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Abstract

Hard failure tolerance becomes ever more important as the scale of high performance
computing systems increases and their mean time between failures grows smaller.
Checkpoint/Restart has been the conventional way of recovering from hard failures, but
becomes increasingly more expensive as the trend of upscaling through parallelization
continues. This bachelor’s thesis will explore an approach to combine replication with
task sharing and reactive checkpoint/restart to create a cheap and performant way of
dealing with hard failures. With replication, we avoid losing data in case of a failure.
We can use a failed process’s replica to create a checkpoint on disk and spawn a new
process which loads that checkpoint and replaces the failed one. To counteract the
grave performance impact of replication we employ task outcome sharing between the
replicas. This results in a resilient yet performant approach, that can even keep up with
more conservative proactive checkpoint/restart techniques and provides a promising
alternative for future exascale scenarios.
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1 Introduction

With Moore’s Law nearing its end and quantum computing technology still in its infancy,
the ever growing demand of high performance computing (HPC) power can only be met
by way of upscaling through parallelization. Each additional node on a computer cluster
represents an additional point of possible failure, thus increasing the overall likelihood
of a failure happening at any point in time. This means a reduction in the Mean Time
Between Failures (MTBF) of the whole system. This trend is further promoted by
hardware growing more fragile as component sizes decrease. The conventional way
of mitigating such problems has been the use of checkpoint/restart techniques. As
this comes at the cost of many, mostly unnecessary I/O operations, it is not an ideal
solution. A different approach is replication, where each node has at least one twin
doing the exact same computations. If one process fails, a replica can replace it. While
replication has no extra cost in I/O operations, we are effectively cutting our available
processing and memory resources at least in half when employing this approach, a
major drawback. Also, if all copies of a process should fail, all work would be lost. Both
these shortcomings have been solved individually in the past. The first by having the
two nodes in a pair communicate with each other and exchange intermediate results
so that not all computations are done twice [12]. The second by facilitating a reactive
checkpoint/restart approach which creates checkpoints only when a failure actually
occurs [7]. This thesis will first look at these two main techniques of dealing with hard
failures in HPC and how User Level Failure Mitigation and the teaMPI library give us
the tools necessary to combine checkpointing, replication, and task outcome sharing to
create a possibly better one. To demonstrate this approach, it will be implemented in
a simulation software for two-dimensional shallow water equations called SWE. This
will be done in a chronological fashion. Beginning with an explanation of the base
application, it will look at the implementation of reactive team recovery and how we
integrate task sharing into it. It will then evaluate the results of benchmarks conducted
on the Linux cluster of the Leibniz Supercomputing Centre and compare team recovery
with task sharing to the previous approaches. Lastly, it will list the successes and
shortcomings of our work as well as give an outlook upon future work to be done.
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2 Background & Related Work

2.1 MPI - Message Passing Interface

Definition The MPI standard specifies an interface for communication between pro-
cesses. Development started in 1992 and MPI version 1.0 was released in 1994. Since
then, the MPI standard has been under ongoing development with the current version
being MPI-3.1 released in 2015 [8]. The latest 2020 draft standard is a release candidate
for version 4.0. The typical use case for MPI is Single Program Multiple Data, i.e. run-
ning multiple instances of the same application in parallel with each of them processing
different data but working towards a common goal. MPI specializes in distributed mem-
ory environments, e.g. HPC clusters where multiple systems with their own processors
and memory are connected together via high-bandwidth connections. That being said,
most MPI implementations can also be used in shared memory environments without
any problems which is very useful for rapid prototyping.

Implementations Because MPI itself is only a standard it needs to be actually im-
plemented for it to be usable. The first implementation was MPICH developed at
the Argonne National Laboratory to support the efforts of the standards process [10].
Today’s most well known implementation is Open MPI. It has its roots in three different
MPI implementations, which have been merged together to form Open MPI [11].

Usage Disclaimer: Because this paper uses the C++ language and a version of Open
MPI in its implementation, usage examples and source code will be based on this
configuration.

