
Chair of Computational Modelling and Simulation
Department of Civil, Geo and Environmental Engineering
Technical University of Munich

Exploration of train station’s design space
via regulation-compliant parametric model

Scientific work to obtain the degree

Bachelor of Science (B.Sc.)

at the Department of Civil, Geo and Environmental Engineering of the Tech-
nical University of Munich.

Supervised by Prof. Dr.-Ing. André Borrmann
Jimmy Abualdenien
Sebastian Essser
Chair of Computational Modelling and Simulation

Submitted by Benedict Harder ()

e-Mail:

Submitted on April 30th 2021

mailto:

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Structure . 3

2 State of the Art 4
2.1 Design exploration in early phases . 4
2.2 Generative Design in Architecture . 5

2.2.1 Parametric modelling . 5
2.2.2 Generative Design . 5
2.2.3 GANS - Generative Adversarial Neural Networks 5
2.2.4 Refinery from Autodesk Revit . 6

2.3 Simulation and Life-Cycle Assessment . 6
2.3.1 Types of Simulation . 6
2.3.2 Pedestrian Evacuation Simulation 7

3 Methodology 8
3.1 Regulations . 8

3.1.1 Level of Regulations . 8
3.2 Embedding Regulations in a Parametric Model 8

4 Statistical Analysis 13
4.1 Methodology . 13
4.2 Results . 14

4.2.1 Summary . 19
4.2.2 Validity . 20

5 Implementation 22
5.1 Software . 22

5.1.1 Revit . 22
5.1.2 Dynamo . 22

5.2 Code Development . 23
5.2.1 Dynamo Nodes . 24

6 Variations 32

7 Limitations 42
7.1 Translation . 42
7.2 Software . 42

8 Conclusion and Future Research 43

A Files 44

I

References 45

List of Figures

3.1 Visualization of the process of translation between regulations and code . . 9
3.2 A table to determine platform-relevant variables (813.0201, 2012, A05 p. 2) 10
3.3 Additions to the table of Figure 3.2 (813.0201, 2012, A05 p. 2) 11

4.1 Categories in red, detailed regulations in blue (813.0201, 2012, p. 6) . . . 13

5.1 An example of a Dynamo script . 23
5.2 The entire U9-Trackline script . 24
5.3 The origin is at the lower left corner, as indicated by the circle 29

6.1 General layout of the first floor. 32
6.2 Nr Of Tracklines = 5, The track line count can be increased and more

platforms will be created accordingly. Note that double track lines are
counted as one. 33

6.3 Nr Of Escalators = 1, Nr Of Stairs = 0, A more detailed view of the
single escalators together with the walls. 33

6.4 Nr Of Escalators = 3, Nr Of Stairs = 0, The escalator count can be
increased to any value between 1 and 3. 34

6.5 Nr Of Escalators = 2, Nr Of Stairs = 1, As well as escalators, stairs
can also be placed in the same manner. 34

6.6 EscYOffset = 0, A top-down view of a single placed escalator. 35
6.7 EscYOffset = -10, The specified offset toward the south of the model

should have placed the escalators far from the desired platform, but the
logic in the script overwrote the "invalid" parameter. 35

6.8 EscYOffset = 10, Similar to Figure 6.7, just in the opposite direction. . . . 36
6.9 Elevator Position = 1, The elevator shafts can be placed in the middle

or on the ends of the platform. 36
6.10 Elevator Position = 3, Similar to Figure 6.9, with the elevator shafts at

the opposite end. 37
6.11 Nr Of Column Rows = 1, The column count can be adjusted to either 1 or

2 rows on a single platform. 37
6.12 Escalators facing inwards = False, This changes the orientation of the

escalators and stairs, as well as adjusting their position accordingly. The
elevator shaft gets moved to the end of the platform should the user have
specified a "middle" placement. 38

6.13 Nr Of Levels = 2, The general layout of the topmost floor, which in this
case is the second. 38

6.14 Nr Of Exits = 2, The number of exits can be changed to any value be-
tween 1 and 4. Slabs are added to the end of the exits to declare the
destinations for pedestrian simulation. 39

III

6.15 Ticketmachine X Offset = 7, Nr Of Ticketmachines per Exit = 2, A
closer view of the ticket machines (red) which can have their position and
count adjusted as well as the ATMs (grey) and storebooths (blue). 39

6.16 Escalators facing inwards = False, General layout of the top floor with
the escalators and stairs facing outwards. 40

6.17 Nr Of Levels = 4, The level count can be changed to any value larger
than 2. The top floor will always contain the exits, ATMs, storebooths and
ticket machines. 40

6.18 Nr Of Levels = 4, Regardless of the number of levels, the floors always
remain connected. 41

6.19 Nr Of Levels = 4, Nr Of Escalators = 3, The number of escalators is
the same for all connecting escalators and stairs. 41

List of Tables

4.1 Platform height regulations (813.0201, 2012, 5f) 14
4.2 Platform length regulations, (813.0201, 2012, 6ff) 14
4.3 Platform width regulations, (813.0201, 2012, 9ff) 15
4.4 Platform construction regulations, (813.0201, 2012, 11ff) 15
4.5 Platform access regulations, (813.0202, 2012, 4ff) 16
4.6 Obstruction-free path regulations, (813.0202, 2012, 6ff) 16
4.7 Footpath regulations, (813.0202, 2012, 8f) 16
4.8 Stairs regulations, (813.0202, 2012, 9ff) . 17
4.9 Ramp regulations, (813.0202, 2012, 12ff) 17
4.10 Elevator regulations, (813.0202, 2012, 14ff) 18
4.11 Escalator regulations, (813.0202, 2012, 16f) 18
4.12 Grade-Separated Intersection Regulations, (813.0202, 2012, 17ff) 19
4.13 Grade-Level Intersections regulations, (813.0202, 2012, 19f) 19
4.14 Total Percentages . 19
4.15 Reason Count . 20
4.16 Total Percentages with eliminated reasons 20
4.17 Regulations which were implemented 100% 21

V

Acronyms

2D Two-dimensional
3D Three-dimensional
AEC Architecture, Engineering and Construction
BIM Building Information Modelling
CAD Computer Aided Design
DB Deutsche Bahn/German Railways
GANS Generative Adversarial Neural Networks
GCS Geometric Constraint Solver
GIS Geographical Information System
IFC Industry Foundation Classes
JSON JavaScript Object Notation
LCEA Life Cycle Energy Analysis
NLP Natural Language Processors

VI

Abstract

With ever-increasing demands on building performance, the early stage of architectural
design becomes an even more significant factor for harnessing a potential building’s
performance. As decisions done during the early stages have the most impact on the
entire project, architects and engineers must consider every possible design choice.
Generative Design can help achieve this by automatically generating a large amount
of designs, for example with the help of Generative Adversarial Neural Networks. One
of the important aspects to consider during the early stages is regulation-compliance.
Following guidelines from the beginning eases the design process by eliminating the need
for adjustments later on. This thesis focuses on building a script with which regulation-
compliant models of the U9-station in Munich can be generated using Autodesk Revit
and Dynamo, with regulations originating from official DB (German Railways) guidelines.
Furthermore, the possibility and success of translating regulations into code scripts are
analyzed statistically and the state of the art of generative design in the early stages is
presented.

1

Chapter 1

Introduction

1.1 Motivation

Since the performance of a building is becoming increasingly significant, energy efficiency
to name just one factor, it is progressively crucial to consider regulation during the early
phases of the architectural design. Being regulation-compliant during these phases
renders the entire process faster, more economical and makes the detailed construction
later more convenient to design. The early design phases are amongst the most impactful
in regards to later performance of the building (BRAGANÇA, VIEIRA, & ANDRADE, 2014).
Making sure that early decisions already follow the necessary regulations and building
code means that the architects or engineers can spend more time planning and considering
the general layout instead of making changes based on certain regulations not yet fulfilled.
A parametric model can aid this process significantly. This type of model follows certain
imposed constraints (WASSIM, 2013), which can be as simple as ’these two lines must
always be parallel to each other’ to ’the euclidean distance between these two objects
must never be lower than 2, no matter the circumstances’. As one can see, the second
example already somewhat resembles a regulation that can be found in building code.
Managing to implement a parametric model that can follow at least some or potentially
even all regulations would take away a lot of work of the designers and increase building
performance (BRAGANÇA et al., 2014). Additionally, with the help of generative design one
could generate as many regulation-compliant models as possible and then choose the
most successful one (KRISH, 2011).

