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Abstract
Cardiovascular disease represent one of the leading causes of death in the modern world. One
prominent pathology is that of the abdominal aortic aneurysm (AAA) which mainly occurs in
the elderly male population and has caused 12.105 deaths in 2019 alone in Germany. The forma-
tion of an AAA usually progresses asymptomatically, often ending in fatal ruptures. If however
detected by accident, the surgeon needs to weigh the treatment risk against the rupture risk if
left untreated under regular screening. AAA treatments are performed either in open surgeries
or in minimally invasive procedures via stent placement. Both treatment options carry risks, too,
especially for the elderly patients.
Over the years, the rupture risk of an AAA was determined in the clinical daily practice by a
geometric criterion, specifically the maximum diameter. If the maximum diameter exceeds 5.5
mm, the risk of a rupture increases. However, this criterion is proven to not be accurate enough
and so research has been conducted in the last years to develop more accurate rupture risk indica-
tors incorporating further patient information, biomechanical modelings and extensive geometric
analysis.

As artery wall composition changes accompany AAA formation and are manifested in its de-
formation, geometrical approaches are obviously beneficial for assessing the rupture risk and are
easy to integrate in the clinical daily practice.
Therefore, in this work, a statistical shape analysis of abdominal aortic aneurysms is performed
based on a patient-specific cohort of 142 abluminal AAA shapes. The examined dataset rep-
resents a cross-sectional cohort with different sizes, ages and stages of AAA progression. The
AAA cases either are asymptomatic, symptomatic or known-ruptured. The shape analysis in this
work is performed to understand the shape variability in the cohort and to generate a mathemat-
ically abstract representation for every AAA abluminal shape. In so doing, misinterpretations of
concrete geometrical features are avoided and consistency in the measurements is achieved.

The input of the statistical shape analysis is generated in the Large Diffeomorphic Deforma-
tion Metric Mapping (LDDMM) framework where a constant reference geometry, in this case a
cylindrical surface, is mapped to every AAA abluminal surface in the cohort. Statistical methods
built on the principal component analysis are applied to the resulting mapping parameters to
identify the principal deformation patterns among the 142 mapping parameters and generate the
principal shape variations in the cohort.
In order to obtain representative mapping parameters for every AAA shape, a modular registra-
tion in two orthogonal spaces is developed in this work to extend the LDDMM framework. In
short, the mapping of the reference cylindrical surface to the target AAA abluminal shape is car-
ried out in a simultaneous transformation scheme, comprising a rigid translation and a non-rigid
translation-free, diffeomorphic and geodesic deformation. Hence, the non-rigid transformation
produces translation-free shape-descriptive mapping parameters which are used as input of the
statistical shape analysis as described above.

In this work, the foundation for further examinations of AAA shape variability in specific groups
of ages, gender or rupture risk is laid. Moreover, the obtained abstract shape descriptors are de-
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termined and could be incorporated in various applications, like automatic segmentations or the
identification of biomechanical AAA wall properties.
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Zusammenfassung
Herz-Kreislauf-Erkrankungen gehören zur ersten Todesursache in der modernen Welt. Eine her-
ausragende Pathologie ist das abdominale Aortenaneurysma (AAA), das hauptsächlich bei älteren
Männern auftritt und allein im Jahre 2019 12.105 Todesfälle in Deutschland verursacht. Die Bil-
dung eines AAA verläuft normalerweise asymptomatisch und endet häufig mit einer tödlichen
Ruptur. Wenn das AAA zufällig entdeckt wird, muss der Arzt das Behandlungsrisiko und das
Rupturrisiko verlgeichen, wenn das AAA unbehandelt bleibt. AAA-Behandlungen werden ent-
weder in offenen Operationen oder minimal invasiv durch eine Stentplatzierung durchgeführt.
Beide Behandlungsmöglichkeiten bergen auch Risiken, insbesondere für ältere Patienten.
Im Laufe der Jahre etablierte sich das Kriterium des maximalen Durchmessers für die Ermitt-
lung des Rupturrisikos in der täglichen klinischen Praxis. Wenn der maximale Durchmesser 5.5
mm überschreitet, steigt das Rupturrisiko. Dieses Kriterium ist jedoch nachweislich nicht genau
genug. Daher wurden in den letzten Jahren Untersuchungen durchgeführt, um genauere Indika-
toren für das Rupturrisiko zu entwickeln, die weitere Patienteninformationen, biomechanische
Modellierungen und umfangreiche geometrische Analysen umfassen.

Da Änderungen der Wandkonstitution mit der AAA-Bildung einhergehen und sich in der Verfor-
mung manifestieren, sind geometrische Ansätze offensichtlich konstruktiv, um das Rupturrisiko
zu bewerten, und lassen sich leicht in die klinische tägliche Praxis integrieren.
In dieser Arbeit wird eine statistische Formanalyse von AAA durchgeführt, die auf einer patien-
tenspezifischen Kohorte von 142 abluminalen AAA-Formen basiert. Der untersuchte Datensatz
repräsentiert eine Querschnittskohorte mit unterschiedlichen Größen, Altersgruppen und Sta-
dien der AAA-Progression. Die AAA-Fälle sind entweder asymptomatisch, symptomatisch und
bekanntermaßen rupturiert. Die Formanalyse in dieser Arbeit wird durchgeführt, um die Form-
variabilität in der Kohorte zu verstehen und eine mathematisch abstrakte Darstellung für jede
AAA-Ablumenform zu generieren. Auf diese Weise werden Fehlinterpretationen konkreter ge-
ometrischer Merkmale vermieden und Konsistenz bei den Messungen erreicht.

Die Eingabeparameter der statistischen Formanalyse werden mithilfe der Metrischen Abbildung
der großen diffeomorphen Verformung (engl. Large Diffeomorphic Deformation Metric Map-
ping (LDDMM)) generiert, indem eine Referenzgeometrie, in diesem Fall eine zylindrische
Oberfläche, auf jede AAA-Abluminalform in der Kohorte abgebildet wird. Statistische Me-
thoden, die auf der Hauptkomponentenanalyse basieren, werden auf die resultierenden Abbil-
dungsparameter angewandt, um die Hauptverformungsmuster unter den 142 Abbildungspara-
metern zu identifizieren und damit die Hauptformvariationen in der Kohorte zu erzeugen.
Um repräsentative Abbildungsparameter für jede AAA-Form zu erhalten, wird in dieser Arbeit
eine modulare Registrierungsmethode in zwei orthogonalen Räumen entwickelt. Mithilfe dieser
Methode wird die Abbildung der zylindrischen Referenzoberfläche auf die abluminale AAA-
Zielform in einem simultanen Transformationsschema durchgeführt, das aus einer starren Trans-
lation und einer nicht starren translationsfreien, diffeomorphen und geodätischen Deformation
besteht. Demzufolge erzeugt die nicht starre Transformation formbeschreibende translations-
freie Abbildungsparameter, die wie oben beschrieben als Eingabeparameter für die statistische
Formanalyse eingesetzt werden.
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In dieser Arbeit wird die Grundlage für weitere Untersuchungen der Formvariabilität von AAA
in bestimmten Gruppen von Alter, Geschlecht oder Rupturrisiko gelegt. Darüber hinaus werden
die erhaltenen abstrakten Formdeskriptoren geliefert, die in verschiedene Anwendungen wie au-
tomatische Segmentierungen oder die Identifizierung biomechanischer AAA-Wandeigenschaften
integriert werden können.
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Nomenclature

Nomenclature
Representation of scalars, tensors and other quantities

Geometric features

Dmax maximum diameter of an AAA [mm]
LE Euclidean centreline length of an AAA [mm]
↵s asymmetry [�]
V volume [ml]
LCL centreline length [mm]
Ac,max maximum cross-section area [mm2]
AT surface area [mm2]
⇣max maximum curvature [mm�1]
� saccular index [�]
� tortuosity [�]

Mathematical background

LDDMM large deformation diffeomorphic metric mapping
G group of diffeomorphisms
g tangent-space of group G
'v(t) time-dependent transformation element of group G generated by v 2 g
E Euclidean group for translation
e tangent-space of group E
⌧ translation velocity vector in e
r translation vector in E
N number of available observations, i.e. target shapes
S two-dimensional source/reference surface in M
T two-dimensional target surface in M
M 3-dimensional manifold of S and deformed configurations during registration
X subset of R3 representing a 2-dimensional surface in M, containing q 2 R3

nx number of vertices in triangular mesh of source surface S in the discretized case
q a vertex 2 R3 on the manifold X ⇢ R3

X initial configuration of S; is 2 R3n
x after spatial discretization

x configuration of S at time t; is 2 R3n
x after spatial discretization

L2 space of square-integrable functions
n normal vector of a mesh triangle
c center point of a mesh triangle
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kq kernel functional in q 2 X
vq(q) velocity vector in R3 of a vertex q at time t
v(x(t)) velocity vector field in V of configuration x 2 M, consisting of the evaluations

vq(q)
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B Banach space
H Hilbert space
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W⇤ dual space of W
�W kernel width for RKHS W
KW kernel matrix of RKHS W with width �W
! probing vector field in RKHS W
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LDDMM
�V kernel width for RKHS V
kV Gaussian kernel functional defined on V with width �V
KV kernel matrix of RKHS V with width �V
v0 initial velocity vector field in RKHS V defined on a surface in M; 2 R3n

x after
spatial discretization

µ
0

initial momenta vector field in dual space V⇤ defined on a surface X in M; 2 R3n
x

after spatial discretization
JV cost function for matching in original LDDMM
�E weighing parameter between the data-fidelity and energy term

Method and Implementation

JA cost function for affine registration
P? projector used to construct the RKHS V?

B matrix used for projector construction
v? translation-free velocity vector field in RKHS V?

V? RKHS of translation-free velocity vector fields v?

V?⇤ dual space of RKHS V?

J? cost function for surface matching problem in V?
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J cost function for modular matching problem
F transformation group for modular registration method
'F group transformation belonging to F
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Hcyll height of cylindrical reference geometry
Dcyl diameter of cylindrical reference geometry

Statistical analysis

PCA principal component analysis
SVD singular value decomposition
p feature vector
P data set of all P
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JPCA cost function in PCA
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⌃LPCA

P covariance matrix of data set P in linear PCA (LPCA)
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1. Introduction

1.1. Motivation
In the present age of digitalization, advancing computational technologies, together with computer-
assisted methods increasingly assist in medical procedures, be it in diagnosis, treatment decision,
planning or completion. One pivotal facet of computer-assistance in medical procedures lies in
the medical imaging field which benefits significantly from efficient computational technologies:
higher resolution, shorter exposure to radiation, lower radiation doses and enhanced imaging
accuracies are the outcome. From a broader perspective, medical images permit the digital cod-
ification of anatomical and biological information.

