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Abstract. Due to uncertainty associated with fatigue, mechanical structures have to be often 
inspected, especially in aerospace. In order to reduce inspection effort, fatigue behavior can be 
predicted based on measurement data and supervised learning methods, such as neural networks 
or particle filters. For good predictions, much data is needed. However, often only a small 
number of sensors to collect data are available, e.g., on airplanes due to weight limitations. This 
paper presents a method where data that is collected during an inspection is utilized to compute 
an update of the optimal inspection interval. For this purpose, we describe structural health 
monitoring (SHM) as a Markov decision process and use reinforcement learning for deciding 
when to inspect next and when to decommission the structure before failure. In order to handle 
the infinite state space of the SHM decision process, we use two different regression models, 
namely neural networks (NN) and k-nearest neighbors (KNN), and compare them to the deep Q-
learning approach, which is state of the art. The models are applied to a set of crack growth data 
which is considered to be representative of the general damage evolution of a structure. The 
results show that reinforcement learning can be utilized for such a decision task, where the KNN 
model leads to the best performance. 
Introduction 
The lifetime of cyclically loaded metal structures is limited, due to the propagation of cracks in 
the material which leads to a failure of the structure after a certain amount of load cycles [1, 2]. 
Hence, aluminum parts in aircraft structures need to be inspected periodically to find and replace 
parts with significant crack propagation. Especially assemblies like wing and fuselage have to 
endure high cyclic stresses during their lifetime. Maintenance and health monitoring are 
significant factors in aircraft operating costs. For example, the average direct maintenance costs 
of a Boeing 757-200 had a proportion of about 23% of the total flight operating costs in 2017 [3]. 

Every opportunity to reduce these costs is beneficial to the aerospace industry and can reduce 
the overall costs per flight hour. Using machine learning (ML) methods can help to reduce 
maintenance costs. Therefore, a lot of research is currently done in the field of prognostic health 
monitoring (PHM). PHM tries to predict the time to failure of a structural system often by using 
ML methods. Usually, data, which indicates the deterioration of a system, serves as the input of 
the ML model. The predicted output is the time to failure of the structural system. Often 
continuous or many data points are needed whereas applied sensors are heavy and increase the 
weight. Especially in the aerospace industry, this leads to an increase of the fuel burn which 
might be more costly than operating an aircraft without an SHM system. 
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Therefore, this paper aims to show the application of reinforcement learning (RL) to an SHM 
task, which uses only data when an inspection is carried out. The feasibility of the approach is 
demonstrated using a set of published crack growth data [4], where the crack length serves as the 
damage index. This data is considered to resemble a degrading system, wherein real-world 
applications this might be for instance the number of repairs during a maintenance service. 
Furthermore, we propose another way of how to train the best decision policy and compare it to 
the state of the art approach in terms of the number of inspections, the wasted remaining life 
cycles, and the number of fails. By using RL, the planning of inspection dates might be improved 
and the overall number of inspections decreased. 

In the following section, we summarize and discuss different PHM approaches. In sections 3 
and 4, we explain the fundamentals of RL and describe how we apply it on an SHM task, 
respectively. After showing the results in section 5, we discuss and summarize them in the last 
section. 
Literature Review 
In research, a broad amount of possibilities to improve maintenance policies and lower their 
costs is investigated. One approach to determine the optimal maintenance policy is by Markov 
decision processes (MDP) or partially observed Markov decision processes (OMDP) [5, 6]. The 
research shows that MDPs or OMDPs are suitable to determine the optimal maintenance policy 
and to increase the overall system effectiveness. Moreover, it has been proven that reinforcement 
Q-learning can find the optimal action-selection strategy for every finite MDP, given sufficient 
exploration time and random actions [7]. Therefore, we describe structural health monitoring 
(SHM) as an MDP and use RL for deciding when to inspect next. 

Another approach is to predict the damage progress by mathematical surrogate models. E.g. in 
[8-11], it has been already proven that the propagation of cracks can be predicted with neuronal 
networks. Even the propagation under overloads and non-linear damage can be predicted with 
such algorithms [12, 13]. Moreover, it is possible to perform live monitoring with sensor data of 
an operating system, e.g. in [14]. If the remaining useful life (RUL) can be predicted by a 
monitoring system, we commonly refer to this as prognostic health monitoring (PHM). Several 
ways exist to predict the RUL. One method, which has been very successful in the PHM 
challenge in 2008 [15, 16], was a similarity-based approach [17]. This method uses run to failure 
data to define a library of degradation paths. The data of the test system is compared to the 
library, and the most similar is used to determine the RUL. One disadvantage of PHM methods is 
that they require continuous or rather many sensor data points during the lifetime of a component 
to predict the damage progress. However, in most structural parts of an aircraft, there are no 
sensors to monitor the current condition. Additional sensors would lead to heavier aircraft which 
will inevitably increase the fuel burn and thus the operating costs. Therefore, this work presents 
an approach that uses only data that is collected during inspections.  
Fundamentals of RL and new Approach 
RL is an area of ML, in which a software agent is interacting with a simulated or physical 
environment. This environment has to be modeled as an MDP. The environment is at a time t in 
a state S, and the agent selects an action A, which leads the environment in a new state S’. Array 
A consists of all possible actions. The agent gets feedback on the performed action by a reward 
R. That allows the agent to learn by itself over time. It does not need a teacher. For finite 
environments, the agent selects actions, until it reaches a terminal state [18]. 