One of the aspects to consider during the early phases of architectural design, especially
in public buildings, is the ability to evacuate all people inside the building to a safe
space (ABUALDENIEN, CLEVER, et al., 2020). With the help of Generative Adversarial
Neural Networks one can already simulate pedestrian evacuations simulations based on a
given model (ACCU:RATE, 2021). When coupled together with the plethora of regulation-
compliant models that can be created with the help of a parametric model, it could be
possible to (with a certain degree of surety) find the "best" model relatively quickly, at least
based on their performance regarding pedestrian evacuation. This kind of technology
could lead to a leaner planning process. On the basis of the U9 station in Munich, this
thesis will present a parametric model based on official Deutsche Bahn/German Railways
regulations and evaluate the quality of it statistically.

2

1.2 Structure

The structure of this thesis is as follows:

1. Chapter 2 presents the current state of the art in parametric modelling, generative
design, GANS and pedestrian evacuation simulation.

2. Chapter 3 demonstrates the methodology used for implementing real-world regula-
tions into code.

3. Chapter 4 evaluates the success and quality of the parametric model in regards to
how much can and could be implemented.

4. Chapter 5 describes the implementation process of the regulations into a Dynamo
script.

5. Chapter 6 shows different variations of the model on the basis of different input
parameters.

6. Chapter 7 discloses limitations with this approach.

7. In Chapter 8 the topic is concluded and ideas and thoughts for future research are
proposed.

3

Chapter 2

State of the Art

Critical to understanding the significance of this subject is understanding the current
state of the industry and research regarding the early stages of design, simulation and
generative design. By means of literature this chapter will evaluate and present the state
of the art accordingly.

2.1 Design exploration in early phases

As mentioned, the early stages in architectural design are the most crucial to building
performance. Tasks during these phases include defining and summarizing the core
building functions, constraints and requirements and then implementing these into a
concept (BRAGANÇA et al., 2014). BRAGANÇA et al. group these tasks together and call it
the “conceptual phase” (BRAGANÇA et al., 2014, p. 3), which is also the name used here
on out. The reason for the significance of this phase is that these concepts will have a
large impact on the general performance of the building (ABUALDENIEN & BORRMANN,
2019). As several experts of various domains such as designers, engineers and architects
must collaborate intensely (ABUALDENIEN, PFUHL, & BRAUN, 2019), they also face the
problem of information scarcity. Since only a limited amount of properties of the building
are known during this stage, often restricted to footprint and height, a lot of estimations
have to be made in order to assess the energy output, material cost, construction time
and other essential quantities relevant to the client (BRAGANÇA et al., 2014). Therefore,
eliminating the need for estimations and instead managing to extract realistic information
out of these concepts would be a great benefactor for finding a suitable concept, the basis
for a successful performant building.

An aspect of this would be, for example, early-on regulation-compliance. Inspecting for
regulation- or code-compliance requires extensive knowledge on the pertinent local and
national law (ABUALDENIEN et al., 2019). Including this kind of process during a stage of
information scarcity, as mentioned above, is a challenge in itself, in addition to the difficulty
of the process. In order to realize these ideas, additional tools to assist experts during the
conceptual phase are necessary. In the following, several pieces of software which would
facilitate resolving the problems mentioned above will be presented.

4

2.2 Generative Design in Architecture

2.2.1 Parametric modelling

Developed by SHAH and MÄNTYLÄ, parametric modelling or parametric CAD is a con-
cept of modelling 2D sketches equipped with constraints such as parallel, coincide,

tangential, etc. (SHAH & MÄNTYLÄ, 1995) and is widely implemented into a variety
of softwares such as Autodesk Inventor, Siemens NX and more (VILGERTSHOFER &
BORRMANN, 2017). The sketches are comprised of geometric objects such as lines, while
the parametric constraints define the topology of these objects. The entirety is eventually
solved by a Geometric Constraint Solver (FUDOS & HOFFMANN, 1997).

Parametric modelling has a vast range of application, including AEC. SALIMZADEH,
VAHDATIKHAKI, and HAMMAD leverage a parametric model developed in Dynamo to find
suitable layout designs for various photo voltaic modules, accounting for different surface
types and building components using BIM (SALIMZADEH et al., 2020). Another application
developed by BARAZZETTI and BANFI is combining a parametric BIM-model with geospatial
data of GIS to plan infrastructure such as roads, where referencing a global coordinate
system is necessary (BARAZZETTI & BANFI, 2017).

2.2.2 Generative Design

Generative Design refers to an intricate process built to help designers accelerate problem-
solving and discovering the best designs possible. When considering the assessment of
issues of a particular design, FRAZER speaks of the fact that it is “misleading to talk of
design as a problem-solving activity” (FRAZER, 2002, p. 253) and instead defines designing
as “a problem-finding activity.[...] Indeed the solution is often the very definition of the
problem” (FRAZER, 2002, p. 253). Consequentially, FRAZER created “The Generative
Evolutionary Paradigm” which describes the process of defining a representation of the
problem, creating genetic code on the basis of the representation, extract code scripts to
create designs, evaluate the designs and create more code scripts from the successful
iterations (FRAZER, 2002, p. 255). This allows the architect to consider a significantly
larger amount of different approaches. KRISH breaks down the stages of generative design
in a similar fashion, defining them as “1. A design schema 2. A means of creating variation
3. A means of selecting desirable outcomes” (KRISH, 2011, p. 90). KRISH also mentions
that this type of design automation is well-suited for creative design problems, especially
ones where subjectivity plays a role as in aesthetics. It can, however, also be applied to
other less subjective problems such as energy efficiency in buildings (CALDAS, 2008).

2.2.3 GANS - Generative Adversarial Neural Networks

GANS are a type of machine learning network used for generating output data similar
to the set of given input data (ZHENG & HUANG, 2018). Adversarial in this case means

5

that two different models are competing against each other. GOODFELLOW et al. describe
these as a generative model G and a discriminative model D. While G generates models
based on given training data, D tries to identify if a piece of data originates from either the
training data or G, with the main objective of G being that D makes a mistake. Meanwhile
the main objective of D is to better separate training data and generated data. As G gets
better at generating data similar to the input, D gets better at distinguishing it and vice versa
(GOODFELLOW et al., 2014). GANS can be used, for example to generate architectural
2D drawings. ZHENG and HUANG use a modified version of GANS called PIXPIX2PIXHD

by WANG et al. built to generate 2D pixel-based images. Based on training data of 100
floor plans, each kind of room was given a unique color in order to be distinguishable from
one another. Based on this data, the GANS can generate similar floor plans to the training
data (ZHENG & HUANG, 2018).

2.2.4 Refinery from Autodesk Revit

Refinery is Autodesk’s implementation of generative design for their software-catalog.
Available in Revit 2021, it allows the architect to explore a larger number of different design
options and approaches than usually manageable and thus, can lead to a higher quality
product. It is tightly integrated with Dynamo for Revit. By creating so-called ’studies’ used
to generate the designs, the user can define the way the generation behaves. An important
factor regarding this is the selection of input and output nodes in the Dynamo graph. With
these selected, one can define whether certain outputs should be maximized or minimized.
This can be any number value including, but not limited to, an area, height, or number of
rooms. Refinery then optimizes the generation process and follows the users guidelines1.

2.3 Simulation and Life-Cycle Assessment

2.3.1 Types of Simulation

Simulations during the early stages of design can help evaluate the quality and per-
formance of the building. Despite the information scarcity it is still possible to achieve
meaningful results. One of the types of simulations is a Life Cycle Energy Analysis. A LCEA
comprises of an assessment of the embedded energy which consists of “Construction”,
“Use”, “Disposal” and “Recycling, Reuse and Reutilization” (according to DIN 15978-2012-
10) and the energy required during operation which are then merged (ABUALDENIEN,
SCHNEIDER-MARIN, et al., 2020). Another type would be a “Structural Preliminary Design”,
which based on the rough design of the supporting structures, evaluates the structural
design during the early stages using a “specialized development system” (ABUALDENIEN,
SCHNEIDER-MARIN, et al., 2020, p. 14).

1AUTODESK, 2021a.

6

2.3.2 Pedestrian Evacuation Simulation

When simulating pedestrians there are two main approaches: the hydraulic and the micro-
scopic approach. The former focuses mainly on pedestrian density and its influence on the
flow-rate by utilizing empirical data. This approach considers and uses the similarities be-
tween pedestrian flow and the flow of liquids (PLUM & JÄGER, 2011). The latter approach
focuses on the pedestrian as an individual and allows the simulation of smaller-scale
events, such as congestions in certain parts of the pathway. Divisible into either discrete
models or continuous ones, which differ in their approach to time and space granularity,
this kind of simulation also uses a large amount of computing power (KNEIDL, 2013).

Among the software using this technology, crowd:it is one of the more popular ones. Based
on the microscopic approach by KNEIDL with the ’Optimal Steps Model’ by SEITZ it can
accurately simulate the pedestrians’ stepping behavior (SEITZ, 2016). After placing and
defining objects such as origins, stairs, destinations, paths, etc., the software creates a
’floodfield’ containing the force-values and individual experiences. This lets the software
realistically predict the behaviour of the pedestrians (SCHOLL, 2019).