Medical images play an essential role in the young interdisciplinary domain of computational
anatomy (CA) which is mainly concerned with the analysis of anatomical shapes and the dis-
tinction between healthy and pathological occurrences and progression scenarios. To that end,
mathematical and statistical methods have been constantly developed for building the necessary
models and simulation tools.
In CA, the extracted geometric information provided in medical images can be described in var-
ious ways : 1D fibres, 2D surfaces, 3D volumes or even simply the grey values on the medical
images themselves in the case of a computed tomography (CT) dataset.

Although CA is an emerging discipline enabled primarily by advancing computational tech-
niques, the concept of shape comparisons and the ”recognition” of one shape within another
goes back to the beginning of the twentieth century with the work ”On growth and form” by
the biologist and mathematician D’Arcy Thompson [173]. In his most famous book, Thomp-
son incorporates physical laws and mechanics as fundamental elements to determine the shape
evolution and form of living organisms. With his approach, Thompson established the field of
mathematics in biology.

The modern definition of CA has been established with the Brown/Washington University model
of anatomy based on Grenander’s pattern theory [70, 71]. With the availability of dense anatom-
ical images, typical or average shapes of anatomical structures, so-called templates, are esti-
mated. The templates are deformable and they are registered to patient-specific shape of the
examined anatomical region. Thereupon, the cohort variability can be assessed. The brain struc-
ture was the first anatomical structure to be analyzed [123, 184].
Different anatomical mapping techniques have been an ongoing research field since then.

In the present, a novel method in CA is constructed to mainly analyse shapes of abdominal aortic
aneurysms, with the goal of assisting the assessment of rupture risk. As exhibited in the follow-
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1. Introduction

ing, morphologic features of abdominal aortic aneurysms have been established as a promising
rupture risk predictor.

In the following, the medical background of abdominal aortic aneurysms is presented, including
its pathological progression, common rupture risk assessment methods and treatment options.
Afterwards, with a focus on morphology, the study population of the present work is introduced,
concluding with challenges in related rupture risk assessment and the derived objectives of this
work.

1.2. Medical background
According to the World Health Organization, cardiovascular diseases are one of the most fre-
quent causes of death globally. In 2016 alone roughly 17.9 million people died due to a cardio-
vascular illness, thus representing 31% of all deaths [195].
According to a study in 2002 [163], 45% of men died between the age of 65 and 74 years due
to cardiovascular problems. Here, the abdominal aortic aneurysm is one of the three major car-
diovascular death causes. In Germany, according to [63], almost 12.105 men and women died of
arterial diseases in 2019.

In this work, a serious cardiovascular illness, the abdominal aortic aneurysm (AAA) is addressed.
An abdominal aortic aneurysm (AAA) is defined by a progressive dilation of the abdominal aorta
with a maximum diameter greater than 3 cm. Other approaches diagnose an AAA if the max-
imum diameter is larger than 50% of the healthy patient-specific diameter of abdominal aorta
[96]. Figure 1.2.1 shows a manifestation of an infrarenal AAA which occurs between the renal
arteries and the iliac bifurcation. Another AAA formation takes place completely proximal to the
renal artery bifurcation and is classified as suprarenal AAA. A juxtarenal AAA extends between
proximal renal artery bifurcation till and the aortic bifurcation to the iliac arteries. This work
focuses on infrarenal AAA which constitute 90% of all AAAs [83].

The morphological change decreases the ability of the abdominal aortic wall to withstand the
mechanical forces exerted by the blood flow during a heartbeat [74]. Once the resulting wall
stress exceeds the wall strength, rupture of the AAA occurs usually resulting in death.

The prevalence of AAA is higher in men than in women. All in all, about 30% of all AAA cases
show a maximum diameter of greater than 4.5 cm [163] which progress silently and present a
high risk if ruptured. The associated high mortality rate and high prevalence make the AAA one
of the leading cardiovascular causes of death in western societies.

Clinical presentation

In clinical examination, with regard to the symptoms, AAA are divided in three groups: asymp-
tomatic, symptomatic and ruptured. The majority of AAA cases, about 80% of all cases, are
clinically silent, i.e. asymptomatic, and are accidentally detected in abdominal medical images.
Only 5 � 10% of all cases show symptoms which mostly manifest themselves with a sudden
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aorta

right 
kidney

left 
kidney

infrarenal 
AAA

right renal 
artery

left renal artery

Figure 1.2.1.: Schematic representation of an infrarenal AAA formation which occurs between
the renal arteries and the iliac bifurcation.

abdominal or back pain.
Once detected, asymptomatic AAA must be regularly monitored. The monitoring can be con-
ducted using the fast, inexpensive and non-invasive ultrasound (US) imaging modality. Accord-
ing to [78, 110, 116], US is a valid and reliable screening method for AAA.
In case of symptomatic AAA, an urgent clinical intervention is necessary. Available treatment
options are discussed later in this section. If a symptomatic AAA is left untreated, there is a 90%
chance of rupture within two years upon discovery as observed in [130].
The remaining group of ruptured AAA which make 10 � 15% of all cases is the most life-
threatening: 90% of ruptured AAA cases end fatally before even reaching the hospital [136].

Etiology and risk factors

The permanent structural deterioration of the abdominal aorta is induced by a degenerated aortic
wall. A healthy aortic wall is illustrated in Figure 1.2.2 and consists of three main layers: the
intima, the media and the adventitia, being separated with an external and an internal elastic
membrane.

The intima is the thin luminal wall layer. It mainly consists of extracellular matrices (basement
membranes) lined with endothelium which build a smooth semi-selective barrier of lumen to the
aortic wall. Due to its fragile structure, it is the layer most exposed to injury or tear.
The aortic media is the middle layer and amounts to almost 80% of aortic wall thickness. It
mainly consists of elastic fibres, elastin, intertwined with smooth muscle cells. Hence, along
with the bordering elastic membranes, this layer is largely responsible for the elastic behaviour
of the abdominal aorta, allowing the propulsion of blood during a heartbeat and thus the pressure

3



1. Introduction

Lumen

Media

Intima AdventitiaInternal elastic 
membrane

External elastic 
membrane

Figure 1.2.2.: Schematic representation of the composition of a healthy aortic wall which con-
sists of an intima, media and adventitia, separated by the internal and external elas-
tic membrane, respectively. This composition undergoes structural remodelling
due to ageing and disease.

wave propagation.
Another connective tissue in the aortic wall, in addition to elastin, is collagen. The third and
outermost thin layer, the aortic adventitia, mainly consists of collagen which grants great tensile
strength [8]. Thus, the mechanical and structural properties of the aortic wall are determined by
the interplay and balance of both constituents, collagen and elastin.

Tsamis et al. [180] presents an extensive study of structural remodelling during ageing and
disease. So, naturally, throughout a lifetime and with progressing age, structural remodelling
continually takes place in the aortic wall, causing an imbalance of collagen and elastin con-
stituents and usually a loss in arterial compliance [106, 179, 201]. In particular, elastin concen-
tration decreases within the aorta [50, 56] with age, while collagen undergoes an increase with
age [69, 157]. The absence of elastin fibres leads to a pre-stretch change in the remaining aortic
components, mainly collagen fibres and smooth muscle cells [193], while an overcompensatory
collagen net occurrence stiffens the aortic wall and encourages aortic growth [18].

The structural remodelling takes different forms according to the wall layer and the region of
aortic wall. Specifically, with regard to the abdominal aorta, the thickness and elastin and colla-
gen amount of each layer differ between the regions. The different susceptibility is mainly due
to distinct loading conditions [194].

Additionally, structural remodelling within the aortic wall can be triggered by disease, lead-
ing to an accelerated weakening and functional degradation of aortic wall, and especially the
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1. Introduction

abdominal aortic wall [25]. An exact description thereof with connection to resulting mechani-
cal properties has been conducted in [135] for three identified degradation stages.

Generally, false and true aneurysms are distinguished: The wall degeneration in a false AAA,
also known as pseudo-aneurysm, is usually caused by a tear or injury in the vessel wall such
that blood leaks and collects in the surrounding tissue, in particular between the media and the
adventitia. An aortic dissection, on the other hand, is a tear in the intimal layer of the aorta,
mechanically separating (dissecting) the wall layers and also leading to blood leakage into the
vessel wall [33, 134]. False AAA occur mostly because of trauma or infection.
True AAA build the majority of AAA cases where all three vessel wall layers are involved.
In this occurrence, the aortic wall degeneration takes place due to inner change of the micro-
structural composition of the wall, causing common structural deformation and mechanical al-
teration [9, 81].
True aneurysms can occur because of ageing-related disruptions, but also because of genetic
disorders, like Marfan-Syndrome [75] or Ehlers-Danlos syndrome [30, 76].
Although the initial cause of pathogenic AAA development is not fully known yet, some factors
strongly promote and correlate with the formation of true AAA, like male sex, age, smoking,
hyptertension and hypercholestrolemia [55, 74].

Treatment
Treatment guidelines are regularly provided and updated by the Society for Vascular Surgery,
like the latest in [26]. Therein, based on various study results, suggestions to support the decision-
making process of treatment options are given.

If the AAA should be treated, the treatment methods of AAA are usually of a surgical nature.
The open repair surgical intervention has been the gold standard for operating ruptured and non-
ruptured AAA. In this open repair intervention, the surgeon replaces the AAA with a prosthesis
which is sutured to the adjoining healthy segments of the abdominal aorta.
Another meanwhile established and less invasive surgical treatment is endovascular aortic repair
(EVAR). During this procedure, a graft with enclosed metal stent is placed transluminally into
the AAA segment and attached on the luminal surface of the adjoining healthy aorta. To that
end, a non-dilated and thrombus-free infrarenal neck is required.

Both surgical treatments carry life-threatening risks [161]. The various risks and scenarios have
to be considered in the decision making process of a treatment. In some AAA cases, due to
patient-specific intervention risks related to previous diseases or health status, a non-treatment is
preferred. In such cases, AAA surveillance programs monitor the AAA growth rate and stability
to allow for surgical intervention sufficiently in advance.