Q-learning is a special type of RL, where the agent learns so-called Q-values for an action 
taken in a state. These values represent the expected reward for performing that action in that 
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state. First, the Q-values are randomly initialized. Then, in the training step, the values are 
adopted according to a version of the Bellmann equation (Eq. 1), 

Q*(S, A) = (1 - α) Q(S, A) + α [R + γ max(Q’(S’, A))] (1) 

where Q*, Q, and Q’ are the updated, current, and future Q-values, respectively, α is the learning 
rate and γ the discount factor. In Q-learning, the Q-values are trained based on the current and on 
the future Q-value, i.e. the not yet updated Q-value and the highest achievable reward for doing 
an action one timestep in the future (temporal difference learning). Q-learning is based on an ε-
greedy strategy. In the learning phase, the agent has the chance ε to perform a random action, 
while ε decreases over time. If ε is equal to zero, the agent does not execute a random action 
anymore and will always execute the action with the highest Q-Value (“greedy”). The learning 
rate α influences how much the new values replace the old. The discount factor γ is responsible 
for weighting the future Q-values compared to the current ones. The learning rate, the discount 
factor, and the ε parameter thus influence the speed and outcome of the training 

The classic Q-learning stores the Q-values of every state in a table. This is a problem for large 
or infinite state and/or action spaces, where memory usage can overcome the available memory. 
To solve this problem, usually, a value approximator is introduced to predict the Q-values of 
every state. This is usually referred to as deep Q-learning which is frequently associated with a 
NN as the value approximator. An overview and basic description of deep RL and deep Q-
learning, in particular, can be found in [19]. The method achieves very good performance in 
human interaction problems, e.g. playing Atari or board games [20], and is so effective that 
computers can beat people in extremely complex games with many possible move combinations 
like Go or Chess [21]. 

The state of the art approach uses a built-in NN, which’s parameters are trained in the learning 
phase in order to predict the Q-values. However, this could lead to long training times until the 
NN predicts the expected Q-values of the Bellmann equation. Furthermore, large steps in the Q-
value function might be difficult to approximate and many parameters of the NN would be 
needed. Another idea, which we want to propose in this paper, is to first train the Q-values by 
using the default Q-learning approach and store them in a table. Afterward, the learned table can 
be used to train a mathematical surrogate model. The inputs of the model are the state variables 
and the outputs are the Q-values for each action. With this approach, a larger variety of 
mathematical surrogate models can be used, e.g. k-nearest neighbors (KNN), since the data to be 
trained are already available. A combination of Q-learning and the KNN method was already 
described in [22, 23], where the authors applied this approach to the Mountain-Car control 
problem and the Cart-Pole balancing task. 
Proposed RL Framework for an SHM Decision Process 
First, we describe the maintenance decision task as an MDP. Figure 1 shows the MDP of the 
SHM problem, where two kinds of states (in service and out of service) are present. 
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Figure 1: Markov decision problem for the maintenance decision task with crack length as the 

damage index. 
A state S consists of two variables, the number of cycles N and the damage index D. A new 

state is entered if one or both variables change their values. However, two inspections in a row 
are not allowed, since this would not change the state and could lead to an infinite loop. In total, 
three actions are available to change the state: 

• Proceed. The number of cycles increases by one. The agent does not get any new 
information about the damage index. Therefore, the last observed damage index stays the 
same. 

• Inspect. The number of cycles stays the same, whereas the damage index gets updated by 
the current one, which corresponds to the current number of cycles. 

• Takeout. The structure gets decommissioned and the episode ends. 
 
Second, in order to use RL and to train an agent, we defined four different rewards: 

• Move. The agent receives a positive reward for every proceed-action if the action does 
not lead to a structural failure. This aims to encourage the agent to use the structure as 
long as possible. 

• Maintenance. The agent receives a negative reward for every usually costly inspection 
since the aim is to achieve a long life with a minimal number of inspections. 

• Fail. The agent receives a large negative reward if the action leads to a structural failure. 
• Takeout. The agent receives a mediocre reward, which is lower than the fail reward but 

larger than the maintenance reward. 
 