To use Open MPI, one needs to download the source code and build the library.
During this process, the compiler wrapper mpic++ and the mpiexec executable are built
as well. The user now only needs to include the header file mpi.h and compile the
program using the compiler wrapper instead of the normal compiler. The compiler
wrapper calls the system’s compiler with the necessary compilation flags to link the
program against the MPI library. To run an MPI program, the users runs mpiexec with
the compiled application as the argument. They can further specify how many parallel
instances of the program should be run. mpiexec launches the application and assigns
each instance a number, a so-called rank. In code the user can retrieve the rank with
the function MPI_Comm_rank() and the number of ranks with MPI_Comm_size(). This
is how each instance might determine, what part of the data it needs to process. The
ranks are also used for addressing. They can be used in routines like MPI_Send() and
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2 Background & Related Work

MPI_Recv() to specify a target or source for the communication.

2.2 Fault Tolerance Techniques

When running a highly parallelized application for long durations, it can be quite
disappointing if a single rank experiences a hard failure (i.e. freezes or crashes) and
many hours of work are lost. The MPI-3.1 standard itself does not specify fault tolerance,
it reads:

"After an error is detected, the state of MPI is undefined. That is, using
a user-defined error handler, or MPI_ERRORS_RETURN, does not necessarily
allow the user to continue to use MPI after an error is detected."

A lot of research work has been done to provide fault tolerance to MPI applications.

2.2.1 Checkpoint/Restart

Checkpoint/Restart is the most conventional and widely used way of limiting the
damage of a failing process. During execution, the application periodically outputs
checkpoints. These files typically hold the current state of the program, including
all information necessary to restart and continue from that point. The creation of
checkpoints mostly requires output operations, which can be very slow, depending
on the hardware used. The biggest downside of checkpoints is their inherently bad
scalability in relation to the MTBF of the system. As the MTBF grows smaller, more
checkpoints need to be created for them to be useful. With the current state of technology,
the best way of increasing performance is throwing more computation power at the
problem, i.e more processors. More machines running means more points of possible
failure and a smaller MTBF. To address the issues with checkpointing, researchers try to
make them more efficient. At Berkeley lab, a system-level checkpointing mechanism
was developed for use on Linux clusters. [6] With access to system-level resources
it is possible to measure temperatures and other metrics to predict when a failure
might be about to happen. This allows the user to create checkpoints less frequently
and rely on the prediction system to create a checkpoint just in time before it’s too
late. Berkeley’s checkpointing implementation was later integrated into LAM/MPI,
one of the predecessors to Open MPI. [13] This MPI checkpointing implementation is
fully transparent to the application itself. The application code does not have to be
modified and as such, involuntary creation of checkpoints is possible as well. This is
useful in cases where a computing cluster has to undergo emergency maintenance for
some reason. If all MPI applications used this framework, then the system could shut
them all down and restore them after the maintenance was over. Another approach at
improving checkpoint/restart is SCR (Scalable Checkpoint Restart for MPI) [9]. The
focus of this project was to reduce the overhead caused by writing checkpoints. To do
so, a multi-level checkpointing system was designed, that incorporates multiple types of
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2.2 Fault Tolerance Techniques

checkpoints. Lightweight checkpoints are faster to create but can only handle recovery
from more common and less severe faults. Heavier checkpoints, including copying to
a parallel file system, take much longer but allow recovery from total system failure.
These approaches offer great ways of generalized checkpointing, that work with most
applications. The alternative to such an approach is application-specific checkpointing,
where the checkpointing code is part of the application. This might allow the user to
take shortcuts that are usually not possible with generalized checkpointing like omitting
certain data from the checkpoints to make them more lightweight.

