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Abstract

Higher plants can continuously form new organs by the sustained activity of pluripotent stem

cells. These stem cells are embedded in meristems, where they produce descendants,

which undergo cell proliferation and differentiation programs in a spatiotemporally-controlled

manner. Under certain conditions, pluripotency can be reestablished in descending cells

and this reversion in cell fate appears to be actively suppressed by the existing stem cell

pool. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1

(AMP1) in Arabidopsis causes defects in the suppression of pluripotency in cells normally

programmed for differentiation, giving rise to unique hypertrophic phenotypes during

embryogenesis as well as in the shoot apical meristem. A role of AMP1 in the miRNA-

dependent control of translation has recently been established, however, how this activity is

connected to its developmental functions is not resolved. Here we identify members of the

cytochrome P450 clade CYP78A to act in parallel with AMP1 to control cell fate in Arabidop-

sis. Mutation of CYP78A5 and its close homolog CYP78A7 in a cyp78a5,7 double mutant

caused suspensor-to-embryo conversion and ectopic stem cell pool formation in the shoot

meristem, phenotypes characteristic for amp1. The tissues affected in the mutants showed

pronounced expression levels of AMP1 and CYP78A5 in wild type. A comparison of mutant

transcriptomic responses revealed an intriguing degree of overlap and highlighted alter-

ations in protein lipidation processes. Moreover, we also found elevated protein levels of

selected miRNA targets in cyp78a5,7. Based on comprehensive genetic interaction studies

we propose a model in which both enzyme classes act on a common downstream process

to sustain cell fate decisions in the early embryo and the shoot apical meristem.
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Author summary

Plants continuously form new organs throughout their lifetime. This reiterative organ for-

mation enables plants to explore their habitat for essential resources such as light, water

and minerals despite their inability to move. It is also the key to their remarkable regener-

ative power whereby they can overcome even substantial physical injury. Shoot organ for-

mation takes place in growing points, where pluripotent stem cells steadily deliver organ-

initiating daughter cells that subsequently differentiate into various tissues. For optimal

fitness, it is fundamental that daughter cells lose their stem cell identity in the right place

at the right time. The carboxypetidase ALTERED MERISTEM PROGRAM1 (AMP1) sup-

presses stem cell identity in organ-forming daughter cells, however, its specific molecular

function in this process is yet unknown. Our work functionally links AMP1 with the cyto-

chrome P450 oxidases CYP78A5/7. We show that AMP1 and CYP78A5/7 share strongly

overlapping expression patterns and that their loss-of-function leads to nearly identical

cell fate defects in the tissues, in which they are expressed. Based on genetic and molecular

analyses we postulate that the two enzyme classes act on a common downstream process,

which maintains cell fate decisions and affects miRNA-mediated inhibition of translation

and protein lipidation.

Introduction

The development of multicellular organisms requires the maintenance of pluripotent stem

cells and the coordinated differentiation of stem cell descendants into organs and tissues with

specific functions. Plants contain organ-forming stem cell niches called meristems which are

established during embryogenesis and allow continuous and modular growth. The shoot apical

meristem (SAM) is a dome-shaped structure organized into distinct zones, which harbor cells

with different functions. Pluripotent stem cells are located in the central zone and their identity

is specified by an underlying organizing center (OC). Stem cell descendants displaced to the

meristem periphery undergo transition to a determinate cell fate during the process of organ

initiation in a ring-like morphogenetic zone. Preservation of this spatial zonation is important

for meristem function [1].

Classical microsurgery as well as more recent laser ablation experiments on SAMs in differ-

ent species revealed that the stem cells in the central domain control the pluripotency status of

their progeny in the meristem periphery [2–6]. Destruction of the central zone triggers the re-

specification of a substitutive stem cell niche from PZ cells. Thus, by a yet unknown mode the

stem cell niche in the SAM actively suppresses the stem cell identity of cells in the peripheral

zone. This lateral inhibition of pluripotency ensures that only one active stem cell niche (SCN)

is maintained and at the same time provides a safeguard system to sustain meristem function,

in case of SCN damage. However, the precise molecular mechanism mediating this process is

not understood to date [5, 7].

One factor, which appears to play a central role in the lateral inhibition of pluripotency is

the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1). Arabidopsis

seedlings mutated in AMP1 contain enlarged SAMs, which form ectopic stem cell niches in

the meristem periphery in the presence of an intact primary stem cell population [8–10]. This

suggests that AMP1 is involved in the production, transport or detection of a signal, which

suppresses pluripotency in the cells of the PZ. The ectopic stem cell pool formation in amp1
shoot meristems is rather unique and genetic analyses surprisingly revealed that AMP1 acts

largely in a cytokinin and WUSCHEL-independent manner [10].
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Analysis of amp1 embryo development also revealed a defect in the maintenance of suspen-

sor cell identity. The suspensor represents a supportive structure of differentiated cells, that

anchors the embryo proper in the ovule. Suspensor cells retain a latent pluripotent state and

can develop into functional secondary embryos upon abortion of the initial embryo [11].

amp1 mutant suspensors frequently start to proliferate and form an embryonic cell mass,

which becomes incorporated in the primary proembryo [12].

AMP1 belongs to the M28B family of metalloproteases [9]. The best-studied member of

this family is the human glutamate carboxypeptidase II (HsGCPII), which serves as a tumor

marker. In neuronal tissues, GCP II de-glutamylates the neurotransmitter NAAG, whereas in

the intestine the enzyme acts on poly-glutamylated folates [13]. However, its precise physiolog-

ical function during normal development and tumor formation is not well understood [14].

HsGCPII and AMP1 share the same domain structure and the zinc-binding catalytic center,

however the overall sequence similarity is only 28% and important residues required for

GCPII substrate recognition are not conserved in AMP1 [15, 16]. Consistent with a functional

divergence between the animal and plant proteins, heterologous HsGCPII expression did not

rescue any of the amp1 phenotypes [16].

It has previously been demonstrated that AMP1 contributes to the miRNA-dependent con-

trol of translation [17]. Loss of AMP1 function results in an over-accumulation of various

tested miRNA target proteins. This defect was only weakly manifested in amp1 single mutants,

however additional elimination of the RNA DEPENDENT RNA POLYMERASE6 (RDR6) or

the AMP1 paralog LIKE AMP1 (LAMP1) caused strongly elevated protein levels of miRNA

sensitive reporters in the absence of increased mRNA levels. These data imply that AMP1/

LAMP1 mediate miRNA-dependent translational inhibition without affecting miRNA-trig-

gered mRNA slicing. Furthermore, AMP1/LAMP1-dependent translational repression

was only apparent at ribosomes of the endoplasmic reticulum where AMP1 partially co-local-

izes with AGO1 [17]. Interestingly, the unique developmental phenotype of amp1 is neither

found in mutants with a general deficiency in the miRNA pathway [18] nor present in plant

lines with a specific defect in miRNA-dependent translational repression [19–21]. This dis-

crepancy might be caused by a locally restricted release of translational repression in the

AMP1/LAMP1 expression domain affecting only a subset of miRNA targets. Recently, indirect

evidence was provided that the over-accumulation of the miRNA-controlled HD-ZIP III pro-

teins contributes to the shoot phenotype of amp1 [22]. However, several other miRNA-targets

have been shown to be mis-regulated in the mutant and their phenotypic impact has yet to be

revealed.

