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Abstract

In this master thesis we develop statistical models for energy use of appliances. The
factors influencing energy consumption becomes more important every day and making
good predictions for an intelligent energy distribution is increasingly being discussed.

This thesis presents four final statistical models to quantify the effect of temperature,
humidity and very deciding time effect covariates on the appliances energy consumption.
To create models for predictions, the multiple linear regression (LM) and the generalized
additive model (GAM) are used. These models are improved and adapted by allowing for
linear and non-linear structure on a logarithmic transformed response variable the appli-
ances energy use. Additionally, we consider not only the main effect, but also interactions
with a time effect, namely the hour effect. The evaluation and comparison of model fits
are based on the adjusted coefficient of determination (R2

adj) and the Akaike’s informa-
tion criterium (AIC). Better results are seen for GAM’s, but due to the integration of
non-linear components and interactions, we also reach satisfying results for the LM’s.

Zusammenfassung

Im Rahmen dieser Masterarbeit entwickeln wir statistische Modelle für die Energien-
utzung von Geräten. Die Einflussfaktoren auf den Energieverbrauch werden von Tag zu
Tag wichtiger und das Treffen von gute Vorhersagen für eine intelligente Energieverteilung
werden zunehmend diskutiert.

Diese Arbeit präsentiert vier finale statistische Modelle zur Quantifizierung des Ein-
flusses von Temperatur, Luftfeuchtigkeit und sehr entscheidende Zeiteffekt-Kovariaten auf
den Energieverbrauch der Geräte. Um Modelle für die Vorhersagen zu erstellen, werden
die multiple lineare Regression (LM) und das verallgemeinerte additive Modell (GAM)
verwendet. Diese Modelle werden verbessert und angepasst, indem sie eine lineare und
nichtlineare Struktur auf einer logarithmisch transformierten Zielgröße, dem Energiever-
brauch der Geräte, ermöglichen. Zusätzlich berücksichtigen wir nicht nur den Haupteffekt,
sondern auch Interaktionen mit einem Zeiteffekt, und zwar dem Effekt der Stunden. Die
Bewertung und der Vergleich der Modellanpassungen basieren auf dem adjustierten Bes-
timmtheitsmaß (R2

adj) und dem Akaike Informationskriterium (AIC). Bessere Ergebnisse
werden für GAM’s erzielt, aber aufgrund der Integration von nichtlinearen Komponenten
und Interaktionen erreichen wir auch zufriedenstellende Ergebnisse für die LM’s.
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Chapter 1

Introduction

The advantage of statistical methods is the ability to create a mathematical equation that
reflects the complexity of the relation between a response variable and a set of explanatory
variables or covariates. In addition, reasonable arguments for using statistical methods
include the availability of simple tools to interpret the results, for checking the significant
predictors, for assessing their relative importance and for graphical representation.

In the last decades, there is an increasing interest for using non-parametric techniques,
e.g. generalized additive models (GAM), in fields such as ecology, finance or medicine.
However, most researchers are still loyal to the application of parametric techniques, e.g.
the linear models (LM), due to their robustness and lower computational cost. Since these
two methods, LM and GAM, are very popular in the application, which can be explained
by their ability of catching real existing dynamics, we use these methods to explain ther-
modynamic systems and processes, that is describing the energy use with help of temper-
ature and humidity. In the paper of Candanedo et al. (2017), four statistical models have
been used to explain the dynamic. They found that kitchen, laundry, living room ranked
as the most important predictors for the energy use, also that the atmospheric pressure
may be relevant. The worst model was the multiple linear regression and the best model
the gradient boosting machine, when focusing on given weather data by their prediction
importance. The method GAM was not applied. In particular, the importance of time
effects or the inclusion of interaction terms was not further emphasized. This thesis will
consider these points to develop a satisfying linear model (LM) with a data set, containing
recordings like appliances energy consumption, temperature, humidity and other climate
factors. In summary, this work examines the modeling of the impact of climate factors in
and outside a house on appliances energy consumption with additional time specification,
mixing parametric and non-parametric approaches and distinguish between the main and
interaction effect in the model.

Appliances consume a high proportion of the whole electricity demand, i.e. 20− 30%
(c.f. Kavousian et al. (2015) and Cetin et al. (2014)). Even in standby mode the electricity
consumption is existent. That is the reason for the high interest on that subject and study
works dealing with the question on what impacts the energy use. Because of the electricity
demand, different regression with different variables have been made to predict electrical
energy consumption in buildings to improve the energy distribution. Applications such as

1



2 CHAPTER 1. INTRODUCTION

model predictive control on where the loads are needed (c.f. Candanedo et al. (2013)) or
electricity demand behavior on large residential appliances (c.f. Cetin (2016)) have been
investigated. Another approach is presented in a work from Fumo et al. (2010), where the
application of a series of predetermined coefficients from electrical and fuel utility bills
estimate hourly energy consumption. There has been considerable amount of research
devoted to this topic.

Of course, the number and type of electrical devices and the use of these appliances by
occupants are big factors when analyzing the electricity consumption in buildings, since
the level of device use varies from area to area, as discussed in Firth et al. (2008). For
interpretation and prediction purposes, the questions might be, which of the appliances
are having the biggest positive effects on electricity consumption and their locations, so
that the pattern of the occupants and their location during the day is detected. Also the
usage of these devices by the occupants obviously leave its marks that can be measured
in vicinity or area of these devices. The measurements are for example temperature,
humidity, light, noise and much more. Studies show an impact of thermal conditions on
electrical appliances in thermally well-insulated buildings. This was shown by applying
dynamic thermal model of electrical appliances, see Ruellan et al. (2016). Instead of
predicting the energy loads, we also deal with modeling the aggregate appliances energy
use.

This thesis is organized as follows: Chapter 2 gives an overview on relevant statisti-
cal distribution and exploration for finding suitable models. In Chapter 3 and Chapter
4 a theoretical foundation of statistical models, these are multiple linear regression and
generalized additive models, and the way to use them is discussed with some explanatory
examples. After the theory, the thesis continues with a description of the observed house
and the data set, in Chapter 5. In the next step, Chapter 6, we investigate a variety
of exploration tools to identify relevant and significant factors that influence the energy
consumption. First, we look at the marginal exploration including the time series and
perform a logarithmic transformation on the response variable, followed by the pairwise
investigation and then we evaluate the pattern over time. Chapter 7 deals with the ap-
plication of multiple linear regression models (LM) to the energy data, where we also
introduce the time effect variable, i.e. weekday and hours. The appliances obviously de-
pend on hour in a non-linear way. To get the form of dependence on the hour, we use a
functional form of the hour. We also conducting a hypothesis test on the interaction time
effects, i.e. hour and weekday, to decide on the non-linear polynomial degree of hour. The
resulting polynomial degree of hour is then entered as a covariate in the linear model.
We set main effect models followed by the interaction models. To verify the explained
variation, we provide the adjusted coefficient of determination (R2

adj) and significance of
covariates for each model and decide which model and covariate should be used for further
model fits. After finding the final linear models with help of R2

adj and Akaike’s informa-
tion criterium (AIC), a prediction is presented. In Chapter 8 we create the flexible models
where the hour is modeled non-parametrically together with the temperature and humid-
ity covariates. Again, we first consider all covariates for the main effect GAM and then
the interaction effect GAM using the tensor product. A first comparison of the four final
models, the main and interaction effect GAM and the main and interaction effect LM,
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is made. Chapter 9 gives a final model comparison based on R2
adj and AIC, which is the

focus of this thesis. Furthermore, possible promising comparison methods are discussed.
Chapter 10 concludes.

The model fits and figures were created using the program R. The book of Crawley
(2012) was used to help perform the computations and visualizations.



Chapter 2

Univariate and multivariate
distributions and their exploration

2.1 Univariate and multivariate distributions

In the following Table 2.1 we will present all statistical distributions we use in this thesis.
To better understand the transformations and applications of statements in the theory

part of studentized residuals and F-tests, we will provide the full definitions of the t- and
F-Distribution here.

Definition 2.1 (t-Distribution) A continuous variable X has a t-distribution with n de-
grees of freedom if it has p.d.f.

f(x) =
γ(n+ 1)/2√

nπ(n/2)(1 + x2/n)(n+2)/2
.

The mean and variance are given by

E(X) = 0, n > 1, V ar(X) = n/(n− 2), n > 2

We write x ∼ tn. The t1-distribution is also called Cauchy distribution.

If X ∼ N(0, 1) and Y ∼ χ2
n are independent. then T = X√

Y
n

∼ tn.

If X1, . . . , Xn are i.i.d. N(µ, σ2) random variables, then X̄−µ
S

√
n ∼ tn−1,

with S = 1
n−1

∑n
i=1(Xi − X̄)2 and X̄ = 1

n

∑n
i=1Xi.

Definition 2.2 (F-Distribution). A continuous random variable X has a F-distribution
with n and m degree of freedom (df), if is has p.d.f.

f(x) = nn/2mm/2 Γ(n/2 +m/2)

Γ(n/2)Γ(m/2)

xn/2−1

(nx+m)(n+m)/2
, x ≥ 0

This can be written as F ∼ Fn,m.
If X1 ∼ χ2

n and X2 ∼ χ2
m are independent, then

X =
X1/n

X2/m

has a F-distribution with n and m df.
If Y is t-distributed with m df, then X = Y 2 ∼ F1,m

4
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2.2 Univariate and multivariate descriptions and data

exploration

2.2.1 Histogram

In this paragraph we take a look at some statistical methods to describe univariate data for
large data sets. The most relevant tools such as histograms and measures of location and
variance, and some simple techniques of explorative data analysis such as box-plots and
scatter-plots are illustrated. Moreover it is a basis for multivariate statistical problems.
More relevant theory to this subject is discussed in Fahrmeir et al. (2016, Chapter 2 and
3).

Representing the distribution of the raw observations by histograms gives a well-
arranged visualization of the grouped frequency table. Supposing an ordinal variable, the
data can be grouped in classes by neighboring intervals

[c0, c1), [c1, c2), . . . , [cn−1, cn).

With the class width of di = ci−1 − ci and a resulting height of fi/di which is total or
proportional to the absolute or relative frequencies, where fi is the total or proportional
area of the constructed rectangle, the histogram will be built.

Especially for large data sets, we have to choose the number of classes and the width
of the classes. We use equal class widths, since individual rectangles do not show much
explanatory power about the data. For the number of classes k, one often chooses k =
[
√
n], k = 2[

√
n] or k = [10log10n].

Example 1 Given a data set of energy measurements in a house with an appliances
variable app.

(ci−1, ci] fi (ci−1, ci] frequency
1 [0, 25] 352 12 (525, 575] 58
2 (25, 75] 11952 13 (575, 625] 73
3 (75, 125] 4436 14 (625, 675] 40
4 (125, 175] 857 15 (675, 725] 39
5 (175, 225] 364 16 (725, 775] 21
6 (225, 275] 419 17 (775, 825] 13
7 (275, 325] 354 18 (825, 875] 6
8 (325, 375] 310 19 (875, 925] 4
9 (375, 425] 224 20 (925, 1075] 1

10 (425, 475] 127 21 (1075, 1125] 1
11 (475, 525] 84

Table 2.2: Frequencies of variable app with the class width di(app) = 50 ∀i = 1, ..., n,
n = 19735.

The frequency distribution of the characteristic app in watt-hours is shown in the Table
2.2. This forms the basis for the histogram. There are 21 classes for the variable app
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which have been selected here, i.e. with appropriate class width of di(appliances) = 50,
to give an overview and idea. With the rule for the number of classes, we would have
k =

√
19735 = 140.48 ≈ 141 or k = [10log10(19735)] = 42.95237 ≈ 43. The latter class

k ≈ 43 is sufficient, which we use in the histogram given in Figure 2.1.

Having a histogram built, a distribution is visible. Is it uni-modal or multi-modal?
How many peaks do we have? In case of one peak, so the uni-modal case, it is clear
where we have the highest density. In the case multi-modal the interpretation have to be
done carefully. Multi-modal distributions can occur if the data is composed from different
sub-population or sub-units.

Next step is to look at the symmetry and skewness. The distribution is called sym-
metric, if there exists a center line, so that the right and left sides of the distribution are
approximately reflected to each other. Otherwise the distribution is called skewed. In that
case either it is right-skewed or left-skewed.

Example 2 Now it gets interesting by representing the frequency distribution of app

through a histogram, we introduced in Table 2.2.

Histogram of appliances energy use

app
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Figure 2.1: Histogram with all data points n = 19735 of variable app in Wh. The number
of classes k = 43 is chosen.

The Figure 2.1 is showing a histogram, where the energy use in Wh are measured
at n = 19735 equidistant time points. The measured energy use of appliances shows the
highest energy consumption between 50 and 70 watt-hour over all the time point. We can
conclude, the occupants of the house are not using appliances excessively, since the highest
frequencies are in the lower range.
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2.2.2 Description of distributions

With a first look at graphical visualizations some questions arises. The questions focus
on the expected value, statistical spread, symmetry and skewness, outliers and further.

Position and measure of central tendencies

A formal quantification for numerical data values of a given distribution is summarized
in the following table.

Empirical mean: x̄ = 1
n

∑n
i=1 xi sensitive to outliers

with n values x1, . . . , xn

Empirical median: xmed =

{
x(n+1

2
) n odd

1
2
(x(n

2
) + x(n

2
+1)) n even

}
robust to outliers

orders the original list of n values
x(1) ≤ · · · ≤ x(n)

Empirical mode: xmod: robust to outliers
character or value with highest frequency

The rule of position allows us now to detect symmetry and skewness

(i) symmetric distribution: x̄ ≈ xmed ≈ xmod

(ii) right-skewed distribution: x̄ > xmed > xmod

(iii) left-skewed distribution: x̄ < xmed < xmod

Example 3 Again, take a look at the histogram in Figure 2.1. We already detected the
highest peak between 50 and 70 Wh. To be more precise, 50 Wh has the highest frequency,
i.e. appmode = 50 Wh. In both histograms we have an uni-modal distribution, where the
frequencies decrease steeper to the left than to the right, i.e. the distribution is not symmet-
ric, but skewed, more precisely right-skewed. From the definition of the empirical median
appmed = app( 19735+1

2
) = app(9868) = 60 and mean app = 1

19735

∑19735
i=1 appi = 97.695, it is

obvious that the these values are bigger than the empirical mode appmode.

2.2.3 Quantile and Box-plot

To complete the description of distributions, not only the measurements for position have
to be made, also the dispersion of the data around its center should be supplemented. The
quantile and the resulting box-plot provide a suitable way to characterize the variation of
the data in a graphical summary.

Definition 2.3 (Quantile). Let P be a probability distribution. Any value xp with 0 <
p < 1 is called a p-quantile, if the following holds:

P (x ≤ xp) ≥ p and P (x ≥ xp) ≥ 1− p, x ∈ R
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For the metric characteristics, the quantile also provides direct information about
the width of the distribution spread. The measure which derives this dispersion is called
the interquartile range, i.e. dQ = x0.75 − x0.25. The interquartile range is robust against
outliers, so to detect outlier candidates we can create an lower and upper border, i.e.
zl = x0.25 − 1.5dQ and zu = x0.75 + 1.5dQ respectively, and inspect the candidates lying
beyond that borders.

To get the full range of the data set, it is useful to examine all the following data
quantile points to get all information about the distribution.

The summary of a distribution:

xmin, x0.25, x0.5 = xmed, x0.75, xmax

Based on these points, the visualization of the distribution through a box-plot is built.
With a box-plot it is easy to conclude about the symmetry of observations and to detect
outliers and so on.

Box-plot:

(i) Box boundaries

x0.25 = beginning of the box

x0.75 = end of the box

dQ = length of the box

(ii) The median is marked by the line in the box.

(iii) The whiskers outside the box run up to zl and zu.

1. Case xmin, xmax ∈ [zl, zu]: Then we have zl = xmin and zu = xmax.

2. Case xmin, xmax /∈ [zl, zu]: Then the minimum and maximum, including other
points that are not in the interval, are marked as circle beyond the whiskers.

0 200 400 600 800 1000

Box−plot of appliances energy use

app

Figure 2.2: Box-plot of the variable app in watt-hours.
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Example 4 The box-plot in Figure 2.2 shows the energy use of the appliances. We see
that the median of the appliances energy consumption has a value of 60 Wh, the lower
whisker has a value of 10 Wh and the upper whisker has a value of 170 Wh. The box-plots
also fortifies in this case that the data above the median varies more, i.e. the empirical
distribution is not symmetric, and that there are several outliers which are circled.

2.2.4 Deviation and variance

The well-known measurements of these dispersion of a distribution around their mean x̄
are called the deviation and variances.

In the following table, we give an overview of the empirical variance and deviation for
the values x1, . . . , xn.

Empirical variance: s̄2 = 1
n−1

∑n
i=1(xi − x̄)2 sensitive to outliers

Empirical standard deviation: s̄ = +
√
s̄2 sensitive to outliers

Example 5 For the empirical variance and standard deviation of the variable app, we
use the already calculated mean app = 97.695.

s̄2 = 1
19735−1

∑19735
i=1 (appi − app)2 = 1

19735−1

∑19735
i=1 (appi − 97.695)2 = 10511.35,

s̄ = +
√
s̄2 =

√
10511.35 = 102.525

2.2.5 Scatter-plots - a multivariate description

The graphical representation for quantitative characteristics, especially for continuous
variables, is the scatter-plot. Measured data (x,y) = (x1, y1), . . . , (xn, yn) are visualized
in a (x, y)-coordinate system and show the relationship between them.

18 20 22 24 26
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Temperatures in kitchen area in °C

A
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 (

W
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Figure 2.3: Scatter-plot of app versus T1.kitchen. Linear relationship between the energy
consumption of appliances and temperatures in the kitchen.

Example 6 A first impression can be gained from scatter-plot in Figure 2.3, whether the
two variables are related and the intensity of the relationship.
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For Figure 2.3 we are taking another variable into account, the temperature measure-
ments in the kitchen. Here, we have lot of continuous data points. One can see that a
growing temperature is accompanied, as expected, by a slightly higher appliances energy
consumption. As occupants staying in a room, who increasing the temperature in the room
by their body temperature, also leads to higher appliances usage. There is a tendency to-
wards larger appliances spread as temperatures grows. Further in the mid temperature
range, we have a higher variability. This can be explained by a appliances usage during
day and its indoor temperature range.

2.2.6 Correlation coefficient

Scatter-plots and density assessment are graphical tools that can be used to determine the
composition of the observation points. What kind of relationship is there between x and
y? A measure for scaling or quantifying the intensity of this correlation is the empirical
correlation coefficient, also known as the Bravais Pearson Correlation Coefficient.

Definition 2.4 (Bravais Pearson correlation coefficient). Given a pair of random vari-
ables (X, Y), the correlation coefficient is defined as

ρ = ρX,Y = Corr(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

. (2.1)

Applying this Pearson’s correlation coefficient on a sample, the corresponding estimate
of the correlation coefficient is given by

ρ̂ = ρ̂x,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
=

s̃x,y
s̃xs̃y

, (2.2)

where s̃x,y = 1
n

∑n
i=1(xi − x̄)(yi − ȳ) stands for the empirical covariance and the standard

deviation of the characteristics x and y described by s̃x =
√

1
n

∑n
i=1(xi − x̄)2 and s̃y =√

1
n

∑n
i=1(yi − ȳ)2, respectively, is for normalization or standardization of ρ̂.

Further, it has the following properties:

(i) The range of the correlation coefficient is ρ ∈ [−1, 1].

(ii) The direction and strength of the linear relationship for ρ:

ρ > 0: positive correlation ρ < 0: negative correlation

ρ = 0: no correlation

so therefore

|ρ| < 0.5: weak correlation

0.5 ≤ |ρ| < 0.8: medium correlation

0.8 ≤ |ρ|: strong correlation
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Example 7 As we already seen in Figure 2.3, there is a positive estimated correlation
between the appliances and kitchen temperature variable with ρ̂(app, T1.kitchen) = 0.06.
Since ρ̂(app, T1.kitchen) < 0.5, we have a very weak correlation between these character-
izations. In Figure 2.4, where we included some more variables, we detect some strong esti-
mated correlations for ρ̂(T1.kitchen, T2.living) = 0.84, ρ̂(T1.kitchen, T3.laundry) =
ρ̂(T1.kitchen, T5.bath) = 0.89 or ρ̂(T1.kitchen, T4.office) = 0.88. The largest esti-
mated correlation is determined for ρ̂(RH3.laundry, RH4.office) = 0.9. Whereas we have
no linear dependency between temperature in the kitchen and humidity in the living room,
since ρ̂(T1.kitchen, RH2.living) = 0.00.

Overall we can say with respect to app that the higher the temperatures, the higher
the energy consumption by appliances. For the humidity we observe very small and even
negative correlations. Furthermore, we have high linear dependencies only between the
room temperatures and a higher linear dependencies between the room humidities than
between temperatures and humidities.

For more data exploration tools, we recommend the book of Fahrmeir et al. (2016,
Chapter 2 and 3).
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Figure 2.4: Pairs-plot. Relationship between the energy consumption of appliances
app with lights, T1.kitchen, RH1.kitchen, T2.living, RH2.living, T3.laundry,
RH3.laundry, T4.office, RH4.office, T5.bath, RH5.bath, T6.outside, RH6.outside.
T denotes the temperatures, RH the humidities. The figure shows bivariate scatter-plots
with red linear regression lines below the diagonal, histograms along the diagonal, and
the estimated Pearson correlation, measured of linear dependence between two variables,
above it.



Chapter 3

Multiple linear regression model

In this section we introduce linear models together with their assumptions, estimation
procedures and predictions. To get further details and more model settings, we refer to
the book of Fahrmeir et al. (2013) and Czado and Schmidt (2011).

3.1 Model formulation

In a regression we want to analyze the relationship between the variable of interest the
response or dependent variable and other given variables which represent the covariates
or independent variables.

Let Y be our continuous response variable, and let (X1,X2, . . . ,Xp) denote the p
continuous or categorical/factorial random regressors or predictor variables.

For a given data set of n data points, x1j, x2j, . . . , xnj, for each of the j = 1, . . . , p
predictor, and y1, y2, . . . , yn associated response values with expectation µi ≡ E[Yi], i =
1, . . . , n, the main goal is to analyze the influence of the covariates on the mean value of
the response variable. Formally our regression model is built as follows:

Yi = E[Yi|x1, . . . , xp] + εi = f(x1, . . . , xp) + εi, i = 1, . . . , n, (3.1)

For simplification we use the abbreviation of the expression: E[Yi] = E[Yi|x1, . . . , xp]

The linear regression is a special case of (3.1). In this case the function f is linear,
which means that the conditional mean of Yi is a linear combination of the covariates.
Moreover this model is applicable for continuous and approximately independent normal
distributed response variables Yi ∼ N(µi, σ

2
i ) with µi ≡ E[Yi].

Finally we specify our multiple linear regression model using (3.1) with a linear function
f .

Definition 3.1 (Multiple linear regression model). The multiple linear model in terms of
their components can be written as:

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, . . . , n, (3.2)

where β0 is the intercept and βj the unknown regression parameters of the corresponding
covariate xij with j = 1, . . . , p. And εi is the error term.

14



3.1. MODEL FORMULATION 15

Example 8 We illustrate a simple multiple linear regression using the data we already
introduced in the previous chapter. In Figure 2.4 we have seen scatter-plots between some
variables which displayed an approximate linear relationship. Now we build a model in
which we are interested in, the linear relationship of response variable appliances and the
covariates temperatures in the kitchen and living room.

appi = β0 + β1T1.kitcheni + β2T2.livingi + εi, for i = 1, . . . , 19735. (3.3)

The errors εi are random deviations from the regression line.

3.1.1 Matrix notion in regression

To simplify the model formulation and calculation, we introduce the matrix-vector nota-
tion.

In order to rewrite the multiple linear regression model of (3.2) in the matrix-vector
notation, we have to define the four different model components.

(i) Vector of the response variables: Y =


Y1

Y2
...
Yn

 ∈ Rn

(ii) Design matrix X, which contains p predictors with their n data points or observa-
tions in its rows. The first column equals 1 which corresponds to the intercept β0

of the model. Note that there is a column for each covariate, including any added
interaction, transformation, indicators, and so on.

X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 ∈ Rn×(p+1)

Denote by x i ∈ Rp+1 the i-th row of the design matrix.

(iii) Vector of the regression coefficients: β =


β0

β1
...
βp

 ∈ Rp+1

(iv) Vector of random error variables: ε =


ε1

ε2
...
εn

 ∈ Rn

Definition 3.2 (Linear model in matrix-vector notation). The multiple linear regression
(3.2) can now be formulated as

Y = Xβ + ε (3.4)
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Example 9 Let’s rewrite our example of a multiple linear regression (3.3) in matrix-
vector notation.

app = Xβ + ε,

with Y := app ∈ R19735, X := (1, T1.kitchen, T2.living) ∈ R19735×3, β ∈ R3 and
ε ∈ R19735

3.2 The error term

The additive error terms εi defined as in (3.2) are assumed to be independent and identical
distributed (i.i.d.) with expectation zero, E[εi] = 0, and constant variance to ensure for
homoscedasticity across all errors, V ar[εi] = σ2.

Since we also want to construct confidence intervals and conduct statistical tests, it is
reasonable to assume a Gaussian error εi ∼ N(0, σ2).

Definition 3.3 (Distribution of the error term). The distribution of the error term is
assumed to be

ε ∼ Nn(0, σ2In),

where In denotes the n-dimensional identity matrix and Nd(µ,Σ) denotes the d-dimensional
multivariate normal distribution with mean vector µ and covariance matrix Σ.

This implies the independence of εi for i = 1, . . . , n.

These results can be summarized to the following definition of model assumptions.

Definition 3.4 (Model assumptions).

(i) Linearity of covariate effects: As we introduced in (3.2), the relationship between the
covariate vector xi and the random response Yi has the form

Yi = β0 +

p∑
j=1

βjxij + εi,

with random error variable εi satisfying E[εi] = 0, so that

E[Yi] = β0 +

p∑
j=1

βjxij,

i = 1, . . . , n.

In matrix notation: E[Y] = Xβ.

(ii) Homoscedastic error variances: The error variables εi have constant variance

V ar[Yi] = V ar[εi] = σ2, i = 1, . . . , n.

(iii) Uncorrelated error: The random variables εi are independent, i.e.

Cov(Yj, Yj) = Cov(εj, εj) = 0
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(iv) Normality: The random error variables εi are jointly normally distributed. Thus we
have

Y ∼ Nn(Xβ, σ2In)

Further, the first three assumptions show the additivity of error variables.

Example 10 In the case of a multiplicative error structure, we have an exponential re-
lationship between the response and independent variable, where the errors are propor-
tional to the mean value of Y. The data then are generated from an exponential model
Yi = exp(β0 + β1xi1, . . . , βpxip + εi) Since it is difficult to interpret these models, we trans-
form models with multiplicative errors. A logarithmic transformation results in a linear
model with additive errors

log(Yi) = β0 + β1xi1 + · · ·+ βpxip + εi, i = 1, . . . , n.
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Figure 3.1: Scatter-plots. Relationship between the appliances energy consumption and
two continuous covariates T1.kitchen and T2.living. The top panel of the figure shows
the relation of the original response variable with the two covariates and the two graphs
in the lower panel show the improved relation with the transformed response variable, i.e.
log(appi) , i = 1, . . . , 19735, we created in (3.5).

Example 11 Example 10 is applicable to our multiple regression (3.3), due to the right-
skewed of the appliances variable (c.f. Figure 2.1) and the measurement at equidistant
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time points which makes the errors not additive (c.f. scatter-plots in Figure 2.3 and 2.4).
So transferred to our example regression (3.3), we get

log(appi) = β0 + β1T1.kitcheni + β2T2.livingi + εi, i = 1, . . . , 19735. (3.5)

In Figure 3.1 we are doing scatter-plots so see the relationships between the response
variable and the covariates. Furthermore, we compare the relations with the original re-
sponse variable and the transformed one from (3.5).

3.3 Modeling the effects of covariates

As already hinted in the model equation settings, not only linear relationships are pos-
sible, we can also fit non-linear relationships within the class of linear models. Dealing
with continuous explanatory variables, it is often necessary to take non-linear methods
into account. The two most established alternatives are the variable transformations and
polynomial regression.

Example 12 A simple transformation which can be used to model a non-linear relation-
ship is given by f(x) = 1

x
. Setting p = 1 and assuming the regression model (3.2), the

model results in Yi = β0 + β1f(xi) + εi = β0 + β1
1
xi

+ εi. Other transformation are, of
course, possible, e.g. f(xi) = log(xi).

3.3.1 Polynomial regression

Here we focus on the polynomial regression since we are only dealing with this method
for our energy use data set (c.f. Table 5.2), we introduce later in Chapter 6 and 7. In this
case non-linear covariate effects are fitted through polynomials.

Theorem 3.5 (Polynomial regression). If the continuous covariate Zi has an approxi-
mately polynomial effect of an degree d, then the generated model Yi = β0 +β1Zi +β2Z

2
i +

· · ·+ βdZ
d
i + · · ·+ εi can be transformed into our well-known linear regression model

Yi = β0 + β1xi1 + · · ·+ βdxid + · · ·+ εi,
where the polynomial of degree d is substituted by xi1 = Z1

i , xi2 = Z2
i and xid = Zd

i .
The centering of the vectors Xj = (x1j, . . . , xnj)

′
for all j = 1, . . . , d, to X1 −

X̄d, . . . ,X
d − X̄d, with mean vector X̄j = (X̄j, . . . , X̄j)

′
helps with the interpretation of

the estimated effects. Further orthogonalization improves numerical instability of the es-
timation procedure.

Definition 3.6 (Gram-Schmidt Orthogonalization, detailed process in Leon et al. (2013)).
The vectors v1, . . . ,vn of the orthogonal system is calculated by the algorithm as follows:

v1 = w1, vn = wn −
n−1∑
i=1

〈vi,wn〉
〈vi,vi〉

vi, (3.6)

where w1, . . . ,wn are linear independent vectors, i.e. equation
∑n

i=1 λiwi = 0 can only
be satisfied by λi = 0 for i = 1, . . . , n. Furthermore, 〈a, b〉 denotes the scalar product, i.e.
〈a, b〉 =

∑n
i=1 aibi with vectors a, b ∈ Rn.
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hour poly(houri, 1) poly(houri, 2) poly(houri, 3)
1 -0.012 0.014 -0.015
2 -0.011 0.010 -0.007
3 -0.0098 0.0071 -0.0011
4 -0.0087 0.0041 0.0032
5 -0.0077 0.0014 0.0062
6 -0.0067 -0.00094 0.0079
7 -0.0057 -0.0029 0.0085
8 -0.0046 -0.0046 0.0082
9 -0.0036 -0.0059 0.0071
10 -0.0026 -0.0069 0.0055
11 -0.0016 -0.0076 0.0035
12 -0.00052 -0.0079 0.0012
13 0.00051 -0.0079 -0.0012
14 0.0015 -0.0076 -0.0035
15 0.0026 -0.0069 -0.0055
16 0.0036 -0.0059 -0.0071
17 0.0046 -0.0046 -0.0082
18 0.0056 -0.0029 -0.0085
19 0.0067 -0.00095 -0.0078
20 0.0077 0.0014 -0.0062
21 0.0087 0.0041 -0.0032
22 0.0098 0.007 0.0011
23 0.011 0.01 0.007
24 0.012 0.014 0.015

Table 3.1: Summary of polynomial coefficients of a variable hour.

For the linear independent vectors w1, . . . ,wn, the algorithm calculates an orthogonal
system of n pairwise orthogonal vectors. It generates the same subspace.

Due to the rounding errors, the process is numerically unstable. To stabilize the Gram-
Schmidt process as defined in the algorithm above (3.6), we do a small modification. If the
process is implemented for v1, . . . ,vk−1, the vector vk for 1 ≤ k ≤ n is then computed by

vk = wk −
k−1∑
i=1

〈vi,wk〉
〈vi,vi〉

vi,

so that vk is orthogonal to all the vectors v1, . . . ,vk−1, i.e. 〈vj,vk〉 = 0 ∀j = 1, . . . , k− 1.

Example 13 For random variables X1, . . . ,Xd, we yield with the Gram-Schmidt Or-
thogonalization and orthogonal system of X∗1, . . . ,X

∗
d with X∗k

TX∗j = 0∀k 6= j.

To give an idea of an output of the process, see the following example of an order three
polynomial of a covariate hour, i.e. poly(hour, 3), calculated by R (c.f. Table 3.1).
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3.3.2 Interactions between covariates

If there exist a coupling effect between two or more covariates, that is a covariate effect
which depends on the value of at least one other independent variable, it is called an
interaction between covariates.

Example 14 To give a foundation of interactions, consider the simple regression model
with response variable Y and two predictors x1 = (xi1)i=1,...,n and x2 = (xi2)i=1,...,n and
an interaction between these two predictors

Yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi, i = 1, . . . , n. (3.7)

The terms β1xi1 and β2xi2 depending only on one variable are called the main effects,
whereas the term β3xi1xi2 is called the interaction between the two covariates x1 and x2.

To interpret the interaction term, examine the change of E[Y] when one variable
change by u units, e.g. adding u to the first covariate x1 and we have

E[Yi|xi1 + u, xi2]− E[Yi|xi1, xi2] = β0 + β1(xi1 + u) + β2xi2 + β3(xi1 + u)xi2

− β0 − β1xi1 + β2xi2 + β3xi1xi2

= β1u+ β3uxi2

Now we have the distinction of the two cases β3 = 0 and β3 6= 0.

• β3 = 0: The interaction is canceled from the model, just main effects are included.
The expected change β1u is independent from the value of the second predictor x2.

• β3 6= 0: The expected change β1u+ β3uxi2 depends on the added amount u and also
on the value of the second covariate x2.

Therefore adding an interaction term is required when the effect of changing a covariate
depends on the value of another covariate.

An important aspect of the interaction terms is that we should always check the
interaction term first, like we did in the case-by-case analysis in our example. After the
interaction term is included, we can proceed with significance testing of the main effects.
A removed main variable should not be included in any interaction term involving this
main effect.

Example 15 Returning to our modified multiple linear regression equation (3.5), we can
add an interaction term between the covariates T1.kitchen and T2.living. Doing so,
we can detect possible interaction between these two predictors.

log(appi) = β0 + β1T1.kitcheni + β2T2.livingi
+β3(T1.kitcheni × T2.livingi) + εi, i = 1, . . . , 19735.

(3.8)

After we modeled the regression (3.8), we have to estimate the regression coefficient to see
whether our interaction coefficient β3 differs from zero, i.e. there exists an interaction, or
equals zero, i.e. there is no interaction.

In the next section we take a look on the estimation procedure of the model parameter.
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3.4 Model parameters, estimation, and residuals

From our model assumptions we get the following formula where we use the estimator Ŷ ,
that is the estimated linear function in (3.1), to predict Y:

Ŷ = f̂(x1, . . . , xp) = β̂0 + β̂1x1 + · · ·+ β̂pxp (3.9)

But how we compute our estimator?
Before we answer that question, we give some preparations and important settings.

To simplify the representation, let’s use the matrix notation. So recap, the estimator of
the mean E[Yi] of Yi is given by

Ŷi = β̂0 + β̂1xi1 + · · ·+ β̂pxip
= xTi β̂.

(3.10)

Furthermore, with the residual, which is the deviation between the true value yi and
estimated value ŷi denoted by ε̂ = (ε̂1, . . . , ε̂n)

′
, we have

ε̂ = y − ŷ = Y −Xβ̂. (3.11)

Note that β̂i 6= βi for all i = 1, . . . , n, as a consequence of the unknown true parameter
β without the error, c.f. the multiple linear model (3.2).

As for the regression parameter vector β, the residuals ε̂ is not fully identical to our
error ε we introduced in the last section. The residuals ε̂i can be identified as predictions
of εi.

3.4.1 Method of least squares - estimation of the regression co-
efficient

Now that we presented the important assumption we answer the question that arose in
the previous section on how we develop estimators for unknown parameters β and σ2 of
the linear model and their statistical properties. The most common method for estimating
regression parameters β is the method of least squares.

In this section we give special statistical properties of the typical method of least
squares. Although the method has much advantages, like simple mathematical formula
which can be differentiate, the estimators are highly sensitive to outliers.

Minimizing the sum of the squared deviations from residual equation (3.11), we get
the estimated values for the regression coefficients β:

Definition 3.7 (Sum of squared deviations). The sum of the squared deviations to obtain
the estimated values for the regression coefficients β is defined as

LS(β) =
n∑
i=1

(yi − xTi β)2 =
n∑
i=1

ε̂2
i = ε̂T ε̂ (3.12)

for given data (yi, xi), i = 1, 2, . . . , n and with respect to β ∈ Rp+1.
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To minimize LS(β) (3.12), we take the derivative and getting the result easily that is

∂LS (β)

∂β
= −2XTy + 2XTXβ (3.13)

From taking the second derivative with outcome ∂2LS(β)
∂2β

= 2XTX and the fact that

matrix XTX is positive definite due to rank(X) = p + 1, we know that there exists a
solution.

Finally by solving the normal equations

XTy = X
′
Xβ, (3.14)

which have a unique solution, we yield our least squares estimator.

Lemma 3.8 (Least squares estimator). The resulting least squares estimate from the nor-
mal equations is given by

β̂ = β̂(y) = (XTX)−1XTy (3.15)

The associated estimator β̂ = β̂(Y) is given by

β̂(Y) = (XTX)−1XTY (3.16)

Example 16 Reviewing our Example 15, we already fitted our regression model
̂log(app) = β̂0 + β̂1T1.kitchen + β̂2T2.living + β̂3T1.kitchen× T2.living.

Looking at the summary of this interaction model we derived in R, we get the estimated
model parameter

β̂0 = −1.310893, β̂1 = 0.171617,

β̂2 = 0.315548, β̂3 = −0.010191.

These estimated regression coefficients are calculated by the method of the least squares,
i.e. the least squares estimate (3.15), where

β̂ = (β̂0, β̂1, β̂2, β̂3)T ∈ R4,
y = ((log(appi))i=1,...,19735) ∈ R19735 and
X = (1, T1.kitchen, T2.living, T1.kitchen× T2.living) ∈ R19735×4.