The outbreak of the Covid-19-pandemic in 2020 has demonstrated that the issue of social
distancing during a pedestrian evacuation needs to be considered and addressed. Es-
pecially in hubs of cities such as train stations and pedestrian walking zones, which are
used by thousands of people each day, the risk of infection is significant, and maintaining
hygiene regulations as well as general security becomes of upmost importance (ABUALDE-
NIEN, CLEVER, et al., 2020). Capacities of platforms during social distancing, variation of
safety distances depending on mask-enforcement and places where the minimum distance
required cannot be realistically fulfilled/enforced are the main points where ABUALDENIEN,
CLEVER, et al. delve into detail.

7

Chapter 3

Methodology

3.1 Regulations

3.1.1 Level of Regulations

Regulations can be imposed from various sources, each fulfilling a different role and
imposing different regulations for the building construction. These include the Federal
Building Code, or "Baugesetzbuch", which describes subjects concerning administrative
procedures, property rights, land use and more. Following that, is the building code of
the individual states, the so-called "Bauordnung"1, which goes into greater detail as to
how a building is supposed to be constructed to minimize public health and safety risks2.
This also includes fire safety regulations meant to decrease the danger fires exhibit. On
the city or municipal level, statutes and bylaws are added to meet the individual demands
of the municipality3. Additionally to these government-imposed regulations, companies
or institutions themselves can also have guidelines as to what their building must look
and perform like. In the case of this thesis, the documents 813.0201 and 813.0202 are
especially significant because of their relevance to our use case. As a result, we selected
them to be implemented as a par metric model. Those two guidelines define how train
station platforms as well as their accesses are to be constructed and built.

3.2 Embedding Regulations in a Parametric Model

In order to implement a given set of regulations into a parametric model they need to
undergo a process of translation to be in a computer-readable form such as code before
being used for the creation of a 3D-model (see Figure 3.1). This translative process is
highly variable depending on the style of the regulation, which can take on forms such as
a table, a formula, written out and more. Depending on the form, a corresponding piece
of code needs to be found in order to ensure that the translation between regulation and
code is consistent.

1BAK - FEDERAL CHAMBER OF GERMAN ARCHITECTS, 2021.
2BAVARIAN MINISTRY FOR HOUSING, CONSTRUCTION AND TRANSPORTATION, 2021.
3PROVINCIAL CAPITAL MUNICH, 2021.

8

Figure 3.1: Visualization of the process of translation between regulations and code

First, an assessment of the types of regulations regarding their forms, must be established:

1. Natural language: in the documents 813.0201 and 813.0202, all regulations contain
at least parts that are written in German.

2. Formula: The regulation is in the form of a mathematical formula with parameters
and/or variables.

3. Table: Certain parameters are determined dependant on other parameters with the
help of tables.

By managing to categorize the rules by their form, we can achieve said consistence by
now determining the translative process needed to write code that directly corresponds
to the regulation. Of course natural language poses the largest problem here. This kind

9

of regulation can either be handled manually by a person who must read, understand
and then translate, or it can be handled by a natural language processor. This software
processing can translate natural language in order for computers to understand it. This
knowledge can then be used for the computer to write a program (MIHALCEA, LIU, &
LIEBERMAN, 2006). Using NLPs successfully would be especially convenient for large-
scale translation of regulation documents, but considering the scope of this thesis and the
number of regulations to translate, a manual approach is better suited given the complexity
of such processors. As for the other types (Formula and Table), simpler approaches can
be used. Programming languages such as Python offer a multitude of ways to achieve
this. One prominent example of this will be briefly introduced below.

Table Translation into Code

Tables are quite prevalent in regulation documents and are an excellent way to determine
variables whose values depend on other parameters. In Figure 3.2 (813.0201, 2012,
p. 60) we can see a excellent example of this kind of table where multiple variables can
be identified. Tables such as this one can easily be translated into code with the help of
nested if-statements. These statements check existing parameters for their values and
create a control flow leading to the correct result. The table seen in Figure 3.2 for example
could be translated into code as seen in "Table Script":

Figure 3.2: A table to determine platform-relevant variables (813.0201, 2012, A05 p. 2)

10

Table Script

1 i = 2 #can be e i t h e r 1 , 2 or 3
2 r eg i ona l = False #can be e i t h e r True or False
3 i f i == 1 :
4 i f r eg i ona l :
5 d_v1 = 0.5
6 else :
7 d_v1 = 0.3
8 b_v1 = Q_A1 / (I_B * d_v1)
9 i f i == 2 :

10 i f r eg i ona l :
11 d_v2 = 1
12 else :
13 d_v2 = 0.8
14 b_v2 = Q_A2 / (I_B * d_v2)
15 i f i == 3 :
16 d_v3 = 1
17 b_v1 = Q_A3 / (I_B * d_v3)

If quite lengthy, this script achieves exactly what the table does. With our example values
seen in lines 1 and 2, our script would lead to the value of d (or d_v2) being equal to 0.8

and b (or b_v2) being equal to Q_A2/(I_B*d_v2). The advantage of this implementation
is that it can be scaled indefinitely, or at least up until the system resources have been
exhausted.

Issues when Embedding Regulations

As seen above, some forms of regulations are easily translated into code. Problems arise
with written regulations where it is more difficult to decipher which parts must be translated.
In Figure 3.3 there are two extra regulations to be seen, which correspond directly to the
table seen in Figure 3.2 and are located below it.

Figure 3.3: Additions to the table of Figure 3.2 (813.0201, 2012, A05 p. 2)

The first asterisk refers to the different densities of passengers depending on it being
regional traffic or not. Should the platform be shared between regional and long-distance
traffic, the density is to be calculated proportionally. Accordingly, in order to translate this
part of the regulation one would have to interpret that one needs to interpolate between

11

the two values in a linear fashion so that one could obtain the appropriate value, then
translate that into code. The second asterisk poses a different problem, where in order
to implement this one would have to know exactly how passenger flow control measures
are defined. Issues during the translative process mainly arise when trying to decipher
written out regulations, which sometimes leave room for interpretation or do not go into the
level of detail necessary to be fully implemented. Of course, this issue can be addressed
by engaging and interacting with domain experts and/or the Deutsche Bahn/German
Railways, however this is not within the scope of this thesis.

12

Chapter 4

Statistical Analysis

4.1 Methodology

The regulations found in 813.0201 and 813.0202 and their respective appendices were
assessed on whether they are within the scope of pedestrian evacuation simulation,
whether they are implementable and whether they actually have been translated into code.
While most regulations are technically capable of being translated into code, not all of
them are relevant for our simulation. A good example for a regulation of this type would
be the construction detail for the control panel in the elevators. As important as they may
be, it barely adds anything of value to simulating pedestrians. The way the assessment
was done was by sorting the general categories of regulations, then dividing them up
into small-scale detailed regulations. The documents 813.0201 and 813.0202 offer a
convenient way of categorizing shown in Figure 4.1:

Figure 4.1: Categories in red, detailed regulations in blue (813.0201, 2012, p. 6)

The results will then be compiled into category-specific tables. The first column indicates
the regulation, the second one whether it is implementable or not. The third column shows
the reason why, as shown below:

1. Family Type: Specific family type missing.

2. Software: Additional software features needed.

3. Document: Further regulation documents necessary.

The next column shows whether or not the regulation is within the scope and the last
one shows an estimation of how much of it was implemented into the script. Finally, the

13

results of every category are summarized in order to calculate the total percentage of
’implementable’, ’within scope’ and ’implemented’.

4.2 Results

Platform Height

Table 4.1: Platform height regulations (813.0201, 2012, 5f)

Regulation Imple-
mentable Reason Within

Scope Implemented

Standard heights Yes - Yes 100%
Partial heightening Yes - No -
Total 100% - 50% 50%

The height of the platform can be chosen from a list of possible standard heights, which is
easily translatable into code. The second regulation though refers to changes to a platform
after the initial construction of it and would be more complex to implement. One would
have to offer an interface for the user in which he or she could input the changes to be
made, and then change only a specific part of the model, all of which is out of the scope
of this thesis.

Platform Length

Table 4.2: Platform length regulations, (813.0201, 2012, 6ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Train length Yes - Yes 100%
Standard-lengths Yes - Yes 100%
Usable length Yes - Yes 100%
Installation length Yes - Yes 100%
Total 100% - 100% 100%

Platform length is not only within the scope of this thesis, it is also very straightforward to
implement. No specific family types or software features are needed, and all formulas and
specifications are listed in the available documents.

