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Abstract: Understanding the dynamics of Fourier domain mode-locked (FDML) lasers is
crucial for determining physical coherence limits, and for finding new superior methods for
experimental realization. In addition, the rich interplay of linear and nonlinear effects in a
laser ring system is of great theoretical interest. Here we investigate the dynamics of a highly
dispersion-compensated setup, where over a bandwidth of more than 100 nm, a highly coherent
output with nearly shot-noise-limited intensity fluctuations was experimentally demonstrated.
This output is called the sweet-spot. We show by numerical simulation that a finite amount of
residual dispersion in the fiber delay cavity of FDML lasers can be compensated by the group
delay dispersion in the swept bandpass filter, such that the intensity trace exhibits no dips or
high-frequency distortions, which are the main source of noise in the laser. In the same way, a
small detuning from the ideal sweep filter frequency can be tolerated. Furthermore, we find that
the filter’s group delay dispersion improves the coherence properties of the laser, and acts as a
self-stabilizing element in the cavity. Our theoretical model is validated against experimental
data, showing that all relevant physical effects for the sweet-spot operating regime are included.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fourier domain mode-locking is a laser operating mode in which a tunable optical bandpass
filter is swept synchronously to the roundtrip time of the optical field in the laser cavity. The
main components are a rapidly tunable Fabry-Pérot (FP) filter with moving mirrors and a fiber
delay line in the order of several hundreds of meters to kilometers. This laser principle has no
upper limit to the tuning speed under ideal resonance conditions [1] since the laser remains in
single-mode operation. The change in the wavelength in this case is obtained by the Doppler
shift, caused by the moving mirror of the FP optical bandpass filter [1,2]. Thus, the laser tuning
does not suffer from mode-hopping, which is the major limiting factor in the tuning speed of
swept laser systems. FDML lasers have revolutionized optical imaging and sensing techniques,
especially optical coherence tomography (OCT) [3–9], and applications in FDML-based Bragg
grating sensor systems [10–12] have been realized. Furthermore, real time spectroscopy [13–15],
high-speed stimulated Raman scattering spectroscopy [16] and picosecond pulse generation
[17] have been demonstrated. The combination of high output powers in the range of 100mW
[18], sweep frequencies of up to 5MHz [4], typical sweep bandwidths of more than 100 nm and
instantaneous linewidths below 0.1 nm [6] make the FDML laser one of the favored systems for
tunable lasers. Other important swept-laser sources are vertical-cavity surface emitting lasers
with a microelectromechanical system (MEMS-VCSEL) [19,20], and Vernier-tuned distributed
Bragg reflector (VT-DBR) lasers [21].

In their normal operation mode, FDML lasers suffer from high intensity noise, with fluctuations
of almost 100% [22]. The intensity fluctuations constitute high-frequency noise compared to the
sweep speed of the laser wavelength, and significantly influence the phase stability and coherence
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length of the laser. A main limiting factor is considered to be chromatic dispersion in the fiber
cavity, which delays or accelerates the instantaneous frequency (IF) of the optical field with
respect to the sweep period of the FP filter during each pass through the fiber delay line, and
accumulates over consecutive roundtrips unless there is a reverse shift.
A new operating regime discovered by Kraetschmer and Sanders [23], called the sweet-spot,

showed shot-noise-limited intensity fluctuations and a significantly narrowed instantaneous
linewidth in a 3.5 nm band. This was achieved via a dispersion-compensated setup, with
near-perfect synchronization of the sweep frequency to the optical roundtrip time, in the order of
a few mHz. This ultra-stable operating mode was recently extended to 117 nm [24] and paves the
way towards reaching the coherence limit in FDML lasers. In particular, such low-noise light
sources are essential for OCT systems in order to achieve shot-noise-limited detection sensitivity
for high-quality images, which has already been observed in former time domain OCT systems
[25,26]. It is even more critical in recent swept-source OCT systems, since here not only the
system sensitivity but also the maximum ranging depth [24] and the dynamic range [27] can be
negatively affected by laser noise.
An understanding of the rich FDML laser dynamics is therefore of fundamental importance

for reaching the coherence limit. Here we present a self-stabilization mechanism in a highly
dispersion-compensated setup, where a finite remaining dispersion in the fiber delay cavity can
be compensated due to the dynamics induced by the frequency-dependent group delay of the
swept FP filter. This self-stabilizing effect leads to a tolerance over non-synchronized resonance
conditions in the ring laser setup, which ultimately makes sweet-spot operation possible at all.
We believe that understanding and controlling this self-stabilization effect can improve FDML
frequency combs, which were demonstrated in [28–30], and might enable short pulse generation
in the low- or sub-ps range.

The nonlinear system dynamics of FDML lasers has been studied theoretically within different
approaches, whereby the problem was modeled as a time-delay dynamical system [31–33] or
with the real-valued Ginzburg-Landau equation with a zero group delay (GD) Gaussian filter [34].
Within these approaches, several stability boundaries were derived by a linear stability analysis
of stationary solutions, and different operating regimes such as the Turing [32], the Eckhaus [34]
or a complex modulation instability [31–33] were discussed. As far as we are aware, none of
these investigations refer to a stabilizing mechanism which is due to the dispersive group delay
in the FP filter, enabling us to identify a physical mechanism behind the stability boundaries.
Furthermore, in [34] it is found that the dispersion causes an accumulative frequency shift which
will always drive the laser out of the stability region. Note that in this model, a non-causal
Gaussian filter was used which has no frequency-dependent group delay.
In the following, we discuss the laser setup for ultra-stable operation and the underlying

physical model. Furthermore, we present the self-stabilization mechanism and validate our model
against experimental data.

2. Laser setup for ultra-stable operation

The FDML laser system investigated here [24] is shown in Fig. 1. It consists of a FP tunable
bandpass filter and a single-polarization semiconductor optical amplifier (SOA) gain medium
which causes the optical field to have a dominant, linearly polarized component. The polarization
controller is therefore used in experiment to manually align the polarization state of the optical
field with the SOA gain axis. The fiber delay line is dispersion-shifted by mixing two fibers, a
SMF-28 and a HI-1060 fiber, in order to move the zero-dispersion wavelength out of the sweep
range. In this case, a chirped fiber Bragg grating (cFBG) can be used in order to compensate for
chromatic dispersion which was manually fine-tuned by a temperature gradient. The cFBG serves
at the same time as the outcoupling element. The isolator ensures unidirectional lasing and the
whole laser is temperature controlled, which is critical for reaching the sweet-spot operation mode
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in addition to a high sweep frequency stability. The sweep filter frequency was automatically
regulated in order to reach sweet-spot operation and to adjust the laser to environmental changes
such as temperature fluctuations or drifts in the local oscillator generating the sweep frequency.
Further details can be found in [24].

Fig. 1. Schematic illustration of the FDML laser setup for ultra-stable operation.

in addition to a high sweep frequency stability. The sweep filter frequency was automatically
regulated in order to reach sweet-spot operation and to adjust the laser to environmental changes
such as temperature fluctuations or drifts in the local oscillator generating the sweep frequency.
Further details can be found in [24].