Consequently, a treatment decision includes a weighing of the patient-specific interventional
risks against the rupture risk if left untreated. That is why clinical tools for rupture risk assess-
ment has been the focus of interdisciplinary research efforts over the past decades.
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1.3. Risk assessment and challenge
In the context of AAA treatment decisions, the rupture risk assessment is necessary in deciding
for or against a treatment since treatments bear risks, too, as explained above. In the following,
different approaches for AAA rupture risk assessment are presented.

Biomechanical approaches
From a mechanical point of view, rupture occurs when the wall stress exceeds the wall strength.
Biomechanical models help assess the aortic wall stress under certain loads and can help pre-
dict scenarios of possible rupture. Such models are generated on patient-specific geometries
extracted from medical images. The challenges lie mainly in assigning patient-specific constitu-
tive behaviour and in obtaining the wall strength.

To overcome these challenges, experiments have been conducted to make predictions on wall
constitutive properties and laws, like in [152]. Based on these predictions, AAA biomechanical
models have been constructed and studied [59, 61, 94, 114, 128, 129, 137, 187].
The wall strength is a more difficult parameter to estimate and it can vary in an AAA geom-
etry depending on the tissue composition at a certain location. To overcome this challenge, an
individual invasive wall strength distribution has been estimated in a stochastic model from non-
invasive patient-specific parameters, specifically local thrombus thickness, local AAA diameter,
sex and AAA family history [185]. Patient-specific wall strength values can be estimated retro-
spectively.

Integrating these biomechanical models in rupture risk assessment trials, it has been proven that
the peak wall stress (PWS) is indeed an accurate rupture risk indicator [51, 52, 85, 113, 178].
Moreover, based on these mechanical and stochastic models, some rupture risk indices have been
designed and introduced to the rupture risk estimation dilemma. One of the pioneers in this mat-
ter is the rupture potential index (RPI) by Vande Geest et al. [185]. The RPI is calculated as the
quotient of wall stress and strength, both estimated with the previously mentioned methods.
The peak wall rupture risk (PWRR) index, another biomechanical rupture index, correlates
strongly with PWS [59]. A probabilistic rupture risk index (PRRI) was later proposed by Polzer
et al. and is shown to be superior to a purely deterministic approach [145]. Recently, in 2018,
Leemans et al. investigate the added value of biomechanical indices to rupture risk assessment.
In their study, they come to the conclusion that biomechanical indices may provide additional
information concerning aneurysm growth, but they do not perform better than extracted patient-
specific morphology features [107].

Geometry
The integration of biomechanical rupture risk indices in daily clinical practice can turn out to be
cumbersome due to expensive computations and the lack of patient-specific constitutive model-
ings. That is why research has been expansively conducted to understand the relation between
the geometry, the biomechanical wall condition and the stage of disease. Aortic shape deforma-
tions can in fact be regarded as manifestations of disease-related weakening of aortic wall and
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of changes in the wall stress distributions. If the shape deformations can be related to inner wall
conditions and rupture risk, then these shape features can be favoured over biomechanical risk
indices as they can be assessed quickly and non-invasively [151].
In this section, the importance of geometrical features with respect to rupture risk evaluation is
highlighted, offering an understanding of common AAA shape variations and features.

Based on empirical evaluations, the widely accepted study of ”The U.K. Small Aneurysm Trial”
[172] established in 1995 the common criterion of maximum transversal diameter Dmax in daily
clinical practice for rupture risk assessment. Other studies like [49] confirmed the findings. The
core outcome of these studies takes a maximum diameter of ⇡ 5.5 cm as a threshold to identify
rupture-prone AAA in men. The concept of a relation between the aortic diameter and a high
wall stress is based on the mechanical Law of Laplace which relates the local wall stress in a
thin-walled cylinder to the associated inner pressure and local diameter [99].
However, other studies like in [35, 164] or a more recent study in [101] show that the thresh-
old does not apply to all cases. Also, with regard to growth prediction, the maximum diameter
is not eligible as a surveillance parameter, but rather centreline-based diameter measurements
along the entire centreline which relate to local growth rates [120, 121]. More patient-specific
and more accurate rupture risk indicators have to be introduced consequently.

To that end, to take advantage of non-invasive geometrical predictors and advanced medical
imaging technologies, ongoing research has identified multiple other geometric features which
strongly correlate with an increased rupture risk. There, the direct relation between selected ge-
ometrical features and rupture risk is examined.

Comprehensive studies including multiple geometrical features, as in [167] or [53], pursue sig-
nificant quantifications of AAA geometries for rupture risk prediction. Even, in [100], a statisti-
cal tool has been developed to generate a severity parameter of an AAA case based on morphol-
ogy and general patient information. Nowadays, modern machine and deep learning techniques
are employed toward that end. In [139], for instance, a decision-tree based classification of AAA
based on their morphology is conducted. Also, in a most recent study in early 2020 [154], 53
geometric and 4 biomechanical markers, along with other general patient information data, are
examined with regard to rupture prediction using different machine learning classification al-
gorithms. So far, deep learning approaches have been developed to be directly applied on the
medical image for classification. Hence, geometric features are not explicitly extracted for the
analysis, but the learning is performed on the complete shape in the CT-image [88].
Additionally, studies have been performed to evaluate the relationship between PWS and AAA
morphology, as in [144] to overcome complexity and long computation times of biomechanical
models.

All these and similar studies conclude that morphology is relevant with regard to rupture risk
assessment. With the help of modern data science techniques, promising results can be achieved.
In the following, frequently analysed and promising geometric features are presented and dis-
cussed. These are usually categorized according to their dimension: 1D and 2D surrogates of 3D
shape. Examples of 2D features are tortuosity and asymmetry.
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centreline	 LE

Figure 1.3.1.: Illustration of a centreline (blue) as a connecting line of all centre points of discrete
aortic best fit circles (grey circles). LE describes the Euclidean length of the dashed
green line which directly connects the top point with the bifurcation point in a
straight line. LCL describes the length of the centreline itself.

Before starting with the examination, an essential geometrical assessment tool, the centreline,
is explained. A centreline is a line connecting all centre points of discrete aortic circular seg-
ments (see Figure 1.3.1). Based on an available centreline, geometrical features, like asymmetry
or tortuosity, can be calculated. The euclidean length LE of the centreline describes the length
of the straight line connecting the proximal and distal point of the centreline.

Cross-sectional diameter asymmetry morphologically characterizes AAA geometries. In this re-
gard, two common AAA shapes can be differentiated, especially by physicians: fusiform (axis-
symmetric) and saccular (asymmetric) describing mainly the bulge shape (see Figure 1.3.2). It
is stated that most AAA are tortuous and asymmetric [41, 54]. This is due to the local bound-
ary conditions given by neighbouring anatomical structures, like the spinal column in posterior
direction [189]. That is why, in most cases, the AAA bulge grows further in anterior than in
posterior direction [54], resulting in a thinner wall in the anterior part [100]. This implies that
the AAA growth tendency can be anticipated from and is directed by surrounding anatomical
limitations.

Nevertheless, since asymmetry vaguely describes a non-symmetric deformation in radial direc-
tion, different asymmetry measurements are introduced in literature. Finol et al. introduce in [54]
an asymmetry index

� =
rp
ra
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(a)  fusiform        
(symmetric)

(b) saccular
     (asymmetric)

Figure 1.3.2.: Different bulge shapes (coronal view) with regard to asymmetry: (a) fusiform and
(b) saccular.

with rp the posterior and ra the anterior radius in the cross-section with the maximum diameter
Dmax (see Figure 1.3.3). A symmetric AAA has an index of � = 1. It is stated that the higher
the asymmetry, the higher the peak wall shear stress at peak blood flow. Additionally, with an
increasing asymmetry, secondary flows occur more in late diastole.
In these studies, a strong correlation between asymmetry and wall stress, especially PWS, has
been observed. Also, FSI simulations show in [165] a strong interaction between asymmetry
and wall stress. Doyle et al. devote their research focus in [40] on asymmetry investigations,
achieving similar conclusions: excessive bulging of one surface induces an increased PWS in
the opposite site. An easily accessible asymmetry measure is found in [54] with

↵s = rmax,OC � rmax,IC ,

the difference between the radius of outer circle (OC) and the radius of inner circle (IC) in the
plane of maximum diameter Dmax. In this study, it has been revealed that ruptured AAA tend
to have greater cross-sectional diameter asymmetry. Vorp et al. introduce a similar bulge factor
based on the ration of rp and ra as well [191]. This study confirms that asymmetry has a role
as significant as the maximum diameter on the wall stress distribution. In [155], the maximum
radius rmax is incorporated in the asymmetry factor with

↵r =
e

( rmax

r
sub

� 1)/rmax
.

Curvature ⇣ is a frequently discussed geometrical feature of AAA as it is deduced from the com-
mon geometric feature, the diameter. In the AAA context, curvature is defined according to [64].
With this definition, in this study, the mean curvature along the AAA centreline has been found
to correlate with the PWS. In [132] and [62], the relation between AAA curvature and PWS has
been investigated likewise. However, the results are non-significant with respect to the analysis
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centreline	

Dmaxra

rp

Figure 1.3.3.: Definition of asymmetry according to [54] as the difference of the radius of outer
circle (OC) and the radius of inner circle (IC) in the plane of maximum diameter
Dmax.

methods of [64] and can be therefore neglected. In [97], a more sophisticated approach is fol-
lowed to analyse the role of only curvature in the rupture risk assessment. Therein, curvatures
have been estimated using a biquintic Hermite finite element method which allows a reduction of
curvature measurement to only ten global indices. Machine learning methods have been applied
on the acquired indices, yielding a strong relation between rupture risk and curvature features.

Tortuosity � is another common geometric feature. It is important to note that tortuosity and
asymmetry do not refer to the same shape feature. A highly tortuous AAA does not necessarily
show an asymmetry in the cross-section with the maximum diameter. However, in some AAA
shapes, tortuosity can cause asymmetry. In this case, the asymmetry cannot be regarded inde-
pendently from tortuosity.
Also for this geometrical feature, several measurements have been introduced in literature [53,
59, 62, 151, 167]. All these studies confirm that unstable rupture-prone AAA shapes tend to be
less tortuous.

The list of relevant AAA geometric features has been extended with the saccular index defined
in [100] with

� =
Dmax

LE

,

the quotient of the maximum diameter Dmax and the perpendicular centreline length LE (see Fig-
ure 1.3.1). Not only the expansion in radial direction is taken into account, but also the expansion
in longitudinal direction. Although several studies have shown no correlation of saccular index
with PWS [64, 167], other studies confirm the existing relation between saccular index and rup-
ture risk [79, 100, 189] where the saccular index is even incorporated in the therein established
rupture risk indices based on geometry and biomechanical factors.