14

Platform Width

Table 4.3: Platform width regulations, (813.0201, 2012, 9ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Danger zone Yes - Yes 100%
Minimum Width Yes - Yes 75%
Boarding Aids Yes - No -
Minimum Area Yes - Yes -
Total 100% - 75% 43.75%

The width of the platform is also implementable, if not as easily as the previous ones.
While the width is calculated differently in the areas with boarding aids, it is not within the
scope since boarding aids have not been implemented in the script. The percentage of 75
in line two stems from the four different objects that are placed onto the platform (stairs,
escalators, elevators and columns) of which three have been implemented.

Construction

Table 4.4: Platform construction regulations, (813.0201, 2012, 11ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Load Yes - No -
Inspection No Document No -
Installation Dimen-
sions

Yes - No -

Grounding No Family Types No -
Slabs/Piping No Family Types No -
Edges No Family Types No -
Ends No Family Types No -
Security Area No Family Types No -
Drainage No Document No -
Coating No Family Types No -
Markings No Family Types No -
Guidance System No Family Types No -
Total 8.3% - 0% 0%

Construction details such as the ones in this category are not at all relevant for our
simulation and thus, have not been implemented. Additionally, in order to implement them
further, family types and/or documentation would be necessary.

15

Platform Access

Table 4.5: Platform access regulations, (813.0202, 2012, 4ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Step-free access Yes - Yes 100%
1000-People-Rule No Document No -
Barriers Yes - No -
Total 66.67% - 33.33% 0%

The elevators and escalators implemented fulfill the requirement of step-free access, and
are an important aspect to consider when trying to simulate evacuations. The 1000-people
rule though is specified in a different document and could not be implemented.

Obstruction-Free Paths

Table 4.6: Obstruction-free path regulations, (813.0202, 2012, 6ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Length Yes - No -
Width/Height Yes - No -
Marking Yes - No -
Parking No Document No -
Entrances Yes - No -
Total 80% - 0% 0%

Even though the model does, in fact, include pathways with no obstruction on them, there
is no specific line or line of code that checks whether this is fulfilled. It has been deemed
to not be in the scope since unobstructed paths are a given.

Footpath

Table 4.7: Footpath regulations, (813.0202, 2012, 8f)

Regulation Imple-
mentable Reason Within

Scope Implemented

Width Yes - No -
Slope Yes - No -
Drainage Yes - No -
Coating No Family Types No -
Guidance System No Family Types No -
Total 60% - 0% 0%

For a more detailed explanation, see subsection 4.2.

16

Stairs

Table 4.8: Stairs regulations, (813.0202, 2012, 9ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Step width Yes - Yes 100%
Slope No Family Types No -
Intermediate land-
ing

No Family Types Yes -

Area in front Yes - Yes 50%
Access-height Yes - Yes -
Construction of
steps

No Family Types No -

Handrails No Family Types No -
Sweeping Chute No Family Types No -
Total 37.5% - 50% 18.75%

The construction detail of stairs could not be dealt with because of missing family types.
The ’Area in front’ regulation has been deemed around 50% implemented because there
is a part of the script that removes columns that are right in front of them, but it does not
specifically check whether there are objects in the area right in front of the stairs. When it
comes to the access-height, similar to 4.2, the access is unobstructed when it comes to
its height, even though there is no part of the script that checks for compliance.

Ramps

Table 4.9: Ramp regulations, (813.0202, 2012, 12ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Width Yes - Yes -
Slope No Family Types No -
Drainage Yes - No -
Space in front Yes - Yes -
Handrails No Family Types No -
Spur post No Family Types No -
Coating No Family Types No -
Guidance system No Family Types No -
Total 37.5% - 25% 0%

Ramps, a part of barrier-free access, have not been added at all since all parts of the
station are accessible via escalators and elevators, though given the correct families,
should pose no problem to implement.

17

Elevators

Table 4.10: Elevator regulations, (813.0202, 2012, 14ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Size Yes - Yes 100%
Construction No Family Types No -
Control panel No Family Types No -
Space in front Yes - Yes -
Access Yes - Yes -
Awning No Family Types No -
Trestle No Family Types No -
Guidance system No Family Types No -
Total 37.5% - 37.5% 12.5%

Here again we have a lot of detailed construction for the elevators. Only the parts relevant
for the simulations, namely size, have been translated into code.

Escalators

Table 4.11: Escalator regulations, (813.0202, 2012, 16f)

Regulation Imple-
mentable Reason Within

Scope Implemented

Construction No Document No -
Combination with
stairs

Yes - Yes 100%

Slope No Family Types No -
Width Yes - Yes -
Storage No Family Types No -
Speed No Software Yes -
Security No Family Types No -
Guidance system No Family Types No -
Total 25% - 37.5% 12.5%

Essentially serving the same function in a very similar form, the implementation of es-
calators is quite similar to that of the stairs. Again, for certain functions a specific family
type would be needed. Additionally, the regulation specifying the speed with which the
escalators should transport the passengers is certainly within the scope of our project, but
Revit lacks the necessary software features.

18

Grade-Separated Intersections

Table 4.12: Grade-Separated Intersection Regulations, (813.0202, 2012, 17ff)

Regulation Imple-
mentable Reason Within

Scope Implemented

Width Yes - No -
Height Yes - No -
Guidance System No Family Types No -
Standard Design No Document No -
Total 50% - 0% 0%

Given that this is a subway station, intersections are redundant.

Grade-Intersections

Table 4.13: Grade-Level Intersections regulations, (813.0202, 2012, 19f)

Regulation Imple-
mentable Reason Within

Scope Implemented

Planning No Document No -
Guidance System No Family Types No -
Design No Document No -
Total 0% - 0% 0%

See 4.2 for more details.

4.2.1 Summary

Now that the different categories have been analyzed, they can be summarized. Table 4.14
shows our total percentages of ’Implementable’, ’Within Scope’ and ’Implemented’ as well
the last column, which shows how much of the regulations that were within the scope have
been implemented, giving a better idea of how thorough the implementation was.

Table 4.14: Total Percentages

% Implementable % Within Scope % Implemented
% of within-scope
regulations imple-
mented

54% 30.45% 20.08% 68.42%

Of course the percentage of implementable regulations shown in Table 4.14 is not as high
as one would hope when considering using this kind of technology in the industry. But we
must take into account that most of the reasons why something can not be implemented
are either ’Family Types’ or ’Document’ as seen in Table 4.15. These reasons are among
the easiest to solve, given that one would have access to all documents and family types
needed.

19

Table 4.15: Reason Count

Family Types Document Software
31 8 2
75.61% 19.51% 4.88%

If we change our data accordingly, eliminating ’Family Types’ and ’Document’ as a valid
reason for not being implementable, we will of course see the percentage of implementable
regulations rise, more accurately presenting how feasible it is to translate regulations into
code, as seen in Table 4.16:

Table 4.16: Total Percentages with eliminated reasons

% Implementable % Within Scope % Implemented
% of within-scope
regulations imple-
mented

97.3% 30.45% 16.35% 53.68%

As expected, the percentage increased significantly, 43.3% to be exact. This number
obviously gives a vastly superior outlook into the future of this technology. The more
regulations are able to be translated into code, the more useful the program becomes.

4.2.2 Validity

As with any statistics, the results as well as the data can be questioned in terms of their
validity. Validity is the measurement of how well the data represents reality. Regarding
the data, some of the more glaring issues become apparent. Firstly, the method used to
assess the implementation of a regulation is likely to not be completely correct, seeing that
it was mainly gauged by reading through the regulation and then making an approximation
as to which degree that would be possible and in the negative case, estimating what was
missing. Only for those regulations that have been implemented to 100% (a list of those
can be seen in Table 4.17) can it be said for certain that these are also implementable,
since the complete implementation provides proof for that. As for the other regulation data
points, though it is highly improbable that they are completely wrong, their validity can be
questioned.

Certain categories also pose a problem when assessing whether they have been imple-
mented or not. A good example for this would be the category ’Obstruction-free Paths’
(see Table 4.6). Such paths do exist in the models generated by the script, they simply
have not been implemented in a ’fool-proof’ way. For example, this would mean that a part
of the script checks the model every time if the paths are wide enough and whether there
are objects obstructing the way. Despite the fact that the model has been created so that
there always will be obstruction-free paths, it is difficult to gauge if the regulations have
truly been implemented. In these cases, a conservative assessment of 0% implemented
has been done. Apart from this kind of evaluation issue, most of the ’Implemented’ data
points are only educated estimations of how much of a regulation has been implemented.

