

Technische Universität München

Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computergestützte Modellierung und Simulation

Parametric model for automatic generation of fire-

safety compliant building models

Bachelorthesis

for the Bachelor of Science Course Civil Engineering

Author: Patrick Nordmann

Matriculation number:

1. Supervisor: M.Sc. Jimmy Abualdenien

2. Supervisor: Prof. Dr.-Ing. André Borrmann

Begin Date: December 1, 2020

Submission Date: April 30, 2021

Abstract II

In the process of designing a building, parameters are constantly changing. The reason

for this can be adjustments in design, construction, budget, or other factors. Every

change takes up a lot of time, because it must be checked for problems regarding fire

safety and other issues. The motivation for this thesis is to make changes to the model

easier and visualize their consequences immediately for the creator of a BIM-model.

This is how the risk of additional expenses or damage to property and people due to

mistakes regarding fire-safety in building design can be reduced. In this work a method

is demonstrated that allows to create parametric building models that automatically

obey certain Bavarian fire-safety regulations in Dynamo for Revit 2021. A program is

created in the Dynamo workspace, where building parameters can be adjusted to

instantly update the model in Revit. The thesis describes the process of the

conceptualization by giving background information about BIM methods, the applicable

building codes, and used software. Furthermore, the implementation of the program is

explained by presenting its visual interface and source code. Moreover, decisions

regarding the extent of the model and recommendations for the correct usage of the

tool are explained.

Abstract

Zusammenfassung III

Im Verlauf der Planung eines Gebäudes ändern sich die Parameter ständig. Gründe

für die Änderung können unter anderem Design, Konstruktion oder Budget sein. Jede

Überarbeitung nimmt viel Zeit in Anspruch, da sie auf Probleme hinsichtlich des

Brandschutzes und anderer Themen geprüft werden muss. Die Motivation für diese

Arbeit ist, Änderungen am Modell zu erleichtern und deren Konsequenzen für den

Ersteller eines BIM-Modells sofort sichtbar zu machen. So soll das Risiko von

Mehraufwand oder Sach- und Personenschäden aufgrund von Fehlern im

Brandschutz bei der Gebäudeplanung reduziert werden. Das Produkt der

Bachelorarbeit ermöglicht es, parametrische Gebäudemodelle zur automatischen

Einhaltung ausgewählter bayerischer Brandschutzvorschriften in Dynamo for Revit

2021 zu erstellen. Im Dynamo-Arbeitsbereich wird ein Programm erstellt, in dem

Gebäudeparameter angepasst werden können, um das Modell in Revit sofort zu

aktualisieren. Die Arbeit beschreibt den Prozess der Konzeptionierung, indem sie

Hintergrundinformationen über BIM-Methoden, die geltenden Bauvorschriften und die

verwendete Software gibt. Des Weiteren wird die Implementierung des Programms

erläutert, indem die visuelle Schnittstelle und der Quellcode vorgestellt werden.

Außerdem werden Entscheidungen über den Umfang des Modells und Empfehlungen

für die richtige Verwendung des Tools erläutert.

Zusammenfassung

Table of Contents IV

List of Figures VI

List of Tables VIII

List of Abbreviations IX

1 Introduction 1

1.1 Motivation ...1

1.2 Goal of the thesis ..2

1.3 Structure of the thesis ...2

2 Background and related work 3

2.1 Building Information Modeling ...3

2.1.1 Parametric and generative design in BIM ...3

2.2 Dynamo for Revit 2021 ...4

2.2.1 Visual Programming ..5

2.2.2 Features of Dynamo ...5

2.2.3 Python script nodes ..6

2.3 BayBO Fire-safety regulations ..7

2.4 Clarification of most used terms .. 11

3 Implementation 13

3.1 Parameters cluster .. 14

3.2 Rules cluster ... 17

3.2.1 maxLevels node .. 20

3.2.2 maxUnits node .. 21

3.2.3 rightLimitX node .. 22

3.2.4 rightLimitY node .. 22

3.2.5 Wall type filter algorithm .. 23

3.2.6 Floor type filter algorithms ... 26

3.3 Model Creation cluster .. 29

3.3.1 Sample models ... 33

Table of Contents

Table of Contents V

3.4 Control cluster ... 37

4 Conclusion 39

4.1 Boundaries .. 39

4.2 Outlook ... 40

5 Bibliography 42

Appendix A 45

List of Figures VI

Figure 2.1 Dynamo interface areas .. 5

Figure 2.2 Example Dynamo program to display an input text 6

Figure 2.3 Building classes overview by Pfuhl [27] ... 8

Figure 2.4 Determination of building classes [27] ... 9

Figure 3.1 Workspace clusters: Parameters, Rules, Model Creation, Control 13

Figure 3.2 Overview of Parameter Input group ... 14

Figure 3.3 Overview of Building Class List Create group.. 15

Figure 3.4 Overview of Transform group .. 16

Figure 3.5 Overview of “Rules” cluster: parameter limitation section 17

Figure 3.6 Implementation of Building Class to Integer node 18

Figure 3.7 Overview of “Rules” cluster: fire resistance class filter section 19

Figure 3.8 Properties of new wall and floor types ... 20

Figure 3.9 Implementation of maxLevels node ... 21

Figure 3.10 Implementation of maxUnits node ... 21

Figure 3.11 Implementation of rightLimitX node ... 22

Figure 3.12 Implementation of rightLimitY node ... 23

Figure 3.13 Implementation of WallTypesList node .. 24

Figure 3.14 Implementation of wallTypesFilter node .. 25

Figure 3.15 Implementation of FloorTypesList node ... 26

Figure 3.16 Implementation of floorTypesFilter node ... 27

Figure 3.17 Implementation of basementCeilingFilter node 28

Figure 3.18 Overview of “Model Creation” cluster .. 29

Figure 3.19 Clearance of previous generated elements ... 30

Figure 3.20 Creation of corner points from x- and y-coordinates 30

Figure 3.21 Basement creation ... 31

Figure 3.22 Above ground walls creation ... 31

Figure 3.23 Ground level floor creation .. 32

List of Figures

List of Figures VII

Figure 3.24 Creation of levels and floors above ground level 32

Figure 3.25 Creation of inner walls separating utilization units 33

Figure 3.26 Model A in the Revit workspace .. 34

Figure 3.27 Model B in the Revit workspace .. 35

Figure 3.28 Model C in the Revit workspace .. 36

Figure 3.29 Overview of “Control” cluster ... 37

Figure 3.30 Implementation of Error Detection node .. 37

Figure 3.31 Implementation of Building Class Node ... 38

List of Tables VIII

Table 2.1 Overview of selected fire resistance class requirements 10

Table 2.2 Clarification of most used terms .. 11

Table 3.1 Parameter dependencies .. 16

Table 3.2 Implementation of BayBO building class rules .. 18

List of Tables

List of Abbreviations IX

BIM Building Information Modelling

API Application Programming Interface

BayBO Bayerische Bauordnung – Bavarian Building Code

MBO Musterbauordnung – Model Building Code

AEC Architecture, Engineering and Construction

MVD Model View Definition

IFC Industry Foundation Classes

List of Abbreviations

Introduction 1

1.1 Motivation

Prior to the construction of any kind of building, the design process takes up a lot of

time and manpower. The design of a building must fulfill individual and general

specifications. Individual specifications such as budget, dimensions and quality come,

for example, from clients or investors. Additionally, buildings must meet general

requirements coming from several domains including fire safety, environmental impact,

and accessibility by law. [3]

The design process has an iterative character, where experts of multiple disciplines

exchange problems and information to develop solutions and increase the amount of

detail throughout the design stages. A lot of information is missing in the early stages

of design, because decisions have not been made yet or rely on not yet accessible

information in advance. False assumptions that result from this uncertainty can cause

critical delay along with higher costs and a loss in quality. [3, 5]

Nowadays Building Information Modelling (BIM) gains popularity as a set of tools for

the involved parties to share information about a construction project and to help avoid

making mistakes. A Building Information Model contains not only details about the

geometry of a building and its components but further on material properties, costs,

purpose and more. [25, 27]

Throughout the design process Building Information Models get more complex.

Therefore, applying changes to a model is more expensive and time-consuming in late

stages of design than in preceding ones. This makes it very valuable if problems, for

instance, the model not complying with regulations can be identified in an early design

stage. [27, 14]

In the event of a fire, for example, faults in fire protection lead to tremendous damage

to property and often endanger human life. Improper constructional or technical

protection arrangements can cause more damage including extinguishing water

damage or smoke gas contamination. It is therefore mandatory to already pay attention

to the fundamental requirements for fire prevention in the planning phase. Those

1 Introduction

Introduction 2

requirements make sure that buildings have appropriate materials, escape routes,

alarm systems and more. [27, 14]

1.2 Goal of the thesis

As addressed above, high uncertainty in early design stages of a project increases the

probability of faulty assumptions and therefore mistakes. The resulting adjustments or

the mistakes themselves can be obstructive, expensive, or even dangerous. The goal

of this thesis is to create a BIM-tool to help prevent those early mistakes, while focusing

on the aspect of fire safety. A parametric model is created, which automatically obeys

local fire safety regulations. The relevant regulations in this case come from the

Bavarian Building Code “Bayerische Bauordnung” (BayBO). The BayBO describes a

set of laws that buildings must comply with. Building classes or “Gebäudeklassen” are

introduced and matched to suiting regulations such as fire resistance classes for walls.