Continuing our example examine the interaction, we first consider the interaction term
β̂3, which is very small. But observing all the small estimated model parameter, we can
say that an interaction term could be needed, since β̂3 6= 0. So the effect of changing
T1.kitchen depends on the value of T2.living, i.e. adding u := 1 unit to the covariate
T1.kitchen, the expected change on the response variable is β̂1u + β̂3uT2.livingi =
0.171617− 0.010191 · T2.livingi.

Whether or not an inclusion of an interaction effect is really necessary can be statically
tested using the hypothesis

H0 : β̂3 = 0 versus H1 : β̂3 6= 0,

see later in Section Statistical inference and F-test.
Note that if the interaction terms is needed thus we can not remove the main effect

regardless of the β̂1 and β̂2.
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Taking a look at the next method to estimate another term, our goal will be to show the
method of least squares estimator with Gaussian error coincide with maximum likelihood
estimator of the regression coefficients.

3.4.2 Maximum likelihood estimation

Now that we have the least squares estimator, we have to specify the distributional
assumptions with regard to the error term ε. As we introduced in the model equa-
tion settings we assume normally distributed errors ε ∼ Nn(0, σ2In) and so we have
Y ∼ Nn(Xβ, σ2In).

It follows the likelihood equation.

Definition 3.9 The likelihood of (β,σ) given the data values y is

L(β,σ|y) =
1

(2πσ2)
n
2

exp

(
− 1

2σ2
(y −Xβ)T (y −Xβ)

)
(3.17)

The corresponding log-likelihood is thus given by

l(β,σ|y) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2
(y −Xβ)T (y −Xβ). (3.18)

Maximizing the log-likelihood with respect to β, we only have to consider

M = − 1

2σ2
(y −Xβ)T (y −Xβ),

since the first two terms of log-likelihood (3.18) are independent of β.
Note that the maximum likelihood estimates of the regression parameter β under

normality assumption is equivalent to minimize the least squares criterion (3.12) LS(β) =
ε̂T ε̂ = (y −Xβ)T (y −Xβ).

Therefore the maximum likelihood estimate β̂ is also the least squares estimate.
Not only the β can be estimated using maximum likelihood, also the variance σ2 is

estimated by differentiation of the log-likelihood with respect to σ2 and setting to zero.

∂l(β, σ2)

∂σ2
= − n

2σ2
+

1

2σ4
(y −Xβ)T (y −Xβ)

!
=0

The estimate for the variance σ2 is obtained by substituting the estimate β̂ = (X
′
X)−1XTy

into the differential of the log-likelihood

− n

2σ2
+

1

2σ4
(y −Xβ̂)T (y −Xβ̂) = − n

2σ2
+

1

2σ4
(y − ŷ)

′
(y − ŷ)

!
=0

which yields the estimate

σ̂2
ML =

1

n
(y − ŷ)T (y − ŷ) =

1

n
ε̂T ε̂. (3.19)

The corresponding estimator is

σ̂2
ML(Y) =

1

n
(Y − Ŷ)T (Y − Ŷ) =

1

n
ε̂T ε̂. (3.20)
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To create the unbiased estimator σ̂2
REML, the expectation of the sum of squared resid-

ual E[ε̂T ε̂] = (n− p)σ2 is used. Thus we get

σ̂2
REML =

1

n− p
ε̂
′
ε̂. (3.21)

Example 17 Calculate the estimate of σ2 using the corresponding formula of the unbiased
estimator σ̂2

REML in Equation (3.21).
Again utilize Example 15, we can determine the unbiased estimate of σ2 by substituting

the response, covariates, the number of data points and predictors into the corresponding
unbiased estimate σ̂2

REML, analogously we did in the last Example 16 . Doing this in the
program R, we yield the result

σ̂2
REML =

1

n− p
(y − ŷ)T (y − ŷ) = 0.40855.

3.4.3 Distribution of the estimators

Define the vector of the fitted random values Ŷi with the help of the calculated parameter
estimators as

Ŷ = Xβ̂ = X(XTX)−1XTY (3.22)

Further, define the hat matrix which presents the projection of Y onto the space that
spanned by the columns of X by

H = X(XTX)−1XT (3.23)

The projection matrix H ∈ Rn×n is symmetric, i.e. HT = H, and idempotent, i.e. H2 = H.
Since the estimator of regression coefficients, fitted values and raw residuals are linear

functions, the transformation rule for expectation and variance-covariance matrix can be
applied so that

E[β̂] = β, V ar[β̂] = σ2(XTX)−1,

E[Ŷ ] = Xβ, V ar[Ŷ ] = σ2(H),
E[ε̂] = 0, V ar[ε̂] = σ2(In −H)

Thus under normality assumption we have

β̂ ∼ Np+1(β, σ2(XTX)−1),

Ŷ ∼ Nn(Xβ, σ2(H)),
ε̂ ∼ Nn(0, σ2(In −H)).

(3.24)

3.5 Performance of regression models

3.5.1 Analysis of Variance

With the help of the given properties of the least squares estimator, we introduce a fun-
damental analysis of variance formula for the empirical variance of the observed response
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yi. This formula can be used as goodness-of-fit measure. In the analysis of variance, we
have many ways to test the explanatory power by the regression model. For our pur-
pose we study the coefficient of determination. Note that all the assumption of the linear
regression model have to be fulfilled.

Consider the following additive decomposition formula:

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ŷi − ȳ)2 +
n∑
i=1

ε̂2
i , (3.25)

where ȳ = 1
n

∑n
i=1 yi.

The employed sum of squares are introduced to quantify the amount of variation
explained by the regression, which are defined as

(i) SST :=
∑n

i=1(yi − ȳ)2 as total sum of squares

(ii) SSR :=
∑n

i=1(ŷi − ȳ)2 as regression sum of squares

(iii) SSE :=
∑n

i=1(yi − ŷi)2 =
∑n

i=1 ε̂
2
i as error sum of squares.

The decomposition formula follows from the fact that
∑n

i=1(ŷi − ȳ)(yi − ŷi) = 0. So
from this, it follows that

SST = SSR + SSE (3.26)

3.5.2 Coefficient of Determination - R2 statistic

The quantity R2 is a measure of how well our model predicts Y.
Using decomposition Formula (3.25) or (3.26), we obtain the coefficient of determina-

tion R2 as a goodness-of-fit measure.

Definition 3.10 (Multiple coefficient of determination).
Define the coefficient of determination as

R2 :=
SSR

SST
= 1− SSE

SST
. (3.27)

Additionally we define the adjusted multiple coefficient of determination as

R2
adj := 1− SSE/(n− p)

SST/(n− 1)
. (3.28)

From the decomposition formula, the coefficient of determination is in the range of
0 ≤ R2 ≤ 1.

Example 18 The limit case R2 = 1 implies SSE = 0, i.e. all residuals are zero and
fits our data perfectly. Whereas the limit R2 = 0 implies SSR = 0 ⇒ ŷi = ȳi for all i.
Thus the prediction of Yi is independent of the explanatory variables which means that the
covariates do not have a explanatory power for the mean of Y. In this case we also have
to consider the uncovered explanatory power that is a non-linear relationship.
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Consequently, the closer R2 is to 1, the better our variability is explained by our model.

Finally, we come to the weaknesses of R2. The R2 typically increase when more pre-
dictor variables are added to a model, which makes the R2 not really appropriate for
comparing two or more models. In fact, R2 is the fundamental model comparison statis-
tic, but only for models with the same number of predictors. So it is essential developing
a criterion which allows to compare models with different numbers of predictors and do
not penalize adding more regression parameter or comparing reduced models.

Including a correction term for the number of regression parameter, we get the adjusted
R2.

R2
adj := 1− n− 1

n− p
(1−R2) = 1− SSE/(n− p)

SST/(n− 1)

Example 19 We compare the modified linear regressions (3.5) and (3.8) we set. Table
3.2 contains the estimated models and their corresponding adjusted coefficients of deter-
mination. We observe that every R2

adj is very small. One reason is the strong variability in
the data. (see scatter-plot in Figure 3.1). Further, there are many important covariates of
the original energy use data set missing in the fitted models we introduced in the examples.
The models in the application parts later are containing at least ten of our explanatory
variables, which leads to an higher adjusted coefficient of determination.

Model Equation R2
adj

M1: ̂log(app) = 3.235− 0.026 · T1.kitchen + 0.080 · T2.living 0.04722

M2:
̂log(app) = −1.311 + 0.172 · T1.kitchen + 0.316 · T2.living

−0.01 · (T1.kitchen× T2.living)
0.05152

Table 3.2: Comparing the adjusted coefficient of determination R2
adj of different models

for the relationship between appliances energy use and the temperatures.

If we compare these two models, we find a higher R2
adj for the interaction model M2.

This means that the interaction model should be preferred. (Compare later with residual
analysis Figure 3.2).

Further, the two models are nested, since M1 is included in M2. While the normal
coefficient of determination increases typically with increasing number of parameters for
nested models, the adjusted coefficient of determination punishes the growing parame-
ters. For a comparison see the original coefficient of determination of these two models
R2(M1) = 0.04732 and R2(M2) = 0.05166. Even though the values are very small and
hard to compare, the difference between the original coefficient of determination is greater
than the difference of the adjusted coefficient of determination of M1 and M2.

Note that we only compared the model with the modified response variable, since it is
not possible to compare models with different response variables, i.e. the original response
y and the transformed response log(y).
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3.5.3 Model selection - AIC and BIC

We have already seen a way to choose a better fitted model based on the adjusted coeffi-
cient of determination. Regarding to prediction quality in linear models, now we learn a
another way to compare different (parametric) regression model with model choice crite-
ria. Review some assumptions, that is

• independent observations yi, i = 1, . . . , n with

expectation E[yi] = µi and

variance V ar[yi] = σ2, and

• given potential regressors (1,x1, . . . ,xp).

For estimations, a subset of included covariates M ⊂ {0, 1, . . . , p} are used. We obtain
the least square estimator

β̂M = (XT
MXM)−1XT

MY,

with the corresponding design matrix XM . The estimator for the vector µ of means
µi = E[Yi] is now given as

ŶM = XM β̂M .

The Akaike information criterion (AIC) is one of the most commonly used criteria for
choosing a model. For the AIC formula within the scope of likelihood-based inference, see
(Fahrmeir et al., 2013, Appendix B, p. 664).

Definition 3.11 (Akaike information criterion, AIC).
Let the notion be given as above. In general, AIC is defined by

AIC = −2 · l(β̂M , σ̂2) + 2(|M |+ 1), (3.29)

where l(β̂M , σ̂
2) is the maximum value of the log-likelihood, i.e. the ML estimators β̂M

and σ̂2 are inserted into the log-likelihood.
Note that (|M |+ 1) is the total number of parameter and the error variance σ2 which

is counted as a parameter.

In case of Gaussian errors in a linear model, we have

−2l(β̂M , σ̂
2) = n log(σ̂2) + 1

σ̂2 (y −XM β̂M)T (y −XM β̂M)

= n log(σ̂2) + nσ̂2

σ̂2

= n log(σ̂2) + n.

Ignoring the constant n, we yield for the AIC formula

AIC = n log(σ̂2) + 2(|M |+ 1)

AIC is considering the ML estimator σ̂2 = ε̂T ε̂/n for the computation, not the usual
unbiased variances estimator σ̂2

REML.
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Definition 3.12 (Bayesian Information Criterion, BIC). The BIC is generally defined
by

BIC = −2 · l(β̂M , σ̂2) + log(n)(|M |+ 1), (3.30)

where l(β̂M , σ̂
2) again is the maximum value of the log-likelihood as given for the AIC.

Multiplied by 1/2, it is known as Schwartz criterion:

BICS =
1

2
BIC (3.31)

Assuming an Gaussian error, we obtain analogously for BIC

BIC = n · log(σ̂2) + log(n)(|M |+ 1).

We recognize a similar form of AIC and BIC, that is the criteria select models which
gives the highest likelihood. But the main difference is that the BIC is penalizing a complex
model much more than the AIC (for models with more than eight observations). The
penalization in AIC and BIC is set in order to avoid over-fitting. In both cases, smaller
values indicate a better model fit, i.e. the model which minimizes the information criterion.

For a deeper understanding, we refer to (Akaike, 1974 and Schwarz, 1978).

Example 20 (Model choice with AIC). We illustrate the approaches for model choice
using the model (3.5), where our goal is to model the relationship between the transformed
appliances energy use, with the variable log(app), and the two explanatory variables, i.e.
temperature in the kitchen T1.kitchen and temperature in the living room T2.living.
We already produced scatter-plots, and box-plots to see the relationship between the re-
sponse variable and covariates. From these plots we assume an approximately linear in-
creasing, but linear weak effect, for both covariates. With rising temperature in living room
and kitchen we have a slightly rising appliances energy use, so there seems to be a rela-
tionship which makes it arguable. Based on these variables, we want to test possible model
combinations. We examine the simple linear regression, our multiple linear model (3.5),
and the model with added interaction term (3.8).

Using AIC criterion, we obtain the resulting AIC values for the considered models that
are summarized in Table 3.3. The last model, Model D with the added interaction term,
is the preliminary best model.

Model Equation DF AIC

A: ̂log(appi) = β̂0 +β̂1T1.kitcheni 3 38871.98

B: ̂log(appi) = β̂0 +β̂1T2.kitcheni 3 38456.79

C: ̂log(appi) = β̂0 +β̂1T1.kitcheni + β̂2T2.livingi 4 38433.94

D:
̂log(appi) = β̂0 +β̂1T1.kitcheni + β̂2T2.livingi

+β̂3T1.kitcheni × T2.livingi
5 38345.81

Table 3.3: Model selection with criterion AIC.
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Note that we are not using BIC. As mentioned above, the only difference between AIC
and BIC is the way they penalize, i.e. 2(|M | + 1) in AIC and log(n)(|M | + 1) in BIC.
Thus the BIC produces higher penalty if the sample size n is higher which might cause
an under-fitting, whereas AIC might over-fit. There are many researches on the choice
between AIC and BIC. The preference depends on the researcher and the goal. While
AIC is best suited for prediction as it aims to find the best approximating model, the
method BIC is best for explanation as it allows consistent estimation of the underlying
data generating process. For more on the differences, see also the paper of Shmueli et al.
(2010). In overview, we can say that in many papers, such as those to which we refer for
our purposes in this thesis, or programs, the method AIC is used. In addition, our second
statistical model chooses based on AIC model selection and therefore we are also using
AIC to ensure consistency.

Either way, BIC leads to the same ranks and choices, but with higher values caused
by the penalty term depending on the sample size.

3.6 Residual analysis

Finally we examine the statistical properties of the random residuals ε̂i = Yi − Xi
′
β̂.

Substituting the regression parameter estimator, the expression is as follows:

ε̂ = Y −X(XTX)−1XTY (3.32)

Thus we get the following statistical properties of the random residuals:

E[ε̂] = E[Y]−X(XTX)−1XTE[Y] = Xβ −X(XTX)−1XTXβ = 0,
Cov[ε̂] = σ2(In −X(XTX)−1XT ) = σ2(In −H).

Note that in comparison to the error term, the residuals also have the mean value
zero, but the residuals are not uncorrelated and have heteroscedastic variances, which is
obvious from taking a look at the i-th diagonal element of the covariance matrix.

Further from the assumption of a normally distributed error, we then have distribution
of residuals

ε̂ ∼ Nn(0, σ2(In −X(XTX)−1XT )) = Nn(0, σ2(In −H)). (3.33)

So consequently the distribution of residual sum of squares is

ε̂T ε̂

σ2
= (n− p) σ̂

2

σ2
∼ χ2

n−(p+1). (3.34)

Moreover the residual sum of squares and the least squares estimator are independent.
For the proof, we refer to Fahrmeir et al. (2013, Chapter 3, page 171)

The last statements are important for the hypothesis tests regarding to regression
coefficients.
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3.6.1 Standardized and studentized residuals

As we have seen, the results of the statistical properties of residuals saying that residuals
are neither homoscedastic nor uncorrelated. But when we analyzing data, the residuals
are used to validate model assumptions in a linear model.

Since the correlation are neglectable, we are dealing with the heteroscedasticity prob-
lem in the next steps. An obvious solution is standardization by dividing through the
estimated standard deviation of the residuals.

Then resulting standardized residuals is given as

ri =
ε̂i

σ̂
√

1− hii
, (3.35)

where σ̂2 is the estimate of σ2 as defined in (3.21) and hii is the i-th diagonal element of
the hat matrix.

So when we suppose now that our model assumptions are true, the standardized
residuals are homoscedastic. With the help of standardized residuals we can analyze the
variances and conclude whether the assumption of homoscedasticity is violated or not. In
practice we plot the standardized residuals versus the predicted values ŷi.

Example 21 The residual plots in Figure 3.2 show dependencies. So we have to transform
Y, so that the variance homogeneity is fulfilled. From the distribution, the majority of the
standardized residuals, 95 % should lie in the interval [-2,2]. More on distribution explained
in the next steps.
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Figure 3.2: Residual plot. The left figure shows the regression (3.3) and the right figure
shows the regression (3.5). The comparison reveals an improvement through the logarith-
mic transformation to log(appi), i = 1, . . . , 19735.

From the facts that the residuals are normally distributed and (n − p) σ̂
2

σ2 is χ2
n−p-

distributed, the definition of the t-distribution (c.f. Definition 2.1) leads to the interest to
assume a t-distributed standardized residuals.

The numerator and denominator in equation (3.35) are not stochastically independent
as ε̂i is a part of the expression of σ̂. This means we can not assume a t-distributed stan-
dardized residual. To solve the problem of dependence, define ”leave-one-out” estimators
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which contains all observations except the i-th observation. Hence define the residuals
based on these ”leave-one-out” estimators to use the definition of the t-distribution and
obtain the valid t-distributed studentized residuals r∗i .

Define X(−i) as the design matrix and Y(−i) as the response vector with removed i-th
row. The corresponding least squares estimator based on all observations except the i-th
one equals

β̂(−i) = (XT
(−i)X(−i))

−1XT
(−i)Y(−i)

Therefore we yield the predicted values

ŷ(−i) = xTi β̂(−i)

and thus our residuals for the i-th observation

ε̂(−i) = y(i) − ŷ(−i) = y(−i) − xTi (XT
(−i)X(−i))

−1XT
(−i)y(−i)

is then distributed as follows

ε̂(−i) ∼ N(0, σ2(1 + xTi (XT
(−i)X(−i))

−1xi))

or transformed to

ε̂(−i)

σ(1 + x
′
i(X

′
(−i)X(−i))−1xi)1/2

∼ N(0, 1).

From the distribution of the residual sum of squares (3.34) we yield

(n− p− 1)
σ̂2

(−i)

σ2
∼ χ2

n−(p+1)−1,

where

σ̂2
(−i) =

1

n− p− 1
[(Y1−xT1 β̂(−i))

2+· · ·+(Yi−1−xTi−1β̂(−i))
2+(Yi+1−xTi+1β̂(−i))

2+· · ·+(Yn−xTn β̂(−i))
2]

an estimator for σ2 which is based on all observation except the i-th one.
Finally we have the studentized residuals

r∗i =
ε̂(−i)

σ̂(−i)(1 + xTi (XT
(−i)X(−i))−1xi)1/2

∼ tn−(p+1)−1 (3.36)

as now ε̂(−i) and σ̂(−i) are independent which holds due to the above formulation which
does not consider the i-th observation of Yi in the calculations.

The studentized residuals helps to confirm the model assumption and to detect outliers.

Example 22 The first plots in Figure 3.2 are the classical residual plots to see whether
the residual points are randomly spread around the zero line, which means they do not
have a certain pattern, that is our goal.
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Figure 3.3: Standardized and studentized residuals versus fitted values of Model C on the
left side and Model D on the right side. The models are as we defined in Table 3.3 of
Section 3.5.3.

Next, we can calculate the standardized, studentized residuals for each data point, as
we defined in (3.35) and (3.36) respectively. To compare the results, we display them in
Figure 3.3.

As we can see, we can not identify large differences, but we have a lighter amount of
data for the studentized residual plot.

3.6.2 Stationary models and autocorrelation function

Let (Xi)i∈N be the multivariate time series process with Xi = ((Xi1, . . . Xip)
T )i∈N , and

the corresponding observations xi1j, . . . , xinj for j = 1, . . . , p. N denotes the index set, for
example here N = N, or N = R, [0, 1].

Definition 3.13 (Stationarity). A stochastic process (Xi)i∈N is called strictly (or strongly)
stationary, if

(Xi1 , . . . , Xin)
d
= (Xi1+h, . . . , Xin+h) for all i1, . . . , in ∈ N, n ∈ N,

and h such that i1 + h, . . . , in + h ∈ N .
In particular, Xi is identically distributed for all i ∈ N .

Definition 3.14 (Autocovariance function). Let (Xi)i∈N be a time series with V ar(Xi) <
∞ for all i ∈ N . Then

γX(r, s) = Cov(Xr, Xs) = E [(Xr − E[Xr])(Xs − E[Xs])] , r, s ∈ N



3.6. RESIDUAL ANALYSIS 33

is called autocovariance function of (Xi)i∈N .

Definition 3.15 (Xi)i∈N is (weakly) stationary, if

(i) E[Xi] is independent of i,

(ii) E[|Xi|2] <∞ ∀i ∈ N and

(iii) γX(i+ h, i) is independent of i for each h.

This means that for a weakly stationary process (Xi)i∈N , and set r = i+ h and s = i,
we have

γX(i+ h, i) = γX(i+ h− i, 0) ∀i, h : i, i+ h ∈ N
⇔ γX(h) := γX(h, 0) = Cov(Xi+h, Xi) ∀i, h ∈ N.

(3.37)

So the autocovariance function (acvf) γX(h) is the covariance between stochastic process
(Xi)i∈N ( later with observations) at a distance h, or precisely with lag h.

Definition 3.16 (Xi)i∈N is called a Gauss process, if all finite-dimensional distributions
of (Xi)i∈N are multivariate normal. Further, if (Xi)i∈N is weakly stationary, with E[|Xi <
|2] <∞, then (Xi)i∈N is also strictly stationary, with V ar(Xi) <∞.

Definition 3.17 (Autocorrelation function). Again, let (Xi)i∈N be a stationary time se-
ries. Using the autocovariance function γX(h) of (Xi)i∈N at lag h defined in Equation
(3.37), we obtain the autocorrelation function (acf) of (Xi)i∈N at lag h as

ρ
(N)
X =

γX(h)

γX(0)
= Corr(Xi+h, Xi) (3.38)

The corresponding estimate of the autocorrelation function (3.38) is defined as follows.
Let x1j, . . . , xnj be observations of a time series for j = 1, . . . , p. Recall the sample mean
of our observations is given as x̄j = 1

n

∑n
i=1 xij for j = 1, . . . , p.

The sample autocovariance function is

γ̂j(h) =
1

n

n−|h|∑
i=1

(xi+|h|,j − x̄j)(xij − x̄j), −n < h < n.

And thus the sample autocorrelation function is

ρ̂j(h) =
γ̂j(h)

γ̂j(0)
, −n < h < n.

Example 23 For simplicity, let the stochastic process be one-dimensional. Let’s take our
response variable app as an example. We have the sequence ((appi)i=1,...,19735), that is the
observed appliances energy consumption over a time period. The Figure 3.4 shows the
corresponding sample autocorrelation function at lag 1, . . . , 25000. We have the highest
spike at lag 0, i.e. ρ̂(0) = 1, since it is the correlation with the same time point here. The
horizontal dashed lines on the graph are the bounds ±1.96/

√
n with n = 19735. These

dashed lines represents the significance level. In our Figure 3.4 all the spikes rises above
the level which means that the time points are correlated with each other dependent of the
lag (x-axes). After lag 25000 the spikes fall below the significance level and therefore the
current appliances use has no effect on the appliances use at lag 25000.
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Figure 3.4: The sample autocorrelation function ρ̂(h) for the energy consumption.

For an extension and more theory on time series, we refer to Brockwell et al. (1991)
and for more examples see Brockwell and Davis (2016).

3.7 Statistical inference

3.7.1 F-test

In this paragraph we describe statistical tests for hypothesis regarding to the unknown
regression parameter β. For these parameters we are able to construct confidence intervals.
Besides of the duality between the statistical tests and confidence intervals which holds,
the assumption of an independent and identically normally distributed error, i.e. εi ∼
N(0, σ2), is required. Even for large sample size with non-normal errors, the tests and
confidence intervals stay valid what we will see in the following.

There are several statistical hypothesis of interest for linear models.

Example 24 (i) The tests of significance, i.e. whether a variable should be included or
not

H0 : βj = 0 versus H1 : βj 6= 0, with j = 1, . . . , p

(ii) The composite test of a subvector, i.e. test to sparse and avoid over-parameterization
in the model

H0 : βl = 0 versus H1 : βl 6= 0, with subvector βl = (β1, . . . , βk) and l =
1, . . . , p
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(iii) The test of equality, i.e. test the necessary of differentiate and specify or subsetting
some variables

H0 : βj − βk = 0 versus H1 : βj − βk 6= 0, with j, k = 1, . . . , p and j 6= k

The generalized testing problems is called general linear hypothesis

H0 : Cβ = d versus H1 : Cβ 6= d, (3.39)

where C ∈ Rk×(p+1) with rank(C) = k ≤ p+ 1, which means k represents the number
of linear independent restriction, and d ∈ Rk.

Assuming Gaussian error to generate a test statistic for the general test problem (3.39).
Then calculate

(i) residual sum of squares SSE = ε̂T ε̂ for the full model

(ii) residual sum of squares SSEH0 = ε̂TH0
ε̂H0 for the model under the null hypothesis

Cβ = d

(iii) statistic ∆SSE
SSE

=
SSEH0

−SSE

SSE
, which is the relative distance of the residual sum of

squares between the restricted and full model.

The idea of proving SSEH0 − SSE ≥ 0 and ∆SSE ≥ 0, is that the smaller the distance
the more likely is a that we will not reject the null hypothesis. For more explanation, see
Fahrmeir et al. (2013), Section 3.3.1, p.129.

Now to derive the test statistic and the distribution of it under H0 of (3.39), we use
our results from the distribution of the estimator parameter β̂ in (3.24).

Assume that H0 is true, then we have

Cβ − d
H0∼ N(0, σ2C(XTX)−1CT ).

Since the regression coefficient β̂ and residuals are independent, we are applying the
definition of χ2-distribution to obtain

(Cβ − d)T (Cβ − d)

σ2(C(X′X)−1C′)

H0∼ χ2
k. (3.40)

We recognize the sum of squares error under the restriction of Cβ − d in the latest
expression. So setting the SSE with the least squares estimator β̂H0

under H0 in matrix-
vector notation

SSEH0 := (Cβ − d)T (C(XTX)−1CT )−1(Cβ − d).

Finally with yield the desired F -distribution (c.f. Definition 2.2) with the following
Theorem.

Theorem 3.18 Assuming the normality assumption. From the stochastic properties and
distribution of residual sum of squares (3.34) we derive and obtain

SSE/σ2 ∼ χ2
n−(p+1)

and with equation (3.40)
SSEH0/σ

2 ∼ χ2
k
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A proof of the theorem can be found in Fahrmeir et al. (2013, Section 3.5.2).

To transform the statistic to a test statistic under H0 with the distribution F , we add
the constant factors 1

k
as the numerator and 1

n−p as the denominator degree of freedom

(df).

The test statistic under the null hypothesis is called the F-test and is defined as

F =
SSEH0/k

SSE/(n− (p+ 1))

H0∼ Fk,n−(p+1) (3.41)

From this we obtain the following test. Let α be the significance level. Then the null
hypothesis can be rejected if the test statistic is larger than the (1 − α)-quantile of the
corresponding F-distribution

F > Fk,n−(p+1)(1− α)

Example 25 (F-Tests for specific test problems).

(i) Test of significance (t-test):

H0 : βj = 0 versus H1 : βj 6= 0, with j = 0, . . . , p. In this case we obtain the
F-test from (3.41) :

Fj =
(β̂2

j − 0)/((XTX)−1)jj

SSE/(n− (p+ 1))

H0∼ F1,n−(p+1)

with the rejection rule for our test statistic Fj > F1,n−(p+1)(1− α) with the (1− α)-
quantile of the corresponding F -distribution.

Equivalently, with Fj = t2j , the F-test with just one regression coefficient can be based
on the t-test, that is compare to studentized residual,

tj =
β̂j

se(β̂j)
∼ tn−(p+1),

where se(β̂j) =
√

ˆV ar(β̂j) is the estimated standard deviation or standard error of

β̂j, compare to the unbiased estimator σ̂2
REML in (3.24). Note that tj is t-distributed

with (n− (p+ 1)) degree of freedom.

Thus the critical value for the rejection region of H0 is deduced from the (1− α/2)-
quantile of the t-distribution with (n-(p+1)) degree of freedom. Which leads us to
the decision rule that

we reject the null hypothesis, if |tj| > t1−α/2(n− (p+ 1))

This test can be performed to select the covariates stepwise. Either the forward se-
lection by adding covariates to the model based on F-test, or backward section by
removing covariates till we have significant covariates.
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(ii) Test for significance of regression: Test if there is a linear relationship between the
response and any of the covariates. The null hypothesis is then

H0 : β1 = β2 = · · · = βp = 0. Under the H0 the least squares estimator can be

given by β̂0 = Ȳ , so we obtain the F-test statistic

F = n−(p+1)
p

∑
(ŷi−ȳi)2∑

ε̂2i
∗
= n−(p+1)

p

∑
(ŷi−ȳ)2/

∑
(yi−ȳ)2

1−
∑

(ŷi−ȳ)2/
∑

(yi−ȳ)2

∗
= n−(p+1)

p
R2

1−R2

∼ Fp,n−(p+1)

with the decision rule:

Reject H0, if we obtain for our test statistic F that F > Fp,n−(p+1)(1− α)

with the (1− α)-quantile of the corresponding F -distribution.

In ∗ we used the composition formula (3.25) and the Definition 3.10 defining R2.
Use for interpretation that R2

adj = 1− (1− R2) n−1
n−(p+1)

or equivalently R2
adj = R2 −

(1−R2) p
n−(p+1)

.

So there is an connection between the F-test and the coefficient of determination.
If R2 is small enough, we expect the null hypothesis, i.e. no linear relationship, will
not be rejected as F is also small. Otherwise F becomes comparably large when R2

is close to its limit one.

3.7.2 Confidence regions and prediction intervals

Confidence intervals for regression coefficients

In order to construct a confidence interval for a βj under normality, we utilize the t-

statistic tj =
β̂j−dj
sej

corresponding to the test H0 : βj = dj. Remember that we reject the

null hypothesis when |tj| > tn−(p+1)(1−α/2). So the probability of rejecting H0 when H0

is true equals α. Hence, under H0 we have

P (|tj| > tn−(p+1)(1− α/2)) = P (| β̂j − βj
sej

| > tn−(p+1)(1− α/2)) = α.

On the other hand, the test is constructed such that the probability of not rejecting
H0, given H0 is true, is provided by

P (|tj| < tn−(p+1)(1− α/2)) = 1− α
⇔ P (| β̂j−βj

sej
| < tn−(p+1)(1− α/2)) = 1− α

⇔ P (β̂j − tn−(p+1)(1− α/2)sej < βj < β̂j + tn−(p+1)(1− α/2)sej) = 1− α

and we yield the (1− α)-confidence interval for βj[
β̂j − tn−(p+1)(1− α/2)sej, β̂j + tn−(p+1)(1− α/2)sej

]
Analogously we can create the (1−α)-confidence region for a k-dimensional subvector

βl of β.
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Prediction intervals

Similarly we can construct the prediction intervals for a future observation. We already
derived the prediction for a new observation, say y0 with a given covariate vector x0, so
the corresponding estimator of the expectation E[Y0] = µ0 (application of Gauß-Markov-
Theorem, see Fahrmeir et al. (2013) on p. 119 and its proof on p. 170) is given by

Ŷ0 = xT0 β̂

Not only the point estimate, but also the interval estimation for µ0 is of interest.
For the construction we use that β̂ ∼ Nn(β, σ2(XTX)−1), and by the property of linear
combinations and standardization it follows

xT0 β̂ ∼ N(xT0 β, σ
2xT0 (XTX)−1x0)

standardizing⇔ xT0 β̂−µ0

σ(xT0 (XTX)−1x0)1/2 ∼ N(0, 1)

Finally substituting σ2 with the estimator σ̂2 (3.21) we obtain

P

(
−tn−(p+1)(1− α/2) ≤ xT0 β̂ − µ0

σ̂(xT0 (XTX)−1x0)1/2
≤ tn−(p+1)(1− α/2)

)
= 1− α

which follows a t-distribution with n− (p+ 1) degree of freedom.
This results in a (1− α)-confidence interval for µ0.
For the purpose of getting the prediction interval which contains the random future

observation Y0 with a high probability, we look at the prediction error estimator ε̂0 =
Y0 − xT0 β̂ with

ε̂0 ∼ N(0, σ2 + σ2xT0 (XTX)−1x0).

Again, by replacing σ̂2 for σ2 and standardizing we obtain

Y0 − xT0 β̂

σ̂(1 + xT0 (XTX)−1x0)1/2
∼ tn−(p+1)

and thus

P

(
−tn−(p+1)(1− α/2) ≤ Y0 − xT0 β̂

σ̂(1 + xT0 (XTX)−1x0)1/2
≤ tn−(p+1)(1− α/2)

)
= 1− α

Eventually, with (1 − α)-confidence, we find the future observation at x0 within the
prediction interval

xT0 β̂ ± tn−(p+1)(1− α/2)σ̂(1 + xT0 (XTX)−1x0)1/2.

By the construction of the prediction interval, it is always wider than the corresponding
confidence interval for µ0. This is due to the addition of a possibly high error variance.
The confidence interval is constructed for E[Y0] = µ0, so that the random interval overlaps
the fixed and constant mean µ0 with probability 1−α. On the other hand, the prediction
interval with probability 1− α contains the random future observation Y0.



Chapter 4

Generalized additive model (GAM)

So far we introduced and described statistical models with a univariate response modeled
as the sum of linear or transformed predictors depending linearly on the estimated pa-
rameters and a zero mean random error term. Furthermore, statistical inference is usually
based on assumption, that is the response variable is normally distributed. This approach
of multiple linear regression is the most widely used method in the analysis of designed
experiments and for other modeling task such as polynomial regression.

At this point we finally come to a more flexible and automated method to fit a model.
The generalized additive model (GAM) relaxes the strict linear assumptions. It allows not
only the expected value of the response variable to depend linearly on smooth functions
of predictor variables, but also allows any distribution from the exponential family. The
exact parametric form of these functions are unknown as the degree of smoothness are
appropriate for each of them.

In practice the usage of GAM requires some extension to the multiple linear model
methods.

(i) smooth functions must be represented in a certain way

(ii) degree of smoothness of the function must be made controllable

⇒ models with varying degree of smoothness can be explored

(iii) means from data are required for selecting the most appropriate degree of smooth-
ness

⇒ models are then useful for more than purely exploratory work

In general the model is structured like this

g(µi) = Aiβ + f1(xi1) + f2(xi2) + f3(xi3, xi4) + . . . , i = 1, . . . , n, (4.1)

with µi ≡ E[Yi] and Yi ∼ EF (µi, φ) denotes again the response variable with EF (µi, φ)
as an exponential family distribution with mean µi and scale parameter φ. Moreover Ai

is a row of the model matrix for any strictly parametric model components and β the

39
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corresponding parameter vector, and finally fj are the smooth functions of the covariate
xij which are estimated non-parametrically.

In abstract, a generalized additive model allows to fit a non-linear function for each
predictor rather than parametric relationships and therefore allows more flexible spec-
ification of the dependence of the response on the covariates. But this flexibility and
convenience leads to two new theoretical issues. How to represent the smooth functions
and how to choose the smoothness?

In the following we will discuss the foundations of GAM and the estimation of the
model parameters. For a detailed insight to GAM, we refer to the book of Wood (2017).

4.1 Additive models - An introductory example

Suppose we have two independent variables, T1.kitchen and T2.living with n = 19735
data points, which are observed for the response variable app. For the response variable,
we again use the logarithmic transformation yi := log(appi), for i = 1, . . . , 19735, as we
did for the multiple linear regression chapter after Example 10. We introduce our new
model with a simple additive model structure,

Yi = α + f1(T1.kitcheni) + f2(T2.livingi) + εi, i = 1, . . . , 19735, (4.2)

with the intercept α, the smoothing functions fj for j = 1, 2, and the error terms εi as
independent N(0, σ2) random variables.

If we the model contains only one function, we could just using methods covered in
multiple linear models, that is representing f such that it becomes a linear model and
then just focusing on the single smoothing function. But the fact that the model contains
more than one leads to an identifiability problem. f1 and f2 are only estimable inside of
an additive constant. This means, any constant added to f1 have to be simultaneously
subtracted from f2, so that the prediction of the model does not change. This implies
that the identifiability constraints have to be established on the model before fitting the
model.

With this identifiability constraints we can now proceed exactly as intended for the
univariate model with just one smoothing function f , i.e. representing the model with
the help of penalized regression splines, which estimated by penalized least squares, and
with selected degree of smoothing by cross validation or restricted maximum likelihood
(REML) approach. We will now explore these points step by step.

4.1.1 Penalized regression representation

The smooth functions in (4.2) can be described by using penalized piecewise linear basis

f1(T1.kitchen) =
∑k1

j=1 bj(T1.kitchen)δj,

f2(T2.living) =
∑k2

j=1 cj(T2.living)γj,

where δj and γj are the corresponding unknown coefficients, bj(T1.kitchen) and cj(T2.living)
are basis functions of the form
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bj(x) =


(x− x?j−1)/(x?j − x?j−1) x?j−1 < x ≤ x?j
(x?j+1 − x)/(x?j+1 − x?j) x?j < x ≤ x?j+1

0 otherwise

(4.3)

for j = 2, . . . , k−1 and knots defined by {x?j : j = 1, . . . , k} with x?j > x?j−1. This is defined
for our two covariates using sequences k1 and k2 knots, T1.kitchen?j and T2.living?j
evenly spaced over the whole range of T1.kitchen and T2.living, respectively.