20

Table 4.17: Regulations which were implemented 100%

Regulation Category
Standard heights Platform Height
Train length Platform Length
Standard lengths Platform Length
Usable length Platform Length
Installation length Platform Length
Danger zone Platform Width
Step-free access Platform access
Step width Stairs
Size Elevators
Combination with stairs Escalators

This is because it is sometimes difficult to translate the process into numerical values of
completion. An example for this would be the ’Minimum Width’ regulation in the category
’Platform Width’ (see Table 4.3). The 75% number is a result of three of the four different
objects placed on the platform being accounted for when calculating the minimum width,
though in most cases the number of object types placed would be significantly higher. On
the one hand, one could argue that by proving the concept of making the width dependable
on the objects given their dimensions is enough to warrant a 100% mark. On the other
hand, this does not account for some special cases which could arise when trying to
implement the regulation with different kinds of objects. In this case, the 75% seem fair,
but may still not accurately represent the true statistic, whatever that may look like.

In summary, this statistical analysis offers an overview of the completion of the implemen-
tation process: from evaluating the regulations, to translating them into code. While the
validity may be questioned for the reasons mentioned above, the results can still be used
to recognize how well this kind of approach to building and planning works.

21

Chapter 5

Implementation

5.1 Software

5.1.1 Revit

Autodesk Revit is a software designed for BIM and is capable of handling the planning of
a project throughout its entire life cycle. By supporting 3D as well as 2D modelling it can
automate repetitive tasks such as updating 2D plans based on changes in the 3D model.
It also features building components called ’Families’ which can be separated into different
’Family Types’. These types then serve as objects which can be placed within the actual
model. The families can be custom built by anyone and thus, allows for theoretically any
kind of component made by any company to be 3D-modelled and then used in a project1.
Revit also supports a programming interface called the RevitAPI. It provides users with
an interface to use programming languages such as C#, Visual C++ and Visual Basic

in order to directly communicate with Revit and build plug-in features for it, as well as
allowing the automation of repetitive tasks2. In our case, Revit will be used as the base in
order to create, visualize and inspect the model, as well as export the models as an IFC
file and was chosen because it supports all of these necessary features in one piece of
software.

5.1.2 Dynamo

Additionally to Revit, Dynamo was used. Dynamo is a visual programming software that
interacts directly with the RevitAPI. Because of its visual aspect, it allows users without
much programming skills to interact with the API and write their own script. A Dynamo
script builds upon its ’nodes’, a code-representing box with specific types of inputs and
outputs. Connecting these nodes together creates a chain of processes which then get
executed and finally visualized in Revit3. Dynamo offers a wide variety of nodes which
allows for various kinds of scripts with different purposes such as parameter-dependant
grid-based object placement as seen in Figure 5.1.

1AUTODESK, 2021c.
2AUTODESK, 2021b.
3AUTODESK, 2021d.

22

As for the U9-Trackline script, a selection of nodes together with a quick explanation is
compiled in the following list:

1. Number Slider: Outputs a double. Interval and step width can be specified by the
user.

2. Family Types: Outputs a family types chosen from a drop-down list. Only types that
are loaded into the current document can be selected.

3. Python Script: Uses a variable amount of inputs, can process them using the
Python programming language and then output a single variable, although it can be
nested. The python script has access to the RevitApi.

4. Various smaller nodes including, but not limited to: Boolean, Code Block, Path and
Number.

Figure 5.1: An example of a Dynamo script

Since Dynamo allows the user to make changes to the script and view them immediately
after the script has completed running, it offers great versatility in debugging and experi-
menting for this project. This contrasts with a "pure" RevitAPI approach, where lengthy
compile and load times would hinder the development.

5.2 Code Development

The implementation was achieved using a mixture of Dynamo nodes and Python scripts,
which also act as Dynamo nodes. This makes development easier, since the Dynamo
script will not be as cluttered with, for example a large amount of "if" nodes. Large chunks

23

of code are written into one python script, which takes inputs, processes them and outputs
its results to other nodes. These python-scripts feed into one another and create one
fully-functional script, while maintaining a clear structure through their separation. In
Figure 5.2 an image of the entire Dynamo script with all its nodes is shown.

Figure 5.2: The entire U9-Trackline script

When this script is run, a model based on the specified parameters will be created. This
model can then be viewed and edited in the Revit main window. This script is based on a
script made by Jimmy Abualdenien, and has been steadily updated with more features.

5.2.1 Dynamo Nodes

The general arrangement of the script can be structurally and visually divided into three
parts (see Figure 5.2): the input nodes to the left, the Base Script in the middle and
the following python scripts to the right. Each part fulfills its own purpose. Additionally,
there are Family Type nodes and the Type Activation Script to the bottom, where
necessary family types are gathered and activated. The input nodes specify, as the name
may suggest, the parameters which are either set by the user or are calculated on their
own based on other parameters. All of these inputs are lead into the Base Script where
they are gathered, processed and forwarded to the remaining scripts. There, they are
again processed and forwarded.

As explaining the script in its entirety would take too long and contain redundant information,
the following subsections will only give a detailed overview of the functionalities of three
parts of the script, while only briefly explaining the rest of the script. The three parts
are the Platform Length Calc Script, the Platform Width Calc Script and finally the

24

Escalator Create Script, as these contain the most interesting implementations of the
regulations.

Length Script

The Length of the platform is mainly determined by the maximum length of the trains
halting at the station. Added to that are values such as the buffer of five meters (813.0201,
2012, p. 7) and bumper-length (when the station is a terminus). Lastly, if selected, the
length is raised to the next standard length, according to the regulations (813.0201, 2012,
p. 7). So first of all, we add our values to the train length, dependent on whether we have
a terminus or not:

Length Script

1 i f terminus == False :
2 L2 = leng th + buffer
3 else :
4 L2 = leng th + buffer + bumper

Subsequently, we can set the standard lengths with nested if statements:

Length Script

1 i f standard_ length == True :
2 i f l eng th >= 60 and l eng th < 90:
3 l eng th = 90
4 e l i f l eng th >= 90 and l eng th < 140:
5 l eng th = 140
6 .
7 .
8 .
9 e l i f l eng th >=370 and l eng th < 405:

10 l eng th = 405

The length then gets output to the Base Script.

Width Script

In this script, the platform width is determined by a number of factors such as the
platform height, the maximum velocity and traffic level parameters. Based on those, as
well as some determination tables, a minimum width is calculated (813.0201, 2012, p.
9ff). Note that the ’installation dimension’ is usually based on many more parameters such
as cant and radius (813.0201, 2012, A03 p. 6), though since these are out of the scope
of this thesis determining the dimension is significantly simpler.

25

Minimum Width

1 # choose i n s t a l l a t i o n dimension based on p la t fo rm he igh t
2 i f p l t f r m _ h e i g h t == 0.960:
3 aBa = 1.685
4 e l i f p l t f r m _ h e i g h t == 0.760:
5 aBa = 1.675
6 e l i f p l t f r m _ h e i g h t == 0.550:
7 aBa = 1.670
8 e l i f p l t f r m _ h e i g h t == 0.380:
9 aBa = 1.690

10

11 i f v <= 160:
12 bs = 2.5 − aBa
13 e l i f v > 160 & v <= 200:
14 bs = 3 − aBa
15 else :
16 bs = 3.7 − aBa
17 # choose the grea te r o f the two
18 i f 2*bs < 3 . 3 :
19 p la t fo rm_wid th = 3.3

Additionally, the script checks whether the large obstructions (escalators, stairs and
elevators) actually fit on the platform under consideration of the minimum distance to
the edge of the platform. If not, the value is raised until they do. The function below
measures the dimensions of objects to be placed on the platform and widens it should
there not be enough space. In this way we ensure that the platform is neither too small nor
unnecessarily wide. Besides the distance to the edge, the distance to the danger zone is
also taken into account. These values change depending on he dimensions, especially the
length, of the object (813.0201, 2012, A04 p.3ff). A larger object, for example, required a
greater distance to the edge as well as the danger zone:

26

Object Check

1 # length , width : dimensions o f the ob jec t
2 # d i s t : the d is tance of the ob jec t to the edge of the p la t fo rm (i f

placed i n the middle)
3 # bs : width o f the danger zone
4 def checkDistances (length , width , bs , p la t fo rm_wid th) :
5 i f l eng th < 1:
6 d i s t = 2*bs + 2*0.9
7 i f d i s t < 1 . 6 :
8 d i s t = 2
9 i f p la t fo rm_wid th < (width + d i s t) :

10 p la t fo rm_wid th = (width + d i s t)
11 i f l eng th > 1 and l eng th <= 10:
12 d i s t = 2*bs + 2*1.2
13 i f d i s t < 2 :
14 d i s t = 2
15 i f p la t fo rm_wid th < (width + d i s t) :
16 p la t fo rm_wid th = (width + d i s t)
17 i f l eng th > 10:
18 d i s t = 2*bs + 2*1.6
19 i f d i s t < 2 . 4 :
20 d i s t = 2.4
21 i f p la t fo rm_wid th < (width + d i s t) :
22 p la t fo rm_wid th = (width + d i s t)
23 return p la t fo rm_wid th

Base Script

The Base Script handles all incoming input parameters and reroutes them to the correct
script as well as placement of the basic structures. First, before using numerical values as
dimensions we need to convert our values to internal units. The RevitAPI uses feet as
its standard unit of measurement. In order to convert from meters to feet wen can either
divide by 3.2808 or use the included tool:

Unit Conversion

1 r ev i tAp iLeng th = U n i t U t i l s . Conver tTo In te rna lUn i t s (length ,
DisplayUni tType .DUT_METERS)

Along with the unit conversion, the script also handles the deletion of all elements when
the Dynamo script is executed. This assures when changing parameters before a run,
the "old" model gets discarded and only the "new" one is built. Lastly, the script builds
basic structures like levels, floors and the surrounding walls. These structures are placed
according to the dimensions width and length, the former depending on the number of
track lines the user specified in the Number Of Track Lines node, and the latter being
determined by the length script. Lastly, output variables are compiled into lists, catering
to the following scripts needs, and declared as output.