Mutation of the AMP1 ortholog PLASTOCHRON3 (PLA3) in rice also results in a shoot

hypertrophy defect with bigger SAM size, ectopic stem cell pool formation and strongly accel-

erated leaf formation rate [23]. The rice pla3 mutant is highly reminiscent of plastochron1
(pla1), which has a defect in the cytochrome P450 oxidase CYP78A11 [24]. CYP78A is a con-

served plant specific clade of cytochrome P450 enzymes [25]. The majority of the CYP78A

genes were first discovered due to their flower and meristem specific expression pattern [26–

28]. In Arabidopsis, the CYP78A clade consists of 6 members. On the one hand, they have

been assigned a key function in the growth control of organs, such as leaves, petals, seeds,

fruits [29–32]. In this context the enzymes appear to act in a non cell autonomous manner

[33]. On the other hand, loss of CYP78A5/7 function in Arabidopsis has been shown to sig-

nificantly shorten the plastochron as found for the pla1 mutant in rice [24, 34]. Since this

enzyme clade oxidizes short chain fatty acids in vitro [35, 36], it was postulated that it might

act on the production of a novel hormone like signal, which controls organ size and leaf forma-

tion rate, however the in vivo enzymatic functions of CYP78A clade members have yet to be

discovered.
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Due to the reported similarity of plastochron defects between amp1 and cyp78a mutants in

Arabidopsis and rice we asked whether CYP78A function also impacts cell fate maintenance

and thus contributes to a common molecular pathway with AMP1. We found that AMP1 and

CYP78A5 show strongly overlapping tissue-specific expression patterns in the embryo and

vegetative shoot. Mutation of cyp78a5,7 moreover caused the same type of suspensor-to-

embryo conversion and ectopic stem cell pool formation in the shoot meristem as described

for amp1. The phenotypic similarities were underlined by overlapping molecular signatures

including expression of stem cell markers, transcriptomic changes and accumulation of

AMP1-controlled miRNA targets. Finally, genetic interaction studies revealed that both

enzyme classes act on a common downstream process in a partially redundant manner.

Results

AMP1 and CYP78A5 show overlapping expression patterns in the embryo

and in the post-embryonic shoot meristem

To define, to which extend AMP1 and CYP78A5 (also known as KLU [29]) are co-expressed

in a tissue dependent manner, we compared their expression patterns during different devel-

opmental stages using available reporters and in situ hybridization analysis. pAMP1::

AMP1-GFP could be earliest detected in the suspensor and the hypophysis of globular

embryos and continued to be strongly expressed there until the late heart stage (Fig 1A). After

degeneration of the suspensor, AMP1 expression was most prominent in the basal outer areas

of the root pole. Moreover, the in situ hybridization experiments also revealed AMP1 expres-

sion at the lateral base and along the edges of the cotyledon primordia producing a horseshoe-

like pattern (Fig 1D and 1E). Similar to AMP1, strong CYP78A5 expression could be detected

in the suspensor and the hypophysis from the globular stage onward (Fig 1A and 1B). In addi-

tion, the CYP78A5 transcriptional reporter pKLU::YFP was active between and at the tips of

emerging cotyledon poles at the heart stage. Microscopic analysis from different angles

revealed a horseshoe-like expression pattern in the cotyledons of torpedo stage embryos with

the strongest expression at the lateral bases encompassing the developing SAM (Fig 1C). More-

over, pKLU::YFP fluorescence sustained in the embryonic root pole after the suspensor under-

went apoptosis (Fig 1A and 1C). Taken together, AMP1 and CYP78A5 show an extensive

overlap of expression in the suspensor and proembryo.

We also compared the expression patterns of AMP1 and CYP78A5 in the post-embryonic

shoot since the corresponding mutants are particularly affected in shoot meristem function.

Due to the relative weak fluorescence of the AMP1-GFP reporter in the shoot we performed

RNA in situ hybridization analysis in this line using a GFP-specific probe. The antisense probe

revealed a strong signal in young leaf primordia (Fig 2A and 2B). In longitudinal sections the

signal appeared stronger at the adaxial side. Analysis of transversal sections supported a slight

enhancement of the signal towards the adaxial side and the edges of the primordia (Fig 2A).

Furthermore, an AMP1-GFP specific signal was also present in the shoot meristem area (Fig

2A). Analysis of pKLU::GUS and pKLU::YFP activities revealed an extensive overlap of

CYP78A5 expression with that of AMP1 in young leaf primordia and the shoot meristem area

(Fig 2C and 2D). In leaf primordia pKLU::YFP fluorescence was strongest along the rim and

towards the base of the organ resulting again in a horseshoe-like pattern as found in the

embryonic cotyledons. Transcriptome map mining (S1 Fig;[37]) supported substantial expres-

sion of CYP78A5 in the border between the SAM and leaf primordia (LAS expression domain),

in different domains of the SAM (UFO, CLV3 and WUS) as well as in the rim region of the pri-

mordium (PTL). AMP1 transcripts were also detectable in these domains but at markedly

lower levels.

PLOS GENETICS AMP1 and CYP78A5/7 functionally interact in cell fate control

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009043 September 22, 2020 4 / 28

https://doi.org/10.1371/journal.pgen.1009043


Loss of CYP78A5/7 function triggers suspensor-to-embryo conversion

Next we determined whether amp1-specific defects in cell fate control occur in CYP78A loss-

of-function mutants. Since it was reported that CYP78A7 acts partially redundant with

CYP78A5 in the control of the plastochron [34] and is the only homolog with a considerably

Fig 1. Comparison of AMP1 and CYP78A5 expression domains in the embryo. (A) pAMP1::AMP1-GFP and

pKLU::YFP fluorescence in embryos at the indicated developmental stages. (B) Activity of the CYP78A5-specific

pKLU::GUS reporter in embryos at the globular, transition, heart and torpedo stage. (C) pKLU::YFP fluorescence in a

torpedo stage embryo. Three consecutive sagittal optical sections through a cotyledon primordium and the adjacent

shoot meristem. (D) RNA in situ hybridization using a GFP-specific anti-sense (left) and sense (right) probe in pAMP::

AMP1-GFP torpedo stage embryos. (E) RNA in situ hybridization using an AMP1-specific anti-sense (left) and sense

(right) probe in pAMP::AMP1-GFP torpedo stage embryos. Size bars represent 10 μm (A) and 50 μm (B, C, D and F).

https://doi.org/10.1371/journal.pgen.1009043.g001
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overlapping expression in the SAM (S1 Fig), we generated a cyp78a5,7 double mutant and ana-

lyzed its embryonic development. As previously described [12], amp1 suspensors start to pro-

liferate, adapt embryonic identity and fuse with the proembryo, which subsequently converts

to an inordinately large shoot meristem (Fig 3A). Strikingly, cyp78a5,7 double mutants show

the same suspensor-specific reappearance of pluripotency, resulting in conjoined twin

embryos with a massively enlarged shoot meristematic structure surrounded by more than

two cotyledons. Like in amp1, the primary proembryo fully adapts shoot meristematic identity

as indicated by the strong expression of the pCLV3::GUS reporter in this structure (Fig 3B).

Loss of CYP78A5/7 function phenocopies the shoot hypertrophy defect of

amp1
After germination, the oversized SAM of amp1 seedlings, established during embryogenesis,

further enlarges by the formation of ectopic stem cell pools in the SAM periphery [10]. The

resulting stem cell cluster give rise to a massive SAM surface area and develop leaves in paral-

lel, partially contributing to the increased leaf formation rate of the mutant (Fig 4A and 4C).

cyp78a5 seedlings only showed a slight increase in leaf number and SAM surface size com-

pared to wild type (Fig 4A–4D). In contrast, cyp78a5,7 double mutants developed a shoot

Fig 2. Comparison of AMP1 and CYP78A5 expression domains in the vegetative shoot. (A) RNA in situ hybridization with longitudinal (left,

middle) and transversal (right) shoot sections of 7-day-old pAMP1::AMP1-GFP seedlings using a GFP-specific sense (upper panel) and anti-sense

probe (lower panel). (B) Whole mount RNA in situ hybridization with shoots of 7-day-old pAMP1::AMP1-GFP seedlings using a GFP-specific sense

(upper panel) and anti-sense probe (lower panel). In the left images the first pair of true leaves were removed. (C) pKLU::GUS activity in shoots of

7-day-old wild-type seedlings. The black arrowhead marks the tip of the shoot meristem area. (D) pKLU::YFP fluorescence in shoots of 6-day-old wild-

type seedlings. Images were taken at different angles to the shoot axis; left image: coronal plane, the black arrowhead marks the tip of the shoot

meristem area; two images in the middle: transversal plane; right image: sagittal plane. Size bars represent 100 μm (A, B and C) and 50 μm (D).

https://doi.org/10.1371/journal.pgen.1009043.g002
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morphology nearly indistinguishable to the strong amp1-13 allele including polycotyly, preco-

cious and pronounced formation of compact true leaves and an oversized shoot meristem area

(Fig 4A and 4B). With a 2.6-fold increase in leaf number and a 12-fold increase in SAM surface

compared to wild type also the quantitative severity of the cyp78a5,7 defect was very close to

that of amp1-13 (Fig 4C and 4D).