2.2.2 Replication

Replication means running two or more copies of the whole group of processes in
parallel. As long as at least one of the replicated groups survives, nothing is lost,
but the price for this is performance. The total available processing power is divided
by the number of copies. Using only a single replica already halves the amount of
available processing power, which goes against the central principle of high performance
computing. As a result of this downside, replication-based resilience mechanisms tend
to not get a lot of attention in the HPC community. These preconceived notions are
challenged by a study conducted at the Sandia National Laboratories in 2011. They came
to the conclusion, that replication can be more efficient than classic checkpoint/restart
once the number of ranks is big enough, storage bandwith gets too limited, or MTBFs
grow too small. All of these are conditions we are expecting to meet sooner or later in
exascale computing. Additionally, replication can help with the detection and correction
of soft faults (e.g. bit flips) [4]. Part of this study was rMPI, an MPI replication library
which “replicates each MPI rank in an application and lets the replicas continue when
an original rank fails. To ensure consistent replica state, rMPI implements protocols that
ensure identical message ordering between replicas.” In the following year, researchers
from the North Carolina State University presented RedMPI, which followed similar
principles as rMPI, but offered additional protection against silent errors while lowering
replication overhead [5]. What these libraries (and others) have in common, is that they
keep the replicas very consistent with each other. The additional checking of messages
for soft errors adds synchronization and slows down the entire system. To “reduce the
pain” of replication-based fault tolerance, a group at the Technical University of Munich
took on the task of reducing the inherent major performance penalty of replication.
The result of their work is teaMPI, a small MPI wrapper library in C++. At program
startup teaMPI automatically divides the ranks into groups of replicas, so-called teams.
The amount of teams can be freely chosen via the environment variable TEAMS, so
both 2-fold and 3-fold replication are possible. The replication is fully transparent to
the application itself. Each rank sees MPI_COMM_WORLD as a communicator for its own
team only and doesn’t know about the existence of other teams. TeaMPI achieves this
separation by acting as a wrapper around MPI calls. A call to MPI_Send() for example
will call teaMPI’s definition of the function. TeaMPI will then use its knowledge of
the teams to send the message to the correct recipient within the sender’s team. To do
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2 Background & Related Work

Figure 2.1: Example layout of a teaMPI application with 3 teams and 3 ranks per team.
Communication can only occur orthogonally, i.e. within a team or between
replicas. Inter-team communication arrows have only been drawn for rank 2
to avoid clutter [12]

so, teaMPI uses MPI’s profiling interface. The profiling interface is essentially a copy
of MPI’s standard interface, but uses the prefix PMPI_ instead of MPI_. In the example
above, teaMPI will call PMPI_Send() with the correct communicator and rank to reach
the intended recipient. TeaMPI’s specialty is the full asynchronisity it allows between
the teams. As such the replication induces virtually no overhead beyond the default
~50% and ~66% for 2-fold and 3-fold replication respectively. To identify failing ranks,
teaMPI utilizes so-called heartbeats. These are non-blocking messages carrying the
current wall time. A process sends its heartbeats to its replicas. The heartbeats can be
used to identify, when a rank drops out or fails completely. A rank can even identify its
own failure, when it starts receiving heartbeats at a faster rate than it sends them. Once
a failing rank has been identified, a recovery mechanism could be employed, but this
was out of scope for that paper. TeaMPI also allows a process to directly communicate
with its replicas, if it chooses to do so. TeaMPI has the necessary interface for processes
to inquire about the number of teams and get access to an inter-team communicator
which contains a process and its replicas. This made it possible for them to set up task
shuffling and result sharing between replicas. One replica would execute one task while
another would execute a different task and afterwards they would share the results of
their tasks with each other. This system also allowed processes which were delayed, e.g.
due to I/O operations, to catch up with their replicas by using the shared results. This
allows teaMPI to perform much better than traditional replication, as long as the shared
tasks are compute-heavy enough for sharing to be faster than computing [12].
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2.3 User Level Failure Mitigation

2.3 User Level Failure Mitigation

At this point in time, neither the MPI specification nor the current version of Open
MPI 4.1 have fault tolerance included. However, Open MPI was and still is a vehicle
for research into fault tolerance. Over the time it supported and deprecated several
mechanism including the already mentioned checkpoint/restart. Open MPI 5 will
include User Level Failure Mitigation (ULFM), an MPI extension specification first
released in May of 2012, which identifies failed processes and gives the user the means
to act upon the failure in whatever way they desire. ULFM defines new error codes
and operations on communicators to deal with failures. The error codes include for
example MPI_PROC_FAILED, which is returned from MPI operations, which could not
complete because a process has died. The communicator operations include for example
MPIX_Comm_shrink(), which creates a new communicator from an old communicator,
but with all the failed processes removed. With tools like these at their disposal, users
can deal with failures by employing different fault mitigation techniques. [1]