27

Escalator Create Script

The Escalator Create Script handles the placing of escalators, stairs and elevators
on the platforms and between the levels. Based on user inputs such as Number Of

Escalators, EscalatorYOffset etc., it evaluates the position’s compliance with the reg-
ulations and, if needed, overwrites the position for it to be compliant. The script iterates
over the number of platforms in the model, as well as the number of escalators and stairs
we have. Below, we will take a closer look how this is calculated and achieved.

Firstly, let us view the user-specified parameters:

- NumberOfEscalators refers to the number of escalators that will be placed on one
side of the platform. Can take on a value from 1 to 3.

- EscalatorYOffset refers to the value that the escalators (and stairs) will be offset
by in y-direction. A negative value means that is will be moved down, while a positive
value means the opposite.

- NumberOfStairs is the same as NumberOfEscalators, just for stairs. It can take on a
either 0 or 1. Instead of increasing the number of stairs, the step width was adjusted
in the Base Script.

- Escalators facing inwards is a boolean which determines if the escalators on
each side of the platform will face inwards or outwards. In our example, it will be the
former.

Additionally, we also have some parameters determined by the general context. These
include:

- frontEnd, the y-coordinate of an inner platform edge.

- backEnd, the y-coordinate of an outer platform edge.

- minDistEsc, the minimum distance an escalator or stairs must have to the edge of
the platform.

- revitApiEscalatorWidth, the width of our escalators.

- revitApiStairWidth, the width of our stair steps.

- escY, the y-coordinate of the escalator.

- UpperEscMoved, a flag set when the upper escalator had to be moved.

In order to find out how to do our calculations, we must first consider how exactly an object
is placed at a given point. When placing an escalator on a cartesian grid, the origin point of
that specific family type obtains these coordinate values. With our escalator family type the
origin point is at the lower left corner, as seen in Figure 5.3. Around this point, we rotate

28

Figure 5.3: The origin is at the lower left corner, as indicated by the circle

our object by 90°counterclockwise, and can then calculate the distance to the inner edge of
the platform (frontEnd). This can be done by simply subtracting the frontEnd from escY.
This is only done with the first escalator (n == 0), because the distance which the objects
need to be moved stays the same for every iteration and can simply be saved for the next
escalator or stair. Should the calculated distance be smaller than the minimum distance,
we add what is missing. Lastly, we set the UpperEscMoved flag to True, so that the next
iteration (which handles the next escalator) knows that it needs to add the difference:

1 i f UpperEscMoved : # t h i s w i l l never t r i g g e r dur ing the f i r s t i t e r a t i o n
2 escY = escY + d i f f e r e n c e
3 i f n == 0:
4 i f (escY − f rontEnd < minDistEsc) :
5 d i f f e r e n c e = (minDistEsc − (escY − f rontEnd))
6 escY = escY + d i f f e r e n c e
7 UpperEscMoved = True

For the outer edge of the platform (backEnd) it is not as trivial, since the escalators and
stairs get placed from "bottom to top". This means that we need to add the widths of the
escalators and stairs to our escY value:

1 i f backEnd − (escY + (numberOfEscalators * rev i tAp iEsca la to rW id th +
numberOfStairs * r e v i t A p i S t a i r W i d t h)) < minDistEsc :

2 d i f f e r e n c e = (minDistEsc − (backEnd − (escY + (
numberOfEscalators * rev i tAp iEsca la to rW id th + numberOfStairs *
r e v i t A p i S t a i r W i d t h)))) *(−1)

3 escY = escY + d i f f e r e n c e
4 UpperEscMoved = True

As we now have a y-coordinate, which is compliant with our regulations, we can
create our cartesian point and place the escalator. Note that we need to add a
orientationOffset, which takes on a value of 0 when the escalators face inwards
and revitApiEscalatorWidth when they are facing outwards. This is because rota-
tion around a corner of the object will offset it by its width when rotated by another

29

180°counterclockwise. Then, the Top Offset is defined in order to reach the height of the
next level.

1 escPoint = XYZ(escX , escY + o r i e n t a t i o n O f f s e t , r e v i t A p i p l a t f o r m H e i g h t +
l e v e l n r * r ev i tAp iWa l lHe igh t)

2 esca la to r = doc . Create . NewFamilyInstance (escPoint , escalatorType ,
l e v e l L i s t [l e v e l n r] ,

3 Autodesk . Rev i t .DB. S t ruc tu re . S t ruc tu ra lType . NonSt ruc tu ra l)
4 esca la to r . GetParameters (" Top Of f se t ") [0] . Set (r ev i tAp iWa l lHe igh t)

Similar to the orientationOffset, one must consider that on the other end of the platform
the escalators and stairs are always rotated by an extra 180°counterclockwise, whether
they are facing inwards or not. In order to correct the error caused by rotation, the script
must again check for the orientation and add the escalator width again:

1 i f escOr ien ta t i on :
2 escY = escY + rev i tAp iEsca la to rW id th
3 else :
4 escY = escY − r ev i tAp iEsca la to rW id th

After the placement of the escalators has been finalized, we can add the stairs, a wall and
an opening in the ceiling in direct dependence to the escalators, as well as iterate over all
levels in order to connect them to each other.

Track Line Create Script

The Track Line Create Script handles the creation of the track lines by positioning
tunnel parts adjacent to each other along the x-axis (dependent on the length of the
platform), then iterating across the number of track lines in y-direction as defined by the
input. For the middle track lines that are surrounded by platforms from both sides, two
get placed in direct succession. This mimics real train stations, where a train can only be
accessed by one platform.

Column Create Script

In the Column Create Script the columns get placed dependent on how many rows there
should be on one platform, as specified by the user. One thing to consider here is to not
place columns where the escalators, stairs and elevators are. The Elevator Position

needs to be checked before placement, as well as the x-axis placement of the escalators.
The columns are inserted along the x-axis by iterating over the tunnelPartCount, so a list
of indices is created, ranging from 1 to tunnelPartCount. Then, the appropriate indices
get deleted before the for loop where the columns get placed.

30

Platform Create Script

Here, the platform are created as simple floors with the dimensions length and platform

width as well as offset upwards according to the platform height.

1+x Level Create Script

This script handles everything that gets placed at the levels above the first one, with the
exception of the level-connecting escalators and stairs (since that is more easily done
in the Escalator Create Script) as well as the floors and wall (handled by the Base

Script). The user has a few Number Slider to adjust the positioning and the count of the
exits/entrances, as well as adjust the position of some objects like ticket machines, ATMs
and ticket validators. These objects only get placed at the top most level.

Debugging

Dynamo does not allow direct console output, which makes debugging slightly more
difficult. Though print statements can be added without problem, one does not see their
output directly when pressing "run". This can be circumvented by adding a File Path

pointing to a .txt file as well as a few lines of code to the corresponding script:

1 s t d o u t _ o r i g i n a l = sys . s tdou t
2 s t d o u t _ f i l e = open (f i l e p a t h , ’w ’)
3 sys . s tdou t = s t d o u t _ f i l e
4 # i n s e r t p r i n t statements here
5 sys . s tdou t = s t d o u t _ o r i g i n a l
6 s t d o u t _ f i l e . c lose ()

This causes every print statement to write to the specified file, making it easier to
understand why certain errors happen when running. Apart from this, bugs and errors
in the code need to be found and inspected manually by repeatedly running the script
and checking the model in the main window. Dynamo supports automatic script running,
though considering the size of the script and its load time as well as the scale of the
resulting model, running the script manually when necessary is a better if less convenient
way of checking results. Of course, when merely working on one specific part of the script
it is redundant to run the entire code if a developer is checking for escalator compliance
nothing about the elevators should have to be executed. As convenient as these sorts of
tests would be, the RevitAPI wrapper for Python is only available within Dynamo, which
means that running tests on external python files would not work.