10
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bifurcation 
angle

bifurcation point

Figure 1.3.4.: Definition of bifurcation angle.

The bifurcation angle is also considered in the geometrical analysis [132]. The bifurcation angle
is defined as the angle between the tangents on the centrelines between the bifurcation point and
the iliac arteries in the bifurcation point (see Figure 1.3.4). Analysis show that the bifurcation
angle does not influence the wall stress nor the rupture risk of an AAA and can be left out. This
is a key fact which is made use of in the geometrical treatment of the available patient-specific
AAA cohort in chapter 4.

More global geometrical features such as volume V and surface area AT have been incorporated
in most of the studies as well. An evident correlation between these features and the rupture risk
has been determined in several studies. That is why it has been discussed whether the additional
information of volume and surface area can enhance the rupture risk assessment or not. In [99]
and [170], strong correlations between volume and PWS and surface area and PWS respectively
have been determined. However, the volume and surface area and their correlation with PWS
have been opposed to the maximum diameter and its accuracy as a rupture risk predictor [99].
On the other hand, no significant correlation of volume and PWS and surface area and PWS,
respectively, have been found in other studies [64, 132].
Nonetheless, due to the correlation between volume and the maximum diameter, some research
groups suggest substituting the maximum diameter with the volume. This aims at eliminating
the ambiguity in the maximum diameter measurement, the choice of the measurement plane and
to capture more global features of AAA shape.

Further global geometric features are centreline length LCL and height H . The length is the
real length of the centreline or centreline segment, whereas the height is the perpendicular dis-
tance between the specified points on the centreline. In general, the centreline has been often
divided into a neck centreline segment and a sac centreline segment with corresponding lengths
(Lneck, Lsac) and heights (Hneck, Hsac). Tang et al. [170] and Giannoglou et al. [64] found no sig-
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nificant correlation between any of the lengths and PWS. However, Shum et al. present in [167]
a strong correlation between the sac length Lsac and rupture risk. On the other hand, however,
these findings are contradicted in [62].

Hence, as observed, some findings in the studies presented above contradict each other. These
contradictions may occur due to inaccuracies in the measurements or to different choices of wall
properties if the studies are based on mechanical modelings. Thus, a clear and consistent method
definition is lacking among the studies.

Other geometric characteristics like bulge height, bulge location, torsion, deformation rate and
several others have been also considered in the aforementioned studies, with an estimated rele-
vance to rupture risk assessment [53, 64, 79, 98, 148, 167, 170, 189, 196].

Challenge and requirements

However, as observed in the previous analysis, some challenges exist in rupture risk assessment
based on AAA geometry:

• The evolved geometry indices include random disordered combinations of geometrical
features. Still, not all geometrical features are covered in all of them.

• All in all, studies identify more than 40 relevant geometry features of which some are
defined in a complex way and are not easily understood. The measurements are usually
difficult to perform automatically on medical images, and therefore their manual clinical
determination is tedious, inaccurate and time-consuming.

• Obviously, the more geometry features are considered, the more reliable and patient-
specific the achieved rupture risk prediction is.

• Local geometry features are promising indicators of growth and should be incorporated in
the analysis in a statistically significant way.

• There is a need to minimize the chances of misinterpretations of the many different, some-
times complex geometry features and measurements which can lead to inaccuracies in the
diagnosis. This includes the widely used maximum diameter criterion.

As a result, the following requirements are deduced for a more accurate and easy accessible
AAA shape description:

• It is difficult to determine and capture all relevant geometrical features in one measure.
Therefore, a quantification of the complete AAA geometry should be considered as input
for rupture risk analysis.

• The quantification should be performed automatically and quickly, without much effort
in the clinical application, such that it can be smoothly integrated in the daily clinical
workflow and can reliably contribute to the clinical decision making for AAA treatment.

• Moreover, chances of feature misinterpretations should be reduced.
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1.4. Study population
The study population of the present work is a cross-sectional cohort of patient-specific infrarenal
AAA cases. The available database has evolved during joint projects since 2006 between the
Mechanics and High Performance Group, TUM, and the Vascular and Endovascular Surgery
Department of university hospital Klinikum Rechts der Isar, TUM.
A relevant contribution to the construction of this database has been achieved in [114] with the
cases collected between 2009 and 2011.

For this patient-specific cohort, invasive and non-invasive parameters have been recorded contin-
uously, as far as feasible. Invasive parameters include mainly biomechanical characteristics and
sample properties obtained in tensile tests. Non-invasive parameters include general informa-
tion, medical history and clinical data of the associated patient case. Additionally, from acquired
medical images, geometric features are extracted non-invasively.

Earlier studies on the data set

In different stages of database growth, different studies have been conducted on the database.
These studies were aimed mainly at understanding and modeling the pathological state of ab-
dominal aortic aneurysms, seeking a reliable patient-specific prediction of rupture. The basis
therefor is a patient-specific biomechanical model which is constructed from available medi-
cal images (CT images in most cases) [113, 114]. Required patient-specific material parameters
can only be determined in a non-invasive fashion. Methods for their invasive measurements are
presented in [152]. Methods for their non-invasive estimation have been addressed in [16, 94],
including also an estimation of the aortic wall thickness which cannot be assessed with conven-
tional medical imaging techniques.
An associated biomechanical rupture potential index (RPI) has been introduced in [113]. Therein,
the importance of geometry integration in the rupture risk assessment is also highlighted and
proven.
Accordingly, integrating further or more extensive geometrical parameters in the parameter esti-
mation of biomechanical model or the rupture potential index RPI can be valuable and helpful.

Cohort characteristics

The database examined in this work consists of N = 142 (119 male, 22 female, 1 unknown)
cases with available CT images. 74 cases thereof are asymptomatic and declared as stable. 56
cases are symptomatic or known-ruptured, defined as unstable. The status of the rest of 12 cases
is unknown.

Table 1.1 presents the geometric characteristics of the study population which are discussed
in section 1.3 and identified as relevant for rupture risk assessment in literature.
Looking at the statistics in Table 1.1, the available cohort covers a wide range of small and
big AAA shapes with individual asymmetries and tortuosities. The mean maximum diameter,
centreline length, volume and surface area indicate however that the cohort is slightly shifted to
represent big AAA shapes. Nonetheless, the available AAA shapes build a representative cohort.
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Table 1.1.: Descriptive cohort statistics for relevant geometric characteristics in literature. For all
listed features, the values are extracted for the 142 cases.

Geometric feature min max mean ± sd
maximum diameter Dmax [mm] 31.0 95.0 57.9 ± 14.5
centreline length LCL [mm] 41.5 187.61 99.9 ± 26.4
Euclidean centreline length LE [mm] 40.4 165.68 88.9 ± 21.1
Tortuosity � [-] 1.01 1.59 1.12 ± 0.1
maximum curvature ⇣max [mm�1] 0.02 0.63 0.12 ± 0.1
Asymmetry ↵s [mm] 0.7 22.1 3.6 ± 3.6
Volume V [ml] 43.8 592.0 235.89 ± 135.27
Surface area AT [104 · mm2] 0.82 3.83 2.14 ± 0.76
saccular index � [-] 0.12 0.84 0.35 ± 0.14
maximum cross-section area Ac,max[103 · mm2] 0.33 9.81 2.54 ± 1.59

Table 1.2.: A descriptive statistical interrelation of sex, AAA-status and maximum diameter as
leading geometric feature in the examined cohort in the present work.

Sex (n = 141) Max diameter [mm] (n = 141) AAA-status (n = 130)
female 50.0 ± 13.8 stable: 10, unstable: 9
male 59.4 ± 14.3 stable: 64, unstable: 47

To create another impression of the cohort’s composition, a categorization by AAA-status, sex
and maximum diameter as a leading geometric feature is furthermore shown in Table 1.2.

The characteristics of the examined cohort correspond to a big extent with the findings in liter-
ature, specifically concerning the formation of AAA in the male and female population and the
distinctive rupture risk which each population is exposed to.
Women are less exposed to an aortic dilation risk. In this cohort, only 19 of 141 cases belong to
female patients. Moreover, the female population in this work possesses a smaller average max-
imum diameter which is also reported in literature. However, despite the low probability in the
female cohort and the smaller maximum diameter, almost half of the female AAA cases either
proceed symptomatic or rupture as existing also here in the cohort at hand. AAA formation in
the male population, which is more probable, delivers bigger, but more stable AAA shapes.
Accordingly, with regard to capturing differences between male and female AAA formation, the
cohort in this work is well representative.

In addition, with regard to the relation between relevant geometrical feature and the rupture
risk (see section 1.3), box-and-whisker plots are employed in Figure 1.4.1 to visualize the rela-
tion of selected geometrical features and the rupture risk as they exist in the cohort without any
outlier detection or processing. An examination of some wall properties which are invasively
obtained and their relation with selected geometrical features is not performed here and beyond
the scope of this work.
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(a) asymmetry (b) volume (c) max. diameter

(d) centreline length (e) max. cross-section area (f) surface area

(g) max. curvature (h) saccular index (i) tortuosity

Figure 1.4.1.: Box-and-whisker plots to demonstrate the relation of selected geometrical features
and the rupture risk as existing in the cohort without any outlier detection or pro-
cessing.
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The box-whisker plots in Figure 1.4.1 indicate that the selected relevant geometrical features
cannot solely divide between the stable and unstable groups in the available cohort and are thus
not reliable for rupture risk prediction.

1.5. Research objective and outline
The research objective of this work is deduced from the previously presented requirements for
an appropriate AAA shape description, consisting of the following sub-objectives:

• More patient-specific, extensive, statistically significant and accurate AAA shape descrip-
tors should be established. To that end, novel methods and techniques of CA are examined
and modified.

• The generated shape descriptors should support a shape variability analysis to distinguish
pathological and healthy AAA shape appearances.

• In order to avoid misinterpretations of geometrical features, the input of the method should
be a complete AAA shape segmented from medical images.

To that end, two main methods are established in the present work. The first method belongs
to the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework and generates
for every AAA abluminal shape in the cohort a statistically more significant representation. This
statistically more significant representation consists of a velocity vector field v which induces a
mapping ' of the cylindrical reference geometry S to a AAA shape T in the cohort. Figure 1.5.1
visualizes the procedure. The second required method statistically processes all obtained veloc-
ity vector fields v of all AAA shapes T . To that end, two forms of the principal component
analysis (PCA) are employed to create a reduced system of shape descriptors s. The previously
displayed patient-specific AAA cohort is subject of examination.

