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Astrocytes play important roles in numerous central nervous system disorders including
autoimmune inflammatory, hypoxic, and degenerative diseases such as Multiple
Sclerosis, ischemic stroke, and Alzheimer’s disease. Depending on the spatial and
temporal context, activated astrocytes may contribute to the pathogenesis,
progression, and recovery of disease. Recent progress in the dissection of
transcriptional responses to varying forms of central nervous system insult has shed
light on the mechanisms that govern the complexity of reactive astrocyte functions. While
a large body of research focuses on the pathogenic effects of reactive astrocytes, little is
known about how they limit inflammation and contribute to tissue regeneration. However,
these protective astrocyte pathways might be of relevance for the understanding of the
underlying pathology in disease and may lead to novel targeted approaches to treat
autoimmune inflammatory and degenerative disorders of the central nervous system. In
this review article, we have revisited the emerging concept of protective astrocyte
functions and discuss their role in the recovery from inflammatory and ischemic disease
as well as their role in degenerative disorders. Focusing on soluble astrocyte derived
mediators, we aggregate the existing knowledge on astrocyte functions in the
maintenance of homeostasis as well as their reparative and tissue-protective function
after acute lesions and in neurodegenerative disorders. Finally, we give an outlook of how
these mediators may guide future therapeutic strategies to tackle yet untreatable
disorders of the central nervous system.

Keywords: protective, astrocytes, neuroinflammation, astrogliosis, neurodegeneration, multiple sclerosis,
ischemic stroke, Alzheimer’s disease
INTRODUCTION

Astrocytes are the most abundant cell type in the mammalian central nervous system (CNS) and
responsible for a multitude of functions. During development, astrocytes arise from neural stem
cells (NSCs) in the subventricular zone (SVZ) and migrate along radial glia processes to populate the
CNS (1). Once their migration is complete, astrocytes differentiate into subgroups with a high
degree of functional and regional specialization (1–6). During postnatal development, astrocytes
instruct the formation of excitatory and inhibitory synapses, support developmental myelination,
org September 2020 | Volume 11 | Article 5732561
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and aid the establishment of complex neural circuitry through
the secretion of soluble factors (7–10) and physical cell contact
(11–13). Throughout adulthood, astrocytes form close
interactions with neurons to provide structural support and
engage in metabolic coupling, serving as nutrient source and
storage for neurons (Figures 1A, B) (14). Particularly lactate
produced by astrocytes has been demonstrated to play an
important role in the modulation of neuronal excitability and
plasticity (15). Furthermore, astrocytes actively take part in
synaptic transmission and have been shown to modulate
cognitive functions through the clearance of neurotransmitter
Frontiers in Immunology | www.frontiersin.org 2
and other extracellular factors (16–20) (Figure 1B). In this
context, the inward rectifying K+ channel Kir4.1 has gained
attention as part of a K+ spatial buffering system that is
required for neuronal transmission and functioning (Figure
1B). Kir4.1 is highly expressed in astrocytic endfeet, and its
misregulation has been linked to numerous neurological
disorders (21–23).

Besides their versatile role during neurogenesis and their
contribution to the maintenance of neuronal circuitry, astrocytes
are key participants in the formation and maintenance of the
blood brain barrier (BBB) (24, 25) (Figure 1C). During CNS
FIGURE 1 | Role of astrocytes in the steady state and inflammatory conditions. (A) Astrocytes interact with neurons, oligodendrocytes, microglia, and cells of the
BBB during steady state conditions. (B) Astrocytes form tripartite synapses with neurons and regulate their synaptic transmission through metabolic support and the
clearance of neurotransmitters. (C) Astrocytic endfeet line the cerebral vasculature and are a constituent of the blood brain barrier, thus limiting the infiltration of
pathogens and peripheral immune cells into the central nervous system. Their endfeet express high levels of Aqp-4 and form a close interaction with pericytes and
the basal lamina of the brain parenchyma. (D) During inflammatory conditions, reactive astrocyte secrete a plethora of inflammatory mediators that regulate functions
of myeloid cells, lymphocytes, oligodendrocytes, neurons, and microglia. (E) Soluble inflammatory mediators derived from mircoglia and other immune cells
differentially induce pathogenic (red) or protective (blue) astrocyte functions. (F) Peripheral immune cells pervade the BBB during inflammatory conditions and
transgress into the CNS. C1q, Complement component 1q; IL-1b, Interleukin-1 b; IL-10, Interleukin 10; TNF-a, Tumor necrosis factor a; TGF-a, Transforming
growth factor a; VEGF-B, Vascular endothelial growth factor B.
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angiogenesis, astrocytes extend their polarized endfeet around
the abluminal side of cerebral blood vessels and aid early sprout
guidance and maturation by the expression of transporters, anti-
permeability proteins and the secretion of growth factors (24–
26). As key constituent of the glial limitans, astrocytic endfeet
line the basement membrane surrounding the cerebral
vasculature and provide a physical barrier between CNS and
the peripheral blood system, thus limiting the influx of pathogens
and large hydrophilic molecules (Figure 1C) (24, 25, 27–29).
Furthermore, astrocytes control water homeostasis in the CNS
via Aquaporin-4 (Aqp4) and other channel proteins involved in
bidirectional fluid exchange across the BBB (30) (Figure 1B).
The importance of Aqp4 in the CNS is demonstrated in a
series of publications that link the (mal-)function of Aqp4 to
multiple neurological disorders (31–34). Aqp4 has also been
identified as a major target of autoantibodies in patients suffering
from neuromyelitis optica (NMO), a rare CNS inflammatory
disorder that has historically been closely associated to MS (35).

In addition to their versatile functions in the steady-state,
astrocytes sense and react to danger signals in a multistep process
referred to as astrogliosis (36, 37). Combinatorial exposure to a
broad spectrum of extracellular cues, including cytokines, growth
factors, and hormones induces transcriptional remodeling,
resulting in cellular hypertrophy, proliferation and secretion of
inflammatory mediators (Figure 1D) (36). The severity and
permanence of these transcriptional changes is dependent on
the type and strength of the stimuli and can range from reversible
alterations to severe astrogliosis with compact scar formation
(36, 38). Most forms of astrogliosis share the upregulation of glial
fibrillary acidic protein (GFAP), a phenomenon that has been
observed in multiple CNS disorders (1, 39–41).