2.3.1 Error Handling in teaMPI

Later in 2020, Alexander Hölzl added an error handling mechanism to teaMPI. To
accomplish this, teaMPI was built against ULFM. When a failure is detected either
through heartbeats or due to an MPI error, teaMPI will use the tools provided by ULFM
to handle the failure. The user can choose the error handling strategy, that teaMPI will
follow. The default strategy KillTeam stops the execution of a team if one of its ranks
fails. The remaining teams shrink down the inter-team communicators and remove the
failed team’s ranks from them. Then they can resume normal operation. The alternative
to this is to replace the failed process. Two more error handling strategies are based upon
this concept. RespawnProc uses PMPI_Comm_spawn() to launch a new replica, which will
take the place of the failed one. WarmSpare instead uses spare processes that have been
launched together with the all normal processes. TeaMPI uses the environment variable
SPARES to determine how many ranks to set aside for this purpose. These warm spares
will be interrupted during MPI/teaMPI initialization to wait for a failure. To integrate
the spares with the running processes, the user can register callback functions for writing
and loading checkpoints with teaMPI. These checkpoints will only be created after a
failure occurs and not during normal execution. Once a failure happens, teaMPI will first
remove the failed processes from the world communicator. If the RespawnProc strategy
is used, the new processes will now be spawned. In the meantime, teaMPI determines
the rank numbers of the failed processes and the team which they were a part of. If
no teams without failed processes exist at this point, teaMPI will abort execution as
recovery is no longer possible in this state. If there is still at least one healthy team,
teaMPI will determine, which of them will create the checkpoint. Now the spares will be
assigned their new ranks and teams and teaMPI will tell them, which team they will get
the checkpoint from. To rebuild all intra-team and inter-team communicators, teaMPI
will first create one big communicator with all survivors and new spawns and create
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2 Background & Related Work

the necessary communicators from there. Lastly, the checkpoint creation and loading
callbacks are called and the whole application is back in a working state. [7]
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3 Integrating Task Sharing with Team
Recovery

3.1 SWE

3.1.1 Introduction to SWE

SWE is a simulation software, which implements a finite volume model to solve two-
dimensional shallow water equations. [3] Its main use is simulating the propagation
of tsunamis and other waves in a given domain. The code (C++) is written to be
education-oriented and the components are modular to allow for easy editing of parts of
the program without affecting the rest. This in turn makes it much easier to experiment
and try out concepts. For example there currently are eleven different Riemann problem
solvers, all with different properties and capabilities.The code itself is written with
education in mind. For students, SWE acts as a entry point to the world of scientific
applications. It can be built with MPI support, thus also teaching the basics of parallel
programming on HPC clusters.

3.1.2 Basic SWE walk-through

This section describes the inner workings of SWE without additional features like
checkpoint/restart or task sharing.

SWE uses scenarios for its input data. A given scenario defines starting properties of
the scenario domain such as:

• Location and type of scenario boundaries

• Bathymetry at any given point in the scenario domain

• Water height at any given point in the scenario domain

• Water velocity at any given point in the scenario domain

Scenarios can either be artificial and hardcoded or use measured real world data (e.g.
from the 2011 Tohoku tsunami). Data files use the NetCDF format and follow the CF 1.5
conventions.

When SWE is run, the user defines properties of the simulation domain such as:

• Size of the simulation grid as number of cells in horizontal and vertical directions
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3.2 Team Recovery in SWE

• Duration in simulated time

In a typical MPI usage scenario, every rank of SWE will hold a part of the simulation
domain, a so-called block. The simulation domain is divided between these blocks
without overlap. Blocks can be of different sizes if the cells cannot be divided evenly
between them. At startup, SWE will first initialize its MPI environment. With the
amount of ranks known, each one can determine which part of the simulation domain
it will hold. They will then get the data from the scenario and initialize the blocks
to their starting states. Additional components (e.g. an output writer) are initialized
as well. At this point, the simulation can begin. At the beginning of each timestep,
neighbouring blocks must first exchange their border cells with each other. Next, all
ranks will solve their local Riemann problems and store the results. Before the water
heights and velocities can be updated, the ranks must agree on how large the current
timestep will be (smallest calculated value across all cells). After all blocks are updated,
the timestep is done. If wanted, this is the point at which an output snapshot of the
simulation domain can be written. Once the user specified maximum simulated time
has passed inside the simulation, all ranks will finish and shut down.