The classification of a building is based on parameters including vertical and horizontal

dimensions. By utilizing these parameters, the model should be customizable while

automatically observing the limits for the specific building class. [14, 3]

The model is created in Dynamo for Revit 2021. Revit is a software by Autodesk

containing multiple planning tools for architects, building technicians and structural

engineers. Dynamo is a tool for visual programming and integrated in Revit. Even with

minimal programming knowledge the user can access the functions in the Revit

Application Programming Interface (API) via simple nodes. There is also an option for

custom python nodes to further explore the Revit API. The interface feels intuitive and

is therefore very well suited for the purpose of this work. [12, 9]

1.3 Structure of the thesis

This work is structured as follows: Section 1 introduces the reader to the topic, defines

the motivation and goal of the thesis, and gives an overview over the following sections.

Section 2 presents the utilized tools and gives background information. Section 3

describes the implementation of the model by explaining the programming procedure

regarding code and interface and shows the end product by means of examples.

Finally, Section 4 summarizes the thesis, explains boundaries, and provides an outlook

on future work.

Background and related work 3

2.1 Building Information Modeling

In industry, digitalization is known for its potential to improve quality, productivity, and

variety. The usage of these opportunities in the context of the Architecture,

Engineering, Construction (AEC) industry seems to be lower than in other fields, which

often leads to a loss of information when exchanging plans. BIM is intended to realize

a meaningful and effective way to use computer technology in civil engineering. A

Building Information Model is a complex visualization of a structure in digital form. In

addition to the geometry of the building objects at a certain degree of detail, it includes

semantic information like the materials, the technical properties or the costs and non-

physical elements. These can be rooms, zones, a project organization, or timelines, as

well as relationships between building elements. BIM includes creating such digital

building models as well as their maintenance, use and exchange during the entire life

span of the building. [15]

2.1.1 Parametric and generative design in BIM

Parametric and generative design or modeling are ways to make digital models more

flexible and formalize discipline-specific know-how. In early design stages, parametric

and generative models permit more iterations and allow for changes to be implemented

more quickly compared to traditional models. [21]

Parametric modeling depicts objects through parameters and rules defining geometric

and nongeometric properties or characteristics [20]. These rules can be linked to other

entities, such that user input or altered context can automatically trigger updates [21,

20]. BIM models are often time consuming to build, human mistakes and inaccuracies

can occur, and changes to finished models can be difficult to realize [23].

Parametric modeling is a way to solve these problems. It improves efficiency, lowers

the risk of errors, and increases design flexibility through automation of tasks and the

connection of components [6]. Additionally, an implemented parametric model can be

re-used as a template for future projects or to compare different versions of a design

in a short time [6, 24].

2 Background and related work

Background and related work 4

Generative design is a programming-centered methodology, which describes a

process where the designer uses computer programs to autonomously produce

possible solutions for a problem or a task. This is applicable for the AEC industry,

because if often features a high variety in possible solutions for one problem, while

there are a lot of factors that determine the optimal solution. [1]

Autodesk defines generative design as follows:

“A goal-driven approach to design that uses automation to give designers and

engineers better insight so they can make faster, more informed design

decisions. Your specific design parameters are defined to generate many- even

thousands -of potential solutions. You tell the software the results you want.

With your guidance it arrives at the optimal design along with the data to prove

which design performs best.” [8]

It enables the designer to define a set of parameters and create a mass of solutions,

which would take a disproportionately long time to find manually [8].

2.2 Dynamo for Revit 2021

The BIM software Revit by Autodesk was first published in 2000 and is getting updated

constantly. The concept of Revit is to allow two-dimensional and three-dimensional

modelling of a component-oriented building model. It contains Revit Structure for

structural design in civil engineering and building construction, Revit Architecture for

building design and Revit MEP for building services engineering. [28]

Dynamo offers the opportunity to be used individually, but in this work the built-in plugin

for Revit 2021 is chosen. Its advantage is that the software works with the API and the

libraries of Revit [10]. Dynamos source code is open-source, enabling users and

developers to create and share custom nodes and packages.

The package “Celery” which offers a custom dropdown menu node and the opportunity

to automatically adapt the limits of an integer slider was employed for creating the

model [7].

Background and related work 5

2.2.1 Visual Programming

Autodesk defines programming as follows:

“Programming, frequently shortened from Computer Programming, is the act of

formalizing the processing of a series of actions into an executable program.”

[10]

The overall process of programming in Dynamo is categorized as Visual Programming,

although in some places there is an option for text-based programming. In contrast to

text-based programming, visual programming is characterized by multiple dimensions.

These dimensions can appear either in the form of multi-dimensional objects, an

additional time dimension, or spatial relationships as for instance in Dynamo. [10, 16]

The visual component of programming is supposed to address designers, make it more

tangible and, consequently, more attractive to less experienced users. [10]

2.2.2 Features of Dynamo

The Dynamo interface can be divided into four main areas as highlighted in Figure 2.1.

▪ Area 1 contains the basic functions for file-management, settings, help, and

more [10].

▪ The library marked as area 2 is where the user can find the nodes of Dynamo

and add-ons [10].

Figure 2.1 Dynamo interface areas

Background and related work 6

▪ Area 3, the workspace, takes up a major part of the window to provide a

manageable overview of the developed program and the generated geometry

[10].

▪ In the lower left corner, here area 4, the program can either be manually

executed or the automatic execution mode can be activated [10].

Dynamo projects consist of nodes connected by wires in a two-dimensional layout.

ports are the inputs and outputs of nodes. To create a logical flow of data, wires

connect an output of one node with the input of another node. Instead of the input-port,

some nodes offer a manual input through texts, dropdown menus or sliders. [10]

The example in Figure 2.2 shows a simple operation performed in Dynamo. The String

node is given the manual input “Example text”, which it outputs to the Watch node.

This then shows the text in a window below the ports. It also has an output port, which

is not used in this case.

A variety of those nodes, which will later be explained in detail, were used for this work.

Additionally, an add-on called “Celery” was implemented in order to be able to create

parametric integer slider nodes and a node for a custom dropdown menu [7].

2.2.3 Python script nodes

Aside from the classic nodes mentioned above, Dynamo also offers python script

nodes. These nodes have an arbitrary number of inputs and one output. Double

clicking them opens a text window for python code. Python is a very common

Figure 2.2 Example Dynamo program to display an input text

Background and related work 7

programming language, which is known for being comparatively easy to learn,

supports modules and packages and can be integrated in existing systems. In

Dynamo, this helps to maintain structure by combining the functionality of multiple

nodes in one and extends the possibilities of programming in Dynamo, for example,

through a greater selection of conditional statements and loops. [10]

2.3 BayBO Fire-safety regulations

In Germany, every state composes its own building code based on the

“Musterbauordnung”, a federal guideline specifying minimum requirements for the

individual state-laws [27]. Relevant for this work is the BayBO, which regulates the

minimum standards for civil works in Bavaria. Particularly interesting are the included

fire-safety regulations. There are five building classes in the BayBO dependent on

scale and function of structures that govern certain fire safety measures [14]. The

created Dynamo program is supposed to adjust the parameter limits according to the

chosen building class.

For this thesis, parts of the work “Analysis of Exchange Requirements for BIM-based

Fire Code Compliance Checking” by Pfuhl were consulted. The goal of the thesis was

to create a Model View Definition (MVD) to check the compliance with fire protection

regulations from the BayBO [27]. An MVD is a subset of the Industry Foundation

Classes (IFC) scheme that specifies the requirements and specifications of the data

shared between involved software tools [4]. In the process, the relevant contents of the

BayBO were translated into english by Pfuhl and collected in graphics, like the following

Figure 2.3. It shows the building classes introduced by the BayBO, which are also

described below.

Background and related work 8

• Building class 1 includes freestanding buildings, which either are of agricultural or

forestry usage, or meet the following requirements. They can have a height of 7 m

or lower, a maximum of 2 utilization units and no more than 400 m² of gross floor

area.

• Building class 2 also permits a height of 7 m, gross floor area of 400 m² and 2

utilization units at most. In contrast to building class 1, these buildings are not

freestanding.

• Building class 3 involves all other buildings with a maximum height of 7 m. No

further limitation for utilization units and gross floor area are given.

• Building class 4 allows a maximum height of 13 m. The building can have an

unlimited number of utilization units and there is no restriction regarding the gross

floor area. However, each unit may have a maximum dimension of 400 m².

• Building class 5 contains every other building, including underground structures.

Figure 2.3 Building classes overview by Pfuhl [27]

Background and related work 9

In the process of developing the targeted MVD, Figure 2.4 was created by Pfuhl, which

has proven useful for developing formulas for the project of this thesis. It depicts an

algorithm for building class identification. It was used to determine the created models’

building class, which is further addressed in Section 3.4. Furthermore, it was reverse

engineered to connect the created input parameters and automatically adapt them to

meet the chosen building class.