For many decades, it was believed that severe astrogliosis and the
formation of a glial scar inhibits axonal re-growth and is detrimental
for neurological outcome. However, an increasing amount of
evidence suggests that astrocytes also play beneficial roles in
disease (42, 43). Methodological advances in the genomic analysis
of reactive astrocytes have begun to shed light on the molecular
mechanisms that define the fine line between pathogenic and
protective astrocyte functions. For instance, a landmark study by
Zamanian and colleagues (44) demonstrated that astrocytes
respond differentially to varying forms of CNS insult. While
exposure to lipopolysaccharide (LPS) resulted in the upregulation
of pro-inflammatory genes and skewed astrocytes toward a
cytotoxic profile, ischemia induced transcriptional programs that
are associated with neuroprotective functions (44–47). In this
context, particularly intercellular crosstalk with microglia has been
identified as key regulator of astrocyte functions. Work by several
groups including ours has unraveled molecular mechanisms
through which microglia-derived molecules such as interleukin
(IL)-1b, IL-10, tumor necrosis factor (TNF)-a, vascular
endothelial growth factor (VEGF)-B, or transforming growth
factor (TGF)- a, among others, modulate transcriptional
programs in astrocytes that are associated to degenerative or
protective functions (Figure 1E) (45, 48). In addition to
microglia, numerous other CNS-resident and non-CNS-resident
cell types modulate astroglial properties and are themselves subject
Frontiers in Immunology | www.frontiersin.org 3
to factors secreted by reactive astrocytes under inflammatory
conditions (49). For instance, reactive astrocytes use contact- and
diffusion-mediated mechanisms to modulate trafficking of
peripheral immune cells into the CNS, a topic that has been
extensively reviewed by Sofroniew and others (25, 28) (Figure
1F). Once the peripheral cells have extravasated, they accumulate
in perivascular spaces where they are in close contact to astrocytic
endfeet (50). It is possible that during this stage, MHCII+ astrocytes
function as antigen-presenting cells to reactivate infiltrating
lymphocytes and promote inflammation (51–53). Furthermore,
there is increasing evidence that astrocytes control the survival
of T-cells and B-cells via co-regulatory and secreted factors.
Indeed, while FasL expression by astrocytes induces cell death in
infiltrating lymphocytes, B cell–activating factor of the tumor
necrosis factor (TNF) family (BAFF) produced by astrocytes
promotes B-cell survival in inflammatory conditions and
primary B cell lymphoma (54–56). Interestingly, astrocytes
themselves respond to myeloid-derived APRIL, another member
of the TNF superfamily with an increase in IL-10 production,
consequently suppressing pro-inflammatory T-cell functions (57).
These interactions between reactive astrocytes and cells of the
adaptive immune system are complemented by their functions as
part of the cerebral innate immune system (58).

Another degree of complexity is added when analyzing the
temporal dynamics of astrogliosis in the context of disease. In
vivo ablation experiments of astrocytes in experimental
autoimmune encephalomyelitis (EAE), an animal model of
Multiple Sclerosis (MS), demonstrated that astrocytes are
required for disease suppression in early EAE stages, as loss of
astrocytes worsened disease, characterized by increased BBB
permeability, leukocyte infiltration, and neuronal death
(59–62). Conversely, selective ablation of reactive astrocytes
during the chronic phase of EAE ameliorated disease, marked
by decreased microglial activation and monocyte infiltration
(60). This and other studies underline the dire need to further
dissect the contribution of astrocytes to the pathogenesis and
progression of numerous CNS disorders.

While many studies focus on the pathogenic potential of reactive
astrocytes, molecular mechanisms underlying their protective effects
remain elusive at large. Here, we will discuss astrocyte-derived
mediators with anti-inflammatory or tissue-protective properties,
and examine how these factors may guide future therapeutic
strategies. In this context we will not focus on protective astrocyte
functions mediated by inflammatory cytokines or cell-cell contact,
which have been reviewed extensively elsewhere (49, 63, 64), but
rather concentrate on soluble factors often overlooked in the field
of neuroinflammation.
PROTECTIVE EFFECTS OF REACTIVE
ASTROCYTES FOLLOWING CNS INSULT

A widely recognized protective function of astrogliosis is the
formation of a physical barrier, which limits the influx of
peripheral immune cells and thus restricts lesion size
September 2020 | Volume 11 | Article 573256
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(28, 65–67). This function has been discussed in depth in a series
of excellent reviews (24, 25, 28, 37, 63). Here, we will focus on
astrocyte secreted mediators relevant for astrocyte protective
functions. Advances in single cell sequencing, spatial
transcriptomics, and conditional knock-down approaches
demonstrate that reactive astrocytes secrete a plethora of anti-
inflammatory and tissue-protective mediators that act
on numerous cells to control their inflammatory state (Table 1).
This review will focus on three major domains to summarize the
existing knowledge on astrocyte protective function: neurotrophic
factors, neuropoetic cytokines, and growth factors.

Neurotrophic Factors
Neurotrophic factors (NTFs) play an essential role in the growth,
differentiation, and survival of neurons in health and disease.
They can broadly be divided into neurotrophins, members of the
ciliary neurotrophic factor (CNTF) family, and members of the
glia derived neurotrophic factor (GDNF) family. While their role
in the survival of neurons is relatively well defined, little is
known about inflammatory functions and how astrocytes
contribute to their production. Generally, glial cells are known
to express low levels of NTFs under homeostatic conditions, but
significantly upregulate their production following CNS damage
(109, 110).
Frontiers in Immunology | www.frontiersin.org 4
BDNF
Brain-derived neurotrophic factor (BDNF) and nerve growth
factor (NGF) are members of the neurotrophin family and
highly expressed by astrocytes during development (109, 111–
113). Throughout adulthood, astrocytes express low levels of
BDNF but significantly upregulate its production in response to
spinal cord injury (SCI) (114, 115), ischemia (115), and
neuroinflammation (68, 69). BDNF signals through two
receptors, the high-affinity TrkB receptor and the low-affinity
p75NTR receptor, both of which are expressed throughout the
CNS by neurons, astrocytes, and oligodendrocytes (116). While
BDNF/TrkB signaling on neurons has been shown to promote
survival and neurite outgrowth (117), p75NTR signaling induces
apoptosis in cultured neurons (118). This dualistic signaling
system corresponds to the dichotomic effector functions of
BDNF. Early studies in the context of axotomy and SCI
demonstrated beneficial effects of BDNF on the regeneration
and long-term survival of neurons (119, 120) (Figure 2). In
EAE, reports suggest that BDNF depletion in CNS resident cells
during the initial phase worsens disease, while deletion during
later stages does not lead to significant differences (121). Although
this protective effect might depend on multiple cell types,
astrocytes have been suggested to be a key participant in BDNF-
dependent remyelination in the cuprizone model of de- and
remyelination (68). This is supported by observations of
increased progenitor cell proliferation and maturation of
neurons following lentiviral overexpression of Bdnf in
hippocampal astrocytes (70) (Figure 2). Furthermore, a study by
Linker and colleagues (69) demonstrated that conditional depletion
of BDNF in astrocytes worsens EAE severity. Interestingly, the
authors did not observe changes in infiltrating immune cells,
but demonstrated a significant increase in axonal loss
and demyelination.