Fig 3. cyp78a5,7 mutants show a suspensor to embryo conversion phenotype. (A) Wild-type (upper panel), amp1-
13 (middle panel) and cyp78a5,7 (lower panel) embryos at the indicated developmental stages. (B) pCLV3::GUS

activity in embryos of the indicated genotypes at the late heart stage. Size bars represent 20 μm.

https://doi.org/10.1371/journal.pgen.1009043.g003
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Loss of CYP78A5/7 function causes ectopic stem cell pool formation in the

vegetative shoot meristem and enhances RAP2.6L expression

To follow stem cell pool development in cyp78a5,7 shoot meristems, we analyzed the OC-

marker pWUS::GUS in the double mutant. In amp1, depending on the allelic strength,

between 5% (amp1-1) and 47% (amp1-13) of 7-day-old seedlings showed the formation of at

Fig 4. cyp78a5,7 plants show amp1-related shoot defects. (A) Shoot phenotypes of wild-type, cyp78a5, amp1-1, amp1-13 and cyp78a5,7
plants at 7 DAG. (B) Scanning electron micrographs of shoot apices of 7-day-old wild-type, cyp78a5, amp1-1, amp1-13 and cyp78a5,7 plants.

(C) Quantification of rosette leaf number in seedlings of the indicated genotypes at 7 DAG. (means ± SE of the mean; n� 30). Different

letters over the error bars indicate significant differences (P< 0.05; one-way ANOVA followed by Tukey’s multiple comparison tests). (D)

Quantification of a SAM surface area of 7-day-old plants; (means ± SE of the mean; n� 4). Different letters over the error bars indicate

significant differences (P< 0.05; one-way ANOVA followed by Tukey’s multiple comparison tests). Size bars represent 500 μm (A) and

100 μm (B).

https://doi.org/10.1371/journal.pgen.1009043.g004
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least one additional WUS expression domain in the SAM periphery ([10]; Fig 5A). Ectopic

OC-formation at a similar rate to that of amp1-13 was found in cyp78a5,7 seedlings, whereas

cyp78a5 single mutants were aphenotypic in this respect (Fig 5A). At a later developmental

stage, the number of individual OC-foci and corresponding CLV3 expressing areas further

increased in cyp78a5,7 and frequently surrounded a central stem cell negative domain (Fig

5B), which often produced a radialized leaf-like organ (Fig 5C) and leaf primordia formation

subsequently continued to the inner and outer side of the concentrically arranged stem cell

pools. Notably, this specific SAM patterning defect is also a hallmark of strong amp1 alleles

such as amp1-13 and pt ([10]; Fig 5C). These data indicate that CYP78A5/7, like AMP1, sup-

press the reappearance of stemness in cells of the SAM periphery.

Fig 5. cyp78a5,7 forms ectopic shoot stem cell pools similar to amp1. (A) pWUS::GUS activity in shoots of the

indicated genotypes at 7 DAG. The frequencies of shown GUS-staining patterns are stated. (B) pWUS::GUS and

pCLV3::GUS activities in shoots of wild type and cyp78a5,7 at 10 DAG. (C) Scanning electron micrographs of shoot

apices of 7-day-old amp1-13 and cyp78a5,7 plants showing the presence of a central leaf-like structure with radial

polarity (black asterisk marks the tip of the structure). Leaf primordia were partially to visualize meristematic

structures. Size bars represent 500 μm (A,B and C).

https://doi.org/10.1371/journal.pgen.1009043.g005
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Another specific molecular signature connected to the stem cell specification defect of

amp1 is the enhanced expression of the AP2 transcription factor RAP2.6L, which contributes

to the SAM hypertrophy and enhanced regeneration potential of the mutant [22]. GUS-

reporter analysis revealed a comparable prominent up-regulation of RAP2.6L expression in

cyp78a5,7 seedlings (S2 Fig) indicating that also this defect is conserved between the mutant

lines.

cyp78a5,7 and amp1 seedlings show significantly overlapping

transcriptomic changes

To further assess whether these striking phenotypic similarities between amp1 and cyp78a5,7
are also depicted in a congruency at the global gene expression level, we analyzed the transcrip-

tomic responses of both genotypes using microarray analysis. The experiment was performed

with 10-day-old seedlings. Compared with wild type Col-0, 1897 and 953 genes were differen-

tially expressed in cyp78a5,7 and amp1-13, respectively. Of these genes, 511 were differentially

expressed in both mutant lines (27% of cyp78A5,7 mis-regulated genes and 54% of amp1-13
mis-regulated genes), an overlap that is greater than would be expected by chance (P < 2.009e-

308; Fig 6A and 6B; S1 Table). Moreover, expression heatmap analysis revealed that the co-reg-

ulated DEGs were largely altered in the same direction with only eight genes showing opposite

change of expression between the two mutant genotypes (Fig 6C; S1 Table). To determine,

whether the DEGs of the two lines show any specific hormonal signatures, we assessed the rela-

tive presence of core responsive gene sets for six different hormones (Fig 6D). Notably, for

both genotypes the highest overlap was found among the set of jasmonate-responsive genes

(16% present in cyp78a5,7 sample, 12% present in the amp1-13 sample). Furthermore, over

10% of ABA-responsive genes were present in the DEG sets of both mutants.

The lists of genes differently expressed in cyp78a5,7 and amp1-13 were further used in a

gene ontology (GO) enrichment analysis to determine biological processes specifically affected

in one or both genotypes. GO terms related to lipoprotein synthesis/metabolism, response to

jasmonate/wounding and response to organic substance/chemicals were highly enriched

among the 1897 cyp78a5,7-regulated genes and 953 amp1-regulated genes (Fig 6E). GO terms

only enriched among the cyp78a5,7-regulated genes included cell wall specific processes,

indole/tryptophan metabolic processes, response to auxin and programmed cell death. Finally,

GO terms only enriched among the amp1-regulated genes were related to photosynthesis,

response to salicylic acid and response to temperature stimulus. Taken together, defects in

CYP78A5/7 and AMP1 cause a substantially overlapping read out at the global gene expression

level, supporting a model in which both enzyme types affect a common molecular process.

AMP1/LAMP1 and CYP78A5/A7 act synergistically in shoot meristem

patterning

To characterize the genetic interactions between the members of the two enzyme classes we

created the according double mutants and the amp1 lamp1 cyp78a5,7 quadruple mutant. We

then compared their phenotypes to those of the corresponding single and enzyme class-spe-

cific double mutants. To this purpose we quantified leaf number and assessed the morphologi-

cal appearance of the shoot at the vegetative growth stage (Fig 7). From the double mutants,

only lamp1 cyp78a7 was wild-type like, as its single mutant parents (Fig 7A and 7C). lamp1
cyp78a5 showed the same subtle increase in leaf number as cyp78a5. In a similar manner,

amp1 cyp78a7 was indistinguishable from amp1 in terms of increased leaf number and overall

appearance. Notably, combination of amp1 with cyp78a5 resulted in a strong synergistic phe-

notype resembling amp1 lamp1 and cyp78a5,7 in respect to size, shape and spatial distribution
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of leaves. Finally, bringing together all four mutations in amp1 lamp1 cyp78a5,7 resulted in

extremely dwarfed plants with a massively expanded central meristematic area surrounded by

small leaf primordia, which stayed tiny and did not form leaf blades, representing a further

exaggeration of the severe double mutant phenotypes (Fig 7A). Thus, accurate quantification

of leaf number was not possible in the quadruple mutant. Moreover, these plants never bolted

and were not viable over an extended period of time.