Since the damage index is a float number, we have an infinite number of possibles states. 
Moreover, we cannot assure that all states seen by the agent in the learning phase cover all states 
occurring in the operating phase. This is why we need a value approximator, where the inputs are 
the state variables (i.e. the number of cycles and the damage index) and the outputs are the Q-
values for each action. In this paper, we compare the state of the art approach (built-in NN) with 
the proposed approach, where we first train the Q-values by using the default Q-learning 
approach and then train a mathematical surrogate model on it. For the latter, we use two different 
models, KNN and NN. Therefore, we compare three different models in total. 
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Figure 2: Crack propagation lines split up into a training (light gray) and a test set (dark gray). 

 
The feasibility of using RL for a maintenance decision task is demonstrated by using a set of 

published crack propagation data [4], where the crack length serves as the damage index. This 
data is considered to resemble a degrading system. This might be in real-world applications for 
instance the number of repairs during an inspection. We assume that the overall damage of a 
structural system is degrading continuously, even if maintenance tasks are executed. Figure 2 
shows the 68 crack propagation lines, which are split up into a training set (line 1-47) and a test 
set (line 48-68). The training set is used to learn the Q-values and to set the parameters of the 
mathematical surrogate models, whereas the test set is used to evaluate the models. 

The number of layers and the number of neurons can be optimized using a hyperparameter 
optimizer. In this case, we used a fully connected NN with 128 neurons in the first and 64 
neurons in the second hidden layer. The output layer has three nodes (one for each action Q-
value). A 5-fold cross-validation within the training set led to an optimal KNN parameter at k = 
250. The Q-values are randomly initialized between -5 and 0. For this study, we used the 
following rewards: Rmove = 1, Rmaint = -5, Rfail = -500, Rtakeout = -50. These rewards lead to a 
behavior, where the agent tries to maximize the usage time of the structure. These values could 
also be optimized, to get a certain behavior of the agent, e.g. most important is safety or a small 
number of inspections. 
Results 
Table 1 shows the evaluation of the test lines 48, 59, and 68, which represent a slow, medium, 
and fast crack growth, respectively. The blue point indicates an inspection, whereas the red point 
represents the takeout. It can be seen that the agent with the built-in NN behaves quite statically. 
The RL model has learned to execute the takeout always at about 225,000 cycles. No inspection 
is done, neither for fast nor for slow crack growth. In contrast, the agent with the afterward 
trained NN executes many inspections beginning at about 235,000. This leads to longer usage 
but also many inspections. For a fast crack growth, the agent misses decommissioning the 
structure (see figure on the right bottom in Table 1). Also, the agent of the KNN model executes 
inspections. However, the first inspection is carried out a little earlier than for the NN model 
leading to no missed takeouts. If the crack length is rather long, the agent executes the takeout 
action. If the observed crack length is rather short, the agent proceeds some cycles until it 
inspects next. 
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Table 1: Comparison of the results. 

Test line  Built-in NN KNN NN 

48 

   

59 

   

68 

   

 
Table 2 compares the three approaches in terms of the number of inspections, the wasted 

remaining life cycles, and the number of fails evaluated on the test set. The best is if all three 
measures are zero. The behaviors of the different approaches explained before are consistent 
with Table 2. The values of the built-in NN show that, due to the lack of inspections, the agent 
wastes much RUL. The KNN model is better than the NN model since its values are lower in all 
three measures. This is due to the fact that the Q-values change rapidly at high numbers of 
cycles. This is a result of the high negative reward when missing the takeout. Apparently, the 
KNN model can handle this discontinuity better, since it is based on the trained neighbor values. 
For a regression model like NN, it is difficult to picture this behavior. 
 

Table 2: Comparison of the three approaches evaluated on the test set. 

Method  Number of inspections Wasted RUL Number of fails 

Built-in NN 0 760,000 0 

KNN 92 144,000 0 

NN 320 153,000 4 

 
Discussion and Conclusion 
The results show that is is possible to use RL to automate the maintenance planning of cyclically 
loaded parts. One advantage of using RL is that an agent can be trained even though it is not 
known how to optimally inspect the structure. Even if the trained model will not be applied for 
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instance due to safety laws, it can be a valuable insight of when to carry out inspections. 
However, the proposed study is a very simplified example of a real maintenance task. The 
assumption that a real structure behaves like a continuously degrading system might not be valid, 
since the structural system is repaired after an inspection. Moreover, a big problem could be data 
acquisition. Therefore, it would be an interesting task to work together with an aircraft operator 
to find out if the currently measured data can be used as an input for the proposed method. 

Furthermore, the study reveals that using models other than the built-in NN can be beneficial, 
especially if the Q-values change rapidly. Additionally, the training phase which includes the 
reinforcement learning phase and the training of a mathematical surrogate model is shorter 
compared to the start of the art approach. However, the KNN model predicts the Q-values slower 
than the NN model, since distances to all neighbors have to be computed. 

Overall, this work was able to show that Reinforcement Learning has a high potential in tasks 
like SHM. 
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