Overall, these findings suggest that BDNF regulates axonal
myelination and neuronal function through Trk/p75NTR signaling
on neurons and potentially oligodendrocytes, making it a key
constituent of neuronal health. This also becomes clear in the
context of multiple neurodegenerative disorders, where a single
nucleotide polymorphism (SNP) in the BDNF gene is associated to
increased susceptibility, incidence and severity of MS (122–124) and
Alzheimer’s disease (AD) (125), correlating with cognitive
dysfunction (126, 127). Although the relative contribution of
BDNF producing cells to the protective effects of BDNF remains
under debate, a substantial body of evidence points to astrocytes as
key drivers of BDNF mediated effects in disease. Furthermore,
astrocyte-derived BDNF has been identified as mediator of the
therapeutic functions of glatiramer acetate (GA), a FDA-approved
drug for the treatment of relapse-remitting MS (RRMS) in a
mouse model of neurodegeneration, demonstrating the potential
of astrocyte-derived BDNF for future therapeutic strategies (128).
Nonetheless, recent evidence suggest that there is a fine line
between protective and pathogenic astrocyte-mediated functions
of BDNF, as astrocytes themselves respond to increased levels of
BDNF with the secretion of neurotoxic amounts of nitric oxide
(NO), demonstrating a sophisticated feedback loop that prevents
excessive BDNF signaling (129).
TABLE 1 | Tissue-protective mediators secreted by astrocytes.

Mediator Disease
model

Protective effect References

BDNF Ischemia;
SCI;
EAE

Promotes neuronal survival; increases
remyelination

(68–70)

NGF SCI;
TBI;
EAE

Pro-NGF induces neuronal death;
mature-NGF promotes TH2
differentiation, neuronal survival and
increases phagocytosis of microglia

(71–74)

GDNF PD;
EAE

Promotes neuronal survival; increases
tight junction function; regulates
microglial activation

(75–80)

CNTF EAE;
SCI;

Increases neuronal survival, promotes
tight junction functions; increases
remyelination

(81–83)

MANF/
CDNF

Ischemia;
AD;
ER stress

Reduces pro-inflammatory cytokine
production; promotes neuronal survival

(84–86)

PDGF
family
members

Acute and
chronic
demyelination

Increases OPC population density;
regulates oligodendrocyte
differentiation and proliferation

(87, 88)

FGF
family
members

Ischemia;
SCI;
viral induced
demyelination

Promotes neuronal survival;
regulates oligodendrocyte
differentiation and proliferation;
reduces glial reactivity

(89–91)

HB-EGF in vitro Increases neuronal survival (92, 93)
IGF TBI Promotes neuronal survival (94–96)
TGF-b Ischemia;

Toxoplasma
infection

Reduces myeloid cell activation and
pro-inflammatory cytokine production;
promotes neuronal survival

(97, 98)

LIF EAE;
SCI;
TBI

Increases stem cell renewal,
promotes oligodendrocyte
differentiation and myelination

(99–108)
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NGF
In contrast to BDNF, little is known about the immunomodulatory
and tissue-protective functions of astrocyte-derived NGF. Early
studies suggest upregulation of Ngf mRNA in astrocytes in
models of traumatic injury, Parkinson’s disease (PD), and
neuroinflammation (130–132). Similar to BDNF, mature NGF is
cleaved from its precursor pro-NGF and signals via a dual receptor
system consisting of TrkA and p75NTR (133). While mature NGF
preferentially binds to TrkA and promotes neuronal survival, pro-
NGF has a higher affinity to p75NTR and has been shown to induce
apoptotic signaling in oligodendrocytes and neurons (134, 135).
Under homeostatic conditions, pro-NGF and its mature form
signal synergistically through TrkA/p75NTR to promote the
survival and differentiation of neuronal cells; however, imbalances
in the relative abundances of TrkA and p75NTR have been described
in multiple CNS disorders (133, 136–138). Interestingly, several
reports demonstrate that activated astrocytes secrete increased
amounts of neurotoxic pro-NGF in vitro and following SCI,
suggesting a tissue-destructive role of endogenous, astrocyte-
derived pro-NGF (71, 72). In contrast, treatment with exogenous
NGF has been shown to be beneficial in models of traumatic injury
and neuroinflammation (73, 74). For instance, administration of
human NGF into the ventricle of marmoset monkeys prevented the
development of lesions in an EAE model by skewing infiltrating T-
cells towards an anti-inflammatory TH2 phenotype (73) (Figure 2).
In line with this observation, a recent study reports that NGF
instructs TrkA-mediated phagocytosis of neurotoxic Amyloid-b
plaques by microglia in a mouse model of AD (74) (Figure 2).
While it remains to be seen, which impact astrocyte-derived NGF
has on the net effect of NGF, the activation of astrocytes and
subsequent induction of Ngf expression by inflammation or stress-
related events may contribute to both beneficial and harmful effects
of NGF, depending on the availability of pro-NGF vs.mature NGF
Frontiers in Immunology | www.frontiersin.org 5
and the presence of TrkA vs. p75NTR receptors on adjacent cells
(72, 139). Of note, in addition to effects mediated by astrocyte
derived NGF, a suppressive function of exogenously administered
NGF in reactive astrocytes has been proposed, implicating a
potential autocrine feedback loop that limits excessive astroglial
activation (140).

