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1 Introduction
The Marshall–Olkin distribution was introduced by eponymous authors in [21] as the multivariate exponen-
tial distribution satisfying a strong multivariate lack-of-memory property. A random vector τ = (τ1, . . . , τd)′

has aMarshall–Olkin distribution if non-negative parameters λI , ∅ ≠ I ⊆ {1, . . . , d}, exist such that τ has the
survival-function

F̄(t) = exp

− ∑
∅≠I⊆{1,...,d}

λI max
i∈I

ti

 , ∀t = (t1, . . . , td)′ ≥ 0, (1)

and the parameters λI , ∅ ≠ I ⊆ {1, . . . , d}, ful�l the condition∑
I3i

λI > 0, ∀i ∈ {1, . . . , d}. (2)

A simple calculation shows that the sums in Eq. (2) correspond to the rates of the exponentially distributed
univariate margins τi, i ∈ {1, . . . , d}, respectively. Hence, the condition in Eq. (2) ensures that τi < ∞ a.s. for
all i ∈ {1, . . . , d}.

In [21], the authors proposed the exogenous shock model as a natural stochastic model for the Marshall–
Olkin distribution. Thismodel is based on independent, exponentially distributed random times correspond-
ing to the failure of multiple components of a system at once. In particular, for λI ≥ 0, ∅ ≠ I ⊆ {1, . . . , d},
ful�lling the condition in Eq. (2), let EI ∼ Exp(λI) be independent exponentially distributed randomvariables
with rates λI , ∅ ≠ I ⊆ {1, . . . , d}, respectively, where we use the convention that an exponentially distributed
random variable with rate zero is almost surely in�nite. De�ne τ = (τ1, . . . , τd)′ by

τi := min
{
EI : I 3 i

}
, i ∈ {1, . . . , d}. (3)

Then τ has a Marshall–Olkin distribution with parameters λI , ∅ ≠ I ⊆ {1, . . . , d}.
We are interested in exchangeable random vectors and sequences of (generalised) Marshall–Olkin kind.

These subclasses have been intensively studied in the last decade for the classical Marshall–Olkin distribu-
tion.
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• The exchangeable subclass is studied in [11, Chp. 3]. The author has proven that exchangeability corre-
sponds to the property

λI = λJ , ∀∅ ≠ I, J ⊆ {1, . . . , d} : |I| = |J|.

Furthermore, he has shown that the survival function in Eq. (1) of an exchangeable Marshall–Olkin dis-
tribution can be reparametrised as follows:

F̄(t) = exp
{
−

d∑
i=1

ai−1t[i]

}
, ∀t = (t1, . . . , td)′ ≥ 0, (4)

where t[1] ≥ · · · ≥ t[d] is t in descending order. The sequence a0, a1, . . . ad−1 is de�ned by

ai−1 =
d−i∑
j=0

(
d − i
j

)
λj+1, i ∈ {1, . . . , d},

where λi = λI for i = |I|. Finally, he provides a characterisation theorem that states that a function F̄ of
the form of Eq. (4) is a survival function if, and only if, the sequence a0, a1, . . . , ad−1 is d-monotone. A
sequence a0, a1, . . . , ad−1 is called d-monotone if (−1)i−1

∆i−1ad−i ≥ 0 for i = 1, . . . , d. In this case, the
author shows that λi = (−1)i−1

∆i−1ad−i, i ∈ {1, . . . , d}.
• The extendible subclass is studied in [11, Chp. 4]. A d-variate Marshall–Olkin distributed random vec-

tor τ = (τ1, . . . , τd)′ is called extendible (in the class of Marshall–Olkin distributions) if an exchangeable
sequence of random variables {τ̃i}i∈N exists such that each d-variate subsequence is equal in law to τ
and each �nite subsequence has a Marshall–Olkin distribution. The author of the aforementioned ref-
erence found a unique link between extendible Marshall–Olkin distributions and Lévy subordinators
via a deFinetti representation. In particular, he has shown that an in�nite exchangeable Marshall–Olkin
sequence {τi}i∈N is conditionally iid and can be written as

τi = inf {t > 0 : Λt ≥ Ei}, i ∈ N, (5)

where Ei are iid unit exponential randomvariables independent of a Lévy subordinator {Λt}t≥0 on [0,∞].
This model is also called the Lévy frailty model.