In this work, a special structure of the registration parameter, the velocity vector field, v is de-
veloped to overcome AAA-specific challenges. In particular, v consists of two clearly separated
components, namely a non-rigid translation-free v? and a rigid translation ⌧ . A modular reg-
istration method in two orthogonal spaces is thus created. The plain v? is utilized then for the
statistical analysis as v? encodes the shape information, including the orientation.

Accordingly, the manuscript consists of two major parts which are visualized in Figure 1.5.2:
The first part addresses the mathematical model behind the estimation of registration parameter
v? and includes Chapters 2, 3 and 4. Chapter 2 lays out the already existing mathematical con-
cepts in CA which build the foundation of the novel registration method presented in Chapter 3.
The registration method is applied in Chapter 4 on the examined patient-specific AAA cohort.

The shape descriptors are extracted from the computed registration parameters and elementarily
interpreted in the second part that covers Chapters 5, 6 and 7 of this work. The required sta-
tistical foundation is presented in Chapter 5. Thereupon, in Chapter 6, the introduced statistical
methods are adapted to the established framework with the computed registration parameters v?.
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Figure 1.5.1.: Illustration of creating the statistically more significant representation of the AAA
abluminal shapes in the cohort in the LDDMM framework. This statistically more
significant representation consists of a velocity vector field v? which induces a
mapping ' of the cylindrical reference geometry S to a AAA shape T in the co-
hort. Therein, the mapping is denoted with 'v?

i (S) with the velocity vector field
v?
i acquired for a target AAA surface Ti.
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Figure 1.5.2.: Illustration of the composition of the present work. It consists of two major parts:
The first part addresses the mathematical setup for the acquisition of representative
registration parameters which are employed in the second part of the work for
extracting the associated shape descriptors denoted with s for every AAA shape.

Finally, in Chapter 7, the shape descriptor vectors s for each AAA shape are determined using
the introduced statistical methods. An elementary interpretation thereof concludes this chapter.

Chapter 8 is dedicated to the discussion and evaluation of the results achieved with the novel
registration method and the subsequent statistical analysis that produces the shape descriptor
vectors s. An outlook closes this final chapter.
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Creation of the feature space

19



2. Mathematical background
In this mathematical introductory chapter, the Large Diffeomorphic Deformation Metric Map-
ping (LDDMM) [42, 72, 197] framework and its basic concepts are recapitulated. The LDDMM
framework provides non-rigid registration methods for applications to anatomical shapes. In this
work, the anatomical shapes are extracted from the 3D medical images and are represented by
two-dimensional surfaces. Hence, these two-dimensional surfaces and their deformed configu-
rations in the course of the registration are embedded in a three-dimensional Riemann manifold
denoted with M.
For the mentioned registration method, the underlying non-rigid deformation is denoted with
'(t) and is defined within the group of diffeomorphisms G acting on the shape manifold M. Ve-
locity vector fields v determine these group transformations and are enclosed in a Reproducing
Kernel Hilbert Space (RKHS) V which equips them with a smooth form.
In this work, the LDDMM registration aims at mapping a reference surface S to a target sur-
face T , both elements of the manifold M. To that end, a cost function is minimized. This cost
function consists of a (fictitious) energy term and of a similarity measure between the deformed
reference surface S and the target surface T . The optimization parameter is the velocity vector
field v 2 V which achieves the deformation '(t) such that the deformed surface S and target
T are similar with a minimal energy cost. The resulting velocity field v is thus characteristic
for the associated target surface T and can be regarded as a legitimate representation of T . The
statistical analysis is performed then on the vector fields v which are individually obtained for
the shapes in the cohort.
The specified similarity measure in the registration method is based on the concept of surface
currents.
This work contributes with a modified structure of v 2 V such that rigid and non-rigid compo-
nents are separated. The created registration framework is then applied to the displayed AAA
cohort for further statistical analysis.
In this chapter, the necessary mathematical background for the definition of these spaces and
actions is presented in the LDDMM framework. First, a short overview on reproducing kernel
Hilbert spaces (RKHS) is given, as the structure of the velocity vector field v is determined by
the properties of the embedding RKHS V . Then, the group of diffeomorphisms G of '(t) with
the associated parameterization by the characteristic vector field v and their action on the shape
manifold M are introduced. The chapter concludes with the similarity measure computation
using surface currents [46, 183]. Based on this background, the contributed method and its im-
plementation are addressed in chapter 3.

Beforehand, a clarifying remark on the employed notations for the two-dimensional surfaces
in M needs to be made. X ⇢ R3 is a subset of the 3D space and represents a surface in M.
X comprises hence the vertices q 2 R3 that form the surface. The collection of all vertices
is denoted with x 2 R3n

x , with nx the number of vertices. In the continuous case, nx is infi-
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nite; in the discretized case, it is the number of vertices of the associated triangular mesh. Thus,
x = [q

1
, . . . , q

n
x

]T. The initial configuration of x(t = 0) is denoted with X .
Accordingly, the vector field v comprises the velocity vectors in all vertices q and is therefore of
the dimension 3nx. A single velocity vector is vq, Thus, v = [vq

1

, . . . , vq
n

x

]T. This notation is
applied to other vector fields, too, which are introduced in the course of this work.

2.1. Large Diffeomorphic Deformation Metric Mapping
(LDDMM)

The Large Diffeomorphic Deformation Metric Mapping, or shortly LDDMM, is a registration
method that allows the matching of an object S to another object T of the same group. In contin-
uum mechanics, registration problems usually represent sophisticated ill-posed inverse problems
where for example constitutive models are developed and optimally parameterized [95].

In the general unconstrained LDDMM framework, the underlying registration model does not
assume a specific deformation behaviour, but is generally formulated to suit as many registration
groups as possible. There, usually only a parameter fitting leads to the desired deformation be-
haviour.
Although the LDDMM framework does not explicitly incorporate models of continuum me-
chanics, the description of particle velocity relies on an Eulerian perspective, i.e. the veloc-
ity of a surface vertex is calculated from the position of the vertex at time t. Moreover, some
non-rigid transformation models employed in the LDDMM framework are formulated based on
Euler-Lagrange equations which ensure momentum conservation along the transformation path
in t 2 [0, 1] [87, 119, 131].

However, LDDMM preceding matching methods are mostly derived from or based on mechan-
ical models. The mechanical approaches realize registration problems using mechanical defor-
mations, like works of Christensen et al. [28, 29] where small displacements achieve the image
registration. There, the displacement fields are constrained with viscous-fluid PDE stimulated by
body force, not attempting however to model the realistic growth of anatomical structures.
Another mechanical approach is followed in [115] for instance to achieve a 3D image matching.
The approach builds on potentials of attraction. The source image creates such a potential of
attraction, driving the deformation of the second image towards an optimal registration position.
J. Gee et al. also develop in [60] a method to handle 3D image data as elastic continua, extend-
ing therewith the works of Bajcsy et al. on 2D CT images [10]. In this approach, the region
of interest in an image is deformed to match the target object in the second image employing
continuum mechanics principles of linear elasto-statics and volume forces generated from voxel
data. In [11], Bajcsy et al. refines the presented elastic matching process with a multi-resolution,
i.e. coarse-to-fine, strategy to improve local similarity results and global coherence. To that end,
the mechanical registration problem is generally realized with minimizing the cost

cost = cost(deformation)� cost(similarity).

The similarity is measured using normalized correlations with computed displacements.
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At the same time, with the pioneering works of Brookstein in 1978 [20], anatomical map-
ping problems have been conducted on specific anatomical geometrical features, like landmarks
(points) [21] or contours (lines).

Towards the development of the recent LDDMM framework, Younes innovates in [197] an elas-
tic curve matching formulation. Instead of using a finite collection of geometrical points or fea-
tures for the matching process, the similarity measure is based on the whole continuous outline
as a plane curve. The curves are parameterized by the Euclidean arc-length which assumes regu-
larity of compared curves and are embedded in continuous manifolds. The deformation of curves
is realized with diffeomorphic group actions adopted from Lie group theory. The distance be-
tween curves is then measured with the energy that results from deformation of the one curve
to the other, mathematically realized with the metric of the vector space of the velocity vector
fields v.
In [176, 177], Trouvé examines other geometrical shape manifolds and other infinite-dimensional
Lie group transformations. The matching problem departs from the mechanical formulation to a
more generic realization based on mathematical group actions.

The method of the Large Diffeomorphic Metric Mapping (LDDMM) was first introduced in
1998 to solve image matching problems in computational anatomy [42, 72, 197]: The proposed
mapping consists of mapping a reference geometry or source S to a target shape T . The deforma-
tions correspond to the group of diffeomorphisms G and the associated deformation parameter
v 2 V . In this manner, the aim is to find a vector field v that transports S to T .

2.1.1. Group of diffeomorphisms G
The group of diffeomorphisms G in this work consists of non-rigid, invertible, one-to-one and
diffeomorphic deformations '(t) which only depend on time t, turning the group G to a one-
parameter subgroup. This is the case in this work as the ODE governing the group transforma-
tion '(t) is autonomous. At t = 0, the transformation '(0) represents the identity id.

In this work, elements of the three-dimensional Riemann shape manifold M are parameter-
ized by two-dimensional surfaces in the R3 space over t 2 [0, 1]. The action of ' 2 G on the
shape manifold M results therefore in coordinate transformations of elements in M. This group
action of G on M can be written as

(', S) 7! ' � S 2M (2.1.1)

with ' 2 G and S 2M [127].

The tangent-space g in an element '(t) 2 G represents the vector space which determines the
temporal evolution of the elements in G according to

d'(t)

dt
= v � '(t). (2.1.2)

Consequently, the vector space g generates the infinitesimal transformation of an element '(t) 2
G. Obviously, g can be then regarded as a tangent-space of elements in G [111].
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The vector space of g is usually a Riemann manifold such that a metric is defined. Also, the de-
fined inner product p thereof has the convenient feature of varying smoothly from a ' to another
in G. Given two vector fields v1 2 g and v2 2 g in an element ' 2 G, the inner product is defined
with ' 7! p(v1, v2) and is a smooth function [58, 146]. In this work, this vector space represents
a Reproducing Kernel Hilbert Space (RKHS) which is handled in the course of the present work.