3.2 Team Recovery in SWE

Team recovery is a combination of replication and checkpoint/restart, made possible by
teaMPI. When a process fails in one team, the application is able to create a checkpoint
from the non-failed replicas of another team and restart the failed team’s processes from
those checkpoints. To achieve this, certain additions had to be made to SWE and teaMPI
by A. Hölzl in his bachelor’s thesis in 2020. [7]

3.2.1 Checkpoint/Restart in SWE

The output writer module, that is already part of SWE was extended by an interface that
writes out a checkpoint. This writes the simulation data at the current point in time to
the output file, then makes a copy of the output file, which acts as a checkpoint. While
it would also be possible to only save the current timestep and not the whole output file
as a checkpoint, we would then risk the failed process corrupting his output file and not
repairing it during recovery. It should also be possible to use some form of checksum or
hash to check whether the output file has been damaged in the crash and, based on that,
create only a single timestep or full output checkpoint, but this is out of scope of this
paper. Additionally, a text file containing metadata is created. This is necessary, because
some data like the behaviour of the simulation boundaries is not saved in normal output
files. A command line parameter was added, with which the user can specify a time
interval in real time, after which a new checkpoint is created.
For restarting, a new command line parameter was added, with which the user can
specify a checkpoint file. During initialization, SWE will read the checkpoint file and
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corresponding metadata file and create a new scenario from that data instead of using
the default one. SWE then continues like normal, only the starting data is different.

3.2.2 Integration with teaMPI

After adding error handling to teaMPI as described in subsection 2.3.1, SWE now only
needs to link against the teaMPI library and set up the callbacks. The callback for
creating checkpoints calls the writer’s checkpoint interface, then notifies the process,
which the failed one was replaced with, that checkpoint creation has finished. The
checkpoint loading callback modifies the variable containing the path to the restart
file, thus triggering the creation of the checkpoint scenario instead of the default
one. The command line parameter for a checkpoint interval can be ignored now.
With these additions, SWE now has the capability to create checkpoints exactly when
they are needed. This advantage comes with the major drawback of needing at least
double the amount of processes to be run. Hölzl’s test results showed, that as long
as checkpoint/restart and team recovery get the same amount of processing power,
checkpoint/restart only needs between 55 and 80 percent of the execution time compared
to team recovery. These tests assumed, that the user chose a good checkpoint interval
for the checkpoint/restart method. In extreme cases, where the number of failures was
high and the checkpoint interval was not small enough, checkpoint/restart took up to
20 percent more time to complete than team recovery.

3.3 Task Sharing

3.3.1 Concept

First, we define tasks as a combination of data (e.g. an array of values) and a function
that is applied to that data (e.g. calculating the sum of all values in the array). Tasks
must additionally fulfill the following requirements:

1. Each task must be assignable to a single process. This makes shuffling the task
order and sharing the results a much easier problem to solve.

2. Tasks must not depend on the results of other tasks. The output of one task cannot
be used as the input of another task. This is required for the shuffling the task
order.

3. The number of tasks available to each instance of the program should be greater
than or equal to the amount of teams/replications. If there are less tasks than
teams, it is impossible to shuffle the tasks, so that every team gets a different first
task that it can share with the others.

With these requirements in place, the following theoretical task sharing system becomes
possible: Let there be two teams named A and B consisting of one process each. The

13
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processes are replicas of each other. For any given program iteration, both processes
have two tasks named 1 and 2 to complete. The process of team A can always choose
to do task 1 first, while the process of team B can always choose task 2. As long as
the partner process is still alive at this point, they can now send their own results to
their partner process and in turn receive the partner’s results. In case of a failure in
one of the processes, the other can just complete the missing task by itself. In this case,
the failed process has to be replaced and load from a checkpoint which the healthy
process can create. Depending on the implementation, the healthy process could send
the results to the recovered process or the recovered process takes the time to calculate
them again. At this point, both teams have the results for both tasks and can advance to
the next program iteration. Ideally, all tasks will only need to be completed once. In
theory, a system like this should result in performance similar to or even better than the
checkpoint/restart method, while being as highly scalable as the team recovery method.