A natural generalisation of the classical Marshall–Olkin distribution is achieved if we allow non-constant
hazard rates in the exogenous shock model construction in Eq. (3), see [10]. This means that we replace λI ·
maxi∈I ti with a cumulative hazard rate function HI(maxi∈I ti) and the exponential shocks EI ∼ Exp(λI)
in Eq. (3) with ZI ∼ 1−exp {−HI}, ∅ ≠ I ⊆ {1, . . . , d}, respectively. A cumulative hazard rate function is a non-
negative, non-decreasing, and continuous function on the non-negative half-line that starts in zero. Previous
works exist on special cases of this generalisation, e.g. [9], which discusses the bivariate case, and [22], which
assumes that HI(t) ≡ λIH(t).
• The exchangeable generalised Marshall–Olkin distribution and the exchangeable exogenous shock

model are studied in [25]. Similar to the classical Marshall–Olkin case, the author has proven that ex-
changeability corresponds to the property

HI(t) = HJ(t), ∀t > 0, ∀∅ ≠ I, J ⊆ {1, . . . , d} : |I| = |J|.

Furthermore, he has shown that a reparametrisation is possible, similar to the classical Marshall–Olkin
case, by replacing ai−1 · t[i] by Ai−1(t[i]), i ∈ {1, . . . , d}, in Eq. (4). He also provides an analytical charac-
terisation, which is discussed in Section 3.

• The extendible subclass of generalised Marshall–Olkin distributions is studied in [14] and [25, Sec. 3].
In [14, Prop. 3.1], it is shown that if the subordinatorΛ in Eq. (5) is assumed to be an additive subordinator
in [0,∞], then each �nite margin of {τi}i∈N has an extendible generalised Marshall–Olkin distribution.
We call this stochastic model the additive-frailty model.
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Contribution:
This article provides the following novel result, which was posed as an open problem for further research
in [25, p. 147 sq.]: every exchangeable sequence τ1, τ2, . . . with �nite margins of generalised Marshall–Olkin
type has an implicit representation as an additive frailty model. In particular, an additive subordinatorΛ and
an iid sequence of unit exponential random variables E1, E2, . . ., independent of Λ, exist such that Eq. (5)
is ful�lled almost surely. Recall that the converse of this statement was proven in [14, Prop. 3.1]. Conse-
quently, we complete this result and establish a novel one-to-one connection between sequences of gener-
alised Marshall–Olkin type and additive subordinators.

The article is structured as follows:we introduce themathematical background andnotation in Section 2,
we summarise existing results on exchangeable generalised Marshall–Olkin distributions in Section 3, and
we present the main result in Section 4. In Section 5, we conclude the article. The main proof requires some
technical results involving exchangeable sequences and Bernstein functions. For the interested reader, we
summarise the required background in Appendices A and B.

2 Mathematical background and notation
In this section, we give a short overview of the required mathematical background and the used notation.

We assume basic knowledge of the theory on multivariate distribution functions and probability theory.
Furthermore,weassume that the reader is familiarwith theLévy–Khintchine characterisationof additive sub-
ordinators. Additive processes are real-valued, stochastic processes, which are de�ned on the non-negative
half-line, start at zero, have independent increments, andhave càdlàg path. Anadditive subordinator is a non-
decreasing additive process which tends almost surely to in�nity. Excellent books on additive processes and
Lévy processes in particular are [2, 24]. We deviate slightly from the standard theory by allowing the additive
subordinator to jump to an absorbing point associated with ∞ at a random time, which is independent from
the subordinator. The corresponding (cumulative) hazard rate is called (cumulative) killing hazard rate and is
equal to the zero function if almost surely no killing occurs. The Lévy–Khintchine characterisation states that
each additive subordinator is uniquely determined in law by its family of Laplace exponents. These Laplace
exponents are from the family ofBernstein functions, hereafter denoted byBF. A functionψ : (0,∞)→ (0,∞)
is a Bernstein function if it is in�nitely often di�erentiable and has the following property

(−1)n−1
ψ(n)(x) ≥ 0, ∀x > 0, n ∈ N.

One can show, see e.g. [3, Prop. 6.12] and [26, Thm. 3.2], that a function ψ : (0,∞) → (0,∞) is a Bernstein
function if, and only if,

(−1)n−1
∆nψ(x) ≥ 0, ∀x > 0, n ∈ N.

Here,∆ is the forward iterated di�erence operator. A Bernstein function ψ is assumed to be extended to the
domain [0,∞) by the convention ψ(0) = 0. Excellent books on Bernstein functions are [3, 26].

We denote random variables with capital or Greek letters, e.g. X or τ , and (random) vectors with bold
letters, e.g. X, τ , or t. We write X ∼ F if X has the distribution function F. We assume that operators are
applied component-wise to vectors. That means τ > t is equivalent to τi > ti for all i ∈ {1, . . . , d}. Finally, we
denote the descending order of a vector t ∈ [0,∞)d by t[1] ≥ · · · ≥ t[d].