Besides the parameters shown in Figure 2.4, each building class requests minimum

fire resistance classes for walls and floors [14]. Pfuhl translated the three relevant fire

resistance classes F30, F60, and F90 to “fire retardant”, “highly fire retardant”, and “fire

resistant”.

For the implementation of the model, a certain degree of detail had to be chosen. On

one hand, the program was expected to be uncluttered, which does not allow an

excessive number of parameters. Furthermore, the program finds its application in

early design stages, where details are secondary.

Figure 2.4 Determination of building classes [27]

Background and related work 10

To help with the simplification and the choice of regulations that have to be applied,

Abualdenien’s definition of Building Development Level (BDL) was utilized. BDL 2

defines a mass for the model by extending the outline by the building height [2]. BDL

3 includes information about the geometry of individual stories, their usage, and load-

bearing components [2]. BDL 4 presents a room layout and wall openings, which are

not considered for this work [2]. BDL 3 therefore best fits the degree of detail for this

thesis.

The model created for this thesis filters materials of the Revit library, to ensure that

only walls and floors with the proper fire resistance class can be chosen. The

requirements resulting directly from the building class include minimum fire resistances

for load-bearing walls, ceilings, and the basement ceiling [14]. Moreover, in the BayBO

the wall to a neighboring building is handled differently than other walls. This is not

depicted in the model, because no neighboring buildings are created.

To implement the mentioned collection of regulations, all walls in the model created in

this thesis are assumed to be load bearing. Table 2.1 shows an overview over the

requirements for fire resistance classes that were implemented. More information

regarding the implementation will be given in Section 3.2.

Table 2.1 Overview of selected fire resistance class requirements

building class: 1 2 3 4 5

walls

 fire retardant highly fire retardant fire resistant

floors

basement ceiling fire retardant fire resistant

Background and related work 11

2.4 Clarification of most used terms

Table 2.2 gives an overview of the most used terms in this thesis and their explanation.

Table 2.2 Clarification of most used terms

Term Explanation

Building class Buildings are categorized in building classes by the

individual German state laws to assign them

suitable requirements. The classification is

dependent on height, area, usage, and location of

the building. [14]

Gross floor area Sum of the areas of all levels of the floor plan of the

structure. [18]

Height (building class context) The average height of the top edge of the highest

floor above ground, in which an occupied room is

possible. Areas in the basement are not considered.

[14]

Utilization unit An assembling of individual rooms with similar or

other related rooms, for example, an apartment or a

collection of classrooms. [27]

Fire resistance class The fire resistance class refers to the German

“Feuerwiderstandsklasse” and indicates how many

minutes a building component – for example, a wall

or ceiling – can withstand a fire. During this period,

the load-bearing capacity must be ensured, and the

thermal insulation must function so well that the

surface temperature on the component side facing

away from the fire does not rise. In addition, the so-

called space closure must remain guaranteed. This

is the case if the component prevents the

penetration of flames and hot gases. [13]

Background and related work 12

Fire retardant Fire resistance duration of 30 minutes means that

the component will remain functional for a minimum

of 30 minutes in a fire. This corresponds to fire

resistance class F30 according to DIN 4102. [19]

Highly fire retardant Fire resistance duration of 60 minutes means that

the component will remain functional for a minimum

of 60 minutes in a fire. This corresponds to fire

resistance class F60 according to DIN 4102. [19]

Fire resistant Fire resistance duration of 90 minutes means that

the component will remain functional for a minimum

of 90 minutes in a fire. This corresponds to fire

resistance class F90 according to DIN 4102. [19]

API An "Application Programming Interface" is a

collection of commands, functions, protocols, and

objects that developers can use to build software or

work with an external system. [17]

Family A component used in a building model, that has a

set of attributes and a corresponding visualization.

[26]

Implementation 13

In the following, the implementation procedure of the model will be discussed. To make

the interface easier to understand, the workspace of the program is divided into four

clusters as illustrated in Figure 3.1. A DIN A3 sized version of this overview can be

found in Appendix A.3.

These are thematized in the following sections. The green “Parameters” cluster (1)

consists of the node groups Building Class List Create, Parameter Input and

Transform. The blue “Rules” cluster (2) involves nodes processing data from the

Parameter Input group to send it back there or to the purple “Control” cluster (4). In the

lower right corner, the orange “Model Creation” cluster (3) receives data from the

“Parameters” cluster and generates the building model in Revit. The “Control” cluster

receives data from the “Parameters” and “Rules” clusters and returns the actual

building class and an error where appropriate.

3 Implementation

Figure 3.1 Workspace clusters: Parameters, Rules, Model Creation, Control

Implementation 14

3.1 Parameters cluster

As mentioned above, the “Parameters” cluster includes the node groups Parameter

Input, Building Class List Create, and Transform. The Parameter Input group depicted

in Figure 3.2 is the main interface for the user of the program and consists of all relevant

nodes for the parameterization of the model.

Figure 3.2 Overview of Parameter Input group

Implementation 15

The nodes are arranged in such a way, that the user can work through them from top

to bottom while executing the program regularly. Appendix A.1 contains a manual

describing the optimal execution order for the parameters.

At first, the program is executed to create the list of building classes in the Building

Class List Create group.

Five String nodes get combined by a List Create node, which outputs a list to the first

node in the Parameter Input group. This is a ListItemSelector from the “Celery”

package, that lets the user select the building class, which the model should always

comply with.

Beneath are three Boolean nodes where the user specifies wheter the modelled

building will have a basement and whether it is freestanding or categorized as an

agricultural or forestry building.

The following node is a Number Slider to set the level height in a range from 2.8 m to

4 m. The minimum of 2.8 m was chosen, because the BayBO defines a minimum of

2.4 m for room height and the floors in the models of this thesis are for the most part

0.4 m high [14]. The upper limit of 4 m was chosen because higher values are very

uncommon.

The next four nodes are InputBoundedNumberSlider nodes from the “Celery” package.

These get a minimum and maximum, called left and right limit from the Rules group,

and output an integer. From top to bottom the user can adjust the number of levels,

number of utilization units, and extent in X as well as Y direction.

Figure 3.3 Overview of Building Class List Create group

Implementation 16

Lastly, there are three ListItemSelector nodes to choose a wall type and two floor types.

The basementCeiling node only displays a list if the Boolean node basement is set to

“True”. The types get output to the Transform group in Figure 3.4, which contains one

WallType.ByName and two FloorType.ByName nodes. These convert strings to the

respective family type and then forward those to the Model Creation node.

When a parameter gets altered, the rest of the nodes immediately adapt to constantly

obey the implemented regulations. This means that the limits of a node can

automatically be altered and must be revisited to not produce unwanted or nonsensical

values. The following Table 3.1 shows the dependencies between the parameters by

listing the ones that the user must revisit after changing another.

Table 3.1 Parameter dependencies

alternated parameter dependent parameters to revisit

buildingClass all parameters

basement basementCeilingType

freestanding —

agricultural/forestry —

levelHeight levels, utilizationUnits, lengthX, lengthY

levels utilizationUnits, lengthX, lengthY

utilizationUnits lengthX, lengthY

Figure 3.4 Overview of Transform group

Implementation 17

3.2 Rules cluster

The first of two functions of the “Rules” cluster is to process data coming from the

Parameter Input group, applying the regulations from the BayBO dependent on the

given building class and giving it either back to the Parameter Input group or directly

to the “Model Creation” or “Control” cluster. Figure 3.5 shows an overview of the

relevant upper part of the “Rules” cluster.

After converting the buildingClass string to an integer in a python script depicted in

Figure 3.6, it gets distributed to all nodes working with the parameter. The python script

imports the relevant standard libraries, assigns the input building class to a variable,

and creates an integer with the matching number dependent on the building class case.

X lengthY

Y —

wallType —

floorType —

basementCeilingType —

Figure 3.5 Overview of “Rules” cluster: parameter limitation section

Implementation 18

Two number nodes are utilized to set the left limits of the levels and utilizationUnits

sliders to 1 as well as the left limits of the X and Y nodes to 5. This was done in such

a way that every building has at least one level and unit and a minimum measure of

five meters in each direction.

The rules to determine the building classes from the BayBO are integrated through the

four python script nodes maxLevels, maxUnits, rightLimitX and rightLimitY. Each of

these defines a maximum value for the corresponding parameter as shown in Table

3.2 below.

Table 3.2 Implementation of BayBO building class rules

1 2 3 4 5

maxLevels = floor(13/levelHeight)+1 = 10

1 2 3 4 5

maxUnits = 2 = 2

1 2 3 4 5

rightLimitX = 200 = floor(80/levels*units) = 200

1 2 3 4 5

rightLimitY = 200 = floor(400/x/levels*units) = 200 = floor(400/levels/x)

Node/Output
Formula by Building Class

Node/Output
Formula by Building Class

 = floor(7/levelHeight)+1

Node/Output
Formula by Building Class

 = 100

Node/Output
Formula by Building Class

 = floor(80/levels)

Figure 3.6 Implementation of Building Class to Integer node

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

#Load the Python Standard and DesignScript Libraries

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

#Assign input to variables

buildingClassString = IN[0]

#Convert building class string to integer

if buildingClassString == "Building Class 1

(Freestanding/Agricultural/Forestry)":

 buildingClass = 1

if buildingClassString == "Building Class 2":

 buildingClass = 2

if buildingClassString == "Building Class 3":

 buildingClass = 3

if buildingClassString == "Building Class 4":

 buildingClass = 4

if buildingClassString == "Building Class 5":

 buildingClass = 5

OUT = int(buildingClass)

Implementation 19

For each variable, the table presents the formula sorted by building classes. These

were established with the help of Figure 2.4. For some parameters, the BayBO does

not give an upper limit. As infinity would neither be realistic nor possible in Dynamo,

custom limits were defined for this thesis.