31

Chapter 6

Variations

In this chapter variations of the model will be presented. All of the variations were
generated using the U9-TrackLine script and the images include the user parameters
necessary to create it. The images will start with models of the first floor and will gradually
show the following floors. In Figure 6.1 we see the general layout of the first floor, complete
with platforms, columns, track lines as well as escalators, stairs and elevator shafts.

Figure 6.1: General layout of the first floor.

32

Figure 6.2: Nr Of Tracklines = 5, The track line count can be increased and more
platforms will be created accordingly. Note that double track lines are counted as one.

Figure 6.3: Nr Of Escalators = 1, Nr Of Stairs = 0, A more detailed view of the
single escalators together with the walls.

33

Figure 6.4: Nr Of Escalators = 3, Nr Of Stairs = 0, The escalator count can be
increased to any value between 1 and 3.

Figure 6.5: Nr Of Escalators = 2, Nr Of Stairs = 1, As well as escalators, stairs
can also be placed in the same manner.

34

Figure 6.6: EscYOffset = 0, A top-down view of a single placed escalator.

Figure 6.7: EscYOffset = -10, The specified offset toward the south of the model should
have placed the escalators far from the desired platform, but the logic in the script

overwrote the "invalid" parameter.

35

Figure 6.8: EscYOffset = 10, Similar to Figure 6.7, just in the opposite direction.

Figure 6.9: Elevator Position = 1, The elevator shafts can be placed in the middle or
on the ends of the platform.

36

Figure 6.10: Elevator Position = 3, Similar to Figure 6.9, with the elevator shafts at the
opposite end.

Figure 6.11: Nr Of Column Rows = 1, The column count can be adjusted to either 1 or 2
rows on a single platform.

37

Figure 6.12: Escalators facing inwards = False, This changes the orientation of the
escalators and stairs, as well as adjusting their position accordingly. The elevator shaft

gets moved to the end of the platform should the user have specified a "middle"
placement.

Figure 6.13: Nr Of Levels = 2, The general layout of the topmost floor, which in this
case is the second.

38

Figure 6.14: Nr Of Exits = 2, The number of exits can be changed to any value
between 1 and 4. Slabs are added to the end of the exits to declare the destinations for

pedestrian simulation.

Figure 6.15: Ticketmachine X Offset = 7, Nr Of Ticketmachines per Exit = 2, A
closer view of the ticket machines (red) which can have their position and count adjusted

as well as the ATMs (grey) and storebooths (blue).

39

Figure 6.16: Escalators facing inwards = False, General layout of the top floor with
the escalators and stairs facing outwards.

Figure 6.17: Nr Of Levels = 4, The level count can be changed to any value larger than
2. The top floor will always contain the exits, ATMs, storebooths and ticket machines.

40

Figure 6.18: Nr Of Levels = 4, Regardless of the number of levels, the floors always
remain connected.

Figure 6.19: Nr Of Levels = 4, Nr Of Escalators = 3, The number of escalators is
the same for all connecting escalators and stairs.

41

Chapter 7

Limitations

7.1 Translation

As with any technology, this approach to generative design is far from perfect in all ways.
When considering the limiting factors, the first thing that comes to mind is the translative
process between natural language regulation document and code. In order for this process
to be consistent and of high quality certain conditions must be met:

1. The "translator" must have a deep understanding of the regulations and their appli-
cations.

2. Extensive programming skills are required.

3. There must be constant communication with the institution issuing the regulations to
eliminate misunderstandings.

4. An independant review as to ensure the quality of the final product must be estab-
lished.

As mentioned in chapter 3, natural language processing can eliminate the need for a
"translator", given that the processor is consistent and of high enough quality itself. Since
NLPs were out of the scope of this thesis, it is difficult to gauge the implications they could
have on this issue.

7.2 Software

Even though Generative Design is becoming increasingly popular as more research on it
is done and even companies like Autodesk incorporating it into their software catalog, the
real-world implementation is seemingly still in need of further development. As capable as
Refinery is in Revit, its possibilities of application are limited. The script developed and
explained in chapter 5 could not be used to create a study in Refinery and automatically
generate variations of the model. Even though the script almost exclusively uses Number

Slider and Booleans and input nodes, which can also be declared as Input for Refinery,
no output nodes can be declared since Refinery only supports Watch nodes filled with
a numerical value as Output. While this is useful for maximizing and minimizing surface
areas, heights and other "simpler" parameters, the sometimes quite complex regulations
implemented into the script cannot be used in Refinery, or at least not without significantly
more effort.

42

Chapter 8

Conclusion and Future Research

As resource efficiency becomes more important, architects and engineers need to consider
every possible approach as an opportunity to increase the quality of their building. What
was unachievable in the past, where every possibility had to be thought of, sketched and
evaluated, today’s technology allows for Computer Aided Design to reach new levels.
Generative Design and Generative Adversarial Neural Networks allow for designs to be
automatically generated and assessed in quantities so large that they might have been
seen as impossible in a not so far past. As discussed, this is especially important for
the early stages of design where decisions have the most impact. Additionally, the early
stages are a great opportunity to implement the approach because of the level of detail, or
even the lack thereof, that early-stage design has.

As for possible future research and work, the problem of translating between natural
language and code is one that must be addressed. As useful as natural language
processing and even natural language programming are, they create far too much overhead
for the issue at hand. Creating regulations, textualising them in a regulation document
only to then process it to code is too lengthy and unnecessary of a procedure. Instead,
a framework with which regulations can be directly noted in a computer-readable file
(for example JSON) that can then be loaded by a script would prove far more useful
and consistent. Of course, this would have to be an industry-wide standard for it to be
applicable in any way. Furthermore, a fully-fledged design process with Generative Design
at its core would most likely need a considerable amount of computing power, especially
with Generative Adversarial Neural Networks. Developing a web-based application for
it with suitable server infrastructure could serve as a means to generate the designs
remotely without having to occupy the local machine. Together with the industry-standard
framework discussed above, multiple companies and engineering offices could access
the same remote "design generating" service since everyone uses the same standard.
Despite the fact that there are likely to be more aspects which need to be researched to a
greater extent, Generative Design today is already capable of assisting during the design
process. The urgency is to address the immediate limitations of this technology right now
because the implications that Generative Design has on the future of the industry are both
paramount and crucial.

43

Appendix A

Files

All necessary files to run the Dynamo script are included in the Sync&Share folder
"Bachelorthesis Benedict Harder". Revit 2021 is required.

44

References

813.0201. (2012). Bahnsteige konstruieren und bemessen. Valid as of 1. May 2012,
Internal DB document, Authored by Brantzko, A., Appendices included.

813.0202. (2012). Bahnsteigzugänge konstruieren und bemessen. Valid as of 1. May
2012, Internal DB document, Authored by Brantzko, A., Appendices included.

ABUALDENIEN, J. & BORRMANN, A. (2019). A meta-model approach for formal specification
and consistent management of multi-lod building models. Advanced Engineering
Informatics, 40(1474-0346), 135–153. doi:10.1016/j.aei.2019.04.003

ABUALDENIEN, J., CLEVER, J., BORRMANN, A., PLATT, A., KNEIDL, A., & SIMON, S. (2020).
Distansim: Implementation of social distancing in pedestrian simulation. Technische
Universität München.

ABUALDENIEN, J., PFUHL, S., & BRAUN, A. (2019). Development of an mvd for check-
ing fire-safety and pedestrian simulation requirements. In Proc. of the 31th forum
bauinformatik. Berlin, Germany.

ABUALDENIEN, J., SCHNEIDER-MARIN, P., ZAHEDI, A., HARTER, H., EXNER, H., STEINER,
D., . . . SCHNELLENBACH-HELD, M. (2020). Consistent management and evaluation
of building models in the early design stages. Journal of Information Technology in
Construction (ITcon), 25(13), 212–232. doi:10.36680/j.itcon.2020.013

ACCU:RATE. (2021). Our software crowd:it. https://www.accu-rate.de/en/software-crowd-
it-en/. Accessed: 20/04/2021.

AUTODESK. (2021a). Generative design primer. https://www.generativedesign.org/03-
hello-gd-for-revit/03-03_running-gd-for-revit. Accessed: 17/04/2021.

AUTODESK. (2021b). Revit developer center. https://www.autodesk.com/developer-
network/platform-technologies/revit?us_oa=dotcom-us&us_si=09ebc770-8627-
4809-b75a-10da6ba51117&us_st=revit%20api. Accessed: 19/04/2021.