3. Modeling of ultra-stable operation

The FDML laser dynamics is governed by the field envelope transformations of each of the
various components in the laser system. Therefore, we follow a lumped-element approach based
on the models in [35] and [36] but with a physical model for the SOA dynamics instead of a
phenomenological one. As in our previous investigations of FDML lasers, we use the swept-filter
reference frame in which the IF of the optical field is modulated with the center frequency of the
sweep filter [35]. Within this approach, the optical field is comoving with the transmission peak
of the FP bandpass filter and “sees” a static bandpass filter instead of a swept one. The variations
from the peak transmission are thereby contained in the optical field. This approach reduces
the simulation bandwidth drastically by three orders of magnitude [35] because the simulation
bandwidth is limited by the bandwidth of the sweep filter and not by the whole optical sweep
bandwidth. For comparison, a monochromatic field would correspond to a swept field in the
reference frame.
The fiber delay cavity including the cFBGmodulates the phase of the complex envelope according
to
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where Lf is the propagation length in the single-mode fiber, β2 to β4 are the second- to fourth-
order dispersion coefficients, γ is the nonlinearity coefficient of the fiber and κf accounts for
the power loss in the fiber spool, including splicing, circulator as well as fiber losses. For the
nonlinear term in the exponential of Eq. (1), κf is for simplicity fully considered because the
exact distribution of losses has not been experimentally characterized. R is the reflectivity of
the cFBG. The fiber length Lf takes forward and backward propagation after reflection at the
cFBG into account. The center frequency of the swept filter is ωs (τ) + ωc with the center
frequency of the sweep ωc where the relative sweep frequency ωs (τ) is chosen here to be
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cFBG into account. The center frequency of the swept filter is ωs (τ) + ωc with the center
frequency of the sweep ωc where the relative sweep frequency ωs (τ) is chosen here to be
0.5Dω cos (ω0τ) with the sweep bandwidth Dω and the sweep filter tuning frequency ω0 but
can in principle be an arbitrary periodic function. We abbreviate the complex field envelope
at the spatial fiber input uin,fiber

(
z = zin,fiber, τ

)
, or output uout,fiber

(
z = zout,fiber, τ

)
respectively,

with uin,fiber (τ) or uout,fiber (τ) where we always refer to the spatial input or output position inside
the cavity, and drop the z dependence in the following. The cFBG is modeled as an ideal
dispersion-compensating element by partially reverting the phase accumulation due to the fiber
dispersion by ϕcFBG(τ) = −Lf

[(1/2) β̂2ω2
s (τ) + (1/6) β̂3ω3

s (τ) + (1/24) β̂4ω4
s (τ)

]
. In this way,

the dispersion relation of the cFBG needs not be implemented explicitly, but can be included
by simply scaling the dispersion coefficients of the optical fiber by βi − β̂i = βi/cscale with
i ∈ {2, 3, 4} and a constant cscale in order to simulate a residual dispersion in the case of non-ideal
compensation.
The SOA gain medium modifies the complex field envelope according to

uout,SOA (τ) = uin,SOA (τ) exp {0.5h (τ) [1 − iα]} (2)

where h (τ) =
∫ L
0 g (z, τ) dz is the integrated power-gain coefficient g (z, τ) over the length L of the

gain medium, and α is the linewidth enhancement factor responsible for self-phase modulation
(SPM) in the saturated amplifier. The integrated gain has the dynamics [37]

∂h (τ)
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=
h0 [ws (τ) + ωc] − h (τ)
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−
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����
2
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[
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with the saturation power Psat and the carrier lifetime τc. The amplified spontaneous emission
(ASE) noise uASE (τ) is modeled as additive white Gaussian noise with zero mean and effective
standard deviation σ = (0.5Pn∆sim/Geff)1/2. Here Pn is the ASE noise power within the gain
bandwidth, Geff =

∫ ∞
0 exp [h0 (f )] df and ∆sim is the simulation bandwidth. The factor 0.5

accounts for the real and imaginary part of the complex field envelope. Note that the optical field
envelope u (τ) is normalized to the optical power and has the unit

√
W. The unsaturated static

gain exp [h0(ω)] and the saturation power Psat (ω) are frequency-dependent and are modulated
in the swept-filter reference frame with the sweep frequency of the filter, which is a good
approximation for small deviations of the IF of the optical field from the filter’s sweep frequency.
The unsaturated gain curve as well as the saturation power were measured (Thorlabs BOA1132S)
and are interpolated in the simulation. The frequency dependency of α and τc is neglected here,
in order to reduce the complexity of the underlying physical model.
As mentioned above, the sweep filter in the swept-filter reference frame is represented by a

linear static filter which is treated in the frequency domain [1,35]. With a Lorentzian lineshape
of width ∆ω we obtain for the field transformation of the filter per roundtrip

Uout,FP (ω) = Uin,FP (ω)H (ω) (4)

where
H (ω) =

√
Tmax

1 − i2ω/∆ω (5)

and Tmax is the maximum power-transmission factor.
Polarization effects in the fiber spool are neglected in our model, since the amplifier is a

single-polarization device, causing the degenerate orthogonal fiber mode to have a minimal
influence on the laser dynamics. However, it should be noted that in principle, a passive
stabilization effect due to polarization dynamics could be beneficial for the ultra-stable operating
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regime [36]. Furthermore, we do not take into account spectral hole burning or carrier heating in
the SOA, since we are only interested in the dominant effects in the gain medium, for the sake of
simplicity. Nevertheless, such effects could easily be added in a quasi-static approach.

4. Stability limit for non-synchronized resonance conditions

The ideal laser resonance condition for an FDML laser requires the roundtrip time of the optical
field to coincide with the sweep period of the tunable bandpass filter for each instantaneous
wavelength of the optical field [1]. Due to the wavelength dependence of the laser components
such as fiber dispersion, the frequency-dependent group delay of the optical bandpass filter, or
nonlinear frequency shifts arising from SPM in SOA and fiber, this condition cannot be achieved
for a constant sweep period unless there exists a frequency-dependent compensation mechanism.
When the laser is operating outside its stability range, a main source of noise in the intensity

trace of the laser output are dips (also refered to as holes [22,24]) whose occurrence appears
to be irregular. Such hole formations have experimentally been observed in FDML lasers in
[33] and are associated with Nozaki-Bekki holes which are spatially localized solutions of
the one-dimensional complex Ginzburg-Landau equation [38]. The stability of these holes is
sensitive to perturbations and the whole system undergoes bifurcation points, separating stability
regions which have complex dependencies. More details are discussed for example in [39,40]. A
mathematical proof of whether such a solution is also valid within the FDML laser equations is
yet to be provided.

In this work, we find - by numerical simulation - that the laser can operate without holes in the
intensity trace within a certain tolerance of either a residual dispersion or a small detuning from
the optimal sweep filter frequency. We consider the optimal sweep filter frequency as the inverse
of the roundtrip time which is Lf/vg where Lf is the fiber propagation length and vg is the group
velocity in the fiber, i.e. for an ideal delay fiber, and no delay within the other components. In
the absence of other delays, this would result in an optical field with an IF which is zero in the
swept-filter reference frame and thus matches the center of the filter transmission function for all
times.

4.1. Dispersion compensation

In Fig. 2 the intensity traces for simulations with several amounts of residual dispersion are
presented for parameter values given in Table 1. The parameters are selected to be close to the
experimental setup described in Section 2, but with a sinusoidal sweep function and neglected
switch-on and -off processes in the gain medium resulting from the buffering technique [27,41].
A typical value for the average power at the laser output was measured to be ≈ 30mW and
corresponds well with the value obtained in our simulations from Fig. 2(a), i.e. 29mW for a
residual dispersion of 56 or 84 fs respectively. Further information about the implementation is
given in Appendix A. The sweet-spot operation mode with a residual fiber dispersion is confirmed
in Fig. 2(a) with an ASE noise-limited intensity trace, whereas in Fig. 2(b) the intensity trace is
distorted by high-frequency noise. This noise is dominated by consecutive holes and occurs after a
threshold of residual dispersion in the fiber system is exceeded. The shape of the holes is described
in detail in Section 5. The maximum group delay between the fastest and slowest wavelength
caused by the fiber in each roundtrip is given below by the difference between the maximum and
minimum value of the fiber cavity group delay τg (ω) = Lf

(
β2ω + β3ω

2/2 + β4ω3/6) /cscale and
used to quantify the residual dispersion in the fiber cavity.
The threshold after which holes are formed in the intensity trace occurs for the system under

investigation at around 100 fs of maximum group delay difference in the fiber within a 117 nm
bandwidth.