We denote the class of continuous, real functions by C(0), we write ∆f ≥ 0 if the function f is non-
decreasing everywhere, and we use the notation f (x−) := limy↗x f (y) as well as f (x+) := limy↘x f (y). Finally,
for a real number x, we denote the smallest integer i with i ≥ x by dxe.

3 Exchangeable generalised Marshall–Olkin distributions
In this section, we give a short introduction into exchangeable generalised Marshall–Olkin distributions. For
a more detailed treatment of the exchangeable subclass, see [14, 25].
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We generalise the classical Marshall–Olkin distribution by allowing arbitrary continuous, cumulative
hazard rate functions in the exogenous shock model. This is equivalent to having continuous, non-negative,
and unbounded shock-times. For this, we de�ne the class of continuous, cumulative hazard rate functionsH
and its unbounded subclassH0 by

H :=
{
H : [0,∞)→ [0,∞) : H ∈ C(0), ∆H ≥ 0, H(0) = 0

}
and

H0 :=
{
H ∈ H : H(∞−) = ∞

}
.

We say that a random vector τ ∈ [0,∞)d has a generalised Marshall–Olkin distribution if functions HI ∈ H,
∅ ≠ I ⊆ {1, . . . , d}, exist such that τ has survival function

F̄(t) = exp

− ∑
∅≠I⊆{1,...,d}

HI

(
max
i∈I

ti
), ∀t ≥ 0,

and the hazard rate functions ful�l the condition∑
I3i

HI ∈ H0, ∀i ∈ {1, . . . , d}.

This condition, which generalises the condition in Eq. (2), is equivalent to the margins being almost surely
�nite, since∑I3i HI are the marginal cumulative hazard rates. With a simple calculation, we can establish
a generalised version of the exogenous shock model in Eq. (3) for generalised Marshall–Olkin distributions
by replacing λI · maxi∈I ti with HI(maxi∈I ti) and EI with ZI ∼ 1 − exp {−HI}, ∅ ≠ I ⊆ {1, . . . , d}, see [14,
Proof of Thm. 1.1 (iv)⇒ (i)].

Below, we present a characterisation of exchangeable generalised Marshall–Olkin distributions. We
know from [14, Prop. 2.1] that, similar to the classical Marshall–Olkin case, exchangeability is equivalent
to the property HI = HJ for all ∅ ≠ I, J ⊆ {1, . . . , d}with |I| = |J|. Furthermore, the following characterisation
result has been proven in [14]:

Lemma 1 ([14, Thm. 1.1]). Let F̄ : [0,∞)d → [0, 1] be a function such that functions A0, . . . , Ad−1 ∈ H with
A0 ∈ H0 and Ai(0) = 0 with

F̄(t) = exp
{
−

d∑
i=1

Ai−1
(
t[i]
)}

, ∀t ≥ 0,

exist, where t[1] ≥ · · · ≥ t[d] is t in descending order. Then the following statements are equivalent:
1. F̄ is the survival function of a random vector on [0,∞)d.
2. It holds that Hi : [0,∞)→ [0,∞), t 7→ (−1)i−1

∆i−1Ad−i(t) ∈ H for all i ∈ {1, . . . , d}, where the di�erence
operator is understood to be applied to the (�nite) sequence A0(t), . . . , Ad−1(t) for �xed t ≥ 0.

Finally, we can construct a random vector τ with survival function F̄ via an exogenous shockmodel with HI := Hi
if |I| = i, ∅ ≠ I ⊆ {1, . . . , d}.

Proof of Lemma 1. This is a direct corollary of [14, Thm. 1.1]. However, since we changed the notation, we
will give a short explanation: if we take the standardisation of the margins into account, the aforementioned
result a�rms that the �rst statement of this lemma is equivalent to Hi ∈ H for all i ∈ {1, . . . , d}, where

Hi(t) :=
i−1∑
j=0

(−1)j
(
i − 1
j

)
Ad−i+j(t), ∀t ≥ 0.

Now, we obtain the claim as a corollary from [14, Thm. 1.1] by using [11, Lem. 2.5.2] which implies that

(−1)i−1
∆i−1Ad−i(t) =

i−1∑
j=0

(−1)j
(
i − 1
j

)
Ad−i+j(t), ∀t ≥ 0.
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4 The deFinetti representation of GMO sequences
In this section, we characterise the deFinetti representation of exchangeable generalised Marshall–Olkin se-
quences. We begin with an overview of general deFinetti representations.