Furthermore, define the n-dimensional vectors, in our example we have n = 19735,
with

f 1 = [f1(T1.kitchen1), . . . , f1(T1.kitchen19735)]T ,
f 2 = [f2(T2.living1), . . . , f2(T2.living19735)]T ,

so that we have the matrix notation f 1 = X1δ and f 2 = X2γ. Note that bj(T1.kitcheni)
is the i, j-th element of X1, similarly for X2.

For each function there is a penalty. Let x be a covariate which can be set to x =
T1.kitchen or x = T2.living. To set this penalty we have to establish a term that
measures the wiggliness, i.e.

∑k−1
j=2{f(x?j−1) − 2f(x?j) + f(x?j+1)}2, as this sum squared

measures differences of the function at the knots. So if f is wiggly, the term will take high
values, and if f is smooth, the term will be low.

Note that for the basis of tent function as in (4.3), the coefficients of f are simply the
function value at the knots, i.e. δj = f1(T1.kitchen?j) and γj = f2(T2.living?j). Now we
can straightforward formulate a penalty as a quadratic form using the term that measures
the wiggliness, that is for δj = f1(T1.kitchen?j):

k−1∑
j=2

(δj−1 − 2δj + δj+1)2 = δTDTDδ = δT S̄δ

Here we define S̄ := DTD with the (k−2)×k matrixD :=


1 −2 1 0 · · ·
0 1 −2 1 0 · ·
0 0 1 −2 1 0 ·
· · · · · · ·
· · · · · · ·

.

Doing this analogously for f2(T2.living?j), we obtain the following penalties of the
form

δTDT
1D1δ = δT S̄1δ for f1,

γTDT
2D2γ = γT S̄2γ for f2.

At this point we will address the aforementioned identifiability problem. Purposes for
estimation are some linear constraints, but to avoid wide confidence intervals, the best
option is a sum-to-zero constraint

19735∑
i=1

f1(T1.kitcheni) = 0, ⇔ 1Tf 1 = 0,

with 1 is an n = 19735 vector of 1’s. Note that this constraints allows f1 to have the same
shape with the same penalty value, since it shifts only vertically so that its mean value is
zero.
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For the application of the identifiability constraints, the following has to hold

1TX1δ = 0 ∀δ ⇒ 1TX1 = 0.

To yield the latter condition, we have to define a column centered matrix by subtracting
the column mean from each column of X1, i.e.

X̃1 = X1 − 11TX1/n,

and set f̃ 1 = X̃1δ.
Checking this constraints

f̃ 1 = X̃1δ = X1δ − 11TX1δ/n = X1δ − 1c = f 1 − c,

defining the scalar c = 1TX1δ/n. This shows that the constraint only shift in the level
of f 1. Additionally note that the column centered matrix X̃1 is reduced by one rank, i.e.
only k1− 1 elements of the k1 vector δ can be uniquely estimated. A simple identifiability
constraint deals with the problem that a single element of δ is set zero and leads to
removing the corresponding column of X̃1 and D.

The column centered matrix in this rank reduced basis form automatically fulfills the
identifiability constraint. Henceforward it is supposed that the matrices Xj, Dj, etc. are
the constrained versions, so the tildes are dropped in the following.

Now that we have deployed the constrained bases for the fj, we can represent (4.2) as
a linear version

Y = Xβ + ε,

where X = (1,X1,X2) and β = (α, δT ,γT ).
In this notation we can easily express the penalties as quadratic forms

βTS1β = (α, δT ,γT )

0 0 0
0 S̄1 0
0 0 0

 α
δ
γ

 = δT S̄1δ.

4.1.2 Fitting model by penalized least squares

To determine the coefficient estimates β̂ of the model (4.2) is the next goal.
Analogously to the multiple linear case, we have to minimize the penalized least squares

objective function

‖y −Xβ‖2 + λ1β
TS1β + λ2β

TS2β, (4.4)

where λ1 and λ2 are the smoothing parameter that control the weight to smooth f1 and
f2, relative to the objective of tightly fitting the response data y. Note that for this
calculation, the weight has to be given to the objective function. Thus we assume at this
point that these smoothing parameters are given.

Thus our coefficient estimates β̂ are given by
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β̂ = (XTX + λ1S1 + λ2S2)−1XTy. (4.5)

Compare the estimate with the linear model case (3.15) and note the penalization
terms for the additive models.

Set the influence matrix as A = X(XTX + λ1S1 + λ2S2)−1XT , which is comparable
to the hat matrix (3.23) in the linear regression case.

To give more computational stability, re-write the objective function (4.4) as∥∥∥∥( y
0

)
−
(
X
B

)
β

∥∥∥∥2

,

where we haveB =

(
0
√
λ1D1 0

0 0
√
λ2D2

)
such that the matrix satisfiesBTB = λ1S1 +

λ2S2.

Note that in a single smooth case, we have simply the un-penalized least squares
objective function for an augmented model version and corresponding response data and
thus the model can be fitted by linear regression with the help of stable orthogonal matrix
based method.

4.1.3 Choosing smoothing parameter and setting distributions

At this point we give hints on the choice of λ. Examine the penalized least squares objective
function (4.4), it is obvious that the smoothing parameter λ controls the trade-off between
smoothness of the estimated f and precision to the data.

• λ→∞: This choice will lead to a straight line estimate for f .

• λ→ 0: This choice will result in an un-penalized piecewise linear regression estimate.

For choosing the smoothing parameter λ, there are some methods, the cross valida-
tion and the REML, the Bayesian model approach. The cross validation method will be
described in the next GAM theory section. As for Bayesian model approach, we operate
on beliefs for rather smooth than wiggly true models and formulate prior beliefs, for ex-
ample that a simple choice of a prior distribution on function wiggliness is an exponential
prior ∝ exp(−λβTSβ/σ2), which is equivalent to an improper multivariate normal prior
β ∼ N(0, σ2S−/λ) with pseudo-inverse S−, i.e. for an eigen-decomposition S = UEUT

with E− denoting a diagonal matrix of the inverse of non-zero eigenvalues and with ze-
ros in place for zero eigenvalues of corresponding matrix E, then the pseudo-inverse is
S− = UE−UT .

Now, the quantity we introduce is an estimate of the Bayesian covariance matrix for
the model coefficients

V̂ β = (XTX + λ1S1 + λ2S2)−1σ̂2,
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with σ̂2 is the residual sum of squares for the fitted model divided by the effective residual

degree of freedom, i.e. σ̂2 = ‖y−Ay‖2
tr((I−A)T (I−A))

. In Section 4.2.2 we will give more definitions
and explanations.

By assuming the above prior, the penalized least squares objective function (4.4) and
the coefficient estimate (4.5), the posterior distribution for β is

β|Y ∼ N(β̂,V β),

this result is used for later inferences about β in the following GAM theory part about
posterior distribution (Section 4.4).

We also have the possibility of estimating σ2 and λ using marginal likelihood maxi-
mization or REML. These points will be discussed next in the GAM theory section.

4.2 Theory of generalized additive models

4.2.1 Model setting

A standard form of a generalized additive model is

g(µi) = Aiγ +
∑
j

fj(xij), Yi ∼ EF (µi, φ), i = 1, . . . , n, (4.6)

where Ai is the i-th row of the parametric model matrix with corresponding param-
eters γ, fj is a smooth function of covariate xj, and EF (µi, φ) denotes an exponential
family distribution with mean µi and scale parameter φ. For given µi the Yi are modeled
independently.

For every form of the GAM model, we need to choose smoothing bases and penalties
for each fj, implying model matrices X[j] and penalties S[j]. Consider our basic model, if

bkj is the k-th basis function for fj, then X
[j]
ik = bkj(xij). Comparable to hat matrix of the

multiple linear model (3.23) and to avoid the smooth terms confound with the intercept,
included in A, any smooth X[j] contains an 1 in the span. Therefore we need identifiability
constraints.

The identifiability constraints of the form∑
i

fj(xij) = 0

are re-parameterized and absorbed into the basis in a suitable way.
(An example of the only exception is the Gaussian random effects, where we have a

null space so that fj → 0. For more, see Wood (2017), Section 6.5.)
But in practice, the application of the constraints to all the smooths in the basic forms

of the model is the usual procedure.
For a detailed and summarized explanation, please see Wood (2017), Section 5.4.1.

After re-parameterization, we denote X [j] and S [j] as the model matrix and penalty
matrix for fj, respectively. Then combine column-wise A and X [j] to yield the whole



4.2. THEORY OF GENERALIZED ADDITIVE MODELS 45

model matrix
X = (A,X [1],X [2], . . . ).

With the corresponding model coefficient vector β, which contains γ and the individual
smooth term coefficient vectors, we yield our over-parameterized (generalized) linear model

g(µi) = Xiβ, Yi ∼ EF (µi, φ). (4.7)

Now we can write a total smoothing penalty for the model∑
j

λjβ
TS[j]β, (4.8)

where λj is a smoothing parameter and S[j] is S [j] embedded as a diagonal block
in a matrix with zero entries otherwise. So the penalty for the smooth fj has the form
λjβ

TS[j]β.
In case that we have fj to be a tensor product or an adaptive smoother, there are

more than one S[j] for each fj. We will deal with this case later.
To control the model smoothness of the over-parameterized (generalized) linear model

(4.7), we have to estimate the fit by maximization of the penalized log likelihood

lp(β) = l(β)− 1

2φ

∑
j

λjβ
TS[j]β, (4.9)

where l(β) is the log likelihood of the (generalized) linear model. We can see that λj
controls the balance between the goodness of fit of the model and the model smoothness.

Prior distribution Therefore during the fitting, the smoothing process employs the
smoothing penalty βTSβ. This is due to the belief that the true function is more likely
to be smooth than wiggly. Defining a prior distribution on function wiggliness f(β) ∝
exp(−λβTSβ/2), based on the Bayesian manner, we can conclude that the improper
Gaussian prior is distributed as follows

β ∼ N(0,S−λ φ), (4.10)

where S− is a pseudoinverse of S.
So given the smoothing basis, the smooth model (4.6) and its transformation to (4.7),

with εi ∼ N(0, σ2), the distribution can be expressed as Y ∼ Nn(Xβ, Iσ2).
To get a more comprehensive explanation, we refer to Wood (2017), Section 5.8.

4.2.2 Smoother and parameter estimations

To formulate the model more precisely, we now look at the formally simplified GAM to
concentrate at the smoothers, with i = 1, . . . , n, g is a link function, which can be iden-
tical, logarithmic or inverse, Y is the response variable, x1, . . . ,xp are the p independent
variables, A = 1 so β0 is an intercept, f1, . . . , fp are unknown smooth functions and ε ∈ Rn

is an i.i.d. random error.
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g(E[Yi]) = β0 + f1(xi1) + · · ·+ fp(xip) + εi,
Yi ∼ some exponential family distribution.

(4.11)

The smooth function f is constructed by the sum of basis functions b and their corre-
sponding regression coefficients β. It can be formally written as

f(x) =

q∑
i=1

bi(x)βi,

where q is basis dimension.
These smooth functions are also known as splines. Smoothing splines are real functions

which are piecewise-defined by their basis functions, i.e. polynomial functions, and their
connection is called knots.

Example 26 There are several kind of smoothing splines that exit. Some suitable smooth-
ing bases b are

• thin plate regression splines

• cubic regression spline

• cyclic cubic regression spline

• Penalized splines (P-splines)

The most common used spline is the cubic basis function. For example, we fix the
dimension q = 3, i.e. the number of knots are 3. Thus we set the basis function as follows

bcubic(x) =


1
4
(x+ 2)3 if − 2 ≤ x ≤ −1,

1
4
(3|x|3 − 6x2 + 4) if − 1 ≤ x ≤ +1,

1
4
(2− x)3 if + 1 ≤ x ≤ +2.

To give further example, in practice, for daily seasonality cubic regression spline and
for a lower frequency such as weekly seasonality P-splines are used. Both are knot-based.

For the regularization of the spline smoothness, the penalized regression splines are
deployed.

Thus, we have the model in our linear way as written in (4.7). Accordingly, the objec-
tive function with respect to the smooth function f is

‖y −Xβ‖2 + λ

∫ 1

0

[f
′′
(x)]2dx,

with λ be a smoothing parameter. To complete the circle, the integral of squares of second
derivatives can be written as the introduced smoothing penalty in (4.8) for the model:∫ 1

0

[f
′′
(x)]2dx = βTSβ,
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where S is the matrix of known coefficients.

The penalized least squares objective function is therefore defined as

‖y −Xβ‖2 +
∑
j

λjβ
TS[j]β. (4.12)

Finally, the equations, mathematical calculations and conclusions imply that the re-
gression coefficients can be obtained by the estimator

β̂ = (XTX + λS)−1XTY . (4.13)

Contrary to the estimator β̂ of the linear model in (3.16), there are added a penaliza-
tion in the GAM approach. Therefore β̂ is called penalized least squares estimator.

Now some important theoretical questions are to be answered. In the next step, we
introduce the method on how to obtain the estimate of β. This method is called PIRLS, i.e.
penalized iteratively re-weighted least squares. For this method we return to the general
formally matrix representation (4.7) as formulated in the model setting.

Estimation of β given λ with method PIRLS

Consider objective (4.9) as an optimization problem like we had in the linear model
maximum likelihood.

Maximize objective (4.9) through the following penalized iteratively re-weighted least
squares iteration:

(i) Initialize µ̂i = yi + δi and η̂i = g(µ̂i).

δi is usually zero, but may also be a small constant to ensure a finite η̂i.

(ii) Compute pseudo data zi = g′(µ̂i)(yi − µ̂i)/α(µ̂i) + η̂i

and iterative weights wi = α(µ̂i)/g
′(µ̂i)

2V (µ̂i).

(iii) Find β̂, so that the weighted least squares objective function

‖z −Xβ‖2
W +

∑
j

λjβ
TS[j]β

is minimized.

(iv) Update η̂ = Xβ̂ and µ̂i = g−1(η̂i).

In the iteration steps we used that ‖a‖2
W = aTWa withW = diag(wi) and V (µ) is the

variance function which is calculated by the exponential family distribution or defining the
quasi-likelihood. Finally we employed α(µi) = [1+(Yi−µi){V ′(µi)/V (µi)+g′′(µi)/g

′(µi)}].
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Degree of freedom and scale parameter estimation

An appropriate REML estimator of the scale parameter φ, occurring in model setting
(4.6) and penalized log likelihood (4.9), is (c.f. Wood (2017), Section 3.4.2)

φ̂ =
‖Z −Xβ̂‖2

W

n− τ
, (4.14)

where
τ = tr{(XTWX + Sλ)

−1XTWX}, (4.15)

and Sλ =
∑

j λjS
[j].

Thus interpret τ as the effective degree of freedom of the model which (roughly)
coincide with the degree of freedom, see Wood (2017), Section 5.4.2. Let F = (XTWX+
Sλ)

−1XTWX which takes the weights into account. We can interpret the matrix as a
mapping from the un-penalized coefficient estimator to the penalized coefficient estimator.
The trace is the average shrinkage realized by the coefficients and multiplied by the number
of the coefficients. So the effective degree of freedom is now obtained by summing the Fii
values.

Note that the REML estimator φ̂ is the Pearson estimator of the scale parameter, since
‖Z −Xβ‖2

W corresponds to the Pearson statistic. (see Wood (2017), Section 3.1.5, but
since of the susceptible to problems, discussed on p.110, it is safer to use correct estimator
(3.11) presented in this book)

Example 27 (Alternative definition of effective degree of freedom).
Consider the simple Gaussian additive model case

Yi = β0 +
∑
j

fj(xij) + εi, εi ∼ N(0, σ2). (4.16)

This is structured like the Gaussian linear model (see Chapter 3) but with the presence
of smoothing terms. Proceed with the Gaussian additive model as in the model setting
of Section 4.2.1 to yield the model matrix X. Here we have the influence matrix A :=
X(XTX + Sλ)

−1XT and F = (XTX + Sλ)
−1XTX.

The expected residual sum of squares for this model is then

E(‖Y −AY ‖2) = σ2{n− 2tr(A) + tr(AA)}+ bTb,

where b = µ−Aµ is the smoothing bias. The smoothing bias is estimated as b̂ = µ̂−Aµ̂.
These results lead us to the variance or scale estimator

σ̂2 =
‖Y −AY ‖2 − b̂T b̂
n− 2tr(A) + tr(AA)

,

and thus set the effective degree of freedom of the model as τ1 = 2tr(A) − tr(AA) =
2tr(F )− tr(FF ). The term-specific effective degree of freedom can be calculated by taking
the corresponding elements of diag(2F − FF ) and summing these up.

An alternative way to get τ1 is to consider the bias corrected fitted values. For this way,
see Wood (2017), Section 6.1.2. This alternative is useful for computing our p-values of
the smooths.
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For stable least squares in case of negative weights, see Wood (2017), Section 6.1.3.

Henceforth, we will use the case of Gaussian additive models as the basis for further
GAM calculations.

4.2.3 Tensor product smooth interactions

Before we become acquainted with choosing the optimal smoothing parameter λ and
setting the basis dimension, there is an important part of the regression model to show.
That is the interaction between covariates.

In contrary to the linear regression, GAM gives four possible ways to include the
interaction term to the model.

For simplicity, consider the model (4.11) with just two covariates x1 and x2.

(i) x1 × x2: Multiplication of two covariates, like we already seen in Section 3.3.2 with
the multiple linear regression.

(ii) f1(x1)× x2: Interaction between a smoothed function to one covariate.

(iii) f1(x1,x2) := f1(x1)× f2(x2): Interaction between smoothers, that is use the same
smoothed function for both covariates.

(iv) f1(x1)⊗ f2(x2): The most complex interaction term in GAM is to set the tensor
product interactions. In contrast to the third possibility, this option uses different
smoothing basis for two covariates and penalize it in two different ways.

The most interesting interaction is the tensor product case, which we use later when
we include interactions in our application part. The tensor product interactions has the
following representation:

f12(x1,x2) =
I∑
i=1

J∑
j=1

δijbi1(x1)bi2(x2), (4.17)

where b1 and b2 are the two basis functions, I and J are two corresponding basis dimensions
and δ is a vector of unknown coefficients.

Example 28 Considering our simple additive model structure (4.2). As for the linear
models, we can include some interaction terms in the regression equation (4.2):

Yi = α+f1(T1.kitcheni)+f2(T2.livingi)+f12(T1.kitcheni, T2.livingi)+εi, (4.18)

for i = 1, . . . , 19735.
Due to the structure of f12, formally in (4.17), there are more than one penalization

S[12]. In all other aspects, the interaction term is treated exactly as shown above for the
smooth functions fj.
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4.3 Selection criterion of the smoothness

In this section we will provide some smoothness selection criteria.
We already set up the model and considered the estimation for β. But to estimate β

we assumed the given smoothing parameter λ. In the following we estimate the smoothing
parameter λ. We will see that this part of model estimation is challenging.

In general use, we have two classes of method, the prediction error method, based on
GCV and AIC, or marginal likelihood method, based on the Bayesian/mixed model.

4.3.1 Un-biased risk estimator (UBRE) for known scale param-
eter

Assume we want to estimate the smoothing parameter in a simple case of an additive
model, which is for data with constant known variance.

Our goal here is to provide a µ̂ that is as close as possible to the true µ ≡ E[Y ].
This can be achieved by taking the expected mean square error of the model, i.e.

MSE = 1
n

∑n
i=1(yi − ŷi) or the estimator in matrix formulation MSE = 1

n
‖Y − Ŷ ‖2

,
and the fact that a scalar is its own trace (c.f. Wood (2017), Section 1.8.6, which is leading
to (1.13) from this book) which implies that

M = E
(
‖µ−Xβ̂‖2/n

)
= E

(
‖Y −AY ‖2

)
/n− σ2 + 2tr(A)σ2/n. (4.19)

Remember, A is the influence matrix or equivalently the hat matrix (3.23).
The estimate M has to be minimized. An appropriate way is to choose the smoothing

parameter so that the un-biased risk estimator (UBRE) is as follows

Vu(λ) = ‖Y −AY ‖2/n− σ2 + 2tr(A)σ2/n. (4.20)

Note that the risk estimator depends on the smoothing parameter which is included in A.
Furthermore we want to indicate that the risk estimator is equivalent with the Mallows’s
Cp, but for more details we refer to Christensen, 2018 or (Mallows, 1973).

Estimating λ by minimizing Vu(λ) over λ works good for a known σ2, but for an
unknown σ2 there arises problems using the MSE estimator M .

Example 29 (Using MSE estimator M for unknown σ2) Using the scale parameter es-
timator (4.14) and substitute the resulting approximation

E
(
‖Y −AY ‖2

)
= σ2{n− tr(A)}

into the MSE estimator (4.19) which yields

M = E
(
‖µ−Xβ̂‖2/n

)
=
tr(A)

n
σ2

and thus we have our MSE estimator for unknown σ2 with M̃ = tr(A)
n
σ̂2.

If we now consider a un-penalized models with one and two parameters. Before the
selection would judge an improvement, the two parameter models has to reduce σ̂2 to less
than half the one parameter σ2 estimate. This is not a suitable basis model selection.
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4.3.2 Cross validation for unknown scale parameter

Since minimizing the average square error in model predictions of E[Y ] does not work
well for unknown σ2, we have to look for an alternative. An appropriate way is to base
smoothing parameter estimation on mean square prediction error. So adding a new ob-
servation y using the fitted model, the expected mean square prediction error can be
represented as

P = σ2 +M.

Since the direct dependence on σ2 tends to the mean, the criteria based on P are more
resistant to over-smoothing.

The estimation of P is now provided by the cross validation (e.g. Stone (1974)). To
use the method we omit a single datum yi from the process to fit the model. Doing this,
the one response variable Yi becomes independent of the model fitted with the remaining
data points. By omitting all data in turn, we yield the ordinary cross validation (OCV)
estimator of P ,

V0 =
1

n

n∑
i=1

(
Yi − µ̂[−i]

i

)2

,

where µ
[−i]
i denotes the prediction of E[Yi] which is the result of fitting the model without

yi.
Note that to obtain the n terms µ̂

[−i]
i for calculating V0, there is no need to perform n

model fits. Consider the penalized least squares objective function (4.12) and minimizing
it to get the i-th term in the OCV score

n∑
j=1,j 6=i

(
yj − µ̂[−i]

j

)2

+ penalties.

(The added penalties in the sum of squares term does not depend on the included
observations.)

Now including the zero term (µ̂
[−i]
i − µ̂

[−i]
i )2 to obtain the unchanged objective function

n∑
j=1

(
y?j − µ̂

[−i]
j

)2

+ penalties, (4.21)

with y? = y − ȳ[i] + µ̄[i]. ȳ[i] and µ̄[i] are vectors with the i-th elements are yi and µ̂
[−i]
i ,

respectively, and the remaining entries are zeros.
Again, minimizing objective function (4.21) results in the i-th prediction µ̂

[−i]
i .

Observe that the difference now is that the fitting objective function (4.21) has the
structure for the model with the whole data. Hence the fitting by minimizing (4.21) also
yield the influence matrix A for the model fitted to all the data. To check this statement,
consider the i-th prediction

µ̂
[−i]
i = Aiy

?

= Aiy − Aiiyi + Aiiµ̂
[−i]
i

= µ̂i − Aiiyi + Aiiµ̂
[−i]
i

(4.22)
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As a reminder, µ̂i is obtained from the fit of the whole vector y. Subtracting yi on
both sides of the equation (4.22) and doing a transformation yields

yi − µ̂[−i]
i =

(yi − µ̂i)
(1− Aii)

,

which leads to the OCV score with just one single fit

V0 =
1

n

n∑
i=1

(yi − µ̂i)2

(1− Aii)2
. (4.23)

With this improved OCV score (4.23) there is clearly no need to calculate n fits.
(Stone (1977) demonstrates the asymptotic equivalence of cross validation and AIC which
supports the results.)

There is also the leave-several-out cross validation that works analogously, but leaving
out subsets of the data and also in this case only a single model fit is needed for the
computations.

OCV is suitable method for estimating the smoothing parameter. But there are prob-
lems with ordinary cross validation, that is the expensive computation of minimizing in
the case of the additive model with its several smoothing parameters and otherwise the
lack of invariance. See Wood (2017), Section 6.2.(2) for more explanation.

4.3.3 Generalized cross validation

A solution is the generalized cross validation which does not suffer from this problem of
the lack of invariance. The parameter estimation, effective degree of freedom (EDF) and
expected prediction error are invariant to a rotation of Y −Xβ by any orthogonal matrix
Q. The problem is the leading diagonal of the influence matrix, i.e. elements Aii, are not
invariant and neither are the individual terms in the sum of (4.23).

First, focusing on the rotations of Y −Xβ and performing cross validation on ro-
tated problems. As we want to base the cross validation on data, the one problem is the
sensitivity to some data points which are very highly leverage relative to the others.

Example 30 Consider a highly uneven Aii values. They tend to cause the cross validation
score (4.23) not to be based on the whole data. That is, due to the outliers, the cross
validation score is dominated by a small proportion of the data.

The idea is to choose the rotation Q so that the elements Aii are as even as possible.
So taking the influence matrix A for the original problem, then the influence matrix for
the rotated problem is

AQ = QAQT .

Further, if B is any matrix such that BBT = A, then the influence matrix now can
be written as

AQ = QBBTQT .
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All the elements on the leading diagonal of the influence matrix AQ have the same
value, if the chosen orthogonal matrix Q is such that each row of QB has the same
Euclidean length. Since

tr(AQ) = tr(QAQT ) = tr(AQTQ) = tr(A),

the values must be tr(A)/n.

For a detailed explanation that this neat row-length-equalizing property actually exist,
see Wood (2017), Section 6.2.3.

Now, with the best rotation of the fitting problem, the adjusted ordinary cross vali-
dation score (4.23) can be generalized to the generalized cross validation score (GCV)

Vg =
n‖y − µ̂‖2

[n− tr(A)]2
. (4.24)

Example 31 Again consider the representation with the smoothing functions, i.e. the
model (4.11). For the important procedure in choosing or estimating the optimal smoothing
parameter λ and the number of basis dimensions, i.e. the degree of freedom, we have to
minimize the generalized cross validation score (GCV)

Vg =
n
∑n

i=1(yi − f̂i)2

[tr(I −A)]2
,

where A is the influence matrix.

Let’s look at two cases:

(i) λ→ 1: The spline is over-smoothed and therefore the model is highly smoothed

(ii) λ→ 0: The spline is not penalized and therefore the model fits most wiggles

In this case, we have a classical ordinary least squares regression behavior where
the sum of squared residuals are minimal.

As for the number of basis dimensions, i.e. estimated degrees of freedom, we have the
following behavior of fitted values:

(i) Higher basis dimension: the fit is less smoothed.

(ii) Lower basis dimension: the fit is more smoothed.

In summary, the number of basis functions and the smoothing parameters interact to
control the wiggliness of a smooth function. To visualize our finding, we will take the

additive model (4.2) into account. To simplify the visualization, we only plot ̂log(appi) =

α̂+ f̂1(T1.kitcheni) with i = 1, . . . , 19735, c.f. Figure 4.1. It becomes clear how changing
both together affects model behavior. When the number of basis functions is high and the
smoothing parameter is too low to smooth the model, it ends up over-fitting the data.



54 CHAPTER 4. GENERALIZED ADDITIVE MODEL (GAM)

18 20 22 24 26

0.
0

0.
5

1.
0

50 basis function with high smoothing parameter

T1.kitchen

s(
T

1.
ki

tc
he

n)

18 20 22 24 26

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

50 basis function with small smoothing parameter

T1.kitchen

s(
T

1.
ki

tc
he

n)

Figure 4.1: Fit of GAM model ̂log(appi) = α̂ + f̂1(T1.kitcheni), i.e. a model with loga-
rithmic transformed appliances as a smooth function of the kitchen temperature with 50
basis functions and a smoothing parameter of λ = 0.9999 on the left panel and λ = 0.0001
on the right panel. Note that this representation, with fixed basis function and smoothing
parameter, can be created across all methods, e.g. GCV and REML. All these methods
will show similar results.

Review the tensor product interaction term in (4.17). Unlike the usage of one smooth-
ing function, the advantage in using the tensor product is that the form is invariant to a
re-scaling of its covariates, since it allows for an overall anisotropic, i.e. different in each
direction, penalty. This is also due to the benefit of allowing different metrics of variables
in the interaction term.

Note that the expected prediction error is not affected by the rotation which means
the GCV is the OCV on the rotation problem. Not only that the GCV is also valid for
estimate of prediction error, but also it is invariant.

Another adjustment is the double cross validation which focus of the sensitivity to
over-fitting, see Wood (2017), Section 6.2.4.

4.3.4 Prediction error criteria for the generalized case

For the generalized model case (4.6) there a many ways to yield the smoothing parameter
selection criteria. This works by substituting the model deviance or the Pearson statistic
for the residual sum of square in the UBRE score (4.20) or the GCV score (4.24). Since
in practice, the Pearson statistic tend to under-smooth, the deviance based methods are
preferred in general.

Setting the deviance into the scores, the UBRE score becomes

Vu(λ) = D(β̂) + 2γφτ,

where φ was known in this case, and the GCV score becomes



4.3. SELECTION CRITERION OF THE SMOOTHNESS 55

Vg(λ) =
nD(β̂)

(n− γτ)2
, (4.25)

where τ is the model effective degree of freedom (4.15) and γ is set to 1, usually, but can
be increased to force smoother models.

These criteria are discussed in Hastie and Tibshirani (1990). Additional calculations
and details can be found in Wood (2017), Section 6.2.5.

4.3.5 Marginal likelihood and REML

As we mentioned at the beginning of this section, the other class of method for smoothness
selection criteria is the Bayesian view of smoothing.

The idea is taken from the traditional Bayesian inference to get posterior distributions
of the model coefficient β conditioned on the observations y and, of course, the condi-
tioning on the smoothing parameter λ. This can be done by using the Bayes rule, i.e.
f(β|y,λ) = f(y|β,λ)·f(β|λ)

f(y|λ)
, with β is the model coefficient vector, f(β|λ) is the prior den-

sity function of β, y is the vector of observations and (the observation model) f(y|β,λ)
is the conditional data density given β and λ. Next, we take the denominator as it is the
density of the choices of the smoothing parameter. The calculation of the denominator is
based on the Bayesian rule for inference, where the dependence of the model coefficient
is marginalized out from the numerator, so that we obtain a non-dependency on β. Thus
it takes the form f(y|λ) =

∫
f(y|β,λ)f(β|λ)dβ.

The goal is to compare the smoothing parameters λ.

Here the smoothing penalties correspond to a Gaussian prior on the model coefficients.
In this approach we choose the smoothing parameter that maximize the Bayesian log
marginal likelihood

Vr(λ) = log

∫
f(y|β,λ)f(β|λ)dβ. (4.26)

Now the score is the logarithm of the joint density of the data and coefficient β, where
the coefficients integrated out. The interpretation of this integral is that it is an average
likelihood of random draws from the prior.

The approach is called empirical Bayes of estimating parameter by maximizing the
marginal likelihood (4.26) which has the form of the REML criterion, i.e. choose λ so that
the prior variance is about right, compare Figure 4.2, and where the random coefficients
have Gaussian distributions.

We want to find the maximum of the function to be integrated and for that apply
a second order Taylor series approximation for the logarithm of that function. This is
the basic idea of a Laplace approximation. (c.f. MacKay and Mac Kay (2003) or better
Azevedo-Filho and Shachter (1994)). Further, computing an expectation of the posterior
distribution, the maximum is the MAP (maximum penalized likelihood) solution and the
second order Taylor series corresponds to a Gaussian distribution for which integrals can
be determined analytically. So the Laplace approximation can be used to find the best
solution in case multiple local maxima exist.
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Figure 4.2: The figure is adopted from Wood (2017), Section 6.2, Figure 6.3. The simula-
tion shows the workflow of method REML starting with its drawing from the prior. A low
smoothing parameter leads to the drawing lines fail to closely pass the real data which
is given on the left hand side. Contrary on the right side, a high smoothing parameter
leads to a high smoothness and thus also fails to closely pass the real data. In the middle
we have the right smoothing parameter and thus the smoothness is right so that the real
data can be passed closely and a high likelihood is obtained. The black curves are the
ones that have reached the highest likelihoods.

Now to evaluate the integral in (4.26), we use the Laplace approximation (c.f. Wood
(2017), Section 3.4, with help of equation (3.17) presented in the book) which results for
our Gaussian family case in

Vr(λ)=l(β̂)− β̂
T
Sλβ̂

2σ2
−

log |Sλ/σ2|+
2

− log |XTX/σ2 + Sλ/σ
2|

2
+
M

2
log (2π), (4.27)

where l is the log likelihood, M is the dimension of the null space of Sλ, and |A|+
denotes a product of the non-zero eigenvalues of A.

Note that in the Gaussian additive model case the score (4.27) is exact. Due to the
Laplace approximation we have a term in the Taylor expansion which do not have to be
dropped in the Gaussian family case.

The use of the marginal likelihood/REML method for smoothing parameter selection
is well-established, but there are also problems with log |Sλ|+ when optimizing Vr which
is discussed in Wood (2017), Section 6.2.7.

4.3.6 Prediction error criteria versus marginal likelihood

To give a short comparison of these methods, we look at two important conditions, the
smoothness and performance. While REML asymptotically under-smooths relative to
GCV which has a better asymptotic prediction error performance, the GCV seems to
be much slower. But to summarize, REML is more resistant to occasional severe over-
fitting, when higher variability exists and a higher variable estimates of λ as a consequence
which fits most wiggles.
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That is why in practice, the REML method is used more often. Furthermore Reiss
and Todd Ogden (2009) focus on spline-based approaches to non-parametric and semi-
parametric regression and examine the two preferred methods, GCV and REML. With
the help of two data sets the ideas are illustrated which results in favoring the REML
method. Also Wood, 2011 seize this suggestion and optimized the REML method with
the mentioned Laplace approximation and finds out that the REML shows improvements
in terms of mean square error performance and the numerical robustness relative to GCV.
In addition the REML method achieve less severe under-smoothing failure.

Another interesting article about the method differences is written by David Lawrence
Miller and is published on github under the following website:

https://github.com/DistanceDevelopment/dsm/wiki/Why-is-the-default-smoothing-method-
%22REML%22-rather-than-%22GCV.Cp%22%3F (seeMiller (4 04), [accessed: 2020-01-
08]). He also argued with Simon Wood, the author our reference book Wood (2017),
about the advantages of using the REML method when fitting models with finite sample
size.

Example 32 Again using the GAM regression (4.2), we want to compare the two meth-
ods. In Figure 4.3 the GCV and REML objective function is shown. There is not an
obvious difference, but looking closely at the tails of the right plots, we see that the the
GCV method has a slightly wider confidence interval than the lower REML method which
confirms the resistance of over-fitting.

Thus we are going to use only the REML method in our application part later.
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Method: GCV
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Figure 4.3: On the top panel we have fitted the GAM regression (4.2) with the method
GCV and the lower panel the method REML is used.
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4.4 Posterior distributions and confidence intervals

We already discussed the prior distributions. Also for a better understanding we refer to
Wood (2017), Section 4.2.4., p. 172 and Section 5.8 p. 239.

Take the Bayesian view of the smoothing process and we get β with zero mean im-
proper Gaussian prior distribution with precision matrix proportional to Sλ in (4.10).
Then with help of our obtained distribution for linear models in (3.24), the posterior
distribution of β is

β|Y ,λ ∼ N(β̂,V β) (4.28)

As we see, in the Gaussian identity link case we have V β = (XTX + Sλ)
−1σ2. In

general case estimated by PIRLS, like exponential family case, we have V β = (XTWX+

Sλ)
−1φ, or more general regular likelihood at β̂ it becomes V β = (Î − Sλ)−1 with Î as

the Hessian of the negative log likelihood at β̂ or its expectation.
These results from the model are used for computing Bayesian credible intervals for

any quantity α for prediction. From (4.28) we simulate replicate coefficient vectors from
which we compute α element-wise and produce a sample from the posterior distribution
of α|Y .

4.5 AIC and smoothing parameter uncertainty

By performing the estimation of smoothing parameters, the traditional way of model
selection is considered. But it stops with removing terms from the model. Since we are
also interested to compare models that are not necessarily nested, i.e. also non-nested,
the issue accrue on how to select between all the models in a reasonable manner.

One very popular method for model selection with model regression is the Akaike
information criterion, as we already introduced in the Chapter describing multiple linear
models, Section 3.5.3. But we have to take care with the usage in connection with models
containing random effects and smoother.

Two approaches are to be taken into account which differing in the way they deal with
smooths:

• Marginal AIC

This approach is based on the marginal likelihood of the model. The number of
coefficients are the number of fixed effects and variance and smoothing parameters,
which is used for the AIC penalty. So in practical problems the marginal likelihood
underestimates variance components which means with respect to the smoother,
that it can be made too smooth.

• Conditional AIC

This traditional approach is based on the likelihood of all the coefficients, con-
ditioned on their maximum penalized likelihood (MAP) estimates. The number of
coefficients in this penalty are some estimate of the effective number of parameter.
In the AIC penalty term the model degree of freedom τ from (4.15) is used. But it
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is shown that the problem of neglecting the smoothing parameter of uncertainty in
τ , leads more likely to select a model which contains a random effect that is not in
the true model.

Now, to correct the parameter τ for using it in the AIC penalty term there is an idea
to solve the mentioned problem.

4.5.1 Uncertainty of smoothing parameter

Firstly, note that smoothing parameter are treated as fixed which ignores the uncertainty
in the estimation. Wood (2017) summarized the proposed solution which was given from
Kass and Steffey (1989). The idea is shown by computing a first order correction for this
uncertainty in context of i.i.d. Gaussian random effects in a one way ANOVA type design.
Their general approach can be extended.

Let ρi = log λi and Sλ =
∑

j λiSj. Using the Bayesian large sample approximation as
the Gaussian case

β|Y ,ρ ∼ N(β̂ρ,V β), where V β = (Î + Sλ)
−1, (4.29)

where β̂ρ denotes the estimator of β obtained by using the smoothing parameters ρi. The
large sample approximation is

ρ|Y ∼ N(ρ̂,V ρ), (4.30)

where V ρ is the inverse of the Hessian of the negative log marginal likelihood with respect
to ρ.