This phenomenon is demonstrated in Fig. 3(a) which relates the number of holes in the intensity
trace to the residual fiber dispersion, and shows the effect of the GD in the FP bandpass filter.
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Fig. 2. (a) Simulated intensity trace of a forward and backward sweep in the sweet-spot
operation mode with no hole formation, although dispersion is present in the fiber
cavity, which is measured as the maximum GD difference due to τg (ω). Here λs is the
relative center frequency of the swept FP filter ωs in respect to wavelength. Note that
ωs = 0 refers to the center frequency ωc of the sweep. (b) Hole formation beyond a
threshold of a finite amount of residual dispersion.

4. Stability limit for non-synchronized resonance conditions

The ideal laser resonance condition for an FDML laser requires the roundtrip time of the optical
field to coincide with the sweep period of the tunable bandpass filter for each instantaneous
wavelength of the optical field [1]. Due to the wavelength dependence of the laser components
such as fiber dispersion, the frequency-dependent group delay of the optical bandpass filter, or
nonlinear frequency shifts arising from SPM in SOA and fiber, this condition cannot be achieved
for a constant sweep period unless there exists a frequency-dependent compensation mechanism.
When the laser is operating outside its stability range, a main source of noise in the intensity
trace of the laser output are dips (also refered to as holes [22, 24]) whose occurrence appears
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sensitive to perturbations and the whole system undergoes bifurcation points, separating stability
regions which have complex dependencies. More details are discussed for example in [39,40]. A
mathematical proof of whether such a solution is also valid within the FDML laser equations is
yet to be provided.
In this work, we find - by numerical simulation - that the laser can operate without holes in the
intensity trace within a certain tolerance of either a residual dispersion or a small detuning from
the optimal sweep filter frequency. We consider the optimal sweep filter frequency as the inverse
of the roundtrip time which is Lf/vg where Lf is the fiber propagation length and vg is the group
velocity in the fiber, i.e. for an ideal delay fiber, and no delay within the other components. In
the absence of other delays, this would result in an optical field with an IF which is zero in the
swept-filter reference frame and thus matches the center of the filter transmission function for all
times.

4.1. Dispersion compensation

In Fig. 2 the intensity traces for simulations with several amounts of residual dispersion are
presented for parameter values given in Table 1. The parameters are selected to be close to the
experimental setup described in Section 2, but with a sinusoidal sweep function and neglected
switch-on and -off processes in the gain medium resulting from the buffering technique [27, 41].
A typical value for the average power at the laser output was measured to be ≈ 30 mW and

Fig. 2. (a) Simulated intensity trace of a forward and backward sweep in the sweet-spot
operation mode with no hole formation, although dispersion is present in the fiber cavity,
which is measured as the maximum GD difference due to τg (ω). Here λs is the relative
center frequency of the swept FP filter ωs in respect to wavelength. Note that ωs = 0 refers
to the center frequency ωc of the sweep. (b) Hole formation beyond a threshold of a finite
amount of residual dispersion.

Table 1. Simulation Parameters

Parameter Symbol Value

Fiber length Lf 443.4m

Fiber group refractive index ng 1.645

Second-order dispersion parameter β2 9.42×10−27 s2 m−1

Third-order dispersion parameter β3 7.62×10−41 s3 m−1

Fourth-order dispersion parameter β4 1.70×10−55 s4 m−1

Fiber nonlinearity parameter γ 2.67×10−3 W−1 m−1

Power loss in fiber spool κf 0.23

Reflectivity of cFBG R 0.35

Dispersion coefficients of cFBG β̂2, β̂3, β̂4 variable

Center sweep frequency ωc 2π ·232.04 THz (1292 nm)

Sweep bandwidth Dω 2π ·21.06 THz (117 nm)

Sweep frequency ω0 2π ·411 kHz
Linewidth enhancement factor α 1.55 [42]

Carrier lifetime τc 70 ps [42]

Simulation bandwidth ∆sim 3.45 THz

Effective gain Geff 2.06×1016 s−1

ASE noise power in simulation bandwidth Pn 9.05mW

FP filter bandwidth ∆ω 2π ·29.65GHz (0.165 nm)

FP filter transmission Tmax 0.33

Total cavity losses L 15.76 dB

Clearly, the presence of the GD in the FP bandpass filter enables hole-free operation up to a fiber
dispersion of around 100 fs. The GD in the FP bandpass filter was removed by ignoring the phase
shift in the frequency domain, i.e. using |H(ω)| in Eq. (4). In addition, the average linewidth
within a roundtrip in Fig. 3(b) is reduced by more than a factor of two when the GD in the FP
bandpass filter is present. For large residual dispersion values and a high-frequency distorted
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intensity trace, the linewidth as well as the number of holes of the system with GD is larger than
for the system without GD, indicating a negative effect on the stability due to the GD introduced
by the FP bandpass filter in this regime.

Fig. 3. (a) Number of holes in the intensity trace and (b) the averaged instantaneous
linewidth within a roundtrip dependent on the residual dispersion in the fiber delay
cavity, compared for the case with and without a GD in the FP bandpass filter.

trace to the residual fiber dispersion, and shows the effect of the GD in the FP bandpass filter.
Clearly, the presence of the GD in the FP bandpass filter enables hole-free operation up to a fiber
dispersion of around 100 fs. The GD in the FP bandpass filter was removed by ignoring the phase
shift in the frequency domain, i.e. using |H(ω)| in Eq. (4). In addition, the average linewidth
within a roundtrip in Fig. 3 (b) is reduced by more than a factor of two when the GD in the FP
bandpass filter is present. For large residual dispersion values and a high-frequency distorted
intensity trace, the linewidth as well as the number of holes of the system with GD is larger than
for the system without GD, indicating a negative effect on the stability due to the GD introduced
by the FP bandpass filter in this regime.
The results of Fig. 3 prove that a self-stabilizing effect regulates the phase accumulation of the
optical field due to the fiber dispersion in the cavity, unless a threshold is exceeded. According to
our simulation, a passive mechanism, which identified here as being the frequency-dependent
group delay in the FP bandpass filter, plays a major role in this process and is an indispensable
requirement for hole-free operation in the sweet-spot regime. A more detailed discussion can be
found in Section 4.3. In addition, this self-compensation makes the sweet-spot regime possible
in the first place, since perfect synchronization over all wavelengths cannot be achieved in
experiment.
The evolution of the IF and the instantaneous lineshape in the sweet-spot operation mode within
a single roundtrip is demonstrated in Fig. 4 at the output of the SOA. The position of the IF inside
the static bandpass filter window is mainly determined by the dispersion perturbation and is a
measure for the delay with regard to the center of the FP bandpass filter. In Fig. 4 (a) the IF is
extracted for different roundtrip numbers, and selected lineshapes are presented in Fig. 4 (b). The
lineshapes correspond to the minimum and maximum peak values in Fig. 4 (a) and to the middle
of the sweep, i.e. the center window of the STFT, of roundtrip 150 000. In the case presented
in Fig. 4, a maximum group delay difference of 56 fs is present in the fiber delay cavity as in
the case of Fig. 2 (a). The variation of the IF is caused by the fiber dispersion which imposes a
frequency chirp according to Eq. (1) on the optical field in each roundtrip. As a comparison,
the IF evolution in the case of zero-dispersion in the fiber cavity exhibits a nearly straight line
(see also Section 4.3) instead of the oscillatory behavior in Fig. 4 (a) resulting from the interplay
between the FP sweep filter, the SOA gain medium and the fiber dispersion. The drift of the
IF over several 1000 roundtrips from Fig. 4 (a) is stable within a tolerance of a few GHz, but
never converges to a constant value. When looking at the long-term evolution of the averaged
instantaneous linewidth over a single roundtrip in Fig. 5 (a) a similar drift can be observed over
many 10 000 roundtrips, yet the short-term evolution over 100 roundtrips in Fig. 5 (b) shows
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linewidth within a roundtrip dependent on the residual dispersion in the fiber delay cavity,
compared for the case with and without a GD in the FP bandpass filter.