GDNF
The GDNF family of neurotrophic factors consists of GDNF,
neurturin (NTRN), artemin (ARTN), and persepin (PSPN)
(141). All four members belong to the TGF-b superfamily and
signal through the RET Tyrosine kinase to regulate the
differentiation and survival of multiple distinct sets of neurons
(141, 142). Interestingly, alternative signaling receptors, such as
the neural cell adhesion molecule (NCAM) have been proposed
and numerous studies suggest synergistic signaling with NGF,
BDNF, and TGF-b (143–147). Reactive astrocytes rapidly
upregulate the production of GDNF in response to LPS, IL-1b,
IFN-g and microglia-derived TNF-a, and have been shown to
promote the survival of dopaminergic neurons in vitro (75, 76).
This is in line with in vivo studies that demonstrate beneficial
effects of astrocyte-specific overexpression of Gdnf in models of
Parkinson’s disease (PD) (77, 78). Furthermore, transplantation of
human NPCs committed to a glial fate that have been genetically
engineered to overexpress GDNF promoted neuronal survival and
regeneration in primate models of amyotrophic lateral sclerosis
(ALS) (148, 149) (Figure 2). Besides the supportive effects of
astrocyte-derived GDNF on neurons, GDNF/GDNFRa signaling
has been shown to promote the trans-endothelial resistance in an
in vitro BBB model, suggesting a positive effect of astrocyte-
derived GDNF on tight-junction function and BBB permeability
during neuroinflammation (79) (Figure 2). Collectively, further
investigation into the anti-inflammatory and tissue-protective
FIGURE 2 | Anti-inflammatory and tissue-protective functions of reactive astrocytes. Activated astrocytes secrete soluble mediators with anti-inflammatory functions
that help to resolve acute inflammation following CNS insult. NGF and TGF-b promote beneficial functions in microglia; LIF skews CD4 T-cells towards a regulatory
phenotype; NGF promotes the differentiation into TH2 cells; GDNF and CNDF have beneficial effects on blood brain barrier permeability. CNDF, MANF, and HB-EGF
have been associated to anti-inflammatory functions on multiple cell types or cells that are not displayed. During later stages, astrocyte-derived mediators promote
the survival of neurons and oligodendrocytes and aid the long-term regeneration following CNS insult. TGF-b, BDNF, FGF family members, DNF, CNTF, IGF-1, and
LIF increase neuronal survival; CNTF, LIF, and PDGF family members promote oligodendrocyte differentiation and myelination. BDNF, Brain derived neurotrophic
factor; CNTF, Ciliary neurotrophic factor; FGF, Fibroblast growth factor; GDNF, Glial cell line-derived neurotrophic factor; HB-EGF, Heparin-binding epidermal growth
factor; IGF-1, Insulin-like growth factor 1; LIF, Leukemia inhibitory factor; MANF, Mesencephalic astrocyte-derived neurotrophic factor; NGF, Nerve growth factor;
PDGF, Platelet-derived growth factor; TH2, T helper type 2 cell; TReg, T regulatory cell; TGF-b, Transforming growth factor b.
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effects of astrocyte-derived GDNF is needed, but given the
synergistic signaling of GDNF in combination with TGF-b and
other NTFs, astrocytic GDNF may contribute to the reduction of
inflammation and regenerative capacities following CNS insult.

CNTF
CNTF composes a separate family of neurotrophic factors and has
been extensively studied as inducer of neuronal differentiation,
survival and neurite outgrowth (150). Besides its effect on
neurons, CNTF has been shown to support the maturation of
oligodendrocytes and astrocytes (151–154) (Figure 2). It signals
through a heterotrimeric receptor complex consisting of the non-
signaling subunit ciliary neurotrophic factor receptor alpha
(CNTFRa), and the two signaling chains glycoprotein-130
(gp130) and leukemia inhibitor factor receptor (LIFRb), which are
shared with the distantly related leukemia inhibitory factor (LIF)
and interleukin-6 (IL-6) (155). Upon CNTF binding,
heterodimerization of gp130 and LIFRb induces JAK/STAT
dependent transcriptional programs that are associated with the
differentiation and survival of neurons (156). Under homeostatic
conditions, the expression of low levels of Cntf in astrocytes is
limited to the white matter, indicating region-specific effects on
distinct neuronal subpopulations (157). Interestingly, this finding is
concordant with observations of increased Cntf expression in
astrocytes and the upregulation of CNTFRa on neurons located
in white matter lesions of MS patients (158). A study investigating
the spatial and temporal dynamics of multiple NTFs in a cuprizone
model of demyelination suggests that astrocytes express CNTF in a
biphasic manner during initial demyelination and remyelination
(159). Mechanistically, it has been proposed that loss of physical
interaction between astrocytes and neurons following injury induces
STAT3-mediated Cntf expression in astrocytes, which promotes
survival of neurons and oligodendrocytes andmay counteract TNF-
a induced myelin disintegration during EAE (81–83) (Figure 2).
Similar to GDNF, beneficial effects on BBB permeability and a
reduction of immune cell infiltrates have been observed following
administration of exogenous CNTF in a mouse model of
neuroinflammation (160) (Figure 2). Collectively, the current data
indicates that astrocyte derived CNTF might contribute to the
reduction of acute inflammation and increases the survival of
neurons and oligodendrocytes in the context of CNS insult. In
addition, CNTF may promote the activation of surrounding
astrocytes in an autocrine/paracrine manner.