For the improvement on using (4.29) with fixed ρ at its estimator, we assume correct
(4.29) and (4.30), Z ∼ N(0, I) and independently ρ̂? ∼ N(ρ̂,V ρ), then

β|Y d
= β̂ρ? +RT

ρ?Z,

with RT
ρ?Rρ? = V β and V β depending on ρ?. The computation when simulation from

β|Y is expensive, due to the re-computation of β̂ρ? and Rρ? for each sample. So consider
the first order Taylor expansion (c.f. Karpfinger et al. (2015), Section 10.4 Taylor) as an
alternative way

β|Y d
= β̂ρ̂ + J(ρ− ρ̂) +RT

ρ̂Z +
∑
k

∂RT
ρZ

∂ρk

∣∣∣∣∣
ρ̂

(ρk − ρ̂k) + r,

where r is a lower order remainder term and J = dβ̂/dρ|ρ̂.
The expectation on the right hand side is β̂ρ̂ when leaving out r. Now taking care of

the covariance matrix gives

V
′

β = V β + V
′
+ V

′′
, V

′
= JV ρJ

T and Vjm =

p∑
i

M∑
l

M∑
k

∂Rij

∂ρk
Vρ,kl

∂Rim

∂ρl
. (4.31)



4.6. HYPOTHESIS TESTING AND P-VALUES 61

The computation of the derivative of the Cholesky factor is handled in Wood (2017), p.
422.

Finally dropping V
′′
, we have the approximation from Kass and Steffey (1989):

β|Y ∼ N(β̂ρ̂,V
?
β), where V ?

β = V β + JV ρJ
T .

The first order Taylor expansion for β̂ about ρ yields similar formulation for the covariance
matrix of β̂, i.e. V ?

β̂
= (Î +Sλ)

−1Î(Î +Sλ)
−1 +JV ρJ

T with Î as the negative Hessian
of the log likelihood.

4.5.2 Corrected AIC

Consider the AIC equation (3.29) and doing some substituting to improve the AIC. Re-
place the derivation with MLE by the penalized MLE, so that AIC can be represented
as

AIC = −2l(β̂) + 2E
[
(β̂ − βd)T Îd(β̂ − βd)

]
= −2l(β̂) + 2tr

{
E
[
(β̂ − βd)(β̂ − βd)T

]
Îd
}
,

where βd is the coefficient vector minimizing the K − L divergence and Îd is the corre-
sponding expected negative Hessian of the log likelihood.

Assuming an un-penalized situation, then E[(β̂ − βd)(β̂ − βd)T ] is estimated as the

observed inverse information matrix Î−1
and τ

′
= tr

{
E[(β̂ − βd)(β̂ − βd)T ]Îd

}
is esti-

mated as tr(Î−1Î) = k. But since we have a penalized setting, Î is not a good approxima-
tion of the expected inverse covariance matrix of β̂ any more. However we can approximate
Îd by Î and use the properties of the expectation which leads to τ

′
= tr(V βÎ). For more

we refer to Wood (2017), Section 6.10.1, equation (6.27) on p. 295. This expression has
to be corrected for smoothing parameter uncertainty with the help of (4.31) to yield
τ2 = tr(V

′

βÎ), and therefore the corrected AIC

AIC = −2l(β̂) + 2τ2. (4.32)

For an illustration of the performance of (4.32) compared to the alternatives, we refer
to Wood (2017), Figure 6.11.

4.6 Hypothesis testing and p-values

In this section we just give an idea on how the hypothesis testing works with generalized
additive models.

An alternative to select models is the hypothesis testing for instance, in particular for
choosing simpler models over complex ones. Meanwhile, the p-values for the parametric
model effects are determined as for the un-penalized model. For this, review the Section
3.7 about hypothesis testing in the linear model case.

Again assume we want to testH0 : βl = 0 with βl is a subvector of β which contains the
un-penalized (or fixed effects) coefficients. For this case, treating the smooths as random
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effects, we can consult the frequentist or marginal covariance matrix for βl are read from
the Bayesian covariance matrix for β, comparing to (4.13). Thus V βl denoting the block
of V β corresponding to βl.

So examine (3.41) for an involved scale parameter estimate, we have, approximately
for the generalized case,

β̂
T

l V
−1
βl
β̂l/pl ∼ Fpl,n−(p+1)

or no scale parameter estimate is involved, then

β̂
T

l V
−1
βl
β̂l ∼ χ2

pl
.

We have p and pl which are the dimension of β and βl, respectively.

For the generalized linear hypothesis testing, the null hypothesis is H0 : Cβl = d

and replace β̂
T

l V
−1
βl
β̂l by (Cβ̂l − d)T (CV βlC

T )−1(Cβ̂l − d) in the above distributional
outcome, as in (3.40) and (3.41).

For a single parameter test, we can equivalently using the reference distributions
tn−(p+1) or N(0, 1).



Chapter 5

Description of the energy
consumption within a house data

The appliance energy prediction data set is made available by Luis Candanedo, luis-
miguel.candanedoibarra@umons.ac.be, University of Mons (UMONS) in the (UCI) ma-
chine learning repository. In particular the data can be obtained from

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction,

(see Luis Candanedo (2 15), [accessed: 2020-01-08]).

We are interested in modeling the use of energy for appliances and therefore lights
over time accounting for external factors such as temperature and humidity.

5.1 House description

The data are recorded from a house which is located in Stambruges in Belgium. The
low energy house was constructed under the condition of the passive house certification.
Further, there are four occupants, two adults and two teenager, living in the house, with
one adult regularly works in the home office.

Another interesting point that should be taken into account is the appliances energy
metering in the different areas which is illustrated in the following Table 5.1.

As an additional insight and to underline our purposes, we take a look at the aggregated
energy consumption per month with the percentage of each involved energy consumption
of lights, appliances, electric heater, DHW and ventilation from January until May 2016.
Lights range from one to four percent and appliances represents an energy use between
70 % and 79 % of monthly energy consumption. This fortifies our focus on appliances to
analyze the energy consumption.

The temperature and humidity of the house were monitored with a wireless sensor
network and is contained in our data set.

For a more detailed description of the house we refer to the above mentioned website
and the paper of Candanedo et al. (2017).
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Room Devices
Laundry Fridge, freezer, wine cellar, washing machine, dryer, internet router, in-

ternet hub, network attached storage
Kitchen Fridge, induction cook top, kitchen hood, microwave, oven, dishwasher,

coffee machine
Living TV, hard drive enclosure, DVD player, cable box, laptop, printer, electric

blinds
Office 2 desktop computers, 3 computer screens, router, laptop, printer, electric

blind
ironing Alarm clock, radio, iron, electric blind
parents Alarm clock, radio, electric blind, 2 lamps
teenager Computer (desktop and monitor or laptop), alarm clock, electric blind
bathroom 2 electric toothbrushes, hair dryer

Table 5.1: List of devices in all the relevant rooms or areas.

5.2 Description of recorded data

The data set contains 29 variables and 19735 observations over a period of 4.5 months
(137 days). Most of the variables are numeric. The variables app and lights are a little
bit different from the other numeric variables because it assumes very discrete, integer
values. The date variable initially is of the structure factor, but is converted to a date-
time class for our data analysis. If we now take a closer look at date, we see that the
data were recorded at specific time points, that is every ten minutes from January 11th
to May 27th, 2016. This ensures to capture even quick changes in energy consumption

Furthermore, we don’t have to deal with any missing data, since all the time points
are observed or, in the case of the variable T.outstation, interpolated. So we have a
complete data set for our statistical regression models. Table 5.2 presents a list of all the
variables, their structure and additional information as minimum, mean and maximum
values.

In the application chapter of Linear regression models, in Section 7.1, we generate
extra variables like weekday and hours so that we can include the time pattern in our
regression model.
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variable description unit class min mean max

app appliances energy use Wh integer 10.00 97.69 1080
lights energy use of light fixtures in

the house
Wh integer 0.00 3.80 70.00

T1.kitchen Temperature in kitchen area ◦C continuous 16.79 21.69 26.26
RH1.kitchen Humidity in kitchen area % continuous 27.02 40.26 63.36
T2.living Temperature in living room

area

◦C continuous 16.10 20.34 29.86

RH2.living Humidity in living room area % continuous 20.46 40.42 56.03
T3.laundry Temperature in laundry room

area

◦C continuous 17.20 22.27 29.24

RH3.laundry Humidity in laundry room area % continuous 28.77 39.24 50.16
T4.office Temperature in office room ◦C continuous 15.10 20.86 26.20
RH4.office Humidity in office room % continuous 27.66 39.03 51.09
T5.bath Temperature in bathroom ◦C continuous 15.33 19.59 25.80
RH5.bath Humidity in bathroom % continuous 29.82 50.95 96.32
T6.outside Temperature OUTSIDE the

building (north side)

◦C continuous -6.07 7.91 28.29

RH6.outside Humidity OUTSIDE the
building (north side)

% continuous 1.00 54.61 99.90

T7.ironing Temperature in ironing room ◦C continuous 15.39 20.27 26.00
RH7.ironing Humidity in ironing room % continuous 23.20 35.39 51.40
T8.teenager Temperature in teenager room

2

◦C continuous 16.31 22.03 27.23

RH8.teenager Humidity in teenager room 2 % continuous 29.60 42.94 58.78
T9.parents Temperature in parents room ◦C continuous 14.89 19.49 24.50
RH9.parents Humidity in parents room % continuous 29.17 41.55 53.33
T.outstation Temperature OUTSIDE (from

Chievres weather station)

◦C continuous -5.00 7.41 26.10

RH.outstation Humidity OUTSIDE (from
Chievres weather station)

% continuous 24.00 79.75 100

Pressure Pressure (from Chievres
weather station)

mm Hg continuous 729.30 755.50 772.30

Windspeed Wind speed (from Chievres
weather station)

m/s continuous 0.00 4.04 14.00

Visibility Visibility (from Chievres
weather station)

km continuous 1.00 38.33 66.00

Tdewpoint Dew Point ◦C continuous -6.60 3.76 15.50
date time stamp year-

month-
day
hr:min:sec

index - fac-
tor

2016-
01-11
18:00:00

2016-
05-27
20:00:00

Table 5.2: Variable description of the appliance energy prediction data set.



Chapter 6

Exploration of the energy
consumption within a house data

In the following we will focus on the variable app as the response variable and all the
temperature and humidity variables as the covariates.

First we examine each variable individually and then pairwise. Finally, we analyze the
pattern over time.

6.1 Marginal exploration

In this section we use the statistical method to describe each variable of the data set. We
use the histogram to analyze the distribution and time series plots to detect pattern over
time.

6.1.1 Response variable - Appliances

Histogram of response variable app

Figure 6.1 shows a histogram for the whole data sets which means n = 19735 observations.
The appliance use of 50 Wh appears most often in our data set. We notice that the we
have a right long tail in the count histogram (cf. top panel of Figure 6.1), which indicates
a right-skewed data distribution. The average energy consumption is therefore on the left
side of the middle of the data range limits, i.e.

app > appmed > appmod

with the mean of app = 97.695Wh, the median of appmed = 60Wh and the mode of
appmod = 50Wh.

Thus the histogram visually gives the expected impression. In the higher energy use
range, the Wh-values spread more than in the lower range. That is, the occupants are
using the appliances more often in a lower watt-hour range, so they typically do not have
an excessive energy usage.
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Since many statistical techniques, such as linear regression, are based on the assump-
tion that the variables have normal distribution, we transform app by the natural loga-
rithm. Fortunately, we do not have any zeros in the measured set for app (see its minimum
value in Table 5.2), we can simply use the natural logarithm without adding a small value.
So taking the natural logarithm of this variable, we can transform our data to turn it
maybe into a normal distribution or something more closely to a normal distribution, as
we can see in the lower panel in Figure 6.1, as it is more centered now.

For this reason we will use the transformed variable lapp in the following sections,
defined by

lappi = ln(appi), for i = 1, . . . , 19735.

The transformation results in the distribution points lappmod = 3.9120, lappmed =
4.0943 and lapp = 4.3037.

Again we have a slightly right-skewed distribution, but compared to the variable app

we can make the rough conclusion that there is an approximately equivalent symmetry
for the response variable lapp

lapp ≈ lappmed ≈ lappmod.
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Figure 6.1: Appliances energy consumption distribution. Histograms with a density fit of
app in the top panel and lapp in the lower panel. The histogram shows the frequency of
energy use in intervals.
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Exploration of the appliances data over time

First we plot time versus app and time versus lapp over the whole period to detect pattern
of the energy consumption. To set more detail, we then select three monthly, weekly and
finally four daily periods applying on our variable lapp.

Figure 6.4 and 6.5 show the energy consumption profile measured for the whole period.
The time series of energy consumption has a high variability. A closer look at the figures
is showing no clear pattern, except for the two time periods at the end of January and
end of March, where we observe low energy consumption. But we can not tell, if the
low values have a certain frequency or a random behavior of the occupants. Whereas in
the monthly and weekly periods recognize some section wise pattern (see Figure 6.6 for
monthly and Figure 6.9 for weekly periods). The figures indicate that energy consumption
varies throughout the day and has its peaks during the days and its lows during the night.
Additionally, it seems that the occupants been using appliances more often in winter
months, since the fluctuations towards summer are shrinking. Compare the time series of
January and May in Figure 6.6 and 6.9.

Now at last, as hinted in the weekly periods, we can see in the day periods that
the appliances energy use has a certain pattern. The appliances tend to be in standby
mode overnight and are in temporary use by the occupants from morning onward with its
peaks. (cf. Figure 6.10). In March, the workdays Monday and Wednesday have a higher
energy use over daytime, in contrast to Friday. A possible explanation could be that the
occupants are at home or in the home office. Whereas the energy consumption is higher
again on Sunday, perhaps due to domestic work on the weekend.

The expectation of the response variable app and lapp gives us an orientation for the
following figures.

E[app] = 97.695, E[lapp] = 4.304.

Furthermore, for all the time series we give the corresponding autocorrelations in form
of a correlogram. Remember that an autocorrelation plot is designed to show whether the
data points of a time series are positively correlated, negatively correlated, or independent
of each other. Thus the value of an autocorrelation function (acf) is in the range from −1
and 1 dependent of the lag between the data points of the time series.

The correlogram show the autocorrelation of the corresponding time series of the
appliances energy consumption during the observation period. In summary, the spikes of
the correlogram are statistically significant for the lags, since the spikes rises above the
dashed significance level. This means that the energy consumption of the appliances are
highly correlated with each other. In other words, when the energy use rises, it tends
to continue rising. When the consumption falls, it tends to continue falling. The Figure
6.2, 6.3, 6.7 and 6.8 illustrate these autocorrelations and that there are no random time
points, i.e. they are correlated in time.
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Figure 6.2: Correlogram. The autocorrelation plot of series app on the left side (corre-
sponding to Figure 6.4), and autocorrelation plot of series lapp on the right side (corre-
sponding to Figure 6.5) by lags. The dashed lines around zero showing the statistically
significance level (α = 0.05).

The autocorrelations of the series lapp by lag h we see in the correlogram in Figure
6.2 are as follows

h 0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200 7800 8400
γ̂lapp(h) 1.000 0.829 0.695 0.606 0.558 0.531 0.504 0.480 0.471 0.470 0.466 0.450 0.435 0.415 0.389

h 9000 9600 10200 10800 11400 12000 12600 13200 13800 14400 15000 15600 16200 16800 17400
γ̂lapp(h) 0.365 0.342 0.312 0.286 0.263 0.245 0.226 0.208 0.195 0.180 0.163 0.148 0.135 0.124 0.114

h 18000 18600 19200 19800 20400 21000 21600 22200 22800 23400 24000 24600 25200
γ̂lapp(h) 0.104 0.092 0.080 0.068 0.053 0.037 0.028 0.020 0.017 0.014 0.009 0.004 −0.005
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Figure 6.3: Correlogram. The monthly autocorrelation plots of series lapp by lags, corre-
sponding to Figure 6.6. The dashed lines around zero showing the statistically significance
level (α = 0.05).
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Figure 6.4: app time series for January to May 2016.
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Figure 6.5: lapp time series for January to May 2016.
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Figure 6.6: Time series of lapp for the months January, March and May 2016.
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Figure 6.7: Correlogram. The weekly autocorrelation plots of series lapp by lags, corre-
sponding to Figure 6.9. The dashed lines around zero showing the statistically significance
level (α = 0.05).
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ing to Figure 6.10. The dashed lines around zero showing the statistically significance level
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Figure 6.9: Time series of lapp for three equidistant weeks, where the week is starting on
Monday and ending on Sunday.
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Figure 6.10: Time series of variable lapp for four weekdays in March (Monday, Wednesday,
Friday and Sunday).
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6.1.2 Covariates

After the explorative analysis of the response variable, we are now studying our covariates,
the temperatures and humidities. We analyze the temperature covariates first, then the
humidity covariates.

Histogram of room temperatures

Starting with the histograms of the temperature covariates, Figure 6.11 shows that the
different rooms have different properties in their distributions. On the one hand, the
kitchen area and office room have a clear uni-modal distribution and symmetric character,
whereas the living room temperatures are right skewed since the distribution is more
centered on the lower ◦C-values and so the laundry and bathroom temperatures but a
higher variability. On the other side the ironing and parents room temperatures also have
multi-modal distribution.

Time series of temperature classified by area

Figure 6.13 shows a slightly rising temperature towards the summer months. In addition,
it should be noted that the temperature in the house are relatively constant in their small
variability, which supports the low-energy house model. Compare the minimum, maximum
and mean of the temperature variables in Table 5.2 and the following expectations which
supports the result.

E[T1.kitchen] = 21.687, E[T2.living] = 20.341,
E[T3.laundry] = 22.268, E[T4.office] = 20.855,
E[T5.bath] = 19.592, E[T7.ironing] = 20.267,
E[T8.teenager] = 22.029, E[T9.parents] = 19.486,
E[T6.outside] = 7.911, E[T.outstation] = 7.412.

In a low-energy house like our model house, the temperature differences are kept to
a minimum. This can be argued with the help of the house description in the paper of
(Candanedo et al., 2017).

On the other hand, the fluctuations tell us that the occupants are in the area using
the appliances.

The last two plots representing the outside temperatures show the much higher vari-
ability and a clear temperature rising towards June.

In summary it shows a small positive time effect. This conclusion is endorsed by
the corresponding autocorrelation plots in Figure 6.12, where we have highly positive
correlation between the time lags, i.e. with rising or falling temperature, the trend of
rising or falling will continue, respectively.
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Figure 6.11: Temperature distribution. Histogram of all the temperature variables in ◦C.
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Figure 6.12: Correlogram. The autocorrelation plots of the given area temperature series
by lags. The dashed lines around zero showing the statistically significance level (α =
0.05).
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Figure 6.13: Time series of the temperature variable in ◦C over the entire period.
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Histogram of room humidities

Now we examine the distribution of the humidities. Also for the humidities we have
different properties for the different rooms. All the inside humidities showing unimodal
distributions. But for the laundry room, there is another very small peak which indicates
the higher appliances use by the occupants in the room which rises the humidity. Overall
we can say that the histograms in Figure 6.14 are slightly skewed.

The distribution which represents the outside the building humidity measurements is
multimodal with peaks in the intervals 0 − 5%, 50 − 55% and 95 − 100%. Whereas the
outside humidity near the weather station takes all values of the humidity range, but only
has one peak at 90− 95%. So the distribution of outside the building could be influenced
by the general outside humidity and also from the inside humidities and its isolation of
the low energy house.

Time series of humidity classified by area

Almost the same observation, as we had for the temperature time series, we can tell
about the humidity time series, but with a downward trend. It can be explained by the
well known psychrometric chart (see A.1) in the subject thermo dynamics. The higher the
temperature, the more absolute humidity can be absorbed. So if the temperature goes up
with a constant absolute humidity value, the relative humidity goes down. This statement
can be deduced from the thermo dynamics lecture notes from Sattelmayer (2008, chapter
7).

Looking at Figure 6.16, the time series is relatively flat, except for the bathroom
and outside humidity. In summary it shows a very small time effect. To support the
statement, compare minimum, maximum and mean values of the Table 5.2 and following
list of expectations.

E[RH1.kitchen] = 40.260, E[RH2.living] = 40.420,
E[RH3.laundry] = 39.243, E[RH4.office] = 39.027,
E[RH5.bath] = 50.949, E[RH7.ironing] = 35.388,
E[RH8.teenager] = 42.936, E[RH9.parents] = 41.552,
E[RH6.outside] = 54.609, E[RH.outstation] = 79.750.

The correlogram in Figure 6.15 of the time series also supports our findings, i.e. positive
autocorrelations and a more rapidly falling autocorrelations for the bathroom humidity
RH5.bath and the outside humidity RH.outstation.
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Figure 6.14: Humidity distribution. Histogram of all the humidity variables in %.
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Figure 6.15: Correlogram. The autocorrelation plots of the given area humidity series by
lags. The dashed lines around zero showing the statistically significance level (α = 0.05).
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Figure 6.16: Time series of all the humidity variable in % over the entire period.
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6.2 Pairwise exploration

The Figure 6.17 and 6.18 show bivariate scatter-plots of response lapp versus the ten
temperature and humidity, respectively, with a locally weighted fitted line to detect linear
and non-linear relationships.

The relationship of

lappi ∼ Tji, j = 1.kitchen, . . . , 9.parents, .outstation,
i = 1, ..., 19735,

show small positive influences (cf. Figure 6.17) which are approximately linear. but there
are some non-linear curves looking at the red lines in the scatter-plots, but mostly at the
limits. This can happen due to the small density at the boundaries. It explains the rising
slope at the tails comparing to the center of the fitted line with a higher density of data
points. The same we can observe at the beginning of the red fitted line.

The following table verifies our results. We use the Pearson correlation coefficient

ρX,Y = Cov(X,Y )√
V ar(X)

√
V ar(Y )

or equivalently for a sample ρ̂x,y =
∑n
i=1(xi−x̄)(yi−ȳ)√∑n

i=1(xi−x̄)2
√∑n

i=1(yi−ȳ)2
, we

defined in (2.2).
ρ̂lapp,T1 = 0.161, ρ̂lapp,T6 = 0.197,
ρ̂lapp,T2 = 0.215, ρ̂lapp,T7 = 0.110,
ρ̂lapp,T3 = 0.167, ρ̂lapp,T8 = 0.153,
ρ̂lapp,T4 = 0.132, ρ̂lapp,T9 = 0.093,
ρ̂lapp,T5 = 0.110, ρ̂lapp,Tout = 0.176.

Contrary to Figure 6.17, in the scatter-plots of Figure 6.18 we can see small negative
approximately linear dependencies in the relationship

lappi ∼ RHji, j = 1.kitchen, . . . , 9.parents, .outstation,
i = 1, ..., 19735,

except for the kitchen area and bathroom. This supports our belief that humidity increases
with the occupancy of the kitchen, such as using appliances for cooking, and the appliances
use in the bathroom.

The other observations of an small negative correlation between lapp and the hu-
midities are also logically, due to the increasing temperature which leads to an greater
capacity of humidity in the air and that results in a decreasing percentage of humidity.
The conclusion is made due to the psychometric chart, see Figure A.1 in the Appendix.

On the other hand, looking at the sample correlations, we see only correlations for
ρ̂lapp,RH6, ρ̂lapp,RH8, ρ̂lapp,RH9 and ρ̂lapp,RHout, since these results score correlations of |ρ̂x,y| >
0.1. The rest is approximately uncorrelated, which is supported virtually in Figure 6.18.

ρ̂lapp,RH1 = 0.084, ρ̂lapp,RH6 = −0.174,
ρ̂lapp,RH2 = −0.094, ρ̂lapp,RH7 = −0.096,
ρ̂lapp,RH3 = −0.006, ρ̂lapp,RH8 = −0.165,
ρ̂lapp,RH4 = −0.007 ρ̂lapp,RH9 = −0.116,
ρ̂lapp,RH5 = 0.024 ρ̂lapp,RHout = −0.226

Note that we have the same non-linear limit behavior as we had for the relations
between lapp and the temperature covariates.
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Figure 6.17: Pairwise scatter-plots. Relationship of lapp ∼ Tj with Tj being the tem-
perature variables for j = 1.kitchen, .., 9.parents, .outstation. The red fitted line is
created by using the method of lowess with the smoothing parameter f ≡ 0, 2.
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Figure 6.18: Pairwise scatter-plots. Relationship of lapp ∼ RHj with RHj being the humid-
ity variables for j = 1.kitchen, .., 9.parents, .outstation. The red fitted line is created
by using the method of lowess with the smoothing parameter f ≡ 0, 2.
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6.3 Analyzing pattern over time

Finally, we want to study the behavior of the energy use depending on the time. The goal
is to detect pattern based on the months, weekdays and hours so that we can include the
time component in a suitable form in our model.

6.3.1 Box-plots

Monthly pattern

Observing the months separately, the lowest median we have for the month January
whereas the other months have the same median values. So we have similar pattern on
monthly bases, (cf. Figure 6.19).

Month Median V ariance
January 3.91 0.634
February 4.09 0.456
March 4.09 0.415
April 4.09 0.383
May 4.09 0.303

⇒ median(lappJanuary) < median(lappFebruary)
= median(lappMarch)
= median(lappApril)
= median(lappMay)

Month Quantiles
0.00 0.25 0.50 0.75 1.00

January 2.30 3.69 3.91 4.50 6.98
February 2.30 3.91 4.09 4.61 6.65
March 3.00 3.91 4.09 4.61 6.78
April 3.00 3.91 4.09 4.61 6.80
May 3.00 3.91 4.09 4.61 6.75

Table 6.1: Quantiles of the monthly pattern using lapp. Corresponding to the Figure 6.19.
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Figure 6.19: Box-plot for monthly pattern using lapp. The month number represents
January, February, March, April and May, respectively.
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Figure 6.20: Box-plot for daily pattern using lapp. The day number represents the week-
day. 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = Friday, 6 = Saturday,
7 = Sunday.

Week-daily pattern

The Figure 6.20 shows a bigger time effects based on weekdays compared to the months.
But there are no great differences in the week-daily pattern, but looking more into it,
median values vary between two values. The highest median is observed for Wednesdays
and Saturdays.

Weekday Median V ariance
Monday 4.09 0.518
Tuesday 4.09 0.378
Wednesday 4.25 0.337
Thursday 4.09 0.393
Friday 4.09 0.538
Saturday 4.25 0.468
Sunday 4.09 0.364

⇒ median(lappMonday) = median(lappTuesday)
= median(lappThursday)
= median(lappFriday)
= median(lappSunday)
< median(lappWednesday)
= median(lappSaturday)
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Weekday Quantiles
0.00 0.25 0.50 0.75 1.00

Monday 3.00 3.91 4.09 4.61 6.80
Tuesday 2.30 3.91 4.09 4.50 6.65
Wednesday 3.00 3.91 4.25 4.50 6.72
Thursday 2.30 3.91 4.09 4.50 6.98
Friday 2.30 3.91 4.09 4.61 6.78
Saturday 2.30 3.91 4.25 4.61 6.98
Sunday 2.30 3.91 4.09 4.61 6.75

Table 6.2: Quantiles of the week-daily pattern using lapp. Corresponding to the Figure
6.20.

Hourly pattern

Finally examine the lapp depending on the hours, we have the greatest time effect. In
Figure 6.21 we see a first increase of energy consumption in the midday hours, i.e. at hour
10, to the first peak during the early afternoon hours, i.e. at hour 14 and 15. The second
and highest peak is in the evening hours 20 and 21. So we can say that the residents
intensify the use of their equipment in the twentieth hour.

Hour Median V ariance
1 3.91 0.1125
2 3.91 0.1049
3 3.91 0.0688
4 3.91 0.0639
5 3.91 0.0746
6 3.91 0.0647
7 3.91 0.0615
8 3.91 0.1459
9 3.91 0.2234
10 4.09 0.4652
11 4.25 0.5204
12 4.25 0.5365
13 4.25 0.6354
14 4.38 0.5496
15 4.38 0.5145
16 4.25 0.4900
17 4.25 0.4111
18 4.38 0.3716
19 4.50 0.4940
20 4.79 0.6096
21 4.79 0.3933
22 4.70 0.2284
23 4.61 0.1883
24 4.25 0.1727

⇒ median(lapphour=1) = median(lapphour=2)
= . . .
= median(lapphour=9)
< median(lapphour=10)
< median(lapphour=11)
= median(lapphour=12)
= median(lapphour=13)
= median(lapphour=16)
= median(lapphour=17)
= median(lapphour=24)
< median(lapphour=14)
= median(lapphour=15)
= median(lapphour=18)
< median(lapphour=19)
< median(lapphour=23)
< median(lapphour=22)
< median(lapphour=20)
= median(lapphour=21)
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Figure 6.21: Box-plot for hourly pattern using lapp. The day number represents the hours,
from the first hour to the 24-th hour.
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Hour Quantiles
0.00 0.25 0.50 0.75 1.00

1 3.00 3.91 3.91 4.09 5.97
2 3.00 3.91 3.91 4.09 6.02
3 3.00 3.91 3.91 4.09 5.94
4 3.00 3.69 3.91 4.09 4.38
5 3.00 3.69 3.91 4.09 4.38
6 2.30 3.69 3.91 4.09 4.38
7 3.00 3.69 3.91 4.09 4.38
8 2.30 3.69 3.91 4.09 5.94
9 3.00 3.91 3.91 4.09 6.48
10 2.30 3.91 4.09 4.38 6.75
11 2.30 3.91 4.25 4.70 6.66
12 3.00 3.91 4.25 4.61 6.76
13 2.30 3.91 4.25 4.87 6.73
14 3.00 3.91 4.38 4.87 6.66
15 2.30 4.09 4.38 4.87 6.67
16 3.00 3.91 4.25 4.70 6.62
17 3.00 3.91 4.25 4.70 6.55
18 3.00 3.91 4.38 4.61 6.80
19 3.00 4.09 4.50 4.79 6.81
20 3.00 4.50 4.79 5.67 6.98
21 3.00 4.61 4.79 5.14 6.79
22 3.00 4.50 4.70 4.87 6.61
23 3.00 4.38 4.61 4.79 6.40
24 3.00 3.91 4.25 4.38 6.15

Table 6.3: Quantiles of the hourly pattern using lapp. Corresponding to the Figure 6.21.

Comparing time pattern

In conclusion the weekdays and the hours have to be taken into account regarding the
regression model, since we detected some pattern which should not be ignored. Connect
the median lines in the box-plot based on the hour (c.f. Figure 6.21), yield a polynomial of
an approximate third or fourth degree. The same is obtained when drawing a line though
the median values of the box-plot based on the weekdays in Figure 6.20. On the other
hand, it is more promising to integrate the weekdays as factors. Not only we have just
seven unique elements, also the comparison is easier with factors.

Based on that, we will study the time effects for the hours and weekdays in the
following chapter.



Chapter 7

Linear regression models (LM’s) for
energy consumption within a house

Finally we come to the ability of statistical methods to provide a mathematical equation
that reflects the complexity of the relation between the response variable lapp and our set
of explanatory variables of temperatures and humidities. Moreover, with the regression
model we have tools for interpreting results, checking for the significant predictors, as-
sessing their relative importance to the model and displaying the corresponding graphics
to our analysis. We also include time effects by defining appropriate covariates. This type
of model might better explain the real dynamics of the relationships and effects.

First, we use the multiple linear models for the explanatory analysis and predictive
challenging tasks to characterize relevant factors that impact the appliance energy uses.

Furthermore we do not take the variables Pressure, Windspeed, Visibility, and
Tdewpoint into account, which we introduced in Table 5.2. We want to focus on the impact
of temperatures and humidity in the house. Additionally, putting the other covariates in a
linear regression with our response variable lapp results in a total variability explanation
of just 1%.

94
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7.1 Setting the time effects

In the last chapter we already analyzed pattern over time and concluded that there exists
some time effects, that is the hourly and week-daily effects. To work on our data set we
converted it into a xts-object, which makes it easy to handle the time series, extract time
points and intervals and review the periodicity of the observations. (c.f. Ryan and Ulrich
(2011))

To get a deeper overview on the periodicity, the Table 7.1 is presented with about 6
observations available per hour, which means 144 observations available for each day.

data set from 2016-01-11 18:00:00 to 2016-05-27 20:00:00 with/containing:

periodicity total number of days observations per days observations per hour
10 minute 138 144 6

Table 7.1: The table contains a the periodicity of our energy use data set.

With the provided tools of an xts-object, we add three columns of different frequencies
to our data set, that is the covariates

(i) month = ({1, . . . , 5}i)i=1,...19735,

(ii) weekday = ({1, . . . , 7}i)i=1,...19735 and

(iii) hour = ({1, . . . , 24}i)i=1,...19735

of the corresponding observations.

7.1.1 Covariate of the weekday effect

For the weekday pattern, we have decided to include the weekdays as factors in our
regression model to provide a better comparability between the weekdays. Hence, we set
the following new covariates for our regression, i.e. a vector with values between 1 and 7:

weekday.Monday = as.factor(1), weekday.Friday = as.factor(5),
weekday.Tuesday = as.factor(2), weekday.Saturday = as.factor(6),
weekday.Wednesday = as.factor(3), weekday.Sunday = as.factor(7),
weekday.Thursday = as.factor(4),

There are about 2730 to 2800 observations available for each weekday (cf. Table 7.2)

1: Monday 2: Tuesday 3: Wednesday 4: Thursday 5: Friday 6: Saturday 7: Sunday
2772 2880 2880 2880 2857 2736 2730

Table 7.2: The data set provides a number of available observations per weekday.
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7.1.2 Covariate of the hour effect

Next, we take care of the hourly pattern. Reviewing the analyzes of the pattern over time,
we detected a polynomial curve connecting the median lines in the box-plot in Figure 6.21.
Analogously to the weekday covariate, we set the hourly effect as a numerical vector with
values between 1 and 24.

The covariate
hour = as.numeric(h), h = 1, . . . , 24.

will later be applied to the polynomial function

poly(hour, d),

with d as the degree of the polynomial function.
Since we assume a non-linear effect for the variable hour, it can be appropriately

modeled using (orthogonal) polynomials of degree three or around three.
For our polynomial, the data set provides in total 822 observations for each hour (c.f.

Table 7.3).

hour number of observations
1 822
2 822
3 816
4 822
5 822
6 822
7 822
8 822
9 822

10 822
11 822
12 822

hour number of observations
13 822
14 822
15 822
16 822
17 822
18 822
19 828
20 828
21 823
22 822
23 822
24 822

Table 7.3: The table showing available observation per hour.

To answer the question whether we should use the third or fourth degree polynomial,
we will set the following regressions:

lapp ∼ poly(hour, 3) versus lapp ∼ poly(hour, 4),

Check the resulting regression models, we decide to continue with the third degree,
i.e. d = 3, due to the significance of the three polynomial covariates. The reason to drop
the case of the fourth degree polynomial is that we detected a non-significant fourth poly-
nomial covariate. Additionally, it does not reach a higher variability explanation power.

R2
adj(lapp ∼ poly(hour, 3)) = 0.2272 = R2

adj(lapp ∼ poly(hour, 4))

In the following section we go deeper into details and the regression model.
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7.2 Main effect models

We begin fitting our linear regression models with the focus on the main effects for every
independent variable, so that we can examine the effect of one covariate on the response
variable, while fixing the effect of any other independent variables, e.g. by averaging over
the levels of all other variables.

A step-wise selection is used to check the significance of the covariates and the perfor-
mance of the model. From model class 1 to 7 we are doing a forward selection. (c.f. Table
7.4) After reaching Model 7, we perform a backward selection from which we yield the
two reduced models.

Model Main effects
Class temperature humidity weekday hours number of parameters R2

adj

1 X − − − 11 0.119
2 − X − − 11 0.173
3 − − X − 7 0.0071
4 − − − X 4 0.227
5 X X − − 21 0.238
6 − − X X 10 0.234
7 X X X X 30 0.328

Table 7.4: Model settings and adjusted R2 (R2
adj) for each model studied in Section 7.2.1.

7.2.1 Original model formulations

In the step-wise procedure, we analyze the model classes by including the covariates
presented in Table 7.4. In the following models we use simple multiple linear regression
given by

Ŷi = β̂0 +

p∑
j=1

β̂jxij, i = 1, . . . , 19735 (7.1)

where p is the amount of used predictors concerning the model class.

Model 1:

In our first model we only allow for linear temperature effects on lapp.

l̂appi = β̂0 +β̂1T1.kitcheni + β̂2T2.livingi + β̂3T3.laundryi + β̂4T4.officei

+β̂5T5.bathi + β̂6T6.outsidei + β̂7T7.ironingi + β̂8T8.teenageri
+β̂9T9.parentsi + β̂10T.outstationi

According to the summary of Model 1, we have:

• All covariates are at least significant at the 5% level

• 12% of the total variability is explained by the regression
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Model 2:

The second model allowing only linear humidity effects on lapp.

l̂appi = β̂0 +β̂1RH1.kitcheni + β̂2RH2.livingi + β̂3RH3.laundryi + β̂4RH4.officei

+β̂5RH5.bathi + β̂6RH6.outsidei + β̂7RH7.ironingi + β̂8RH8.teenageri
+β̂9RH9.parentsi + β̂10RH.outstationi

According to the summary of Model 2, we have:

• RH.outstation is non-significant at the 5% level, not even at 10% level

• all the other covariates are highly significant

• 17% of the total variability is explained by the regression

Model 3:

For the weekday effect we note a non-significant coefficient for the sixth factor Saturday.
But here, only 0.71% of the total variability is explained by the regression.

l̂appi = β̂0 +β̂1weekday.Tuesdayi + β̂2weekday.Wednesdayi + β̂3weekday.Thursdayi
+β̂4weekday.Fridayi + β̂5weekday.Saturdayi + β̂6weekday.Sundayi

Note that the covariate weekday.Monday represents the reference and therefore is not
included. So we can argue from the fact of a non-significant factor Saturday, that the
covariates weekday.Saturday behaves like weekday.Monday regarding the fitted response
variable.