We know from deFinetti’s theorem, see [1, Thm. 3.1], that an almost surely unique random distribution
function F exists for each exchangeable sequence τ1, τ2, . . . such that almost surely

P
(
τ1 ≤ x1, . . . , τd ≤ xd

∣∣F) =
d∏
i=1

Fxi , ∀x1, . . . , xd ∈ R, d ∈ N. (6)

For a non-decreasing function h, we de�ne its generalised (right) inverse h← by h←(y) := inf {x : h(x) ≥ y}
with inf ∅ = 0, see [7] for a detailed discussion of generalised inverses. If the random distribution function F
has almost surely no jumps, we have that almost surely

τi = F←(Ui) = inf
{
x ∈ R : Fx ≥ Ui

}
, i ∈ N, (7)

for an iid uniform sequenceU1, U2, . . ., independent of F, which is de�nedbyUi := F(τi). If supp(F) ⊆ [0,∞],
we can rewrite Eq. (7) as

τi = Λ←(Ei) = inf
{
t > 0 : Λt ≥ Ei

}
, i ∈ N, (8)

for a (càdlàg) subordinator Λ and a sequence E1, E2, . . . of iid unit exponential random variables, indepen-
dent of Λ. For this, we de�ne Λ = − log (1 − F) and Ei = − log (1 − Ui), i ∈ {1, . . . , d}. Note that we de�ne
a subordinator as a [0,∞]-valued, non-decreasing, càdlàg process on [0,∞) that starts at zero and tends to
in�nity for t → ∞. If the random distribution function F may possibly have jumps, then Eqs. (7) and (8) still
hold if there is an additional iid uniform sequence W1,W2, . . ., which is independent of τ1, τ2, . . ., de�ned
on the probability space. The sequenceW1,W2, . . . is required to modify F(τi) to a uniform random variable
by a random interpolation at its (random) atoms, see [23].

F

τ1
τ2

τ3 . . . τd−2
τd−1

τd

τi := F←(Ui)

(a)With random distribution function

Λ

τ1
τ2

τ3 . . . τd−2
τd−1

τd

τi := Λ←(Ei)

(b) With random hazard rate

Figure 1: A visualisation of both deFinetti representations: (1) Draw F (resp. Λ) (2) For each component i, draw Ui (resp. Ei) and
transform with generalised inverse of F (resp. Λ). We have F = 1 − exp {−Λ} and Ui = 1 − exp {−Ei}.

Before moving on to the main result of this article, we want to outline three applications of the deFinetti
representation:
1. We can use the deFinetti representation to sample from certain distributions e�ciently in high-

dimensions as illustrated in Fig. 1. See, e.g., [11, 16, 19] for applications of this technique.
2. We can build low-parametric, dimensionless families of multivariate distributions from parametrised

subordinators, see, e.g., [4, 15, 17] for examples. We call these families dimensionless, since a random
vector from such a model can be de�ned as the margin of an in�nite sequence. Consequently, these fam-
ilies are not inherently linked to a speci�c dimension.
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3. We can use the deFinetti representation for exchangeable sequences to build hierarchical models for
non-exchangeable sequences. We refer the interested reader to [12, 18, 20].

Below, we state the main result of this article and investigate the subordinator, which is implied by the de-
Finetti representation of generalised Marshall–Olkin sequences. We already know from [11] that Marshall–
Olkin sequences are uniquely linked to Lévy subordinators via Eq. (8). That remains true if we generalise the
Marshall–Olkin de�nition as in Section 3 and generalise the Lévy subordinator to an additive subordinator.

Theorem 1 (Main result). Let τ1, τ2, . . . be an in�nite exchangeable sequence of generalised Marshall–Olkin
kind, i.e. a sequence of functions A0, A1, . . . ∈ H with A0 ∈ H0 and Ai(0) = 0 exists such that for d ≥ 2

P (τ1 > t1, . . . , τd > td) = exp
{
−

d∑
i=1

Ai−1
(
t[i]
)}

, ∀t ≥ 0. (9)

Furthermore, assume that an iid uniform sequence W1,W2, . . . which is independent of τ1, τ2, . . . is de�ned on
the probability space. Then, an additive subordinatorΛ and iid unit exponentially distributed random variables
E1, E2, . . ., independent of Λ, exist such that almost surely

τi = inf
{
t > 0 : Λt ≥ Ei

}
, ∀i ∈ N. (10)

Conversely, ifΛ is an additive subordinatorwith Laplace exponents {ψt}t≥0, E1, E2, . . . are iid unit exponentially
distributed random variables, independent of Λ, and τ1, τ2, . . . are constructed according to Eq. (10), then for
all d ≥ 2 the random vector τ d = (τ1, . . . , τd) has an exchangeable generalised Marshall–Olkin distribution
with

Ai(t) = ψt(i + 1) − ψt(i), ∀t ≥ 0, i ∈ N0. (11)

Proof. Firstly, note that the backward direction is a corollary of [14, Prop. 3.1] by considering marginal trans-
formations.

