lagrangian is invariant under a
global transformation

qL → L qL , qR → R qR , (7)

with independent unitary 3 × 3 matrices L and R acting in
flavor space. This means that L

0
QCD possesses (at the classical,

unquantized level) a global U(3)L×U(3)R symmetry, isomorphic
to a global SU(3)L×U(1)L×SU(3)R×U(1)R symmetry.U(1)L×
U(1)R are often rewritten into a vector and an axial-vector part
U(1)V × U(1)A, named after the transformation behavior of the
corresponding conserved currents under parity transformation.
The flavor-singlet vector current originates from rotations of
the left- and right-handed quark fields with the same phase
(“V = L + R ”) and the corresponding conserved charge is
the baryon number. After quantization, the conservation of the
flavor-singlet axial vector current, with transformations of left-
an right-handed quark fields with opposite phase (“A = L−R ”),
gets broken due to the so-called Adler-Bell-Jackiw anomaly [132,
133]. The symmetry group SU(3)L × SU(3)R refers to the chiral
symmetry. Similarly the conserved currents can be rewritten into
flavor-octet vector and flavor-octet axial-vector currents, where
the vector currents correspond to the diagonal subgroup SU(3)V
of SU(3)L × SU(3)R with L = R.

After the introduction of small non-vanishing quark masses,
the quark mass term of the QCD Lagrangian Equation (1) can be
expressed as

LM = −q̄Mq = −
(

q̄RMqL + q̄LMqR
)

, (8)

with the diagonal quark mass matrix M = diag(mu,md,ms).
Left- and right-handed quark fields are mixed in LM and
the chiral symmetry is explicitly broken. The baryon number
is still conserved, but the flavor-octet vector and axial-vector
currents are no longer conserved. The axial-vector current is not
conserved for any small quark masses. However, the flavor-octet

vector current remains conserved, if the quark masses are equal,
mu = md = ms, referred to as the (flavor) SU(3) limit.

Another crucial aspect of QCD is the so-called spontaneous
chiral symmetry breaking. The chiral symmetry of the Lagrangian
is not a symmetry of the ground state of the system, the
QCD vacuum. The structure of the hadron spectrum allows
to conclude that the chiral symmetry SU(3)L × SU(3)R is
spontaneously broken to its vectorial subgroup SU(3)V, the so-
called Nambu-Goldstone realization of the chiral symmetry. The
spontaneous breaking of chiral symmetry can be characterized
by a non-vanishing chiral quark condensate 〈q̄q〉 6= 0,
i.e., the vacuum involves strong correlations of scalar quark-
antiquark pairs.

The eight Goldstone bosons corresponding to the
spontaneous symmetry breaking of the chiral symmetry are
identified with the eight lightest hadrons, the pseudoscalar
mesons (π±,π0,K±,K0, K̄0, η). They are pseudoscalar particles,
due to the parity transformation behavior of the flavor-octet
axial-vector currents. The explicit chiral symmetry breaking due
to non-vanishing quark masses leads to non-zero masses of the
pseudoscalar mesons. However, there is a substantial mass gap,
between the masses of the pseudoscalar mesons and the lightest
hadrons of the remaining hadronic spectrum. For non-vanishing
but equal quark masses, SU(3)V remains a symmetry of the
ground state. In this context SU(3)V is often called the flavor
group SU(3), which provides the basis for the classification of
low-lying hadrons in multiplets. In the following we will consider
the so-called isospin symmetric limit, with mu = md 6= ms. The
remaining symmetry is the SU(2) isospin symmetry. An essential
feature of low-energy QCD is, that the pseudoscalar mesons
interact weakly at low energies. This is a direct consequence
of their Goldstone-boson nature. This feature allows for the
construction of a low-energy effective field theory enabling a
systematic expansion in small momenta and quark masses.

Let us introduce onemore tool for the systematic development
of χEFT called the external-field method. The chiral symmetry
gives rise to so-called chiral Ward identities: relations between
the divergence of Green functions that include a symmetry
current (vector or axial-vector currents) to linear combinations
of Green functions. Even if the symmetry is explicitly broken,
Ward identities related to the symmetry breaking term exist. The
chiral Ward identities do not rely on perturbation theory, but are
also valid in the non-perturbative region of QCD. The external-
field method is an elegant way to formally combine all chiral
Ward identities in terms of invariance properties of a generating
functional. Following the procedure of Gasser and Leutwyler
[7, 126] we introduce (color neutral) external fields, s(x), p(x),
vµ(x), aµ(x), of the form of Hermitian 3 × 3 matrices that
couple to scalar, pseudoscalar, vector, and axial-vector currents
of quarks:

L = L
0
QCD + Lext

= L
0
QCD + q̄γ µ(vµ + γ5aµ)q− q̄(s− iγ5p)q . (9)

All chiral Ward identities are encoded in the corresponding
generating functional, if the global chiral symmetry SU(3)L ×
SU(3)R of L

0
QCD is promoted to a local gauge symmetry of
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TABLE 1 | Transformation properties of the external fields under parity and charge

conjugation.

vµ aµ s p

P Pµ
ν v

ν - Pµ
νa

ν s -p

C -vµ⊤ aµ⊤ s⊤ p⊤

For P a change of the spatial arguments (t, Ex ) → (t,−Ex ) is implied and we defined the

matrix P
µ
ν = diag(+1,−1,−1,−1).

L [134]. Since L
0
QCD is only invariant under the global

chiral symmetry, the external fields have to fulfill a suitable
transformation behavior:

vµ + aµ → R(vµ + aµ)R
† + iR∂µR

† ,

vµ − aµ → L(vµ − aµ)L
† + i L∂µL

† ,

s+ i p → R
(

s+ i p
)

L† ,

s− i p → L
(

s− i p
)

R† , (10)

where L(x) and R(x) are (independent) space-time-dependent
elements of SU(3)L and SU(3)R.

Furthermore, we still require the full Lagrangian L to be
invariant under P, C, and T. As the transformation properties of
the quarks are well-known, the transformation behavior of the
external fields can be determined and is displayed in Table 1.
Time reversal symmetry is not considered explicitly, since it is
automatically fulfilled due to the CPT theorem.

Another central aspect of the external-field method is the
addition of terms to the three-flavor QCD Lagrangian in the
chiral limit, L

0
QCD. Non-vanishing current quark masses and

therefore the explicit breaking of chiral symmetry can be included
by setting the scalar field equal to the quark mass matrix, s(x) =
M = diag (mu,md,ms). Similarly electroweak interactions can be
introduced through appropriate external vector and axial vector
fields. This feature is important, to systematically include explicit
chiral symmetry breaking or couplings to electroweak gauge
fields into the chiral effective Lagrangian.

2.2. Explicit Degrees of Freedom
In the low-energy regime of QCD, hadrons are the observable
states. The active degrees of freedom of χEFT are identified as
the pseudoscalar Goldstone-boson octet. The soft scale of the
low-energy expansion is given by the small external momenta
and the small masses of the pseudo-Goldstone bosons, while the
large scale is a typical hadronic scale of about 1 GeV. The effective
Lagrangian has to fulfill the same symmetry properties as QCD:
invariance under Lorentz and parity transformations, charge
conjugation and time reversal symmetry. Especially the chiral
symmetry and its spontaneous symmetry breaking has to be
incorporated. Using the external-field method, the same external
fields v, a, s, p as in Equation (9), with the same transformation
behavior, are included in the effective Lagrangian.

As the QCD vacuum is approximately invariant under the
flavor symmetry group SU(3), one expects the hadrons to
organize themselves in multiplets of irreducible representations
of SU(3). The pseudoscalar mesons form an octet (cf. Figure 1).

FIGURE 1 | Pseudoscalar meson octet (JP = 0−), baryon octet (JP = 1/2+),
and baryon decuplet (JP = 3/2+).

The members of the octet are characterized by the strangeness
quantum number S and the third component I3 of the isospin.
The symbol η stands for the octet component (η8). As an
approximation we identify η8 with the physical η, ignoring
possible mixing with the singlet state η1. For the lowest-lying
baryons one finds an octet and a decuplet (see also Figure 1).
In the following we summarize how these explicit degrees of
freedom are included in the chiral Lagrangian in the standard
non-linear realization of chiral symmetry [124, 125].

The chiral symmetry group SU(3)L×SU(3)R is spontaneously
broken to its diagonal subgroup SU(3)V. Therefore, the
Goldstone-boson octet should transform under SU(3)L × SU(3)R
such that an irreducible 8-representation results for SU(3)V. A
convenient choice to describe the pseudoscalar mesons under
these conditions is a unitary 3 × 3 matrix U(x) in flavor space,
which fulfills

U†U = 1 , detU = 1 . (11)

The transformation behavior under chiral symmetry reads

U → RUL† , (12)

where L(x), R(x) are elements of SU(3)L,R. An explicit
parametrization of U(x) in terms of the pseudoscalar mesons is
given by

U(x) = exp
[

iφ(x)/f0
]

, (13)

with the traceless Hermitian matrix

φ(x) =
8
∑

a=1

φa(x)λa
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=






π0 + 1√
3
η

√
2π+ √

2K+
√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η




 . (14)

The constant f0 is the decay constant of the pseudoscalar
Goldstone bosons in the chiral limit. For a transformation of
the subgroup SU(3)V with L = R = V , the meson matrix U
transforms as

U → VUV† , (15)

i.e., the mesons φa(x) transform in the adjoint (irreducible)
8-representation of SU(3). The parity transformation behavior

of the pseudoscalar mesons is φa(t, Ex ) P→ −φa(t,−Ex ) or,

equivalently, U(t, Ex ) P→ U†(t,−Ex ). Under charge conjugation
the particle fields are mapped to antiparticle fields, leading to

U
C→ U⊤.
The octet baryons are described by Dirac spinor fields and

represented in a traceless 3× 3 matrix B(x) in flavor space,

B =
8
∑

a=1

Baλa√
2

=






1√
2
60 + 1√

6
3 6+ p

6− − 1√
2
60 + 1√

6
3 n

4− 40 − 2√
6
3




 . (16)

We use the convenient [135] non-linear realization of chiral
symmetry for the baryons, which lifts the well-known
flavor transformations to the chiral symmetry group. The
matrix B(x) transforms under the chiral symmetry group
SU(3)L × SU(3)R as

B → KBK† , (17)

with the SU(3)-valued compensator field

K (L,R,U) =
√

LU†R†R
√
U . (18)

Note that K (L,R,U) also depends on the meson matrix U. The
square root of the meson matrix,

u =
√
U , (19)

transforms as u →
√
RUL† = RuK† = KuL†.

For transformations under the subgroup SU(3)V the baryons
transform as an octet, i.e., the adjoint representation of SU(3):

B → VBV† . (20)

The octet-baryon fields transform under parity and charge

conjugation as Ba (t, Ex )
P→ γ

0Ba (t,−Ex ) and Bα,a
C→ Cαβ B̄β ,a

with the Dirac-spinor indices α,β , and with C = iγ2γ0.

A natural choice to represent the decuplet baryons is a totally
symmetric three-index tensor T. It transforms under the chiral
symmetry SU(3)L × SU(3)R as

Tabc → KadKbeKcfTdef , (21)

with the compensator field K(L,R,U) of Equation (18). For
an SU(3)V transformation the decuplet fields transform as an
irreducible representation of SU(3):

Tabc → VadVbeVcfTdef . (22)

The physical fields are assigned to the following components of
the totally antisymmetric tensor:

T111 = 1++ ,T112 = 1√
3
1+ ,T122 = 1√

3
10 ,T222 = 1− ,

T113 = 1√
3
6∗+ , T123 = 1√

6
6∗0 , T223 = 1√

3
6∗− ,

T133 = 1√
3
4∗0 , T233 = 1√

3
4∗− ,

T333 = �− . (23)

Since decuplet baryons are spin-3/2 particles, each component is
expressed through Rarita-Schwinger fields. Within the scope of
this article, decuplet baryons are only used for estimating LECs
via decuplet resonance saturation. In that case it is sufficient to
treat them in their non-relativistic form, where no complications
with the Rarita-Schwinger formalism arise.

Now the representation of the explicit degrees of freedom and
their transformation behavior are established. Together with the
external fields the construction of the chiral effective Lagrangian
is straightforward.

2.3. Construction of the Chiral Lagrangian
The chiral Lagrangian can be ordered according to the number of
baryon fields:

Leff = Lφ + LB + LBB + LBBB + . . . , (24)

where Lφ denotes the purely mesonic part of the Lagrangian.
Each part is organized in the number of small momenta (i.e.,
derivatives) or small meson masses, e.g.,

Lφ = L
(2)
φ + L

(4)
φ + L

(6)
φ + . . . . (25)

Lφ has been constructed to O(q6) in Fearing and Scherer [136]
and Bijnens et al. [137]. The chiral Lagrangian for the baryon-
number-one sector has been investigated in various works.
The chiral effective pion-nucleon Lagrangian of order O(q4)
has been constructed in Fettes et al. [138]. The three-flavor
Lorentz invariant chiral meson-baryon Lagrangians LB at order
O(q2) and O(q3) have been first formulated in Krause [139]
and were later completed in Oller et al. [140] and Frink and
Meißner [141]. Concerning the nucleon-nucleon contact terms,
the relativistically invariant contact Lagrangian at orderO(q2) for
two flavors (without any external fields) has been constructed in
Girlanda et al. [142]. The baryon-baryon interaction Lagrangian
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LBB has been considered up to NLO in Savage and Wise [27],
Polinder et al. [29], and Petschauer and Kaiser [32]. Furthermore
the leading three-baryon contact interaction Lagrangian LBBB

has been derived in Petschauer et al. [120].
We follow closely Petschauer and Kaiser [32] to summarize

the basic procedure for constructing systematically the three-
flavor chiral effective Lagrangian [124, 125] with the inclusion
of external fields [7, 126]. The effective chiral Lagrangian has
to fulfill all discrete and continuous symmetries of the strong
interaction. Therefore, it has to be invariant under parity (P),
charge conjugation (C), Hermitian conjugation (H), and the
proper, orthochronous Lorentz transformations. Time reversal
symmetry is then automatically fulfilled via the CPT theorem.
Especially local chiral symmetry has to be fulfilled. A common
way to construct the chiral Lagrangian is to define so-called
building blocks, from which the effective Lagrangian can be
determined as an invariant polynomial. Considering the chiral
transformation properties, a convenient choice for the building
blocks is

uµ = i
[

u† (∂µ − i rµ
)

u− u
(

∂µ − i lµ
)

u†
]

,

χ± = u†χu† ± uχ†u ,

f±µν = uf Lµνu
† ± u†f Rµνu , (26)

with the combination

χ = 2B0
(

s+ i p
)

, (27)

containing the new parameter B0 and the external scalar and
pseudoscalar fields. One defines external field strength tensors by

f Rµν = ∂µrν − ∂νrµ − i
[

rµ, rν
]

,

f Lµν = ∂µlν − ∂ν lµ − i
[

lµ, lν
]

, (28)

where the fields

rµ = vµ + aµ , lµ = vµ − aµ , (29)

describe right handed and left handed external vector fields. In
the absence of flavor singlet couplings one can assume 〈aµ〉 =
〈vµ〉 = 0, where 〈. . . 〉 denotes the flavor trace. Therefore, the
fields uµ and f±µν in Equation (26) are all traceless.