For building class 5 a maximum of 10 levels was chosen. In general, the amount of

utilization units was limited to 100, and the greatest selectable dimension in each

direction is 200 m, if not limited otherwise. The four python script nodes to implement

the addressed formulas are examined in detail in Sections 3.2.1 to 3.2.4.

The second purpose of the “Rules” cluster is to filter the wall types and floor types of

the Revit family library to meet the requirements regarding fire resistance classes of

the selected building class. The lower part of the “Rules” cluster visible in Figure 3.7 is

responsible for this process.

The attribute “Fire Rating” is assumed to be an equivalent to the fire resistance class.

It only exists for wall families and even there no values for it were given in the standard

Revit library.

Figure 3.7 Overview of “Rules” cluster: fire resistance class filter section

Implementation 20

For this project, the family “Generic – 300mm” was copied three times. Each copy was

given a fire resistance class, namely “fire retardant”, “highly fire retardant” and “fire

resistant”. The attribute was assigned both as a value for the “Fire Rating” attribute and

included in the name of the family.

Analogously, the family “Generic Floor – 400mm” was copied for each fire resistance

class. Since floor types do not have a suitable attribute, the fire resistance class was

assigned to an attribute called “Description”.

The nodes responsible for the filtered lists of floor types are examined in detail in

Sections 3.2.5 and 3.2.6.

3.2.1 maxLevels node

The maxLevels node provides a maximum value for the number of levels that can be

selected with the levels slider. After importing the necessary standard and math

libraries and assigning the variables for inputs buildingClass and levelHeight, a

distinction is made between the five building classes. For building class 1, 2 and 3 the

Figure 3.8 Properties of new wall and floor types

Implementation 21

quotient of 7 m and the input levelHeight is rounded off and increased by 1 level,

because the maximum height of 7 m refers to the top floor level.

The allowed levels for class 4 are calculated with a similar formula but with a maximum

height of the top floor level of 13 m.

As described in Section 3.2, in the case of building class 5 the utmost levels are 10.

3.2.2 maxUnits node

To determine the maximum utilization units, the only input needed is the building class.

This is assigned to the suitable variable after the standard libraries are imported. The

output maxUtilizationUnit is set to a value of 2 for building classes 1 and 2 and to a

Figure 3.9 Implementation of maxLevels node

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

#Load the Python Standard and DesignScript Libraries and Math

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

import math

#Assign input to variables

buildingClass = IN[0]

levelHeight = IN[1]

#Determine and output maxLevels

if buildingClass == 1 or buildingClass == 2 or buildingClass == 3:

 maxLevels = math.floor(7 / levelHeight) + 1

if buildingClass == 4:

 maxLevels = math.floor(13 / levelHeight) + 1

if buildingClass == 5:

 maxLevels = 10

OUT = maxLevels

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

#Load the Python Standard and DesignScript Libraries

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

#Assign input to variables

buildingClass = IN[0]

#Determine and output maxUtilizationUnits

if buildingClass == 1 or buildingClass == 2:

 maxUtilizationUnits = 2

if buildingClass == 3 or buildingClass == 4 or buildingClass == 5:

 maxUtilizationUnits = 100

OUT = maxUtilizationUnits

 Figure 3.10 Implementation of maxUnits node

Implementation 22

value of 100 for building classes 3, 4 and 5 as discussed in Section 3.2. The result is

transferred to the utilizationUnits parameter node.

3.2.3 rightLimitX node

For the rightLimitX node in Figure 3.11, again the first steps are to import libraries and

to assign the input to variables. In this case, standard and math libraries are necessary,

and the inputs are buildingClass, levels, and utilizationUnits. For building classes 1 and

2 the greatest allowed extent in the X direction is determined by dividing 80 m by the

number of levels in the building. The value for the maximum gross floor area is 400 m².

Considering the minimum extent of 5 m in Y direction, the X extent per level has a

maximum of 80 m. The result is rounded off to be usable as an integer input for the X

node.

In the case of building class 4 the maximum value for X applies for each utilization unit.

Therefore, the formula differs only in that it is also multiplied by utilizationUnits.

As addressed in Section 3.2, the general maximum value for X is 200 m, which in this

case applies for building classes 3 and 5.

3.2.4 rightLimitY node

As for the X limitation, the standard as well as math libraries are imported and

buildingClass, levels, and utilizationUnits are used. Additionally, the defined value for

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

#Load the Python Standard and DesignScript Libraries and Math

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

import math

#Assign input to variables

buildingClass = IN[0]

levels = IN[1]

utilizationUnits = IN[2]

#Determine and output rightLimitX

if buildingClass == 1 or buildingClass == 2:

 rightLimitX = math.floor(80 / levels)

if buildingClass == 3 or buildingClass == 5:

 rightLimitX = 200

if buildingClass == 4:

 rightLimitX = math.floor(80 / levels * utilizationUnits)

OUT = rightLimitX

Figure 3.11 Implementation of rightLimitX node

Implementation 23

X is assigned to a variable. The maximum extent in Y direction per level is determined

by dividing 400 m² by x. Dividing this value by levels gives the maximum Y value for

building classes 1 and 2. For building class 4 it needs to be multiplied by the amount

of utilization units and for building classes 3 and 5 the fixed limit of 200 m applies. In

order to output a usable integer for the parameter node Y, the variable must be rounded

off. The exact implementation of rightLimitY is shown in Figure 3.12.

3.2.5 Wall type filter algorithm

In the developed Dynamo program, the wall types in the Revit library are filtered to

match a certain building class and the user can select the desired wall type with the

aid of a parameter node. The first step to create the filtered list is to collect all available

wall types from the Revit library. For this purpose the python script node WallTypesList

depicted in Figure 3.13 is implemented.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

#Load the Python Standard and DesignScript Libraries and Math

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

import math

#Assign input to variables

buildingClass = IN[0]

levels = IN[1]

utilizationUnits = IN[2]

x = IN[3]

#Determine and output rightLimitY

if buildingClass == 1 or buildingClass == 2:

 rightLimitY = math.floor(400 / levels / x)

if buildingClass == 3 or buildingClass == 5:

 rightLimitY = 200

if buildingClass == 4:

 rightLimitY = math.floor(400 / x / levels * utilizationUnits)

OUT = rightLimitY

 Figure 3.12 Implementation of rightLimitY node

Implementation 24

With the help of the imported libraries, all wall types in Revit are collected to produce

the list collectedWallTypes. The next node used is a Parameter.ParameterByName.

This requires the list of wall types and the name of a parameter, which it gets from a

string node with the content “Fire Rating”. The output of this node is a list of parameters

with the given name for each wall type family. By forwarding this list to the

Parameter.Value node beneath, each item in the list gets changed to the value of the

parameter “Fire Rating” of the corresponding wall type.

As a last step, a python script node with the algorithm in Figure 3.14 matches the lists

of fire resistance classes and wall types to filter out the appropriate items depending

on the building class.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

#import relevant libraries

import clr

clr.AddReference('RevitNodes')

import Revit

clr.ImportExtensions(Revit.Elements)

clr.AddReference('RevitServices')

import RevitServices

from RevitServices.Persistence import DocumentManager

clr.AddReference('RevitAPI')

import Autodesk

from Autodesk.Revit.DB import *

import System

from System.Collections.Generic import *

#Collect and output all wall types

doc = DocumentManager.Instance.CurrentDBDocument

collectedWallTypes = FilteredElementCollector(doc).OfCategory(

BuiltInCategory.OST_Walls.WhereElementIsElementType().ToElements()

OUT = collectedWallTypes

 Figure 3.13 Implementation of WallTypesList node

Implementation 25

Firstly, the algorithm distinguishes between the building classes. Secondly, every index

of fireRatings is examined. If the item matches one of the listed fire resistance classes,

the element of collectedWallTypes with the same index is appended to

wallTypeNames.

For building class 1, all available wall types can be used, whereas for building classes

2 and 3 only those with actual fire resistance classes are appended. Building class 4

only allows the fire resistance classes “highly fire retardant” and “fire resistant” and for

building class 5 nothing but “fire resistant” wall types are added to the wallTypesNames

list. This list then gets output to the parameter node wallType.