Coming back to the diffeomorphic transformations in G, a transformation '(t) 2 G evolves
in time as described with the ODE in Equation 2.1.2 which is determined by v. The solution of
such an ODE can be given with

'(t) = e(tv) 8t 2 R. (2.1.3)

Hence, starting at identity in G and with the tangent vector field v 2 g, the transformation '(t) at
time t > 0 is achieved with e(tv) which belongs to G.The element ' 2 G is accordingly mapped
along the tangent vectors v 2 g [57, 168].

Figure 2.1.1 illustrates the transformation '(t) 2 G when acting on the shape manifold M.
In M, the initial shape configuration S is represented with an infinite number of surface points
X . The deformed configurations therein are denoted with x(t). The transformation '(t) is gener-
ated by v 2 g. The identity element '(0) 2 G resides in the initial surface configuration X 2M
where the vector field v 2 g exists. With the temporal evolution in t 2 [0, 1], the transformation
'(t) evolves in 'v

1 at t = 1. When acting on the shape manifold M, this transformation 'v
1

transports X to its deformed configuration x(t = 1) = 'v
1(X) at t = 1. According to the defini-

tion of the shape manifold M, M consists of the initial shape configuration X and its deformed
configurations x(t) in t 2 [0, 1]. Thus, the resulting x(t) = 'v

1(X) belongs to M. Hence, the
transformation 'v

1 produces the diffeomorphism

'v
1 : X ! x(1) 2M (2.1.4)

when acting on M.

The transport produced by 'v
t of initial shape configuration X 2M can be thus formulated with

dx

dt
= v(x(t)) � x(t) (2.1.5)

with x as the current configuration at time t in M and the vector field v defined on the current
configuration x(t). The generated x(t) configurations represent a trajectory that is unique and
determined by the initial conditions of v in X . Hence, '(t) defines the time-dependent trans-
formation which generates the path of a surface S and its deformed configurations in M over
t 2 [0, 1]

In the following, the notion 'v(t) describes the diffeomorphic transformation that is produced by
a vector field v. Also, in the following, the RKHS V represents the space where v is embedded.
As mentioned before, it is defined on the subset X ⇢ R3, comprising the vertices q 2 R3 which
belong to a surface in M. All vertices q 2 X together represent the current configuration x(t) of
the shape at a time t. The RKHS V is thus the space of vector fields v defined on the subset X .
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v 2 g

X	

t = 0 t = 1

�v
1(X)

M

X

�v
1(X) 2 G : X 7! �v

1(X) 2 M

Figure 2.1.1.: Illustration of the transformation '(t) 2 G when acting on the shape manifold
M. Starting at t = 0 in the initial shape configuration X , the velocity vector
field v 2 g produces the corresponding transformation ' 2 G. The transformation
'v
1(X) 2 G at end point t = 1 yields the deformed shape x(t = 1) 2M.

In this context, the notation vq(q(t)) evaluates the velocity vector in a single point q(t) 2 X and
is element of R3, while the notation v(x(t)) stands for the velocity vector field of all vertices q,
i.e. the configuration x(t).

In all cases, a norm kvk2V can be computed and exists. The exact description of this norm and of
the RKHS V is handled in the course of this section. According to the construction guidelines
of Dupuis et al. in [42], if

R 1

0 kv(x(t))k2V dt < 1, then the mapping '1 : M 7!M is a diffeo-
morphism of M to M. To that end, the vector fields v 2 V = {v :

R 1

0 kvk2V dt < 1} have to
fulfill

'V =

⇢
'(t) :

@'(t)(t)

@t
= v(x(t)), t 2 [0, 1] :

Z 1

0

kv(x(t))k2V dt <1, v 2 V
�

(2.1.6)

to produce a diffeomorphism.

Additionally, a diffeomorphic change '̇(t) = v(x(t)) along '(t) has to be stationary. The vector
field v in each time step in t 2 [0, 1] does not depend on time, but only on a current configuration
x(t). The stationary ODE should accordingly generate a flow of x(t) 2 M with the transfor-
mation '(t) such that for a fixed x(0) the one-parameter mapping t 7! 'v

t (x(0)) is the unique
solution of the stationary ODE with initial conditions x(0) = X and ẋ(0) = v0 at time t = 0
[6]. According to [171], one-parameter subgroups of diffeomorphisms are always achieved by
flows of stationary ODE. The vector field v is the infinitesimal generator of the subgroup. These
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ODEs were already provided with Equation 2.1.2, defining the forward and inverse maps of the
group transformations.

Definition of optimal path '(t)

The optimal solution path for '(t) connecting the objects S and T in M with the minimal cost is
determined from the group of diffeomorphisms in Equation 2.1.6 by the geodesic property. The
requirement of geodesy is necessary to produce a unique and energetically minimal path 'v(t)
from S to T . This requirement gives rise to the need of an appropriate description of the cost or
energy kv(x(t))k2V along the path 'v(t) for t 2 [0, 1]. Also, the diffeomorphic transport of S to
T along '(t) needs to represent realistic physically possible deformations of the examined shape
group in M.

Construction of the vector field v

As a consequence, the choice of an appropriate norm kv(x(t))k2V for energy quantification along
'(t) for t 2 [0, 1] is essential. Hence, a choice of an appropriate normed space V becomes
essential to describe the transformation '(t) which generates the flow of the transformed config-
urations of source shape S over t 2 [0, 1]. With regard to the physically possible deformations, it
seems obvious to adopt the form of flow '(t) from transport equations from continuum or fluid
mechanics, as described in [177]. Consequently, in order to identify a suitable model for '(t), a
qualified space V has to be established.

In [44, 48], Durlemann et al. choose a reproducing kernel Hilbert space (RKHS) as a suitable
space to construct the vector field v. This choice is built on the works [42, 125, 198] where a
generalized approach to define a suitable space is followed. In these works, Sobolev spaces are
proven to be appropriate for the specified task and are the basis from where employing RKHS is
deduced. In particular, Sobolev spaces provide the integration of a differential operator L which
can be employed to model '(t) as desired. The integration of operator L and its norm k · kL
in the context of Sobolev spaces provides conditions on the norm k · kL that ensure regularity
properties for functions on L as functions on X .

According to [48] and inspired by [200], the differential operator L can be implicitly deter-
mined, while the Green’s function or kernel k sets the metric. This is achieved by formulating
the operations on V as a regularizing convolution, instead of explicitly determining a (numeri-
cally unstable) differential operator L. The kernel convolution with k is only in space. The space
V becomes a reproducing kernel Hilbert space (RKHS) where the metric is controlled by Gaus-
sian kernel k. A Gaussian kernel is chosen, thus kV represents the kernel of V with kernel width
�V , according to

kV(q
1
, q

2
) := exp

�� kq1 � q
2
k2X

�2
V

�
. (2.1.7)

Therein, �V represents the kernel width and determines the smoothing radius of the kernel.

In this setting, the vectors µ belong to the dual space V⇤ and the kernel kV realizes the map-
ping from µ 2 V⇤ to v 2 V . The mapping between V and its dual space V⇤ is realized with kV
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as kV : V⇤ 7! V .

The tangent vector vq(q(t)) in q(t) 2 X is subsequently constructed from the vectors µ
q
2 V⇤

with
vq(q(t)) =

Z

X
kV(q(t), y(t))µ

q
(y(t)) dy. (2.1.8)

The RKHS V is defined over the shape manifold M and is a space of functions vq(q). The evalu-
ation of velocity vector field v(x(t)) for a shape configuration x(t) 2M at time t is constructed
of the evaluation in Equation 2.1.8 of every velocity vector vq(q(t)) in a vertex q(t). Hence, the
tangent vector field v(x(t)) 2 V is evaluated at time t for a configuration x 2M in the Eulerian
frame.

At this point, the introduction of the spatial discretization of surfaces in M is beneficial. To
that end, a surface in M is spatially discretized with a triangular mesh of nx vertices. Hence, the
initial surface configuration X 2 M and the associated deformed configurations x(t) become
vectors of R3n

x . Also, the velocity vector field v is now of dimension R3n
x . Moreover, the subset

X ⇢ R3 consists of nx vertices q 2 R3n
x and the Hilbert space V becomes finite-dimensional on

X .

For the discretized description of the vector field v(x(t)) 2 R3n
x , the formulation

v(x(t)) = KV · µ(t) (2.1.9)

is introduced with v, x, µ 2 R3n
x and KV 2 R3n

x

⇥3n
x . A matrix complex KV,ij in kernel matrix

KV 2 R3n
x

⇥3n
x consists of

KV,ij = kV(q
i
, q

j
) · I3⇥3 (2.1.10)

with kV the kernel function of vertices q
i

and q
j

and I3⇥3 a 3 ⇥ 3 identity matrix I . More
information regarding discretization, especially in context of current implementation, can be
found in subsection 3.3.1.

Flow model

Having established a suitable space and structure for v, an optimal path generated by a v has to
be derived. With the demonstrated v in RKHS V , the path length or energy norm can be evaluated
for the configuration x 2M with

E(') =

Z 1

0

kv(x(t))k2V dt =

Z 1

0

hKVµ(t), µ(t)iV dt (2.1.11)

or written out

E =

Z 1

0

µ(t)TKVµ(t) dt. (2.1.12)
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Consequently, the new control variable is µ. With the variational principle also applied on Equa-
tion 2.1.11, the ODEs governing the temporal evolution of µ are derived as follows:

�E =

Z 1

0

�
ẋT�µ + µT�ẋ

�
dt (2.1.13)

=

Z 1

0

�
2µT�ẋ� µTdx(KVµ)�x

�
dt (2.1.14)

With �x(0) = �x(1) = 0 :

�E = �
Z 1

0

�
2µ̇ + dx(KVµ)Tµ

�T
�x dt (2.1.15)

For arbitrary �x and �E
!
= 0:

2µ̇ + dx

�
KVµ

�T
µ

!
= 0 (2.1.16)

Consequently:

µ̇ = �1

2
dx

�
KVµ

�T
µ. (2.1.17)

With an established temporal behaviour of control variable µ, a geodesic mapping with the short-
est path length is established in t 2 [0, 1]. In other words, starting with appropriate initial mo-
menta µ(t = 0) = µ

0
, Equation 2.1.17 gives corresponding µ(x) and v(x) at every t 2 [0, 1],

generating a transformation '(t) with the shortest length to the final configuration x(1) 2M.

Therewith, the energetically shortest (= geodesic) path in the space of diffeomorphisms is en-
sured, when solving the dynamic equations with given initial conditions x(0) = X and µ(0) =
µ
0

[48].