Using the transformation behavior of the pseudoscalar mesons
and octet baryons in Equations (12) and (17), and the
transformation properties of the external fields in Equation (10),
one can determine the transformation behavior of the building
blocks. All building blocks A, and therefore all products of
these, transform according to the adjoint (octet) representation
of SU(3), i.e., A → KAK†. Note that traces of products of such
building blocks are invariant under local chiral symmetry, since
K†K = 1. The chiral covariant derivative of such a building block
A is given by

DµA = ∂µA+
[

Ŵµ,A
]

, (30)

with the chiral connection

Ŵµ = 1

2

[

u† (∂µ − i rµ
)

u+ u
(

∂µ − i lµ
)

u†
]

. (31)

The covariant derivative transforms homogeneously under the
chiral group as DµA → K

(

DµA
)

K†. The chiral covariant
derivative of the baryon field B is given by Equation (30) as well.

A Lorentz-covariant power counting scheme has been
introduced by Krause [139]. Due to the large baryon mass M0

in the chiral limit, a time-derivative acting on a baryon field B
cannot be counted as small. Only baryon three-momenta are
small on typical chiral scales. This leads to the following counting
rules for baryon fields and their covariant derivatives,

B , B̄ , DµB ∼ O
(

q0
)

,
(

i /D−M0

)

B ∼ O
(

q
)

. (32)

The chiral dimension of the chiral building blocks and baryon
bilinears B̄ŴB are given in Table 2. A covariant derivative acting
on a building block (but not on B) raises the chiral dimension
by one.

A building block A transforms under parity, charge
conjugation and Hermitian conjugation as

AP = (−1)pA , AC = (−1)cA⊤ , A† = (−1)hA , (33)

with the exponents (modulo two) p, c, h ∈ {0, 1} given in
Table 2A, and ⊤ denotes the transpose of a (flavor) matrix.
A sign change of the spatial argument, (t, Ex) → (t,−Ex), is
implied in the fields in case of parity transformation P. Lorentz
indices transform with the matrix Pµ

ν = diag(+1,−1,−1,−1)
under parity transformation, e.g., (uµ)P = (−1)pPµ

νu
ν . The

transformation behavior of commutators and anticommutators
of two building blocks A1, A2 is the same as for building block
and should therefore be used instead of simple products, e.g.,

[A1,A2]
C
± = (−1)c1+c2 (A⊤

1 A
⊤
2 ± A⊤

2 A
⊤
1 )

= ±(−1)c1+c2 [A1,A2]
⊤
± . (34)

The behavior under Hermitian conjugation is the same.
The basis elements of the Dirac algebra forming the baryon

bilinears transform as

γ0Ŵγ0 = (−1)pŴŴ , C−1ŴC = (−1)cŴŴ⊤ ,

γ0Ŵ
†γ0 = (−1)hŴŴ , (35)

where the exponents pŴ , cŴ , hŴ ∈ {0, 1} can be found inTable 2B.
As before, Lorentz indices of baryon bilinears transform with the
matrix Pµ

ν under parity.
Due to the identity

[

Dµ,Dν

]

A = 1

4

[[

uµ, uν

]

,A
]

− i

2

[

f+µν ,A
]

(36)

it is sufficient to use only totally symmetrized products of
covariant derivatives, Dαβγ ...A, for any building block A (or
baryon field B). Moreover, because of the relation

Dνuµ − Dµuν = f−µν , (37)

only the symmetrized covariant derivative acting on uµ need to
be taken into account,

hµν = Dµuν + Dνuµ . (38)
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TABLE 2 | Behavior under parity, charge conjugation, and Hermitian conjugation

as well as the chiral dimensions of chiral building blocks and baryon bilinears

B̄ŴB [140].

(A) Chiral building blocks

p c h O

uµ 1 0 0 O
(

q1
)

f+µν 0 1 0 O
(

q2
)

f−µν 1 0 0 O
(

q2
)

χ+ 0 0 0 O
(

q2
)

χ− 1 0 1 O
(

q2
)

(B) Baryon bilinears B̄ŴB

Ŵ p c h O

1 0 0 0 O
(

q0
)

γ5 1 0 1 O
(

q1
)

γµ 0 1 0 O
(

q0
)

γ5γµ 1 0 0 O
(

q0
)

σµν 0 1 0 O
(

q0
)

Finally, the chiral effective Lagrangian can be constructed
by taking traces (and products of traces) of different
polynomials in the building blocks, so that they are
invariant under chiral symmetry, Lorentz transformations,
C and P.

2.3.1. Leading-Order Meson Lagrangian
As a first example, we show the leading-order purely
mesonic Lagrangian. From the general construction
principles discussed above, one obtains for the leading-order
effective Lagrangian

L
(2)
φ = f 20

4
〈uµu

µ + χ+〉 . (39)

Note that there is no contribution of order O(q0). This is
consistent with the vanishing interaction of the Goldstone bosons
in the chiral limit at zero momenta.

Before we continue with the meson-baryon interaction
Lagrangian, let us elaborate on the leading chiral Lagrangian in
the purely mesonic sector without external fields, but with non-
vanishing quark masses in the isospin limit: vµ(x) = aµ(x) =
p(x) = 0 and s(x) = M = diag (m,m,ms). Inserting the
definitions of the building blocks, Equation (39) becomes with
these restrictions:

L
(2)
φ = f 20

4
〈∂µU∂µU†〉 + 1

2
B0f

2
0 〈MU† + UM〉 . (40)

The physical decay constants fπ 6= fK 6= fη differ from the
decay constant of the pseudoscalar Goldstone bosons in the chiral
limit f0 in terms of order (m,ms): fφ = f0 {1+O (m,ms)}. The
constant B0 is related to the chiral quark condensate. Already

from this leading-order Lagrangian famous relations such as the
(reformulated) Gell-Mann–Oakes–Renner relations

m2
π = 2mB0 +O(m2

q) ,

m2
K = (m+ms)B0 +O(m2

q) ,

m2
η = 2

3
(m+ 2ms)B0 +O(m2

q) , (41)

or the Gell-Mann–Okubo mass formula, 4m2
K = 3m2

η +m2
π , can

be derived systematically.

2.3.2. Leading-Order Meson-Baryon Interaction

Lagrangian

The leading-order meson-baryon interaction Lagrangian L
(1)
B is

of orderO(q) and reads1

L
(1)
B =〈B̄

(

i /D−MB

)

B〉 + D

2
〈B̄γ

µ
γ5{uµ,B}〉

+ F

2
〈B̄γ

µ
γ5

[

uµ,B
]

〉 . (42)

The constant MB is the mass of the baryon octet in the chiral
limit. The two new constants D and F are called axial-vector
coupling constants. Their values can be obtained from semi-
leptonic hyperon decays and are roughly D ≈ 0.8 and F ≈
0.5 [143]. The sum of the two constants is related to the axial-
vector coupling constant of nucleons, gA = D + F = 1.27,
obtained from neutron beta decay. At lowest order the pion-
nucleon coupling constant gπN is connected to the axial-vector
coupling constant by the Goldberger-Treiman relation, gπN fπ =
gAMN . The covariant derivative in Equation (42) includes the
field Ŵµ, which leads to a vertex between two octet baryons
and two mesons, whereas the terms containing uµ lead to a
vertex between two octet baryons and one meson. Different

octet-baryon masses appear first in L
(2)
B due to explicit chiral

symmetry breaking and renormalization and lead to corrections
linear in the quark masses:

Mi = MB +O(m,ms) . (43)

2.4. Weinberg Power Counting Scheme
As stated before, an effective field theory has an infinite number
of terms in the effective Lagrangian and for a fixed process an
infinite number of diagrams contribute. Therefore, it is crucial
to have a power counting scheme, to assign the importance of a
term. Then, to a certain order in the power counting, only a finite
number of terms contribute and the observables can be calculated
to a given accuracy.

First, let us discuss the power counting scheme of χEFT in the
pure meson sector, i.e., only the pseudoscalar Goldstone bosons
are explicit degrees of freedom. The chiral dimension ν of a
Feynman diagram represents the order in the low-momentum
expansion, (q/3χ )

ν . The symbol q is generic for a small external
meson momentum or a small meson mass. The scale of chiral

1Note that an overall plus sign in front of the constants D and F is chosen,

consistent with the conventions in SU(2) χEFT [13].
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FIGURE 2 | Graphical representation of the Lippmann-Schwinger equation.

FIGURE 3 | Example of a planar box diagram. It contains an reducible part

equivalent to the iteration of two one-meson exchange diagrams, as

generated by the Lippmann-Schwinger equation. Additionally it contains a

genuine irreducible contribution that is part of the effective potential.

symmetry breaking 3χ is often estimated as 4π fπ ≈ 1 GeV or
as the mass of the lowest-lying resonance, Mρ ≈ 770 MeV. A
simple dimensional analysis leads to the following expression for
the chiral dimension of a connected Feynman diagram [6]:

ν = 2+ 2L+
∑

i

vi1i , 1i = di − 2 . (44)

The number of Goldstone boson loops is denoted by L and vi is
the number of vertices with vertex dimension 1i. The symbol di
stands for the number of derivatives or meson mass insertions at
the vertex, i.e., the vertex originates from a term of the Lagrangian
of the orderO(qdi ).

With the introduction of baryons in the chiral effective
Lagrangian, the power counting is more complicated. The large
baryon mass comes as an extra scale and destroys the one-to-
one correspondence between the loop and the small momentum
expansion. Jenkins and Manohar used methods from heavy-
quark effective field theory to solve this problem [127]. Basically
they considered baryons as heavy, static sources. This leads to a
description of the baryons in the extreme non-relativistic limit
with an expansion in powers of the inverse baryon mass, called
heavy-baryon chiral perturbation theory.

Furthermore, in the two-baryon sector, additional features
arise. Reducible Feynman diagrams are enhanced due to the
presence of small kinetic energy denominators resulting from
purely baryonic intermediate states. These graphs hint at the non-
perturbative aspects in few-body problems, such as the existence
of shallow bound states, and must be summed up to all orders. As
suggested by Weinberg [86, 87], the baryons can be treated non-
relativistically and the power counting scheme can be applied to
an effective potential V , that contains only irreducible Feynman
diagrams. Terms with the inverse baryon mass M−1

B may be

FIGURE 4 | Examples for reducible (left) and irreducible (right) three-baryon

interactions for 3NN. The thick dashed line cuts the reducible diagram in two

two-body interaction parts.

counted as

q

MB
∝
( q

3χ

)2
. (45)

The resulting effective potential is the input for quantum
mechanical few-body calculations. In case of the baryon-baryon
interaction the effective potential is inserted into the Lippmann-
Schwinger equation and solved for bound and scattering states.
This is graphically shown in Figures 2, 3. The T-matrix is
obtained from the infinite series of ladder diagrams with
the effective potential V . In this way the omitted reducible
diagrams are regained. In the many-body sector, e.g., Faddeev
(or Yakubovsky) equations are typically solved within a coupled-
channel approach. In a similar way reducible diagrams such as
on the left-hand side of Figure 4, are generated automatically and
are not part of the effective potential. One should distinguish such
iterated two-body interactions, from irreducible three-baryon
forces, as shown on the right-hand side of Figure 4.

After these considerations, a consistent power counting
scheme for the effective potential V is possible. The soft scale q
in the low-momentum expansion (q/3χ )

ν denotes now small
external meson four-momenta, small external baryon three-
momenta or the small meson masses. Naive dimensional analysis
leads to the generalization of Equation (44):

ν = 2− B+ 2L+
∑

i

vi1i , 1i = di +
1

2
bi − 2 , (46)

where B is the number of external baryons and bi is the number of
internal baryon lines at the considered vertex. However, Equation
(46) has an unwanted dependence on the baryon number, due to
the normalization of baryon states. Such an effect can be avoided
by assigning the chiral dimension to the transition operator
instead of thematrix elements. This leads to the addition of 3B−6
to the formula for the chiral dimension, which leaves the B = 2
case unaltered, and one obtains (see for example [9, 13, 14, 130])

ν = −4+ 2B+ 2L+
∑

i

vi1i , 1i = di +
1

2
bi − 2 . (47)

Following this scheme one arrives at the hierarchy of baryonic
forces shown in Figure 5. The leading-order (ν = 0) potential
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FIGURE 5 | Hierarchy of baryonic forces. Solid lines are baryons, dashed lines are pseudoscalar mesons. Solid dots, filled circles, and squares denote vertices with

1i = 0, 1, and 2, respectively.

is given by one-meson-exchange diagrams and non-derivative
four-baryon contact terms. At next-to-leading order (ν = 2)
higher order contact terms and two-meson-exchange diagrams
with intermediate octet baryons contribute. Finally, at next-to-
next-to-leading order (ν = 3) the three-baryon forces start to
contribute. Diagrams that lead to mass and coupling constant
renormalization are not shown.

3. BARYON-BARYON INTERACTION
POTENTIALS

This section is devoted to the baryon-baryon interaction
potentials up to next-to-leading order, constructed from the
diagrams shown in Figure 5. Contributions arise from contact
interaction, one- and two-Goldstone-boson exchange. The
constructed potentials serve not only as input for the description
of baryon-baryon scattering, but are also basis for few- and
many-body calculations. We give also a brief introduction
to common meson-exchange models and the difference to
interaction potentials from χEFT.

3.1. Baryon-Baryon Contact Terms
The chiral Lagrangian necessary for the contact vertices shown
in Figure 6 can be constructed straightforwardly according to
the principles outlined in section 2. For pure baryon-baryon
scattering processes, no pseudoscalar mesons are involved in the
contact vertices and almost all external fields can be dropped.
Covariant derivatives Dµ reduce to ordinary derivatives ∂µ. The
only surviving external field is χ+, which is responsible for the
inclusion of quark masses into the chiral Lagrangian:

FIGURE 6 | Leading-order and next-to-leading-order baryon-baryon contact

vertices.

χ+
2

= χ = 2B0





mu 0 0
0 md 0
0 0 ms





≈





m2
π 0 0
0 m2

π 0

0 0 2m2
K −m2

π



 , (48)

where in the last step the Gell-Mann–Oakes–Renner relations,
Equation (41), have been used. In flavor space the possible terms
are of the schematic form

〈B̄BB̄B〉 , 〈B̄B̄BB〉 , 〈B̄B〉〈B̄B〉 , 〈B̄B̄〉〈BB〉 , (49)

and terms where the field χ is inserted such as

〈B̄χBB̄B〉 , 〈B̄Bχ B̄B〉 , 〈B̄χB〉〈B̄B〉 , . . . (50)

where in both cases appropriate structures in Dirac space have to
be inserted. For the case of the non-relativistic power counting
it would also be sufficient, to insert the corresponding structures
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in spin-momentum space. The terms involving χ lead to explicit
SU(3) symmetry breaking at NLO linear in the quark masses. A
set of linearly independent Lagrangian terms up toO(q2) for pure
baryon-baryon interaction in non-relativistic power counting
can be found in Petschauer and Kaiser [32].