Figure 3.14 Implementation of wallTypesFilter node

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

#Load the Python Standard and DesignScript Libraries
import sys
import clr
clr.AddReference('ProtoGeometry')
from Autodesk.DesignScript.Geometry import *

#Assign input to variables
fireRatings = IN[0]
collectedWallTypes = IN[1]
buildingClass = IN[2]

#Filter wall types dependent on building class
wallTypeNames = []

if buildingClass == 1:
 for i in range(0, len(fireRatings)):
 wallTypeNames.append(collectedWallTypes[i].Name)

if buildingClass == 2 or buildingClass == 3:
 for i in range(0, len(fireRatings)):
 if (fireRatings[i] == "fire retarding"
 or fireRatings[i] == "highly fire retarding"
 or fireRatings[i] == "fire resisting"):
 wallTypeNames.append(collectedWallTypes[i].Name)

if buildingClass == 4:
 for i in range(0, len(fireRatings)):
 if (fireRatings[i] == "highly fire retarding"
 or fireRatings[i] == "fire resisting"):
 wallTypeNames.append(collectedWallTypes[i].Name)

if buildingClass == 5:
 for i in range(0, len(fireRatings)):
 if fireRatings[i] == "fire resisting":
 wallTypeNames.append(collectedWallTypes[i].Name)

OUT = wallTypeNames

Implementation 26

3.2.6 Floor type filter algorithms

Analogous to the wall types above, the floor types need to be filtered for the parameter

nodes. Since the floor families do not have an attribute called “Fire Rating”,

“Description” was used inside the string node to create the list of fire resistance

classes.

Similar to the wall types above, the FloorTypesList node collects the names of the floor

families and forwards them to the Parameter.ParameterByName and Parameter.Value

nodes. The resulting lists of floor type names and corresponding fire resistance classes

are used further by the filtering python script nodes for floors and basement ceiling.

Figure 3.16 describes the Implementation of the floorTypesFilter node. After loading

the standard libraries, the lists descriptions, collectedFloorTypes and the building class

are imported. The required fire resistance classes for the building classes are the same

as for wall types. The output floorTypes list is utilized by the parameter node floorType.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

#import relevant libraries

import clr

clr.AddReference('RevitNodes')

import Revit

clr.ImportExtensions(Revit.Elements)

clr.AddReference('RevitServices')

import RevitServices

from RevitServices.Persistence import DocumentManager

clr.AddReference('RevitAPI')

import Autodesk

from Autodesk.Revit.DB import *

import System

from System.Collections.Generic import *

#Collect and output all wall types

doc = DocumentManager.Instance.CurrentDBDocument

collectedFloorTypes = FilteredElementCollector(doc).OfCategory(

BuiltInCategory.OST_Floors).WhereElementIsElementType().ToElements()

OUT = collectedFloorTypes

 Figure 3.15 Implementation of FloorTypesList node

Implementation 27

The implementation for the basement ceiling depicted in Figure 3.17 works

analogously, except that the additional input basement is needed. If basement is

“True”, descriptions is searched again and the corresponding items of

collectedFloorTypes are appended to the output basementCeilings.

Building class 1 and 2 allow every floor type available in the Revit library with a fire

resistance class better than “fire retardant”. The basement ceiling for building class 3,

4 or 5 must be “fire resistant”. If no basement is created, the output list has no entry.

Consequently, no wall type can be chosen in the corresponding parameter node, which

causes the following FloorType.ByName node to return an error. However, this is not

relevant for the generation of the model and can be ignored.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

#Load the Python Standard and DesignScript Libraries

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

#Assign input to variables

descriptions = IN[0]

collectedFloorTypes = IN[1]

buildingClass = IN[2]

#Filter floor types dependent on building class

floorTypes = []

if buildingClass == 1:

 for i in range(0, len(descriptions)):

 floorTypes.append(collectedFloorTypes[i].Name)

if buildingClass == 2 or buildingClass == 3:

 for i in range(0, len(descriptions)):

 if (descriptions[i] == "fire retarding"

 or descriptions[i] == "highly fire retarding"

 or descriptions[i] == "fire resisting"):

 floorTypes.append(collectedFloorTypes[i].Name)

if buildingClass == 4:

 for i in range(0, len(descriptions)):

 if (descriptions[i] == "highly fire retarding"

 or descriptions[i] == "fire resisting"):

 floorTypes.append(collectedFloorTypes[i].Name)

if buildingClass == 5:

 for i in range(0, len(descriptions)):

 if descriptions[i] == "fire resisting":

 floorTypes.append(collectedFloorTypes[i].Name)

OUT = floorTypes

 Figure 3.16 Implementation of floorTypesFilter node

Implementation 28

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

#Load the Python Standard and DesignScript Libraries

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

#Assign input to variables

descriptions = IN[0]

collectedFloorTypes = IN[1]

buildingClass = IN[2]

basement = IN[3]

#Filter floor types dependent on building class

basementCeilings = []

if basement:

 if buildingClass == 1 or buildingClass == 2:

 for i in range(0, len(descriptions)):

 if (descriptions[i] == "fire retarding"

 or descriptions[i] == "highly fire retarding"

 or descriptions[i] == "fire resisting"):

 basementCeilings.append(collectedFloorTypes[i].Name)

 if buildingClass == 3 or buildingClass == 4 or buildingClass == 5:

 for i in range(0, len(descriptions)):

 if descriptions[i] == "fire resisting":

 basementCeilings.append(collectedFloorTypes[i].Name)

OUT = basementCeilings

Figure 3.17 Implementation of basementCeilingFilter node

Implementation 29

3.3 Model Creation cluster

The “Model Creation” cluster presented in Figure 3.18 includes four nodes and is

responsible for implementing the collected data as a model in Revit. The three nodes

on the right make sure that previously generated models are removed from the project

if the contained Boolean node Clear is set to “True”. For this purpose, the Level node

and the All Elements at Level node collect all elements at the default "Level 1" and

output them to the Model Creation node.

The python script node Model Creation will be analyzed in the following section. The

appurtenant source code in full length can be found in the Appendix A.2. Additional to

the standard ones, the libraries loaded for this python script are math, “RevitNodes”,

“RevitAPI”, “DocumentManager” and “TransactionManager”.

Thereafter, all the relevant inputs are assigned to variables and if necessary, converted

to either an integer or a dynamo specific data type. This is done with the

“UnwrapElement()” function, because Revit classes differ from the Dynamo equivalent

[22]. In other Dynamo nodes this is done automatically, but if elements are input to a

python script node, it is essential to unwrap them. Afterwards, an output list and three

lists for levels, walls, and floors are created and the units of the used measurements

are converted to meters.

Figure 3.18 Overview of “Model Creation” cluster

Implementation 30

After these preparations, a transaction is started in the Revit API, which enables

Dynamo to make changes to the current Revit document. The first action to be done is

clearing the current project of existing elements, so the process can be repeated

iteratively. The algorithm collects all levels and clears all elements separately from the

first level and those above, given that they exist. Additionally, the first level gets

appended to levelList.

With the input X- and Y-dimensions, a list of corner points for the building model is

created.

Lines connecting the corner points are produced and utilized to build up the walls in

the model. To create a floor, the corresponding level is needed as well as the outline

as a curve array. If basement is “True”, the source code in Figure 3.21 generates a

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

#Clear previous generated elements

levelArray = (FilteredElementCollector(doc)

 .OfCategory(BuiltInCategory.OST_Levels)

 .WhereElementIsNotElementType()

 .ToElements())

if levelArray.Count > 1:

 for levelElement in levelArray:

 if levelElement.Elevation != 0:

 doc.Delete(levelElement.Id)

if clear:

 for element in allElements:

 doc.Delete(element.Id)

levelList.append(level)

 Figure 3.19 Clearance of previous generated elements

76

77

78

79

80

81

82

83

84

85

86

87

88

89

#Create corner points

x = [0, revitApiX, revitApiX, 0]

y = [0, 0, revitApiY, revitApiY]

points = []

point0 = XYZ(x[0], y[0], 0)

points.append(point0)

point1 = XYZ(x[1], y[1], 0)

points.append(point1)

point2 = XYZ(x[2], y[2], 0)

points.append(point2)

point3 = XYZ(x[3], y[3], 0)

points.append(point3)

 Figure 3.20 Creation of corner points from x- and y-coordinates

Implementation 31

new level with an elevation of one negative level height, followed by the creation of

lines, walls, a curve array and finally the basement floor.

Afterwards, the lines for the outside walls above ground are created on the ground

level. These are used in the function for creating the outer walls of the model, which

extend over all levels. This process is shown in Figure 3.22.

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

#Create basement level, walls, and floor

if basement:

 basementLevel = Autodesk.Revit.DB.Level.Create(doc, (-1) * H)

 basementLevel.Name = "Level -1"

 lines = []

 line1 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[0].X, points[0].Y, (-1) * H),

 XYZ(points[1].X, points[1].Y, (-1) * H))

 line2 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[1].X, points[1].Y, (-1) * H),

 XYZ(points[2].X, points[2].Y, (-1) * H))

 line3 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[2].X, points[2].Y, (-1) * H),

 XYZ(points[3].X, points[3].Y, (-1) * H))

 line4 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[3].X, points[3].Y, (-1) * H),

 XYZ(points[0].X, points[0].Y, (-1) * H))

 lines.append(line1)

 lines.append(line2)

 lines.append(line3)

 lines.append(line4)

 curveArray = CurveArray()

 for line in lines:

 wall = Wall.Create(doc, line, wallType.Id, basementLevel.Id, H,

0, False, True)

 wallList.append(wall.ToDSType(False))

 curveArray.Append(line)

 floor = doc.Create.NewFloor(curveArray, floorType, basementLevel,

True)

 floorList.append(floor.ToDSType(False))

 Figure 3.21 Basement creation

Figure 3.22 Above ground walls creation

139

140

141

for line in lines:

 wall = Wall.Create(doc, line, wallType.Id, level.Id, levels * H, 0,

 False, True)

 wallList.append(wall.ToDSType(False))

Implementation 32

The lines are then hitched together in a curve array. The distinction between whether

a basement was created or not decides the floor type used in the ground level floor.