The results of Fig. 3 prove that a self-stabilizing effect regulates the phase accumulation of the
optical field due to the fiber dispersion in the cavity, unless a threshold is exceeded. According to
our simulation, a passive mechanism, which identified here as being the frequency-dependent
group delay in the FP bandpass filter, plays a major role in this process and is an indispensable
requirement for hole-free operation in the sweet-spot regime. A more detailed discussion can be
found in Section 4.3. In addition, this self-compensation makes the sweet-spot regime possible
in the first place, since perfect synchronization over all wavelengths cannot be achieved in
experiment.
The evolution of the IF and the instantaneous lineshape in the sweet-spot operation mode

within a single roundtrip is demonstrated in Fig. 4 at the output of the SOA. The position of the IF
inside the static bandpass filter window is mainly determined by the dispersion perturbation and
is a measure for the delay with regard to the center of the FP bandpass filter. In Fig. 4(a) the IF is
extracted for different roundtrip numbers, and selected lineshapes are presented in Fig. 4(b). The
lineshapes correspond to the minimum and maximum peak values in Fig. 4(a) and to the middle
of the sweep, i.e. the center window of the STFT, of roundtrip 150 000. In the case presented
in Fig. 4, a maximum group delay difference of 56 fs is present in the fiber delay cavity as in
the case of Fig. 2(a). The variation of the IF is caused by the fiber dispersion which imposes a
frequency chirp according to Eq. (1) on the optical field in each roundtrip. As a comparison,
the IF evolution in the case of zero-dispersion in the fiber cavity exhibits a nearly straight line
(see also Section 4.3) instead of the oscillatory behavior in Fig. 4(a) resulting from the interplay
between the FP sweep filter, the SOA gain medium and the fiber dispersion. The drift of the
IF over several 1000 roundtrips from Fig. 4(a) is stable within a tolerance of a few GHz, but
never converges to a constant value. When looking at the long-term evolution of the averaged
instantaneous linewidth over a single roundtrip in Fig. 5(a) a similar drift can be observed over
many 10 000 roundtrips, yet the short-term evolution over 100 roundtrips in Fig. 5(b) shows a
steady-state behavior. The same can be observed for the IF. The long-term variations can be
addressed to the nonlinear nature of the FDML laser, and we have verified in our simulations that
the stochastic influence of the ASE noise is amplifying, but does not cause the long-term drift.
This long-term drift is supported by experimental data acquired in FDML-based OCT systems
where coherent averaging can only be applied up to roughly 100 roundtrips [43], and has also
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been observed in previous long-term simulations [36]. Apparently, a stationary field does not
exist, but the variations of the IF stay within a few GHz.

Fig. 4. (a) Evolution of the IF within a single roundtrip for different roundtrip numbers
in the sweet-spot regime with a residual dispersion of 56 fs. (b) Instantaneous lineshapes
at particular positions in the sweep of roundtrip (RT) 150 000.

Fig. 5. (a) Long-term evolution of the averaged linewidth within one roundtrip for
different amounts of residual dispersion. (b) Short-term evolution of the linewidth
showing stationary operation, starting at roundtrip 40000 sampled at every 10th
roundtrip.

a steady-state behavior. The same can be observed for the IF. The long-term variations can be
addressed to the nonlinear nature of the FDML laser, and we have verified in our simulations that
the stochastic influence of the ASE noise is amplifying, but does not cause the long-term drift.
This long-term drift is supported by experimental data acquired in FDML-based OCT systems
where coherent averaging can only be applied up to roughly 100 roundtrips [43], and has also
been observed in previous long-term simulations [36]. Apparently, a stationary field does not
exist, but the variations of the IF stay within a few GHz.

4.2. Detuning tolerance

When considering a dispersion-less cavity, i.e. β2,3,4 = 0, and a non-perfectly synchronized
sweep filter, our simulations indicate that a detuning of up to ±1.0 mHz - equivalent to a change in
the roundtrip time of ∓5.9 fs from the ideal resonance frequency of 411 kHz - does not cause hole
formation in the intensity trace. The compensation mechanism remains the same as discussed in
the previous section. This result is consistent with measured data where the laser was detuned
from the experimentally obtained sweet-spot operation mode. Here the experimental setup was
again buffered [27,41] and a single optical sweep was contained in 300 ns. Asymmetries between
the forward and backward sweep have been observed, but are small when enforcing hole-free
operation in a dispersion-free setup. The presented value here for the detuning from the ideal
sweep frequency is a limit for the backward and forward sweep.

Fig. 4. (a) Evolution of the IF within a single roundtrip for different roundtrip numbers in
the sweet-spot regime with a residual dispersion of 56 fs. (b) Instantaneous lineshapes at
particular positions in the sweep of roundtrip (RT) 150 000.
Fig. 4. (a) Evolution of the IF within a single roundtrip for different roundtrip numbers
in the sweet-spot regime with a residual dispersion of 56 fs. (b) Instantaneous lineshapes
at particular positions in the sweep of roundtrip (RT) 150 000.
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where coherent averaging can only be applied up to roughly 100 roundtrips [43], and has also
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When considering a dispersion-less cavity, i.e. β2,3,4 = 0, and a non-perfectly synchronized
sweep filter, our simulations indicate that a detuning of up to ±1.0 mHz - equivalent to a change in
the roundtrip time of ∓5.9 fs from the ideal resonance frequency of 411 kHz - does not cause hole
formation in the intensity trace. The compensation mechanism remains the same as discussed in
the previous section. This result is consistent with measured data where the laser was detuned
from the experimentally obtained sweet-spot operation mode. Here the experimental setup was
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Fig. 5. (a) Long-term evolution of the averaged linewidth within one roundtrip for different
amounts of residual dispersion. (b) Short-term evolution of the linewidth showing stationary
operation, starting at roundtrip 40000 sampled at every 10th roundtrip.

4.2. Detuning tolerance

When considering a dispersion-less cavity, i.e. β2,3,4, β̂2,3,4 = 0, and a non-perfectly synchronized
sweep filter, our simulations indicate that a detuning of up to ±1.0mHz - equivalent to a change in
the roundtrip time of ∓5.9 fs from the ideal resonance frequency of 411 kHz - does not cause hole
formation in the intensity trace. The compensation mechanism remains the same as discussed in
the previous section. This result is consistent with measured data where the laser was detuned
from the experimentally obtained sweet-spot operation mode. Here the experimental setup was
again buffered [27,41] and a single optical sweep was contained in 300 ns. Asymmetries between
the forward and backward sweep have been observed, but are small when enforcing hole-free
operation in a dispersion-free setup. The presented value here for the detuning from the ideal
sweep frequency is a limit for the backward and forward sweep.

In the swept-filter reference frame, a delayed optical field corresponds to a phase modulation
according to

uout (τ) = uin (τ) exp [iτdωs (τ)] , (6)



Research Article Vol. 3, No. 6 / 15 June 2020 / OSA Continuum 1597

where τd is the additional delay to the dispersionless roundtrip time and higher-order terms in the
temporal derivatives have been neglected, as discussed in Appendix C. Thus, a delay accumulates
to the phase of the optical field linearly in ωs(τ) while the dispersion perturbation accumulates
quadratically or cubically in ωs(τ) as can be seen in Eq. (6) and Eq. (1).