MANF/CNDF
Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF)
and Cerebral Dopamine Neurotrophic Factor (CDNF) constitute
a novel, evolutionary conserved family of NTFs with regenerative
capacities in health and disease. Although MANF and CDNF
have been originally identified to provide neurotrophic support
for dopaminergic neurons, it has become clear that their
functions extend beyond those of classical NTFs (161–168).
Both NTFs have been associated to numerous tissue-protective
and anti-inflammatory functions in models of PD, ischemia and
nerve injury (162–164, 168, 169). In addition, a series of recent
studies demonstrated that MANF and CDNF are partially
retained within the endoplasmic reticulum (ER), where they
Frontiers in Immunology | www.frontiersin.org 6
sense and respond to ER stress by negatively regulating NF-kB
dependent inflammatory programs (84, 165, 169–174). In
astrocytes, upregulation of both MANF and CDNF has been
observed in response to ER stress and experimental stroke, where
they alleviate the secretion of pro-inflammatory cytokines IL-1b,
TNF-a, and IL-6 (84–86). This is supported by a study using
astrocyte-specific overexpression of Manf, which resulted in a
downregulation of pro-inflammatory cytokines (84). Taken
together, this indicates that astrocytic MANF and CDNF
function as cell-autonomous safety switch that prevents ER
stress induced overactivation and provides neurotrophic
support for neurons (Figure 2). Evidence from a Drosophila
model of retinal tissue damage further suggests that MANF
counteracts the pro-inflammatory functions of VEGF–related
factor 1 (Pvf-1) homologue and is required for successful tissue
repair (169). This is of particular interest in the context of glial
communication, as VEGF secreted by microglia has been
demonstrated to induce pro-inflammatory signaling in
astrocytes, and the successive MANF secretion by astrocytes
may present an anti-inflammatory mechanism that counteracts
pathogenic VEGF signaling (48).
Growth Factors and Neuropoietic
Cytokines
PDGF Family Members
Platelet-derived growth factors (PDGFs) and their cognate
receptors compose a signaling network that consists of five
ligand-dimers (PDGF-AA, PDGF-BB, PDGF-AB, PDGF-CC,
PDGF-DD) and three receptors (PDGFR-aa, PDGFR-bb,
PDGFR-ab) (175). While PDGFs have originally been
identified as growth factor for smooth muscle cells (176), they
are nowadays viewed as potent inducer of oligodendrocyte
proliferation and differentiation (177, 178). Interestingly, the
PDGF family of cysteine-knot growth factors also includes
members of the VEGF subfamily, of which VEGF-B has been
shown to induce pro-inflammatory gene expression in astrocytes
(48). Similarly, astrocytes can also respond to PDGF-A and
PDGF-C by expression of PDGFR-a, which serves as mitogen
and inducer of astrocytic branching (179, 180). In addition, a
series of studies demonstrated that astrocytes express PDGF-A
and PDGF-B monomers, but not PDGF-C or PDGF-D
(181–185). In the developing brain, these astrocyte-derived
PDGF variants modulate the proliferation and differentiation
of oligodendrocyte precursor cells (OPCs) (184, 186) and
potentially regulate the proliferation and survival of neurons
(187, 188). In the adult CNS, it remains unclear to what extent
astrocytes contribute to the PDGF signaling network, as neurons
have also been proposed as source of PDGF-A and PDGF-B
(189–191). Nevertheless, early work by Silberstein et al. (182)
indicates that cultured astrocytes upregulate the expression of
PDGFs in response to TNF-a and TGF-b, suggesting a role of
PDGF signaling in inflammatory conditions. In this context, two
independent studies investigated the therapeutic effects of
astrocyte-derived PDGF-A by conditional overexpression in
mouse models of chronic and acute CNS demyelination and
revealed that elevated expression of PDGF-A by astrocytes
September 2020 | Volume 11 | Article 573256
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significantly increased OPC survival and population density (87,
88) (Figure 2). While these findings may prove useful to address
the progressing demyelination in primary and secondary
progressive MS and other degenerative CNS pathologies,
important questions remain outstanding. Which programs
control the expression of PDGFs in astrocytes? To what extent
do astrocyte-derived PDGFs modulate the functions of
oligodendrocytes and neurons? And what is their role in the
remyelinating brain? Further research into the basic mechanisms
of CNS intrinsic signaling of PDGFs is needed to warrant success
in their use as future therapeutic target.

FGF Family Members
Fibroblast growth factors (FGFs) constitute a family of at least 20
secreted ligands with pleiotropic roles in the developing and
mature CNS (192–203). Most FGF receptors (FGFRs) can
respond to multiple FGF ligands (e.g. FGFR2 binds FGF1 to
FGF10, whereas FGFR3 binds FGF1/2/4/8/9/17/18), creating a
complex signaling network where a single FGF can induce
distinct cellular responses. This notion is highlighted in a
recent article by Duong et al. (196), in which the authors
report FGF8 to function as cell fate switch that controls the
differentiation of radial glial cells in the SVZ into neurons or
astrocytes. Additional studies have demonstrated that FGFs
regulate astrocyte morphogenesis, maturation, and function in
both health and disease (197–199). For instance, in
remyelinating lesions of MS, FGF-1 may act as a promoter of
remyelination by an indirect mechanism that involves the
induction of CXCL8 and LIF expression in astrocytes (204).

Furthermore, astrocytes have been recognized as important
source of FGFs (192). Indeed, reactive astrocytes have been
found to upregulate FGF2 expression following CNS insult in
multiple species in vivo (89, 90) and in vitro (205). In particular, a
study by Messersmith et al. (90) found significantly increased
FGF2 mRNA transcripts and protein levels associated to white
matter astrocytes in the initial phase of remyelination, indicating
that astrocyte-derived FGF2 may modulate the differentiation of
oligodendrocytes (206) (Figure 2). Other potential effects of
astrocyte-derived FGF2 include the attenuation of neuronal
death via signaling through FGFR3 (207) and autocrine/
paracrine regulation of glia reactivity (199). The therapeutic
potential of FGF2 is recapitulated in a comprehensive study by
Ruffini et al. (208), in which the authors demonstrate that viral
delivery of FGF2 to the CNS of mice 1 week after EAE induction
significantly ameliorated the clinicopathological outcome,
marked by reduced infiltration of peripheral immune cells, and
an increase of myelin-forming oligodendrocytes. It is unclear,
however, to what extent astrocytes contribute to these beneficial
effects of FGF2. Indeed, several reports suggest that FGF2 in
general, and astrocyte-derived FGF2 in particular can also inhibit
oligodendrocyte repopulation and their remyelinating capacities
in multiple models of CNS insult (206, 209–211). Besides FGF2,
astrocyte-derived FGF9 has been implicated to play a role during
remyelination and CNS inflammation (212). Lindner et al. (212)
demonstrated in a series of in vitro experiments and post-
mortem tissue analyses of MS patients that FGF9, upregulated
by astrocytes following CNS insult, inhibits remyelination and
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induces the expression of inflammatory genes in oligodendrocytes.
Overall, the existing data fails to produce a coherent picture on
under which conditions FGF family members exhibit beneficial or
harmful functions during CNS insult (206, 211) and extensive
research is needed to illuminate the effects of astrocyte-derived
FGFs. Nevertheless, accumulating evidence strongly suggests that
FGFs play an important role in the pathophysiology of MS and
(209, 212, 213) and new insights may guide the development of
FGF-based therapeutic strategies.