We also monitored the anatomical changes in SAM structure in amp1 cyp78a5 and the

enzyme class-specific double mutants and compared them to those of the quadruple mutant.

amp1 cyp78a5 shoot apices were nearly indistinguishable to those of amp1 lamp1 showing a

massive increase in size already seven days after germination with subsequent splitting in a

field of meristematic clusters, which formed organ primordia in a stochastic manner (Fig 7B).

cyp78a5,7 shoot meristems appeared to be smaller before fragmentation compared to those of

amp1 lamp1 and amp1 cyp78a5. In contrast, the quadruple mutant showed a novel phenotype,

where the primary SAM was even further increased in size and generated callus-like invagina-

tions without forming clearly distinct subunits surrounded by organ anlagen as found in the

analyzed double mutants (Fig 7B).

We expanded the phenotypic analysis of mutant combinations to the adult growth stage.

Like in the seedling stage, lamp1, cyp78a7 and the resulting double mutant were wild-type like,

whereas cyp78a5 and lamp1 cyp78a5 showed increased shoot branching combined with a

moderately higher leaf number (Fig 8A and 8B). Shoot organ number was comparably further

enhanced in amp1-1 and amp1-1 cyp78a7. Plants, which lost both AMP1 and CYP78A5, were

super-bushy dwarfs with a massively increased leaf number and ranked phenotypically

between cyp78a5,7 and amp1-1 lamp1-2. All three double mutants were also fully sterile. The

observed increase in leaf number in the double mutants clearly exaggerated the sum of super-

numerary leaves in the corresponding parental single mutants (Fig 8C). To determine the

impact of residual AMP1 function in amp1-1 on this analysis we also combined the putative

null allele amp1-13 with cyp78a5. This line did not show a further enhancement of the adult

shoot phenotype compared to amp1-1 cyp78a5 (Fig 8B and 8C). Taken together, we observed

a clear synergistic increase in phenotypic severity when combining amp1 and cyp78a5, which

was further pronounced in the amp1 lamp1 cyp78a5,7 quadruple mutant.

Ectopic expression of LAMP1 rescues amp1
Based on the presented and earlier genetic interaction studies [10, 34], the two analyzed CYP78

members as well as both GCPII-like proteins appear to act in a partially redundant manner. In

both cases there is one master paralog (CYP78A5 and AMP1), which shows a single mutant

phenotype and a supporting paralog (CYP78A7 and LAMP1) whose function becomes visible

only, if the master paralog is missing. Such a hierarchy would for example occur, if both para-

logs are functionally conserved but the master paralog shows a broader spatiotemporal expres-

sion pattern than the supporting paralog, as indicated by our previous tissue-specific expression

analysis of AMP1 and LAMP1 [10]. To test this hypothesis, we expressed a YFP-tagged version

of LAMP1 under the control of the 35S promoter in amp1-1. Several independent 35S::LAMP1:

Fig 6. Comparative analysis of cyp78a5,7 and amp1-13 transcriptomic responses. A) Venn diagram showing the number of genes that

were differently regulated in cyp78a5,7 and amp1-13 seedlings in comparison with Col-0. B) Graphical representation of the overlapping

portion of differentially regulated genes in amp1-13 and cyp78a5,7. (C) Heat map of genes differently regulated in cyp78a5,7 and amp1-13
(2339 DEGs). The heat map was produced by clustering the normalized values using the hierarchical clustering algorithm implemented in

Gene Cluster (Euclidean distance and Average linkage). The results were visualized using TreeView3. (D) Graph showing the fractions of

hormone-specific marker genes differently regulated in cyp78a5,7 and amp1-13. (E) GO term enrichment analysis of genes differently

regulated in cyp78a5,7 and amp1-13 (2339 DEGs).

https://doi.org/10.1371/journal.pgen.1009043.g006
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YFP lines were generated and characterized in the wild-type and amp1 mutant background. In

the wild-type background, 35S::LAMP1:YFP did not show any obvious growth phenotype

except of a slightly increased leaf number at 7 DAG (S3 Fig). When brought into amp1-1, 35S::

LAMP1:YFP progressively rescued the mutant-associated phenotype (S3 Fig). Whereas at 7 and

9 DAG both analyzed lines showed an intermediate leaf number, significantly lower than amp1-
1 but still around four leaves more than the wild-type control, this difference fully disappeared

at 15 DAG. From this time point on 35S::LAMP1:YFP amp1-1 behaved like wild type, showing

a normal flowering time and shoot architecture. The gradual nature of this phenotypic rescue

might reflect the activity of the selected promoter, since it is known that 35S driven expression

is only weak during embryogenesis when AMP1-deficient plants already establish a bigger SAM

and true leaf primordia (Fig 3; [38]). Taken this into account, we conclude that LAMP1 can

take over AMP1 function when its expression domain is expanded.

CYP78A5 overexpression diminishes SAM size and leaf formation rate

To analyze the effect of CYP78A5 overexpression (OE) on vegetative SAM function, we gener-

ated myc-tagged and untagged versions of CYP78A5 under the control of the 35S promoter.

Overexpression of the transgenic protein in 35S::CYP78A5:MYC was verified by western blot-

ting (S4E Fig). To determine vegetative shoot meristem activity in these lines we assessed leaf

number and SAM anatomy. Both CYP78A5 OE lines showed a retarded outgrowth of the first

pair of true leaves and continued to form less leaves compared to wild type at later vegetative

growth stages (S4A and S4C Fig). The reduced leaf initiation rate of CYP78A5 OE lines corre-

lated with a significant decrease of SAM size (S4B and S4D Fig). The SAM surface area reached

only 35% (35S::CYP78A5) and 56% (35S::CYP78A5:MYC) of that of wild type, respectively.

Taken together, enhanced CYP78A5 activity results in a decrease of leaf initiation rate and veg-

etative SAM size indicating a rate limiting function in the control of these parameters.

CYP78A5 overexpression suppresses amp1 mutant shoot phenotypes

The results of the genetic interaction analysis between the AMP1 class of proteases and the two

CYP78A members are consistent with a model in which both protein classes act on a common

downstream process controlling shoot meristem organization. To further test this model we

determined the effect of 35S::CYP78A5 overexpression on the shoot phenotypes of amp1-1 and

pt. We included pt, as an AMP1 null-allele since we observed in amp1-13 a tendency for silenc-

ing of 35S promoter containing transgenes, which might falsify the outcome of the intended

experiment. Whereas 35S::CYP78A5 bearing amp1-1 and pt seedlings still showed supernumer-

ary cotyledons, true leaf formation was significantly decelerated and also leaf expansion and

shape appeared normalized (Fig 9A and 9C). While the presence of 35S::CYP78A5 reduced the

leaf number by 17% in wild type, it diminished the leaf number by around 40% in the amp1
mutants (Fig 9C and 9D). Moreover, the sizes of CYP78A5 overexpressing amp1-1 and pt shoot

meristems closely resembled those of wild-type plants (Fig 9B). Thus, ectopic CYP78A5 expres-

sion significantly suppresses the enhanced leaf formation and SAM hypertrophy of amp1.