3.3.2 Implementation in SWE

As a starting point for integrating task sharing into SWE, we will use the SWE fork of A.
Hölzl, which contains the previously mentioned additions for team recovery. Solving all
the Riemann problems of a block will constitute one full task. For this to be possible,
each instance of SWE must be able to hold more than just a single block. For two
teams with one process each, at least two blocks per rank are necessary for task sharing
to be useful. As mentioned previously, SWE is highly modular. There exists a block
module, which supports communicating with other instances of itself within a single
SWE process and across processes. We need to use this module in our implementation,
because of the mechanics for exchanging data between block boundaries. Now that
there can be multiple blocks within a single SWE instance, not all boundary exchanges
use MPI messaging. Blocks, which are part of the same SWE instance, can directly
access each other’s memory without the need for more overhead. Some changes need
to be made to the original application to integrate this new type of block. Instead
of a single output/checkpoint writer per rank, each block gets its own writer and an
interface to trigger the writing operations. When a rank writes a checkpoint, it creates
one checkpoint data file and one metadata file for each of its blocks. When a process is
restarted, these checkpoints becomes the bases for new scenarios, which will provide
the data to the blocks of the restarted rank. The total amount of blocks can be controlled
in several ways. Each rank gets at least one block. Another block will be added for each
replica, e.g. if we divide six ranks into three teams of two ranks, then each of these
ranks will hold three blocks. Additionally, a command line parameter can be used to
multiply the number of blocks per rank by a positive integer, called the decomposition
factor. This is 1 by default. The total number of blocks can be expressed as the following
formula:

blocksPerRank = numberO f Teams ∗ ranksPerTeam ∗ decompositionFactor

15



3 Integrating Task Sharing with Team Recovery

Depending on the specific implementation, more smaller tasks can potentially lead to
better performance than a less big tasks. [2] After all blocks are initialized, the SWE
rank determines the order in which it will work on the blocks in each iteration. Each
rank will have a set of primary blocks, which it will always compute by itself first,
then attempt to share the results with the ranks in the other teams. The number of
primary blocks is equal to the decomposition factor. All other blocks are considered
secondary blocks. The rank will first attempt to receive the results of a secondary
block from the team, for which it is a primary block. If the rank, that we try to receive
from fails before or during the communication, the MPI_Waitall operation will return
with an error. In such a case, the rank computes the block by itself. This also triggers
teaMPI’s error handler and the currently active error handling strategy (i.e. in our case
WarmSpare) will be executed. An iteration in SWE now runs as follows. Like in the base

std::vector<int> myBlockOrder{};
// Primary blocks
for (int i{myTeamNumber}; i < blocksPerRank; i += numberOfTeams)
{

myBlockOrder.push_back(i);
}
// Secondary blocks
for (int i{0}; i < blocksPerRank; i++)
{

if (i % numberOfTeams != myTeamNumber)
{

myBlockOrder.push_back(i);
}

}

Figure 3.4: Code to determine in which order to compute blocks

version, the first step is to exchange boundary information between blocks. For Inter-
rank boundaries this is accomplished via MPI messaging, whereas blocks at intra-rank
boundaries lie in the same process’s memory and can access the needed data directly.
Before beginning computation, MPI_Barrier is called on the inter team communicator to
ensure, that no data from a previous iteration still waits to be sent(Figure 3.5). Otherwise
the computation in the current iteration could modify the data before it is sent. Each
rank then iterates through its blocks as determined by its block order. For the primary
blocks, the rank will immediately solve the Riemann problems in the block, then use
non-blocking send operations to share its results with its replicas in the other teams.
The send requests are immediately freed, because the MPI_Barrier guarantees, that
overwriting the send buffers is not a problem. Then, for the secondary blocks, the
process can use the number of the block to determine which team it will receive the
results from and post according non-blocking receive operations. It will then wait on
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// Code for task completion and sharing of results
// Barrier to avoid overwriting send buffer
MPI_Barrier(interTeamComm);
for (int i{0}; i < blocksPerRank; i++) {
auto& currentBlock = *simulationBlocks[myBlockOrder[i]];
if (i < decompFactor) {
// Compute primary block and send out results
currentBlock.computeNumericalFluxes();
for (int destTeam{0}; destTeam < numberOfTeams; destTeam++) {
// Do not send data to myself
if (destTeam != myTeamNumber) {
// Send all relevant data fields of the current block
// to destTeam over interTeamComm and free the requests
MPI_Isend(...);
MPI_Request_free(...);
MPI_Isend(...);
MPI_Request_free(...);
MPI_Isend(...);
MPI_Request_free(...);
[...]

}
}

} else {
// Determine source team from block number and post receive
// requests for all relevant data fields of the block
int sourceTeam{currentBlockNumber % numberOfTeams};
std::vector<MPI_Request> requests(9, MPI_REQUEST_NULL);
MPI_Irecv(...);
MPI_Irecv(...);
MPI_Irecv(...);
[...]