After a non-relativistic expansion up toO(q2) the four-baryon
contact Lagrangian leads to potentials in spin and momentum
space. A convenient operator basis is given by [29]:

P1 = 1 ,

P2 = Eσ1 · Eσ2 ,

P3 = (Eσ1 · Eq )(Eσ2 · Eq )−
1

3
(Eσ1 · Eσ2)Eq 2 ,

P4 =
i

2
(Eσ1 + Eσ2) · En ,

P5 = (Eσ1 · En )(Eσ2 · En ) ,

P6 =
i

2
(Eσ1 − Eσ2) · En ,

P7 = (Eσ1 · Ek )(Eσ2 · Eq )+ (Eσ1 · Eq )(Eσ2 · Ek ) ,
P8 = (Eσ1 · Ek )(Eσ2 · Eq )− (Eσ1 · Eq )(Eσ2 · Ek ) , (51)

with Eσ1,2 the Pauli spin matrices and with the vectors

Ek = 1

2
(Epf + Epi) , Eq = Epf − Epi , En = Epi × Epf . (52)

The momenta Epf and Epi are the initial and final state momenta
in the center-of-mass frame. In order to obtain the minimal
set of Lagrangian terms in the non-relativistic power counting
of Petschauer and Kaiser [32], the potentials have been
decomposed into partial waves. The formulas for the partial
wave projection of a general interaction V = ∑8

j=1 VjPj
can be found in the appendix of Polinder et al. [29]. For
each partial wave one produces a non-square matrix which
connects the Lagrangian constants with the different baryon-
baryon channels. Lagrangian terms are considered as redundant
if their omission does not lower the rank of this matrix. For
the determination of the potential not only direct contributions
have to be considered, but also additional structures from
exchanged final state baryons, where the negative spin-exchange
operator −P(σ ) = − 1

2 (1+ Eσ1 · Eσ2) is applied. In the end
6 momentum-independent terms at LO contribute, and are
therefore only visible in 1S0 and 3S1 partial waves. At NLO 22
terms contribute that contain only baryon fields and derivatives,
and are therefore SU(3) symmetric. The other 12 terms at
NLO include the diagonal matrix χ and produce explicit SU(3)
symmetry breaking.

In Table 3, the non-vanishing transitions projected onto
partial waves in the isospin basis are shown (cf. [29–32]).
The pertinent constants are redefined according to the relevant
irreducible SU(3) representations. This comes about in the
following way. Baryons form a flavor octet and the tensor product
of two baryons decomposes into irreducible representations
as follows:

8⊗ 8 = 27s ⊕ 10a ⊕ 10∗a ⊕ 8s ⊕ 8a ⊕ 1s , (53)

where the irreducible representations 27s, 8s, 1s are symmetric
and 10a, 10∗a , 8a are antisymmetric with respect to the
exchange of both baryons. Due to the generalized Pauli
principle, the symmetric flavor representations 27s, 8s, 1s have
to combine with the space-spin antisymmetric partial waves
1S0,

3P0,
3P1,

3P2, . . . (L + S even). The antisymmetric
flavor representations 10a, 10∗a , 8a combine with the space-
spin symmetric partial waves 3S1,

1P1,
3D1 ↔ 3S1, . . .

(L + S odd). Transitions can only occur between equal
irreducible representations. Hence, transitions between space-
spin antisymmetric partial waves up to O(q2) involve the 15
constants c̃27,8s,11S0

, c27,8s,11S0
, c27,8s,13P0

, c27,8s,13P1
, and c27,8s,13P2

, whereas

transitions between space-spin symmetric partial waves involve

the 12 constants c̃8a,10,10
∗

3S1
, c8a,10,10

∗
3S1

, c8a,10,10
∗

1P1
, and c8a,10,10

∗
3D1-3S1

. The

constants with a tilde denote leading-order constants, whereas
the ones without tilde are at NLO. The spin singlet-triplet
transitions 1P1 ↔ 3P1 is perfectly allowed by SU(3) symmetry
since it is related to transitions between the irreducible
representations 8a and 8s. Such a transition originated from the
antisymmetric spin-orbit operator P6 and its Fierz-transformed
counterpart P8 and the single corresponding low-energy constant
is denoted by c8as. In case of the NN interaction such transitions
are forbidden by isospin symmetry. The constants c̃27,8s,11S0

and

c̃8a,10,10
∗

3S1
fulfill the same SU(3) relations as the constants c27,8s,11S0

and c8a,10,10
∗

3S1
in Table 3. SU(3) breaking terms linear in the

quark masses appears only in the S-waves, 1S0,
3S1, and are

proportional m2
K − m2

π . The corresponding 12 constants are
c1,...,12χ . The SU(3) symmetry relations in Table 3 can also
be derived by group theoretical considerations [29, 144–146].
Clearly, for the SU(3)-breaking part this is not possible and these
contributions have to be derived from the chiral Lagrangian.

In order to obtain the complete partial-wave projected
potentials, some entries in Table 3 have to be multiplied with
additional momentum factors. The leading order constants c̃ ij
receive no further factor. For the next-to-leading-order constants
(without tilde and without χ) the contributions to the partial
waves 1S0,

3S1 have to be multiplied with a factor p2i + p2
f
.

The contribution to the partial waves 1S0,
3S1 from constants

c
j
χ has to be multiplied with (m2

K − m2
π ). The partial waves

3P0,
3P1,

3P2,
1P1,

1P1 ↔ 3P1 getmultiplied with the factor pipf .

The entries for 3S1 → 3D1 and
3D1 → 3S1 have to be multiplied

with p2i and p
2
f
, respectively. For example, one obtains for theNN

interaction in the 1S0 partial wave:

〈NN, 1S0|V̂|NN, 1S0〉

= c̃271S0
+ c271S0

(p2i + p2f )+
1

2
c1χ (m

2
K −m2

π ) , (54)

or for the 4N → 66 interaction with total isospin I = 0 in the
1P1 → 3P1 partial wave:

〈66, 3P1|V̂|4N, 1P1〉 = 2
√
3c8aspipf . (55)

When restricting to the NN channel the well-known two
leading and seven next-to-leading order low-energy constants
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TABLE 3 | SU(3) relations of pure baryon-baryon contact terms for non-vanishing partial waves up to O(q2) in non-relativistic power counting for channels described by strangeness S and total isospin I [32].

S I Transition j ∈ {1S0,
3P0,

3P1,
3P2} j ∈ {3S1,

1P1,
3S1 ↔ 3D1}

1P1 → 3P1
3P1 → 1P1

1S0 χ 3S1 χ

0 0 NN→ NN 0 c10
∗

j 0 0 0
c7χ
2

1 NN→ NN c27j 0 0 0
c1χ
2 0

-1 1
2 3N → 3N 1

10 (9c
27
j + c8sj ) 1

2 (c
10∗
j + c8aj ) −c8as −c8as c2χ c8χ

1
2 3N → 6N − 3

10 (c
27
j − c8sj ) 1

2 (c
10∗
j − c8aj ) −3c8as c8as −c3χ −c9χ

1
2 6N → 6N 1

10 (c
27
j + 9c8sj ) 1

2 (c
10∗
j + c8aj ) 3c8as 3c8as c4χ c10χ

3
2 6N → 6N c27j c10j 0 0

c1χ
4 − c7χ

4

-2 0 33 → 33 1
40 (5c

1
j + 27c27j + 8c8sj ) 0 0 0

c5χ
2 0

0 33 → 4N 1
20 (5c

1
j − 9c27j + 4c8sj ) 0 0 2c8as

3c1χ
4 − 3c2χ − c3χ + 3c5χ

4 0

0 33 → 66 −
√
3

40 (5c
1
j + 3c27j − 8c8sj ) 0 0 0 0 0

0 4N → 4N 1
10 (5c

1
j + 3c27j + 2c8sj ) c8aj 2c8as 2c8as

2c1χ
3 − 3c2χ + c4χ

3 + 9c5χ
8 c11χ

0 4N → 66
√
3

20 (−5c1j + c27j + 4c8sj ) 0 2
√
3c8as 0 − c1χ

4
√
3
+

√
3c3χ + c4χ√

3
0

0 66 → 66 1
40 (15c

1
j + c27j + 24c8sj ) 0 0 0 0 0

1 4N → 4N 1
5 (2c

27
j + 3c8sj ) 1

3 (c
10
j + c10

∗
j + c8aj ) −2c8as −2c8as c6χ c12χ

1 4N → 66 0 1

3
√
2
(c10j + c10

∗
j − 2c8aj ) 0 2

√
2c8as 0

√
2c10χ − c7χ

2
√
2
−

√
2c9χ

1 4N → 63
√
6
5 (c27j − c8sj ) 1√

6
(c10j − c10

∗
j ) 2

√

2
3 c

8as 0 − 1
3

√

2
3 c

1
χ +

√

3
2 c

2
χ − c4χ

3
√
6
−
√

2
3 c

6
χ

c10χ√
6
+
√

2
3 c

12
χ + c7χ

2
√
6
−
√

3
2 c

8
χ +

√

2
3 c

9
χ

1 63 → 63 1
5 (3c

27
j + 2c8sj ) 1

2 (c
10
j + c10

∗
j ) 0 0 − c1χ

9 + 4c3χ
3 + 4c4χ

9 + 2c6χ
3

4c10χ

3 + 2c12χ

3 − c7χ
3 − 4c9χ

3

1 63 → 66 0 1

2
√
3
(c10j − c10

∗
j ) 0 4√

3
c8as 0 0

1 66 → 66 0 1
6 (c

10
j + c10

∗
j + 4c8aj ) 0 0 0 0

2 66 → 66 c27j 0 0 0 0 0

-3 1
2 43 → 43 1

10 (9c
27
j + c8sj ) 1

2 (c
10
j + c8aj ) −c8as −c8as − 55c1χ

72 + 2c2χ + 7c3χ
6 + c4χ

18 + 3c5χ
32 + c6χ

12

11c10χ

12 + 3c11χ

4 + 25c12χ

12 + 5c7χ
24 − 7c8χ

4 − c9χ
6

1
2 43 → 46 − 3

10 (c
27
j − c8sj ) 1

2 (c
10
j − c8aj ) −3c8as c8as

11c1χ
24 − 3c2χ

2 − c3χ
2 − c4χ

3 + 9c5χ
32 + c6χ

4

9c10χ

4 − 3c11χ

4 + 5c12χ

4 − c7χ
8 − 3c8χ

4 − c9χ
2

1
2 46 → 46 1

10 (c
27
j + 9c8sj ) 1

2 (c
10
j + c8aj ) 3c8as 3c8as

11c1χ
24 − 3c2χ + 5c3χ

2 + c4χ
6 + 27c5χ

32 + 3c6χ
4

5c10χ

4 + 3c11χ

4 + 3c12χ

4 − c7χ
8 − 3c8χ

4 − 3c9χ
2

3
2 46 → 46 c27j c10

∗
j 0 0 − 2c1χ

3 + 3c2χ
2 + c3χ + c4χ

6

3c10χ

2 − c7χ + 3c8χ
2 − 3c9χ

-4 0 44 → 44 0 c10j 0 0 0 5c10χ + 4c12χ − 3c8χ − 2c9χ

1 44 → 44 c27j 0 0 0 − 4c1χ
3 + 3c2χ + 2c3χ + c4χ
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of Epelbaum et al. [147] are recovered, which contribute to the
partial waves 1S0,

3S1,
1P1,

3P0,
3P1,

3P2,
3S1 ↔ 3D1.

Note, that the SU(3) relations in Table 3 are general relations
that have to be fulfilled by the baryon-baryon potential in
the SU(3) limit, i.e., mπ = mK = mη. This feature can
be used as a check for the inclusion of the loop diagrams.
Another feature is, that the SU(3) relations contain only a
few constants in each partial wave. For example, in the 1S0
partial wave only the constants c̃271S0

, c̃8s1S0
, c̃11S0

are present. If

these constants are fixed in some of the baryons channels,
predictions for other channels can be made. This has, for
instance, been used in Haidenbauer et al. [35], where the
existence of 66, 64 and 44 bound states has been studied
within SU(3) χEFT.

3.2. One- and Two-Meson-Exchange
Contributions
In the last section, we have addressed the short-range part
of the baryon-baryon interaction via contact terms. Let us
now analyze the long- and mid-range part of the interaction,
generated by one- and two-meson-exchange as determined
in Haidenbauer et al. [33]. The contributing diagrams up to
NLO are shown in Figure 5, which displays the hierarchy of
baryonic forces.

The vertices, necessary for the construction of these
diagrams stem from the leading-order meson-baryon interaction

Lagrangian L
(1)
B in Equation (42). The vertex between two

baryons and one meson emerges from the part

D

2
〈B̄γ µγ5{uµ,B}〉 +

F

2
〈B̄γ µγ5

[

uµ,B
]

〉

= − 1

2f0

8
∑

i,j,k=1

NBiBjφk
(B̄iγ

µγ5Bj)(∂µφk)+O(φ3) , (56)

where we have used uµ = − 1
f0

∂µφ+O(φ3) and have rewritten the

pertinent part of the Lagrangian in terms of the physical meson
and baryon fields

φi ∈
{

π0,π+,π−,K+,K−,K0, K̄0, η
}

,

Bi ∈
{

n, p,60,6+,6−,3,40,4−} . (57)

The factors NBiBjφk
are linear combinations of the axial vector

coupling constantsD and F with certain SU(3) coefficients. These
factors vary for different combinations of the involved baryons
and mesons and can be obtained easily by multiplying out the
baryon and meson flavor matrices. In a similar way, we obtain
the (Weinberg-Tomozawa) vertex between two baryons and two

mesons from the covariant derivative in L
(1)
B , leading to

〈B̄iγ µ
[

Ŵµ,B
]

〉

= i

8f 20

8
∑

i,j,k,l=1

NBiφkBjφl
(B̄iγ

µBj)(φk∂µφl)+O(φ4) , (58)

where Ŵµ = 1
8f 20

[φ, ∂µφ]+O(φ4) was used.

The calculation of the baryon-baryon potentials is done
in the center-of-mass frame and in the isospin limit mu =
md. To obtain the contribution of the Feynman diagrams to
the non-relativistic potential, we perform an expansion in the
inverse baryon mass 1/MB. If loops are involved, the integrand
is expanded before integrating over the loop momenta. This
produces results that are equivalent to the usual heavy-baryon
formalism. In the case of the two-meson-exchange diagrams at
one-loop level, ultraviolet divergences are treated by dimensional
regularization, which introduces a scale λ. In dimensional
regularization divergences are isolated as terms proportional to

R = 2

d − 4
+ γE − 1− ln (4π) , (59)

with d 6= 4 the space-time dimension and the Euler-Mascheroni
constant γE ≈ 0.5772. These terms can be absorbed by the
contact terms.

According to Equations (56) and (58) the vertices have the
same form for different combinations of baryons and mesons,
just their prefactors change. Therefore, the one- and two-
pseudoscalar-meson exchange potentials can be given by amaster
formula, where the proper masses of the exchanged mesons
have to be inserted, and which has to be multiplied with an
appropriate SU(3) factor N. In the following we will present
the analytic formulas for the one- and two-meson-exchange
diagrams, introduced in Haidenbauer et al. [33]. The pertinent
SU(3) factors will be displayed next to the considered Feynman
diagram (cf. Figure 7). The results will be given in terms of a
central potential (VC), a spin-spin potential (Eσ1 · Eσ2 VS) and a
tensor-type potential (Eσ1 · Eq Eσ2 · Eq VT). The momentum transfer is
q =

∣
∣Epf − Epi

∣
∣, with Epi and Epf the initial and final state momenta

in the center-of-mass frame.
Note that the presented results apply only to direct diagrams.

This is for example the case for the leading-order one-eta

exchange in the 3n interaction, i.e., for 3(Epi)n(−Epi)
η−→

3(Epf )n(−Epf ). An example of a crossed diagram is the one-kaon

exchange in the process 3(Epi)n(−Epi) K−→ n(−Epf )3(Epf ), where the
nucleon and the hyperon in the final state are interchanged and
strangeness is exchanged. In such cases, Epf is replaced by−Epf and
the momentum transfer in the potentials is q =

∣
∣Epf + Epi

∣
∣. Due

to the exchange of fermions in the final states a minus sign arises,
and additionally the spin-exchange operator P(σ ) = 1

2 (1+Eσ1 · Eσ2)
has to be applied. The remaining structure of the potentials stays
the same (see also the discussion in section 4).