Fig 7. Seedling phenotypes of amp1, lamp1, cyp78a5 and cyp78a7 mutant combinations. (A) Shoot phenotypes of

indicated genotypes at 14 DAG (except for the quadruple mutant, which was pictured at 12 DAG). A close-up of the

quadruple mutant is presented in the upper right corner. (B) Scanning electron micrographs from shoot apices of the

indicated genotypes at 7 DAG. In cyp78a5,7 and amp1 lamp1 some of the leaf primordia were removed for better

visibility of the meristem structure. Arrowheads mark the callus-like invaginations in the quadruple mutant. (C)

Quantification of rosette leaf number in the indicated genotypes at 10 DAG (means ± SE of the mean; n� 35).

Different letters over the error bars indicate significant differences (P < 0.05; one-way ANOVA followed by Tukey’s

multiple comparison tests). Size bars represent 1 mm (A) and 250 μm (B).

https://doi.org/10.1371/journal.pgen.1009043.g007
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AMP1 overexpression does not alter shoot meristem activity in wild type

and cyp78a mutants

To further investigate the nature of the AMP1/CYP78A functional interaction, we monitored

the shoot development of a transgenic line bearing the AMP1 genomic DNA fused to the 35S

promoter (35S::AMP1). This line showed increased AMP1 transcript levels (Fig 10C) and fully

Fig 8. Adult shoot phenotypes of amp1, lamp1, cyp78a5 and cyp78a7 mutant combinations. (A) Shoot phenotypes of indicated genotypes at 63

DAG. (B) Quantification of rosette leaf number at 63 DAG (means ± SE of the mean; n� 4). Different letters over the error bars indicate significant

differences (P< 0.05; one-way ANOVA followed by Tukey’s multiple comparison tests). (C) Comparison of calculated additive and observed fold

increase in leaf number in the indicated double mutants compared to wild type based on the data shown in (B). Calculated additive increase: putative

fold change, if the leaf number increases of the parental mutants are added up. Observed increase: the fold increase in leaf number in a double mutant in

comparison to wild type.

https://doi.org/10.1371/journal.pgen.1009043.g008
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rescued the amp1-1 mutant phenotype (Fig 10D). 35S::AMP1 plants had the same leaf number

and the same SAM size as wild type and did not exert any other obvious shoot phenotypes

under the used standard growth conditions (Fig 10A and 10B). Next, we crossed 35S::AMP1
with cyp78a5 and cyp78a5,7. Double homozygous 35S::AMP1 cyp78A5 plants were indistin-

guishable from cyp78a5 parents at the seedling as well as the adult developmental stage (Fig

10E–10G). Similarly, 35S::AMP1 did not obviously alter the leaf over-accumulation phenotype

of cyp78a5,7 mutants (Fig 10H and 10I). We also crossed the estradiol-inducible AMP1 over-

expression line pER>>AMP1:MYC with cyp78a5 and analysed the leaf formation rate of seed-

lings germinated in the presence and absence of estradiol (Fig 10J–10L). Induction of AMP1

overexpression did not significantly suppress the higher leaf number of 9-d-old cyp78a5
seedlings.

cyp78a5,7 shows elevated protein levels of the miRNA targets PHV and

AGO1

AMP1/LAMP1 deficiency results in protein over-accumulation of various tested miRNA tar-

gets, without affecting their transcription levels [17]. To test whether cyp78a5,7 also shares this

specific molecular defect with amp/lamp1, we assessed the protein levels of the miRNA165/166

targeted HD-ZIP III transcription factor PHV using an YFP-tagged version driven by the 35S

promoter, which has been shown to over-accumulate in amp1 [16]. Using three independent

biological repeats we found significant higher PHV-GFP protein levels in cyp78a5,7 compared

to wild type (S5A and S5C Fig). To also monitor the protein levels of a miRNA target tran-

scribed at endogenous levels, we further analyzed the expression of the slicer protein AGO1,

which is under control of miRNA168. Using an AGO1-specific antibody, we detected approxi-

mately two-fold more AGO1 protein in cyp78a5,7 compared to wild type (S5B and S5D Fig),

which is an increase in a similar range as reported for amp1/lamp1 [17]. These data imply that

not only AMP1/LAMP1 but also CYP78A5/7 affect protein levels of miRNA targets.

Discussion

The putative carboxypeptidase AMP1 plays a central role in cell fate maintenance in different

developmental contexts, however its molecular function in this process remains enigmatic. To

broaden the AMP1 regulatory network we set out to characterize additional factors potentially

acting in the same or overlapping pathways with the protease. Here we show that CYP78A5 is

expressed in the same embryo and shoot apex domains as AMP1. Loss of CYP78A5 and its

homolog CYP78A7 provokes a set of cell fate defects in the embryo and shoot meristem highly

reminiscent of those found in amp1. These phenotypic similarities are accompanied by an

overlap of molecular alterations, including mis-expression of stem cell markers, global tran-

scriptional changes and protein over-accumulation of miRNA target proteins. Moreover, we

observed a strong synergistic phenotypic enhancement in inter-family mutant combinations.

Based on these findings we propose that the analyzed members of the two enzyme families act

in or on a common pathway of cell specification controlling pluripotency in the embryo and

shoot meristem.

Fig 9. CYP78A5 overexpression suppresses amp1 shoot phenotypes. (A) Seedling shoot phenotypes of indicated

genotypes at 10 DAG. (B) Scanning electron micrographs of shoot meristems from 10-day-old plants of indicated

genotypes. (C) Quantification of rosette leaf number in the indicated genotypes at 10 DAG. (means ± SE of the mean;

n� 10). Different letters over the error bars indicate significant differences (P< 0.05; one-way ANOVA followed by

Tukey’s multiple comparison tests). (D) Graph showing leaf numbers of CYP78A5 over-expressing lines normalized

against the respective non-transgenic parental genotypes. Size bars represent 1 mm (A) and 50 μm (B).

https://doi.org/10.1371/journal.pgen.1009043.g009
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Phenotypic comparison of single, double and quadruple mutants revealed a partially redun-

dant functional interaction inside as well as between enzyme family members. For both

enzyme classes there is a master paralog (AMP1 and CYP78A5) showing a single mutant phe-

notype and a supporting paralog (LAMP1 and CYP78A7), whose function only becomes

apparent if the master paralog is missing. Currently we favor a model in which this hierarchy

mainly results from different spatiotemporal expression patterns of master and supporting

paralogs, whose biochemical functions are conserved. This model is consistent with our tissue-

specific expression analysis of AMP1 and LAMP1. LAMP1 is mainly expressed in vascular-

associated tissues [10], whereas AMP1 expression is detected in vascular strands, leaf primor-

dia, meristematic and embryonic tissues (Figs 1 and 2; [10, 12]). Moreover, ectopic expression

of LAMP1 suppressed amp1-associated shoot phenotypes further supporting that AMP1 and

LAMP1 have equivalent biochemical activities and that the partial functional redundancy is

caused by their different expression domains. In the case of CYP78A5/A7, both genes are

expressed in the shoot meristem with CYP78A5 at a significant higher level than CYP78A7 (S1

Fig). Enzymatic profiling further revealed similar substrate specificities of recombinant

CYP78A5 and CYP78A7 when tested against various fatty acids [36], however, functional

comparison in vivo, for example by promoter swap experiments, has yet to be performed.

Our analysis further revealed clear synergistic genetic interactions between enzyme family

members cumulating in the severe phenotype of the amp1 lamp1 cyp78a5,7 quadruple mutant.