AUTODESK. (2021c). Revit overview. https://www.autodesk.com/products/revit/overview?
term=1-YEAR. Accessed: 12/04/2021.

AUTODESK. (2021d). What is dynamo. https://primer.dynamobim.org/en/01_Introduction/
1-2_what_is_dynamo.html. Accessed: 19/04/2021.

BAK - FEDERAL CHAMBER OF GERMAN ARCHITECTS. (2021). Regulation of the archi-
tectural profession and practice in germany. https://www.bak.de/eng/regulation/.
Accessed: 14/04/2021.

BARAZZETTI, L. & BANFI, F. (2017). Bim and gis: When parametric modeling meets
geospatial data. In Isprs workshop on geospatial solutions for structural design,
construction and maintenance in training civil engineers and architects, geospace
2017 (Vol. 4, 5W1, pp. 1–8).

BAVARIAN MINISTRY FOR HOUSING, CONSTRUCTION AND TRANSPORTATION. (2021).
Bauordnungsrecht. https : / / www . stmb . bayern . de / buw / baurechtundtechnik /
bauordnungsrecht/index.php. Accessed: 14/04/2021.

45

https://dx.doi.org/10.1016/j.aei.2019.04.003
https://dx.doi.org/10.36680/j.itcon.2020.013
https://www.accu-rate.de/en/software-crowd-it-en/
https://www.accu-rate.de/en/software-crowd-it-en/
https://www.generativedesign.org/03-hello-gd-for-revit/03-03_running-gd-for-revit
https://www.generativedesign.org/03-hello-gd-for-revit/03-03_running-gd-for-revit
https://www.autodesk.com/developer-network/platform-technologies/revit?us_oa=dotcom-us&us_si=09ebc770-8627-4809-b75a-10da6ba51117&us_st=revit%20api
https://www.autodesk.com/developer-network/platform-technologies/revit?us_oa=dotcom-us&us_si=09ebc770-8627-4809-b75a-10da6ba51117&us_st=revit%20api
https://www.autodesk.com/developer-network/platform-technologies/revit?us_oa=dotcom-us&us_si=09ebc770-8627-4809-b75a-10da6ba51117&us_st=revit%20api
https://www.autodesk.com/products/revit/overview?term=1-YEAR
https://www.autodesk.com/products/revit/overview?term=1-YEAR
https://primer.dynamobim.org/en/01_Introduction/1-2_what_is_dynamo.html
https://primer.dynamobim.org/en/01_Introduction/1-2_what_is_dynamo.html
https://www.bak.de/eng/regulation/
https://www.stmb.bayern.de/buw/baurechtundtechnik/bauordnungsrecht/index.php
https://www.stmb.bayern.de/buw/baurechtundtechnik/bauordnungsrecht/index.php

BRAGANÇA, L., VIEIRA, S. M., & ANDRADE, J. B. (2014). Early stage design decisions: The
way to achieve sustainable buildings at lower costs. The Scientific World Journal,
2014, 365364. doi:10.1155/2014/365364

CALDAS, L. (2008). Generation of energy-efficient architecture solutions applying
gene_arch: An evolution-based generative design system. Advanced Engineer-
ing Informatics, 22(1), 59–70. Intelligent computing in engineering and architecture.
doi:https://doi.org/10.1016/j.aei.2007.08.012

FRAZER, J. (2002). Chapter 9 - creative design and the generative evolutionary paradigm.
In P. BENTLEY & D. CORNE (Eds.), Creative evolutionary systems (pp. 253–274). The
Morgan Kaufmann Series in Artificial Intelligence. San Francisco: Morgan Kaufmann.
doi:https://doi.org/10.1016/B978-155860673-9/50047-1

FUDOS, I. & HOFFMANN, C. (1997). A graph-constructive approach to solving systems
of geometric constraints. ACM Trans. Graph. 16(2), 179–216. doi:10.1145/248210.
248223

GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR,
S., . . . BENGIO, Y. (2014). Generative adversarial nets. In Z. GHAHRAMANI, M.
WELLING, C. CORTES, N. LAWRENCE, & K. Q. WEINBERGER (Eds.), Advances in
neural information processing systems (Vol. 27). Curran Associates, Inc.

KNEIDL, A. (2013). Methoden zur abbildung menschlichen navigationsverhaltens bei der
modellierung von fußgängerströmen (Dissertation, Technische Universität München,
München).

KRISH, S. (2011). A practical generative design method. Computer-Aided Design, 43(1),
88–100. doi:https://doi.org/10.1016/j.cad.2010.09.009

MIHALCEA, R., LIU, H., & LIEBERMAN, H. (2006). Nlp (natural language processing) for
nlp (natural language programming). In A. GELBUKH (Ed.), Computational linguistics
and intelligent text processing (pp. 319–330). Berlin, Heidelberg: Springer Berlin
Heidelberg.

PLUM, A. & JÄGER, G. (2011). Evakuierungssimulationen im rahmen von sicherheit-
skonzepten - von der konzeption bis zur realisierung. In Proc. of sicherheit von
veranstaltungen. Köln, Germany.

PROVINCIAL CAPITAL MUNICH. (2021). Satzungen, verordnungen und stellplatzrichtzahlen.
https://www.muenchen.de/rathaus/Stadtverwaltung/Referat-fuer-Stadtplanung-
und-Bauordnung/Lokalbaukommission/Kundeninfo/Satzungen.html. Accessed:
14/04/2021.

SALIMZADEH, N., VAHDATIKHAKI, F., & HAMMAD, A. (2020). Parametric modeling and
surface-specific sensitivity analysis of pv module layout on building skin using bim.
Energy and Buildings, 216, 109953. doi:https://doi.org/10.1016/j.enbuild.2020.
109953

SCHOLL, J. (2019). Integration of bim-based pedestrian simulations in the early design
stages (Bachelor’s thesis, Technische Universität München).

SEITZ, M. (2016). Simulating pedestrian dynamics (Dissertation, Technische Universität
München, München).

46

https://dx.doi.org/10.1155/2014/365364
https://dx.doi.org/https://doi.org/10.1016/j.aei.2007.08.012
https://dx.doi.org/https://doi.org/10.1016/B978-155860673-9/50047-1
https://dx.doi.org/10.1145/248210.248223
https://dx.doi.org/10.1145/248210.248223
https://dx.doi.org/https://doi.org/10.1016/j.cad.2010.09.009
https://www.muenchen.de/rathaus/Stadtverwaltung/Referat-fuer-Stadtplanung-und-Bauordnung/Lokalbaukommission/Kundeninfo/Satzungen.html
https://www.muenchen.de/rathaus/Stadtverwaltung/Referat-fuer-Stadtplanung-und-Bauordnung/Lokalbaukommission/Kundeninfo/Satzungen.html
https://dx.doi.org/https://doi.org/10.1016/j.enbuild.2020.109953
https://dx.doi.org/https://doi.org/10.1016/j.enbuild.2020.109953

SHAH, J. & MÄNTYLÄ, M. (1995). Parametric and feature-based cad/cam: Concepts,
techniques, and applications. John Wiley & Sons.

VILGERTSHOFER, S. & BORRMANN, A. (2017). Using graph rewriting methods for the semi-
automatic generation of parametric infrastructure models. Advanced Engineering
Informatics, 33, 502–515. doi:10.1016/j.aei.2017.07.003

WANG, T., LIU, M., ZHU, J., TAO, A., KAUTZ, J., & CATANZARO, B. (2018). High-resolution
image synthesis and semantic manipulation with conditional gans. arXiv: 1711.11585
[cs.CV]

WASSIM, J. (2013). Parametric design for architecture. Laurence King.
ZHENG, H. & HUANG, W. (2018). Understanding and visualizing generative adversarial

networks in architectural drawings.

47

https://dx.doi.org/10.1016/j.aei.2017.07.003
http://arxiv.org/abs/1711.11585
http://arxiv.org/abs/1711.11585

Appendix B

Declaration

I hereby affirm that I have independently written the thesis submitted by me and have not
used any sources or aids other than those indicated.

Location, Date, Signature

48

	Introduction
	Motivation
	Structure

	State of the Art
	Design exploration in early phases
	Generative Design in Architecture
	Parametric modelling
	Generative Design
	GANS - Generative Adversarial Neural Networks
	Refinery from Autodesk Revit

	Simulation and Life-Cycle Assessment
	Types of Simulation
	Pedestrian Evacuation Simulation

	Methodology
	Regulations
	Level of Regulations

	Embedding Regulations in a Parametric Model

	Statistical Analysis
	Methodology
	Results
	Summary
	Validity

	Implementation
	Software
	Revit
	Dynamo

	Code Development
	Dynamo Nodes

	Variations
	Limitations
	Translation
	Software

	Conclusion and Future Research
	Files
	References