4.3. Discussion of the self-stabilization effect

The fiber dispersion and the detuning from the ideal filter frequency introduce timing delays in
the optical field relative to the moving transmission window of the swept bandpass filter, i.e.
cause a frequency-dependent roundtrip time RTT(ω).
One quantity to measure the introduced time delays is the IF of the optical field, which

describes the offset from the center of the static bandpass filter in the swept-filter reference frame
as mentioned above. The shift in the IF caused by the fiber dispersion or by a detuning can be
obtained by differentiating the phase of the complex exponential in Eq. (1) or Eq. (6) with respect
to time. For example, in the case of the fiber dispersion, this yields

∆fIF = −1/(2π)Lfωs(τ)∂ωs(τ)
∂τ

[
β2 +

1
2
β3ωs(τ) + 1

6
β4ω

2
s (τ)

]
(7)

per pass through the fiber spool.
An analytic treatment of the self-stabilization mechanism is tedious due to the nonlinear

dependencies such as the frequency-dependent GD of the FP filter with respect to frequency, and
the complex interplay of the processes in the SOA gain medium, the filter and the fiber over a
long time scale. Thus, we focus on an intuitive explanation in the following.

The frequency-dependent GD of the bandpass filter GD(ω) is able to reduce the roundtrip time
for a specific IF when moved away from the center of the filter, where the GD is maximum for a
Lorentzian filter shape. The shape of GD(ω) of the static bandpass filter in the frequency domain
is given by

GD(ω) = 2
∆ω

1
1 + (2ω/∆ω)2

. (8)

At ω = 0, in the center of the bandpass filter, the GD is 10.7 ps and always less when |ω |>0, e.g.
reduced by 730 fs when shifted by −4GHz. In this way, a delayed IF with respect to the center of
the filter can be accelerated over consecutive roundtrips to a position in the filter window where
no holes form within the threshold limit, whereas an accelerated IF would be further accelerated,
leading to an unstable drift. Related further discussion can be found in [24]. The selection of the
stable filter position depends on the amount of residual dispersion in the fiber as discussed above
and is demonstrated in Fig. 6(a). Here, it is evident that the IF chooses a different position in the
filter window dependent on the fiber dispersion, in order to operate in the sweet-spot regime. In
comparison, when the bandpass filter has no GD in Fig. 6(b) the IF does not differ significantly
with different amounts of dispersion in the fiber cavity, and holes are formed as demonstrated in
Fig. 3(a). One important factor is here that the modified roundtrip times are not compensated for.
For the case of 5.6 ps, the intensity trace is distorted by high-frequency noise as presented in
Fig. 2(b), and in Fig. 6(a), the evolution of the IF follows the fiber chirp ∆fIF which is depicted
below, when taking the zero-dispersion line as a reference. The same holds for the case without
GD in the FP filter. Again this shows that the accumulated chirp per roundtrip due to the fiber
dispersion cannot be compensated in these cases. Yet, single narrow sweet-spots exist when
crossing the zero-dispersion line, see Fig. 2(b).

Another important feature of the self-stabilization effect is the temporal extension over several
thousands of roundtrips until the quasi-steady-state regime of Fig. 6(a) is reached. This can
be demonstrated by starting with zero-dispersion in the fiber cavity and abruptly switching on
the fiber dispersion after 10 000 roundtrips. In Fig. 7(a) this scenario is shown for a residual
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Fig. 6. (a) IF evolution for different amounts of residual dispersion at the output of the
SOA. (b) The same as in (a) but with no GD in FP bandpass filter.

thousands of roundtrips until the quasi-steady-state regime of Fig. 6 (a) is reached. This can
be demonstrated by starting with zero-dispersion in the fiber cavity and abruptly switching on
the fiber dispersion after 10 000 roundtrips. In Fig. 7 (a) this scenario is shown for a residual
dispersion of 100 fs where the maximum shift in the IF is ∆ fIF,max = ±3.6 MHz per roundtrip.
Note that in the case of 100 fs the long-term drift of the IF as discussed in Fig. 4 (a) for 56 fs is far
less pronounced. In the first few hundred roundrips the IF follows the dispersion accumulation in
the fiber as visualized in Fig. 7 (b) where the solid lines are obtained from n∆ fIF(τw) with the
roundtrip number n and the temporal center of the STFT window τw . In a single roundtrip, this
shift in the IF is equivalent to a change in the roundtrip time. The difference in GD(ω) in the
FP filter between the zero-dispersion position of approximately −4 GHz shifted by −3.6 MHz is
≈ 1 fs and thus negligible compared to the delays introduced by the dispersion. Yet, during the
long-term accumulation, this difference increases to ≈ 800 fs when shifted by −2 GHz, which
exceeds the maximum dispersion delay by a factor of 8. Hence, the frequency offset required for
the compensation due to the group delay of the FP filter builds up over many roundtrips.
Based on our findings, it can be speculated that by engineering the GD in the FP filter by e.g.
using chirped dielectric coatings on the FP filter mirrors or modifying the filter bandwidth, the
system can be made more robust against residual fiber dispersion or environmental changes. An
increase in the stability threshold found in Section 4.1 could enable a widespread use of the
ultra-stable operating regime, which requires up to now a high level of synchronization. The
model presented here serves as an ideal starting point for such optimization problems.

4.4. Influence of SOA parameters on the sweet-spot operation mode

The carrier lifetime τc , the linewidth enhancement factor α and the saturation power Psat of the
SOA gain medium play an important role in obtaining the sweet-spot operation mode. Especially
the phase accumulation due to the linewidth enhancement factor in combination with the gain
recovery dynamics and the interplay with the swept FP filter can create chaotic intensity traces.
With typical values of τc = 380 ps and α = 5 as previously used in [35,36] a sweet-spot operation
mode could not be achieved. An InP/InGaAsP multiple-quantum-well (MQW) booster SOA was
used in [24] (Thorlabs BOA1132S) whose physical properties at the corresponding operating
condition need to be known. Yet, to the best of our knowledge, no rigorious characterization
of α exists in the specific wavelength range of interest for this device. It is commonly known

Fig. 6. (a) IF evolution for different amounts of residual dispersion at the output of the SOA.
(b) The same as in (a) but with no GD in FP bandpass filter.

dispersion of 100 fs where the maximum shift in the IF is ∆fIF,max = ±3.6MHz per roundtrip.
Note that in the case of 100 fs the long-term drift of the IF as discussed in Fig. 4(a) for 56 fs is far
less pronounced. In the first few hundred roundrips the IF follows the dispersion accumulation in
the fiber as visualized in Fig. 7(b) where the solid lines are obtained from n∆fIF(τw) with the
roundtrip number n and the temporal center of the STFT window τw. In a single roundtrip, this
shift in the IF is equivalent to a change in the roundtrip time. The difference in GD(ω) in the
FP filter between the zero-dispersion position of approximately −4GHz shifted by −3.6MHz is
≈ 1 fs and thus negligible compared to the delays introduced by the dispersion. Yet, during the
long-term accumulation, this difference increases to ≈ 800 fs when shifted by −2GHz, which
exceeds the maximum dispersion delay by a factor of 8. Hence, the frequency offset required for
the compensation due to the group delay of the FP filter builds up over many roundtrips.