In our opinion the observed genetic relationships fit best to a scenario, in which AMP1/LAMP1

and CYP78A5/7 act in parallel pathways, which converge on a common downstream node

rather than acting consecutively in a linear pathway. If one enzyme class is compromised the

other, to a certain extent, is still able to independently maintain the required downstream func-

tion. This model is also consistent with the strong up-regulation of CYP78A5 expression in

amp1 (S1 Table; [9, 16]) and the partial rescue of the amp1 shoot phenotype by CYP78A5 over-

expression (Fig 9). In contrast, AMP1 overexpression did not result in a comparable phenotype

to that of CYP78A5 overexpression and did not ameliorate the cyp78a5,7 phenotype (S3 Fig; Fig

10). We did also not find significant up-regulation of AMP1 expression in the cyp78a5,7 double

mutant (S1 Table). Thus, AMP1 seems to be required for proper function of the pathway, but

does not play a rate-limiting role in this context. Notably, our results fit to the double mutant

analysis of rice orthologs pla1 (CYP78A11) and pla3 (OsAMP1), which also revealed a synergis-

tic rather than epistatic or additive relationship in the control of the plastochron [23].

What is the identity of the downstream process corporately regulated by AMP1/LAMP1

and CYP78A5/7? It is tempting to speculate that CYP78A5/7 are involved in miRNA-mediated

Fig 10. AMP1 overexpression does not rescue cyp78a5,7-related shoot phenotypes. (A) Seedling shoot phenotypes of wild

type and 35S::AMP1 at 15 DAG (upper panel) and scanning electron micrographs of their shoot apical meristems at 7 DAG

(lower panel). (B) Quantification of rosette leaf number in wild type and 35S::AMP1 at the indicated time points (means ± SE

of the mean; n� 10). (C) AMP1 expression analysis in the indicated genotypes by sqRT-PCR. Normalization of cDNA was

performed with UBQ5-specific primers. (D) Seedling leaf phenotype of the indicated genotypes at 8 DAG. (E) Seedling shoot

phenotypes of indicated genotypes at 10 DAG. (F) Quantification of rosette leaf number in the indicated genotypes at 10

DAG. (means ± SE of the mean; n� 10). Different letters over the error bars indicate significant differences (P< 0.05; one-

way ANOVA followed by Tukey’s multiple comparison tests). (G) Adult shoot phenotypes of indicated genotypes at 35

DAG. (H) Seedling shoot phenotypes of indicated genotypes at 12 DAG. (I) Quantification of rosette leaf number in the

indicated genotypes at 17 DAG. (means ± SE of the mean; n� 10). Different letters over the error bars indicate significant

differences (P < 0.05; one-way ANOVA followed by Tukey’s multiple comparison tests). (J) Seedling shoot phenotypes of

indicated genotypes at 15 DAG in the absence (CON) and presence of 10 μM estradiol (ES). (K) Quantification of rosette leaf

number in the indicated genotypes at 9 DAG germinated either in the absence (CON) or presence (ES) of 10 μM estradiol

(means ± SE of the mean; n� 10). Different letters over the error bars indicate significant differences (P< 0.05; one-way

ANOVA followed by Tukey’s multiple comparison tests). (L) Immunoblotting of protein extracts of 10-d-old pER>>AMP1:

MYC seedlings grown in the absence or presence of 10 μM estradiol. AMP1:MYC was detected using an anti-MYC antibody.

Ponceau S staining of the blot is shown as loading control. Size bars represent 2 mm (A) 1 mm (B and G).

https://doi.org/10.1371/journal.pgen.1009043.g010
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repression of translation in which AMP1 has been shown to play a central role (Li et al., 2013).

In an initial analysis we indeed found in cyp78a5,7 enhanced protein levels for two selected

miRNA targets, reported to be up-regulated, if AMP1/LAMP1 function is lost [16, 17], which

supports a general role in this process. However, in regard to plastochron control, cyp78A5,7
rather resembles plants with increased miRNA156/157 activity or diminished accumulation of

their targets such as SPL9 and SPL13 [34]. Moreover, expression of a miRNA-resistant version

of SPL9 accordingly suppressed the plastochron phenotype of cyp78a5, whereas overexpres-

sion of miRNA156f further enhanced it in an additive manner [34]. These data indicate that

the plastochron phenotype of cyp78a5,7 can be hardly attributed to decreased miRNA156/157

function. This is even more surprising since it was reported that these miRNAs limit SPL

expression mainly at the level of translation [39].

It has to be noted that also in the case of amp1/lamp1 it is currently unclear to which extent

the observed cell fate defects are a direct result of the reported translational de-repression of

miRNA targets. Suspensor proliferation has been reported for some miRNA biogenesis

mutants, however this defect was usually associated with severe malformation or abortion of

the proembryo [40], in contrast to the early and seamless fusion of suspensor and proembryo

derived cell masses to a viable embryonic structure found in amp1. One possible explanation

for this discrepancy might be that release of translational repression of miRNA targets is

restricted to the AMP1/LAMP1 expression domain and/or affects only a subset of miRNA tar-

gets with a role in embryo and SAM patterning. The latter is supported by a recent study, in

which no translational de-repression of miR156 target SPL9 or the miR159 target MYB33

could be observed in amp1 [41]. We showed that AMP1 acts through the AP2 transcription

factor RAP2.6L, which is controlled by the miRNA-regulated HD-ZIP III proteins [22] and we

are currently analyzing the functional relationship between HD-ZIP III mis-regulation and

amp1 phenotypes. Notably, RAP2.6L expression is up-regulated in cyp78a5,7 and coincides

with enhanced protein levels of the HD-ZIP III member PHV. Thus, it cannot be excluded

that AMP1 and CYP78A5 cooperate in their overlapping expression domains to regulate a

subset of miRNA targets with a function in cell fate maintenance.

Alternatively, it can be speculated that AMP1/CYP78A deficiency affects miRNA-depen-

dent translation but the defect in this process is not immediately causative for the developmen-

tal phenotypes but rather a consequence of a different molecular upstream activity also

required for the cell fate control in differentiation processes. Interestingly, the microarray anal-

ysis revealed a significant enrichment of GO terms connected to protein lipidation processes

such as N-myristoylation in both mutant classes. Recombinant CYP78A5 and 7 have been

shown to omega-oxidize short fatty acids such as lauric acid and myrisitc acid in vitro, however

the in vivo catalytic activity as well as the endogenous substrates are not known [36]. CYP78A

function might affect lipid composition or membrane association of proteins and in this way

might impact on miRNA-dependent translation, which has been reported to be mainly local-

ized to the rough ER [17]. We note in this regard that Arabidopsis AGO1 has been shown to

be a peripheral membrane protein and defects in isoprenoid or sterol biosynthesis compro-

mise miRNA function and membrane association of AGO1 [42]. AMP1 partially co-localizes

with AGO1 in the rough ER [17], nevertheless, whether its biochemical function is a prerequi-

site for proper membrane interaction of AGO1 and/or other proteins is unknown to date.

Alternatively, CYP78A5 might generate a fatty acid-derived signal that controls the expression

or activity of miRNA targets, which are regulated by AMP1 at the level of translational

repression.

Members of the CYP78 family have been shown to control organ size by promoting the

length of the cell division phase [29, 32]. Loss of CYP78A function results in smaller leaves

whereas enhanced CYP78A expression in leaves increases their growth rate. For CYP78A5 it
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has been shown that it mediates this effect in a non-cell autonomous manner. Since this func-

tion is coupled to the control of plastochron length it was postulated that the factor is part of a

compensation mechanism that balances the size of single leaves with the total number of leaves

formed [24, 34]. Our work further supports such a function by showing that CYP78A5 overex-

pression leads to a reduction of leaf number. amp1 plants also generate more but smaller leaves

whereas ubiquitous overexpression of AMP1 did not produce a significant plastochron or leaf

size phenotype in our hands. However, recently it was reported that AMP1 overexpressors

have an increased rosette size but leaf formation rate was not quantified in this study [43].

Thus, more comprehensive studies including tissue specific overexpression of AMP1 com-

bined with detailed leaf growth analysis are required to assess its role in organ size control and

its interaction with CYP78A5 in this process.