Model 4:

Comparing the indicator R2
adj and the significant coefficients for the different polyno-

mial regression models, we select the intra-day effect with the polynomial regression of
order three. Review, even through the polynomial of order four has the same R2

adj as
for the third order, poly(hour, 4)4 is not significant any more. And looking at the
first and second polynomial order, we have R2

adj

(
Model4poly(hour,i)i=1,2

)
≈ 0.19 < 0.23 ≈

R2
adj

(
Model4poly(hour,3)

)
(and a better F -statistic). Therefore we choose a third order poly-

nomial for the hour effect.

The polynomial of order three regression scaled on the hourly effects explains 23% of
the total variability and has a significance level smaller than 1% for all covariate effects.

l̂appi = β̂0 +β̂1poly(hour, 3)1i + β̂2poly(hour, 3)2i + β̂3poly(hour, 3)3i
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Model 5:

• T5.bath and RH.outstation are non-significant at the 5% and 10% level, all the
other covariates are highly significant (RH7.ironing only at 1.13% level)

• 24% of the total variability is explained by the regression

l̂appi = β̂0 +β̂1T1.kitcheni + β̂2T2.livingi + β̂3T3.laundryi + β̂4T4.officei

+β̂5T5.bathi + β̂6T6.outsidei + β̂7T7.ironingi + β̂8T8.teenageri
+β̂9T9.parentsi + β̂10T.outstationi

+β̂11RH1.kitcheni + β̂12RH2.livingi + β̂13RH3.laundryi + β̂14RH4.officei

+β̂15RH5.bathi + β̂16RH6.outsidei + β̂17RH7.ironingi + β̂18RH8.teenageri
+β̂19RH9.parentsi + β̂20RH.outstationi

Model 6:

Putting the two time effects, weekday and hours, together as a time effect, we have the
same problem with the non-significant factor for weekday.Saturday, like we had in the
Model 3. All the other covariates are highly significant. Furthermore, 23% of the total
variability is explained by the regression

l̂appi = β̂0 +β̂1weekday.Tuesdayi + β̂2weekday.Wednesdayi + β̂3weekday.Thursdayi
+β̂4weekday.Fridayi + β̂5weekday.Saturdayi + β̂6weekday.Sundayi
+β̂7poly(hour, 3)1i + β̂8poly(hour, 3)2i + β̂9poly(hour, 3)3i

Model 7: The full main model

Finally we include all the covariates in the model to see the effect on the response variable
lapp. Taking a look at the full main model summary in Table 7.5, we conclude:

• Only covariates RH4.office, RH7.ironing and fifth weekday factor Friday is non-
significant at the 10% level

• 33% of the total variability is explained by the regression

l̂appi = β̂0 +
∑10

j=1 β̂jTji +
∑20

j=11 β̂jRH(j-10)i
+
∑26

j=21 β̂jweekday.(j-19)i +
∑29

j=27 β̂jpoly(hour, 3)(j-26)i,

for j = 1.kitchen, . . . , 9.parents, .outstation and i = 1, . . . , 19735.

If we write out the formula of the model, it has the form
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l̂appi = β̂0 +β̂1T1.kitcheni + β̂2T2.livingi + β̂3T3.laundryi + β̂4T4.officei

+β̂5T5.bathi + β̂6T6.outsidei + β̂7T7.ironingi + β̂8T8.teenageri
+β̂9T9.parentsi + β̂10T.outstationi

+β̂11RH1.kitcheni + β̂12RH2.livingi + β̂13RH3.laundryi + β̂14RH4.officei

+β̂15RH5.bathi + β̂16RH6.outsidei + β̂17RH7.ironingi + β̂18RH8.teenageri
+β̂19RH9.parentsi + β̂20RH.outstationi

+β̂21weekday.Tuesdayi + β̂22weekday.Wednesdayi + β̂23weekday.Thursdayi
+β̂24weekday.Fridayi + β̂25weekday.Saturdayi + β̂26weekday.Sundayi
+β̂27poly(hour, 3)1i + β̂28poly(hour, 3)2i + β̂29poly(hour, 3)3i,

i = 1, . . . , 19735.

7.2.2 Comparing R2
adj of the energy consumption models

Working with the full main model (Model 7) is the best option, not only because of the
highest R2

adj comparing to the other models (cf. Table 7.4 with R2
adj(Model 7) = 0.328),

but also the adjusted coefficient of determination exceeds the threshold of R2
adj = 0.30.

Now the question arises, if we can obtain a better model by reducing the full main
model (Model 7). From that point we examine the non-significant covariates and doing
an backward selection, which will be illustrated in the next step.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0645 0.1066 19.37 < 2e−16 ∗ ∗ ∗
T1.kitchen 0.0572 0.0113 5.05 4e−07 ∗ ∗ ∗

T2.living -0.1329 0.0094 -14.21 < 2e−16 ∗ ∗ ∗
T3.laundry 0.1381 0.0062 22.29 < 2e−16 ∗ ∗ ∗

T4.office 0.0425 0.0058 7.30 3e−13 ∗ ∗ ∗
T5.bath 0.0116 0.0067 1.73 0.0830 .

T6.outside -0.0082 0.0040 -2.05 0.0408 ∗
T7.ironing -0.0291 0.0076 -3.83 0.0001 ∗ ∗ ∗

T8.teenager 0.1192 0.0058 20.69 < 2e−16 ∗ ∗ ∗
T9.parents -0.1647 0.0107 -15.39 < 2e−16 ∗ ∗ ∗

T.outstation 0.0136 0.0045 3.01 0.0026 ∗∗
RH1.kitchen 0.0777 0.0040 19.40 < 2e−16 ∗ ∗ ∗

RH2.living -0.0783 0.0044 -17.77 < 2e−16 ∗ ∗ ∗
RH3.laundry 0.0419 0.0039 10.61 < 2e−16 ∗ ∗ ∗

RH4.office 0.0047 0.0037 1.27 0.2035
RH5.bath 0.0042 0.0005 8.18 3e−16 ∗ ∗ ∗

RH6.outside -0.0016 0.0004 -4.13 4e−05 ∗ ∗ ∗
RH7.ironing -0.0037 0.0024 -1.52 0.1275

RH8.teenager -0.0202 0.0024 -8.54 < 2e−16 ∗ ∗ ∗
RH9.parents -0.0194 0.0025 -7.63 2e−14 ∗ ∗ ∗

RH.outstation 0.0073 0.0007 10.59 < 2e−16 ∗ ∗ ∗
weekday.Tuesday -0.1377 0.0147 -9.35 < 2e−16 ∗ ∗ ∗

weekday.Wednesday -0.0415 0.0146 -2.83 0.0046 ∗∗
weekday.Thursday -0.1043 0.0146 -7.14 9e−13 ∗ ∗ ∗

weekday.Friday -0.0011 0.0149 -0.07 0.9434
weekday.Saturday 0.0576 0.0149 3.86 0.0001 ∗ ∗ ∗

weekday.Sunday -0.0542 0.0148 -3.67 0.0002 ∗ ∗ ∗
poly(hour, 3)1 32.2239 0.8925 36.11 < 2e−16 ∗ ∗ ∗
poly(hour, 3)2 -20.4014 0.8409 -24.26 < 2e−16 ∗ ∗ ∗
poly(hour, 3)3 -14.2197 0.7427 -19.15 < 2e−16 ∗ ∗ ∗

Table 7.5: Summary of full main model (Model 7): l̂app = β̂X, where X =
(1, Tj, RHj, weekday.d, poly(hour, 3).c)j=1.kitchen,...,.outstation;d=2,...7;c=1,2,3 ∈ R19735x30 is

the design matrix with all the predictors. We yield the performances R2
adj = 0.328, F -

statistic = 333 on 29 and 19705 DF, p-value < 2e− 16.
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7.2.3 Reduced models

Regarding possible interaction between the variables, it is sufficient to start the reduction
from the full main Model 7 (cf. Table 7.5), where we have a look at all main effects. Have
a look at the effects first, we detect some non-significant covariates.

• non-significant at 5% level:

T5.bath

RH4.office

RH7.ironing

weekday.Friday

• non-significant at 10% level:

RH4.office

RH7.ironing

weekday.Friday

For our purpose it is suffices to focus only on the non-significant covariates at a 10%
level.
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Reduced Model 1:

It seems that Friday has similar pattern like its reference covariate weekday.Monday, since
weekday.Friday is highly non-significant. Nevertheless, we leave all the weekday variables
for now in the model as they are of the class factor.

Reducing in a stepwise fashion, we remove the covariate with the highest p-value that
is RH4.office, then afterwards when necessary RH7.ironing. (c.f. Table 7.5)

p(RH4.office) = 0.2035 > 0.1275 = p(RH7.ironing)

After removing RH4.office, RH7.ironing has an even higher p-value. Reducing again,
we obtain the reduced model summarized in Table 7.6.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.10 0.10 20.31 0.00
T1.kitchen 0.06 0.01 5.06 0.00

T2.living -0.13 0.01 -14.72 0.00
T3.laundry 0.14 0.01 22.37 0.00

T4.office 0.04 0.01 7.36 0.00
T5.bath 0.01 0.01 1.80 0.07

T6.outside -0.01 0.00 -2.06 0.04
T7.ironing -0.03 0.01 -4.87 0.00

T8.teenager 0.12 0.01 21.86 0.00
T9.parents -0.16 0.01 -15.44 0.00

T.outstation 0.01 0.00 2.97 0.00
RH1.kitchen 0.08 0.00 19.52 0.00

RH2.living -0.08 0.00 -18.55 0.00
RH3.laundry 0.04 0.00 10.97 0.00

RH5.bath 0.00 0.00 8.17 0.00
RH6.outside -0.00 0.00 -4.12 0.00

RH8.teenager -0.02 0.00 -10.05 0.00
RH9.parents -0.02 0.00 -7.69 0.00

RH.outstation 0.01 0.00 10.77 0.00
weekday.Tuesday -0.14 0.01 -9.28 0.00

weekday.Wednesday -0.04 0.01 -2.85 0.00
weekday.Thursday -0.10 0.01 -7.13 0.00

weekday.Friday -0.00 0.01 -0.11 0.91
weekday.Saturday 0.06 0.01 3.93 0.00

weekday.Sunday -0.06 0.01 -3.77 0.00
poly(hour, 3)1 32.48 0.87 37.26 0.00
poly(hour, 3)2 -20.27 0.84 -24.23 0.00
poly(hour, 3)3 -14.43 0.73 -19.86 0.00

Table 7.6: Summary of Reduced Model 1: From the full main model (Model 7), we removed
non-significant RH4.office and RH7.ironing and obtained this reduced model. We have
the performancesR2

adj = 0.3279, F -statistic = 357.6 on 27 and 19707 DF, p-value< 2e−16.
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Now all covariates are significant at a 10% level. But we still have the non-significant
factor weekday.Friday with an increased p-value. At 5 % level T5.bath would not be
significant anymore, however bathroom is an important room for appliances use as we
have a few electrical devices here. It is sufficient to set α = 0.10.

With the reduction, we are not reaching a higher adjusted coefficient of determination,
i.e. R2

adj(Reduced Model 1) = 0.3279 comparing to R2
adj(Model 7) = 0.328.

Reduced Model 2:

Trying to reduce factor Friday first, since it has the highest p-value in the full main model
7.5, that is

p(weekday.Friday) = 0.94.

Removing the factor of weekday Friday, we obtain a model with non-significant weekday
factor of Monday with

p(weekday.Monday) = 0.94.

Regarding the full main model (Model 7) we have highly related weekdays Monday and
Friday, maybe due to the same day daily routine, e.g. home office.

Continue with reducing the factor Monday, we are having a model with still non-
significant covariates RH4.office and RH7.ironing with the same p-value as in the full
main model (Model 7). So proceeding with the same backward selection as we did for the
Reduced Model 1, we obtain the following significant Reduced Model 2 in Table 7.7.

To summarize the path to Reduced Model 2, we started with the full main model
(Model 7) and removed the factor weekday.Friday first, then continued with the reduc-
tion of weekday.Monday, the covariates RH4.office and RH7.ironing, by the highest
p-value respectively.

Again, with the reduction, we are not reaching a higher adjusted coefficient of deter-
mination, i.e. R2

adj(Reduced Model 2) = 0.328 = R2
adj(Model 7).
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0937 0.1022 20.48 0.0000
T1.kitchen 0.0572 0.0113 5.06 0.0000

T2.living -0.1317 0.0089 -14.73 0.0000
T3.laundry 0.1381 0.0062 22.40 0.0000

T4.office 0.0403 0.0055 7.37 0.0000
T5.bath 0.0121 0.0066 1.82 0.0681

T6.outside -0.0083 0.0040 -2.06 0.0395
T7.ironing -0.0339 0.0069 -4.88 0.0000

T8.teenager 0.1210 0.0055 22.17 0.0000
T9.parents -0.1615 0.0104 -15.46 0.0000

T.outstation 0.0133 0.0045 2.97 0.0030
RH1.kitchen 0.0781 0.0040 19.53 0.0000

RH2.living -0.0777 0.0042 -18.56 0.0000
RH3.laundry 0.0424 0.0038 11.02 0.0000

RH5.bath 0.0041 0.0005 8.17 0.0000
RH6.outside -0.0016 0.0004 -4.13 0.0000

RH8.teenager -0.0211 0.0021 -10.11 0.0000
RH9.parents -0.0189 0.0025 -7.69 0.0000

RH.outstation 0.0072 0.0007 10.78 0.0000
weekday.Tuesday -0.1355 0.0127 -10.66 0.0000

weekday.Wednesday -0.0410 0.0128 -3.21 0.0013
weekday.Thursday -0.1034 0.0127 -8.15 0.0000
weekday.Saturday 0.0594 0.0128 4.62 0.0000

weekday.Sunday -0.0549 0.0129 -4.24 0.0000
poly(hour, 3)1 32.4729 0.8705 37.31 0.0000
poly(hour, 3)2 -20.2766 0.8365 -24.24 0.0000
poly(hour, 3)3 -14.4245 0.7256 -19.88 0.0000

Table 7.7: Summary of Reduced Model 2: From the full main model (Model 7), we removed
non-significant weekday.Friday, weekday.Monday, RH4.office and RH7.ironing and
obtained this Reduced Model 2. We have the performances R2

adj = 0.328, F -statistic =
371.4 on 26 and 19708 DF, p-value: < 2e− 16.
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7.3 Interaction models

When the effect of the temperature and time or humidity and time is not additive, that
is the effect of the two cause variables temperature or humidity on the appliances also
depends on the state of the time variable, to be exact, depends on the hour of the day.
We already observed strong hourly pattern concerning the response variable lapp. But
now we want to couple the hourly pattern with the other covariates, temperatures and
then humidities, to detect interactions between them.

7.3.1 Interaction between temperatures and hours

Correlation - Scatter-plots

Our goal is to check if all the areas have the same slope. A look at the difference between
the maximal and minimal slope tells us that it is not higher than one.∣∣maxh(ρ̂((lapp,Tj)|h))−minh(ρ̂((lapp,Tj)|h))

∣∣ < 1

For our response variable lapp, we can perform residual plots separated hourly-
wise, that is 24 plots for all the hours, to detect the linear dependencies and obtain
the correlations with formula in (2.2). An example with one temperature covariate, i.e.
ρ̂((lapp,T1.kitchen)|h) for h = 1, . . . , 24, is provided in the Appendix in Figure A.2 and A.3.

• ρ̂((lapp,T1.kitchen)|h) for h = 1, . . . , 24 in Figure A.2 and Figure A.3, which is the hourly-
wise correlation between lapp and kitchen temperature:

→ there are positive slopes,

except for the hours ten and twelve, where we have a small descending line

→ highest slopes for hours one to eight,

afterwards we have a slightly ascending slope

→ rising and higher slopes are reached again after hour 16

• ρ̂((lapp,T2.living)|h) for h = 1, . . . , 24:

→ until hour 12 we have ascending line,

where the strongest slopes observed for hour one to nine

→ small descending lines from hour 13 to 15

→ slightly positive slopes until hour 23 and the strongest in hour 24

• ρ̂((lapp,T3.laundry)|h) for h = 1, . . . , 24:

→ almost the same pattern as for the kitchen temperature

• ρ̂((lapp,T4.office)|h) for h = 1, . . . , 24:

→ almost the same pattern as for the living room temperature.
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• ρ̂((lapp,T5.bath)|h) for h = 1, . . . , 24:

→ almost the same pattern as for the kitchen temperature,

where we have stronger positive slopes in the morning hours and between
16-19 and 23-24.

• ρ̂((lapp,T6.outside)|h) for h = 1, . . . , 24:

→ higher positive slopes between hour 1 and 8

→ small positive slopes from 9 to 24,

where it turns to a descending line in hour 12, 15, 20, 22 and 23.

Summarizing all the correlations in Figure 7.1 gives a good overview of the pattern
and dependencies. We see weak, mostly positive, correlation values for all the indoor
and outdoor temperatures which means that we have mostly positive linear dependent
variables temperatures and hours. The highest correlation we see in the morning hours
where the maximum values are reached.

Whereas values near zero showing non-correlated variables temperatures and time
which is the case in early afternoon hours.

On the one hand, we can see a clearly pattern through the day. On the other hand we
have different slopes, consequently the lines with the points of hours are intersecting one
another and are not identically parallel. This mean there are interactions due to uneven
changing correlations.
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Figure 7.1: Plot is showing the estimated correlation ρ̂((lapp,Tj)|h) between lapp and all
the temperature in an area, i.e. Tj with j = 1.kitchen, . . . , 9.parents, .outstation at
hour h, with h = 1, . . . , 24. Here we have mainly positive correlations and the weakest for
outside temperatures.
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Regression allowing for interaction between temperatures and polynomial
hourly effect

In Summary (c.f. Table 7.8) we have significant interaction terms, since there is no
case where all three polynomial interaction terms with the coupled temperature are
non-significant. For example, the regression lappi ∼ T9.parentsi ∗ poly(hour, 3)i,
i = 1, . . . , 19735, has two non-significant interactions between the parents room tem-
perature and the second and third polynomial coefficient at a significance level of 0.1, but
the interaction with the first polynomial coefficient is highly significant which makes the
overall interaction between the parents room temperature and the polynomial hour effect
significant.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.2449 0.0577 56.24 0.0000
T1.kitchen 0.0486 0.0027 18.32 0.0000

poly(hour, 3)1 39.9875 8.4978 4.71 0.0000
poly(hour, 3)2 -45.0675 8.2873 -5.44 0.0000
poly(hour, 3)3 9.6581 8.2148 1.18 0.2397

T1.kitchen:poly(hour, 3)1 -0.0478 0.3848 -0.12 0.9011
T1.kitchen:poly(hour, 3)2 1.6324 0.3776 4.32 0.0000
T1.kitchen:poly(hour, 3)3 -1.1672 0.3742 -3.12 0.0018

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7327 0.0436 85.56 0.0000

T2.living 0.0283 0.0021 13.16 0.0000
poly(hour, 3)1 46.1698 6.8290 6.76 0.0000
poly(hour, 3)2 -59.5758 6.2015 -9.61 0.0000
poly(hour, 3)3 -38.0029 6.3705 -5.97 0.0000

T2.living:poly(hour, 3)1 -0.4281 0.3334 -1.28 0.1991
T2.living:poly(hour, 3)2 2.5229 0.3011 8.38 0.0000
T2.living:poly(hour, 3)3 1.1038 0.3119 3.54 0.0004

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.2264 0.0452 71.34 0.0000
T3.laundry 0.0484 0.0020 23.91 0.0000

poly(hour, 3)1 24.8080 6.4827 3.83 0.0001
poly(hour, 3)2 7.4483 6.4862 1.15 0.2508
poly(hour, 3)3 27.0408 6.4560 4.19 0.0000

T3.laundry:poly(hour, 3)1 0.6622 0.2891 2.29 0.0220
T3.laundry:poly(hour, 3)2 -0.6699 0.2903 -2.31 0.0210
T3.laundry:poly(hour, 3)3 -1.9448 0.2883 -6.75 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.6523 0.0422 86.46 0.0000

T4.office 0.0313 0.0020 15.51 0.0000
poly(hour, 3)1 59.2344 6.0455 9.80 0.0000
poly(hour, 3)2 -27.1185 6.0678 -4.47 0.0000
poly(hour, 3)3 -27.6381 6.0134 -4.60 0.0000

T4.office:poly(hour, 3)1 -0.9441 0.2867 -3.29 0.0010
T4.office:poly(hour, 3)2 0.9239 0.2878 3.21 0.0013
T4.office:poly(hour, 3)3 0.5634 0.2859 1.97 0.0488

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5671 0.0440 81.06 0.0000

data.T5 0.0376 0.0022 16.79 0.0000
poly(hour, 3)1 53.5842 6.2860 8.52 0.0000
poly(hour, 3)2 -22.2245 6.3071 -3.52 0.0004
poly(hour, 3)3 -13.1016 6.2993 -2.08 0.0376

data.T5:poly(hour, 3)1 -0.7033 0.3162 -2.22 0.0261
data.T5:poly(hour, 3)2 0.7137 0.3178 2.25 0.0248
data.T5:poly(hour, 3)3 -0.1776 0.3181 -0.56 0.5767

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2885 0.0071 601.81 0.0000
T6.outside 0.0043 0.0008 5.75 0.0000

poly(hour, 3)1 44.4450 0.9472 46.92 0.0000
poly(hour, 3)2 -10.6284 0.9628 -11.04 0.0000
poly(hour, 3)3 -22.0363 0.9660 -22.81 0.0000

T6.outside:poly(hour, 3)1 -0.6791 0.1058 -6.42 0.0000
T6.outside:poly(hour, 3)2 0.4523 0.1039 4.35 0.0000
T6.outside:poly(hour, 3)3 0.7364 0.1046 7.04 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7915 0.0396 95.65 0.0000
T7.ironing 0.0253 0.0019 13.01 0.0000

poly(hour, 3)1 61.8153 5.5778 11.08 0.0000
poly(hour, 3)2 -28.4755 5.5948 -5.09 0.0000
poly(hour, 3)3 -29.4390 5.5843 -5.27 0.0000

T7.ironing:poly(hour, 3)1 -1.0881 0.2728 -3.99 0.0001
T7.ironing:poly(hour, 3)2 1.0457 0.2752 3.80 0.0001
T7.ironing:poly(hour, 3)3 0.6459 0.2734 2.36 0.0181

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.2421 0.0469 69.17 0.0000

T8.teenager 0.0481 0.0021 22.68 0.0000
poly(hour, 3)1 21.2354 6.6176 3.21 0.0013
poly(hour, 3)2 -18.1352 6.5171 -2.78 0.0054
poly(hour, 3)3 15.6390 6.5407 2.39 0.0168

T8.teenager:poly(hour, 3)1 0.8226 0.2947 2.79 0.0052
T8.teenager:poly(hour, 3)2 0.3846 0.2929 1.31 0.1892
T8.teenager:poly(hour, 3)3 -1.4412 0.2931 -4.92 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7623 0.0398 94.64 0.0000
T9.parents 0.0278 0.0020 13.70 0.0000

poly(hour, 3)1 62.3657 5.6071 11.12 0.0000
poly(hour, 3)2 -15.5625 5.5968 -2.78 0.0054
poly(hour, 3)3 -22.5552 5.6212 -4.01 0.0001

T9.parents:poly(hour, 3)1 -1.1486 0.2869 -4.00 0.0001
T9.parents:poly(hour, 3)2 0.4506 0.2863 1.57 0.1156
T9.parents:poly(hour, 3)3 0.3057 0.2874 1.06 0.2874

Table 7.8: Summary of the interaction models. The fitted model l̂app = β̂X, where X =
(1, Tj, poly(hour, 3)1, poly(hour, 3)2, poly(hour, 3)3, Tj × poly(hour, 3)1, Tj ×
poly(hour, 3)2, Tj×poly(hour, 3)3), whereby Tj represents in each case another given
area temperature. The corresponding R2

adj for the significant model will be summarized
in a following Table 7.9.

As for the nine models

lappi ∼ Tji ∗ poly(hour, 3)i, i = 1, . . . , 19735.

for j = 1.kitchen, 2.living, 3.laundry, 4.office, 5.bath, 6.outside, 7.ironing,
8.teenager, 9.parents, all the interaction terms are significant, we also examine all
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temperatures coupled polynomial hourly effect with the model for i = 1, . . . , 19735:

lappi ∼ ( T1.kitcheni + T2.livingi + T5.laundryi + T4.officei + T5.bathi
+T6.outsidei + T7.ironingi + T8.teenageri + T9.parentsi + T.outstationi)

∗ (poly(hour, 3)i).

At a significance level of 0.1, we accept all the interaction terms like the regressions
in Table 7.8, since we do not have non-significant room temperatures coupled with the
polynomial hour effect. Like we have seen before, the interaction with all three polynomial
coefficients have to be non-significant so that the interaction is non-significant.

In addition, we prepare interaction plots, given in Figure A.6, of the regressions

lappi ∼ Tji ∗ poly(hour, 3)i, i = 1, . . . , 19735,

for j = 1.kitchen, 2.living, 3.laundry, 4.office, 5.bath, 6.outside, 7.ironing,
8.teenager, 9.parents, .outstation, to visualize the partitioned hourly pattern with
their 95 % confidence interval.

Comparing R2
adj of main and interaction effect models

Interaction effects
Model R2

adj

T1.kitchen ∗ poly(hour,3) 0.241
T2.living ∗ poly(hour,3) 0.235
T3.laundry ∗ poly(hour,3) 0.252
T4.office ∗ poly(hour,3) 0.237
T5.bath ∗ poly(hour,3) 0.238

T6.outside ∗ poly(hour,3) 0.232
T7.ironing ∗ poly(hour,3) 0.235
T8.teenager ∗ poly(hour,3) 0.248
T9.parents ∗ poly(hour,3) 0.235

T.outstation ∗ poly(hour,3) 0.231

(
∑10

j=1 Tj) ∗ poly(hour,3) 0.341

Table 7.9: R2
adj for the interaction mod-

els between temperatures and polyno-
mial hourly effect.

Main effects
Model R2

adj

T1.kitchen + poly(hour,3) 0.240
T2.living + poly(hour,3) 0.231
T3.laundry + poly(hour,3) 0.250
T4.office + poly(hour,3) 0.236
T5.bath + poly(hour,3) 0.238

T6.outside + poly(hour,3) 0.228
T7.ironing + poly(hour,3) 0.234
T8.teenager + poly(hour,3) 0.247
T9.parents + poly(hour,3) 0.234

T.outstation + poly(hour,3) 0.228

(
∑10

j=1 Tj) + poly(hour,3) 0.296

Table 7.10: R2
adj for the main models for

temperatures and polynomial hourly
effect, corresponding to Table 7.9.

In the Table 7.9 and 7.10 we see the small improvement using the interaction between
temperatures and the hours. For the interaction model using all the temperatures, the
greatest improvement in the adjusted coefficient of determination is observed.
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7.3.2 Interaction between humidities and hours

Correlation - Scatter-plots

As for the temperature we look at the hourly-wise correlation plots between lapp and
humidities, e.g. visualized in Figure A.4 and A.5. The slopes for humidities are even
flatter, since we observe correlation values between [-0,15; 0,15]. Here patterns are harder
to detect, but looking closely we have similarities, but with the greatest slope differences in
the morning hours. For bathroom, office and laundry room the figures are showing negative
whereas for kitchen and laundry room positive slopes are observed in the morning hours.
As for the outside humidity, i.e. RH6.outside, all the lines are descending, except for the
hour between 13 and 15.

Summarizing all the hourly-wise correlations obtained form the residuals, in Figure
7.2, we see very fluctuated correlations with positive and negative correlated variables.
Overall the highest correlations are in the early afternoon, see the maximum and minimum
peaks. So due to the different slopes, i.e. uneven changing correlations, we have interactions
between the humidities and the hours.
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Figure 7.2: Plot is showing the estimated correlation ρ̂((lapp,RHj)|h) between lapp and all
the humidities in an area, i.e. RHj with j = 1.kitchen, . . . , 9.parents, .outstation at
hour h with h = 1, . . . , 24.
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Regression allowing for interaction between humidities and polynomial hourly
effect

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9077 0.0426 91.78 0.0000

RH1.kitchen 0.0098 0.0011 9.32 0.0000
poly(hour, 3)1 20.7990 5.9834 3.48 0.0005
poly(hour, 3)2 6.6421 6.0864 1.09 0.2752
poly(hour, 3)3 13.5707 6.0111 2.26 0.0240

RH1.kitchen:poly(hour, 3)1 0.4752 0.1485 3.20 0.0014
RH1.kitchen:poly(hour, 3)2 -0.3373 0.1507 -2.24 0.0252
RH1.kitchen:poly(hour, 3)3 -0.7559 0.1497 -5.05 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0808 0.0455 89.61 0.0000
RH2.living 0.0056 0.0011 5.07 0.0000

poly(hour, 3)1 48.0184 6.6233 7.25 0.0000
poly(hour, 3)2 9.4643 6.2834 1.51 0.1320
poly(hour, 3)3 18.8422 6.4637 2.92 0.0036

RH2.living:poly(hour, 3)1 -0.1770 0.1622 -1.09 0.2753
RH2.living:poly(hour, 3)2 -0.4213 0.1542 -2.73 0.0063
RH2.living:poly(hour, 3)3 -0.9031 0.1586 -5.69 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0905 0.0502 81.50 0.0000

RH3.laundry 0.0055 0.0013 4.32 0.0000
poly(hour, 3)1 7.1360 6.9884 1.02 0.3072
poly(hour, 3)2 16.7481 6.9996 2.39 0.0167
poly(hour, 3)3 21.8549 7.0384 3.11 0.0019

RH3.laundry:poly(hour, 3)1 0.8428 0.1771 4.76 0.0000
RH3.laundry:poly(hour, 3)2 -0.6076 0.1776 -3.42 0.0006
RH3.laundry:poly(hour, 3)3 -0.9867 0.1786 -5.52 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2472 0.0373 113.82 0.0000
RH4.office 0.0015 0.0010 1.54 0.1234

poly(hour, 3)1 33.7654 5.1565 6.55 0.0000
poly(hour, 3)2 -1.1897 5.2425 -0.23 0.8205
poly(hour, 3)3 5.9885 5.1838 1.16 0.2480

RH4.office:poly(hour, 3)1 0.1639 0.1311 1.25 0.2113
RH4.office:poly(hour, 3)2 -0.1500 0.1332 -1.13 0.2599
RH4.office:poly(hour, 3)3 -0.5819 0.1321 -4.41 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1333 0.0265 156.17 0.0000
RH5.bath 0.0035 0.0005 6.68 0.0000

poly(hour, 3)1 18.0408 3.5163 5.13 0.0000
poly(hour, 3)2 3.3530 3.1705 1.06 0.2903
poly(hour, 3)3 8.4375 3.6204 2.33 0.0198

RH5.bath:poly(hour, 3)1 0.4466 0.0676 6.61 0.0000
RH5.bath:poly(hour, 3)2 -0.2153 0.0597 -3.61 0.0003
RH5.bath:poly(hour, 3)3 -0.5133 0.0703 -7.30 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3886 0.0095 461.48 0.0000

RH6.outside -0.0013 0.0001 -9.18 0.0000
poly(hour, 3)1 32.9257 1.2991 25.34 0.0000
poly(hour, 3)2 -1.8856 1.2460 -1.51 0.1302
poly(hour, 3)3 -9.1099 1.2949 -7.04 0.0000

RH6.outside:poly(hour, 3)1 0.1073 0.0203 5.29 0.0000
RH6.outside:poly(hour, 3)2 -0.0983 0.0196 -5.03 0.0000
RH6.outside:poly(hour, 3)3 -0.1251 0.0202 -6.19 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2988 0.0298 144.34 0.0000

RH7.ironing 0.0001 0.0008 0.17 0.8648
poly(hour, 3)1 46.8920 4.0923 11.46 0.0000
poly(hour, 3)2 -1.4773 4.1461 -0.36 0.7216
poly(hour, 3)3 -5.1810 4.0893 -1.27 0.2052

RH7.ironing:poly(hour, 3)1 -0.1941 0.1143 -1.70 0.0896
RH7.ironing:poly(hour, 3)2 -0.1619 0.1158 -1.40 0.1621
RH7.ironing:poly(hour, 3)3 -0.3272 0.1143 -2.86 0.0042

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2886 0.0370 115.86 0.0000

RH8.teenager 0.0006 0.0009 0.65 0.5125
poly(hour, 3)1 29.2453 5.1293 5.70 0.0000
poly(hour, 3)2 15.6118 5.0963 3.06 0.0022
poly(hour, 3)3 18.2670 4.9931 3.66 0.0003

RH8.teenager:poly(hour, 3)1 0.2439 0.1180 2.07 0.0388
RH8.teenager:poly(hour, 3)2 -0.5430 0.1182 -4.59 0.0000
RH8.teenager:poly(hour, 3)3 -0.8274 0.1155 -7.17 0.0000

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.2845 0.0437 97.94 0.0000

RH9.parents 0.0004 0.0010 0.38 0.7051
poly(hour, 3)1 45.9151 5.9671 7.69 0.0000
poly(hour, 3)2 18.7373 5.8200 3.22 0.0013
poly(hour, 3)3 -6.5935 5.8759 -1.12 0.2618

RH9.parents:poly(hour, 3)1 -0.1512 0.1444 -1.05 0.2948
RH9.parents:poly(hour, 3)2 -0.6322 0.1411 -4.48 0.0000
RH9.parents:poly(hour, 3)3 -0.2565 0.1414 -1.81 0.0698

Table 7.11: Summary of the interaction models. The fitted model l̂app =
β̂X, where X = (1, RHj, poly(hour, 3)1, poly(hour, 3)2, poly(hour, 3)3, RHj ×
poly(hour, 3)1, RHj × poly(hour, 3)2, RHj × poly(hour, 3)3), whereby RHj repre-
sents in each case another given area humidities. The corresponding R2

adj for the significant
model will be summarized in a following table.

We can summarize from Tables 7.11 that all the interactions are significant using the
nine models

lappi ∼ RHji ∗ poly(hour, 3)i, i = 1, . . . , 19735.

for j = 1.kitchen, 2.living, 3.laundry, 4.office, 5.bath, 6.outside, 7.ironing,
8.teenager, 9.parents.

Observing that a few interaction terms are non-significant, but since the non-significance
does not involve all the polynomial coefficients, we have an overall significant interaction.
For example the interaction term RH9.parents : poly(hour, 3)1 is non-significant, but
as for the other polynomial coefficient RH9.parents : poly(hour, 3)2, RH9.parents :
poly(hour, 3)2 we reach significance. That means in conclusion that there is an inter-
action between the covariates RH9.parents and poly(hour, 3). (review in theoretical
background chapter - interactions)
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We will come to the same result by looking at the interaction between factor weekday
and polynomial hour.

So it indicates that the model needs all the interaction terms with the polynomial
transformed hour covariate.

Now, coupling all the humidities with the polynomial hourly effect with regression for
i = 1, . . . , 19735:

lappi ∼ ( RH1.kitcheni + RH2.livingi + RH5.laundryi + RH4.officei + RH5.bathi
+RH6.outsidei + RH7.ironingi + RH8.teenageri + RH9.parentsi
+RH.outstationi)

∗ (poly(hour, 3)i).

With the same arguments as before, we can say that all the interactions in the regression
with all the humidities are significant at a significance level of 0.1 or even 0.05.

In addition, we prepare interaction plots, given in Figure A.7, of the regressions

lappi ∼ RHji ∗ poly(hour, 3)i, i = 1, . . . , 19735,

for j = 1.kitchen, 2.living, 3.laundry, 4.office, 5.bath, 6.outside, 7.ironing,
8.teenager, 9.parents, .outstation, to visualize the partitioned hourly pattern with
their 95 % confidence interval.

Comparing R2
adj of main and interaction effect models

Interaction effects
Model R2

adj

RH1.kitchen ∗ poly(hour,3) 0.233
RH2.living ∗ poly(hour,3) 0.230
RH3.laundry ∗ poly(hour,3) 0.231
RH4.office ∗ poly(hour,3) 0.228
RH5.bath ∗ poly(hour,3) 0.233

RH6.outside ∗ poly(hour,3) 0.233
RH7.ironing ∗ poly(hour,3) 0.228
RH8.teenager ∗ poly(hour,3) 0.230
RH9.parents ∗ poly(hour,3) 0.228

RH.outstation ∗ poly(hour,3) 0.235

(
∑10

j=1 RHj) ∗ poly(hour,3) 0.287

Table 7.12: R2
adj for the interaction

models between humidities and polyno-
mial hourly effect.

Main effects
Model R2

adj

RH1.kitchen + poly(hour,3) 0.232
RH2.living + poly(hour,3) 0.229
RH3.laundry + poly(hour,3) 0.228
RH4.office + poly(hour,3) 0.227
RH5.bath + poly(hour,3) 0.229

RH6.outside + poly(hour,3) 0.229
RH7.ironing + poly(hour,3) 0.227
RH8.teenager + poly(hour,3) 0.227
RH9.parents + poly(hour,3) 0.227

RH.outstation + poly(hour,3) 0.228

(
∑10

j=10 RHj) + poly(hour,3) 0.257

Table 7.13: R2
adj for the main models

for humidities and polynomial hourly
effect, corresponding to Table 7.12.

In the Table 7.12 and 7.13 we also have just small improvements of the adjusted
coefficients of determination using the interaction between humidity and the hours. For
the interaction model using all the humidities, the greatest improvement in the R2

adj is
observed.
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7.3.3 Interaction between weekdays and hours

In the box-plot, c.f. Figure 7.3, we see almost the same pattern during the day, but with
different variations, see the box lengths which include 50 % of the data. Furthermore we
observe a higher variation at weekday Monday in the afternoon hours, that can be due to
changing workflow pattern of the occupants or other factors. Nearly the same variation we
notice for the weekday Friday. This supports the non-significance of the character Friday
in the full main model (Model 7) as Monday is the reference. Overall the we can say that
in the afternoon hours we have the highest appliances energy use by the occupants which
spreads very much in the nineteenth to twenty-first hour.