The implementation of this is visible in Figure 3.23

Next, levels additional to the ground level are created in a for-loop shown in Figure

3.24. Once more, the corner points are connected by lines on each level, which then

are connected in curve arrays. Furthermore, during the loop, the floors are produced,

and the levels are named properly.

163

164

165

166

167

168

if basement:

 floor = doc.Create.NewFloor(curveArray, basementCeiling, level,

 True)

else:

 floor = doc.Create.NewFloor(curveArray, floorType, level, True)

floorList.append(floor.ToDSType(False))

 Figure 3.23 Ground level floor creation

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

#Create levels and floors above ground

if levels >= 1:

 for levelNumber in range(1, levels + 1):

 newLevel = Autodesk.Revit.DB.Level.Create(doc, levelNumber * H)

 levelList.append(newLevel)

 line1 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[0].X, points[1].Y, levelNumber * H),

 XYZ(points[1].X, points[1].Y, levelNumber * H))

 line2 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[1].X, points[1].Y, levelNumber * H),

 XYZ(points[2].X, points[2].Y, levelNumber * H))

 line3 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[2].X, points[2].Y, levelNumber * H),

 XYZ(points[3].X, points[3].Y, levelNumber * H))

 line4 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[3].X, points[3].Y, levelNumber * H),

 XYZ(points[0].X, points[0].Y, levelNumber * H))

 curveArray = CurveArray()

 curveArray.Append(line1)

 curveArray.Append(line2)

 curveArray.Append(line3)

 curveArray.Append(line4)

 floor = doc.Create.NewFloor(curveArray, floorType, newLevel,

 True)

 floorList.append(floor.ToDSType(False))

 newLevel.Name = "Level " + str(levelNumber + 1)

Figure 3.24 Creation of levels and floors above ground level

Implementation 33

Concluding, the utilization units are created as shown in Figure 3.25. They are

distributed as even as possible between the levels. If the number of units is not divisible

by the number of levels, the lower levels will have more units. For example, 8 units and

3 levels would mean 3 units on the first and second level and 2 units on the third level.

To implement this, a list for the number of units per level is created. At first, each entry

of the list is set to the quotient of units and levels rounded off. If this division leaves a

remainder, the units that have not yet been assigned to a level are added from the

bottom up with the help of a while loop. The following nested for-loops create lines and

walls between the utilization units on the different levels.

To complete the process, the transaction is ended, and the lists of elements are

appended to the output.

3.3.1 Sample models

The result of the Model Creation node is a building model in Revit consisting of outer

walls, unit-separating walls, levels, floors, and a basement if applicable. The model

gets updated with each execution of the program. This section will demonstrate the

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

#Create inner walls to seperate utilization units

utilizationUnitsPerLevel = list(range(levels))

for i in range(levels):

 utilizationUnitsPerLevel[i] = int(math.floor(utilizationUnits /

 levels))

remainder = utilizationUnits - utilizationUnitsPerLevel[0] * levels

j = 0

while j < remainder:

 utilizationUnitsPerLevel[j] = utilizationUnitsPerLevel[j] + 1

 j = j + 1

for m in range(levels):

 for n in range(1, utilizationUnitsPerLevel[m]):

 utilizationUnitLine = Autodesk.Revit.DB.Line.CreateBound(

 XYZ((revitApiX / utilizationUnitsPerLevel[m]) * n,

 revitApiY, H * m),

 XYZ((revitApiX / utilizationUnitsPerLevel[m]) * n, 0, H *

 m))

 wall = Wall.Create(doc, utilizationUnitLine, wallType.Id,

 levelList[m].Id, H, 0, False, True)

 wallList.append(wall.ToDSType(False))

 Figure 3.25 Creation of inner walls separating utilization units

Implementation 34

functionality by means of three sample models. For the first sample, the values

selected for each parameter are displayed below along with the model in Revit.

Model A:

▪ buildingClass: Building Class 1 (Freestanding/Agricultural/Forestry)

▪ basement: False

▪ freestanding: True

▪ agricultural/forestry: False

▪ levelHeight [m]: 2.8

▪ levels: 2

▪ utilizationUnits: 2

▪ X [m]: 10

▪ Y [m]: 14

▪ wallType: fire retardant Generic – 300mm

▪ floorType: fire retardant Generic Floor – 400mm

▪ basementCeiling: -

Model A is a freestanding building of class 3 with two levels of 2.8 m and a footprint of

140 m² or 240 m² of gross floor area. No basement was selected, and the building is

neither agricultural nor forestry. Two utilization units mean one per level, so no partition

walls are created. The wall and floor types are rated fire retardant.

Figure 3.26 Model A in the Revit workspace

Implementation 35

Model B:

▪ buildingClass: Building Class 3

▪ basement: True

▪ freestanding: False

▪ agricultural/forestry: False

▪ levelHeight [m]: 3

▪ levels: 3

▪ utilizationUnits: 5

▪ X [m]: 14

▪ Y [m]: 18

▪ wallType: fire retardant Generic – 300mm

▪ floorType: fire retardant Generic Floor – 400mm

▪ basementCeiling: fire resistant Generic Floor – 400mm

Model B is categorized as building class 3. It includes a basement and is neither

freestanding nor agricultural/forestry. It has 3 levels of 3 m height, which means that

the relevant height for the building class determination is 6 m. The gross floor area is

not limited for building class 3 and amounts to 252 m². One outside wall was hidden

manually, so the distribution of the five utilization units is visible in Figure 3.27. Walls

and floors are rated fire retardant apart from the basement ceiling, which is fire

resistant.

Figure 3.27 Model B in the Revit workspace

Implementation 36

Model C:

▪ buildingClass: Building Class 5

▪ basement: True

▪ freestanding: False

▪ agricultural/forestry: False

▪ levelHeight [m]: 3

▪ levels: 5

▪ utilizationUnits: 15

▪ X [m]: 40

▪ Y [m]: 25

▪ wallType: fire resistant Generic – 300mm

▪ floorType: fire resistant Generic Floor – 400mm

▪ basementCeiling: fire resistant Generic Floor – 400mm

For Model C building class 5 was selected. The building with 15 utilization units that

are evenly spread on five levels of 3 m has a basement is not freestanding or

agricultural/forestry. The gross floor area equals 1000 m², which means that each

utilization unit has an area of approximately 67 m². All walls and floors are rated fire

resistant. Due to the choice of parameters, the Building Class Control group returns

“Building Class 4”. This means, that although class 5 was selected the building could

also be classified as building class 4 and therefore use a bigger variety of materials for

example.

Figure 3.28 Model C in the Revit workspace

Implementation 37

3.4 Control cluster

The “Control” cluster in Figure 3.29 contains an Errors group and a Building Class

Control group.

The python script node Error Detection reports an error if building class 1 is selected,

but neither freestanding nor agricultural/forestry is set to “True”. This error message is

then displayed on a Watch node. The error has no impact on the generation of the

model.

The inputs to the Building Class Control group are all the relevant parameters for the

building class determination. A python script node then identifies the actual building

Figure 3.29 Overview of “Control” cluster

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

#Load the Python Standard and DesignScript Libraries

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

#Assign input to variables

buildingClass = IN[0]

freestanding = IN[1]

agricultureforestry = IN[2]

#Check for error with building class 1 parameters and output report

if buildingClass == 1 and not freestanding and not agricultureforestry:

 OUT = "Building must be freestanding\nor agricultural/forestry"

else:

 OUT = "no error"

 Figure 3.30 Implementation of Error Detection node

Implementation 38

class of the generated model. This can show the user that a lower building class would

also be applicable for the inserted parameters, which is supposed to motivate the user

to adapt the design of the model. Alternatively, a higher building class indicates wrong

usage of the program.

The python algorithm of this node is shown in Figure 3.31. The standard libraries are

loaded, and the building parameters imported and assigned to variables. As a next

step, the gross floor area and height of the model are calculated. The subsequent

determination of the building class was implemented with the help of Figure 2.4. The

area of the largest unit generated with this program is used for the calculation. The

building class is forwarded to a Watch node to display it to the user.

Figure 3.31 Implementation of Building Class Node

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

#Load the Python Standard and DesignScript Libraries and Math

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

import math

#Assign input to variables

x = IN[0]

y = IN[1]

levels = IN[2]

levelHeight = IN[3]

units = IN[4]

freestanding = IN[5]

agricultureforestry = IN[6]

#Calculate building height and gross floor area

area = int(x * y * levels)

height = int((levels - 1) * levelHeight)

#Determine and output building class

if not agricultureforestry:

 if height <= 7:

 if area <= 400 and units <= 2:

 if freestanding:

 buildingClass = "Building Class 1"

 else:

 buildingClass = "Building Class 2"

 else:

 buildingClass = "Building Class 3"

 else:

 if (height <= 13

 and (x * y / math.floor(units / levels)) <= 400):

 buildingClass = "Building Class 4"

 else:

 buildingClass = "Building Class 5"

else:

 buildingClass = "Building Class 1"

OUT = buildingClass

Conclusion 39

This section rounds up the thesis by summarizing and evaluating the project,

addressing boundaries that were met and giving an outlook for possible improvement

or expanding work for the future.