The leading-order contribution comes from the one-meson
exchange diagram in Figure 7A. It contributes only to the tensor-
type potential:

Vome
T (q) = − N

4f 20

1

q2 +m2 − iǫ
. (60)

The symbol M̄ in the SU(3) coefficient N denotes the charge-
conjugated meson of mesonM in particle basis (e.g., π+ ↔ π−).
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FIGURE 7 | One- and two-meson-exchange contributions and corresponding SU(3) factors. (A) One-meson exchange, (B) planar box, (C) crossed box, (D) left

triangle, (E) right triangle, and (F) football diagram.

At next-to-leading order the two-meson exchange diagrams
start to contribute. The planar box in Figure 7B contains an
irreducible part and a reducible part coming from the iteration of
the one-meson exchange to second order. Inserting the potential
into the Lippmann-Schwinger equation generates the reducible
part; it is therefore not part of the potential (see also section 2.4).
The irreducible part is obtained from the residues at the poles
of the meson propagators, disregarding the (far distant) poles of
the baryon propagators. With the masses of the two exchanged
mesons set tom1 andm2, the irreducible potentials can be written
in closed analytical form,

V
planar box
irr, C (q) = N

3072π2f 40

{

5

3
q2

+
(

m2
1 −m2

2

)2

q2
+ 16

(

m2
1 +m2

2

)

+
[

23q2 + 45
(

m2
1 +m2

2

)]
(

R+ 2 ln

√
m1m2

λ

)

+ m2
1 −m2

2

q4

[

12q4 +
(

m2
1 −m2

2

)2

− 9q2
(

m2
1 +m2

2

)
]

ln
m1

m2

+ 2

w2
(

q
)

[

23q4 −
(

m2
1 −m2

2

)4

q4
+ 56

(

m2
1 +m2

2

)

q2

+ 8
m2

1 +m2
2

q2

(

m2
1 −m2

2

)2

+ 2
(

21m4
1 + 22m2

1m
2
2 + 21m4

2

)
]

L
(

q
)

}

, (61)

V
planar box
irr, T

(

q
)

= − 1

q2
V
planar box
irr, S (q)

= − N

128π2f 40

[

L
(

q
)

− 1

2
− m2

1 −m2
2

2q2
ln

m1

m2

+ R

2
+ ln

√
m1m2

λ

]

(62)

where we have defined the functions

w
(

q
)

= 1

q

√
(

q2 + (m1 +m2)
2
) (

q2 + (m1 −m2)
2
)

,

L
(

q
)

= w
(

q
)

2q
ln

[

qw
(

q
)

+ q2
]2 −

(

m2
1 −m2

2

)2

4m1m2q2
. (63)

The relation between the spin-spin and tensor-type potential
follows from the identity (Eσ1 × Eq ) · (Eσ2 × Eq ) = q2 Eσ1 · Eσ2 − (Eσ1 ·
Eq ) (Eσ2 · Eq ).

One should note that all potentials shown above are finite
also in the limit q → 0. Terms proportional to 1/q2 or
1/q4 are canceled by opposite terms in the functions L(q) and
w(q) in the limit of small q. For numerical calculations it is
advantageous to perform an expansion of the potentials in a
power series for small q in order to implement directly this
cancellation. For equal meson masses the expressions for the
potentials reduce to the results in Kaiser et al. [148]. This is
the case for the NN interaction of Epelbaum et al. [147, 149,
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150] and Entem and Machleidt [151] based on χEFT, where
only contributions from two-pion exchange need to be taken
into account.

In actual applications of these potentials such as in
Haidenbauer et al. [33], only the non-polynomial part of
Equations (61) and (62) is taken into account, i.e., the
pieces proportional to L(q) and to 1/q2 and 1/q4. The
polynomial part is equivalent to the LO and NLO contact
terms and, therefore, does not need to be considered. The
contributions proportional to the divergence R are likewise
omitted. Their effect is absorbed by the contact terms or
a renormalization of the coupling constants, see, e.g., the
corresponding discussion in Appendix A of Epelbaum et al. [149]
for the NN case.

These statements above apply also to the other contributions
to the potential described below.

The crossed box diagrams in Figure 7C contribute to the
central, spin-spin, and tensor-type potentials. The similar
structure with some differences in the kinematics of the planar
and crossed box diagram leads to relations between them.
Obviously, the crossed box has no iterated part. The potentials
of the crossed box are equal to the potentials of the irreducible
part of the planar box, up to a sign in the central potential:

Vcrossed box
C (q) = −V

planar box
C, irr (q) ,

Vcrossed box
T (q) = − 1

q2
Vcrossed box
S (q) = V

planar box
T, irr (q) . (64)

The two triangle diagrams, Figures 7D,E, constitute potentials,
that are of equal form with different SU(3) factors N. The
corresponding central potential reads

V
triangle
C (q) = − N

3072π2f 40

{

− 2
(

m2
1 +m2

2

)

+
(

m2
1 −m2

2

)2

q2
− 13

3
q2

+
[

8
(

m2
1 +m2

2

)

− 2
(

m2
1 −m2

2

)2

q2
+ 10q2

]

L
(

q
)

+ m2
1 −m2

2

q4

[
(

m2
1 −m2

2

)2 − 3
(

m2
1 +m2

2

)

q2
]

ln
m1

m2

+
[

9
(

m2
1 +m2

2

)

+ 5q2
]
(

R+ 2 ln

√
m1m2

λ

)
}

. (65)

The football diagrams in Figure 7F also contributes only to the
central potential. One finds

V football
C (q) = N

3072π2f 40

{

− 2
(

m2
1 +m2

2

)

−
(

m2
1 −m2

2

)2

2q2
− 5

6
q2 + w2

(

q
)

L
(

q
)

+ 1

2

[

3
(

m2
1 +m2

2

)

+ q2
]
(

R+ 2 ln

√
m1m2

λ

)

− m2
1 −m2

2

2q4

[
(

m2
1 −m2

2

)2 + 3
(

m2
1 +m2

2

)

q2
]

ln
m1

m2

}

. (66)

3.3. Meson-Exchange Models
Earlier investigations of the baryon-baryon interactions has been
done within phenomenological meson-exchange potentials such
as the Jülich [18, 19, 21], Nijmegen [20, 22, 23], or Ehime
[152, 153] potentials. As we use two of them for comparison, we
give a brief introduction to these type of models.

Conventional meson-exchange models of the YN interaction
are usually also based on the assumption of SU(3) flavor
symmetry for the occurring coupling constants, and in some
cases even on the SU(6) symmetry of the quark model [18, 19]. In
the derivation of the meson-exchange contributions one follows
essentially the same procedure as outlined in section 3.2 for the
case of pseudoscalar mesons. Besides the lowest pseudoscalar-
meson multiplet also the exchanges of vector mesons (ρ, ω, K∗),
of scalar mesons (σ (f0(500)),...), or even of axial-vector mesons
(a1(1270),...) [22, 23] are included. The spin-space structure of
the corresponding Lagrangians that enter into Equation (42)
and subsequently into Equation (56) differ and, accordingly,
the final expressions for the corresponding contributions to the
YN interaction potentials differ too. Details can be found in
Holzenkamp et al. [18] and Rijken et al. [20, 22]. We want to
emphasize that even for pseudoscalar mesons the final result for
the interaction potentials differs, in general, from the expression
given in Equation (60). Contrary to the chiral EFT approach,
recoil, and relativistic corrections are often kept in meson-
exchange models because no power counting rules are applied.
Moreover, in case of the Jülich potential pseudoscalar coupling
is assumed for the meson-baryon interaction Lagrangian for
the pseudoscalar mesons instead of the pseudovector coupling
(Equation 42) dictated by chiral symmetry. Note that in some
YN potentials of the Jülich group [18, 19] contributions from
two-meson exchanges are included. The ESC08 and ESC16
potentials [22, 23] include likewise contributions from two-
meson exchange, in particular, so-called meson-pair diagrams
analog to the ones shown in Figures 7D–F.

The major conceptual difference between the various meson-
exchange models consists in the treatment of the scalar-meson
sector. This simply reflects the fact that, unlike for pseudoscalar
and vector mesons, so far there is no general agreement about
what are the actual members of the lowest lying scalar-meson
SU(3) multiplet. Therefore, besides the question of the masses
of the exchange particles it also remains unclear whether and
how the relations for the coupling constants should be specified.
As a consequence, different prescriptions for describing the
scalar sector, whose contributions play a crucial role in any
baryon-baryon interaction at intermediate ranges, were adopted
by the various authors who published meson-exchange models
of the YN interaction. For example, the Nijmegen group views
this interaction as being generated by genuine scalar-meson
exchange. In their models NSC97 [20] and ESC08 (ESC16) [22,
23] a scalar SU(3) nonet is exchanged—namely, two isospin-0
mesons [an ǫ(760) and the f0(980)] an isospin-1 meson (a0(980))
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FIGURE 8 | Leading three-baryon interactions: contact term, one-meson

exchange, and two-meson exchange. Filled circles and solid dots denote

vertices with 1i = 1 and 1i = 0, respectively.

and an isospin-1/2 strange meson κ with a mass of 1,000 MeV.
In the initial YN models of the Jülich group [18, 19] a σ (with
a mass of ≈ 550 MeV) is included which is viewed as arising
from correlated ππ exchange. In practice, however, the coupling
strength of this fictitious σ to the baryons is treated as a free
parameter and fitted to the data. In the latest meson-exchange
YN potential presented by the Jülich group [21] a microscopic
model of correlated ππ and KK̄ exchange [154] is utilized to fix
the contributions in the scalar-isoscalar (σ ) and vector-isovector
(ρ) channels.

Let us mention for completeness that meson-exchangemodels
are typically equipped with phenomenological form factors in
order to cut off the potential for large momenta (short distances).
For example, in case of the YN models of the Jülich group the
interaction is supplemented with form factors for each meson-
baryon-baryon vertex (cf. [18, 19] for details). Those form factors
are meant to take into account the extended hadron structure
and are parameterized in the conventional monopole or dipole
form. In case of the Nijmegen potentials a Gaussian form factor
is used. In addition there is some additional sophisticated short-
range phenomenology that controls the interaction at short
distances [22, 23].

4. THREE-BARYON INTERACTION
POTENTIALS

Three-nucleon forces are an essential ingredient for a proper
description of nuclei and nuclear matter with low-momentum
two-body interactions. Similarly, three-baryon forces, especially
the 3NN interaction, are expected to play an important
role in nuclear systems with strangeness. Their introduction
in calculations of light hypernuclei seems to be required.
Furthermore, the introduction of 3BF is traded as a possible
solution to the hyperon puzzle (see section 1). However, so far
only phenomenological 3BF have been employed. In this section
we present the leading irreducible three-baryon interactions
from SU(3) chiral effective field theory as derived in Petschauer
et al. [120]. We show the minimal effective Lagrangian required
for the pertinent vertices. Furthermore the estimation of the
corresponding LECs through decuplet saturation and an effective
density-dependent two-baryon potential will be covered [121].

According to the power counting in Equation (47) the 3BF
arise formally at NNLO in the chiral expansion, as can be
seen from the hierarchy of baryonic forces in Figure 5. Three

types of diagrams contribute: three-baryon contact terms, one-
meson and two-meson exchange diagrams (cf. Figure 8). Note
that a two-meson exchange diagram, such as in Figure 8, with
a (leading order) Weinberg-Tomozawa vertex in the middle,
would formally be a NLO contribution. However, as in the
nucleonic sector, this contribution is kinematically suppressed
due to the fact that the involved meson energies are differences
of baryon kinetic energies. Anyway, parts of these NNLO
contributions get promoted to NLO by the introduction of
intermediate decuplet baryons, so that it becomes appropriate
to use these three-body interactions together with the NLO two-
body interaction of section 3. As already stated, the irreducible
contributions to the chiral potential are presented. In contrast
to typical phenomenological calculations, diagrams as on the
left side of Figure 4 do not lead to a genuine three-body
potential, but are an iteration of the two-baryon potential.
Such diagrams will be incorporated automatically when solving,
e.g., the Faddeev (or Yakubovsky) equations within a coupled-
channel approach. The three-body potentials derived from SU(3)
χEFT are expected to shed light on the effect of 3BFs in
hypernuclear systems. Especially in calculations about light
hypernuclei these potentials can be implemented within reliable
few-body techniques [48, 49, 51, 52].

4.1. Contact Interaction
In the following we consider the leading three-baryon contact
interaction. Following the discussion in section 2.3 the
corresponding Lagrangian can be constructed. The inclusion of
external fields is not necessary, as we are interested in the purely
baryonic contact term. One ends up with the following possible
structures in flavor space [120]

〈B̄B̄B̄BBB〉 , 〈B̄B̄BB̄BB〉 , 〈B̄B̄BBB̄B〉 ,
〈B̄BB̄BB̄B〉 , 〈B̄B̄BB〉〈B̄B〉 , 〈B̄BB̄B〉〈B̄B〉 ,
〈B̄B̄B̄B〉〈BB〉 , 〈B̄B̄B̄〉〈BBB〉 , 〈B̄B̄B〉〈BB̄B〉 ,
〈B̄B〉〈B̄B〉〈B̄B〉 , 〈B̄B̄〉〈B̄B〉〈BB〉 , (67)

with possible Dirac structures

1⊗ 1⊗ 1 , 1⊗ γ5γ
µ ⊗ γ5γµ , γ5γ

µ ⊗ 1⊗ γ5γµ ,

γ5γ
µ ⊗ γ5γµ ⊗ 1 , γ5γµ ⊗ i σµν ⊗ γ5γν , (68)

leading to the following operators in the three-body spin space

1 , Eσ1 · Eσ2 , Eσ1 · Eσ3 , Eσ2 · Eσ3 , i Eσ1 · (Eσ2 × Eσ3) . (69)

All combinations of these possibilities leads to a (largely
overcomplete) set of terms for the leading covariant Lagrangian.
Note that in Petschauer et al. [120] the starting point
is a covariant Lagrangian, but the minimal non-relativistic
Lagrangian is the goal. Hence, only Dirac structures leading to
independent (non-relativistic) spin operators are relevant.

Let us consider the process B1B2B3 → B4B5B6,
where the Bi are baryons in the particle basis, Bi ∈
{n, p,3,6+,60,6−,40,4−}. The contact potential V has
to be derived within a threefold spin space for this process.
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The operators in spin-space 1 is defined to act between the
two-component Pauli spinors of B1 and B4. In the same way,
spin-space 2 belongs to B2 and B5, and spin-space 3 to B3
and B6. For a fixed spin configuration the potential can be
calculated from

χ
(1)
B4

†
χ
(2)
B5

†
χ
(3)
B6

†
V χ

(1)
B1

χ
(2)
B2

χ
(3)
B3

, (70)

where the superscript of a spinor denotes the spin space and
the subscript denotes the baryon to which the spinor belongs.
The potential is obtained as V = −〈B4B5B6| L |B1B2B3〉,
where the contact Lagrangian L has to be inserted, and the
36 Wick contractions need to be performed. The number
36 corresponds to the 3! × 3! possibilities to arrange the
three initial and three final baryons into Dirac bilinears. One
obtains six direct terms, where the baryon bilinears combine
the baryon pairs 1–4, 2–5, and 3–6, as shown in Equation
(70). For the other 30 Wick contractions, the resulting potential
is not fitting to the form of Equation (70), because the
wrong baryon pairs are connected in a separate spin space.
Hence, an appropriate exchange of the spin wave functions
in the final state has to be performed. This is achieved by
multiplying the potential with the well-known spin-exchange

operators P
(σ )
ij = 1

2 (1 + Eσi · Eσj). Furthermore, additional minus

signs arise from the interchange of anti-commuting baryon
fields. The full potential is then obtained by adding up all 36
contributions to the potential. One obtains a potential that fulfills
automatically the generalized Pauli principle and that is fully
anti-symmetrized.