Examine the interaction between the hours per weekday in Figure 7.4. We have al-
most identical parallel lines in the morning hours, intersecting lines in the afternoon and
between hour 20 and 24 which means there exists interactions. On the one hand, we can
observe intersecting lines but on the other hand they are of the same quadratic shape.
We can conclude that there are clear less interaction in the morning and evening hours
and interaction in the afternoon hours.
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Figure 7.3: Box-plots. Appliances energy use for all weekdays relative to hours. Weekdays
over the entire observation period are summarized here.
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Figure 7.4: Plot of the confidence intervals for hourly mean values of lapp with level 0.95.
The lapph and their confidence shadow is classified with different colors by weekdays.
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Regression allowing for interaction between factor weekday and polynomial
hourly effect

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3788 0.0108 405.14 0.0000

poly(hour, 3)1 44.2960 1.5110 29.32 0.0000
poly(hour, 3)2 -8.7483 1.5157 -5.77 0.0000
poly(hour, 3)3 -23.1180 1.5161 -15.25 0.0000

weekday.Tuesday -0.1619 0.0151 -10.70 0.0000
weekday.Wednesday -0.0854 0.0151 -5.64 0.0000

weekday.Thursday -0.1365 0.0151 -9.02 0.0000
weekday.Friday -0.0677 0.0152 -4.46 0.0000

weekday.Saturday -0.0101 0.0153 -0.66 0.5087
weekday.Sunday -0.0581 0.0153 -3.79 0.0002

poly(hour, 3)1:weekday.Tuesday -10.6658 2.1215 -5.03 0.0000
poly(hour, 3)2:weekday.Tuesday 16.7471 2.1246 7.88 0.0000
poly(hour, 3)3:weekday.Tuesday 12.0955 2.1253 5.69 0.0000

poly(hour, 3)1:weekday.Wednesday -5.9573 2.1215 -2.81 0.0050
poly(hour, 3)2:weekday.Wednesday 7.1011 2.1246 3.34 0.0008
poly(hour, 3)3:weekday.Wednesday 11.8700 2.1253 5.58 0.0000

poly(hour, 3)1:weekday.Thursday -6.2979 2.1215 -2.97 0.0030
poly(hour, 3)2:weekday.Thursday 5.1126 2.1246 2.41 0.0161
poly(hour, 3)3:weekday.Thursday 8.7334 2.1253 4.11 0.0000

poly(hour, 3)1:weekday.Friday -7.4167 2.1308 -3.48 0.0005
poly(hour, 3)2:weekday.Friday -9.2724 2.1329 -4.35 0.0000
poly(hour, 3)3:weekday.Friday 5.3033 2.1314 2.49 0.0128

poly(hour, 3)1:weekday.Saturday 5.0501 2.1488 2.35 0.0188
poly(hour, 3)2:weekday.Saturday -9.4597 2.1519 -4.40 0.0000
poly(hour, 3)3:weekday.Saturday -3.4610 2.1526 -1.61 0.1079

poly(hour, 3)1:weekday.Sunday -3.9890 2.1511 -1.85 0.0637
poly(hour, 3)2:weekday.Sunday 1.0883 2.1531 0.51 0.6132
poly(hour, 3)3:weekday.Sunday 10.0374 2.1527 4.66 0.0000

Table 7.14: Summary of the significant interaction model lapp ∼ weekday ∗
poly(hour, 3), with R2

adj = 0.2485 and F -statistic = 242.7 on 27 and 19707 DF.

Comparing R2
adj of the main and interaction effect model

Considering just the influence of the weekdays and the polynomial hourly effect on our
response variable lapp, we can also observe improvement adding the interaction term,
see the Table 7.15 and 7.16, which gives us the corresponding adjusted coefficient of
determinations.
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Model: Interaction effect R2
adj

lapp ∼ weekday ∗ poly(hour,3) 0.249

Table 7.15: R2
adj for the interaction

model between the factor weekday and
polynomial hourly effect.

Model: Main effect R2
adj

lapp ∼ weekday + poly(hour,3) 0.234

Table 7.16: R2
adj for the main model be-

tween the factor weekday and polyno-
mial hourly effect.

F-test - Testing for interacting time effects

At this position, we want to analyze if an interaction between poly(hour, d) and weekday

is needed. To do so, we will perform three F -tests to evaluate the form of interaction.
The three tests will have the specification of the covariates polynomial degree d.

(i) d = 1: The interaction with the weekdays has a linear form for the hour.

(ii) d = 2: The interaction with the weekdays has a quadratic form for the hour.

(iii) d = 3: The interaction with the weekdays has a cubic form for the hour.

We already excluded the fourth degree due to non-significance, see Section 7.1.
With help of the ANOVA-Table from R-package stats, we will determine the F-tests.

ANOVA is the analysis of variance, we already discussed in the section 3.5.1. For a deeper
inside on this topic with good examples, we refer to Christensen (2018).

The test hypothesis H0 are stated as follows:

• Case 1: There is no difference in the means of lapp grouped by poly(hour, d)d=1,2,3.

• Case 2: There is no difference in means of lapp grouped by factor weekday.

• Case 3: There is no interaction between poly(hour, d)d=1,2,3 and weekday.

Whereas the alternative hypothesis H1 for Case 1 and 2 is that the means are not
equal, and for the Case 3 that there is an interaction between poly(hour, d)d=1,2,3 and
weekday.

As we observed in Figure 7.4, there are clearly some intersections which means inter-
action. So we just want to verify the interaction and look which interaction form fits the
data the best.

Before we start note that we assume that the observations within each cell are nor-
mally distributed and have equal variances. We will check these assumptions after fitting
ANOVA.

We already visualized the data by box-plots (see Figure 7.3) and line plots with confi-
dence intervals (see Figure 7.4) to identify group differences by weekdays. The box-plots
reveal the energy consumption conditioned on the combinations of the levels of weekday
and hour. Whereas the interaction plot illustrate possible interactions which are visible
through the intersections, especially in the afternoon hours. The two-way interaction plot
(Figure 7.4) visualize the mean with a confidence interval level of 0.95 of the response for
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two-way combinations of weekday and hour, where hour are plotted on the x-axis and
the factor weekday as seven different weekday lines.

1. F-test of Model lapp ∼ weekday ∗ poly(hour, 3), (d = 3):

Finally we compute a F-test with help of the analysis of variance. Is our response lapp
depending on weekday and hour? And in particular which interaction form is needed?

First we review just the main effect in Table 7.17. From the ANOVA table we can con-
clude that both our covariates weekday and poly(hour, 3) are statistically significant.
poly(hour, 3) is the even more significant covariate due to the high F -value. (These
results would lead us to believe that changing or removing the weekday and the hour
would impact significantly the mean of response lapp.)

Df Sum Sq Mean Sq F value Pr(>F)
weekday 6 62.80 10.47 31.73 0.0000
poly(hour, 3) 3 1930.38 643.46 1950.55 0.0000
Residuals 19725 6507.01 0.33

Table 7.17: Summary of the ANOVA model with main effects. The model been used is
l̂appi = β̂0 +

∑6
j=1 β̂jweekday.(j+1)i + β̂7(poly(hour, 3)1)i + β̂8(poly(hour, 3)2)i +

β̂9(poly(hour, 3)3)i. The output includes the F -value and the corresponding p-value of
the test.

After inspecting the additive models with the assumption of two independent variables,
we add the interaction term since we conjecture that the two covariates might interact.
By including the synergistic effect, i.e. using the model

l̂appi = β̂0 +
∑6

j=1 β̂jweekday.(j+1)i
+β̂7(poly(hour, 3)1)i + β̂8(poly(hour, 3)2)i + β̂9(poly(hour, 3)3)i
+
∑15

j=10 β̂j(poly(hour, 3)1)i × weekday.(j-8)i
+
∑21

j=16 β̂j(poly(hour, 3)2)i × weekday.(j-14)i
+
∑27

j=22 β̂j(poly(hour, 3)3)i × weekday.(j-20), i = 1, . . . , 19735

we get the results in Table 7.18. It can be seen that the two main effects are still statisti-
cally significant. The added interaction effect is also statistically significant, which means
that we should use the interaction model.

Based on the p-values and a significance level of 0.05, we can conclude from the results
of ANOVA Table 7.17 and 7.18 that we can reject the null hypothesis. Due to signifi-
cant p-values smaller than 2e − 16, the levels of both weekday and poly(hour, 3) are
associated with significant different energy consumption, with the response variable lapp.
Further the p-value for the interaction between weekday and poly(hour, 3) are also
highly significant, i.e. p-value < 2e − 16, which indicates the relationship between the
hour and the energy consumption depends on the weekday.
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Df Sum Sq Mean Sq F value Pr(>F)
weekday 6 62.80 10.47 32.34 0.0000
poly(hour, 3) 3 1930.38 643.46 1987.88 0.0000
weekday:poly(hour, 3) 18 128.00 7.11 21.97 0.0000
Residuals 19707 6379.01 0.32

Table 7.18: Summary of the ANOVA model with interaction effect. The model been used
is lapp ∼ weekday + poly(hour, 3) + weekday : poly(hour, 3). The output includes
the F -value and the corresponding p-value of the test. Residual standard error is given
by 0.5689.

Multiple pairwise-comparison between the means of groups

Due to the significant ANOVA test, we will reject the null hypothesis and conclude
different group means. But that arises the question, which pairs of groups differ from the
others. To get a closer look, we determine if the mean difference between specific pairs of
group are statistically significant. With the help of a pairwise t-test, we get the following
result:

Monday Tuesday Wednesday Thursday Friday Saturday
Tuesday < 2e− 16 - - - - -
Wednesday 7.7e− 07 2.1e− 05 - - - -
Thursday 4.4e− 15 0.16490 0.00423 - - -
Friday 5.4e− 05 2.4e− 07 0.36943 0.00015 - -
Saturday 0.42882 < 2e− 16 3.6e− 05 2.6e− 12 0.00126 -
Sunday 0.00080 8.8e− 09 0.13101 1.5e− 05 0.50899 0.01057

Table 7.19: Pairwise comparison using t-tests with pooled standard deviation (i.e. the

corresponding formula is SDpooled =

√∑s
g=1(ng−1)SD2

g∑s
g=1 ng−s

, where SDg is the standard deviation

and ng the sample size for group g). The response lapp and the weekdays being used.
For the multiple comparison the p-value adjustment method ”BH” (c.f. Benjamini and
Hochberg (1995)) is used which is shown in this table.

Note that we only performed the test for the covariate weekday. This is because of
simplicity and the poly(hour, 3) had highly significant differences in the ANOVA tables.
Now validate the results in Table 7.19, it can be seen that almost all pairwise compar-
isons are significant with an adjusted p-value < 0.05. The highest significant difference
in energy consumption is between Tuesday and Monday (p ≈ 0.00), as well as between
Saturday and Tuesday (p ≈ 0.00). The exception is for the pairs (Saturday, Monday),
(Thursday, Tuesday) and all paired combination of weekdays (Wednesday, Friday, Sun-
day), i.e. (Friday, Wednesday), (Sunday, Wednesday), (Sunday, Friday), where there is no
significant difference as the corresponding p-values in the Table 7.19 are higher than the
level of 0.05.



120 CHAPTER 7. LM’S FOR ENERGY CONSUMPTION WITHIN A HOUSE

2. Testing interaction form, specified by different d, (d = 1, 2):

Before we check the model assumption, we want to decide on the interaction form
as we already discussed above. For d = 3 we already did our analysis of variance on the
interaction model. So there is still to determine the ANOVA for the cases d = 1 and d = 2.

Case d = 1:
Since the main effect model is already highly significant for both covariates, we directly

focus on the interaction model. Here we also have highly significant differences which can
be seen in the Table 7.20. For this Table we use the model

l̂appi = β̂0 +
∑6

j=1 β̂jweekday.(j+1)i
+β̂7(poly(hour, 1)1)i
+
∑13

j=8 β̂j(poly(hour, 1)1)i × weekday.(j-6)i
= β̂0 +

∑6
j=1 β̂jweekday.(j+1)i + β̂7houri

+
∑13

j=8 β̂jhouri × weekday.(j-6)i

Df Sum Sq Mean Sq F value Pr(>F)
weekday 6 62.80 10.47 30.31 0.0000
poly(hour, 1) 1 1604.17 1604.17 4644.88 0.0000
weekday:poly(hour, 1) 6 22.34 3.72 10.78 0.0000
Residuals 19721 6810.89 0.35

Table 7.20: Analysis of variance table. Model with interaction effect lapp ∼ weekday +
poly(hour, 1) + weekday : poly(hour, 1). Residual standard error is 0.5877.

Case d = 2:
Also for this case we have significant main effects, so we proceed with the interaction

model:
l̂appi = β̂0 +

∑6
j=1 β̂jweekday.(j+1)i

+β̂7(poly(hour, 2)1)i + β̂8(poly(hour, 2)2)i
+
∑14

j=9 β̂j(poly(hour, 2)1)i × weekday.(j-7)i
+
∑20

j=15 β̂j(poly(hour, 2)2)i × weekday.(j-13)i

In the Table 7.21 we have again highly significant differences, that is we reject the null
hypothesis.

Df Sum Sq Mean Sq F value Pr(>F)
weekday 6 62.80 10.47 30.85 0.0000
poly(hour, 2) 2 1653.24 826.62 2436.59 0.0000
weekday:poly(hour, 2) 12 96.11 8.01 23.61 0.0000
Residuals 19714 6688.05 0.34

Table 7.21: Analysis of variance table. Model with interaction effect lapp ∼ weekday +
poly(hour, 2) + weekday : poly(hour, 2). Residual standard error is 0.5825.
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3. Conclusion for the interaction effect:

All polynomial degrees, i.e. d = 1, 2, 3, are highly significant which means that they
indicate a significant interactions for the weekday and poly(hour, d)d=1,2,3. To decide
which degree we should use for the interaction, we consider the F -values. A large F -
value indicates more difference between the groups than within the groups and therefore
a greater effect on the response lapp. Case d = 1 has the lowest F -value with 10.78, which
leads to a decision between d = 2 and d = 3. Even though the F -value of the interaction
term for the polynomial degree two is higher with 23.61 > 21.97, the sum squares and the
degree of freedom speaks for the degree of three.

We proceed with the interaction term between weekday and poly(hour, 3).

4. Check ANOVA assumptions:

ANOVA assumes that the data are normally distributed and the variance across groups
are homogeneous. Now exploring the assumption with help of some diagnostic plots.

Check the homogeneity of variance assumption

The residuals versus fits plot is used to check the homogeneity of variances. In the
Figure 7.5, there is not a significant evident relationships between residuals and fitted
values, i.e. the mean of each groups, which is sufficient. For Case 3 (Figure 7.5) it looks
more random than for Case 2 (Figure 7.6). So, we can assume the homogeneity of variances
for Case 3.
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Figure 7.5: Residuals versus fits. The
plot checks the homogeneity of vari-
ances for the model lapp ∼ weekday ∗
poly(hour,3).
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Figure 7.6: Residuals versus fits. The
plot checks the homogeneity of vari-
ances for the model lapp ∼ weekday ∗
poly(hour,2).

Check the normality assumption

Next, we want to verify the assumption that the residuals are normally distributed.
To do this, the quantiles of the residuals are plotted against the quantiles of the normal
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distribution. The 45-degree reference line is the optimal case which the normal probability
plot of the residuals should be follow approximately.
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Figure 7.7: Normality plot of the resid-
uals. Figure shows non-normality for
the ANOVA model lapp ∼ weekday ∗
poly(hour,3).
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Figure 7.8: Normality plot of the resid-
uals. Figure shows non-normality for
the ANOVA model lapp ∼ weekday ∗
poly(hour,2).
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Figure 7.9: Normality plot of the
ANOVA residuals. Figure shows the
ANOVA model lapp ∼ weekday ∗
poly(hour,3).
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Figure 7.10: Normality plot of the
ANOVA residuals. Figure shows the
ANOVA model lapp ∼ weekday ∗
poly(hour,2).

If we can assume normality we additionally perform a plot where we extract the
residuals from the corresponding ANOVA model Case 3 in Table 7.18 and Case 2 in Table
7.21. The resulting figures for Case 3 are the Figure 7.7, 7.9 and Case 2 the Figure 7.8,
7.10 showing indication whether normality is violated or not. Unfortunately the can see
in Figure 7.7 and 7.8 that the normality assumption is violated due to outliers. However,
from these normality plots, we can not detect big differences between the cases. But since
our final interaction model (LMinter) reaches an improved and satisfying R2

adj, we use this
transformation either way and continue with this transformed hourly effect.



7.3. INTERACTION MODELS 123

These assumptions strengthen and supports the decision to continue working with the
third degree polynomial as the interaction form, i.e. we use the model

l̂appi = β̂0 +
∑6

j=1 β̂jweekday.(j+1)i
+β̂7(poly(hour, 3)1)i + β̂8(poly(hour, 3)2)i + β̂9(poly(hour, 3)3)i
+
∑15

j=10 β̂j(poly(hour, 3)1)i × weekday.(j-8)i
+
∑21

j=16 β̂j(poly(hour, 3)2)i × weekday.(j-14)i
+
∑27

j=22 β̂j(poly(hour, 3)3)i × weekday.(j-20), i = 1, . . . , 19735.
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1 2 3 4 5 6 7 8 9 10 11 12
2 0.0428 - - - - - - - - - - -
3 0.0013 0.2463 - - - - - - - - - -
4 8.4e− 06 0.0173 0.2404 - - - - - - - - -
5 3.9e− 07 0.0027 0.0732 0.5586 - - - - - - - -
6 1.3e− 05 0.0221 0.2770 0.9282 0.4994 - - - - - - -
7 4.3e− 06 0.0116 0.1877 0.8913 0.6525 0.8259 - - - - - -
8 0.0023 0.3252 0.8659 0.1754 0.0481 0.2067 0.1344 - - - - -
9 0.0217 1.2e− 05 2.6e− 08 1.0e− 11 1.2e− 13 2.0e− 11 3.8e− 12 6.9e− 08 - - - -
10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - -
11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1.1e− 05 - -
12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4.8e− 07 0.5540 -
13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1.7e− 05 0.0002
14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4.3e− 06 7.3e− 05
15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0.0002 0.0018
16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1.6e− 07 0.4250 0.8464
17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0.0001 0.5848 0.2454
18 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 6.3e− 07 0.5848 0.9575
19 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3.4e− 10 1.6e− 08
20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
22 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
23 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1.2e− 14 1.3e− 12
24 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2.6e− 09 0.0169 7.6e− 12 7.8e− 14

13 14 15 16 17 18 19 20 21 22 23
2 - - - - - - - - - - -
3 - - - - - - - - - - -
4 - - - - - - - - - - -
5 - - - - - - - - - - -
6 - - - - - - - - - - -
7 - - - - - - - - - - -
8 - - - - - - - - - - -
9 - - - - - - - - - - -
10 - - - - - - - - - - -
11 - - - - - - - - - - -
12 - - - - - - - - - - -
13 - - - - - - - - - - -
14 0.7895 - - - - - - - - - -
15 0.6054 0.4250 - - - - - - - - -
16 0.0005 0.0002 0.0035 - - - - - - - - -
17 1.1e− 06 2.3e− 07 1.5e− 05 0.1724 - - - - - - -
18 0.0002 5.9e− 05 0.0015 0.8104 0.2662 - - - - - -
19 0.0548 0.1043 0.0137 5.4e− 08 7.0e− 12 1.2e− 08 - - - - -
20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - -
21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7.0e− 07 - - -
22 2.9e− 14 2.6e− 13 3.7e− 16 ? ? ? ? ? ? ? ? ? 1.6e− 08 ? ? ? 2.1e− 06 - -
23 0.0008 0.0021 9.1e− 05 5.9e− 12 ? ? ? 9.1e− 13 0.1609 ? ? ? ? ? ? 2.8e− 05 -
24 ? ? ? ? ? ? ? ? ? 1.6e− 14 3.7e− 10 1.2e− 13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Table 7.22: Pairwise comparison using t-test with pooled standard deviation. The response
variable lapp and the covariate hour being used. For p-value< 0.05, there is a significant
difference between the paired hours, whereas for p-value> 0.05 there is no significant
difference between the paired hours. ? ? ? denotes the p-values < 2e− 16.
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7.3.4 Interaction model - Analyzing the interaction term

The full interaction model

Now summarizing all the results from the above interaction analysis and forming a model
using all the covariates interacting with the hourly time effect, i.e. poly(hour, 3).

We set up the full interaction model (LMinter) as follows:

l̂appi = β̂0 +
(

β̂1T1.kitcheni + β̂2T2.livingi + β̂3T3.laundryi + β̂4T4.officei

+β̂5T5.bathi + β̂6T6.outsidei + β̂7T7.ironingi + β̂8T8.teenageri
+β̂9T9.parentsi + β̂10T.outstationi

+β̂11RH1.kitcheni + β̂12RH2.livingi + β̂13RH3.laundryi + β̂14RH4.officei

+β̂15RH5.bathi + β̂16RH6.outsidei + β̂17RH7.ironingi + β̂18RH8.teenageri
+β̂19RH9.parentsi + β̂20RH.outstationi

+β̂21weekday.Tuesdayi + β̂22weekday.Wednesdayi + β̂23weekday.Thursdayi
+β̂24weekday.Fridayi + β̂25weekday.Saturdayi + β̂26weekday.Sundayi

)
∗
(

β̂27poly(hour, 3)1i + β̂28poly(hour, 3)2i + β̂29poly(hour, 3)3i
)
,

for i = 1, . . . , 19735 with its summary in Table 7.23. Defining the formula with the
operator ∗ as follows: a ∗ b = a + b + ab, with a, b ∈ R. By including the interaction
effect we achieve an adjusted coefficient of determination of R2

adj = 0.393.

The reduced interaction model

We have be cautious when we eliminate non-significant covariates. The main effects
T5.bath, RH4.office and RH8.teenager are non-significant at the 10% level, but the
interaction terms including RH4.office and RH8.teenager are definitely significant. This
means we can not remove these main effects, since we can not use it for the interaction
terms anymore. Analyze all the interaction terms, there is just one non-significant inter-
action to eliminate. The interaction term including T5.bath is in all three polynomial
component non-significant. Since T5.bath is also non-significant in its main effect, we
not only exclude the interaction with it but also the covariate itself. Thus we obtain the
following summary of the reduced interaction model (RedInterModel) in Table 7.24.

Note that we only reduced the interaction term T5.bath×poly(hour,3) which showed
no improvement in setting the interaction in contrast with the main effect T5.bath +
poly(hour,3), see Table 7.9 and 7.10, that both showed an adjusted coefficient of deter-
mination of 0.238. Moreover, with setting the reduced interaction model (RedInterModel)
we do not improve the coefficient of determination as it is again R2

adj = 0.393.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.34 0.11 20.92 0.00
T1.kitchen -0.03 0.01 -1.78 0.07

T2.living -0.06 0.01 -4.45 0.00
T3.laundry 0.10 0.01 14.87 0.00

T4.office 0.05 0.01 8.38 0.00
T5.bath 0.01 0.01 1.13 0.26

T6.outside -0.01 0.00 -2.15 0.03
T7.ironing -0.02 0.01 -2.37 0.02

T8.teenager 0.13 0.01 19.68 0.00
T9.parents -0.13 0.01 -11.28 0.00

T.outstation 0.01 0.00 2.95 0.00
RH1.kitchen 0.04 0.01 5.83 0.00

RH2.living -0.05 0.01 -9.46 0.00
RH3.laundry 0.04 0.00 10.51 0.00

RH4.office -0.00 0.00 -0.70 0.48
RH5.bath 0.00 0.00 6.41 0.00

RH6.outside -0.00 0.00 -6.35 0.00
RH7.ironing -0.01 0.00 -4.99 0.00

RH8.teenager 0.00 0.00 0.15 0.88
RH9.parents -0.01 0.00 -3.69 0.00

RH.outstation 0.01 0.00 8.46 0.00
weekday.Tuesday -0.10 0.01 -6.71 0.00

weekday.Wednesday -0.05 0.01 -3.51 0.00
weekday.Thursday -0.10 0.01 -6.88 0.00

weekday.Friday -0.01 0.01 -0.35 0.72
weekday.Saturday 0.01 0.02 0.88 0.38

weekday.Sunday -0.07 0.01 -4.86 0.00
poly(hour, 3)1 -95.61 15.63 -6.12 0.00
poly(hour, 3)2 25.42 14.92 1.70 0.09
poly(hour, 3)3 167.00 15.06 11.09 0.00

T1.kitchen:poly(hour, 3)1 2.13 2.24 0.95 0.34
T1.kitchen:poly(hour, 3)2 -3.85 1.91 -2.02 0.04
T1.kitchen:poly(hour, 3)3 -17.81 2.01 -8.85 0.00

T2.living:poly(hour, 3)1 -5.43 2.15 -2.52 0.01
T2.living:poly(hour, 3)2 14.70 1.72 8.53 0.00
T2.living:poly(hour, 3)3 21.28 1.86 11.42 0.00

T3.laundry:poly(hour, 3)1 5.61 0.94 5.99 0.00
T3.laundry:poly(hour, 3)2 -7.04 0.91 -7.75 0.00
T3.laundry:poly(hour, 3)3 -9.31 0.92 -10.16 0.00

T4.office:poly(hour, 3)1 -0.95 0.82 -1.16 0.25
T4.office:poly(hour, 3)2 -4.22 0.78 -5.42 0.00
T4.office:poly(hour, 3)3 3.13 0.82 3.81 0.00
T5.bath:poly(hour, 3)1 1.06 0.95 1.11 0.27
T5.bath:poly(hour, 3)2 -0.95 0.94 -1.01 0.31
T5.bath:poly(hour, 3)3 1.37 0.95 1.45 0.15

T6.outside:poly(hour, 3)1 -2.03 0.59 -3.48 0.00
T6.outside:poly(hour, 3)2 2.24 0.53 4.22 0.00
T6.outside:poly(hour, 3)3 5.45 0.54 10.16 0.00
T7.ironing:poly(hour, 3)1 0.62 1.12 0.55 0.58
T7.ironing:poly(hour, 3)2 6.33 1.15 5.51 0.00
T7.ironing:poly(hour, 3)3 -0.86 1.11 -0.77 0.44

T8.teenager:poly(hour, 3)1 5.14 0.82 6.26 0.00
T8.teenager:poly(hour, 3)2 -5.16 0.84 -6.16 0.00
T8.teenager:poly(hour, 3)3 -0.84 0.81 -1.04 0.30
T9.parents:poly(hour, 3)1 -6.97 1.55 -4.49 0.00
T9.parents:poly(hour, 3)2 1.45 1.45 1.00 0.32
T9.parents:poly(hour, 3)3 -0.56 1.51 -0.38 0.71

T.outstation:poly(hour, 3)1 1.94 0.68 2.87 0.00
T.outstation:poly(hour, 3)2 -2.68 0.61 -4.41 0.00
T.outstation:poly(hour, 3)3 -5.47 0.61 -9.02 0.00

poly(hour, 3)1:RH1.kitchen 3.91 0.91 4.32 0.00
poly(hour, 3)2:RH1.kitchen -6.18 0.79 -7.79 0.00
poly(hour, 3)3:RH1.kitchen -4.29 0.86 -5.01 0.00

poly(hour, 3)1:RH2.living -4.96 0.84 -5.90 0.00
poly(hour, 3)2:RH2.living 7.37 0.75 9.79 0.00
poly(hour, 3)3:RH2.living 6.87 0.82 8.43 0.00

poly(hour, 3)1:RH3.laundry 4.04 0.60 6.77 0.00
poly(hour, 3)2:RH3.laundry -2.33 0.58 -4.04 0.00
poly(hour, 3)3:RH3.laundry -2.99 0.58 -5.19 0.00

poly(hour, 3)1:RH4.office -0.11 0.50 -0.21 0.83
poly(hour, 3)2:RH4.office 1.64 0.51 3.25 0.00
poly(hour, 3)3:RH4.office 0.73 0.51 1.43 0.15
poly(hour, 3)1:RH5.bath 0.01 0.08 0.17 0.87
poly(hour, 3)2:RH5.bath -0.22 0.06 -3.39 0.00
poly(hour, 3)3:RH5.bath -0.05 0.08 -0.63 0.53

poly(hour, 3)1:RH6.outside -0.29 0.06 -4.69 0.00
poly(hour, 3)2:RH6.outside 0.16 0.06 2.67 0.01
poly(hour, 3)3:RH6.outside -0.04 0.06 -0.70 0.48
poly(hour, 3)1:RH7.ironing -2.03 0.37 -5.54 0.00
poly(hour, 3)2:RH7.ironing 0.27 0.39 0.71 0.48
poly(hour, 3)3:RH7.ironing 0.92 0.37 2.48 0.01

poly(hour, 3)1:RH8.teenager 1.84 0.35 5.30 0.00
poly(hour, 3)2:RH8.teenager 0.12 0.34 0.33 0.74
poly(hour, 3)3:RH8.teenager -3.84 0.33 -11.50 0.00
poly(hour, 3)1:RH9.parents -1.68 0.38 -4.39 0.00
poly(hour, 3)2:RH9.parents -0.89 0.36 -2.48 0.01
poly(hour, 3)3:RH9.parents 1.92 0.36 5.34 0.00

poly(hour, 3)1:RH.outstation 0.62 0.11 5.88 0.00
poly(hour, 3)2:RH.outstation -0.52 0.10 -5.29 0.00
poly(hour, 3)3:RH.outstation -0.42 0.10 -4.23 0.00

poly(hour, 3)1:weekday.Tuesday -6.01 2.09 -2.87 0.00
poly(hour, 3)2:weekday.Tuesday 14.83 2.08 7.13 0.00
poly(hour, 3)3:weekday.Tuesday 6.33 2.04 3.10 0.00

poly(hour, 3)1:weekday.Wednesday -7.47 2.08 -3.59 0.00
poly(hour, 3)2:weekday.Wednesday 4.99 2.04 2.44 0.01
poly(hour, 3)3:weekday.Wednesday 10.79 2.02 5.34 0.00

poly(hour, 3)1:weekday.Thursday -3.29 2.00 -1.65 0.10
poly(hour, 3)2:weekday.Thursday 4.25 2.00 2.12 0.03
poly(hour, 3)3:weekday.Thursday -0.31 1.99 -0.16 0.87

poly(hour, 3)1:weekday.Friday -3.60 2.10 -1.71 0.09
poly(hour, 3)2:weekday.Friday -7.69 2.09 -3.69 0.00
poly(hour, 3)3:weekday.Friday 5.07 2.05 2.48 0.01

poly(hour, 3)1:weekday.Saturday 0.23 2.15 0.11 0.92
poly(hour, 3)2:weekday.Saturday -9.67 2.12 -4.56 0.00
poly(hour, 3)3:weekday.Saturday 0.56 2.08 0.27 0.79

poly(hour, 3)1:weekday.Sunday -5.23 2.12 -2.47 0.01
poly(hour, 3)2:weekday.Sunday 6.49 2.10 3.09 0.00
poly(hour, 3)3:weekday.Sunday 12.26 2.05 5.96 0.00

Table 7.23: Summary of full interaction model (LMinter): lapp ∼ (temperatures +
humidities + weekday) ∗ poly(hour, 3). With R2

adj = 0.393, F -statistic = 120.4 on
107 and 19627 DF, p-value < 2e− 16.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.3238 0.1112 20.90 0.0000
T1.kitchen -0.0244 0.0147 -1.66 0.0972

T2.living -0.0592 0.0133 -4.45 0.0000
T3.laundry 0.1032 0.0068 15.20 0.0000

T4.office 0.0513 0.0060 8.58 0.0000
T6.outside -0.0090 0.0042 -2.15 0.0313
T7.ironing -0.0203 0.0088 -2.31 0.0211

T8.teenager 0.1286 0.0065 19.70 0.0000
T9.parents -0.1302 0.0115 -11.34 0.0000

T.outstation 0.0139 0.0048 2.89 0.0039
RH1.kitchen 0.0353 0.0060 5.86 0.0000

RH2.living -0.0519 0.0055 -9.44 0.0000
RH3.laundry 0.0440 0.0042 10.44 0.0000

RH4.office -0.0022 0.0039 -0.56 0.5763
RH5.bath 0.0038 0.0006 6.78 0.0000

RH6.outside -0.0028 0.0004 -6.36 0.0000
RH7.ironing -0.0147 0.0029 -5.04 0.0000

RH8.teenager 0.0006 0.0027 0.22 0.8239
RH9.parents -0.0103 0.0027 -3.75 0.0002

RH.outstation 0.0061 0.0007 8.37 0.0000
weekday.Tuesday -0.0995 0.0147 -6.75 0.0000

weekday.Wednesday -0.0521 0.0147 -3.55 0.0004
weekday.Thursday -0.0992 0.0143 -6.93 0.0000

weekday.Friday -0.0064 0.0147 -0.43 0.6640
weekday.Saturday 0.0136 0.0151 0.90 0.3663

weekday.Sunday -0.0728 0.0148 -4.91 0.0000
poly(hour, 3)1 -97.4838 15.5580 -6.27 0.0000
poly(hour, 3)2 27.3026 14.8049 1.84 0.0652
poly(hour, 3)3 164.2781 14.9439 10.99 0.0000

T1:poly(hour, 3)1 2.2770 2.2384 1.02 0.3091
T1:poly(hour, 3)2 -4.0939 1.8957 -2.16 0.0308
T1:poly(hour, 3)3 -17.6548 2.0087 -8.79 0.0000
T2:poly(hour, 3)1 -5.1861 2.1447 -2.42 0.0156
T2:poly(hour, 3)2 14.6738 1.7174 8.54 0.0000
T2:poly(hour, 3)3 21.5339 1.8555 11.61 0.0000
T3:poly(hour, 3)1 5.7256 0.9253 6.19 0.0000
T3:poly(hour, 3)2 -7.2081 0.9001 -8.01 0.0000
T3:poly(hour, 3)3 -9.0226 0.9055 -9.96 0.0000
T4:poly(hour, 3)1 -0.9050 0.8119 -1.11 0.2650
T4:poly(hour, 3)2 -4.2525 0.7767 -5.48 0.0000
T4:poly(hour, 3)3 3.2782 0.8156 4.02 0.0001
T6:poly(hour, 3)1 -2.1642 0.5752 -3.76 0.0002
T6:poly(hour, 3)2 2.3231 0.5227 4.44 0.0000
T6:poly(hour, 3)3 5.2832 0.5294 9.98 0.0000
T7:poly(hour, 3)1 0.8162 1.1138 0.73 0.4637
T7:poly(hour, 3)2 6.2716 1.1424 5.49 0.0000
T7:poly(hour, 3)3 -0.5772 1.1016 -0.52 0.6003
T8:poly(hour, 3)1 5.1076 0.8198 6.23 0.0000
T8:poly(hour, 3)2 -5.1771 0.8369 -6.19 0.0000
T8:poly(hour, 3)3 -0.8092 0.8124 -1.00 0.3193
T9:poly(hour, 3)1 -6.6029 1.5117 -4.37 0.0000
T9:poly(hour, 3)2 1.0702 1.4106 0.76 0.4480
T9:poly(hour, 3)3 -0.3745 1.4578 -0.26 0.7973

T.out:poly(hour, 3)1 2.0866 0.6699 3.11 0.0018
T.out:poly(hour, 3)2 -2.7112 0.6017 -4.51 0.0000
T.out:poly(hour, 3)3 -5.3262 0.6021 -8.85 0.0000

poly(hour, 3)1:RH1 3.8655 0.9042 4.28 0.0000
poly(hour, 3)2:RH1 -6.1819 0.7922 -7.80 0.0000
poly(hour, 3)3:RH1 -4.2975 0.8531 -5.04 0.0000
poly(hour, 3)1:RH2 -4.9170 0.8403 -5.85 0.0000
poly(hour, 3)2:RH2 7.3368 0.7509 9.77 0.0000
poly(hour, 3)3:RH2 6.9283 0.8128 8.52 0.0000
poly(hour, 3)1:RH3 4.0604 0.5951 6.82 0.0000
poly(hour, 3)2:RH3 -2.2837 0.5764 -3.96 0.0001
poly(hour, 3)3:RH3 -3.0108 0.5763 -5.22 0.0000
poly(hour, 3)1:RH4 -0.0623 0.4993 -0.12 0.9006
poly(hour, 3)2:RH4 1.6098 0.5025 3.20 0.0014
poly(hour, 3)3:RH4 0.8155 0.5115 1.59 0.1109
poly(hour, 3)1:RH5 0.0354 0.0747 0.47 0.6358
poly(hour, 3)2:RH5 -0.2233 0.0612 -3.65 0.0003
poly(hour, 3)3:RH5 -0.0232 0.0762 -0.30 0.7604
poly(hour, 3)1:RH6 -0.2907 0.0628 -4.63 0.0000
poly(hour, 3)2:RH6 0.1601 0.0583 2.75 0.0061
poly(hour, 3)3:RH6 -0.0433 0.0590 -0.73 0.4628
poly(hour, 3)1:RH7 -2.0458 0.3663 -5.58 0.0000
poly(hour, 3)2:RH7 0.2614 0.3850 0.68 0.4971
poly(hour, 3)3:RH7 0.9060 0.3717 2.44 0.0148
poly(hour, 3)1:RH8 1.8700 0.3468 5.39 0.0000
poly(hour, 3)2:RH8 0.0997 0.3421 0.29 0.7706
poly(hour, 3)3:RH8 -3.8633 0.3322 -11.63 0.0000
poly(hour, 3)1:RH9 -1.7793 0.3786 -4.70 0.0000
poly(hour, 3)2:RH9 -0.8837 0.3520 -2.51 0.0121
poly(hour, 3)3:RH9 1.8622 0.3553 5.24 0.0000

poly(hour, 3)1:RH.out 0.6244 0.1057 5.91 0.0000
poly(hour, 3)2:RH.out -0.5231 0.0987 -5.30 0.0000
poly(hour, 3)3:RH.out -0.4158 0.0993 -4.19 0.0000

poly(hour, 3)1:weekday.Tuesday -5.9389 2.0930 -2.84 0.0046
poly(hour, 3)2:weekday.Tuesday 14.9919 2.0783 7.21 0.0000
poly(hour, 3)3:weekday.Tuesday 6.2782 2.0392 3.08 0.0021

poly(hour, 3)1:weekday.Wednesday -7.5385 2.0804 -3.62 0.0003
poly(hour, 3)2:weekday.Wednesday 5.1233 2.0409 2.51 0.0121
poly(hour, 3)3:weekday.Wednesday 10.7376 2.0184 5.32 0.0000

poly(hour, 3)1:weekday.Thursday -3.3827 1.9994 -1.69 0.0907
poly(hour, 3)2:weekday.Thursday 4.4160 1.9966 2.21 0.0270
poly(hour, 3)3:weekday.Thursday -0.4498 1.9822 -0.23 0.8205

poly(hour, 3)1:weekday.Friday -3.7746 2.0903 -1.81 0.0710
poly(hour, 3)2:weekday.Friday -7.3491 2.0755 -3.54 0.0004
poly(hour, 3)3:weekday.Friday 4.8581 2.0417 2.38 0.0174

poly(hour, 3)1:weekday.Saturday 0.1261 2.1434 0.06 0.9531
poly(hour, 3)2:weekday.Saturday -9.5805 2.1222 -4.51 0.0000
poly(hour, 3)3:weekday.Saturday 0.4866 2.0801 0.23 0.8150

poly(hour, 3)1:weekday.Sunday -5.1403 2.1088 -2.44 0.0148
poly(hour, 3)2:weekday.Sunday 6.9113 2.0902 3.31 0.0009
poly(hour, 3)3:weekday.Sunday 12.2086 2.0515 5.95 0.0000

Table 7.24: Summary of reduced interaction Model (RedInterModel), where we just re-
moved T5.bath. With R2

adj = 0.393, F -statistic = 125 on 103 and 19631 DF, and p-value
< 2e− 16.
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7.4 Comparing main effect model and interaction model

7.4.1 Statistics

Main Effect Model Interaction Model
Full R2

adj = 0.328 R2
adj = 0.393

F -statistic = 333 on 29 and 19705 DF F -statistic = 120 on 107 and 19627 DF
Reduced 1 R2

adj = 0.328 R2
adj = 0.393

F -statistic = 358 on 27 and 19707 DF F -statistic = 125 on 103 and 19631 DF
Reduced 2 R2

adj = 0.328
F -statistic = 371 on 26 and 19708 DF -

Table 7.25: Comparing R2 and F -statistic of all the set main and interaction models.

df AIC
Main effect model

Full (Model 7) 31 31572
Reduced 1 29 31571
Reduced 2 28 31569

Interaction effect model
Full (LMinter) 109 29641

Reduced 1 (RedInterModel) 105 29638

Table 7.26: Comparing all the created main and interaction models with model selection
criterion AIC.