HB-EGF
HB-EGF has originally been identified in macrophage-like cells
with mitogenic functions for numerous cell types (214). Similar to
NGF and other neurotrophins, HB-EGF is synthesized in a pre-
mature transmembrane form (pro-HB-EGF) before it is cleaved by
numerous metalloproteinases (MMP3, MMP9, ADM9, ADAM10,
ADAM12, ADAM17) into its mature, soluble form (215). While
the membrane anchored pro-HB-EGF functions as juxtacrine
growth factor and receptor for diphtheria toxin in some species,
soluble HB-EGF has recently been described to modulate cell
migration, differentiation, and inflammatory functions in multiple
cell types (216–222). In addition, HB-EGF enhances neurogenesis
in models of ischemic injury and promotes the survival of
dopaminergic neurons (223, 224) (Figure 2). Mature HB-EGF
signals through EGFR, ErbB4 and a newly defined N-arginine
dibasic convertase, but may also be able to induce ErbB2 through
heterodimerization (214, 225–227). In astrocytes, upregulation of
HBEGF mRNA has been observed in response to sphingosine-1-
phosphat (S1P)-receptor activation by S1P or S1P receptor
modulator fingolimod (92, 93). This may be dependent on
combined S1P1R and S1P2R signaling and the activation of the
immediate early transcription factors ERG1 and AP1, indicating
that astrocyte-derived HB-EGF is part of a rapid response
mechanism that counteracts pro-inflammatory astrocyte
functions (93). Indeed, it has been suggested that HB-EGF
suppresses the nuclear translocation of NF-kB by inhibition of
IkB kinase (IKK) mediated inhibitor of kB (IkB) degradation
(222). Collectively, astrocyte-derived HB-EGF may not only serve
as neurotrophic factor but also dampen pro-inflammatory gene
transcription in Egfr-expressing microglia and infiltrating immune
cells (220).

IGF
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone
and functions as primary mediator of growth hormone (GH)
dependent growth effects in most peripheral tissues (228). In the
brain, IGF-1 regulates the proliferation and differentiation of
multiple CNS resident cells and has been implicated in several
neurological disorders (229–231). IGF-1 signals through its
cognate receptor IGFR-1R, but can also form functional
hybrids with the insulin receptor (229). Besides IGF-1, IGF-2
and its receptor IGF-2R share a similar expression pattern in the
developing and mature CNS (229). Both IGF/IGFR pairs signal
through phosphoinositide 3-kinase (PI3K)–AKT–forkhead box
protein O (FOXO) and RAS–mitogen-activated protein kinase
(MAPK) pathways to induce downstream expression of growth
promoting genes. Interestingly, IGF-1R can furthermore
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modulate transcription directly by acting as transcriptional
regulator in the nucleus (232). Numerous studies indicate roles
for IGF-1/IGF-1R signaling in the pathogenesis and progression
of neurological disorders and show that their expression is
differentially modulated by CNS insult (159, 229, 231, 233,
234). While microglia have been implicated as main source of
IGFs under pathological conditions, the neuroprotective
potential of astrocyte-derived IGFs has recently gained
attention (94–96). For example, conditional overexpression of
IGF-1 in astrocytes promoted neuronal survival and reduced
hippocampal neurodegeneration in a controlled cortical injury
(CCI) model, highlighting the therapeutic efficacy of astrocyte-
derived IGFs (96) (Figure 2). Although the role of endogenous,
astrocyte-derived IGFs in the context of neuroinflammation
must be further investigated, its broad spectrum of growth
promoting effects on CNS-resident cells may provide beneficial
for neuronal and non-neuronal regeneration.

TGF-b
Transforming growth factor b (TGF-b) belongs to a family
of pleiotrophic cytokines with potent regulatory and
inflammatory functions in numerous cell types (235–237). In
mammals, TGF-b exists in three isoforms (TGF-b1. TGF-b2,
TGF-b3), with TGF-b1 being the most prevalent one. The
immunoregulatory cytokine elicits its function through
binding to TGF-b type I (TGF-bRI) and type II (TGF-bRII)
receptors, which induce Smad protein phosphorylation and
downstream transcriptional regulation of their target genes
(236, 238). Generally, TGF-b has been identified as master
regulator of immune tolerance, T cell differentiation and
mediator of inflammatory responses in multiple cell types
(235, 236, 239, 240). In addition, work by Krieglstein and
others suggests that TGF-b also exerts neurotrophic functions
through direct or indirect regulation of neuronal development
and survival (143, 241–248) (Figure 2). While members of the
TGF-b superfamily are widely expressed among numerous cell
types in the CNS, astrocytes have been implicated as key
contributor of endogenous TGF-b in the CNS (249). Indeed,
astrocyte-derived TGF-b has been linked to anti-inflammatory
and neuroprotective functions in models of experimental
stroke, Toxoplasma infection, and AD (97, 250, 251).
Although the molecular mechanisms underlying the anti-
inflammatory and neuroprotective functions of astrocyte-
derived TGF-b in the context of neuroinflammation remain
to be defined, TGF-b may exert its beneficial role through the
suppression of glial NF-kB signaling and the associated pro-
inflammatory functions of CNS resident macrophages and
microglia (97) (Figure 2). This is in line with a study
defining an IL-10/TGF-b signaling loop between activated
astrocytes and microglia that limits CNS inflammation (98).
Microglia-derived IL-10, an anti-inflammatory cytokine,
redirected astrocyte pathogenic functions and stimulated the
production of TGF-b, which in turn reduced microglial
activation and the secretion of pro-inflammatory IL-1b
(98). Taken together, astrocyte-derived TGF-b may serve as
immunosuppressive cytokine during initial inflammation while
Frontiers in Immunology | www.frontiersin.org 8
its neurotrophic functions support axonal regeneration
during recovery.