In order to obtain a minimal set of Lagrangian terms
of the final potential matrix have been eliminated until the
rank of the final potential matrix (consisting of multiple
Lagrangian terms and the spin structures in Equation
69) matches the number of terms in the Lagrangian. The
minimal non-relativistic six-baryon contact Lagrangian
is [120]

L = −C1〈B̄aB̄bB̄cBaBbBc〉
+C2〈B̄aB̄bBaB̄cBbBc〉
−C3〈B̄aB̄bBaBbB̄cBc〉
+C4〈B̄aBaB̄bBbB̄cBc〉
−C5〈B̄aB̄bBaBb〉 〈B̄cBc〉
−C6

(

〈B̄aB̄bB̄cBa(σ iB)b(σ
iB)c〉

+ 〈B̄cB̄bB̄a(σ iB)c(σ
iB)bBa〉

)

+C7

(

〈B̄aB̄bBaB̄c(σ iB)b(σ
iB)c〉

+ 〈B̄cB̄b(σ iB)cB̄a(σ
iB)bBa〉

)

−C8

(

〈B̄aB̄bBa(σ iB)bB̄c(σ
iB)c〉

+ 〈B̄bB̄a(σ iB)bBaB̄c(σ
iB)c〉

)

+C9〈B̄aBaB̄b(σ iB)bB̄c(σ
iB)c〉

−C10

(

〈B̄aB̄bBa(σ iB)b〉 〈B̄c(σ iB)c〉

TABLE 4 | Irreducible representations for three-baryon states with strangeness S

and isospin I in partial waves |2S+1LJ〉, with the total spin S = 1
2 ,

3
2 , the angular

momentum L = 0, and the total angular momentum J = 1
2 ,

3
2 [120].

States (S,I) 2S1/2 4S3/2

NNN (0, 1
2 ) 35

3NN,6NN (−1,0) 10, 35 10a

3NN,6NN (−1,1) 27, 35 27a

6NN (−1,2) 35

33N,63N,66N,4NN (−2, 1
2 ) 8,10,27,35 8a, 10a, 27a

63N,66N,4NN (−2, 3
2 ) 10,27, 35, 35 10a, 27a

66N (−2, 5
2 ) 35

333,663,666,43N,46N (−3,0) 8,27 1a,8a,27a

633,663,666,43N,46N (−3,1) 8, 10, 10,27,35, 35 8a,10a,10a, 27a

663,666,46N (−3,2) 27,35, 35 27a

433,463,466,44N (−4, 1
2 ) 8,10,27,35 8a, 10a, 27a

463,466,44N (−4, 3
2 ) 10,27, 35, 35 10a, 27a

466 (−4, 5
2 ) 35

443,446 (−5,0) 10, 35 10a

443,446 (−5,1) 27, 35 27a

446 (−5,2) 35

444 (−6, 1
2 ) 35

+ 〈B̄bB̄a(σ iB)bBa〉 〈B̄c(σ iB)c〉
)

−C11〈B̄aB̄bB̄c(σ iB)aBb(σ
iB)c〉

+C12〈B̄aB̄b(σ iB)aB̄cBb(σ
iB)c〉

−C13〈B̄aB̄b(σ iB)a(σ
iB)bB̄cBc〉

−C14〈B̄aB̄b(σ iB)a(σ
iB)b〉 〈B̄cBc〉

− i ǫijkC15〈B̄aB̄bB̄c(σ iB)a(σ
jB)b(σ

kB)c〉
+ i ǫijkC16〈B̄aB̄b(σ iB)aB̄c(σ

jB)b(σ
kB)c〉

− i ǫijkC17〈B̄aB̄b(σ iB)a(σ
jB)bB̄c(σ

kB)c〉
+ i ǫijkC18〈B̄a(σ iB)aB̄b(σ

jB)bB̄c(σ
kB)c〉 , (71)

with vector indices i, j, k and two-component spinor indices
a, b, c. In total 18 low-energy constants C1 . . .C18 are present.
The low-energy constant E of the six-nucleon contact
term (cf. [78]) can be expressed through these LECs by
E = 2(C4 − C9).

As in the two-body sector, group theoretical considerations
can deliver valuable constrains on the resulting potentials. In
flavor space the three octet baryons form the 512-dimensional
tensor product 8 ⊗ 8 ⊗ 8, which decomposes into the following
irreducible SU(3) representations

8⊗ 8⊗ 8 =
64⊕ (35⊕ 35)2 ⊕ 276 ⊕ (10⊕ 10)4 ⊕ 88 ⊕ 12 , (72)
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where the multiplicity of an irreducible representations is
denoted by subscripts. In spin space one obtain for the product
of three doublets

2⊗ 2⊗ 2 = 22 ⊕ 4 . (73)

Transitions are only allowed between irreducible representations
of the same type. Analogous to Dover and Feshbach [145] for
the two-baryon sector, the contributions of different irreducible
representations to three-baryon multiplets in Table 4 can be
established. At leading order only transitions between S-waves
are possible, since the potentials are momentum-independent.
Due to the Pauli principle the totally symmetric spin-quartet 4
must combine with the totally antisymmetric part of 8⊗ 8⊗ 8 in
flavor space,

Alt3(8) = 56a = 27a + 10a + 10a + 8a + 1a . (74)

It follows, that these totally antisymmetric irreducible
representations are present only in states with total spin
3/2. The totally symmetric part of 8⊗ 8⊗ 8 leads to

Sym3(8) = 120s = 64s + 27s + 10s + 10s + 8s + 1s . (75)

However, the totally symmetric flavor part has no totally
antisymmetric counterpart in spin space, hence these
representations do not contribute to the potential. In Table 4,
these restrictions obtained by the generalized Pauli principle
have already be incorporated. The potentials of Petschauer et al.
[120] (decomposed in isospin basis and partial waves) fulfill the
restrictions of Table 4. For example the combination of LECs
related to the representation 35 is present in theNNN interaction
as well as in the 446 (−5, 2) interaction.

4.2. One-Meson Exchange Component
The meson-baryon couplings in the one-meson exchange
diagram of Figure 8 emerges from the leading-order chiral

Lagrangian L
(1)
B (see Equation 56). The other vertex involves

four baryon fields and one pseudoscalar-meson field. In
Petschauer et al. [120], an overcomplete set of terms for the
corresponding Lagrangian has been constructed. In order to
obtain the complete minimal Lagrangian from the overcomplete
set of terms, the matrix elements of the process B1B2 → B3B4φ1

has been considered in Petschauer et al. [120]. The corresponding
spin operators in the potential are

Eσ1 · Eq , Eσ2 · Eq , i (Eσ1 × Eσ2) · Eq , (76)

where Eq denotes the momentum of the emitted meson.
Redundant term are removed until the rank of the potential
matrix formed by all transitions and spin operators matches
the number of terms in the Lagrangian. One ends up with the
minimal non-relativistic chiral Lagrangian

L = D1/f0〈B̄a(∇ iφ)BaB̄b(σ
iB)b〉

+ D2/f0

(

〈B̄aBa(∇ iφ)B̄b(σ
iB)b〉

+ 〈B̄aBaB̄b(σ iB)b(∇ iφ)〉
)

FIGURE 9 | Generic meson-exchange diagrams. The wiggly line symbolized

the four-baryon contact vertex, to illustrate the baryon bilinears. (A) Generic

one-meson exchange diagram. (B) Generic two-meson exchange diagram.

+ D3/f0〈B̄b(∇ iφ)(σ iB)bB̄aBa〉
− D4/f0

(

〈B̄a(∇ iφ)B̄bBa(σ
iB)b〉

+ 〈B̄bB̄a(σ iB)b(∇ iφ)Ba〉
)

− D5/f0

(

〈B̄aB̄b(∇ iφ)Ba(σ
iB)b〉

+ 〈B̄bB̄a(∇ iφ)(σ iB)bBa〉
)

− D6/f0

(

〈B̄b(∇ iφ)B̄a(σ
iB)bBa〉

+ 〈B̄aB̄bBa(∇ iφ)(σ iB)b〉
)

− D7/f0

(

〈B̄aB̄bBa(σ iB)b(∇ iφ)〉

+ 〈B̄bB̄a(σ iB)bBa(∇ iφ)〉
)

+ D8/f0〈B̄a(∇ iφ)Ba〉〈B̄b(σ iB)b〉
+ D9/f0〈B̄aBa(∇ iφ)〉〈B̄b(σ iB)b〉
+ D10/f0〈B̄b(∇ iφ)(σ iB)b〉〈B̄aBa〉
+ i ǫijkD11/f0〈B̄a(σ iB)a(∇kφ)B̄b(σ

jB)b〉
− i ǫijkD12/f0

(

〈B̄a(∇kφ)B̄b(σ
iB)a(σ

jB)b〉

− 〈B̄bB̄a(σ jB)b(∇kφ)(σ iB)a〉
)

− i ǫijkD13/f0〈B̄aB̄b(∇kφ)(σ iB)a(σ
jB)b〉

− i ǫijkD14/f0〈B̄aB̄b(σ iB)a(σ
jB)b(∇kφ)〉 , (77)

with two-component spinor indices a and b and 3-vector indices
i, j, and k. For all possible strangeness sectors S = −4 . . . 0 one
obtains in total 14 low-energy constants D1 . . .D14. The low-
energy constant of the corresponding vertex in the nucleonic
sector D is related to the LECs above by D = 4(D1 − D3 +
D8 − D10).

2

To obtain the 3BF one-meson-exchange diagram, the generic
one-meson-exchange diagram in Figure 9A can be investigated.

2This LEC D has not to be confused with the axial-vector coupling constant D in

Equation (56).
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It involves the baryons i, j, k in the initial state, the baryons l,m, n
in the final state and an exchanged meson φ. The contact vertex
on the right is pictorially separated into two parts to indicate that
baryon j–m and k–n are in the same bilinear. The spin spaces
corresponding to the baryon bilinears are denoted by A,B,C.

On obtains a generic potential of the form

V = 1

2f 20

EσA · Eqli
Eq 2
li
+m2

φ

(

N1 EσC · Eqli + N2i (EσB × EσC) · Eqli
)

, (78)

with the momentum transfer Eqli = Epl − Epi carried by
the exchanged meson. The constants N1 and N2 are linear
combinations of low-energy constants.

The complete one-meson exchange three-baryon potential
for the process B1B2B3 → B4B5B6 is finally obtained by
summing up the 36 permutations of initial-state and final-state
baryons for a fixed meson and by summing over all mesons
φ ∈

{

π0,π+,π−,K+,K−,K0, K̄0, η
}

. Additional minus signs
arise from interchanging fermions and some diagrams need
to be multiplied by spin exchange operators in order to be
consistent with the form set up in Equation (70). As defined
before, the baryons B1, B2, and B3 belong to the spin-spaces 1,
2, and 3, respectively.

4.3. Two-Meson Exchange Component
The two-meson exchange diagram of Figure 8 includes the vertex
arising from the Lagrangian in Equation (56). Furthermore the
well-known O(q2) meson-baryon Lagrangian [139] is necessary.
For the two-meson exchange diagram of Figure 8 we need in
addition to the Lagrangian in Equation (56) the well-known
O(q2) meson-baryon Lagrangian [139]. The relevant terms are
[140]

L = bD〈B̄{χ+,B}〉 + bF〈B̄[χ+,B]〉 + b0〈B̄B〉 〈χ+〉
+ b1〈B̄[uµ, [uµ,B]]〉 + b2〈B̄{uµ, {uµ,B}}〉
+ b3〈B̄{uµ, [uµ,B]}〉 + b4〈B̄B〉 〈uµuµ〉
+ id1〈B̄{[uµ, uν], σµνB}〉
+ id2〈B̄[[uµ, uν], σµνB]〉
+ id3〈B̄uµ〉〈uνσµνB〉 , (79)

with uµ = − 1
f0

∂µφ + O(φ3) and χ+ = 2χ − 1
4f 20

{φ, {φ,χ}}
+O(φ4), where

χ =





m2
π 0 0
0 m2

π 0

0 0 2m2
K −m2

π



 . (80)

The terms proportional to bD, bF , b0 break explicitly SU(3) flavor
symmetry, because of different meson masses mK 6= mπ . The
LECs of Equation (79) are related to the conventional LECs of
the nucleonic sector by [155, 156]

c1 =
1

2
(2b0 + bD + bF) ,

c3 = b1 + b2 + b3 + 2b4 ,

c4 = 4(d1 + d2) . (81)

To obtain the potential of the two-meson exchange diagram of
Figure 8, the generic diagram of Figure 9B can be considered.
It includes the baryons i, j, k in the initial state, the baryons
l,m, n in the final state, and two exchanged mesons φ1 and
φ2. The spin spaces corresponding to the baryon bilinears are
denoted by A,B,C and they are aligned with the three initial
baryons. The momentum transfers carried by the virtual mesons
are Eqli = Epl − Epi and Eqnk = Epn − Epk. One obtains the generic
transition amplitude

V = − 1

4f 40

EσA · Eqli EσC · Eqnk
(Eq 2

li
+m2

φ1
)(Eq 2

nk
+m2

φ2
)

×
(

N′
1 + N′

2 Eqli · Eqnk + N′
3 i (Eqli × Eqnk) · EσB

)

, (82)

with N′
i linear combinations of the low-energy constants of the

three involved vertices. The complete three-body potential for a
transition B1B2B3 → B4B5B6 can be calculated by summing up
the contributions of all 18 distinguable Feynman diagrams and
by summing over all possible exchanged mesons. If the baryon
lines are not in the configuration 1–4, 2–5, and 3–6 additional
(negative) spin-exchange operators have to be included.

4.4. 3NN Three-Baryon Potentials
In order to give a concrete example the explicit expression
for the 3NN three-body potentials in spin-, isospin-, and
momentum-space are presented for the contact interaction and
one- and two-pion exchange contributions [120]. The potentials
are calculated in the particle basis and afterwards rewritten into
isospin operators.

The 3NN contact interaction is described by the
following potential

V3NN
ct = C′

1 (1− Eσ2 · Eσ3)(3+ Eτ2 · Eτ3)
+ C′

2 Eσ1 · (Eσ2 + Eσ3) (1− Eτ2 · Eτ3)
+ C′

3 (3+ Eσ2 · Eσ3)(1− Eτ2 · Eτ3) , (83)

where the primed constants are linear combinations of C1 . . .C18

of Equation (71). The symbols Eσ and Eτ denote the usual Pauli
matrices in spin and isospin space. The constant C′

1 appears only
in the transition with total isospin I = 1. The constants C′

2 and
C′
3 contribute for total isospin I = 0.
For the 3NN one-pion exchange three-body potentials,

various diagrams are absent due to the vanishing 33π-vertex,
which is forbidden by isospin symmetry. One obtains the
following potential

V3NN
OPE =− gA

2f 20

×
( Eσ2 · Eq52
Eq 2
52 +m2

π

Eτ2 · Eτ3
[

(D′
1 Eσ1 + D′

2 Eσ3) · Eq52
]

+ Eσ3 · Eq63
Eq 2
63 +m2

π

Eτ2 · Eτ3
[

(D′
1 Eσ1 + D′

2 Eσ2) · Eq63
]

+ P
(σ )
23 P

(τ )
23 P

(σ )
13

Eσ2 · Eq62
Eq 2
62 +m2

π

Eτ2 · Eτ3
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×
[

− D′
1 + D′

2

2
(Eσ1 + Eσ3) · Eq62

+ D′
1 − D′

2

2
i (Eσ3 × Eσ1) · Eq62

]

+ P
(σ )
23 P

(τ )
23 P

(σ )
12

Eσ3 · Eq53
Eq 2
53 +m2

π

Eτ2 · Eτ3

×
[

− D′
1 + D′

2

2
(Eσ1 + Eσ2) · Eq53

− D′
1 − D′

2

2
i (Eσ1 × Eσ2) · Eq53

]
)

, (84)

with only two constants D′
1 and D′

2, which are linear
combinations of the constants D1 . . .D14. Exchange operators in

spin space P
(σ )
ij = 1

2 (1 + Eσi · Eσj) and in isospin space P
(τ )
ij =

1
2 (1+ Eτi · Eτj) have been introduced.