For the forwarddirection,which is themain contribution of this article,weusedeFinetti’s theorem, see [1,
Thm. 3.1], to obtain the existence of a random distribution function F such that the sequence is conditionally
iid given F and Eq. (6) holds. We de�ne

Ui := Fτi + Wi
(
Fτi − Fτi−

)
, i ∈ N.

We use [23, Sec. 2] to obtain that, conditioned on F, U1, U2, . . . are uniform and ful�l almost surely Eq. (6).
In particular, we have that almost surely

P
(
U1 ≤ u1, . . . , Ud ≤ ud

∣∣F) =
d∏
i=1

ui , u ∈ [0, 1]d .

In summary, the sequence U1, U2, . . . is iid uniform and independent of F. We use the transformations Λ =
− log (1 − F) and Ei = − log (1 − Ui), i ∈ N and obtain a subordinator Λ and an iid unit exponential sequence
E1, E2, . . ., independent of Λ, such that Eq. (10) holds almost surely.

Now, we have to prove that Λ is an additive subordinator. By a simple uniqueness-in-distribution argu-
ment and [25, p. 41], we determine that this is equivalent to the existence of a family of Bernstein functions
{ψt}t≥0 ⊆ BF, ful�lling the conditions

ψ0 ≡ 0, (12a)
ψs − ψt ∈ BF ∀s > t ≥ 0, (12b)

t 7→ ψt(x) ∈ C(0), ∀x ≥ 0, (12c)

such that Eq. (11) holds. Below, we show that a family of Bernstein functions with these properties exists.
With Lemma 1, we have

H(d)
i := (−1)i−1

∆i−1Ad−i ∈ H, i ∈ {1, . . . , d}.
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Fix s > t ≥ 0. Then, we have for arbitrary d ∈ N

H(d)
i (s) − H(d)

i (t) ≥ 0, ∀i ∈ {1, . . . , d}

⇔ (−1)i−1
∆i−1(Ad−i(s) − Ad−i(t)

)
≥ 0, ∀i ∈ {1, . . . , d}.

This implies that the sequence A0(s) − A0(t), A1(s) − A1(t), . . . is completely monotone, see [11, Lem. 3.3.2]. A
completelymonotone sequence can be uniquely represented by the series of �rst-order iterated di�erences of
a Bernstein function onN0, see [11, Sec. 4.1], [8, Cor. 4.2], and [3, Prop. 6.12]. Therefore,we obtain the existence
of a unique Bernstein function ψs,t with ψs,t(0) = 0 such that

Ai(s) − Ai(t) = ψs,t(i + 1) − ψs,t(i) ∀i ∈ N.

This implies

ψs,t(i + 1) − ψs,t(i) = Ai(s) − Ai(t)
=
[
Ai(s) − Ai(0)

]
−
[
Ai(t) − Ai(0)

]
=
[
ψs,0(i + 1) − ψs,0(i)

]
−
[
ψt,0(i + 1) − ψt,0(i)

]
, ∀i ∈ N.

Thus, if we set ψu = ψu,0 for u ∈ {t, s}, we obtain ψ0 ≡ 0 and

ψt(i) + ψs,t(i) = ψs(i), ∀i ∈ N.

We use the fact that Bernstein functions are determined by their values on N0, see [3, Prop. 6.12] and [26,
Thm. 3.2], and we get ψs − ψt = ψs,t ∈ BF. Finally, we use that a Bernstein function is non-negative and
monotone increasing to obtain the following formula for s > t ≥ 0 and x ≥ 0 that

0 ≤ ψs(x) − ψt(x) = ψs,t(x) ≤ ψs,t(dxe) =
dxe∑
j=1

Aj−1(s) − Aj−1(t).

Hence, the continuity of A0, A1, . . . implies limtk→t ψtk (x) = ψt(x) for all t, x ≥ 0.

Recovery of the subordinator

Theorem 1 motivates the following questions: �rstly, what are non-trivial examples of how the forward direc-
tion of this theorem can be used and secondly, how can we use the theorem to learn more about the implied
subordinator. A non-trivial example is an exchangeable, but not comonotone or independent, generalised
Marshall–Olkin sequence, which is not directly generated by a deFinetti model. Given such a sequence, the
theorem only guarantees the existence of a deFinetti representation, but does not explicitly state the law of
the subordinator or how it can be explicitly recovered. In the following, we use an example adapted from [13,
Expl. 6.3] to demonstrate how the subordinator can be identi�ed and recovered.

We consider an exogenous shockmodel inwhich each component can fail due to independent individual
shocks or a common global shock. For this, let H, HG ∈ H with H + HG ∈ H0 be cumulative hazard rate
functions and de�ne A = H and A0 = H + HG. Furthermore, let ZG ∼ 1 − exp {−HG} and let Z1, Z2, . . . be
an iid sequence with distribution function 1 − exp {−H} that is independent of ZG. We de�ne the random
sequence τ1, τ2, . . . by

τi := min
{
Zi , ZG

}
, i ∈ N.