LIF
Leukemia inhibitory factor (LIF) is another member of the IL-6
class cytokine family. Analogous to CNTF, LIF signals through
LIFRa and gp130 to induce JAK/STAT dependent gene
transcription. It was first described as a suppressor of
proliferation in a myeloid leukemia cell line, but has since
been associated to functions in multiple peripheral organs
(252–257). In addition, LIF has been recognized as
neuropoetic cytokine, regulating the differentiation and
activation of multiple cell types in the CNS (258–262). Under
homeostatic conditions, expression of Lif remains low in the
CNS, but is heavily ramped up in response to various types of
insult (99, 100, 263–265). Astrocytes are thought to play an
important role in the upregulation of LIF, and have been
identified as major source of Lif mRNA in the injured brain
(100, 263). Consequently, astrocyte-derived LIF may potentiate
stem cell renewal in the adult SVZ and increase the regenerative
capacities following CNS insult (101, 262) (Figure 2). Although
it is not entirely clear what mechanisms modulate the
upregulation of Lif expression in astrocytes, S1PR signaling
has been shown to be a potent inducer (92, 93). Apart from
its beneficial functions on stem cell regeneration and
neurogenesis, accumulating evidence shows that LIF plays
essential roles during oligodendrocyte maturation and
function in the context of autoimmune inflammation and
remyelination (102–107). This becomes important both in
health and disease. A study by Ishibashi (100) demonstrated
that astrocytes secrete LIF in response to ATP stimulation and
promote the oligodendrocyte-mediated myelination of axons,
defining a mechanism that mediates myelination in an activity-
dependent manner. During EAE, increased levels of LIF have
been associated to protective functions and increased survival of
oligodendrocytes (102, 107) (Figure 2). In line with this notion,
blockage of LIF worsened oligodendrocyte loss while
conditional deletion of a LIFR/gp130 suppressor protected
against cuprizone-induced demyelination (102, 266). Aside
from oligodendrocytes, LIF has been implicated in the
regulation of T-cell responses by altering their pathogenic
potential. Indeed, several studies show that LIF suppresses
pro-inflammatory gene expression in CD4 T-cells and skews
their polarization in an anti-inflammatory manner (267–269)
(Figure 2). Collectively, these data suggest that astrocyte-
derived LIF may contribute to the resolution of acute tissue
inflammation, promote the remyelinating capacities of
oligodendrocytes, and induce stem-cell renewal to prevent
long-term neurodegeneration.

Non-Secreted Factors
In addition to neurotrophic factors, neuropoetic cytokines and
growth factors, astrocytes secrete a plethora of other protective
factors, including cytokines, metabolites, extracellular matrix
(ECM) proteins, and metalloproteinases (MMPs) (23, 50, 266,
267, 270). In the healthy brain, tight metabolic coupling
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between neurons and astrocytes is key to sustain high firing
rates and neuronal wellbeing (267). Recently, it has been
suggested that the metabolic crosstalk between astrocytes and
neurons also plays important roles during neuroinflammation
and neurodegeneration (271–273). In this context, it remains to
be defined which metabolites with protective functions during
homeostasis have similar effects in the inflamed or injured
brain. Similarly, astrocyte-derived ECM proteins and MMPs
have been associated to numerous protective functions in the
healthy brain. However, it has been well documented that
astrocyte-derived chondroitin sulfate proteoglycans (GSPGs),
which are a key component of the ECM, restrict remyelination,
neurite outgrowth and limit functional recovery following CNS
injury (274). Among multiple other strategies to overcome
CSPG mediated inhibition of neuronal regeneration, MMPs
have been proposed to exhibit protective effects in the post-
acute phase of CNS injury (275, 276). Indeed, astrocyte-derived
MMPs may promote neuronal plasticity in the healthy brain
and enhance functional recovery through ECM dependent and
independent mechanisms (277, 278). Future research will need
to determine which parameters dictate the protective effects of
astrocyte-derived ECM components and MMPs, and how they
can be harnessed for therapeutic strategies to enhance recovery
following CNS insult.
THERAPEUTIC OUTLOOK AND
DISCUSSION

Currently, only few effective therapies exist to tackle the vast
complexity of neurological disorders and the development of
novel strategies is hampered by their limited access to the CNS.
Exogenously administered agents require a high permeability
through the BBB and a persisting bioavailability to ensure long-
lasting therapeutic effects (279). Only a limited number of small
molecules has shown beneficial “protective” effects on glial cells
following acute CNS insult so far, which is best documented during
neuroinflammation (92, 280–286). Thus, there is a dire need for
novel strategies that mediate recovery after acute CNS insult and
lead to long-term regeneration in chronic inflammatory and
degenerative diseases. Based on their strategic location and
versatile roles in the pathogenesis and progression of CNS
disorders, astrocytes have been proposed as therapeutic targets
(230, 231). Generally, most existing approaches targeting
astrocytes in the context of neurological disorders are based on
gene therapy, cell replacement, or the exogenous administration of
compounds that induce neuroprotective functions in astrocytes
(287, 288). As discussed above, multiple exogenously
administered molecules mimic the protective functions of
astrocyte-derived mediators or induce their endogenous
production (70, 73, 84, 92, 93, 96, 148, 149, 160). Although these
strategies represent promising approaches, several issues will need to
be addressed.

First, the multi-faceted functions of astrocyte derived
mediators are determined by their differential spatial and
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temporal expression (18, 289–293). Consequently, exogenous
activation of astrocytes at an improper time-point and in the
wrong microenvironment might result in harmful, rather than
beneficial effects, ultimately worsening clinical outcome. Further
research is needed to determine (1) how many functionally
distinct astrocyte-subsets exist, (2) which factors induce their
differentiation, (3) how the underlying transcriptional programs
relate to the differential secretion of astrocyte-derived mediators,
and (4) whether these transcriptional subsets also correlate with
different secretional and functional astrocyte subpopulations.

Most protective effects mediated by astrocytes are the result of
a transient response to environmental cues present in the
disease-specific micro-environment. It is conceivable that the
diversity and strength of the intercellular crosstalk, specific to a
given lesion type, also strongly influences the outcome of specific
therapeutic strategies. Indeed, while a transient and highly
disease-specific astrocyte response allows for an adapted
reaction to the respective insult and prevents extensive
overactivation/-suppression, exogenous induction of specific
tissue-protective pathways may only provide short-term
solutions to long-term problems, and eventually wear off when
the local microenvironment changes over the course of
the disease.

In these lines, genetic modifications of astrocytes to foster their
tissue-protective and anti-inflammatory functions have been
proposed (70, 73, 84, 96, 148, 149, 288). These approaches
might be particularly useful for the treatment of chronic
conditions and allow for the targeted activation of protective
subpopulations. In this context, adeno-associated viruses
(AAVs) have been proven to be efficient vectors for viral gene
delivery. Interestingly, a landmark study by Foust and colleagues
(294) demonstrated that AAV serotype 9 successfully bypasses the
BBB and predominantly transduces astrocytes in the adult mouse
brain (295). Further modifications such as the conditional
expression of target genes under the astrocyte-specific GFAP
promoter may enhance viral delivery and present a robust
delivery system (296, 297). However, AAVs are limited to a
relatively small insert size (4.7 kb) and viral delivery may have
unpredictable off-target effects. To overcome this complication,
cell replacement strategies (using genetically modified or
unmodified cells) may present a useful alternative to harness the
anti-inflammatory and tissue-protective functions of astrocytes.
Several transplantation trials of human fetal mesencephalic stem
cells into striatal regions of PD patients have demonstrated
successful functional integration and long-term benefits (298–
302). This is different for astrocytes, as they require differentiation
into their mature form before being grafted. Although we have
little information about whether human astrocytes can be
generated from embryonic stem cells (ESCs) or NSCs, several
studies report successful and stable differentiation of human ESCs
into dopaminergic neurons, and transplantation of glial-restricted
pluripotent stem cells in mouse models of ALS suggest that this
might represent a feasible approach (303–307). One significant
advantage over existing cell replacement therapies using neurons
is that one astrocyte has the capacity to induce differentiation and
survival in numerous neurons (through the secretion of soluble
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factors), thus making it an efficient approach to tackle
neurodegeneration. Indeed, two ongoing Phase I/IIa trials
(NCT03482050, with GDNF overexpression NCT02943850)
currently examine the therapeutic potential of grafted human
stem cell derived astrocytes for the treatment of ALS.