The goal of the work was to create parametric building models that automatically

comply with fire-safety regulations. Dynamo for Revit 2021 was chosen as the platform

for the implementation because it offers a visual programming interface and is

therefore relatively easy to operate while using the well-established Revit database.

The program to generate the parametric model was built successfully. It includes

eleven parameters to modify the building, three of which are material selections. All

five building classes from the BayBO may be represented in a building model, which

can be specified in terms of floor area, height, and division into floors as well as

utilization units. Furthermore, the option for a basement was implemented.

The program checks the entries and informs about the possibility to classify the building

in a lower class. Resulting from the selected building class, the program filters object

types for walls and floors. The compliance with fire-safety regulations was

implemented with the help of python script nodes, which automatically update the limits

of parameters dependent on inputs. Python was also used to create the model with

functions from Dynamo and the Revit API.

4.1 Boundaries

A boundary encountered in the course of the implementation was the limitation of

parameters and their values. One reason for some compromises was the goal to keep

the program clearly structured, in the sense of not being cluttered with parameters. As

it would be very complicated or even impossible to enable any desired shape of a

building to be generated, some kind of compromise is necessary to not exceed the

scope suitable for this thesis. The author decided to settle with a simple rectangular

building. A good alternative would have been to allow some selected shapes like L-

formed or U-formed buildings. This would have needed several more nodes for

parameterization and rule compliance. Allowing angles other than right angles would

4 Conclusion

Conclusion 40

result in an additional parameter for each angle and a much more complicated

calculation of the rule compliance.

Parameters that are not limited by any regulation needed to be assigned a custom

maximum for this thesis because infinity was not found to be implementable with

Dynamo in the parametric environment. Furthermore, to keep the program input clear

and understandable the distribution of the utilization units is automated and units over

multiple floors can be selected and are used for building class determination but are

not represented in the model itself. The implementation of these functions would have

led to a disproportionate number of additional parameters compared to the benefit

gained from them.

Another boundary was found with Revit and Dynamo themselves. During the process

of the implementation no practicable way to create a non-flat roof parametrically was

found in Dynamo. Although this is not seen as a drastic limitation, as the model does

not claim to be complete but serves as a basis for further modeling. Additionally, the

Revit family libraries had to be prepared by adding suitable wall and floor types for the

filtering because the existing types had no fire resistance class assigned. However, it

is assumed that a user of the software, such as a design or construction firm has or

can create a well-stocked library.

4.2 Outlook

Possible improvements for the developed program could be made in the form of a more

detailed model and consequently more parameters. For example, the exact position

and area of each utilization unit including multi-story units could be implemented.

Furthermore, walls to neighboring buildings could be chosen and thus be handled

differently because of fire-safety restrictions. Other fire-safety relevant details in a

building that could be implementable are elevators, stairs, and hallways. In order to not

clutter the parameter input section of the interface, some kind of graphic input with

multiple points for positions, dimensions, or forms would be beneficial.

Dynamo was chosen since it offers an easy-to-understand interface that can be used

even with little experience, and it also works together with Revit, which is widely known

in AEC. The visual programming environment is relatively easy to use, but also brings

limited possibilities with it. Alternative software with more flexible input options such as

a graphical input or a separation of front-end and back-end could improve the

functionality of the program.

Conclusion 41

Autodesk introduced generative design for Revit and Dynamo through internal

functions and the new software Project Refinery Beta. Both are supposed to give

members of the AEC industry the opportunity to explore and optimize Revit designs.

The user can create and visualize sample studies for his project where a lot of solutions

for the given task are generated and ranked based on input parameters. Autodesk

mentions workspace layouts, optimized window views and other possible applications.

Furthermore, Dynamo users can create their own custom studies, which would be very

interesting to explore further with this work. [11]

Bibliography 42

[1] S. Abrishami, J. Goulding, F. Pour Rahimian, A. Ganah, Integration of BIM and

generative design to exploit AEC conceptual design innovation, Information

Technology in Construction 19 (2014), 350-359.

[2] J. Abualdenien, A. Borrmann, A meta-model approach for formal specication and

consistent management of multi-LOD building models, Advanced Engineering

Informatics 40 (2019), 135-153.

[3] J. Abualdenien, A. Borrmann, Vagueness visualization in building models across

different design stages, Advanced Engineering Informatics 45, 2020.

[4] J. Abualdenien, S. Pfuhl, A. Braun, Development of an MVD for checking fire-

safety and pedestrian simulation requirements, 2019.

[5] J. Abualdenien, P. Schneider-Marin, A. Zahedi, H. Harter, H. Exner, D. Steiner,

M. Singh, A. Borrmann, W. Lang, F. Petzold, M. König, P. Geyer, M.

Schnellenbach‐Held, Consistent management and evaluation of building models

in the early design stages, Electronic Journal of Information Technology in

Construction 25 (2020), 212-232.

[6] ALLPLAN Blog, Parametric BIM Modeling - Efficiency And Flexibility In Planning

Processes, 2020. https://blog.allplan.com/en/parametric-bim-modeling (visited:

2021-04-27)

[7] H. Anave (uma.px.anave.0901), Celery for Dynamo 2.5 Version 20.6.7, 2020.

https://dynamopackages.com/# (visited: 2021-04-21)

[8] Autodesk, Demystifying Generative Design for Architecture, Engineering and

Construction, 2018. https://damassets.autodesk.net/content/dam/autodesk/

www/solutions/generative-design/autodesk-aec-generative-design-ebook.pdf

(visited: 2021-04-27)

5 Bibliography

https://damassets.autodesk.net/content/dam/autodesk/www/solutions/generative-design/autodesk-aec-generative-design-ebook.pdf
https://damassets.autodesk.net/content/dam/autodesk/www/solutions/generative-design/autodesk-aec-generative-design-ebook.pdf

Bibliography 43

[9] Autodesk, Dynamo 2.6.1.8850, 2020. https://dynamobim.org/download/ (visited:

2021-04-14)

[10] Autodesk, Dynamo Primer, 2019. https://primer.dynamobim.org/en/index.html

(visited: 2021-04-14)

[11] Autodesk, Generative Design in Revit now available, 2020.

https://blogs.autodesk.com/revit/2020/04/08/generative-design-in-revit/ (visited:

2021-04-28)

[12] Autodesk, Revit 2021, 2020. https://www.autodesk.de/products/revit/

overview?term=1-YEAR (visited: 2021-04-14)

[13] BaustoffWissen, Erklärt: Feuerwiderstandsklassen, 2013.

https://www.baustoffwissen.de/baustoffe/baustoffknowhow/baurecht/erklaert-

feuerwiderstandsklassen/ (visited: 2021-04-22)

[14] BayBO, Bayerische Bauordnung in the version of the announcement of August

14, 2007 (GVBl. S. 588, BayRS 2132-1-B), last modified pursuant to §1 of the Act

of December 23, 2020 (GVBl. S. 663). https://www.gesetze-

bayern.de/Content/Document/BayBO (visited: 2021-04-11)

[15] A. Borrmann et al., Building Information Modeling : Technology Foundations and

Industry Practice, Springer International Publishing AG, 2018.

[16] M. M. Burnett, Visual Programming, in: Wiley Encyclopedia of Electrical and

Electronics Engineering, J.G. Webster (Ed.), 1999. pp. 1-1.

[17] P. Christensen, API Definition, 2016. https://techterms.com/definition/api (visited:

2021-04-22)

[18] DIN 277-1, Grundflächen und Rauminhalte (Hochbau), 2016.

[19] DIN 4102-2, Brandverhalten von Baustoffen und Bauteilen; Bauteile, Begriffe,

Anforderungen und Prüfungen, 1977.

Bibliography 44

[20] C. Eastman, P. Teichholz, R. Sacks, K. Liston, BIM Handbook: A Guide to

Building Information Modeling for Owners, Managers, Designers, Engineers, and

Contractors, John Wiley & Sons, 2011.

[21] R. Fernando, R. Drogemuller, A. Burden, Parametric and generative methods

with building information modeling, Proceedings of the 17th International

CAADRIA (2012), 537-546.

[22] O. Green, Dynamo Python Primer, 2020.

https://dynamopythonprimer.gitbook.io/dynamo-python-primer/4-revit-specific-

topics/unwrapping-revit-elements (visited: 2021-04-21)

[23] P. Janssen, Parametric BIM Workflows, Proceedings of the 20th International

CAADRIA (2015), 437-446.

[24] E. Kalkan, F.Y. Okur, A.C. Altunışık, Applications and usability of parametric

modeling, Journal of Construction Engineering, Management & Innovation

Volume 1 Issue 3 (2018), 139-146.