Fig. 7. (a) Long-term drift of the IF at specific points in time or equivalently of single
wavelengths over 40 000 roundtrips when switching on a fiber dispersion of 100 fs after
10 000 roundtrips until the quasi-steady-state is reached. (b) Zoom into the first 1000
roundtrips compared to the disperion accumulation in the fiber (solid line).

that strained MQW structures exhibit a reduced linewidth enhancement factor due to the high
differential gain compared to bulk materials [44–47], and values of α ≤ 2 were reported for the
same wavelength and material system for lasers. Similarly, the SOA here serves as the laser gain
medium, and essentially compensates for the roundtrip losses, thus operating in the saturated
regime. Dynamical aspects, similar to SOAs for signal amplification, come into play for the hole
formation in FDML lasers. In this case, the literature values found for α are far more diverse,
with some references stating similar values as above [48–50] and others reporting values of
3 or higher for various devices and operating conditions [51–57]. When using the parameters
τc = 440 ps, α = 3 from a study of SOA fiber ring lasers with a static bandpass filter [58], a
sweet-spot over the whole sweep bandwidth is found in our simulation. However, at moderate
dispersion levels, fringes occur in the hole minima which cannot be observed in experiment, as
will be discussed in the section below. Therefore, we conclude that the above lower α value, as
reported for strained MQW laser operation, yields the best agreement with the shape and time
scale of the holes in experiment, especially at moderate dispersion levels. Further simulations
reveal that a shorter carrier lifetime combined with a higher α factor increases the occurrence of
fringes in the holes. In [59], it was discussed that a time-dependent α-factor which also depends
on the carrier density and wavelength might be more adequate for accurately modeling highly
dynamic processes in the order of ps. However, due to the numerical load of our simulations and
the intention to derive a compact model suitable for optimization purposes, this approach will be
left to future work. On the other hand, carrier heating and spectral hole burning have been found
to be negligible at the time scale of the holes [53, 59, 60].

5. Experimental verification

In order to verify our physical model, we reproduced a detuned intensity trace of an FDML laser
with a non-dispersion-compensated SMF-28 fiber featuring the full noise dynamics due to the
dispersion perturbation. The fiber parameters and the dispersion coefficients were extracted
from the manufacturer specification [61]. The measured intensity trace of a backward sweep of
104 nm centered around 1307 nm is shown in Fig. 8 (a). The bandpass filter was driven with a
frequency of 363 kHz which was slightly detuned from the sweep frequency where the center
wavelength matches the roundtrip time in the laser cavity, resulting in a noisy intensity trace with
a single narrow sweet-spot around the middle of the sweep. In the detuned case, two narrow
sweet-spots can be found in the intensity trace, in Fig 8 (a) at around 50 ns and 255 ns, because
of the parabolically shaped dispersion relation which causes two wavelengths to be synchronized

Fig. 7. (a) Long-term drift of the IF at specific points in time or equivalently of single
wavelengths over 40 000 roundtrips when switching on a fiber dispersion of 100 fs after
10 000 roundtrips until the quasi-steady-state is reached. (b) Zoom into the first 1000
roundtrips compared to the dispersion accumulation in the fiber (solid line).

Based on our findings, it can be speculated that by engineering the GD in the FP filter by e.g.
using chirped dielectric coatings on the FP filter mirrors or modifying the filter bandwidth, the
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system can be made more robust against residual fiber dispersion or environmental changes. An
increase in the stability threshold found in Section 4.1 could enable a widespread use of the
ultra-stable operating regime, which requires up to now a high level of synchronization. The
model presented here serves as an ideal starting point for such optimization problems.

4.4. Influence of SOA parameters on the sweet-spot operation mode

The carrier lifetime τc, the linewidth enhancement factor α and the saturation power Psat of the
SOA gain medium play an important role in obtaining the sweet-spot operation mode. Especially
the phase accumulation due to the linewidth enhancement factor in combination with the gain
recovery dynamics and the interplay with the swept FP filter can create chaotic intensity traces.
With typical values of τc = 380 ps and α = 5 as previously used in [35,36] a sweet-spot operation
mode could not be achieved. An InP/InGaAsP multiple-quantum-well (MQW) booster SOA was
used in [24] (Thorlabs BOA1132S) whose physical properties at the corresponding operating
condition need to be known. Yet, to the best of our knowledge, no rigorious characterization
of α exists in the specific wavelength range of interest for this device. It is commonly known
that strained MQW structures exhibit a reduced linewidth enhancement factor due to the high
differential gain compared to bulk materials [44–47], and values of α ≤ 2 were reported for the
same wavelength and material system for lasers. Similarly, the SOA here serves as the laser gain
medium, and essentially compensates for the roundtrip losses, thus operating in the saturated
regime. Dynamical aspects, similar to SOAs for signal amplification, come into play for the hole
formation in FDML lasers. In this case, the literature values found for α are far more diverse,
with some references stating similar values as above [48–50] and others reporting values of
3 or higher for various devices and operating conditions [51–57]. When using the parameters
τc = 440 ps, α = 3 from a study of SOA fiber ring lasers with a static bandpass filter [58], a
sweet-spot over the whole sweep bandwidth is found in our simulation. However, at moderate
dispersion levels, fringes occur in the hole minima which cannot be observed in experiment, as
will be discussed in the section below. Therefore, we conclude that the above lower α value, as
reported for strained MQW laser operation, yields the best agreement with the shape and time
scale of the holes in experiment, especially at moderate dispersion levels. Further simulations
reveal that a shorter carrier lifetime combined with a higher α factor increases the occurrence of
fringes in the holes. In [59], it was discussed that a time-dependent α-factor which also depends
on the carrier density and wavelength might be more adequate for accurately modeling highly
dynamic processes in the order of ps. However, due to the numerical load of our simulations and
the intention to derive a compact model suitable for optimization purposes, this approach will be
left to future work. On the other hand, carrier heating and spectral hole burning have been found
to be negligible at the time scale of the holes [53,59,60].

5. Experimental verification

In order to verify our physical model, we reproduced a detuned intensity trace of an FDML laser
with a non-dispersion-compensated SMF-28 fiber featuring the full noise dynamics due to the
dispersion perturbation. The fiber parameters and the dispersion coefficients were extracted
from the manufacturer specification [61]. The measured intensity trace of a backward sweep of
104 nm centered around 1307 nm is shown in Fig. 8(a). The bandpass filter was driven with a
frequency of 363 kHz which was slightly detuned from the sweep frequency where the center
wavelength matches the roundtrip time in the laser cavity, resulting in a noisy intensity trace with
a single narrow sweet-spot around the middle of the sweep. In the detuned case, two narrow
sweet-spots can be found in the intensity trace, in Fig. 8(a) at around 75 ns and 260 ns, because of
the parabolically shaped dispersion relation which causes two wavelengths to be synchronized
to the filter sweep rate. The measurement was obtained with a real-time oscilloscope and a
high-speed photodiode, with a total analog bandwidth of 50GHz.
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Fig. 8. (a) Measured intensity trace of a laser with a non-dispersion-compensated
SMF-28 fiber cavity. The backward sweep of 104 nm is centered around 1307 nm at
a filter sweep frequency of 363 kHz. (b) Zoom into a noisy region in the intensity
trace, showing the hole dynamics. (c) Identical zoom into the experimentally obtained
sweet-spot. (d) A simulated intensity trace of the case in (a) and (e) zoom into noisy
region for comparison. (f) Zoom into the sweet-spot with a residual dispersion of 84 fs.

to the filter sweep rate. The measurement was obtained with a real-time oscilloscope and a
high-speed photodiode, with a total analog bandwidth of 50 GHz.
The hole dynamics can be observed in Fig. 8 (b) where a 10 ns section around 150 ns is cut out.
The characteristic shape of the holes can be identified as a power drop of up to 100 % followed
by an overshoot caused by the gain-recovery dynamics in the SOA gain medium. The duration of
the holes is, among other things, influenced by the carrier lifetime τc of the SOA, as well as the
linewidth enhancement factor α, and is in the range of 50 ps to 70 ps.
The reproduced intensity trace, i.e. |u(τ)|2, at the laser output after 40 000 roundtrips is shown in
Figs. 8 (c) and (d) respectively. Because of the quasi-stationary nature of the FDML laser, the
exact position and shape of the holes can barely be captured in the simulation. Thus, the focus
lies here in a qualitative agreement, where we pay special attention to the characteristics of the
individual holes. The laser was detuned by −0.8 Hz to obtain the closest match. All in all, good
agreement between the simulated and experimental traces can be observed with regard to the
hole densities and shapes. Since the switch-on and -off process in the SOA gain medium in the
buffering mode is not considered in the simulation, the left and right edges up to 20 ns cannot be

Fig. 8. (a) Measured intensity trace of a laser with a non-dispersion-compensated SMF-28
fiber cavity. The backward sweep of 104 nm is centered around 1307 nm at a filter sweep
frequency of 363 kHz. (b) Zoom into a noisy region in the intensity trace, showing the hole
dynamics. (c) Identical zoom into the experimentally obtained sweet-spot. (d) A simulated
intensity trace of the case in (a) and (e) zoom into noisy region for comparison. (f) Zoom
into the sweet-spot with a residual dispersion of 84 fs.