// Complete the receives
int error{MPI_Waitall(9, requests.data(), MPI_STATUSES_IGNORE)};
if (error != MPI_SUCCESS) {
// Error detected, complete the task by myself
currentBlock.computeNumericalFluxes();

}
}

Figure 3.5: Code for task completion and sharing of results
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all of these requests using MPI_Waitall. If no error is returned by MPI_Waitall, the
transaction was a success and the execution can move on to the next block. If an error
was returned, the block must first be computed by this process. After all blocks have
been handled, all teams will have the same data across all their processes. Now as
before, the processes within each team can agree on a timestep and update the cells
accordingly. Since each time has the same data and uses the same algorithms, they
will choose the same timestep and stay in sync data-wise. This marks the end of the
iteration. At this point, output files can be written or other additional operations can be
performed.
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4 Performance Benchmarks

4.1 Test Setup

4.1.1 Hardware

All tests were conducted on the CoolMUC-2 Linux cluster at the Leinbniz Supercomput-
ing Centre. The cluster runs 812 Haswell-based nodes, each of which run 28 cores at
a nominal frequency of 2.6 GHz. Each node has access to 64 GB of RAM. At its peak,
the system can output 1400 TeraFLOPS. All test runs were done on 2 nodes, 8 cores
per node for a total of 16 processes. Disclaimer: Because teaMPI’s cold spares are still
not fully implemented, we need to allocate extra cores for warm spares when testing
with failures. We’ve chosen to not count these cores as they do not contribute any extra
performance until a failure happens, at which point the core of the failed process no
longer contributes and the total amount of contributing cores stays the same throughout
the test.

4.1.2 Software

The compiler used was the Intel C++ Compiler version 19.0.5.281. The compiler wrapper
used is from User Level Failure Mitigation 2 version 4.0.2u1. Input/Output of NetCDF
data was handled by the NetCDF library version 4.7.

4.1.3 Scenario

All test cases used the artificial RadialBathymetryDamBreak scenario. The scenario
domain is a 2 by 2 kilometre square. This scenario simulates a 25 metres tall, circular
dam breaking in the lower left quadrant of the simulation domain. In the center of the
domain lies a circular 10 metres tall elevation at the bottom of the virtual ocean, which
pushes up the water above it. Water spreads out from the dam and from the elevated
area. The simulation area was chosen to be 3000 by 3000 cells, which results in an area
per cell of around 0.44 square metres. The simulation duration was set to 30 seconds.

4.1.4 Results

Baseline We first start with a baseline case. This is to give us a theoretical maximum
performance we can hope to achieve with the chosen parameters. The baseline case
uses none of the fault tolerance mechanics introduced in this paper. It’s a single team of
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Figure 4.1: Visual representation of the RadialBathymetryDamBreak scenario made in
ParaView
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Figure 4.2: Runtime comparison of different fault tolerance configurations, red sections
show time needed to recover from a failure
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16 processes without replication running the simulation as fast as it can. The baseline
result shows us, that the fastest possible execution time is 188 seconds.

Checkpoint/Restart Next we have the cases for proactive checkpoint/restart. The
runtime here is highly dependent on the chosen checkpoint interval. A lower interval
means more checkpoints have to be written, which takes more time. The time cost of
writing each checkpoint is also highly dependent on the application at hand. The bulk
of SWE’s checkpoint data is made up of four floating point number arrays. In most
cases these aren’t very big unless extremely high grid sizes are chosen. Compare this
to other simulations with potentially millions of objects, each with some amount of
associated data. A checkpoint for such a simulation could be many orders of magnitude
larger than one in SWE. This means, that the following numbers should be taken with a
grain of salt, as they are very dependent on the kind of application at hand. The run
with a checkpoint interval of 10 seconds took 222 seconds to complete, which is just 18%
above the baseline. The time lost to a failure recovery can wildly differ. A failure could
happen just after or just before writing a checkpoint. In the former case, one only pays
the price of having to restart SWE which doesn’t take more than a second. In the latter
case, you lose the whole duration of a checkpoint interval, in this case 10 seconds. For
these cases we have assumed, that a failure has the same chance of occurring at any
point in the program. As such the time lost to recover from a failure is on average 5
seconds plus 1 more second for restarting SWE. When the checkpoint interval is lowered
to 5 seconds, one can expect roughly double the amount of checkpoints to be written
with a corresponding increase to the total runtime. This run took 297 seconds, about
58% longer than the baseline. As a positive contrast, lowering the checkpoint interval
also has the effect of lowering the maximum possible time one can lose to a failure. In
this case the maximum possible time loss to recovery from failure is 6 seconds. For our
data, we again choose the expected average of 3.5 seconds additional recovery time for a
run with a failure.