[25] NBS, What is Building Information Modelling (BIM)?, 2016.

https://www.thenbs.com/knowledge/what-is-building-information-modelling-bim

(visited: 2021-04-14)

[26] N. Panchal, How Important is Revit Family Modelling for the AEC Industry?, 2018.

https://www.xscad.com/blog/how-important-is-revit-family-modelling-for-the-aec-

industry (visited: 2021-04-22)

[27] S. Pfuhl, Analysis of Exchange Requirements for BIM- based Fire Code

Compliance Checking, Bachelor's Thesis, Technische Universität München,

2018.

[28] Wikipedia, Revit, 2020. https://de.wikipedia.org/wiki/Revit (visited: 2021-04-11)

A.1 Parameter Manual 45

Appendix A

A.1 Parameter Manual

A.2 Model Creation Python Script 46

A.2 Model Creation Python Script

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

#Load the Python Standard and DesignScript Libraries and Math

import sys

import clr

clr.AddReference('ProtoGeometry')

from Autodesk.DesignScript.Geometry import *

import math

#Import Revit Nodes

clr.AddReference("RevitNodes")

from Revit.Elements import *

import Revit

clr.ImportExtensions(Revit.Elements)

clr.ImportExtensions(Revit.GeometryConversion)

#Import RevitAPI

clr.AddReference("RevitAPI")

import Autodesk

from Autodesk.Revit.DB import *

from Autodesk.Revit.DB import StairsEditScope

from Autodesk.Revit.DB import Parameter

from Autodesk.Revit.DB.Architecture import StairsRun

from Autodesk.Revit.DB.Architecture import *

from Autodesk.Revit.DB import IFailuresPreprocessor

#Import DocumentManager and transactionmanager

clr.AddReference("RevitServices")

from RevitServices.Persistence import DocumentManager

from RevitServices.Transactions import TransactionManager

#Assign input to variables

levels = int(IN[0])

height = IN[1]

floorType = UnwrapElement(IN[2])

clear = IN[3]

allElements = UnwrapElement(IN[4])

level = UnwrapElement(IN[5])

wallType = UnwrapElement(IN[6])

lengthX = IN[7]

lengthY = IN[8]

utilizationUnits = int(IN[9])

basement = IN[10]

basementCeiling = UnwrapElement(IN[11])

#Create output lists

output = []

wallList = []

levelList = []

floorList = []

#Convert units to meters

H = UnitUtils.ConvertToInternalUnits(height,

DisplayUnitType.DUT_METERS)

revitApiX = UnitUtils.ConvertToInternalUnits(lengthX,

DisplayUnitType.DUT_METERS)

A.2 Model Creation Python Script 47

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

revitApiY = UnitUtils.ConvertToInternalUnits(lengthY,

DisplayUnitType.DUT_METERS)

#Open document and start transaction

doc = DocumentManager.Instance.CurrentDBDocument

TransactionManager.Instance.EnsureInTransaction(doc)

#Clear previous generated elements

levelArray = (FilteredElementCollector(doc)

 .OfCategory(BuiltInCategory.OST_Levels)

 .WhereElementIsNotElementType()

 .ToElements())

if levelArray.Count > 1:

 for levelElement in levelArray:

 if levelElement.Elevation != 0:

 doc.Delete(levelElement.Id)

if clear:

 for element in allElements:

 doc.Delete(element.Id)

levelList.append(level)

#Create corner points

x = [0, revitApiX, revitApiX, 0]

y = [0, 0, revitApiY, revitApiY]

points = []

point0 = XYZ(x[0], y[0], 0)

points.append(point0)

point1 = XYZ(x[1], y[1], 0)

points.append(point1)

point2 = XYZ(x[2], y[2], 0)

points.append(point2)

point3 = XYZ(x[3], y[3], 0)

points.append(point3)

#Create basement level, walls, and floor

if basement:

 basementLevel = Autodesk.Revit.DB.Level.Create(doc, (-1) * H)

 basementLevel.Name = "Level -1"

 lines = []

 line1 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[0].X, points[0].Y, (-1) * H),

 XYZ(points[1].X, points[1].Y, (-1) * H))

 line2 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[1].X, points[1].Y, (-1) * H),

 XYZ(points[2].X, points[2].Y, (-1) * H))

 line3 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[2].X, points[2].Y, (-1) * H),

 XYZ(points[3].X, points[3].Y, (-1) * H))

 line4 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[3].X, points[3].Y, (-1) * H),

 XYZ(points[0].X, points[0].Y, (-1) * H))

 lines.append(line1)

 lines.append(line2)

 lines.append(line3)

A.2 Model Creation Python Script 48

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

 lines.append(line4)

 curveArray = CurveArray()

 for line in lines:

 wall = Wall.Create(doc, line, wallType.Id, basementLevel.Id, H,

 0, False, True)

 wallList.append(wall.ToDSType(False))

 curveArray.Append(line)

 floor = doc.Create.NewFloor(curveArray, floorType, basementLevel,

 True)

 floorList.append(floor.ToDSType(False))

#Create outer walls

lines = []

line1 = Autodesk.Revit.DB.Line.CreateBound(points[0], points[1])

line2 = Autodesk.Revit.DB.Line.CreateBound(points[1], points[2])

line3 = Autodesk.Revit.DB.Line.CreateBound(points[2], points[3])

line4 = Autodesk.Revit.DB.Line.CreateBound(points[3], points[0])

lines.append(line1)

lines.append(line2)

lines.append(line3)

lines.append(line4)

for line in lines:

 wall = Wall.Create(doc, line, wallType.Id, level.Id, levels * H, 0,

 False, True)

 wallList.append(wall.ToDSType(False))

#Create ground level floor or basement ceiling

lines = []

line1 = Autodesk.Revit.DB.Line.CreateBound(points[0], points[1])

line2 = Autodesk.Revit.DB.Line.CreateBound(points[1], points[2])

line3 = Autodesk.Revit.DB.Line.CreateBound(points[2], points[3])

line4 = Autodesk.Revit.DB.Line.CreateBound(points[3], points[0])

lines.append(line1)

lines.append(line2)

lines.append(line3)

lines.append(line4)

curveArray = CurveArray()

curveArray.Append(line1)

curveArray.Append(line2)

curveArray.Append(line3)

curveArray.Append(line4)

if basement:

 floor = doc.Create.NewFloor(curveArray, basementCeiling, level,

 True)

else:

 floor = doc.Create.NewFloor(curveArray, floorType, level, True)

floorList.append(floor.ToDSType(False))

#Create levels and floors above ground

if levels >= 1:

A.2 Model Creation Python Script 49

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

 for levelNumber in range(1, levels + 1):

 newLevel = Autodesk.Revit.DB.Level.Create(doc, levelNumber * H)

 levelList.append(newLevel)

 line1 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[0].X, points[1].Y, levelNumber * H),

 XYZ(points[1].X, points[1].Y, levelNumber * H))

 line2 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[1].X, points[1].Y, levelNumber * H),

 XYZ(points[2].X, points[2].Y, levelNumber * H))

 line3 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[2].X, points[2].Y, levelNumber * H),

 XYZ(points[3].X, points[3].Y, levelNumber * H))

 line4 = Autodesk.Revit.DB.Line.CreateBound(

 XYZ(points[3].X, points[3].Y, levelNumber * H),

 XYZ(points[0].X, points[0].Y, levelNumber * H))

 curveArray = CurveArray()

 curveArray.Append(line1)

 curveArray.Append(line2)

 curveArray.Append(line3)

 curveArray.Append(line4)

 floor = doc.Create.NewFloor(curveArray, floorType, newLevel,

 True)

 floorList.append(floor.ToDSType(False))

 newLevel.Name = "Level " + str(levelNumber + 1)

#Create inner walls to seperate utilization units

utilizationUnitsPerLevel = list(range(levels))

for i in range(levels):

 utilizationUnitsPerLevel[i] = int(math.floor(utilizationUnits /

 levels))

remainder = utilizationUnits - utilizationUnitsPerLevel[0] * levels

j = 0

while j < remainder:

 utilizationUnitsPerLevel[j] = utilizationUnitsPerLevel[j] + 1

 j = j + 1

for m in range(levels):

 for n in range(1, utilizationUnitsPerLevel[m]):

 utilizationUnitLine = Autodesk.Revit.DB.Line.CreateBound(

 XYZ((revitApiX / utilizationUnitsPerLevel[m]) * n,

 revitApiY, H * m),

 XYZ((revitApiX / utilizationUnitsPerLevel[m]) * n, 0, H *

 m))

 wall = Wall.Create(doc, utilizationUnitLine, wallType.Id,

 levelList[m].Id, H, 0, False, True)

 wallList.append(wall.ToDSType(False))

#End transaction and output levels, floors, walls

TransactionManager.Instance.TransactionTaskDone()

output.append(levelList)

output.append(floorList)

output.append(wallList)

OUT = output

A.3 Dynamo Workspace Overview A3 50

A.3 Dynamo Workspace Overview A3

A.3 Dynamo Workspace Overview A3 51

With this statement I declare that I have independently completed this Bachelor's

thesis. The thoughts taken directly or indirectly from external sources are properly

marked as such. This thesis was not previously submitted to another academic

institution and has also not yet been published.

Munich, April 30, 2021

Patrick Nordmann

Declaration of Originality