Recovery of the subordinator law

In the �rst step, we use the generalised version of the exogenous shockmodel representation from Eq. (3) and
the novel result fromTheorem 1 to determine that the subordinator, implied by the deFinetti representation, is
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an additive subordinatorwith cumulative killing hazard rateHG and deterministic partH. Since the sequence
τ1, τ2, . . . is exchangeable and of generalised Marshall–Olkin kind, we know that the random vector τ =
(τ1, . . . , τd) has an exchangeable generalised Marshall–Olkin distribution for each d ∈ N. We use Lemma 1
and determine that the corresponding survival function is

F̄(t) = exp
{
−A0

(
t[1]
)
−

d∑
i=2

A
(
t[i]
)}

, t = (τ1, . . . , τd) ≥ 0.

Then,we concludewith Theorem 1 that an additive subordinatorΛwith the characterising family of Bernstein
functions {ψt}t≥0 exists such that

Ai(t) = ψt(i + 1) − ψt(i), i ∈ N0 ∀t ≥ 0.

This implies for t ≥ 0 that

A0(t) = ψt(1),
A(t) = ψt(i + 1) − ψt(i), i ∈ N,

ψt(i) =
{
A0(t) + (i − 1)A(t) i ∈ N,
0 i = 0.

As Bernstein functions are uniquely de�ned by their values on N0, we verify that

ψt(x) = (A0(t) − A(t))︸ ︷︷ ︸
=HG(t)

1{x>0} + x A(t)︸︷︷︸
=H(t)

, t, x ≥ 0.

This family of Bernstein functions can be identi�ed with an additive subordinator with (inhomogeneous)
cumulative killing hazard rate HG(t) and deterministic part H(t). In particular, a random variable Z ∼ 1 −
exp {−HG} exists such that

Λt = H(t) + ∞ · 1{Z≤t} =
{
H(t) t < Z,
∞ t ≥ Z.

Note that so far, we only know that some random variable Z exists such that this equation holds. A natural
conjecture is that Z = ZG, which is proven in the following.

Explicit recovery of the subordinator

In the second step, to derive the subordinator explicitly, we use that

Ft(ω) = E
[
1{τ1≤t}

∣∣T](ω), ∀ω ∈ Ω \ N

for the tail-σ-algebra T of the sequence τ1, τ2, . . . and a P-nullset N, see [1, Lem. 2.15 and 2.19]. Furthermore,
we use that Zj > t for in�nitely many j and therefore{

ZG > t
}

=
⋂
i≥1

⋃
j≥i

{
min {Zj , ZG} > t

}
, t ≥ 0.

Consequently, ZG is measurable with respect to T. Moreover, we have for ω ∈ Ω\N

Λt(ω) = − log
(

1 − Ft(ω)
)

= − log
(
E
[
1{τ1>t}

∣∣T](ω)
)

= − log
(
E
[
1{Z1>t}

]
1{ZG(ω)>t}

)
= − log

(
E
[
1{Z1>t}

])
+∞1{ZG(ω)≤t}
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=
{
H(t) t < ZG(ω),
∞ t ≥ ZG(ω),

where we use the convention that 0 ·∞ = 0. Finally, given an iid uniform sequenceW1,W2, . . ., independent
of τ1, τ2, . . ., we can construct the sequence E1, E2, . . . by

Ui :=


(

1 − e−H(Zi)
)

Zi < ZG ,
1 − (1 −Wi) e−H(ZG) Zi ≥ ZG .

i ∈ N

and

Ei := − log(1 − Ui) =
{
H(Zi) Zi < ZG
H(ZG) − log(1 −Wi) Zi ≥ ZG .

i ∈ N.

Now, Theorem 1 implies that the sequence E1, E2, . . . is iid unit exponential, independent of F, and we con-
clude that almost surely

τi = inf
{
t > 0 : Λt ≥ Ei

}
, i ∈ N.

5 Conclusion
We have shown that exchangeable sequences τ1, τ2, . . . of a generalised Marshall–Olkin kind are uniquely
linked to additive subordinators via a deFinetti representation. In particular, in a suitably extended proba-
bility space, we have almost surely that

τi = inf {t > 0 : Λt ≥ Ei}, i ∈ N,

whereΛ is an additive subordinator and the sequence E1, E2, . . . is iid unit exponential and independent ofΛ.

Acknowledgements:Many thanks to Lexuri Fernández, Florian Brück,Matthias Scherer, and the two anony-
mous reviewers for their feedback on this article.