Methods

Plant materials and growth conditions

amp1-1 (Col-0; N8324); amp1-13 (Col-0; N522988), pt (Ler; N235), lamp1-2 (Col-0; N110755),

lamp1-4 (Col-0; N617012), cyp78a5 (Col-0; N125856) and cyp78a7 (Col-0; N57134) were

ordered from the Nottingham Arabidopsis Stock Centre (http://www.arabidopsis.info/).

pAMP1::AMP1-GFP and 35S::AMP1 [12], pKLU::GUS and pKLU::YFP [29], pCLV3::GUS and

pWUS::GUS [44], pRAP2.6L::GUS [22], 35S::LAMP1:YFP [10] and 35S::PHV:YFP [16] trans-

genic lines have been described. 35S::AMP1 was kindly provided by Thomas Berleth (Univer-

sity of Toronto, Canada) and was generated by fusion of the genomic AMP1 sequence to the

35S promoter. The T-DNA insertion sites of cyp78a5 and cyp78a7 were described previously

[34] and both mutations lead to a drastic decrease in the transcript levels of the corresponding

genes (S6 Fig). Combinations of mutants and reporter lines were generated by crossing indi-

vidual lines and homozygous progeny was verified phenotypically and by PCR genotyping.

Arabidopsis seeds were surface sterilized with 70% ethanol containing 0.05% SDS for 3

min, with 96% ethanol for 1 min and dried in a laminar flow hood. After stratification (48h at

4˚C) plants were grown in vitro on half-strength MS medium (Duchefa) supplemented with

1% sucrose and 0.7% (w/v) agar (Duchefa) or on soil (Platzer) in a growth incubator (Bright-

Boy GroBank, Model BB-XXL, CLF Plant Climatics) set to long day condition (21˚C; 16 h of

80 μmol s-1 m-2 light/ 8 h dark).

Gene constructs and transformation

PCR was performed with proofreading thermostable polymerase (Thermo Fisher Scientific),

and all clones were confirmed by sequencing. For generation of the plants overexpressing 35S::

CYP785 and 35S::CYP785:MYC the coding sequence of the gene (AT1G13710) was amplified

with primers 5’-CCCGATATCCAGCCTGAG-3’ and 5’-CAAGGAATGTTGGTTTCGCTAG

CGGCCGCGGG-3’ and inserted as EcoRV/NotI fragments into corresponding cloning sites

of the binary plant expression vector pGWR8 [45] downstream from the constitutive 35S pro-

moter of cauliflower mosaic virus (CaMV). A Myc-tag was subsequently inserted in-frame as a

NotI/NotI fragment. To generate plants overexpressing of 35S::CYP7875 in pART27 vector we

cut CYP78A5 with KpnI and SalI out from a pH-TOP vector carrying CYP78A5 and ligated it

into KpnI/XhoI sites of pART7 primary cloning vector [46] downstream from the 35S pro-

moter of CaMV. The entire expression cartridge with CYP5 cDNA (35S-CYP78A5-ocs 3’) was

digested with NotI from pART7 and introduced into a NotI cloning site of the pART27 binary

vector. To generate pER>>AMP1:MYC, the coding sequence of AMP1 (AT3G54720) includ-

ing a C-terminal 6xMYC tag was amplified with primers 5’-GGGCTCGAGATGTCACAA

CCTCTCACCACCAG-3’ and 5’-TTTACTAGTCTCTAGCGGCCGCCTGTC-3’ cut with
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XhoI/SpeI and inserted into the corresponding cloning sites of the pER8 estradiol-inducible

plant transformation vector [47]. Plants were transformed using the floral dip method, at least

10 independent transformants were generated for each line and the resulting T2 lines were

confirmed for single transgene insertion sites based on the 3:1 segregation of the selection

marker and propagated for further analysis.

Fluorescence microscopy

CLSM images of pKLU::YFP and pAMP1::AMP1-GFP embryos and seedlings were generated

using a TCS SP8 (Leica Microsystems) and a FV1000 (Olympus) confocal laser-scanning

microscope. For imaging, we used the following excitation conditions: 488 nm (GFP) and 514

nm (YFP). Confocal laser-scanning microscope settings were kept constant in individual sets

of experiments to allow for comparison of reporter proteins.

RNA in situ hybridization

To generate AMP1 and GFP antisense and sense probes, the respective ORFs were amplified

from cDNA using corresponding oligos (AMP1probeF: GCTCTCTTATCTTATCCTACGCA

CA/ AMP1probeR: CGAAGAGACAAAGGCAAAGATGG and eGFPprobeF: ACGGCGTG

CAGTGCTTCAG/ eGFPprobeR: TGATCCCGGCGGCGGTCAC), subcloned into pGEM-T

Easy, and used as a template for transcription from the T7 or SP6 promoters. 10-d-old Arabi-

dopsis seedlings were fixed with Formaldehyde/Acetic Acid (FAA). The following paraffin

infiltration was performed with a Leica ASP200 S tissue processor. Sample preparations and in
situ hybridizations of 7-mm sections were performed essentially as described [48], a detailed

protocol is available online (http://plantdev.bio.wzw.tum.de). Whole mount in situ hybridiza-

tion of embryos and seedlings was performed essentially as described [49]. Images were taken

using a BX61 upright microscope (Olympus) with DIC optics.

Leaf number analysis

The sequential appearance of the leaves was recorded in all experiments by visual observation

of plants using a SZX10 stereomicroscope (Olympus) equipped with a DP26 digital camera

(Olympus). Cotyledons were considered as leaves. For 10 days old seedlings, a leaf was consid-

ered as initiated when its primordium could be observed under the stereomicroscope with 2x

magnification. The rosette leaves of 63 days old plants were dissected from the stem and

counted.

Phenotypic analysis of embryos

Whole-mount preparations were done as described [50]. In brief, ovules from siliques of

appropriate stages were fixed for 1–4 hours in ethanol/acetic acid (6:1) at room temperature.

After washing in 100% ethanol and 70% ethanol, embryos were mounted in a mixture of chlor-

alhydrate/glycerol/water (8:1:2) and cleared for about 1 hour at room temperature. Images

were taken with an OLYMPUS BX61 microscope with differential interference contrast (DIC)

optics.

Scanning electron microscopy

Freshly collected seedlings were incubated in FAA fixative (50% ethanol, 10% acetic acid, 5%

formaldehyde) overnight at 4˚C, dehydrated through a graded ethanol series and subsequently

subjected to supercritical point dried using an EM CPD300 (Leica). Shoots were mounted on

conductive adhesive tabs (PLANO) and leaf primordia were partially dissected to disclose the
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shoot meristem. Pictures of samples were taken with a T-3000 tabletop scanning electron

microscope (Hitachi). The SEM images were used to measure the SAM surface area with Ima-

geJ software.

GUS staining

Seedlings were submerged into freshly made GUS staining buffer (100 mM sodium phosphate

buffer, 10 mM EDTA, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6, Triton X-100 (0.1% v/v) and 1

mM 5-bromo-4-chloro-3-indolyl-β-D-glucuronide). The seedlings were stained at 37˚C for

various periods of time depending on the reporter strength. After staining the tissue was dehy-

drated with 70% ethanol. Samples were analyzed using a stereomicroscope (SZX10; Olympus)

equipped with a digital camera (DP26; Olympus).