The 3NN three-body interaction generated by two-pion
exchange is given by

V3NN
TPE = g2A

3f 40

Eσ3 · Eq63 Eσ2 · Eq52
(Eq 2

63 +m2
π )(Eq 2

52 +m2
π )

Eτ2 · Eτ3

×
(

− (3b0 + bD)m
2
π + (2b2 + 3b4) Eq63 · Eq52

)

− P
(σ )
23 P

(τ )
23

g2A
3f 40

Eσ3 · Eq53 Eσ2 · Eq62
(Eq 2

53 +m2
π )(Eq 2

62 +m2
π )

Eτ2 · Eτ3

×
(

− (3b0 + bD)m
2
π + (2b2 + 3b4) Eq53 · Eq62

)

. (85)

Due to the vanishing of the33π vertex, only those two diagrams
contribute, where the (final and initial)3 hyperon are attached to
the central baryon line.

4.5. Three-Baryon Force Through Decuplet
Saturation
Low-energy two- and three-body interactions derived from
SU(2) χEFT are used consistently in combination with each
other in nuclear few- and many-body calculations. The a
priori unknown low-energy constants are fitted, for example,
to NN scattering data and 3N observables such as 3-body
binding energies [78]. Some of these LECs are, however, large
compared to their order of magnitude as expected from the
hierarchy of nuclear forces in Figure 5. This feature has its
physical origin in strong couplings of the πN-system to the
low-lying 1(1232)-resonance. It is therefore, natural to include
the 1(1232)-isobar as an explicit degree of freedom in the
chiral Lagrangian (cf. [157–159]). The small mass difference
between nucleons and deltas (293 MeV) introduces a small scale,
which can be included consistently in the chiral power counting
scheme and the hierarchy of nuclear forces. The dominant
parts of the three-nucleon interaction mediated by two-pion
exchange at NNLO are then promoted to NLO through the
delta contributions. The appearance of the inverse mass splitting
explains the large numerical values of the corresponding LECs
[13, 160].

In SU(3) χEFT the situation is similar. In systems with
strangeness S = −1 like 3NN, resonances such as the

spin-3/2 6∗(1385)-resonance play a similar role as the 1 in
the NNN system, as depicted in Figure 4 on the right side.
The small decuplet-octet mass splitting (in the chiral limit),
1 : = M10 − M8, is counted together with external momenta
and meson masses as O(q) and thus parts of the NNLO
three-baryon interaction are promoted to NLO by the explicit
inclusion of the baryon decuplet, as illustrated in Figure 10.
It is therefore likewise compelling to treat the three-baryon
interaction together with the NLO hyperon-nucleon interaction
of section 3. Note that in the nucleonic sector, only the
two-pion exchange diagram with an intermediate 1-isobar is
allowed. Other diagrams are forbidden due to the Pauli principle,
as we will show later. For three flavors more particles are
involved and, in general, also the other diagrams (contact and
one-meson exchange) with intermediate decuplet baryons in
Figure 10 appear.

The large number of unknown LECs presented in the previous
subsections is related to the multitude of three-baryonmultiplets,
with strangeness ranging from 0 to −6. For selected processes
only a small subset of these constants contributes as has been
exemplified for the 3NN three-body interaction. In this section
we present the estimation of these LECs by resonance saturation
as done in Petschauer et al. [121].

The leading-order non-relativistic interaction Lagrangian
between octet and decuplet baryons (see, e.g., [161]) is

L = C

f0

3
∑

a,b,c,d,e=1

ǫabc

(

T̄ade
ES† ·

(

E∇φdb

)

Bec

+ B̄ceES ·
(

E∇φbd

)

Tade

)

, (86)

where the decuplet baryons are represented by the totally
symmetric three-index tensor T (cf. Equation 23). At this order
only a single LEC C appears. Typically the (large-Nc) value
C = 3

4 gA ≈ 1 is used, as it leads to a decay width Ŵ(1 →
πN) = 110.6 MeV that is in good agreement with the empirical
value of Ŵ(1 → πN) = (115 ± 5) MeV [158]. The spin 1

2

to 3
2 transition operators ES connect the two-component spinors

of octet baryons with the four-component spinors of decuplet
baryons (see e.g., [162]). In their explicit form they are given as
2× 4 transition matrices

S1 =
(

− 1√
2

0 1√
6

0

0 − 1√
6

0 1√
2

)

,

S2 =
(

− i√
2

0 − i√
6

0

0 − i√
6

0 − i√
2

)

,

S3 =




0
√

2
3 0 0

0 0
√

2
3 0



 . (87)
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FIGURE 10 | Hierarchy of three-baryon forces with explicit introduction of the baryon decuplet (represented by double lines).

FIGURE 11 | Saturation via decuplet resonances. (A) Saturation of the six-baryon contact interaction. (B) Saturation of the BB → BBφ vertex. (C) Saturation of the

NLO baryon-meson vertex.

These operators fulfill the relation SiSj
† = 1

3 (2δij − iǫijkσk).
A non-relativistic B∗BBB Lagrangian with a minimal set of

terms is given by [121]:

L = H1

3
∑

a,b,c,
d,e,f=1

ǫabc
[
(

T̄ade
ES†Bdb

)

·
(

B̄fc EσBef
)

+
(

B̄bdES Tade

)

·
(

B̄fe EσBcf
) ]

+H2

3
∑

a,b,c,
d,e,f=1

ǫabc
[
(

T̄ade
ES†Bfb

)

·
(

B̄dc EσBef
)

+
(

B̄bf ES Tade

)

·
(

B̄fe EσBcd
) ]

, (88)

with the LECsH1 andH2. Again one can employ group theory to
justify the number of two constants for a transition BB → B∗B. In
flavor space the two initial octet baryons form the tensor product
8⊗8, and in spin space they form the product 2⊗2. These tensor
products can be decomposed into irreducible representations:

8⊗ 8 = 27⊕ 8s ⊕ 1
︸ ︷︷ ︸

symmetric

⊕ 10⊕ 10∗ ⊕ 8a
︸ ︷︷ ︸

antisymmetric

,

2⊗ 2 = 1a ⊕ 3s . (89)

In the final state, having a decuplet and an octet baryon, the
situation is similar:

10⊗ 8 = 35⊕ 27⊕ 10⊕ 8 ,

4⊗ 2 = 3⊕ 5 . (90)

As seen in the previous sections, at leading order only S-wave
transitions occur, as no momenta are involved. Transitions are
only allowed between the same types of irreducible (flavor and
spin) representations. Therefore, in spin space the representation
3 has to be chosen. Because of the Pauli principle in the
initial state, the symmetric 3 in spin space combines with the
antisymmetric representations 10, 10∗, 8a in flavor space. But
only 10 and 8a have a counterpart in the final state flavor space.
This number of two allowed transitions matches the number
of two LECs in the minimal Lagrangian. Another interesting
observation can be made from Equations (89) and (90). For NN
states only the representations 27 and 10∗ can contribute, as can
be seen, e.g., in Table 3. But these representations combine either
with the wrong spin, or have no counterpart in the final state.
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Therefore, NN → 1N transitions in S-waves are not allowed
because of the Pauli principle.

Having the above two interaction types at hand, one can
estimate the low-energy constants of the leading three-baryon
interaction by decuplet saturation using the diagrams shown in
Figure 10. At this order, where no loops are involved, one just
needs to evaluate the diagrams with an intermediate decuplet
baryon and the diagrams without decuplet baryons and compare
them with each other.

In order to estimate the LECs of the six-baryon contact
Lagrangian of Equation (71), one can consider the process
B1B2B3 → B4B5B6 as depicted in Figure 11A. The left side
of Figure 11A has already been introduced in the previous
subsection and can be obtained by performing all 36 Wick
contractions. For the diagrams on right side of Figure 11A

the procedure is similar. After summing over all intermediate
decuplet baryons B∗, the full three-body potential of all possible
combinations of baryons on the left side of Figure 11A can be
compared with the ones on the right side. In the end the 18 LECs
of the six-baryon contact Lagrangian C1, . . . ,C18 of Equation
(71) can be expressed as linear combinations of the combinations
H2
1 , H

2
2 and H1H2 and are proportional to the inverse average

decuplet-octet baryon mass splitting 1/1 [121].
Since we are at the leading order only tree-level diagrams

are involved and we can estimate the LECs of the one-meson-
exchange part of the three-baryon forces already on the level
of the vertices, as depicted in Figure 11B. We consider the
transition matrix elements of the process B1B2 → B3B4φ and
start with the left side of Figure 11B. After doing all possible
Wick contractions, summing over all intermediate decuplet
baryons, and comparing the left side of Figure 11B with the right
hand side for all combinations of baryons and mesons, the LECs
can be estimated. The LECs of the minimal non-relativistic chiral
Lagrangian for the four-baryon vertex including one meson of
Equation (77) D1, . . . ,D14 are then proportional to C/1 and to
linear combinations of H1 and H2 [121].

The last class of diagrams is the three-body interaction with
two-meson exchange. As done for the one-meson exchange, the
unknown LECs can be saturated directly on the level of the
vertex and one can consider the process B1φ1 → B2φ2 as
shown in Figure 11C. A direct comparison of the transition
matrix elements for all combinations of baryons and mesons
after summing over all intermediate decuplet baryons B∗ leads
to the following contributions to the LECs of the meson-baryon
Lagrangian in Equation (79):

bD = 0 , bF = 0 , b0 = 0 ,

b1 =
7C2

361
, b2 =

C2

41
, b3 = − C2

31
, b4 = − C2

21
,

d1 =
C2

121
, d2 =

C2

361
, d3 = − C2

61
, (91)

These findings are consistent with the 1(1232) contribution to
the LECs c1, c3, c4 (see Equation 81) in the nucleonic sector
[157, 160]:

c1 = 0 , c3 = −2c4 = − g2A
21

. (92)

FIGURE 12 | Effective two-baryon interaction from genuine three-baryon

forces. Contributions arise from two-pion exchange (1), (2a), (2b), (3), one-pion

exchange (4), (5a), (5b), and the contact interaction (6).

Employing the LECs obtained via decuplet saturation, the
constants of the 3NN interaction (contact interaction, one-pion
and two-pion exchange) of section 4.4 can be evaluated:

C′
1 = C′

3 =
(H1 + 3H2)

2

721
, C′

2 = 0 ,

D′
1 = 0 , D′

2 =
2C(H1 + 3H2)

91
,

3b0 + bD = 0 , 2b2 + 3b4 = − C2

1
. (93)

Obviously, the only unknown constant here is the combination
H′ = H1 + 3H2. It is also interesting to see, that the (positive)
sign of the constantsC′

i for the contact interaction is already fixed,
independently of the values of the two LECs H1 and H2.

4.6. Effective In-medium Two-Baryon
Interaction
In this subsection we summarize how the effect of three-
body force in the presence of a (hyper)nuclear medium can
be incorporated in an effective baryon-baryon potential. In
Holt et al. [163], the density-dependent corrections to the
NN interaction have been calculated from the leading chiral
three-nucleon forces. This work has been extended to the
strangeness sector in Petschauer et al. [121]. In order to obtain
an effective baryon-baryon interaction from the irreducible 3BFs
in Figure 8, two baryon lines have been closed, which represents
diagrammatically the sum over occupied states within the Fermi
sea. Such a “medium insertion” is symbolized by short double
lines on a baryon propagator. All types of diagrams arising this
way are shown in Figure 12.

In Petschauer et al. [121], the calculation is restricted to
the contact term and to the contributions from one- and two-
pion exchange processes, as they are expected to be dominant.
When computing the diagrams of Figure 8 the medium insertion

corresponds to a factor −2πδ(k0)θ(kf − |Ek|). Furthermore, an
additional minus sign comes from a closed fermion loop. The
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effective two-body interaction can also be calculated from the
expressions for the three-baryon potentials of Petschauer et al.
[120] via the relation

V12 =
∑

B

trσ3

∫

|Ek|≤kB
f

d3k

(2π)3
V123 , (94)

where trσ3 denotes the spin trace over the third particle and where
a summation over all baryon species B in the Fermi sea (with
Fermi momentum kB

f
) is done.

As an example of such an effective interaction, we display
the effective 3N interaction in nuclear matter (with ρp 6=
ρn) derived in Petschauer et al. [121]. It is determined from
two-pion-exchange, one-pion-exchange and contact3NN three-
body forces. Only the expressions for the 3n potential are shown
as the 3p potential can be obtained just by interchanging the
Fermi momenta k

p

f
with kn

f
(or the densities ρp with ρn) in the

expressions for 3n. In the following formulas the sum over the
contributions from the protons and neutrons in the Fermi sea
is already employed. Furthermore, the values of the LECs are
already estimated via decuplet saturation (see section 4.5). The
topologies (1), (2a), and (2b) vanish here because of the non-
existence of an isospin-symmetric 33π vertex. One obtains the
density-dependent 3n potential in a nuclear medium

Vmed,ππ
3n = C2g2A

12π2f 40 1

{

1

4

[8

3
(knf

3 + 2k
p

f

3
)− 4(q2 + 2m2)Ŵ̃0(p)− 2q2Ŵ̃1(p)

+ (q2 + 2m2)2G̃0(p, q)
]

+ i

2
(Eq× Ep ) · Eσ2

(

2Ŵ̃0(p)+ 2Ŵ̃1(p)

− (q2 + 2m2)(G̃0(p, q)+ 2G̃1(p, q))
)
}

, (95)

Vmed,π
3n = gACH

′

54π2f 20 1

(

2(knf
3 + 2k

p

f

3
)− 3m2Ŵ̃0(p)

)

, (96)

Vmed,ct
3n = H′2

181
(ρn + 2ρp) . (97)

The different topologies related to two-pion exchange [(1), (2a),
(2b), (3)] and one-pion exchange [(4), (5a), (5b)] have already
been combined in Vmed,ππ and Vmed,π , respectively. The density
and momentum dependent loop functions Ŵ̃i(p) and G̃i(p, q) can
be found in Petschauer et al. [121]. The only spin-dependent
term is the one proportional to Eσ2 = 1

2 (Eσ1 + Eσ2) − 1
2 (Eσ1 − Eσ2)

and therefore one recognizes a symmetric and an antisymmetric
spin-orbit potential of equal but opposite strength.