A Exchangeable sequences and DeFinetti’s theorem
In this section, we summarise the background on exchangeable sequences and deFinetti representations.
An extensive reference on the deFinetti representation of exchangeable sequences and exchangeability in
general, which contains all results that are presented in this section, is [1].

We call a sequence τ1, τ2, . . . exchangeable if

(τ1, . . . , τd) d= (τπ(1), . . . , τπ(d)),

for each d ∈ N and permutation π on {1, . . . , d}. A well-known result, �rst established by Bruno deFinetti
in [6], states that sequences τ1, τ2, . . . are exchangeable if, and only if, they are conditionally iid. While this
statement is clear and simple, there are some technical details hidden in the expression conditionally iid. In
our case, since generalised Marshall–Olkin distributions have singular components and additive subordina-
tors have jumps, these details become very important. This is explained in more detail with an example at
the end of this section. For this reason, we outline below how an exchangeable sequence can be represented
by a random distribution function and an iid uniform sequence.

DeFinetti Representation (See [1, Thm. 3.1]). A sequence τ1, τ2, . . . is exchangeable if, and only if, a random
measureα exists such that the product measureα∞ is a regular conditional distribution of τ1, τ2, . . . given σ(α).
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In the following, we show how the directing measure α can be calculated from the sequence τ1, τ2, . . .. For
this, assume that the sequence τ1, τ2, . . . is de�ned in the probability space (Ω,F, P) and let T be its tail-σ-
algebra. On existence, α is a.s. unique, T measurable, and a regular conditional distribution for τ1 given T,
see [1, Lem. 2.15 and 2.19]. Thus, we have

α(ω, A) = P
(
τ1 ∈ A|T

)
(ω), ∀ω ∈ Ω \ N, A ∈ B,

whereN is aP-nullset. In the following,we assumew.l.o.g. thatα(ω, A) = 0 for allω ∈ N, A ∈ B. Finally, since
α(ω, ·) is a (random) probability measure on R, we may identify α(ω, ·) with a random distribution function
F(ω) via

Ft(ω) := α(ω, (−∞, t]), ∀t ∈ R, ω ∈ Ω.

If another sequence of iid uniform random variables W1,W2, . . ., which is independent of τ1, τ2, . . . is
de�ned on the probability space, we can re�ne deFinetti’s theorem:

Corollary 1 (Cf. [1, Thm. 3.1]). Let W1,W2, . . . be an iid uniform sequence and let τ1, τ2, . . . be independent
thereof. The sequence τ1, τ2, . . . is exchangeable if, and only if, a random distribution function F and an iid
uniform sequence U1, U2, . . ., independent of F, exist such that

τi = inf
{
t ∈ R : Ft ≥ Ui

}
a.s., ∀i ∈ N. (13)

Corollary 2 (Cf. [1, Thm. 3.1]). Let W1,W2, . . . be an iid uniform sequence and let τ1, τ2, . . . ≥ 0 be indepen-
dent thereof. The sequence τ1, τ2, . . . is exchangeable if, and only if, a random subordinator Λ and an iid unit
exponential sequence E1, E2, . . ., independent of Λ, exist such that

τi = inf
{
t ≥ 0 : Λt ≥ Ei

}
a.s., ∀i ∈ N.

Proof of Corollaries 1 and 2. Firstly, the claim from Corollary 2 follows directly from Corollary 1 with the trans-
formations Λ = − log(1 − F) and Ei = − log(1 − Ui), i ∈ N. Secondly, we use [23, Prop. 2.1] to ascertain that
U1, U2, . . . are iid uniform conditioned on T and that Eq. (13) holds, where we de�ne

Ui := Fτi− + Wi
(
Fτi − Fτi−

)
, ∀i ∈ N.

Finally, with the de�nition of the regular conditional distribution, we establish that U1, U2, . . . is an iid uni-
form sequence that is independent of T, hence also independent of F.

We conclude this sectionwith an example that explains the need for additional randomness, in form of an iid
uniform sequence W1,W2, . . ., in the two preceding theorems. This example also highlights that not every
conditionally independent sequence has a representation as in Eq. (13) when only the original probability
space is considered. For this, let (Ω,F, P) be the Lebesgue probability space on the interval [0, 1] and de�ne

Ui(ω) := ω, ω ∈ [0, 1], i ∈ N.

Clearly, the sequence U1, U2, . . . is exchangeable and U1 is measurable with respect to the sequences tail-
σ-algebra T. Hence, we can calculate the random distribution function F, corresponding to the sequences
directing measure α, for all ω excluding a Lebesgue-nullset and u ∈ [0, 1] by

Fu(ω) = E
[

1{U1∈[0,u]}
∣∣T] (ω) = 1{U1(ω)∈[0,u]}.