The hole dynamics can be observed in Fig. 8(b) where a 10 ns section around 150 ns is cut out.
The characteristic shape of the holes can be identified as a power drop of up to 100% followed
by an overshoot caused by the gain-recovery dynamics in the SOA gain medium. The duration of
the holes is, among other things, influenced by the carrier lifetime τc of the SOA, as well as the
linewidth enhancement factor α, and is in the range of 50 ps to 70 ps.

The reproduced intensity trace, i.e. |u(τ)|2, at the laser output after 40 000 roundtrips is shown
in Figs. 8(d) and (e) respectively. Because of the quasi-stationary nature of the FDML laser, the
exact position and shape of the holes can barely be captured in the simulation. Thus, the focus
lies here in a qualitative agreement, where we pay special attention to the characteristics of the
individual holes. The laser was detuned by −0.8Hz to obtain the closest match. All in all, good
agreement between the simulated and experimental traces can be observed with regard to the
hole densities and shapes. Since the switch-on and -off process in the SOA gain medium in the
buffering mode is not considered in the simulation, the left and right edges up to 20 ns cannot be
compared. This effect has no influence on the physical mechanism behind the self-stabilization,
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and is therefore neglected. Figures 9(a) and (b) demonstrate that single holes can be precisely
reproduced with the chosen SOA parameters from Table 1. For τc = 440 ps and α = 3 [58] the
hole duration increases by a factor of 2, see Fig. 9(c). Furthermore, in intensity traces with only
few holes, special patterns emerge with up to a factor of 10 increased hole durations and fringe
formation in the minima, see Fig. 9(d). Such a feature has not been observed in any measured
intensity trace. This indicates the sensitivity of the hole dynamics on the SOA parameters and
confirms that a carrier lifetime of ≈ 100 ps along with a linewidth enhancement factor α ≈ 1.5
are a reasonable choice in our case. This is of particular importance, since due to the strong
phase-amplitude coupling caused by the narrow sweep filter, a hole contains information about
the interplay of all cavity elements as well as the gain recovery dynamics which is visible in the
overshoot. The number of holes in the intensity trace was compared in a region between the two
narrow sweet-spots from 80 ns to 230 ns where the hole density is moderate. 356 and 315 holes
were counted in experiment and in the simulation respectively, which corresponds to a deviation
of 12% and is plausible when considering the above-mentioned uncertainties.

Fig. 9. (a) Measured hole in a laser setup which was detuned by −100 mHz from the
ultra-stable regime. (b) A hole extracted from simulation with the SOA parameters used
in this work, see Table 1. (c) Hole for the SOA parameters from [58], yet with a longer
duration than in the experiment. (d) Fringe-distorted hole for the SOA parameters in
(c) which could not be observed in experimentally measured intensity traces.

compared. This effect has no influence on the physical mechanism behind the self-stabilization,
and is therefore neglected.
Figures 9 (a) and (b) demonstrate that single holes can be precisely reproduced with the chosen
SOA parameters from Table 1. For τc = 440 ps and α = 3 [58] the hole duration increases by a
factor of 2, see Fig. 9 (c). Furthermore, in intensity traces with only few holes, special patterns
emerge with up to a factor of 10 increased hole durations and fringe formation in the minima, see
Fig. 9 (d). Such a feature has not been observed in any measured intensity trace. This indicates
the sensitivity of the hole dynamics on the SOA parameters and confirms that a carrier lifetime
of ≈ 100 ps along with a linewidth enhancement factor α ≈ 1.5 are a reasonable choice in our
case. This is of particular importance, since due to the strong phase-amplitude coupling caused
by the narrow sweep filter, a hole contains information about the interplay of all cavity elements
as well as the gain recovery dynamics which is visible in the overshoot. The number of holes in
the intensity trace was compared in a region between the two narrow sweet-spots from 80 ns to
230 ns where the hole density is moderate. 356 and 315 holes were counted in experiment and
in the simulation respectively, which corresponds to a deviation of 12 % and is plausible when
considering the above-mentioned uncertainties.
The good agreement between simulation and experiment shows that all relevant physical
mechanisms are contained in our model. Neglecting polarization effects, such as bending-
induced birefringence or polarization-mode dispersion in the optical fiber, appears to be a
legitimate assumption for a single-polarization SOA, where only a single-polarization component
experiences considerable gain. In experiment, a polarization controller before the SOA is used in
order to adjust the polarization state of the light field to the axis where the polarization-dependent
SOA has maximum gain, and to minimize timing delays introduced by the polarization dynamics.
Previous investigations into the polarization state of FDML lasers with a single-polarization
SOA operating far beyond the sweet-spot regime showed a well-defined polarization state over

Fig. 9. (a) Measured hole in a laser setup which was detuned by −100mHz from the
ultra-stable regime. (b) A hole extracted from simulation with the SOA parameters used in
this work, see Table 1. (c) Hole for the SOA parameters from [58], yet with a longer duration
than in the experiment. (d) Fringe-distorted hole for the SOA parameters in (c) which could
not be observed in experimentally measured intensity traces.

The good agreement between simulation and experiment shows that all relevant physical
mechanisms are contained in our model. Neglecting polarization effects, such as bending-
induced birefringence or polarization-mode dispersion in the optical fiber, appears to be a
legitimate assumption for a single-polarization SOA, where only a single-polarization component
experiences considerable gain. In experiment, a polarization controller before the SOA is used in
order to adjust the polarization state of the light field to the axis where the polarization-dependent
SOA has maximum gain, and to minimize timing delays introduced by the polarization dynamics.
Previous investigations into the polarization state of FDML lasers with a single-polarization
SOA operating far beyond the sweet-spot regime showed a well-defined polarization state over
the whole sweep bandwidth [62]. This also agrees with the observation in experiment in the
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sweet-spot regime that the polarization state of the light field reproduces after each roundtrip at
the entrance of the SOA, and does not significantly vary or cause instabilities.
In the case of the numerical simulations described in Section 4.1, the SMF-28 fiber was

replaced by the 1: 8 mix of a SMF-28 and a HI-1060 [63] fiber as discussed above. For both
fiber cavities, Turing-like instabilities which are discussed in [32] were observed in parts of the
intensity trace in the case of detuning or residual dispersion, along with oscillatory and irregular
patterns. This indicates that the hole dynamics can differ in particular cases, typically near the
turning point of the sweep filter waveform, in view of the forms seen in Figs. 8(b) and (e). In
general, the occurrence of intensity patterns is not stationary over consecutive roundtrips.