Overall, numerous studies presented in this review suggest
that exogenous application or the genetic overexpression of
astrocyte derived factors limit inflammation and aid central
nervous regeneration. These findings need to be strengthened
and extensively recapitulated in other clinically relevant model
species and CNS injuries before taking the next step towards
clinical application. Such models will allow to find common
mechanisms underlying tissue-protective functions of astrocytes
and assess their translatability in a defined setting. Furthermore,
it will become essential to investigate the combinatorial effects of
astrocyte-derived factors as multiple studies have demonstrated
synergistic effects and cross-regulatory mechanisms between
several of the discussed mediators (308–315). Lastly, we are
just beginning to grasp the versatile roles glial cells play in the
diseased CNS and the extensive characterization of astrocytic
Frontiers in Immunology | www.frontiersin.org 10
subsets beyond a dualistic concept will be inevitable to
understand their roles in the context of CNS inflammation.
Novel high-throughput technologies will pave the way for a
better understanding of what signals drive the secretion of protective
factors by astrocytes, to what extent these transcriptional profiles are
influenced by intercellular communication, and how we can harness
the protective potential of reactive astrocytes in a clinical setting.
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144. Paratcha G, Ledda F, Ibáñez CF. The neural cell adhesion molecule NCAM is
an alternative signaling receptor for GDNF family ligands. Cell (2003) 113
(7):867–79. doi: 10.1016/S0092-8674(03)00435-5

145. Erickson JT, Brosenitsch TA, Katz DM. Brain-derived neurotrophic factor and
glial cell line-derived neurotrophic factor are required simultaneously for survival
of dopaminergic primary sensory neurons in vivo. J Neurosci Off J Soc Neurosci
(2001) 21(2):581–9. doi: 10.1523/JNEUROSCI.21-02-00581.2001

146. Tsui-Pierchala BA, Milbrandt J, Johnson EM. NGF utilizes c-Ret via a novel
GFL-independent, inter-RTK signaling mechanism to maintain the trophic
status of mature sympathetic neurons. Neuron (2002) 33(2):261–73. doi:
10.1016/S0896-6273(01)00585-2

147. Nielsen J, Gotfryd K, Li S, Kulahin N, Soroka V, Rasmussen KK, et al. Role of
glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion
molecule (NCAM) interactions in induction of neurite outgrowth and
identification of a binding site for NCAM in the heel region of GDNF.
J Neurosci Off J Soc Neurosci (2009) 29(36):11360–76. doi: 10.1523/
JNEUROSCI.3239-09.2009

148. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, et al.
GDNF Delivery Using Human Neural Progenitor Cells in a Rat Model of
ALS. Hum Gene Ther (2005) 16(4):509–21. doi: 10.1089/hum.2005.16.509

149. Thomsen GM, Avalos P, Ma AA, Alkaslasi M, Cho N, Wyss L, et al.
Transplantation of Neural Progenitor Cells Expressing Glial Cell Line-
Derived Neurotrophic Factor into the Motor Cortex as a Strategy to Treat
Amyotrophic Lateral Sclerosis. Stem Cells (2018) 36(7):1122–31. doi:
10.1002/stem.2825

150. Oppenheim RW, Prevette D, Yin QW, Collins F, MacDonald J. Control of
embryonic motoneuron survival in vivo by ciliary neurotrophic factor.
Science (1991) 251(5001):1616–8. doi: 10.1126/science.2011743

151. Hughes SM, Lillien LE, Raff MC, Rohrer H, Sendtner M. Ciliary
neurotrophic factor induces type-2 astrocyte differentiation in culture.
Nature (1988) 335(6185):70–3. doi: 10.1038/335070a0

152. Rowitch DH. Glial specification in the vertebrate neural tube. Nat Rev
Neurosci (2004) 5(5):409–19. doi: 10.1038/nrn1389

153. Stankoff B, Aigrot M-S, Noël F, Wattilliaux A, Zalc B, Lubetzki C. Ciliary
Neurotrophic Factor (CNTF) Enhances Myelin Formation: A Novel Role for
CNTF and CNTF-Related Molecules. J Neurosci (2002) 22(21):9221–7. doi:
10.1523/JNEUROSCI.22-21-09221.2002

154. Martin A, Hofmann H-D, Kirsch M. Glial reactivity in ciliary neurotrophic
factor-deficient mice after optic nerve lesion. J Neurosci Off J Soc Neurosci
(2003) 23(13):5416–24. doi: 10.1523/JNEUROSCI.23-13-05416.2003

155. Stahl N, Yancopoulos GD. The tripartite CNTF receptor complex: activation
and signaling involves components shared with other cytokines. J Neurobiol
(1994) 25(11):1454–66. doi: 10.1002/neu.480251111

156. Bonni A, Frank DA, Schindler C, Greenberg ME. Characterization of a
pathway for ciliary neurotrophic factor signaling to the nucleus. Science
(1993) 262(5139):1575–9. doi: 10.1126/science.7504325

157. Dallner C, Woods AG, Deller T, Kirsch M, Hofmann H-D. CNTF and CNTF
receptor alpha are constitutively expressed by astrocytes in the mouse brain.
Glia (2002) 37(4):374–8. doi: 10.1002/glia.10048

158. Dutta R, McDonough J, Chang A, Swamy L, Siu A, Kidd GJ, et al. Activation
of the ciliary neurotrophic factor (CNTF) signalling pathway in cortical
neurons of multiple sclerosis patients. Brain J Neurol (2007) 130(Pt
10):2566–76. doi: 10.1093/brain/awm206
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