5. APPLICATIONS

5.1. Hyperon-Nucleon and
Hyperon-Hyperon Scattering
With the hyperon-nucleon potentials outlined in section 3
hyperon-nucleon scattering processes can be investigated. The
very successful approach to the nucleon-nucleon interaction
of Epelbaum et al. [147, 149, 150] within SU(2) χEFT, has
been extended to the leading-order baryon-baryon interaction in
Polinder et al. [29, 30] and Haidenbauer and Meißner [31] by
the Bonn-Jülich group. In Haidenbauer et al. [33, 35, 36], this
approach has been extended to next-to-leading order in SU(3)
chiral effective field theory. As mentioned in section 2.4, the
chiral power counting is applied to the potential, where only two-
particle irreducible diagrams contribute. These potentials are
then inserted into a regularized Lippmann-Schwinger equation
to obtain the reaction amplitude (or T-matrix). In contrast to
the NN interaction, the Lippmann-Schwinger equation for the
YN interaction involves not only coupled partial waves, but also
coupled two-baryon channels. The coupled-channel Lippmann-
Schwinger equation in the particle basis reads after partial-wave
decomposition (see also Figure 2)

T
ρ′′ρ′ ,J
ν′′ν′ (k′′, k′;√s) = V

ρ′′ρ′,J
ν′′ν′ (k′′, k′)

+
∑

ρ,ν

∫ ∞

0

dk k2

(2π)3
V

ρ′′ρ ,J
ν′′ν (k′′, k)

× 2µν

k2ν − k2 + iǫ
T

ρρ′,J
νν′ (k, k′;√s) , (98)

where J denotes the conserved total angular momentum. The
coupled two-particle channels (3p,6+n,60p,. . . ) are labeled
by ν, and the partial waves (1S0,

3P0, . . .) by ρ. Furthermore,
µν is the reduced baryon mass in channel ν. In Haidenbauer
et al. [33], a non-relativistic scattering equation has been chosen
to ensure that the potential can also be applied consistently
to Faddeev and Faddeev-Yakubovsky calculations in the few-
body sector, and to (hyper-) nuclear matter calculations within
the conventional Brueckner-Hartree-Fock formalism (see section
5.2). Nevertheless, the relativistic relation between the on-shell
momentum kν and the center-of-mass energy has been used,
√
s =

√

M2
B1,ν

+ k2ν +
√

M2
B2,ν

+ k2ν , in order to get the two-

particle thresholds at their correct positions. The physical baryon
masses have been used in the Lippmann-Schwinger equation,
which introduces some additional SU(3) symmetry breaking.
Relativistic kinematics has also been used to relate the laboratory
momentum plab of the hyperon to the center-of-mass energy√
s. The Coulomb interaction has been implemented by the

use of the Vincent-Phatak method [147, 164]. Similar to the
nucleonic sector at NLO [147], a regulator function of the form
fR(3) = exp[−(k′4 + k4)/34] is employed to cut off the high-
energy components of the potential. For higher orders in the
chiral power counting, higher powers than 4 in the exponent of
fR have to be used. This ensures that the regulator introduces
only contributions, that are beyond the given order. The cutoff
3 is varied in the range (500 . . . 700) MeV, i.e., comparable
to what was used for the NN interaction in Epelbaum et al.
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FIGURE 13 | Total cross section σ as a function of plab. The red (dark) band shows the chiral EFT results to NLO for variations of the cutoff in the range

3 = (500 . . .650) MeV [33], while the green (light) band are results to LO for 3 = (550 . . .700) MeV [29]. The dashed curves are the result of the Jülich ’04

meson-exchange potential [21], the dash-dotted curves of the Nijmegen NSC97f potential [20].

[147]. The resulting bands represent the cutoff dependence, after
readjusting the contact parameters, and thus could be viewed as a
lower bound on the theoretical uncertainty. Recently, improved
schemes to estimate the theoretical uncertainty were proposed
and applied to the NN interaction [165–168]. Some illustrative
results for YN scattering based on the method by Epelbaum
et al. [166, 168] have been included in Haidenbauer et al. [34].
However, such schemes require higher orders than NLO in the
chiral power counting if one wants to address questions like the
convergence of the expansion.

The partial-wave contributions of the meson-exchange
diagrams are obtained by employing the partial-wave
decomposition formulas of Polinder et al. [29]. For further
remarks on the employed approximations and the fitting strategy
we refer the reader to Haidenbauer et al. [33]. As can be seen
in Table 3, one gets for the YN contact terms five independent
LO constants, acting in the S-waves, eight additional constants
at NLO in the S-waves, and nine NLO constant acting in the
P-waves. The contact terms represent the unresolved short-
distance dynamics, and the corresponding low-energy constants
are fitted to the “standard” set of 36 YN empirical data points
[169–174]. The hypertriton (33H) binding energy has been
chosen as a further input. It determines the relative strength
of the spin-singlet and spin-triplet S-wave contributions of the
3p interaction. Due to the sparse and inaccurate experimental
data, the obtained fit of the low-energy constants is not unique.
For instance, the YN data can be described equally well with
a repulsive or an attractive interaction in the 3S1 partial wave
of the 6N interaction with isospin I = 3/2. However, recent
calculations from lattice QCD [3, 4] suggest a repulsive 3S1
phase shift in the 6N I = 3/2 channel, hence the repulsive
solution has been adopted. Furthermore, this is consistent
with empirical information from 6−-production on nuclei,

which point to a repulsive 6-nucleus potential (see also
section 5.2).

In the following we present some of the results of Haidenbauer
et al. [33]. For comparison, results of the Jülich ’04 [21] and
the Nijmegen [20] meson-exchange models are also shown in
the figures. In Figure 13, the total cross sections as functions of
plab for various YN interactions are presented. The experimental
data is well reproduced at NLO. Especially the results in the
3p channel are in line with the data points (also at higher
energies) and the energy dependence in the 6+p channel is
significantly improved at NLO. It is also interesting to note that
the NLO results are now closer to the phenomenological Jülich
’04model than at LO. One expects the theoretical uncertainties to
become smaller, when going to higher order in the chiral power
counting. This is reflected in the fact, that the bands at NLO are
considerably smaller than at LO. These bands represent only the
cutoff dependence and therefore constitute a lower bound on the
theoretical error.

In Table 5, the scattering lengths and effective range
parameters for the 3p and 6+p interactions in the 1S0 and
3S1 partial waves are given. Result for LO [29] and NLO
χEFT [33], for the Jülich ’04 model [21] and for the Nijmegen
NSC97f potential [20] are shown. The NLO 3p scattering
lengths are larger than for the LO calculation, and closer to
the values obtained by the meson-exchange models. The triplet
6+p scattering length is positive in the LO as well as the
NLO calculation, which indicates a repulsive interaction in this
channel. Also given in Table 5 is the hypertriton binding energy,
calculated with the corresponding chiral potentials. As stated
before, the hypertriton binding energy was part of the fitting
procedure and values close to the experimental value could be
achieved. The predictions for the 3

3H binding energy are based
on the Faddeev equations in momentum space, as described in
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TABLE 5 | The YN singlet (s) and triplet (t) scattering length a and effective range r

(in fm) and the hypertriton binding energy EB (in MeV) [33].

NLO LO Jül ’04 NSC97f

3 [MeV] 450 500 550 600 650 700 600

a
3p
s −2.90 −2.91 −2.91 −2.91 −2.90 −2.90 −1.91 −2.56 −2.60

r
3p
s 2.64 2.86 2.84 2.78 2.65 2.56 1.40 2.74 3.05

a
3p
t −1.70 −1.61 −1.52 −1.54 −1.51 −1.48 −1.23 −1.67 −1.72

r
3p
t 3.44 3.05 2.83 2.72 2.64 2.62 2.13 2.93 3.32

a
6+p
s −3.58 −3.59 −3.60 −3.56 −3.46 −3.49 −2.32 −3.60 −4.35

r
6+p
s 3.49 3.59 3.56 3.54 3.53 3.45 3.60 3.24 3.16

a
6+p
t 0.48 0.49 0.49 0.49 0.48 0.49 0.65 0.31 −0.25

r
6+p
t −4.98 −5.18 −5.03 −5.08 −5.41 −5.18 −2.78 −12.2 −28.9

(33H) EB −2.39 −2.33 −2.30 −2.30 −2.30 −2.32 −2.34 −2.27 −2.30

The binding energies for the hypertriton are calculated using the Idaho-N3LO NN potential

[151]. The experimental value for the 3
3H binding energy is −2.354(50) MeV.

Nogga [49, 175]. Note that genuine (irreducible) three-baryon
interactions were not included in this calculation. However, in the
employed coupled-channel formalism, effects like the important
3-6 conversion process are naturally included. It is important to
distinguish such iterated two-body interactions, from irreducible
three-baryon forces, as exemplified in Figure 4.

Predictions for S- and P-wave phase shifts δ as a function
of plab for 3p and 6+p scattering are shown in Figure 14. The
1S0 3p phase shift from the NLO χEFT calculation is closer
to the phenomenological Jülich ’04 model than the LO result.
It points to moderate attraction at low momenta and strong
repulsion at higher momenta. At NLO the phase shift has a
stronger downward bending at higher momenta compared to LO
or the Jülich ’04model. As stated before, more repulsion at higher
energies is a welcome feature in view of neutron star matter with
3-hyperons as additional baryonic degree of freedom. The 3S1
3p phase shift, part of the S-matrix for the coupled 3S1-

3D1

system, changes qualitatively from LO to NLO. The 3S1 phase
shift of the NLO interaction passes through 90◦ slightly below
the 6N threshold, which indicates the presence of an unstable
bound state in the 6N system. For the LO interaction and the
Jülich ’04 model no passing through 90◦ occurs and a cusp is
predicted, that is caused by an inelastic virtual state in the 6N
system. These effects are also reflected by a strong increase of
the 3p cross section close to the 6N threshold (see Figure 13).
The 3S1 6N phase shift for the NLO interaction is moderately
repulsive and comparable to the LO phase shift.

Recently an alternative NLO χEFT potential for YN scattering
has been presented [34]. In that work a different strategy for
fixing the low-energy constants that determine the strength
of the contact interactions is adopted. The objective of that
exploration was to reduce the number of LECs that need to
be fixed in a fit to the 3N and 6N data by inferring some of
them from the NN sector via the underlying SU(3) symmetry (cf.
section 3.1). Indeed, correlations between the LO and NLO LECs
of the S-waves, i.e., between the c̃’s and c’s, had been observed

already in the initial YN study [33] and indicated that a unique
determination of them by considering the existing 3N and 6N
data alone is not possible. It may be not unexpected in view of
those correlations, that the variant considered in Haidenbauer
et al. [34] yields practically equivalent results for 3N and
6N scattering observables. However, it differs considerable in
the strength of the 3N → 6N transition potential and
that becomes manifest in applications to few- and many-body
systems [34, 176].

There is very little empirical information about baryon-
baryon systems with S = −2, i.e., about the interaction in the
33, 66, 36, and 4N channels. Actually, all one can find in
the literature [36] are a few values and upper bounds for the
4−p elastic and inelastic cross sections [177, 178]. In addition
there are constraints on the strength of the 33 interaction
from the separation energy of the 6

33He hypernucleus [179].
Furthermore estimates for the 33 1S0 scattering length exist
from analyses of the33 invariant mass measured in the reaction
12C(K−,K+33X) [180] and of 33 correlations measured in
relativistic heavy-ion collisions [181].

Despite the rather poor experimental situation, it turned out
that SU(3)-symmetry breaking contact terms that arise at NLO
(see section 3.1), need to be taken into account when going from
strangeness S = −1 to S = −2 in order to achieve agreement
with the available measurements and upper bounds for the 33

and 4N cross sections [36]. This concerns, in particular, the LEC
c1χ that appears in the 1S0 partial wave (cf. Equation 54). Actually,

its value can be fixed by considering the pp and 6+p systems,
as shown in Haidenbauer et al. [35], and then employed in the
33 system.

Selected results for the strangeness S = −2 sector are
presented in Figure 15. Further results and a detailed description
of the interactions can be found in Polinder et al. [30],
Haidenbauer et al. [35, 36], and Haidenbauer and Meißner
[37]. Interestingly, the results based on the LO interaction from
Polinder et al. [30] (green/gray bands) are consistent with all
empirical constraints. The cross sections at LO are basically
genuine predictions that follow from SU(3) symmetry utilizing
LECs fixed from a fit to the 3N and 6N data on the LO level.
The 33 1S0 scattering length predicted by the NLO interaction
is a33 = −0.70 · · · −0.62 fm [36]. These values are well
within the range found in the aforementioned analyses which
are a33 = (−1.2 ± 0.6) fm [180] and −1.92 < a33 < −0.50
fm [181], respectively. The values for the 40p and 40n S-wave
scattering length are likewise small and typically in the order of
±0.3 ∼ ±0.6 fm [36] and indicate that the 4N interaction has to
be relatively weak in order to be in accordance with the available
empirical constraints. Indeed, the present results obtained in
chiral EFT up to NLO imply that the published values and upper
bounds for the 4−p elastic and inelastic cross sections [177, 178]
practically rule out a somewhat stronger attractive 4N force.

Also for 4N scattering an alternative NLO χEFT
potential has been presented recently [37]. Here the aim
is to explore the possibility to establish a 4N interaction
that is still in line with all the experimental constraints for
33 and 4N scattering, but at the same time is somewhat
more attractive. Recent experimental evidence for the
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FIGURE 14 | Various S- and P-wave phase shifts δ as a function of plab for the 3p and 6+p interaction [33]. Same description of curves as in Figure 13.

FIGURE 15 | 4−p induced cross sections. The bands represent results at NLO (red/black) [36] and LO (green/gray) [30]. Experiments are from Ahn et al. [178], Kim

et al. [unpublished data], and Aoki et al. [177]. Upper limits are indicated by arrows.

existence of 4-hypernuclei [182] suggests that the in-
medium interaction of the 4-hyperon should be moderately
attractive [183].

5.2. Hyperons in Nuclear Matter
Experimental investigations of nuclear many-body systems
including strange baryons, for instance, the spectroscopy of

hypernuclei, provide important constraints on the underlying
hyperon-nucleon interaction. The analysis of data for single 3-
hypernuclei over a wide range in mass number leads to the result,
that the attractive 3 single-particle potential is about half as
deep (≈ −28 MeV) as the one for nucleons [184, 185]. At the
same time the 3-nuclear spin-orbit interaction is found to be
exceptionally weak [186, 187]. Recently, the repulsive nature of
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the 6-nuclear potential has been experimentally established in
6−-formation reactions on heavy nuclei [188]. Baryon-baryon
potentials derived within χEFT as presented in section 3 are
consistent with these observations [75, 76]. In this section
we summarize results of hyperons in infinite homogeneous
nuclear matter of Petschauer et al. [76] obtained by employing
the interaction potentials from χEFT as microscopic input.
The many-body problem is solved within first-order Brueckner
theory. A detailed introduction can be found, e.g., in Day [69],
Baldo [189], and Fetter and Walecka [190].

Brueckner theory is founded on the so-called Goldstone
expansion, a linked-cluster perturbation series for the ground
state energy of a fermionic many-body system. Let us consider
a system of A identical fermions, described by the Hamiltonian

H = T + V , (99)

where T is the kinetic part and V corresponds to the two-body
interaction. The goal is to calculate the ground state energy of
this interacting A-body system. It is advantageous to introduced
a so-called auxiliary potential, or single-particle potential,U. The
Hamiltonian is then split into two parts

H = (T + U)+ (V − U) = H0 +H1 , (100)

the unperturbed part H0 and the perturbed part H1. One expects
the perturbed part to be small, if the single particle potential
describes well the averaged effect of the medium on the particle.
In fact, the proper introduction of the auxiliary potential is crucial
for the convergence of Brueckner theory.