Microarray experiment

The experiment was conducted with 10 d-old whole seedlings, grown in 96-well plates in liq-

uid MS medium with DMSO in long day conditions. RNA for microarray analysis was

extracted from three biological replicates for each line using the RNeasy Kit plant mini kit

(Qiagen). cDNA synthesis, labeling and hybridization on a GeneChip Arabidopsis ATH1

genome was performed at the NASC Affymetrix service, University of Nottingham according

to standard Affymetrix protocols. The raw microarray data from Affymetrix were uploaded

into ArrayStar software (DNASTAR Inc.), preprocessed and normalized using RMA (Robust

Microarray Analysis—Quantile) method; statistical significance was assessed with Moderated

t-test [51]; p-value was adjusted with FDR (Benjamini and Hochberg false discovery rate

�0.05) [52]. To reduce the number of false positives and to increase the chances of identifying

all the differentially expressed genes, all the genes with adjusted p-values less than 0.05 were

selected for further analysis. Genes resulting from this analysis were then filtered with regard

to their differential expression (2-fold induction or repression, 95% confidence). The gene

ontology term analysis was done using AgriGO web-based tool [53]. The amp1-13 dataset was

already used to analyze the effect of the small molecule hyperphyllin on trancriptomic

responses [16]. The microarray data set is available in NCBI’s Gene Expression Omnibus

(National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov)

RNA and protein analyses

Total RNA was isolated from the whole seedlings using the RNeasy plant mini kit (Qiagen) fol-

lowing the manufacturer’s instructions. The cDNA was synthesized using RevertAid First

Strand cDNA Synthesis Kit (Thermoscientific). Gene-specific primers were designed with

Primer3 software [54]. Primers are listed in S1 Table.

Plant material (50–100 mg) was flash-frozen in liquid nitrogen and homogenized with a

Retsch mill (Verder Scientific). A quantity of 200 μL extraction buffer (100 mM TRIS pH 6.8,

200 mM DTT, 4% SDS, 20% glycerol, 0.2% bromophenol blue) was added and samples were

incubated at 95˚C for 2 min. The samples were centrifuged at 14,000g for 5 min and 15 μL of

the supernatants were separated by SDS-PAGE (10% gel) and semi-dry-blotted onto a polyvi-

nylidene difluoride membrane (Millipore). The membrane was blocked with blocking buffer

(5% skim milk powder dissolved in 0.05% Tween 20, 150 mM NaCl, and 10 mM TRIS/HCl,

pH 8.0). For CYP78A5-MYC and AMP1:MYC detection membranes were probed with a

mouse anti-c-Myc antibody (1:5000, Santa Cruz Biotech). Alkaline phosphatase-conjugated

goat anti-mouse IgG (Sigma) diluted 1:5000 with blocking buffer was employed as secondary

antibody. For detection the CDP-Star detection reagent (GE Healthcare) was used. For

PHV-YFP detection, the membrane was probed with a mouse anti-GFP-HRP antibody
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(1:10000; # 130-091-833, Miltenyi Biotec) and signals were detected using the ECL Select

Detection Reagent (GE Healthcare). For AGO1 detection, membranes were probed with a rab-

bit anti-AGO 1 antibody (1:10000; AS09527, Agrisera). HRP-goat anti-rabbit IgG (#31460,

Invitrogen) diluted 1:10000 with blocking buffer was employed as a secondary antibody. Sig-

nals were detected using the ECL Select Detection Reagent (GE Healthcare).

For internal control detection, the detected membrane was incubated in stripping buffer

(100 mM 2-mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl pH 6.7) at 50˚C for 30 min, and re-

probed with monoclonal Anti-Actin antibody produced in mouse (1:10000; A0480, Sigma-

Aldrich). HRP-Rabbit Anti-Mouse IgG (61–6020, Invitrogen), diluted 1:5000, was employed

as a secondary antibody. Signals were detected using the ECL Select Detection Reagent (GE

Healthcare).

Statistics

Statistical analysis was performed with PRISM8 software (GraphPad Software, San Diego,

USA). For statistical analysis of the overlap of misregulated genes we used the Nemates micro-

array analysis tool (http://nemates.org/MA/progs/overlap_stats.html). Raw data for figures

can be found in S3 Table.

Supporting information

S1 Fig. Comparative expression analysis of the 6 CYP78A members, AMP1 and LAMP1 in

the shoot meristem. (A) Scheme showing the different expression domains in the shoot meri-

stem used in this analysis (According to: http://arabidopsis.org). (B) Relative expression levels

of indicated genes in the different shoot meristem domains based on eFB Browser-provided

RNAseq expressen data (http://bar.utoronto.ca).

(TIFF)

S2 Fig. RAP2.6L expression is upregulated in cyp78a5,7. pRAP2.6L::GUS and pRAP2.6L::

RAP2.6L-GUS activity in wild type and cyp78a5,7 seedlings at 8 DAG. Size bars represent 2

mm.

(TIFF)

S3 Fig. LAMP1 overexpression rescues amp1-related shoot phenotypes. (A) Seedling shoot

phenotypes of indicated genotypes at 15 DAG. (B) Adult shoot phenotypes of indicated geno-

types at 32 DAG. (C) Quantification of rosette leaf number in the indicated genotypes at 7

DAG, 9 DAG and 15 DAG (means ± SE of the mean; n� 10). Different letters over the error

bars indicate significant differences within day-specific graphs (P < 0.05; one-way ANOVA

followed by Tukey’s multiple comparison tests). Size bars represent 2 mm (A) and 2 cm (B).

(TIFF)

S4 Fig. Overexpression of CYP785 affects leaf number and SAM size. (A) Seedling shoot

phenotype of wild type, 35S::CYP78A5 and 35S::CYP78A5:MYC at 10 DAG (upper panel) and

at 14 DAG (lower panel). (B) Scanning electron micrographs of shoot apices from 10-d-old

plants of indicated genotypes. (C) Quantification of rosette leaf number in indicated genotypes

at 10 DAG and at 14 DAG (means ± SE of the mean; n� 10). (D) SAM size measurement of

the indicated genotypes at 10 DAG (means ± SE of the mean; n� 5). (E) Immunoblotting of

protein extracts of 10-d-old wild type and 35S::CYP78A5:MYC seedlings. CYP78A5:MYC was

detected using an anti-MYC antibody. Size bars represent 1mm (A) and 500 μm (B).

(TIFF)
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S5 Fig. AGO1 and PHV-YFP protein levels are increased in cyp78a5,7. (A) Immunoblotting

of protein extracts of 10-d-old 35S::PHV-YFP seedlings in the indicated genetic backgrounds.

Results of three independent biological repeats (BR) are shown. Upper panel: PHV-YFP detec-

tion using an anti-GFP antibody. Lower panel: Actin detection using an anti-actin antibody

served as a loading control. (B) Immunoblotting of protein extracts from the indicated geno-

types. Results of three independent biological repeats (BR) are shown. Upper panel: AGO1

detection using an anti-AGO1 antibody. Lower panel: Actin detection using an anti-actin anti-

body served as a loading control. (C) Quantification of relative signal intensities of PHV-YFP

bands shown in (A) normalized against corresponding actin band intensities in wild type and

cyp78a5,7 (means ± SE of the mean; n = 3). �� indicates a significant difference (Student’s

2-tailed t-test; p < 0.01). (D) Quantification of relative signal intensities of AGO1 bands

shown in (B) normalized against corresponding actin band intensities in wild type and

cyp78a5,7 (means ± SE of the mean; n = 3). �� indicates a significant difference (Student’s

2-tailed t-test; p < 0.01).

(TIFF)

S6 Fig. Expression analysis of CYP78A5 and CYP78A7 in cyp78a5 and cyp78a7. (A) Detec-

tion of CYP78A5 transcript levels in 7-d-old seedlings of the indicated genotypes by semiquan-

titative RT-PCR. In cyp78a5 no CYP78A5-specific cDNA fragment (~970 bp) could be

detected. (B) Detection of CYP78A7 transcript levels in 7-d-old seedlings of the indicated

genotypes by semiquantitative RT-PCR. In cyp78a7 no CYP78A7-specific cDNA fragment

(~1100 bp) could be detected. UBQ5 (~250 bp) was used as normalization control.

(TIFF)

S1 Table. List of genes differently expressed in cyp78a5,7 and amp1-13 seedlings.

(XLSX)

S2 Table. List of primers used in this study.

(DOCX)

S3 Table. Raw data for figures.

(XLSX)
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