6. Conclusion

We have demonstrated by numerical simulation of an FDML laser that a residual dispersion in
the fiber cavity which delays or accelerates each instantaneous frequency of the optical field
relative to the FP sweep filter can be compensated by the frequency-dependent group delay in the
swept bandpass filter, such that no holes occur in the intensity trace of the laser.
Systems without this self-compensation mechanism show less coherence and exhibit a hole-

distorted intensity trace because the dispersion perturbation accumulates within each roundtrip
without compensation, and drives the system out of its stability region. For the same reason
a detuning from the ideal sweep filter frequency of up to ±1.0mHz can be regulated for the
system of investigation with no dispersion in the optical fiber. Our simulations display good
correspondence with experimental data, and show that in a single-polarization setup, the hole
dynamics is determined by the complex interplay of the dispersive fiber, the swept bandpass filter
and the nonlinear dynamics of the SOA gain medium.
Within the sweet-spot regime, the generation of FDML-based frequency combs is highly

attractive, and the temporal compression limit of the wavelength-swept laser output for short
pulse generation may be reached, which is in the sub-ps range [17]. This ultra-stable operating
regime with its enhanced coherence properties offers new, unexplored possibilities in sensing
and imaging applications.

Appendix A: Additional implementation information

1. Fiber

The fiber delay line consists of a 1: 8 mix of a SMF-28 [61] and a HI-1060 [63] fiber to shift
the zero-dispersion wavelength out of the sweep window such that the cFBG can be used for
dispersion compensation. Here, we used a model for the dispersion coefficient β2 of the SMF-28
fiber provided by the manufacturer [61] which was fitted to the experimentally obtained dispersion-
relation of the fiber mix. Thus, adapted values were used for the fiber length (443.4m), the
zero-dispersion wavelength (1418.9 nm) and the zero-dispersion slope (0.07 ps nm−2 km−1) which
are required for the manufacturer’s model. In addition, this model was verified experimentally.

2. Buffering

The experimental laser curve was recorded in the buffered mode [27,41] when the laser is run in
a 1/8 duty cycle in order to increase the sweep frequency by copying single sweeps of the optical
field, after out-coupling the light from the cavity. In this way, the sweep rate can be increased by
increasing the amplitude of the FP sweep filter drive function without increasing its mechanical
resonance frequency, which constitutes a bottleneck for the maximum FDML sweep rate [4].
In the simulation, the off-time of 7/8 of the sweep was not considered. Instead, we used the
physical fiber length of 443.4m (562.6m in Section 5) in Eq. (1) and replaced the corresponding
sweep rate of 411 kHz (363 kHz) by 8 · 411 kHz (8 · 363 kHz) for a single sweep. In doing so, we
obtained a continuous sweep with the correct sweep timings and the actual physical propagation
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length in the cavity. However, we neglected the switch-on and -off process in the SOA due to the
continuous sweep, as well as the off-time, which carries no relevant physical information. The
good agreement in Section 5 validates this approach.

Because of the buffering technique, the sweep of the bandpass filter is nearly linear since only
at 1/8 of the sweep time around the zero crossing point of the sinusoidal sweep function is the
gain medium switched on. A linear sweep function was therefore used in Section 5.

3. SOA

Equation (3) was numerically integratedwith a fourth-order Runge-Kuttamethod. The unsaturated
gain was interpolated with a Gaussian and the saturation power with a fourth-order polynomial.
Note that the measured input saturation power Psat,m,in is related with Psat in Eq. (3) by
Psat = [exp (h0) − 2] /[2 log(2)]Psat,m,in.

Appendix B: Characterization of the ultra-stable operating regime

In order to quantify the coherence properties of the ultra-stable operating regime, we determine
the width of the instantaneous lineshape and the number of local minima of the high-frequency
fluctuations in the intensity trace, i.e the number of holes. The instantaneous lineshape is a local
measure of the phase evolution and of fluctuations in the optical field, whereas the high-frequency
noise in the intensity trace is a result of the complex laser dynamics evolving over many roundtrips.
In addition, we describe the optical field by its IF, which measures the offset from the center
frequency of the bandpass filter in the swept-filter reference frame. The three above-mentioned
quantities are especially important for the imaging properties of FDML lasers [24].
We extract the instantaneous linewidth and frequency by performing a short-time Fourier

transformation (STFT) of the complex field envelope, where we use a rectangular window
function and divide a single sweep into 16 pieces. For the parameter values chosen here, this
corresponds to a minimum theoretical time-frequency uncertainty of 2.09MHz or 38.02 ns
respectively for T = 608.27 ns when neglecting the broadening due to the rectangular window. A
similar approach was followed in [64,65] where it proved possible to reproduce experimental
measurements of the instantaneous laser lineshape. The IF is estimated by the first moment
within the STFT window, and the linewidth is estimated by the root mean square bandwidth
(RMS) around the mean frequency. The RMS is used here since the lineshape can have different
appearances with e.g. a noisy multi-peak structure where a full width at half maximum (FWHM)
approach would be inappropriate, and was also used in [58] to characterize SOA fiber ring lasers
with a static bandpass filter which are similar to FDML lasers. The blurring effect of noise on the
RMS bandwidth was reduced here by using a rectangular window of 30GHz centered around the
peak frequency of the lineshape which is sharply concentrated around the IF, as can be seen in
Fig. 4(b).
The number of holes is determined by counting the local minima exceeding a threshold of

30% from the mean of the intensity trace, obtained by applying a Gaussian low-pass filter with a
FWHM width of 100MHz. To be robust against noise, the minimum peak distance was chosen
to be 40 ps and the minimum peak width was set to 5 ps. Furthermore, we limited the bandwidth
of the simulated intensity traces with a Gaussian low-pass filter with a FWHM width of 500GHz,
in order to reduce the influence of the ASE noise on the hole counting algorithm.
The IF in Fig. 6 at each computed point was averaged over a period from roundtrips 40 000

to 150 000, sampled every 20 000th roundtrip in order to smooth the drift of the IF which was
discussed in Fig. 4(a). The number of holes in Fig. 3(a) as well as the mean linewidth per
roundtrip in Fig. 3(b) were averaged in the same way, though starting at roundtrip 100 000, since
we observed that certain low amplitude patterns in the intensity trace get smoothed out over this
long time scale.
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Appendix C: Delay in the swept-filter reference frame

The transformation of the optical field envelope A (τ) with the retarded time τ to the swept-filter
reference frame envelope u (τ) [35] is performed by

u(τ) = A(τ) exp [iϕ(τ)] . (9)

Here,
ϕ(τ) =

∫
[Ω(τ′) − ωc] dτ′ (10)

which modulates the IF of the optical field in accordance with the center frequency of the optical
bandpass filter Ω(τ′), shifted by the center frequency of the sweep ωc. In the case when the
optical field is delayed by a time τd the delayed field in the swept-filter reference frame is

ud(τ) = A(τ − τd) exp [iϕ(τ)] . (11)

The delayed field envelope can be rewritten in terms of A(τ) as

A(τ − τd) =
∞∑

k=0

(
−τd

∂
∂τ

)k

k!
A(τ), (12)

which follows from the Fourier transform properties, and is known as the time-delay operator
exp

(
−τd

∂
∂τ

)
. When using the property of Eq. (12) and neglecting higher order time derivatives

of A (τ) as in [35,36] according to
(
∂

∂τ

) j
A(τ) ≈ [−iωs(τ)]j u(τ) exp [−iϕ(τ)] (13)

with ωs(τ) = Ω(τ) − ωc, we obtain

ud(τ) =

∞∑

k=0

(
−τd

∂
∂τ

)k

k!
A(τ)


exp [iϕ(τ)] (14)

=

[
A(τ) + (−τd) ∂

∂τ
A(τ) + (−τd)2

2!
∂2

∂τ2
A(τ) + · · ·

]
exp [iϕ(τ)] (15)

= u(τ) + (−τd) [−iωs(τ)] u(τ) + (−τd)2
2!
[−iωs(τ)]2 u(τ) + · · · (16)

= u(τ)
[
1 − i (−τd)ωs(τ) + [−i (−τd)ωs(τ)]2

2!
+ · · ·

]
(17)

= u(τ) exp [−i (−τd)ωs(τ)] . (18)
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