Finally, we can conclude from the above results in Table 7.25 and 7.26 that there are
hardly any differences between the full and reduced models. This means, the reduction
does not achieve much improvement regarding adjusted coefficient of determination and
AIC. Thus we can work with the full models, so for main model prediction we use the full
main model (Model 7) and for the interaction model prediction we operate with the full
interaction model (LMinter).
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7.5 Predictions on the energy consumption

After finding out that the full main model (Model 7) and full interaction model (LMinter)
are relatively more convincing in terms of their model selection values, we perform and
study predictions with these models. For this, we want to explore the relationship between
variables lapp and hour and set some predictions by working with Model 7 first and then
LMinter.

Preparation

While we make some prediction of lapp depending on one variable covariate and hours,
we set all the other covariates to their medians with respect to the hours.

Since we fix the covariates at their median, we first observe the median of all the
temperature depending on the hours (c.f. Figure 7.11). To visualize the medians, we leave
out the two outside temperatures, T6.outside and T.outstation, as they vary similarly
between 5 and 10 ◦C, whereas the other inside temperatures range around 20 and 21 ◦C.
A detailed observed median plot of the inside temperatures is prepared in Figure 7.11.

All the observed medians of the temperature covariates depending on the hours are
listed in Table 7.28.
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Figure 7.11: Observed median of all temperatures dependent of corresponding hour.
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Next, we are doing the same for the humidity covariates. The visualization of the
observed medians depending on the hours is given in Figure 7.12. The two outside hu-
midities T6.outside and T.outstation have the almost same curve, while T6.outside

ranges more around the medians of inside humidities. The observed medians of inside
humidities varies approximately around 40 %.

All the observed medians of the humidity covariates depending on the hours are listed
in Table 7.29.
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Figure 7.12: Observed median of all humidities dependent of corresponding hour.
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After fixing the medians of the temperature and humidity covariates, we look at the
three fixed polynomial coefficients of the corresponding hours that will used for the pre-
dictions, c.f. Table 7.27.

hour poly(houri, 1) poly(houri, 2) poly(houri, 3)
1 -0.012 0.014 -0.015
2 -0.011 0.010 -0.007
3 -0.0098 0.0071 -0.0011
4 -0.0087 0.0041 0.0032
5 -0.0077 0.0014 0.0062
6 -0.0067 -0.00094 0.0079
7 -0.0057 -0.0029 0.0085
8 -0.0046 -0.0046 0.0082
9 -0.0036 -0.0059 0.0071
10 -0.0026 -0.0069 0.0055
11 -0.0016 -0.0076 0.0035
12 -0.00052 -0.0079 0.0012
13 0.00051 -0.0079 -0.0012
14 0.0015 -0.0076 -0.0035
15 0.0026 -0.0069 -0.0055
16 0.0036 -0.0059 -0.0071
17 0.0046 -0.0046 -0.0082
18 0.0056 -0.0029 -0.0085
19 0.0067 -0.00095 -0.0078
20 0.0077 0.0014 -0.0062
21 0.0087 0.0041 -0.0032
22 0.0098 0.007 0.0011
23 0.011 0.01 0.007
24 0.012 0.014 0.015

Table 7.27: Polynomial Coefficient of covariate hour.
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Hrs T1. T2. T3. T4. T5. T6. T7. T8. T9. T.out-
kitchen living laundry office bath outside ironing teenager parents station

1 22.20 20.29 22.00 21.08 19.79 5.95 20.16 22.73 19.29 6.22
2 22.00 19.89 22.03 21.07 19.63 5.80 20.04 22.50 19.29 6.16
3 21.79 19.58 22.10 20.89 19.50 5.67 20.00 22.39 19.29 5.55
4 21.60 19.32 22.10 20.67 19.39 5.40 20.00 22.27 19.39 5.33
5 21.43 19.10 22.20 20.39 19.29 5.08 19.98 22.10 19.39 5.10
6 21.29 18.96 22.20 20.23 19.20 4.56 19.89 22.00 19.39 4.97
7 21.20 18.79 22.20 20.10 19.10 4.52 19.82 21.96 19.39 4.84
8 21.10 18.70 22.10 20.00 19.15 4.40 19.79 21.79 19.39 4.80
9 21.00 18.60 22.00 19.95 19.20 4.73 19.79 21.70 19.39 4.82
10 21.00 18.50 21.83 20.03 19.13 5.59 19.63 21.58 19.39 5.02
11 21.00 19.00 21.79 20.29 19.20 6.51 19.50 21.39 19.39 5.70
12 21.00 19.73 21.79 20.50 19.20 8.11 19.50 21.36 19.39 6.50
13 21.03 20.29 21.79 20.60 19.20 9.20 19.60 21.39 19.39 7.60
14 21.20 20.43 22.00 20.89 19.22 9.80 19.89 21.54 19.43 8.46
15 21.41 20.50 22.10 20.89 19.26 10.29 20.10 21.70 19.46 9.10
16 21.62 20.60 22.20 20.85 19.27 10.67 20.29 21.96 19.50 9.50
17 21.78 20.79 22.29 20.89 19.29 10.60 20.59 22.39 19.50 9.80
18 21.79 20.79 22.30 20.89 19.29 10.50 20.68 22.60 19.46 9.73
19 21.79 20.70 22.29 20.89 19.29 9.96 20.63 22.60 19.39 9.35
20 21.96 20.75 22.29 20.89 19.29 9.46 20.46 22.70 19.43 8.78
21 22.20 20.79 22.29 20.79 19.39 8.73 20.29 22.70 19.39 8.23
22 22.39 20.73 22.31 20.89 19.91 8.03 20.25 22.76 19.37 7.88
23 22.50 20.79 22.29 21.10 20.16 7.38 20.20 22.79 19.29 7.32
24 22.39 20.60 22.10 21.08 20.04 6.33 20.20 22.79 19.25 6.81

Table 7.28: Observed median of all temperature variables in ◦C.
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Hrs RH1. RH2. RH3. RH4. RH5. RH6. RH7. RH8. RH9. RH.out-

kitchen living laundry office bath outside ironing teenager parents station

1 39.02 40.59 38.59 38.70 51.67 54.51 35.43 42.36 39.66 85.58
2 39.25 40.90 38.76 38.73 51.40 58.32 36.01 43.68 40.47 86.42
3 39.23 41.09 38.83 38.59 50.92 58.88 36.46 44.40 41.16 88.00
4 39.40 41.29 38.90 38.50 50.52 61.28 36.47 44.95 41.86 88.83
5 39.40 41.42 39.06 38.50 50.19 63.59 36.29 44.85 42.33 89.25
6 39.42 41.50 39.13 38.42 50.00 64.56 36.53 44.56 42.65 90.50
7 39.50 41.59 39.11 38.29 49.90 65.14 36.78 44.48 42.90 91.33
8 39.59 41.83 39.00 38.20 49.611 65.28 36.90 44.50 43.09 91.92
9 39.62 42.20 38.81 38.29 49.00 65.53 36.91 44.10 43.09 92.00
10 39.76 42.36 38.47 38.47 49.00 66.75 35.68 43.33 42.65 91.67
11 39.90 41.78 38.29 38.58 48.61 63.02 35.923 42.62 41.48 89.00
12 40.11 40.82 38.28 38.73 48.46 56.77 35.50 42.15 40.80 84.00
13 40.43 39.96 38.40 38.59 48.74 49.24 35.09 41.40 40.58 79.00
14 40.33 39.48 38.75 38.53 48.40 41.16 34.43 40.67 40.40 73.67
15 39.68 39.01 38.70 38.23 47.93 35.47 33.96 40.20 40.00 69.33
16 39.54 38.52 38.36 37.94 47.52 32.30 33.79 40.04 39.90 66.25
17 39.42 38.20 38.03 38.13 47.05 28.30 33.37 39.66 39.85 65.58
18 39.00 37.78 37.93 37.90 46.31 26.61 32.92 39.36 39.90 65.67
19 39.00 37.98 37.79 37.93 46.10 31.06 32.65 39.64 39.79 68.08
20 39.75 38.70 37.74 38.02 46.03 35.25 33.34 39.72 39.59 70.17
21 42.19 40.23 38.26 38.33 47.23 37.95 33.38 39.71 39.21 74.00
22 40.46 40.19 38.50 38.63 51.55 43.35 33.57 39.95 39.00 76.83
23 39.51 40.01 38.40 38.50 53.49 48.53 33.81 39.90 38.56 80.50
24 39.06 40.16 38.50 38.50 52.25 52.05 34.47 40.93 38.83 83.83

Table 7.29: Observed median of all humidity variables in %.

These values contained in Table 7.28, 7.29 and 7.27 will be used for our predictions in
the next sections.
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7.5.1 Prediction for main effects

Now to examine the hourly pattern, let’s compare the appliances energy consumption
predictions of some highly relevant area temperatures visualized by 24 slopes, that is a
slope for each hours. Do all the rooms have the same intra-day pattern? Does the pattern
differ from day to day? To see this we make some prediction (c.f. Figure 7.13 and 7.14).

For these predictions, we use the full main model (Model 7). The prediction input
data is set as follows, so that we yield the formula, for i = 1, . . . 19735,

Ŷi = β̂0 +β̂1xi1 + β̂x̃i + β̂21poly(hi,1) + β̂22poly(hi,2) + β̂23poly(hi,3)

+β̂24δiweekdayi,
(7.2)

where δi selects the weekday of interest. The covariate of interest xi1 will be able to
take different values in a reasonable range. In the case of temperatures, we set xi1 ∈
[minj(Tj),maxj(Tj)] with j = 1.kitchen, 2.living, 3.laundry, 4.office, 5.bath,
7.ironing, 8.teenager, 9.parents for indoor temperatures and j = 6.outside, .outstation
for the outdoor temperatures. Furthermore, x̃ is the median design matrix of the remain-
ing 19 temperature and humidity covariates that will be set to fixed values that is the
observed median for the corresponding hour hi with hi = 1, . . . , 24 and i = 1, . . . 19735,
for which we created our Table 7.28 and 7.29. And the final inputs are the corresponding
polynomial coefficient of the hour of interest and the weekday we want to predict.

To set more details in our prediction and to capture some pattern and differences
between weekdays, we calculate the daily prediction. Can we notice different pattern for
the specialized prediction?

The following plots, in Figure 7.13 and 7.14, represents the prediction of the full main
model (Model 7) with confidence level 0.95.

Relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and six different areas
to see the variation of hourly wise pattern.

For the kitchen temperature we visualize all weekdays to see the differences between
the weekdays (c.f. Figure 7.13). As for the other room temperatures, that is living, laundry,
office, bathroom and outside, we only give the Monday predictions. Their predictions for
the whole week are in the Appendix given in Figure A.8, A.9, A.10, A.11 and A.12.

In advance, we can give the overall impression that all the hours have almost the
same slope for one area. They do not have significantly different gradients. But as for the
different room, we have different slopes. On the one hand there are good positive effect
for the kitchen and laundry room, a low slope for the office and bathroom. It validates
our findings about the low significant covariate T5.bath. On the other hand as for the
living room, there is a highly negative relation with lapp throughout the day. And for
our outside temperature we have small descending line for all the hours.

The reason for only giving the Monday plots for the five other room temperatures
(c.f. Figure 7.14) is that we do not have an interaction between the temperatures and
weekdays, as implemented in our full main model (Model 7). Thus we have the same
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pattern, i.e. the parallel lines which represents the hours h = 1, . . . , 24, for each weekday.
The only difference between the weekdays is that parallel lines are translated or there are
small parallel shifts per weekday.

For instance, inspection of Figure 7.13 indicates a little bit more diversified parallel
lines for the hourly-wise Monday prediction than for Sunday prediction.

Interpretation: For the main effect, we only observe hourly-wise lines which behave
the same as we do not allow any interaction. Only the distances between the hourly-wise
slopes and their angle are to be interpreted, whereby these are very weak. Since we already
discussed these issues above, we focus on the hours. In the afternoon and evening hours
we have the highest appliances energy use, as expected. So in the midnight to the morning
hours the occupants behave the same and using less energy, whereas in the afternoon and
especially in the evening hours the energy consumption reaches its peaks.

Furthermore, we provide the prediction of full main model (Model 7) for the relevant
and corresponding humidities in Figure 7.15. We created the visualization exactly anal-
ogously to the temperature figures, i.e. allow the variable of interest to take reasonable
values and fix the other to their median. The humidity predictions support our findings
in the temperature predictions. The presence of the occupants increases the temperature
and humidity and thus probably leads to device application. Note that due to thermo-
dynamic reasons that rising temperature also causes a higher humidity absorption and
therefore a decreasing humidity percentage (c.f. Figure A.1). The figure also shows the
same afternoon behavior like we detected in the temperature predictions.
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Figure 7.13: Prediction of the full main model (Model 7) restricted on weekdays. The plot

shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and tempera-
ture T1.kitchen to see the variation of hourly-wise pattern for all the weekdays, while
the other covariates fixed at their medians. Condition h is colored by hours 1 to 24.
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Figure 7.14: Prediction of the full main model (Model 7) restricted on weekdays. The plot

shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and tempera-
tures (Tj)j=2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise pattern
for Mondays, while the other covariates fixed at their medians. All weekdays of these room
temperatures can be found in the Appendix, Figure A.8 - A.12. Condition h is colored by
hours 1 to 24.
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Figure 7.15: Prediction of full main model (Model 7) restricted on weekdays. The plot

shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and humidi-
ties (RHj)j=1.kitchen,2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise
pattern for Mondays, while the other covariates fixed at their medians. Condition h is
colored by hours 1 to 24.
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7.5.2 Prediction for interaction effects

Finally we look at the interaction effect predictions. For that, we use the same procedure
as for the main effect prediction, but now based on the full interaction model (LMinter).
For our prediction we prepare the following simplified formula with notation as (7.2):

Ŷi = β̂0 +β̂1xi1 + β̂x̃i + β̂21poly(hi,1) + β̂22poly(hi,2) + β̂23poly(hi,3) + β̂24δiweekdayi
+β̂25xi1poly(hi,1) + β̂26xi1poly(hi,2) + β̂27xi1poly(hi,3)

+β̂28δiweekdayipoly(hi,1) + β̂29δiweekdayipoly(hi,2) + β̂30δiweekdayipoly(hi,3)

+β̂x̃ipoly(hi,1) + β̂x̃ipoly(hi,2) + β̂x̃ipoly(hi,3).
(7.3)

Intersections can be observed now in Figure 7.16 and 7.17, which is the summary of
Figure A.13, A.14, A.15, A.16 and A.17 in the Appendix, since we are allowing the co-
variates to interact with the time effect poly(hour, 3). Thus contrary to the main effect
predictions the hourly-wise slopes are not parallel to each other. Since in our full interac-
tion model (LMinter) where no interaction allowed with weekdays, there are similarities
between the weekdays. Identical to the main effect predictions, we detect some parallel
shifts of the hourly-wise slopes comparing the seven weekday predictions.

Interpretation: First, focusing on the covariate T1.kitchen in Figure 7.16, almost all
24 hourly slopes intersect. If we now take a closer look at the prediction, we discover
interesting similar behaviors for some hours. That is, the afternoon hours, h = 14, . . . , 19,
which are represented in the color variation blue, behave the same with a positive relation
between the kitchen temperature and the appliances energy consumption, whereas the
late evening or the morning hours almost intersect vertically with the afternoon hours,
i.e. a negative relation between temperature and energy use.

This means that if the behavior in the afternoon will change, so the evening and
morning behavior.

For the similarity reasons between the weekdays, remaining rooms summarized in one
plot in Figure 7.17.

As visible in this plot the afternoon hours also behave the same in the other main
rooms, but in different shapes. The least interaction can be seen in the bathroom where
only the later evening hour lines cut the morning hour lines. So only the morning hours
and evening hours influence each other.

Furthermore, we provide the LMinter prediction for the relevant and corresponding
humidities in Figure 7.18. The humidity predictions support our findings in the temper-
ature predictions. The figure also shows the same afternoon behavior like we detected in
the temperature predictions.
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Figure 7.16: Prediction of LMinter restricted on weekdays. The plot shows the relationship
between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and temperature T1.kitchen to see
the variation of hourly-wise pattern for all the weekdays, while the other covariates fixed
at their medians. Condition h is colored by hours 1 to 24.



7.5. PREDICTIONS ON THE ENERGY CONSUMPTION 141

15 20 25 30

3
4

5
6

Monday

T2.living

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Monday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p 1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Monday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Monday

T5.bath

pr
ed

ic
te

d 
fit

 o
f l

ap
p

−5 0 5 10 15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Monday

T6.outside

pr
ed

ic
te

d 
fit

 o
f l

ap
p

Figure 7.17: Prediction of LMinter restricted on weekdays. The plot shows
the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and temperatures
(Tj)j=2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise pattern for
Mondays, while the other covariates fixed at their medians. All weekdays of these room
temperatures can be found in the Appendix, Figure A.13 - A.17. Condition h is colored
by hours 1 to 24.
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Figure 7.18: Prediction of LMinter restricted on weekdays. The plot shows
the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and humidities
(RHj)j=1.kitchen,2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise pat-
tern for Mondays, while the other covariates fixed at their medians. Condition h is colored
by hours 1 to 24.



Chapter 8

Generalized additive models
(GAM’s) for energy consumption
within a house

At this point, we already inspected our energy data set with some plots and fitted a linear
models on our energy use data set with the lm()-function, where we said that lapp is a
linear function of temperature, humidity and an additional time effect. Now we are also
doing predictions using GAM for modeling the relationship.

8.1 Main effect model

Generally, with a non-linear relationship, the linear model does a poor job fitting the data.
Review the data set and our residual plots which clearly has some non-linear pattern, we
now applying the method of the generalized additive model. Does this non-linear approach
fitting the data better? Do we get a higher R2

adj-value with GAM? Or does the model
support our previous results?

We are starting with fitting a model to the energy use data where lapp has a smooth,
non-linear relation to temperature, humidity and time effects using the gam()-function
from the package mgcv. That is, the independent variables are modeled by smoothing
spline function s. The method we use for the model fitting is REML, due to the arguments
we discussed in Section 4.3.6. And at the end, we visualize the model fit and doing some
predictions.

8.1.1 Setting the model

Since we already inspected the relation of the covariate and the response variable in the
data exploration and the multiple linear regression setting separately, we immediately
take all the covariates given into account and set our full GAM with i = 1, . . . , 19735.

Our full main GAM model (GAMmain) has the structure

143
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g(lappi) = Aiθi +f1(T1.kitcheni) + f2(T2.livingi) + f3(T3.laundryi)
+f4(T4.officei) + f5(T5.bathi) + f6(T6.outsidei)
+f7(T7.ironingi) + f8(T8.teenageri) + f9(T9.parentsi)
+f10(T.outstationi) + f11(RH1.kitcheni) + f12(RH2.livingi)
+f13(RH3.laundryi) + f14(RH4.officei) + f15(RH5.bathi)
+f16(RH6.outsidei) + f17(RH7.ironingi) + f18(RH8.teenageri)
+f19(RH9.parentsi) + f20(RH.outstationi) + f21(houri) + εi,

(8.1)
where all the temperature, humidity and hour covariates set into a smooth function f so
that these are non-parametric coefficients, and the parametric model matrix A ∈ R19735×7

with its i-th row

Ai =



weekday.Mondayi
weekday.Tuesdayi
weekday.Wednesdayi
weekday.Thursdayi
weekday.Fridayi
weekday.Saturdayi
weekday.Sundayi



T

∈ R1×7.

The covariates in A included in the model as a factor, which is hence parametric
in the model. Also note that the weekday included as factor and therefore not set in a
smooth function, otherwise setting weekday in a smooth function there are not enough
unique values for it and the weekday covariate will be ignored. Moreover g(·) is a known
smooth monotonic link function, εi is the Gaussian error term and θ ∈ R7 is the coefficient
parameter.

The corresponding summary to our GAMmain (8.1) is presented in Table 8.1.
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Family: gaussian; Link function: identity

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.35299 0.01080 403.22 < 2e-16 ***
weekday.Tuesday -0.13303 0.01508 -8.82 < 2e-16 ***

weekday.Wednesday -0.04530 0.01559 -2.91 0.0037 **
weekday.Thursday -0.10854 0.01559 -6.96 3.5e-12 ***

weekday.Friday -0.00748 0.01612 -0.46 0.6427
weekday.Saturday 0.03275 0.01581 2.07 0.0383 *

weekday.Sunday -0.07864 0.01531 -5.14 2.8e-07 ***

Approximate significance of smooth terms:
edf Ref.df F p-value

s(T1.kitchen) 8.56 8.91 12.94 < 2e-16 ***
s(T2.living) 6.55 7.67 38.86 < 2e-16 ***

s(T3.laundry) 5.19 6.39 66.06 < 2e-16 ***
s(T4.office) 8.57 8.92 26.34 < 2e-16 ***
s(T5.bath) 8.57 8.93 9.36 3.5e-14 ***

s(T6.outside) 8.65 8.93 10.49 7.9e-13 ***
s(T7.ironing) 5.84 7.08 6.53 9.0e-08 ***

s(T8.teenager) 7.82 8.63 46.50 < 2e-16 ***
s(T9.parents) 8.35 8.84 18.11 < 2e-16 ***

s(T.outstation) 6.87 8.02 4.82 6.1e-06 ***
s(RH1.kitchen) 8.30 8.83 31.31 < 2e-16 ***

s(RH2.living) 5.42 6.70 57.24 < 2e-16 ***
s(RH3.laundry) 7.30 8.32 43.88 < 2e-16 ***

s(RH4.office) 6.76 7.90 4.82 6.7e-06 ***
s(RH5.bath) 7.06 8.13 10.21 1.9e-14 ***

s(RH6.outside) 7.20 8.23 10.58 3.7e-15 ***
s(RH7.ironing) 7.59 8.51 14.22 < 2e-16 ***

s(RH8.teenager) 8.29 8.84 16.02 < 2e-16 ***
s(RH9.parents) 8.02 8.74 13.74 < 2e-16 ***

s(RH.outstation) 7.29 8.17 9.78 7.9e-14 ***
s(hour) 8.92 9.00 341.48 < 2e-16 ***

Table 8.1: Summary of full main GAM (GAMmain) (8.1): lapp ∼ s(temperatures)

+ s(humidities) + as.factor(weekday) + s(hour). The full significant GAMmain
reaches a coefficient of determination of R2

adj = 0.42 and deviance explained D = 42.5%.
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8.1.2 Analyzing the GAM main model

In comparison to the linear fit, we predict the appliances as the sum of smooth functions of
temperature, humidity and hours. Our full model GAMmain (c.f. (8.1) and Table 8.1) has
significant smooth functions of all covariates, so we do not have to think about removing
covariates like in our linear models before. Moreover, we reach a higher adjusted coefficient
of determination than with the linear full main model (Model 7):

R2
adj(GAMmain) = 0.42 > 0.33 = R2

adj(Model 7)

The higher R2
adj can be explained by the structure of the general additive model which

is much better considering the subtleties and at fitting these data because it can capture
the non-linear relationships between the variables.

Besides the R2
adj, the summary in Table 8.1 shows the EDF, estimated degree of

freedom, which practically says on how much the covariate is smoothed. That is, the
higher the EDF, the more complex the splines. The p-value is also given, which still
shows the statistical significance of given covariate on the response variable, which is
tested by the F -test - lower F -value is better. In our summary, all the covariates are
highly significance, except for the non-significant factor weekday.Friday. This problem,
we already discussed in the linear regression application.

As illustrated by Figure 8.1 and 8.2 we see the marginal fits of the different areas
influencing the appliances energy consumption. From the plots we see that we have done
a good job in fitting the linear model in the last chapter. Except for the tails, the fitted
line and the confidence interval a quite linear with slight gradient.

Results are given in Figure 8.3, which represents the marginal influence of the smooth
hour function on the response, are coincide with the box-plot we provided in Figure 6.21,
which supports a polynomial of degree three as argued before depending on Figure 6.21.
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Figure 8.1: Plot of full main GAM (GAMmain) (8.1) from Table 8.1. Estimated marginal

main effects on l̂app classified by room temperatures with fitted line, interval and resid-
uals.
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Figure 8.2: Plot of full main GAM (GAMmain) (8.1) from Table 8.1. Estimated marginal

main effects on l̂app classified by room humidities with fitted line, interval and residuals.
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Figure 8.3: Plot of full main GAM (GAMmain) (8.1) from Table 8.1. Estimated marginal

main effects on l̂app classified by time effect hours with fitted line, interval and residuals.
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8.2 Interaction model

At this point we just fitted lapp with just the main effect, with temperatures, humidities
and times. But now we also want to fit a model with smooths and tensor interactions to
separate out the independent and interacting effects of covariates.

8.2.1 Setting the interaction model

Before setting the interaction model we have to choose between the methods to include
tensor product interaction term. (c.f. Wood and Wood (2019), package mgcv and Wood
(2017), Section 7.1) ti() gives a tensor product interaction that is appropriate with
included main effects.

Our full interaction GAM model (GAMinter) has the structure

g(lappi) = Aiθi +f1(T1.kitcheni) + f2(T2.livingi) + f3(T3.laundryi)
+f4(T4.officei) + f5(T5.bathi) + f6(T6.outsidei)
+f7(T7.ironingi) + f8(T8.teenageri) + f9(T9.parentsi)
+f10(T.outstationi) + f11(RH1.kitcheni) + f12(RH2.livingi)
+f13(RH3.laundryi) + f14(RH4.officei) + f15(RH5.bathi)
+f16(RH6.outsidei) + f17(RH7.ironingi) + f18(RH8.teenageri)
+f19(RH9.parentsi) + f20(RH.outstationi) + f21(houri)
+ti1(T1.kitcheni, houri) + ti2(T2.livingi, houri)
+ti3(T3.laundryi, houri) + ti4(T4.officei, houri)
+ti5(T5.bathi, houri) + ti6(T6.outsidei, houri)
+ti7(T7.ironingi, houri) + ti8(T8.teenageri, houri)
+ti9(T9.parentsi, houri) + ti10(T.outstationi, houri)
+ti11(RH1.kitcheni, houri) + ti12(RH2.livingi, houri)
+ti13(RH3.laundryi, houri) + ti14(RH4.officei, houri)
+ti15(RH5.bathi, houri) + ti16(RH6.outsidei, houri)
+ti17(RH7.ironingi, houri) + ti18(RH8.teenageri, houri)
+ti19(RH9.parentsi, houri) + ti20(RH.outstationi, houri)
+ti21(weekdayi, houri) + εi,

(8.2)
where the setting is as explained in the full model GAMmain (8.1). The summary with
the significant covariates are shown in Table 8.2. We do not have to reduce it. One more
advantage of the GAM models.

The corresponding summary to our GAMinter (8.2) is presented in Table 8.2.
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Family: gaussian; Link function: identity

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.44644 0.01842 241.36 < 2e-16 ***
weekday.Tuesday -0.10764 0.01622 -6.64 3.3e-11 ***

weekday.Wednesday -0.06195 0.01683 -3.68 0.00023 ***
weekday.Thursday -0.11872 0.01662 -7.14 9.4e-13 ***

weekday.Friday -0.00748 0.01761 -0.42 0.67101
weekday.Saturday -0.03687 0.01748 -2.11 0.03493 *

weekday.Sunday -0.13407 0.01683 -7.96 1.8e-15 ***

Approximate significance of smooth terms:
edf Ref.df F p-value

s(T1.kitchen) 8.51 8.87 8.64 1.1e-12 ***
s(T2.living) 4.98 6.20 6.81 2.2e-07 ***

s(T3.laundry) 6.55 7.60 12.30 < 2e-16 ***
s(T4.office) 8.66 8.93 20.91 < 2e-16 ***
s(T5.bath) 8.63 8.93 9.20 5.6e-14 ***

s(T6.outside) 8.24 8.81 4.99 7.7e-07 ***
s(T7.ironing) 8.41 8.83 9.81 5.9e-15 ***

s(T8.teenager) 8.13 8.75 41.73 < 2e-16 ***
s(T9.parents) 5.71 6.89 6.64 9.7e-08 ***

s(T.outstation) 8.26 8.80 7.97 1.8e-10 ***
s(RH1.kitchen) 7.93 8.64 6.87 8.5e-10 ***

s(RH2.living) 5.75 6.94 11.25 7.8e-14 ***
s(RH3.laundry) 7.69 8.54 18.77 < 2e-16 ***

s(RH4.office) 7.85 8.61 6.53 9.3e-08 ***
s(RH5.bath) 5.42 6.58 3.57 0.00104 **

s(RH6.outside) 4.87 6.00 4.70 8.8e-05 ***
s(RH7.ironing) 6.67 7.84 8.86 4.1e-12 ***

s(RH8.teenager) 7.89 8.64 4.26 0.00019 ***
s(RH9.parents) 8.45 8.88 16.05 < 2e-16 ***

s(RH.outstation) 3.39 4.30 2.33 0.03643 *
s(hour) 8.84 8.99 88.49 < 2e-16 ***

ti(T1.kitchen,hour) 10.97 12.89 5.09 6.7e-09 ***
ti(T2.living,hour) 12.29 13.61 10.14 < 2e-16 ***

ti(T3.laundry,hour) 12.81 14.40 17.38 < 2e-16 ***
ti(T4.office,hour) 12.61 14.37 6.42 2.5e-13 ***
ti(T5.bath,hour) 12.73 14.56 5.63 2.6e-11 ***

ti(T6.outside,hour) 4.39 4.89 9.41 6.2e-09 ***
ti(T7.ironing,hour) 13.08 14.59 8.56 < 2e-16 ***

ti(T8.teenager,hour) 14.00 15.26 14.05 < 2e-16 ***
ti(T9.parents,hour) 6.60 8.20 8.95 1.7e-12 ***

ti(T.outstation,hour) 12.91 14.41 8.74 5.9e-15 ***
ti(RH1.kitchen,hour) 12.57 14.21 12.56 < 2e-16 ***

ti(RH2.living,hour) 11.70 13.39 13.29 < 2e-16 ***
ti(RH3.laundry,hour) 13.80 15.20 16.00 < 2e-16 ***

ti(RH4.office,hour) 11.70 13.86 4.13 3.0e-07 ***
ti(RH5.bath,hour) 3.92 4.01 14.85 3.5e-12 ***

ti(RH6.outside,hour) 12.03 14.10 5.87 8.6e-12 ***
ti(RH7.ironing,hour) 13.26 14.65 9.30 < 2e-16 ***

ti(RH8.teenager,hour) 13.49 15.03 10.84 < 2e-16 ***
ti(RH9.parents,hour) 12.41 14.25 8.93 < 2e-16 ***

ti(RH.outstation,hour) 10.68 12.39 5.01 2.9e-08 ***
ti(weekday,hour) 14.56 15.67 14.57 < 2e-16 ***

Table 8.2: Summary of interaction GAM (GAMinter) with hour: lapp

∼ s(temperatures) + s(humidities) + as.factor(weekday) + s(hour) +

ti(temperature, hour) + ti(humidities, hour) + ti(weekday, hour). The full
significant GAMinter reaches a coefficient of determination of R2

adj = 0.5 and deviance
explained D = 51%.
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8.2.2 Analyzing the GAM interaction model

Like we see in Table 8.2 we have a better fit with using GAM-method, since

R2
adj(GAMinter) = 0.5 > 0.39 = R2

adj(LMinter)

Furthermore, we see that for the main effects, the EDF-values are approximately the
same, but as for the interaction terms, we see that the EDF-values are mostly higher
which means that there is more complexity, i.e. more smooth basis, in the fitting.

As detailed in the plots below, we again see the main effects on the energy consumption,
i.e. in Figure 8.4 the estimated marginal plots classified by temperatures, in Figure 8.7
the estimated marginal plots classified by humidities and in Figure 8.10 the estimated
marginal plots of the time effect hour, using model GAMinter (8.2) in Table 8.2. Whereas
in Figure 8.5, 8.8 and 8.11 we now see the interaction terms in form of an 3D surface. The
surfaces do not have extremely changes or wiggles. i.e. the highest value is 2 and the lowest
value is −1.5. Taking Figure 8.11 as an example, we see that on Saturday, i.e. weekday 6,
we have the highest value of energy consumption between 10 and 15 pm. Additionally we
can see that contrary to the weekends, in the beginning of weeks the energy consumption
is higher in the morning hours and lower in the afternoon hours.

Furthermore we added the heat maps in Figure 8.6, 8.9 and 8.12 to support the
interaction 3D surface plots. The contour plot shows the covariates on the axes and
the contour lines and the corresponding number on the lines provides the effects of the
covariates on the response variable lapp. Overall we can say that we have smooth contours
which means that the model adapts less to response variable and the smoothing factor is
higher to penalize the waves. In heat maps the extreme points can be recognized not only
by the contours, but also by the colors. The whiter the color, the higher the value and so
the influence, and the darker the color, up to red, the lower the values. The heat map of
the interaction term of ti(weekday, hour) on lapp, in Figure 8.12, confirms our results
we made for the corresponding 3D surface in Figure 8.11.
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Figure 8.4: Plot of GAMinter (8.2). Estimated marginal main effects on l̂app classified
by room temperatures with fitted line, interval and residuals.
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Figure 8.5: Plot of GAMinter (8.2). Estimated marginal interaction effects on l̂app classi-
fied by interaction terms between room temperatures and hours displayed as 3D surfaces.
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Figure 8.6: Plot of GAMinter (8.2). Estimated marginal interaction effects on l̂app clas-
sified by interaction terms between temperatures and hours displayed as colored heat
maps.
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Figure 8.7: Plot of GAMinter (8.2). Estimated marginal main effects on l̂app classified
by room humidities with fitted line, interval and residuals.
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Figure 8.8: Plot of GAMinter (8.2). Estimated marginal interaction effects on l̂app clas-
sified by interaction terms between room humidities and hours displayed as 3D surfaces.
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Figure 8.9: Plot of GAMinter (8.2). Estimated marginal interaction effects on l̂app clas-
sified by interaction terms between humidities and hours displayed as colored heat maps.
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8.3 Comparing main effect and interaction model

Finally we conclude the model setting with some statistics to compare these models.

GAMmain GAMinter
R2
adj = 0.42 R2

adj = 0.50

Table 8.3: Comparing R2 of full main and interaction GAM, GAMmain (8.1) and GAM-
inter (8.2), respectively.

df AIC
Main effect model

GAMmain 175.33 28808.11
Interaction effect model

GAMinter 438.59 26189.10

Table 8.4: Comparing all the created full main and interaction GAM, GAMmain (8.1)
and GAMinter (8.2), with model selection criterion AIC (4.32).

We continue with the widely used model selection criterion in statistics, that is coef-
ficients of determinations and AIC. For the equation of AIC we apply (4.32), where we
have the number of parameters to be estimated subtracted by the maximized value of the
likelihood function of the model. So we want the model with lower AIC values.

Finally, we can conclude from the above results in Table 8.3 and 8.4 that GAMinter
is a better fit model due to the higher R2

adj and lower AIC value.

R2
adj(GAMmain) = 0.42 < 0.5 = R2

adj(GAMinter)
AIC(GAMmain) = 28808.11 > 26189.10 = AIC(GAMinter)

Since the Table 8.1 and 8.2 showing significant p-values with suitable F -values, we
can work with the full GAM models. Thus for main effect prediction we use the model
GAMmain and for the interaction effect prediction we operate with the model GAMinter.
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8.4 Predictions on the energy consumption

In line with the linear models, we also predict our created main and interaction GAM
models, GAMmain and GAMinter.

8.4.1 Prediction for main effect

First, we inspect the model GAMmain (8.1) and handle the prediction input like we did
with the linear model case. That is letting one covariate of interest be variable, while the
other covariates are fixed to their median and time effect fixed to their values depending
on the weekday and hour of interest.