Team Recovery Next we have team recovery without task sharing. We divide our
16 processes into two teams of 8 processes each. Both these teams only have half the
processing power of the first three cases. As expected, with only half the processing
time available to each team, they took almost double the baseline time to complete
their runs at 365 seconds, which is 94% above the baseline. This result falls perfectly
in line with the results Hölzl got in his tests. He too reported checkpoint/restart with
a 10 second interval being 40% faster than team recovery. Recovering from a failure
with team recovery took only 4 seconds. In most cases, pure team recovery will lose to
checkpoint/restart in terms of runtime. Checkpoints would need to be extremely costly
for checkpoint/restart to take more time than team recovery.

Team Recovery + Task Sharing When task sharing is added to team recovery, the
runtime improves considerably to 239 seconds, which is 27% above the baseline. As
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task sharing has no influence on the actual recovery part of team recovery, it still costs 4
seconds to recover from a failure. This is a 35% performance improvement compared to
team recovery without sharing. As the chart shows, team recovery with task sharing
is able to keep up with checkpoint/restart. Which of the two is better, depends on the
checkpoint interval used for checkpoint/restart. Considering, that checkpoint intervals
will continue to grow smaller as parallelisation, we hypothesize, that team recovery
with task sharing will take the lead in most cases, as long as tasks stay compute-heavy
enough for sharing to be faster than computing. This needs to be tested in further,
larger-scale benchmarks.
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Integrating task sharing with team recovery provides an exciting alternative to the classic
checkpoint/restart mechanic. Especially considering a future, where parallelisation
becomes ever more important, a corresponding decrease in mean time between failures
seems very likely. Checkpoint/Restart suffers greatly from a reduction in checkpoint
intervals, a disadvantage not shared by team recovery. Even then, team recovery with
task sharing and especially the teaMPI library are still in an early stage of developement.
Samfaß et al. noted a lack of a mature communication performance model for task
sharing as well as an increased risk of data corruption by soft failures (e.g. bit flips) due
to task sharing [12]. These examples already show, that there’s is still a great amount
of further work to be done. For SWE specifically, we noticed the following problems,
which haven’t been solved at the time of writing:

• When we tested team recovery without task sharing, we noticed that the teams
drifted away from each other after a recovery. The teams agreed on different
timesteps internally, which leads us to believe, that either the writing or reading
of checkpoints is faulty. Multiple blocks per rank each with their own checkpoints
did increase the complexity of that system to a degree. Blocks should be deeply
analysed before and after writing/reading a checkpoint to hopefully find the
source for this faulty behaviour.

• When we first tested team recovery with task sharing we were surprised to see
a runtime of 804 seconds. For comparison we also ran the test on a single node
with 16 cores and in fact received a time 3 times faster. Our workaround to this
was always binding a pair of replicas to the same cluster node.This is achieved
by passing the argument --map-by node to mpiexec. With this setup, we then got
the test results we reported in chapter 4. With task sharing, there is much more
communication between the teams than within the teams, but this should not
result in such a large bottleneck in inter-node communication. This matter should
also be investigated further in the future.

• While not exactly a problem at this point, our implementation of task sharing is
very rigid and inflexible. In its current form, the number of tasks in each iteration
must be exactly the same. This implementation also requires a certain amount of
synchronization between the teams, which works against teaMPI’s goal of having
teams runs as asynchronously as possible. The task sharing implementation of the
team around Samfaß in the ExaHyPE engine is of a much more dynamic nature.
Instead of expecting a task result to be sent to them at fixed points, the ranks keep
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5 Conclusion & Further Work

a database of task results that have been sent to them. Before computing a task,
they check to see if they already have a corresponding result in the database. While
this exact implementation brings with it some overhead and is only suited for
compute-heavy tasks, we should still explore a fully asynchronous implementation
for SWE to see if performance can be improved that way.
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