Since σ(F) = σ(U1) = F, there is no additional iid sequence independent of F de�ned on this probability
space. If we now consider the enclosing probability product space, on which U1 as well as an iid uniform
sequence W1,W2, . . ., independent of U1, are de�ned, we have

Ui = U1 = inf
{
u ∈ [0, 1] : 1{U1∈[0,u]} ≥ Wi

}
= inf

{
u ∈ [0, 1] : Fu ≥ Wi

}
, i ∈ N.
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B Bernstein functions and completely monotone sequences
The proof of the main theorem relies heavily on the connection between additive and Lévy subordinators,
so-called Bernstein functions, and completely monotone sequences. As the topic cannot be treated in detail
without using deep results of functional analysis and measure theory, we will limit ourselves to presenting
themain results. Extensive references on this topic are [3, 26]. Another excellent reference is [11, Chp. 3 and 4].

A Bernstein function is a function ψ : (0,∞) → [0,∞) that has derivatives of arbitrary order ψ(i), i ∈ N,
and ful�ls

(−1)i−1
ψ(i)(x) ≥ 0, ∀x > 0, i ∈ N.

We denote the set of all Bernstein functions by BF and use the convention that a Bernstein function may be
extended to [0,∞) by setting ψ(0) := 0. It is well-known, see, e.g. [26, Thm. 3.2], that a function ψ : (0,∞)→
[0,∞) is a Bernstein function if, and only if, real numbers a, b ≥ 0 and a Lévy-measure ν on (0,∞) exist such
that

ψ(x) = a + bx +
∫

(0,∞)

(
1 − e−xu

)
ν(du), ∀x > 0,

where we call ameasure ν on (0,∞) a Lévymeasure if
∫

(0,∞)(1∧x) ν(dx) < ∞. In that case (a, b, ν) is uniquely
determined by ψ and is called the Lévy triplet.

Bernstein functionsψwithψ(0) = 0 can be uniquely linked to so-called completelymonotone sequences.
For a (countably in�nite) sequence a0, a1, . . ., let ∆ be the discrete di�erence operator de�ned by ∆ai :=
ai+1 − ai and de�ne recursively∆nai := ∆(∆n−1ai). We call the sequence a0, a1, . . . completely monotone if

(−1)i∆iak ≥ 0, ∀i, k ∈ N0.

We call a �nite sequence a0, . . . , ad−1 d-monotone if

(−1)i∆iak ≥ 0, ∀i, k ∈ N0 : i + k < d. (14)

In particular, a sequence a0, a1, . . . is completely monotone if, and only if, the sequences a0, a1, . . . , ad−1
are d-monotone for all d ∈ N. Furthermore, a sequence a0, a1, . . . , ad−1 is d-monotone if, and only if, Eq. (14)
is ful�lled for i, k ∈ N0 with i + k = d − 1, see [11, Lem. 3.3.2]. Moreover, a sequence a0, a1, . . . is completely
monotone if, and only if, a Bernstein function ψ exists with ai = ψ(i + 1) − ψ(i) for all i ∈ N0, see [11, Sec. 4.1]
and cf. [8, Cor. 4.2] or [3, Prop. 6.12]. Note, that this implies that Bernstein function are uniquely determined
by their values on the natural numbers.

A Bernstein function, and subsequently a completely monotone sequence, can be uniquely linked to
the law of a Lévy subordinator, see [5, Thm. 1.2]. In particular, let ψ be a Bernstein function, then a Lévy
subordinator Λ, uniquely determined in law, exists with Laplace exponent x 7→ tψ(x) for all t ≥ 0, i.e.

E
[

e−xΛt
]

= e−tψ(x), ∀t, x ≥ 0. (15)

Conversely, if Λ is a Lévy subordinator, then a Bernstein function ψ exists such that Eq. (15) holds.
This can be generalised, see, e.g. [25, p. 41]: let {ψt}t≥0 be a family of Bernstein functions ful�lling

ψ0 ≡ 0, (12a rev.)
ψs − ψt ∈ BF ∀s > t ≥ 0, (12b rev.)

t 7→ ψt(x) ∈ C(0), ∀x ≥ 0. (12c rev.)

Then, an additive subordinator, uniquely determined in law, exists with Laplace exponent x 7→ ψt(x) for all
t ≥ 0 and

E
[

e−x(Λs−Λt)
]

= e−(ψs−ψt)(x), ∀s ≥ t, x ≥ 0. (16)

Conversely, if Λ is an additive subordinator, then a family of Bernstein functions {ψt}t≥0 exists ful�ll-
ing Eqs. (12a) to (12c) such that Eq. (16) holds.
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