Conventional nucleon-nucleon potentials exhibit a strong
short-range repulsion that leads to very large matrix elements.
Hence, the Goldstone expansion in the form described above will
not converge for such hard-core potentials. One way to approach
this problem is the introduction of the so-called Brueckner
reaction matrix, or G-matrix. The idea behind it is illustrated
in Figure 16A. Instead of only using the simple interaction,
an infinite number of diagrams with increasing number of
interactions is summed up. This defines theG-matrix interaction,
which is, in contrast to the bare potential, weak and of reasonable
range. In a mathematical way, the reaction matrix is defined by
the Bethe-Goldstone equation:

G(ω) = V + V
Q

ω −H0 + iǫ
G(ω) , (101)

with the so-called starting energy ω. The Pauli operator Q
ensures, that the intermediate states are from outside the
Fermi sea. As shown in Figure 16A, this equation represents a
resummation of the ladder diagrams to all orders. The arising
G-matrix interaction is an effective interaction of two particles
in the presence of the medium. The medium effects come in
solely through the Pauli operator and the energy denominator
via the single-particle potentials. If we set the single-particle
potentials to zero and omit the Pauli operator (Q = 1), we
recover the usual Lippmann-Schwinger equation for two-body
scattering in vacuum (see also Figure 2). This medium effect
on the intermediate states is denoted by horizontal double

lines in Figure 16A. An appropriate expansion using the G-
matrix interaction instead of the bare potential is the so-called
Brueckner-Bethe-Goldstone expansion, or hole-line expansion.

Finally, the form of the auxiliary potential U needs to be
chosen. This choice is important for the convergence of the hole-
line expansion. Bethe et al. [191] showed for nuclear matter
that important higher-order diagrams cancel each other if the
auxiliary potential is taken as

Um = Re
∑

n≤A

〈mn|G(ω = ωo.s.)|mn〉A , (102)

where the Brueckner reactionmatrix is evaluated on-shell, i.e., the
starting energy is equal to the energy of the two particles m, n in
the initial state:

ωo.s. = E1(k1)+ E2(k2) ,

EBi (ki) = Mi +
k2i
2Mi

+ ReUi(ki) . (103)

Pictorially Equation (102) means, that the single-particle
potential can be obtained by taking the on-shell G-matrix
interaction and by closing one of the baryon lines, as illustrated in
Figure 16B. Note that this implies a non-trivial self-consistency
problem. On the one hand, U is calculated from the G-matrix
elements via Equation (102), and on the other hand the starting
energy of the G-matrix elements depends on U through the
single-particle energies Ei in Equation (103).

At the (leading) level of two hole-lines, called Brueckner-
Hartree-Fock approximation (BHF), the total energy is given by

E =
∑

n≤A

〈n|T|n〉 + 1

2

∑

m,n≤A

〈mn|G|mn〉A

=
∑

n≤A

〈n|T|n〉 + 1

2

∑

n≤A

〈n|U|n〉 , (104)

i.e., the ground-state energy E can be calculated directly after the
single-particle potential has been determined.

The definition ofU in Equation (102) applies only to occupied
states within the Fermi sea. For intermediate-state energies
above the Fermi sea, typically two choices for the single-particle
potential are employed. In the so-called gap choice, the single-
particle potential is given by Equation (102) for k ≤ kF and
set to zero for k > kF , implying a “gap” (discontinuity) in
the single-particle potential. Then only the free particle energies
(M + Ep 2/2M) of the intermediate states appear in the energy
denominator of the Bethe-Goldstone equation (Equation 101)
since the Pauli-blocking operator is zero for momenta below the
Fermi momentum. In the so-called continuous choice Equation
(102) is used for the whole momentum range, hence the single-
particle potentials enter also into the energy denominator. In
Song et al. [192], the equation of state in symmetric nuclear
matter has been considered. It has been shown, that the
result including three hole-lines is almost independent of the
choice of the auxiliary potential. Furthermore, the two-hole
line result with the continuous choice comes out closer to
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FIGURE 16 | Graphical representation of the determination of the single-particle potential from the G-matrix interaction (B) and of the Bethe-Goldstone equation (A).

The symbol ωo.s denotes the on-shell starting energy.

the three hole-line result, than the two-hole line calculation
with the gap choice. Another advantage of the continuous
choice for intermediate spectra is that it allows for a reliable
determination of the single-particle potentials including their
imaginary parts [70]. The results presented here employ the
continuous choice.

In the following we present some results of Petschauer
et al. [76] for the in-medium properties of hyperons, based
on the YN interaction derived from SU(3) χEFT at NLO.
The same potential V as in the Lippmann-Schwinger equation
(Equation 98) for free scattering is used. However, as in
Haidenbauer and Meißner [75] the contact term c8as for
the antisymmetric spin-orbit force in the YN interaction,
allowing spin singlet-triplet transitions, has been fitted to the
weak 3-nuclear spin-orbit interaction [193, 194]. Additionally,
for the ease of comparison, the G-matrix results obtained
with two phenomenological YN potentials, namely of the
Jülich ’04 [21] and the Nijmegen NSC97f [20] meson-exchange
models, are given. Note that, like the EFT potentials, these
phenomenological YN interactions produce a bound hypertriton
[49]. For more details about derivation and the commonly
employed approximations, we refer the reader to Reuber et al.
[19], Rijken et al. [20], Kohno et al. [24], Schulze et al. [70],
Vidaña et al. [71].

Let us start with the properties of hyperons in symmetric
nuclear matter. Figure 17 shows the momentum dependence
of the real parts of the 3 single-particle potential. The values
for the depth of the 3 single-particle potential U3(k =
0) at saturation density, kF = 1.35 fm−1, at NLO are
between 27.0 and 28.3 MeV. In the Brueckner-Hartree-Fock
approximation the binding energy of a hyperon in infinite
nuclear matter is given by BY (∞) = −UY (k = 0). The
results of the LO and NLO calculation are consistent with the
empirical value of about U3(0) ≈ −28 MeV [184, 185]. The
phenomenological models (Jülich ’04, Nijmegen NSC97f) lead
to more attractive values of U3(0) = (−35 . . . − 50) MeV,
where the main difference is due to the contribution in the
3S1 partial wave. In contrast to LO, at NLO the 3 single-
particle potential at NLO turns to repulsion at fairly low
momenta around k ≈ 2 fm−1, which is also the case for the
NSC97f potential.

An important quantity of the interaction of hyperons with
heavy nuclei is the strength of the 3-nuclear spin-orbit coupling.

It is experimentally well established [186, 187] that the 3-
nucleus spin-orbit force is very small. For the YN interaction of
Haidenbauer and Meißner [75] it was indeed possible to tune
the strength of the antisymmetric spin-orbit contact interaction
(via the constant c8as), generating a spin singlet-triplet mixing
(1P1 ↔ 3P1), in a way to achieve such a small nuclear
spin-orbit potential.

Results for 6 hyperons in isospin-symmetric nuclear matter
at saturation density are also displayed in Figure 17. Analyses
of data on (π−,K+) spectra related to 6− formation in heavy
nuclei lead to the observation, that the 6-nuclear potential in
symmetric nuclear matter is moderately repulsive [188]. The LO
as well as the NLO results are consistent with this observation.
Meson-exchangemodels often fail to produce such a repulsive6-
nuclear potential. The imaginary part of the 6-nuclear potential
at saturation density is consistent with the empirical value of
−16 MeV as extracted from 6−-atom data [195]. The imaginary
potential is mainly induced by the 6N to 3N conversion in
nuclear matter. The bands representing the cutoff dependence of
the chiral potentials, become smaller when going to higher order
in the chiral expansion.

In Figure 18, the density dependence of the depth of the
nuclear mean-field of 3 or 6 hyperons at rest (k = 0). In order
to see the influence of the composition nuclear matter on the
single-particle potentials, results for isospin-symmetric nuclear
matter, asymmetric nuclear matter with ρp = 0.25ρ and pure
neutron matter are shown. The single-particle potential of the
3 hyperon is almost independent of the composition of the
nuclear medium, because of its isosinglet nature. Furthermore,
it is attractive over the whole considered range of density 0.5 ≤
ρ/ρ0 ≤ 1.5. In symmetric nuclear matter, the three 6 hyperons
behave almost identical (up to small differences from the mass
splittings). When introducing isospin asymmetry in the nuclear
medium a splitting of the single-particle potentials occurs due
to the strong isospin dependence of the 6N interaction. The
splittings among the 6+, 60, and 6− potentials have a non-
linear dependence on the isospin asymmetry which goes beyond
the usual (linear) parametrization in terms of an isovector Lane
potential [196].

Recently the in-medium properties of the 4 have been
investigated for 4N potentials from χEFT [37]. For a
more extensive discussion and further applications see
Kohno [197].
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FIGURE 17 | Momentum dependence of the real part of the single-particle potential of a 3 hyperon and of the real and imaginary parts of the single-particle potential

of a 6 hyperon in isospin-symmetric nuclear matter at saturation density, kF = 1.35 fm−1 [76]. The red band, green band, blue dashed curve, and red dash-dotted

curve are for χEFT NLO, χEFT LO, the Jülich ’04 model and the NSC97f model, respectively.

FIGURE 18 | Density dependence of the hyperon single-particle potentials at k = 0 with different compositions of the nuclear matter, calculated in χEFT at NLO with

a cutoff 3 = 600 MeV [76]. The green solid, red dashed and blue dash-dotted curves are for ρp = 0.5ρ, ρp = 0.25ρ, and ρp = 0, respectively.

5.3. Hypernuclei and Hyperons in Neutron
Stars
The density-dependent single-particle potentials of hyperons
interacting with nucleons in nuclear and neutron matter find
their applications in several areas of high current interest:
the physics of hypernuclei and the role played by hyperons
in dense baryonic matter as it is realized in the core of
neutron stars.

From hypernuclear spectroscopy, the deduced attractive
strength of the phenomenological 3-nuclear Woods-Saxon
potential is U0 ≃ −30 MeV at the nuclear center [183].
This provides an important constraint for U3(k = 0) at
ρ = ρ0. The non-existence of bound 6-hypernuclei, on
the other hand, is consistent with the repulsive nature of the
6-nuclear potential as shown in Figure 18. In this context

effects of YNN three-body forces are a key issue. While
their contributions at normal nuclear densities characteristic of
hypernuclei are significant but modest, they play an increasingly
important role when extrapolating to high baryon densities in
neutron stars.

First calculations of hyperon-nuclear potentials based on

chiral SU(3) EFT and using Brueckner theory have been

reported in Haidenbauer et al. [176] and Kohno [122].

Further investigations of (finite) 3 hypernuclei utilizing

the EFT interactions can be found in Haidenbauer and

Vidana [198], based on the formalism described in Vidaña
[199]. For even lighter hypernuclei, the interactions are also
currently studied [200, 201]. Examples of three- and four-
body results can be found in Haidenbauer et al. [34, 202] and
Nogga [49, 175].
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FIGURE 19 | The 3 single-particle potential U3(p3 = 0, ρ) as a function of ρ/ρ0 in symmetric nuclear matter (A) and in neutron matter (B). The solid (red) band shows

the chiral EFT results at NLO for cutoff variations 3 = 450−500 MeV. The dotted (blue) band includes the density-dependent 3N-interaction derived from the 3NN

three-body force. The dashed curve is the result of the Jülich ’04 meson-exchange model [21], the dash-dotted curve that of the Nijmegen NSC97f potential [20],

taken from Yamamoto et al. [204].

Here we give a brief survey of 3-nuclear interactions for
hypernuclei and extrapolations to high densities relevant to
neutron stars, with special focus on the role of the (a priori
unknown) contact terms of the 3NN three-body force. Details
can be found in Haidenbauer et al. [176]. Further extended work
including explicit 3-body coupled channels (3NN ↔ 6NN) in
the Brueckner-Bethe-Goldstone equation is proceeding [203].

Results for the density dependence of the 3 single-particle
potential are presented in Figure 19 for symmetric nuclear
matter (Figure 19A) and for neutron matter (Figure 19B).
Predictions from the chiral SU(3) EFT interactions (bands) are
shown in comparison with those for meson-exchange YN models
constructed by the Jülich [21] (dashed line) and Nijmegen [20]
(dash-dotted line) groups. One observes an onset of repulsive
effects around the saturation density of nuclear matter, i.e., ρ =
ρ0. The repulsion increases strongly as the density increases.
Already around ρ ≈ 2ρ0, U3(0, ρ) turns over to net repulsion.

Let us discuss possible implications for neutron stars. It should
be clear that it is mandatory to include the 3N–6N coupling
in the pertinent calculations. This represents a challenging task
since standard microscopic calculations without this coupling
are already quite complex. However, without the 3N–6N
coupling, which has such a strong influence on the in-medium
properties of hyperons, it will be difficult if not impossible to draw
reliable conclusions.

The majority of YN-interactions employed so far in
microscopic calculations of neutron stars have properties similar
to those of the Jülich ’04 model. In such calculations, hyperons
start appearing in the core of neutron stars typically at
relatively low densities around (2 − 3)ρ0 [113, 119]. This
causes the so-called hyperon puzzle: a strong softening of the
equation-of-state, such that the maximum neutron star mass falls

far below the constraint provided by the existence of several
neutron stars with masses around 2M⊙. Assume now that nature
favors a scenario with a weak diagonal 3N-interaction and a
strong 3N–6N coupling as predicted by SU(3) chiral EFT.
The present study demonstrates that, in this case, the 3 single-
particle potential U3(k = 0, ρ) based on chiral EFT two-body
interactions is already repulsive at densities ρ ∼ (2 − 3)ρ0. The
one of the 6-hyperon is likewise repulsive [35]. We thus expect
that the appearance of hyperons in neutron stars will be shifted
to much higher densities. In addition there is a repulsive density-
dependent effective 3N-interaction that arises within the same
chiral EFT framework from the leading chiral YNN three-baryon
forces. This enhances the aforementioned repulsive effect further.
It makes the appearance of 3-hyperons in neutron star matter
energetically unfavorable. In summary, all these aspects taken
together may well point to a solution of the hyperon puzzle in
neutron stars without resorting to exotic mechanisms.

6. CONCLUSIONS

In this review we have presented the basics to derive the forces
between octet baryons (N,3,6,4) at next-to-leading order in
SU(3) chiral effective field theory. The connection of SU(3) χEFT
to quantum chromodynamics via the chiral symmetry and its
symmetry breaking patterns, and the change of the degrees of
freedom has been shown. The construction principles of the
chiral effective Lagrangian and the external-field method have
been presented and the Weinberg power-counting scheme has
been introduced.

Within SU(3) χEFT the baryon-baryon interaction potentials
have been considered at NLO. The effective baryon-baryon
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potentials include contributions from pure four-baryon contact
terms, one-meson-exchange diagrams, and two-meson-exchange
diagrams at one-loop level. The leading three-baryon forces,
which formally start to contribute at NNLO, consist of a
three-baryon contact interaction, a one-meson exchange and a
two-meson exchange component. We have presented explicitly
potentials for the 3NN interaction in the spin and isospin
basis. The emerging low-energy constants can be estimated
via decuplet saturation, which leads to a promotion of some
parts of the three-baryon forces to NLO. The expressions of
the corresponding effective two-body potential in the nuclear
medium has been presented.

In the second part of this review we have presented selected
applications of these potentials. An excellent description of the
available YN data has been achieved with χEFT, comparable
to the most advanced phenomenological models. Furthermore,
in studies of the properties of hyperons in isospin symmetric
and asymmetric infinite nuclear matter, the chiral baryon-
baryon potentials at NLO are consistent with the empirical
knowledge about hyperon-nuclear single-particle potentials. The
exceptionally weak 3-nuclear spin-orbit force is found to be
related to the contact term responsible for an antisymmetric

spin-orbit interaction. Concerning hypernuclei and neutron stars
promising results have been obtained and could point to a
solution of the hyperon puzzle in neutron stars.

In summary, χEFT is an appropriate tool for constructing
the interaction among baryons in a systematic way. It sets the
framework for many promising applications in strangeness-
nuclear physics.
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