Interpretation Starting with an overview of all the six temperature marginal predic-
tion, we now identify more curvy, non-linear prediction graphs. Like hinted in the GAM
regression plots in Figure 8.1, we have small wiggles or fluctuations which are indeed
highly smoothed and big slope changes at the tails or limits in temperature prediction
of T1.kitchen and T4.office. This can happen due to outliers and a lack of observa-
tions at the temperature limits. Cutting out these limits, we see that these prediction are
consistent with the linear ones with some wiggles, compare to Figure 8.13 and 7.14. As
for the covariates T2.living and T3.laundry we have quite similarities with the linear
prediction we found in Figure 7.14, but here in Figure 8.14 we have slightly smooth curves.

Exploring T5.bath and T6.outside, there are differences between the linear and the
GAM predictions, in Figure 7.14 and 8.14 respectively. While with the full main model
(Model 7) we have clearly just one gradient, we can identify a quadratic or even cubic
curve using the model GAMmain, i.e. a non-linear relationship. Its energy consumption
peak is at 23 ◦C for the bathroom and highest peak near 24◦C for the outside temperature.

Moreover, we have the same line pattern as for the linear model (Model 7) prediction.
Since the curves of the hours are parallel to each other and are again slightly shifted
comparing the weekdays, see Figure 8.13 and in the Appendix Figure A.18 to A.22 all the
weekdays are listed of the summarized Figure 8.14.

Additionally, we provide the GAMmain prediction for the relevant and correspond-
ing humidities in Figure 8.15. The predictions on humidity support our findings in the
temperature predictions. The presence of the occupants increases the temperature and
humidity and thus leads to device application. Note that due to thermodynamic reasons
that rising temperature also causes a higher humidity absorption (c.f. Figure A.1). The
figure also shows the same afternoon and evening behavior like we detected in the tem-
perature predictions. As expected, the bathroom humidity stays almost constant with a
slightly higher humidity level when devices are used.
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Figure 8.13: Prediction of GAMmain restricted on weekdays. The plot shows the relation-
ship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and temperature T1.kitchen to
see the variation of hourly-wise pattern for all the weekdays, while the other covariates
fixed at their medians. Condition h is colored by hours 1 to 24.
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Figure 8.14: Prediction of GAMmain restricted on weekdays. The plot shows
the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and temperatures
(Tj)j=2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise pattern for
Mondays, while the other covariates fixed at their medians. All weekdays of these room
temperatures can be found in the Appendix, Figure A.18 - A.22. Condition h is colored
by hours 1 to 24.
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Figure 8.15: Prediction of GAMmain restricted on weekdays. The plot shows
the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and humidities
(RHj)j=1.kitchen,2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise pat-
tern for Mondays, while the other covariates fixed at their medians. Condition h is colored
by hours 1 to 24.
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8.4.2 Prediction for interaction effect

Finally, we reveal the prediction of the model GAMinter we established in (8.2). The
prediction input is managed analogously as for the GAMmain predictions and the linear
models in the previous sections.

Interpretation The constructed hourly-wise prediction for GAMinter (8.2) has a higher
difference to the final linear model LMinter.

But when we get more into details, we observe that the tendencies of the afternoon
hours are just the same as for the linear predictions of LMinter. As anticipated in Figure
8.16 and 8.17, the hourly-wise prediction curves are more non-linear. In the afternoon
hours we have the same pattern in the curved fittings, such as for the early morning hours.
An overall impression is that the afternoon to evening hours interacting more powerful
with the other hours. Since the blue to purple lines, which indicates the afternoon till
evening hours, intersecting with the other hour curves virtually more obvious. Remember
that the interaction says that a change in the afternoon hours will influence the behavior
of the remaining hours.

Since the curves of the hours are parallel to each other and are again slightly shifted
comparing the weekdays, see Figure 8.16 and in the Appendix Figure A.23 to A.27 all the
weekdays are listed of the summarized Figure 8.17.

Additionally, we provide the prediction of GAMinter for the relevant and correspond-
ing humidities in Figure 8.18. These predictions support our findings in the temperature
predictions. The presence of the occupants increases the temperature and decreasing hu-
midity and thus leads to device application. The figure also shows the same afternoon
behavior and a higher usage in the evening hours, like we detected in the temperature
predictions. But contrary to the temperature predictions the Figure 8.18 obviously has a
higher degree of confusion or chaos for the kitchen, living, laundry room and office. This
can be explained by the short or temporarily staying in this area. It is quite different in
the bathroom and outside humidity with smoother curves. This confirms our assumption
about almost constant high humidity level in the bathroom.



166 CHAPTER 8. GAM’S FOR ENERGY CONSUMPTION WITHIN A HOUSE

15 20 25 30

3
4

5
6

7
Monday

T1.kitchen

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3
4

5
6

7

Tuesday

T1.kitchen

pr
ed

ic
te

d 
fit

 o
f l

ap
p 1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

15 20 25 30

3
4

5
6

7

Wednesday

T1.kitchen

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3
4

5
6

7

Thursday

T1.kitchen

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3
4

5
6

7

Friday

T1.kitchen

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3
4

5
6

7

Saturday

T1.kitchen

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3
4

5
6

7

Sunday

T1.kitchen

pr
ed

ic
te

d 
fit

 o
f l

ap
p

Figure 8.16: Prediction of GAMinter restricted on weekdays. The plot shows the relation-
ship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and temperature T1.kitchen to
see the variation of hourly-wise pattern for all the weekdays, while the other covariates
fixed at their medians. Condition h is colored by hours 1 to 24.
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Figure 8.17: Prediction of GAMinter restricted on weekdays. The plot shows
the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and temperatures
(Tj)j=2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise pattern for
Mondays, while the other covariates fixed at their medians. All weekdays of these room
temperatures can be found in the Appendix, Figure A.18 - A.22. Condition h is colored
by hours 1 to 24.
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Figure 8.18: Prediction of GAMinter restricted on weekdays. The plot shows
the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and humidities
(RHj)j=1.kitchen,2.living,3.laundry,4.office,5.bath,6.outside to see the variation of hourly-wise pat-
tern for Mondays, while the other covariates fixed at their medians. Condition h is colored
by hours 1 to 24.



Chapter 9

Comparison of LM and GAM for
energy consumption within a house

9.1 Evaluation and comparison based on model se-

lection criterion AIC and R2
adj

We fitted a pretty satisfying linear model and selected them with help of the adjusted
coefficient of determination and the selection criteria AIC. We also computed the general-
ized additive model with the R-package mgcv for our data set on the energy consumption
of a house. Now the question arises, if we really can simply compare the two different
regression models to choose between LM and GAM.

In many statistical journals, the R2
adj is used as indicator to compare the two models.

(c.f. in Candanedo et al. (2017), Khouloud et al. (2017) and Abeare (2009)). According
to the manual of the package mgcv of Wood and Wood (2019), the adjusted coefficient
of determination is defined as the proportion of variance explained. For this, the original
variance and residual variance are determined with their unbiased estimator. The deviance
D of a model is defined as discussed in Section 4.3.4. The theoretical definition is D =
2[l(β̂max) − l(β̂)]φ, where l(β̂max) is the maximized likelihood of the saturated model,
i.e. a model with one parameter for each data point so that the likelihood is maximized.
l(β̂) is the maximized likelihood of the fitted model and φ the scale parameter. Due to
these points, it is reasonable to say, that the deviance explained has a high similarity to
the coefficient of determination, see the definitions of the coefficient of determination in
Section 3.5.2. We have to be careful with comparing R2

adj of linear models and generalized
additive models, but is a satisfying indicator of performance.

Furthermore, according to the GAM construction (c.f. the general GAM equation
(4.6)), it is possible to combine the parametric and the non-parametric components in
one model. For our models, GAMmain (8.1) and GAMinter (8.2), we established both
components within the GAM estimation procedure. And since the GAM method selects
the best model within the calculation also by AIC, we cannot argue against a comparison
between both regression approach based on the selection criteria AIC. Nevertheless it is
fundamental to only apply AIC, when checking nested models against each other, see
Section 3.5.3. As we do use the same structure in both models, we will apply AIC as a
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model selection criteria. This means that both full models contain all temperature and
humidity, weekday and hour covariates and due to all arguments of the GAM construction,
this indicates that our linear models are nested in generalized additive models. This is
also supported with a statement in Guisan et al. (2002).

df AIC R2
adj

Main Effect Model
Model 7 31.00 31572.14 0.328

GAMmain 175.33 28808.11 0.420
Interaction Model

LMinter 109.00 29640.86 0.393
GAMinter 438.59 26189.10 0.500

Table 9.1: Comparing all the created Main and Interaction LM and GAM Models with
model selection criterion AIC, degree of freedom (df) and the coefficient of determination
R2
adj.

Both, the full main and interaction models improved their adjusted coefficient of de-
termination by approximately 0.1 using GAM, see Table 9.1. Looking at the values, the
model GAMinter is providing the best R2

adj and AIC, i.e. the highest R2
adj and the smallest

AIC, which corroborate the best fitted model for our energy consumption data set with
appliances as the response variable.

9.2 Further model comparison

With parametric models one simply use the AIC to choose the best fit model. However,
the non-parametric analogues can be obtained by trading-off the number of parameters.
For more information on effective number of parameters, see Friedman et al. (2001) in
Section 7.6.

A non-parametric AIC was issued on regression models by Hurvich et al. (1998). The
results on the AIC usage were convincing, but a comparison of a parametric and non-
parametric model was not directly verified. Thus, we want to search for a valid selection
criteria for checking these models against each other. One solution is the parametricness
index for regression models which was introduced in the Paper of Liu et al. (2011). The
performance reached an asymptotic efficiency when the true model is infinite dimensional
in the case of a non-parametric model. Though it all, the behavior of the parametricness
index was simulated with real data and showed its usefulness in practice.

Another solution for model comparison between generalized linear and additive models
is applied in Czado et al. (2009) the non-randomized probability integral transforms and
proper scores. These methods allows to evaluate model fits and predictive power. In the
paper these model selections were used on non-nested insurance models. It shows that
GAM indeed provide a better model fit, but due to the computational cost, the generalized
linear model is a appropriate and good alternative with non-linear components.



Chapter 10

Conclusion

The statistical data analysis has revealed interesting results in exploratory analysis and
model setting. As seen in the time series plots, the appliances energy consumption profile
is highly variable and in the box-plots it was obvious that the data above the median is
higher dispersed. The pairwise plots show that the temperature and humidity have indeed
effects on the appliances energy consumption. Temperature and humidity increases when a
resident enters a room. If the occupant then uses devices in this area that also consequently
increase the temperature, a dependence on the appliances is visible. The time information
was ranked as an important covariate as the explanatory power of the model increased
impressively. So the time, especially the hours, have an effect on the appliances energy
consumption. Additionally, setting an interaction with the time effect hour improved
the regression. It was clear from the predictions that the fitted lines of afternoon hours
intersect with the lines of morning and evening hours, as there are interactions. These are
the occupants showing daily routine. Changing the behavior in the afternoon hours will
affect the evening and morning hours.

We have also seen interesting results when considering the LM and GAM for fitting
the appliances energy consumption. To receive a satisfying model, we transformed our
response variable appliances with the logarithm function and used linear relationships
for the temperature and humidity covariates and non-linear relationship for the hour
covariate. The weekday was included as an factor. This composition yield a R2

adj of more
than 0.3 and with an included interaction effect even nearly 0.4. For comparison reasons,
the same regression structure were used for GAM and reached an R2

adj improvement of
0.1. Even though the GAM did a better job in fitting the model with its non-parametric
structure, we have seen in the GAM marginal plots that we fitted the linear model well
with help of polynomial hourly effects. Also the predictions of the LM and GAM supported
each other in their interpretation. With this nested structure we were able to use the
adjusted coefficient of determination and the AIC for model selection. The GAM also
provided a better AIC, but only with an enhancement of approximately 10%. Based on
these results, one can say that the LM, with careful chosen non-linear covariate and
interaction effect, is also satisfying regarding the simpler straightforward setting and the
lower computational cost.
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Appendix A

Additional supporting plots and
tables

Further supporting figures and study results are listed here.

A.1 Psychrometric chart

Figure A.1: The simplified psychrometric chart adopted from Swartman (1981). The figure
shows the inter-relationship of humidity and temperature. For more insight on the theory
of thermodynamics, see Sattelmayer (2008)

A.2 Interaction plots
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Figure A.2: Scatter-plots (1) of T1.kitchen separated by hour versus lapp, where R
denotes the correlation coefficient and p the p-value.
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Figure A.3: Scatter-plots (2) of T1.kitchen separated by hour versus lapp, where R
denotes the correlation coefficient and p the p-value.
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Figure A.4: Scatter-plots (1) of RH1.kitchen separated by hour versus lapp, where R
denotes the correlation coefficient and p the p-value.
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Figure A.5: Scatter-plots (2) of RH1.kitchen separated by hour versus lapp, where R
denotes the correlation coefficient and p the p-value.
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Figure A.6: Interaction plot of l̂appih = β̂0 +
∑10

j=1 β̂jTjih , j =
1.kitchen, . . . , 9.parents, .outstation, separated by observation ih corresponds
to the hour. With an additional 95% confidence interval marked as a gray shadow.
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Figure A.7: Interaction plot of l̂appih = β̂0 +
∑10

j=1 β̂jRHjih , j =
1.kitchen, . . . , 9.parents, .outstation, separated by observation ih corresponds
to the hour. With an additional 95% confidence interval marked as a gray shadow.
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A.3 Predictions

A.3.1 Statistics

A.3.2 Predictions using the LM’s and GAM’s
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hour statistics T1.kit T2.liv T3.laun T4.off T5.bath T6.out T7.iron T8.teen T9.par T.outstation

1 min 17.60 16.60 17.89 15.53 15.42 -6.01 15.50 17.00 15.10 -4.90
median 22.20 20.29 22.00 21.08 19.79 5.95 20.16 22.73 19.29 6.22
mean 22.22 20.51 22.28 21.16 19.94 6.29 20.30 22.59 19.39 6.70
max 25.60 24.70 26.79 26.00 24.32 23.50 25.10 27.00 24.10 20.00

2 min 17.50 16.60 17.89 15.50 15.39 -6.07 15.54 16.94 15.10 -4.75
median 22.00 19.89 22.03 21.07 19.63 5.80 20.04 22.50 19.29 6.16
mean 22.04 20.20 22.25 21.10 19.81 5.99 20.27 22.45 19.41 6.30
max 25.45 24.50 26.78 26.10 24.20 23.08 25.07 26.80 24.16 18.90

3 min 17.50 16.50 17.79 15.50 15.39 -5.61 15.60 16.89 15.19 -4.86
median 21.79 19.58 22.10 20.89 19.50 5.67 20.00 22.39 19.29 5.55
mean 21.86 19.91 22.25 20.96 19.69 5.72 20.24 22.29 19.42 5.96
max 25.29 24.40 26.84 25.89 24.17 22.67 24.95 26.70 24.20 18.00

4 min 17.39 16.50 17.79 15.46 15.39 -5.75 15.60 16.80 15.19 -4.92
median 21.60 19.32 22.10 20.67 19.39 5.40 20.00 22.27 19.39 5.33
mean 21.70 19.69 22.27 20.79 19.61 5.49 20.23 22.16 19.44 5.73
max 25.20 24.30 26.90 25.70 24.10 22.26 24.89 26.50 24.27 17.70

5 min 17.39 16.42 17.70 15.39 15.39 -5.86 15.60 16.79 15.19 -4.99
median 21.43 19.10 22.20 20.39 19.29 5.08 19.98 22.10 19.39 5.10
mean 21.55 19.48 22.28 20.65 19.54 5.22 20.20 22.05 19.46 5.47
max 25.10 24.19 26.97 25.60 24.10 21.84 24.89 26.39 24.29 17.80

6 min 17.29 16.39 17.70 15.39 15.39 -5.51 15.63 16.70 15.19 -5.00
median 21.29 18.96 22.20 20.23 19.20 4.56 19.89 22.00 19.39 4.97
mean 21.40 19.30 22.28 20.53 19.47 5.00 20.17 21.95 19.47 5.20
max 25.10 24.09 27.03 25.50 24.10 21.43 24.89 26.29 24.29 17.60

7 min 17.29 16.39 17.70 15.30 15.38 -5.54 15.63 16.68 15.19 -4.43
median 21.20 18.79 22.20 20.10 19.10 4.52 19.82 21.96 19.39 4.84
mean 21.27 19.14 22.26 20.43 19.42 4.87 20.13 21.85 19.48 5.00
max 25.00 23.99 27.09 25.39 24.07 21.01 24.79 26.20 24.29 16.80

8 min 17.23 16.29 17.50 15.30 15.37 -5.61 15.62 16.60 15.10 -4.75
median 21.10 18.70 22.10 20.00 19.15 4.40 19.79 21.79 19.39 4.80
mean 21.16 19.00 22.22 20.34 19.37 4.77 20.10 21.75 19.48 4.88
max 25.00 23.88 27.15 25.39 24.26 20.60 24.79 26.10 24.32 14.80

9 min 17.20 16.20 17.50 15.30 15.34 -5.71 15.67 16.58 15.10 -4.80
median 21.00 18.60 22.00 19.95 19.20 4.73 19.79 21.70 19.39 4.82
mean 21.08 18.91 22.11 20.27 19.35 4.87 20.07 21.65 19.48 4.85
max 25.00 23.78 27.21 25.29 24.32 20.19 24.79 26.00 24.39 15.05

10 min 17.10 16.20 17.53 15.26 15.34 -5.62 15.60 16.50 15.10 -4.80
median 21.00 18.50 21.83 20.03 19.13 5.59 19.63 21.58 19.39 5.02
mean 21.04 18.96 22.01 20.35 19.35 5.53 19.99 21.52 19.46 5.15
max 24.89 24.01 27.27 25.10 24.00 19.77 24.76 25.87 24.16 15.52

11 min 17.10 16.20 17.60 15.19 15.39 -5.83 15.60 16.50 15.10 -4.90
median 21.00 19.00 21.79 20.29 19.20 6.51 19.50 21.39 19.39 5.70
mean 21.04 19.54 21.98 20.54 19.36 6.98 19.93 21.40 19.52 6.00
max 24.86 27.45 27.93 25.20 24.00 23.67 24.76 25.74 24.25 18.22

12 min 17.00 16.20 17.50 15.19 15.39 -5.82 15.60 16.40 15.10 -3.70
median 21.00 19.73 21.79 20.50 19.20 8.11 19.50 21.36 19.39 6.50
mean 21.09 20.38 21.95 20.73 19.39 8.45 19.90 21.32 19.55 7.07
max 24.86 29.50 28.22 25.70 24.48 25.37 24.76 25.50 24.27 20.28

13 min 17.00 16.20 17.39 15.19 15.39 -4.58 15.60 16.39 15.03 -2.40
median 21.03 20.29 21.79 20.60 19.20 9.20 19.60 21.39 19.39 7.60
mean 21.20 20.92 22.01 20.90 19.45 9.65 19.94 21.33 19.52 8.10
max 24.89 29.86 27.53 25.88 25.12 27.13 24.79 25.52 24.29 22.68

14 min 17.00 16.20 17.39 15.19 15.39 -2.73 15.60 16.31 15.00 -1.60
median 21.20 20.43 22.00 20.89 19.22 9.80 19.89 21.54 19.43 8.46
mean 21.34 21.14 22.17 21.02 19.43 10.59 20.06 21.45 19.53 8.95
max 25.17 29.46 27.93 26.00 24.10 27.66 24.89 25.79 24.36 23.35

15 min 16.89 16.20 17.29 15.19 15.39 -1.65 15.60 16.37 15.00 -1.10
median 21.41 20.50 22.10 20.89 19.26 10.29 20.10 21.70 19.46 9.10
mean 21.55 21.24 22.31 21.04 19.42 11.24 20.22 21.65 19.54 9.55
max 25.70 28.76 28.79 26.10 24.10 27.83 25.00 26.00 24.39 24.40

16 min 16.89 16.20 17.29 15.19 15.39 -0.77 15.60 16.89 15.00 -0.60
median 21.62 20.60 22.20 20.85 19.27 10.67 20.29 21.96 19.50 9.50
mean 21.73 21.27 22.38 21.07 19.44 11.67 20.41 21.85 19.57 9.99
max 26.03 28.03 28.73 26.10 24.20 27.70 25.26 26.24 24.50 25.18

17 min 16.82 16.10 17.29 15.10 15.39 -0.49 15.60 17.00 15.00 -0.48
median 21.78 20.79 22.29 20.89 19.29 10.60 20.59 22.39 19.50 9.80
mean 21.88 21.27 22.40 21.09 19.48 11.80 20.61 22.04 19.59 10.25
max 26.26 27.63 28.57 26.18 24.23 28.14 25.60 26.33 24.50 25.30

18 min 16.79 16.10 17.29 15.10 15.36 -1.02 15.56 16.96 15.00 -1.08
median 21.79 20.79 22.30 20.89 19.29 10.50 20.68 22.60 19.46 9.73
mean 21.96 21.23 22.42 21.07 19.52 11.71 20.72 22.21 19.59 10.25
max 26.20 27.07 29.10 26.20 24.29 28.29 25.89 26.44 24.50 25.27

19 min 16.79 16.10 17.20 15.10 15.36 -3.42 15.49 16.89 15.00 -1.87
median 21.79 20.70 22.29 20.89 19.29 9.96 20.63 22.60 19.39 9.35
mean 21.97 21.12 22.41 21.03 19.53 11.20 20.68 22.30 19.56 10.02
max 26.10 26.60 29.20 26.10 24.67 28.20 26.00 26.60 24.50 25.82

20 min 16.82 16.10 17.20 15.10 15.33 -4.37 15.39 17.28 15.00 -2.58
median 21.96 20.75 22.29 20.89 19.29 9.46 20.46 22.70 19.43 8.78
mean 22.03 21.03 22.40 21.04 19.59 10.48 20.62 22.44 19.53 9.64
max 26.10 26.39 29.24 26.00 25.47 27.35 25.89 26.79 24.50 26.10

21 min 17.20 16.82 17.29 15.19 15.35 -4.98 15.39 17.29 15.00 -2.95
median 22.20 20.79 22.29 20.79 19.39 8.73 20.29 22.70 19.39 8.23
mean 22.24 21.06 22.46 20.98 19.67 9.46 20.51 22.53 19.47 9.10
max 26.26 26.20 28.70 25.89 25.75 27.26 25.79 26.70 24.33 25.70

22 min 17.82 16.79 17.50 15.39 15.39 -5.51 15.40 17.26 14.89 -4.25
median 22.39 20.73 22.31 20.89 19.91 8.03 20.25 22.76 19.37 7.88
mean 22.36 21.07 22.51 21.07 20.02 8.61 20.43 22.61 19.44 8.57
max 26.17 25.73 28.70 25.79 25.80 27.37 25.60 27.05 24.20 25.10

23 min 17.73 16.70 17.79 15.66 15.44 -5.74 15.42 17.19 14.89 -4.50
median 22.50 20.79 22.29 21.10 20.16 7.38 20.20 22.79 19.29 7.32
mean 22.41 20.99 22.45 21.20 20.24 7.48 20.36 22.65 19.39 7.90
max 26.00 25.39 28.26 25.70 24.83 24.33 25.39 27.23 24.14 23.80

24 min 17.70 16.70 17.86 15.60 15.48 -5.69 15.48 17.10 14.89 -4.75
median 22.39 20.60 22.10 21.08 20.04 6.33 20.20 22.79 19.25 6.81
mean 22.36 20.80 22.36 21.17 20.13 6.76 20.31 22.64 19.36 7.23
max 25.79 25.10 27.03 25.79 24.39 23.91 25.10 27.10 24.04 21.30

Table A.1: Statistics of all temperature variables.
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hour statistics RH1.kit RH2.liv RH3.laun RH4.off RH5.bath RH6.out RH7.iron RH8.teen RH9.par RH.outstation
1 min 32.80 33.63 34.05 31.67 37.90 2.05 25.76 33.13 30.50 46.00

median 39.02 40.59 38.59 38.70 51.67 54.51 35.43 42.36 39.66 85.58
mean 39.91 40.64 39.35 39.25 54.29 58.11 35.63 43.28 40.66 83.24
max 49.66 50.59 46.56 49.90 91.00 99.90 49.96 55.25 51.59 100.00

2 min 33.29 34.30 34.47 31.89 38.17 5.93 26.50 35.33 33.18 57.67
median 39.25 40.90 38.76 38.73 51.40 58.32 36.01 43.68 40.47 86.42
mean 39.95 40.98 39.43 39.27 52.76 60.03 36.08 44.38 41.40 85.05
max 49.13 50.59 46.50 49.70 90.01 99.90 50.44 56.34 52.06 100.00

3 min 33.59 34.66 34.12 32.09 38.70 7.44 26.82 35.79 35.40 57.00
median 39.23 41.09 38.83 38.59 50.92 58.88 36.46 44.40 41.16 88.00
mean 39.95 41.21 39.50 39.19 51.78 61.75 36.37 45.22 42.06 86.41
max 49.55 50.59 46.56 49.50 85.35 99.90 50.28 57.31 52.00 100.00

4 min 33.70 34.90 34.00 32.16 38.70 6.00 27.13 35.79 35.73 58.00
median 39.40 41.29 38.90 38.50 50.52 61.28 36.47 44.95 41.86 88.83
mean 39.96 41.43 39.58 39.15 51.12 63.12 36.57 45.74 42.60 87.53
max 49.97 50.40 46.50 49.36 77.27 99.90 50.58 58.67 52.30 100.00

5 min 33.79 35.00 33.50 32.20 38.09 6.21 27.29 36.20 36.36 53.17
median 39.40 41.42 39.06 38.50 50.19 63.59 36.29 44.85 42.33 89.25
mean 39.94 41.63 39.64 39.12 50.64 64.23 36.68 45.88 43.04 88.30
max 50.38 50.26 46.63 49.29 71.81 99.90 51.15 58.78 52.73 100.00

6 min 34.03 35.29 33.33 32.40 37.67 7.00 27.50 36.20 36.97 53.00
median 39.42 41.50 39.13 38.42 50.00 64.56 36.53 44.56 42.65 90.50
mean 39.94 41.78 39.70 39.10 50.28 65.30 36.74 45.72 43.38 89.06
max 50.80 50.09 46.70 49.29 67.24 99.90 51.40 58.51 52.90 99.83

7 min 34.26 35.50 32.80 32.44 37.75 8.02 27.67 36.40 37.59 61.00
median 39.50 41.59 39.11 38.29 49.90 65.14 36.78 44.48 42.90 91.33
mean 39.94 41.93 39.74 39.09 49.99 66.28 36.79 45.50 43.63 89.82
max 51.22 49.90 46.76 49.23 65.26 99.90 51.20 57.75 52.90 100.00

8 min 34.40 35.70 32.29 32.50 37.97 13.82 27.70 36.40 37.63 64.00
median 39.59 41.83 39.00 38.20 49.611 65.28 36.90 44.50 43.09 91.92
mean 40.08 42.21 39.69 39.09 49.81 66.78 36.84 45.29 43.82 90.30
max 51.64 50.59 46.86 49.20 84.90 99.90 51.05 57.44 53.22 100.00

9 min 34.00 35.83 31.96 32.23 39.50 12.93 26.76 36.29 37.53 66.17
median 39.62 42.20 38.81 38.29 49.00 65.53 36.91 44.10 43.09 92.00
mean 40.28 42.48 39.51 39.16 49.88 67.31 36.80 45.05 43.78 90.51
max 52.06 51.04 46.86 49.59 83.97 99.90 50.85 57.65 53.33 100.00

10 min 33.43 32.95 31.52 32.09 39.59 2.69 26.29 36.00 36.33 58.50
median 39.76 42.36 38.47 38.47 49.00 66.75 35.68 43.33 42.65 91.67
mean 40.50 42.50 39.24 39.22 49.94 67.16 36.29 44.15 43.15 89.81
max 52.48 51.67 46.79 49.86 83.42 99.90 50.53 55.93 52.90 100.00

11 min 33.67 28.80 31.72 31.57 38.78 1.00 26.20 35.20 34.50 55.17
median 39.90 41.78 38.29 38.58 48.61 63.02 35.923 42.62 41.48 89.00
mean 40.69 41.81 39.04 39.20 49.59 63.25 36.01 43.40 42.18 87.11
max 52.90 52.30 46.90 48.97 82.33 99.90 49.12 54.57 52.47 100.00

12 min 32.20 25.60 33.02 31.50 37.25 1.00 26.20 34.53 33.19 48.83
median 40.11 40.82 38.28 38.73 48.46 56.77 35.50 42.15 40.80 84.00
mean 40.72 40.59 38.92 39.21 50.38 57.33 35.75 42.97 41.68 82.68
max 53.32 52.93 46.89 49.23 89.60 99.90 47.68 54.46 51.63 100.00

13 min 31.73 23.37 32.79 30.97 37.58 1.00 25.89 33.76 33.55 40.50
median 40.43 39.96 38.40 38.59 48.74 49.24 35.09 41.40 40.58 79.00
mean 40.87 39.74 39.09 39.19 51.38 52.01 35.47 42.48 41.47 77.60
max 53.74 53.56 47.99 49.48 90.00 99.90 46.67 54.94 51.17 100.00

14 min 28.59 20.46 31.67 28.89 37.50 1.00 25.50 32.13 33.09 35.67
median 40.33 39.48 38.75 38.53 48.40 41.16 34.43 40.67 40.40 73.67
mean 40.90 39.16 39.26 39.16 50.75 47.44 35.09 41.89 41.27 73.26
max 54.09 54.09 49.36 49.86 96.32 99.90 46.93 55.63 51.40 99.00

15 min 27.02 21.23 30.66 28.79 37.38 1.00 25.07 31.67 31.97 30.00
median 39.68 39.01 38.70 38.23 47.93 35.47 33.96 40.20 40.00 69.33
mean 40.58 38.85 39.28 38.89 49.89 43.80 34.71 41.35 41.07 70.12
max 54.67 53.83 49.80 49.83 95.61 99.90 47.40 54.70 51.50 99.00

16 min 27.96 22.46 32.00 29.03 37.29 1.00 24.60 31.03 31.77 28.17
median 39.54 38.52 38.36 37.94 47.52 32.30 33.79 40.04 39.90 66.25
mean 40.12 38.58 39.09 38.72 49.14 41.74 34.39 41.00 40.98 67.80
max 53.87 52.93 50.16 50.40 85.46 99.90 47.59 54.09 51.47 99.00

17 min 27.86 24.57 32.43 29.44 37.06 1.00 24.17 30.46 31.32 25.50
median 39.42 38.20 38.03 38.13 47.05 28.30 33.37 39.66 39.85 65.58
mean 39.72 38.34 38.83 38.57 48.34 40.54 34.03 40.59 40.89 66.35
max 52.7 52.07 47.8 50.29 85.40 99.90 47.50 53.17 51.40 97.83

18 min 27.93 24.90 29.49 28.72 34.50 1.00 23.67 29.82 31.72 25.00
median 39.00 37.78 37.93 37.90 46.31 26.61 32.92 39.36 39.90 65.67
mean 39.45 38.21 38.61 38.42 47.52 40.33 33.76 40.41 40.71 66.32
max 52.40 51.73 47.69 50.66 82.83 99.90 47.72 52.94 51.09 98.00

19 min 29.62 26.95 29.00 29.10 33.10 1.00 23.20 29.60 31.29 26.17
median 39.00 37.98 37.79 37.93 46.10 31.06 32.65 39.64 39.79 68.08
mean 39.58 38.34 38.59 38.50 46.96 41.12 33.73 40.53 40.52 67.95
max 56.56 54.66 47.79 50.06 75.79 99.90 48.09 54.00 51.29 98.67

20 min 27.73 25.76 28.77 27.66 30.89 1.00 23.23 29.79 29.93 25.17
median 39.75 38.70 37.74 38.02 46.03 35.25 33.34 39.72 39.59 70.17
mean 40.19 38.84 38.61 38.65 47.13 42.71 33.91 40.85 40.25 69.88
max 57.50 56.03 46.73 50.63 85.47 99.90 48.42 53.85 51.54 99.00

21 min 29.66 27.20 31.16 29.67 29.82 1.00 23.93 30.00 29.23 24.00
median 42.19 40.23 38.26 38.33 47.23 37.95 33.38 39.71 39.21 74.00
mean 42.27 40.17 39.24 39.05 48.80 45.30 34.03 40.84 39.96 71.97
max 63.36 53.09 49.56 51.00 87.27 99.90 48.76 53.90 51.50 98.00

22 min 31.65 29.96 32.93 29.66 30.03 1.00 24.07 30.36 29.17 27.00
median 40.46 40.19 38.50 38.63 51.55 43.35 33.57 39.95 39.00 76.83
mean 40.75 40.21 39.39 39.30 56.50 48.20 34.21 41.01 39.73 74.37
max 53.10 52.22 49.22 51.09 95.80 99.90 49.55 53.75 51.15 97.50

23 min 32.03 31.20 33.40 30.57 37.59 1.00 24.07 30.53 29.29 32.00
median 39.51 40.01 38.40 38.50 53.49 48.53 33.81 39.90 38.56 80.50
mean 40.11 40.20 39.25 39.10 59.43 51.73 34.51 41.15 39.45 77.79
max 57.40 51.43 46.83 50.96 94.99 99.90 50.38 54.30 51.00 98.83

24 min 32.43 32.49 33.70 31.07 37.76 1 24.60 32.83 29.76 42.00
median 39.06 40.16 38.50 38.50 52.25 52.05 34.47 40.93 38.83 83.83
mean 39.84 40.29 39.25 39.04 56.56 55.30 34.94 41.86 39.61 80.98
max 50.23 50.70 46.79 50.20 93.55 99.90 50.40 54.88 51.50 99.67

Table A.2: Statistics of all humidity variables.
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Figure A.8: Prediction of the full main model (Model 7) restricted on weekdays. The plot

shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T2.living

to see the variation of hourly-wise pattern for all the weekdays, while the other covariates
fixed at their medians. Condition h is colored by hours 1 to 24.
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Figure A.9: Prediction of the full main model (Model 7) restricted on weekdays.

The plot shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and
T3.laundry to see the variation of hourly-wise pattern for all the weekdays, while the
other covariates fixed at their medians. Condition h is colored by hours 1 to 24.
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Figure A.10: Prediction of the full main model (Model 7) restricted on weekdays. The plot

shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T4.office

to see the variation of hourly-wise pattern for all the weekdays. Condition h is colored by
hours 1 to 24.
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Figure A.11: Prediction of the full main model (Model 7) restricted on weekdays. The plot

shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T5.bath

to see the variation of hourly-wise pattern for all the weekdays, while the other covariates
fixed at their medians. Condition h is colored by hours 1 to 24.
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Figure A.12: Prediction of the full main model (Model 7) restricted on weekdays.

The plot shows the relationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and
T6.outside to see the variation of hourly-wise pattern for all the weekdays, while the
other covariates fixed at their medians. Condition h is colored by hours 1 to 24.
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Figure A.13: Prediction of LMinter restricted on weekdays. The plot shows the relationship
between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T2.living to see the variation of
hourly-wise pattern for all the weekdays, while the other covariates fixed at their medians.
Condition h is colored by hours 1 to 24.
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Figure A.14: Prediction of LMinter restricted on weekdays. The plot shows the relationship
between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T3.laundry to see the variation of
hourly-wise pattern for all the weekdays, while the other covariates fixed at their medians.
Condition h is colored by hours 1 to 24.



190 APPENDIX A. ADDITIONAL SUPPORTING PLOTS AND TABLES

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Monday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Tuesday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Wednesday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Thursday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Friday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Saturday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Sunday

T4.office

pr
ed

ic
te

d 
fit

 o
f l

ap
p

Figure A.15: Prediction of LMinter restricted on weekdays. The plot shows the relationship
between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T4.office to see the variation of
hourly-wise pattern for all the weekdays, while the other covariates fixed at their medians.
Condition h is colored by hours 1 to 24.
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Figure A.16: Prediction of LMinter restricted on weekdays. The plot shows the relationship
between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T5.bath to see the variation of
hourly-wise pattern for all the weekdays, while the other covariates fixed at their medians.
Condition h is colored by hours 1 to 24.
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Figure A.17: Prediction of LMinter restricted on weekdays. The plot shows the relationship
between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T6.outside to see the variation of
hourly-wise pattern for all the weekdays, while the other covariates fixed at their medians.
Condition h is colored by hours 1 to 24.
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Figure A.18: Prediction of GAMmain restricted on weekdays. The plot shows the re-
lationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T2.living to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.
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Figure A.19: Prediction of GAMmain restricted on weekdays. The plot shows the rela-
tionship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T3.laundry to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.
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Figure A.20: Prediction of GAMmain restricted on weekdays. The plot shows the re-
lationship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T4.office to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.
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Figure A.21: Prediction of GAMmain restricted on weekdays. The plot shows the relation-
ship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T5.bath to see the variation
of hourly-wise pattern for all the weekdays, while the other covariates fixed at their me-
dians. Condition h is colored by hours 1 to 24.
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Figure A.22: Prediction of GAMmain restricted on weekdays. The plot shows the rela-
tionship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T6.outside to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.
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Figure A.23: Prediction of GAMinter restricted on weekdays. The plot shows the rela-
tionship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T2.living to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.



A.3. PREDICTIONS 199

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Monday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Tuesday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p 1

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Wednesday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Thursday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Friday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Saturday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p

15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Sunday

T3.laundry

pr
ed

ic
te

d 
fit

 o
f l

ap
p

Figure A.24: Prediction of GAMinter restricted on weekdays. The plot shows the rela-
tionship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T3.laundry to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.
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Figure A.25: Prediction of GAMinter restricted on weekdays. The plot shows the rela-
tionship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T4.office to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.
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Figure A.26: Prediction of GAMinter restricted on weekdays. The plot shows the relation-
ship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T5.bath to see the variation
of hourly-wise pattern for all the weekdays, while the other covariates fixed at their me-
dians. Condition h is colored by hours 1 to 24.
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Figure A.27: Prediction of GAMinter restricted on weekdays. The plot shows the rela-
tionship between fitted (l̂appih)ih=(i∈[19735]|hour=h,withh=1,...,24) and T6.outside to see the
variation of hourly-wise pattern for all the weekdays, while the other covariates fixed at
their medians. Condition h is colored by hours 1 to 24.
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