Momentum conservation

The (fictituous) energy of the system is given by Equation 2.1.11 which can be interpreted from
a mechanical point of view as the kinetic energy of the system. The derivation of the associated
momentum formulation in Eulerian coordinates and the proof of momentum conservation are
extensively explained in [126]. In the following, a short introduction is provided.

The kinetic energy or the energy term Equation 2.1.11 with ODE Equation 2.1.17 describes the
path of the shortest energy. At the initial time, the energy of the system is determined with the ve-
locity v0. Then, without further system activation, the system dynamics follow Equation 2.1.17.
The resulting path x(t) 2M generated by '(t) is naturally the path with the minimal energy, as
stated by the least action principle of Lagrangian mechanics. The momentum is conserved along
any energy minimizing path which is a law from classical mechanics.

Accordingly, the energy of the system can be very well given by just considering the initial
time t = 0 with v0 determining the total energy of the system. That is why, following [48], the
registration problem can be reformulated with regard to v0 = v(0).
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2.1.2. Surface matching problem
In the matching problem, two objects S, T 2 M are given. The geodesic diffeomorphic path
'v(t) is to be determined that connects S to T . In other words, the corresponding vector field
v which parameterizes the deformation ' needs to be determined. With the proven momentum
conservation, it suffices to estimate the initial velocity vector field v0.
Consequently, a matching optimization problem is at hand. To that end, the cost function

JV(v0) = �E · kv0k2V + dW('
v
0

1 (S), T ). (2.1.18)

needs to be minimized with regard to the initial tangent vectors v0 2 V , or in particular with re-
gard to the underlying momenta µ

0
. Thus, with minimizing Equation 2.1.18, the optimal initial

velocity vector field v0 is estimated that induces with the temporal evolution in Equation 2.1.17
the corresponding geodesic path connecting S to T . The parameter �E is a weighing parameter
between the data-fidelity and energy term.
The energy minimizing term also ensures a regularization on the control variable v0 and thereby
on the total energy of the system.

The second term in Equation 2.1.18 is a similarity metric between the deformed source '
v
0

1 (S)
and the target object T also known as the data attachment term. It penalizes the difference be-
tween the deformed S and target T , leading to the estimation of the optimal initial velocity vector
field v0. Arsigny et al. present a detailed formulation and proofs for the existence of a solution
in the LDDMM framework in [6].

2.1.3. Similarity measure of shapes
This section is devoted to the definition of a convenient manifold M where the deforming ob-
jects are embedded. In the previous section 2.1, the LDDMM paradigm has been introduced,
allowing a geodesic matching between two shapes. In order to perform the matching procedure
and to solve the inverse problem, it is necessary to extend the energy term Equation 2.1.11 with
a similarity measure dW('

v
0

1 (S), T ) as in Equation 2.1.18. Consequently, the general LDDMM
problem in Equation 2.1.18 consists of two terms. The first term ensures that the path with the
minimal energy, i.e. geodesic path, is found, and the second term is the data-fidelity term. In this
section, a suitable shape representation for similarity measurement is introduced and analyzed.

Since the introduction of diffeomorphisms in anatomical analysis, the matching has been per-
formed on landmark data, like in [1, 21]. In 2000, Joshi et al. introduced landmark matching to
the LDDMM framework [93].
However, landmark matching requires point-correspondence which is often cumbersome to pro-
vide. That is why, in [65], the LDDMM framework was applied on unlabelled point-sets and sub-
manifolds from which the most recent LDDMM formulation has been developed in [46, 183].
There, the surface currents method has been integrated in the LDDMM framework based on the
works of [38].

Other approaches to eliminate point-correspondence in matching problems are followed in [192]
for instance where the matching is based on local geometry comparisons and in [66] where the
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matching is based on different parameterizations of planar shapes.

The surface representation with surface currents relaxes the similarity measure from finding
point-wise correspondences between two compared surfaces. In particular, the proposed method
considers the whole boundary of both shapes to be compared, without any prior correspondence
establishment, but based on a global measure. Thus, it is more robust to shape irregularities.
To that end, the matching objects are embedded a linear space which is designed as a RKHS W .
By doing so, a computable norm is provided which enables a more robust comparison between
surfaces in the matching procedure.

Surface description in differential geometry

In this context, it is now imperative to mathematically establish a definition of a surface. So far,
the term surface has been employed to describe the boundary of an object in 3D space. Formally,
adopting the definition from [39], a surface is understood as a two-dimensional differential man-
ifold in the three-dimensional Euclidean space R3. Additionally, in this work, the surfaces are
assumed to be regular and are parameterized according to the standards of differential geometry.
Therefore, a parameterization can be used with �(q)(u1, u2) where � is a vector-valued function
of (u1, u2) and represents an infinitesimally small surface on S.
The first derivatives with regard to the parameters (u1, u2) are expressed with �

u
1

:=
@�

@u
1

and

�
u
2

:=
@�

@u
2

, respectively. For a regular surface, the vector-valued derivatives are linearly inde-
pendent and span a tangent space in q on the surface determined by the parameters (u1, u2). They
can be denoted with tangent vectors. The cross product of the tangent vectors is the unit normal
vector

n =
�
u
1

⇥ �
u
2

|�
u
1

⇥ �
u
2

|
orthogonal to the tangent space in q.

Only with this representation can the surface currents concept be applied to a surface S in M.
The interested reader should refer to [94].

Concept of surface currents

For the introduction of the surface currents concept, two surfaces S1 and S2 are considered, with
the parameterizations �1(u1, u2) and �2(t1, t2), respectively. These surfaces are embedded in a
vector field ! 2 R3 which passes through the surfaces S1 and S2. The vector field thus creates
a flux through each surface S1 and S2. The similarity dW(S1, S2) between S1 and S2 is then
measured as the difference of these two fluxes.
The same concept is similarly applied with 3D scanners which digitally acquire the geometry of
3D objects with laser beams. The light beams probe the geometry and their diffraction on the
geometry surface is employed to reconstruct the geometry computationally. This analogy is il-
lustrated in [118]. In the same manner, the vector field ! characterizes the similarity dW(S1, S2)
of surface S1 and S2.
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The flux of the vector field ! through a surface S is defined as the integral of vector field !
through the surface S and denoted with S(!). It is evaluated according to

S(!) =

Z

u
1

Z

u
2

!(�(q)(u1, u2))(�u
1

, �
u
2

) du2 du1, (2.1.19)

with �
u
1

and �
u
2

as the tangent vectors in �(q), and d�(q) as the element of surface area [46, 47],
or reformulated as

S(!) =

Z

u
1

Z

u
2

!(�(u1, u2))
T(�

u
1

(u1, u2)⇥ �
u
2

(u1, u2)) du2 du1. (2.1.20)

With the previously introduced parameterization for a surface S as objects embedded in the Eu-
clidean three-dimensional space, the integral form Equation 2.1.19 belongs to the differential
2-forms of such objects [183]. The differential 2-form action on objects consists in the differen-
tial 2-form mapping q ! !(q) where the function !(q) is a skew-symmetric bilinear function
on R3. Therewith, the surface S is a linear functional on the space of 2-forms. The notation S
represents in this sense a surface consisting of the vertices q 2 R3.

Construction of vector field !

In this work, the vector field ! is chosen to be embedded in a RKHS W with Gaussian kernel
kW . The kernel width is noted with �W . This guarantees spatial smoothness for the similarity
evaluation as the kernel functions as a low-pass filter on the spatial frequencies of the underlying
vector fields. The underlying vector field is chosen to consist of centers and normals of the
examined surfaces respectively [47], as follows:

!(q) =

Z

u
1

Z

u
2

kW(q, �1(u1, u2))·nS
1(u1, u2)du2du1�

Z

t
1

Z

t
2

kW(q, �2(t1, t2))·nS
2(t1, t2)dt1dt2.

(2.1.21)
The vector field ! depends therefore on the examined surfaces S1 and S2 with their parameteri-
zations �1(u, v) and �2(t1, t2) and the associated normal vectors nS

1 and nS
2 respectively.

Evaluation of similarity measure in RKHS W
Consequently, the similarity measure �S(!) = S1(!) � S2(!) can be written with Equa-
tion 2.1.21 to

�S(!) =

Z

u
2

Z

u
1

!(�1(u1, u2))
T ·nS

1(u1, u2)du1du2�
Z

t
2

Z

t
1

!(�2(t1, t2))
T ·nS

2(t1, t2)dt1dt2.

(2.1.22)
From Equation 2.1.22, the following relations can be deduced:

�S(!) =

Z

u
2

Z

u
1

Z

u
2

Z

u
1

kW(�1(u1, u2), �
1(u1, u2)) nS

1(u1, u2)
T · nS

1(u1, u2) du1du2du1du2

� 2 ·
Z

u
2

Z

u
1

Z

t
2

Z

t
1

kW(�1(u1, u2), �
2(t1, t2)) nS

1(u1, u2)
T · nS

2(t1, t2) dt1dt2du1du2

+

Z

t
2

Z

t
1

Z

t
2

Z

t
1

kW(�2(t1, t2), �
2(t1, t2)) nS

2(t1, t2)
T · nS

2(t1, t2) dt1dt2dt1dt2.

(2.1.23)
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S2

S1

Figure 2.1.2.: Exemplary shapes S1 and S2 for which the vector field ! from Equation 2.1.21
is evaluated and visualized in Figure 2.1.3. S1 is coloured in blue, S2 in red. The
shapes S1 and S2 are shown from three different views.

The latter formulation can be identified as the decomposition of the natural scalar product

k�Sk2W⇤ = kS1 � S2k2W⇤ =< S1 � S2, S1 � S2 >W⇤ (2.1.24)

of the current-matching norm that is reformulated according to

k�Sk2W⇤ =< S1, S1 >W⇤ �2 < S1, S2 >W⇤ + < S2, S2 >W⇤ . (2.1.25)

With regard to Equation 2.1.23, the relation in Equation 2.1.25 can be rewritten with

k�Sk2W⇤ = kS1k2W⇤ � 2· < S1, S2 >W⇤ +kS2k2W⇤ .

Also, as stated in [47], the norm of the vector field ! in the test space W is an isometric map to
the current-matching norm in W⇤

k!k2W⇤ = k�S(!)k2W⇤ . (2.1.26)

The test vector field ! in Equation 2.1.21 which is used to compute the similarity measure
k�Sk2W⇤ of S1 and S2 from Figure 2.1.2 is shown in Figure 2.1.3. The vector field ! is computed
in the vertices of a mesh grid around S1 and S2 with a mesh space of 8 mm and a kernel width
�W = 10 mm. Figure 2.1.3 shows the behaviour of vector field ! that is used to measure the
similarity between S1 and S2 of Figure 2.1.2 according to Equation 2.1.21 with kernel width
�W = 10 mm. Where S1 and S2 are very similar, like at the lower neck, the vector field vanishes;
where S1 and S2 differ a lot, ! is big to maximize the dissimilarity between them, like in the
center with the different diameters.
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kwk2

Figure 2.1.3.: The test vector field ! that can capture the similarity between surfaces S1 and S2

computed on vertices of a mesh grid with �W = 10 mm. The mesh grid encloses
both surfaces. The form of ! here shows how the vector field changes to adapt to
the shapes’ similarity: where the two surfaces are very similar, like in the bottom
outlet, the vector field is almost zero. Where the similarity decreases, like in the
middle, the vector ! increases to capture the dissimilarities.

Diffeomorphism on currents

After the introduction of the surface representation with currents, the question now becomes how
the currents behave under the action of the diffeomorphic transformations.
Vaillant et al. presented in [183] the incorporation of a currents-based similarity measure in the
LDDMM framework. There, they explained the push forward and pull back of currents under
deformations.
The main outcome is the relation S('#!) = '(S)(!) for the push forward action. This relation
states that the surface integral S(!) can be computed either by first deforming the ambient space
with the vector field ! and then computing the integral through the surface S, or deforming the
surface S and computing the integral of non-changed ! through the deformed surface 'S after-
wards. The resulting surface integral S(!) is equal in both cases.

In this work, the latter case is used. The surface is transformed with the velocity vector field
v 2 V . When the surface is represented via surface currents in W , the currents �q are transported
as surface representers.

2.2. Summary
In this chapter, the mathematical foundation of the present work is laid out, starting with the in-
troduction of the group of diffeomorphisms and the corresponding parameterization. Then repro-
ducing kernel Hilbert spaces are presented. Having established these two fundamental concepts,
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2. Mathematical background

the large diffeomorphic deformation metric mapping (LDDMM) framework builds on them and
is detailed afterwards. The chapter concludes with an appropriate similarity measure in the LD-
DMM framework for surfaces in 3D space.

Based on that, in the following chapter, the contribution of this work is exhibited, adapting the
LDDMM framework to be used for the anatomical region of abdominal aortic aneurysms later
on.
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3. Method and Implementation
The previous chapter 2 provided a fundamental overview of the group of diffeomorphisms trans-
formations and the corresponding parameterizatioin with v. Based on that, a non-rigid transfor-
mation framework, the (unconstrained) LDDMM framework, has been deduced to produce the
associated diffeomorphic deformations.
In the current chapter, a novel modular method is developed in the LDDMM framework in two
orthogonal spaces. It consists of a translation-free non-rigid registration and a rigid translational
registration part - each with independent parameterizations and in orthogonal spaces. The orthog-
onal spaces are achieved by two orthogonal group transformations, produced by the associated
orthogonal group parameterizations.

By doing so, a clear separation of rigid translational and non-rigid transformations and their
parameterizations is achieved. This procedure has two main advantages:

• The matching procedure is independent of the initial relative position of source S and
target T , which resolves the initial rigid alignment question.

• The statistical analysis can be performed solely on the non-rigid component parameters
which are translation-free. In general, the translational transformation does not contain
shape variability information and therefore might only perturb the non-rigid information.

The separation is performed solely on the rigid translation, and not on the rigid rotation, too. Due
to the anatomical arrangement in the abdominal area, the development and growth of an AAA
is restricted by the neighbouring anatomical structures, mainly the spine in posterior direction.
That is why the rigid rotation is characteristic and unique to a the shape of a specific AAA and
should remain in the shape-descriptive non-rigid component.

This chapter begins with the presentation of a translation-free LDDMM framework, followed
by the creation of a joint registration method. Then implementation techniques and experimental
results are discussed.

3.1. Translation-free non-rigid deformation in LDDMM
The unconstrained diffeomorphic geodesic mapping in the LDDMM framework has been in-
troduced in section 2.1. Therein, the construction of the velocity vector field v is described in
a RKHS V determined by kernel KV such that it also fulfills the diffeomorphic and geodesic
deformation requirements.
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In the novel LDDMM framework presented here, a RKHS V? is designed with correspond-
ing velocity vector fields v? which are free of rigid translation components. To that end, an
appropriate kernel KV? has to be established for the desired structure of V?.

The development of a translation-free KV? for RKHS V? is inspired by works of Arguillère
et al. who extend the unconstrained RKHS V with possible manipulations of operator L or KV
[3]. This section begins with a short introduction of this generally formulated extension which
enables the construction of the required translation-free RKHS V?. This section concludes with
an appropriate definition of an KV? for diffeomorphic translation-free non-rigid deformations.

Motivation

In the original LDDMM framework, the deformation parameter v(x(t)) belongs to the RKHS
V which is embedded in Cp

0 . Therefore, the vector fields v vanish at infinity. They cannot in-
corporate rigid alignments even if rigid transformations exist between source S and target T
during diffeomorphic deformation [3]. As a consequence, these existing rigid transformations
are carried out under non-rigid deformation. The estimated non-rigid deformation is therefore
perturbed with rigid components.

So far, a pre-alignment step is usually performed prior to diffeomorphic matching to discard
these linear rigid differences between source S and target T . Several approaches have been es-
tablished to perform the rigid pre-alignment step before non-rigid registration in the LDDMM
framework. These approaches usually comprise an optimization step to find the optimal config-
uration according to some cost function:

• Durrleman et al. pre-orient white matter fibre bundles by employing a simple empirical
procedure. The procedure consists of determining the longest fibre in the cohort and con-
necting its extremities to define the orientation vector to which all other cohort fibres are
aligned.In some cases, a manual correction is necessary [47].

• Prior to a multi-scale, multi-kernel shape matching procedure of human brain datasets, Pai
et al. deploy an affine registration with 12 degrees of freedom in the pre-alignment step
[138].

• Mansi et al. employ a standard least-square method [7] for rigid-body alignment in a pre-
processing step before non-rigid surface registration of heart shapes [117]. The alignment
of shapes is accomplished to a representative patient of the dataset. As the shape meshes
are resampled, point-correspondence is guaranteed between the cohort shapes and enables
the applied rigid registration method.

• A similar approach is followed by Liang et al. who also uniformly remesh the cohort
shapes to first establish mesh correspondence [108]. The mesh alignment to a common
coordinate system is achieved by Generalized Procrustes Analysis (GPA) [68] which is
applied in an iterative manner. In a subsequent pre-processing step, a standard least-square
optimization method is also deployed [181]. The following non-rigid diffeomorphic regis-
tration is for the analysis of morphometric risk features of ascending aortic aneurysms.
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• Also Durrleman et al. perform a co-registration of cohort shapes by affine transformations
[48]. The examined anatomical region is that of deep brain structures in context of a neuro-
imaging study.

• Standard iterative-closest point (ICP) procedures are also employed, like in [24] for the
first stage of an iterative two-stages pre-processing. There, all input shapes are rigidly
aligned to an initial reference shape. In the second stage of pre-processing, the reference
shape is updated and used in the recurring first stage in the ICP method. The process is
repeated until an update of reference shape is not necessary. ICP algorithms do not re-
quire point-correspondence. However, as pointed out in [95], such point-wise least-square
problems are ill-posed and depend much on mesh quality and regularizing strategies. The
point-wise behaviour also imposes non-realistic and non-existing spatial constraints on the
rigid registration problem.

Consequently, an approach relying on the current-based similarity measure in W (Equation 2.1.25)
is beneficial for rigid registration without point-correspondence. The cost function is formulated
as

JA(A) = kT � A � Sk2W⇤ . (3.1.1)
The matrix A typically contains a rotation matrix and a translation vector and acts on a surface
S in the shape manifold M, producing the corresponding coordinate change on S. The optimal
rigid transformation A is then the transformation that minimizes the distance in the shape space
W⇤. Such an implementation is generically found in [19].

However, although the above mentioned preprocessing rigid registration techniques are widely
used, the quality of fit for each shape depends on the registration method and the quality of the
input mesh. Consequently, some residual rigid linear differences may remain, creating a bias.
The remaining rigid difference is subsequently compensated for during the non-rigid matching
algorithm which results in a deformation consisting of non-rigid and rigid components.
There, the drawback lies in the fact that both components are described in the non-rigid defor-
mation parameterization µ

0
without clear separation. As the present work mainly relies on the

non-rigid deformation parameters as a shape descriptor for further statistical analysis, the unin-
tended und irrelevant rigid components in the parameterization might influence and decrease the
statistical significance.

Challenge and solution

The anatomical structure examined in this work is the abdominal aortic aneurysm (AAA) as
portrayed in the introductory chapter. The healthy and pathological shape variations are to be
determined using techniques from computational anatomy, in particular the non-rigid diffeo-
morphic registration in the LDDMM framework.
As examined in chapter 1, the growth direction of the AAA bulge is determined by the surround-
ing organs. In fact, a dilation in anterior direction is more common as the spine constrains the
expansion in posterior direction. The bulge direction characterizes therefore the patient-specific
AAA occurrence and should be somewhat integrated in the upcoming statistical shape analysis.
As the statistical shape analysis will be based on the non-rigid deformation parameters, the ori-
entation information should be comprised in the non-rigid registration process. Consequently,
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any rigid alignment of AAA shapes should only cover rigid translation in this work and the ori-
entation should be kept.
Furthermore, any rigid alignment of AAA shapes in this work should be performed according
to Equation 3.1.1 as no point-correspondence is established among the input meshes. Addi-
tionally, the current-based rigid-body optimization can be easily incorporated in the LDDMM
framework. The matrix A is reduced to the translation vector r 2 R3 and incorporated in the
registration scheme.

Still, after an initial rigid alignment, some linear differences between reference and input AAA
shape can still remain. These differences should be identified and eliminated from the non-rigid
diffeomorphic registration during the whole registration process.
To that end, in this section, a translation-free non-rigid geodesic diffeomorphic matching frame-
work is introduced. This novel diffeomorphic matching method is subsequently supplemented
by a separate rigid translation module in a modular framework in the next section.

The proposed translation-free deformation method is primarily built upon the general match-
ing framework of Arguillère et al. in [4] and Younes et al. in [198]. Younes et al. introduced
a generalized constrained LDDMM deformation module where mainly object-dependent con-
straints determine the space of possible motions at a given time. This space is built on a set of
suitable basis-functions which compose Eulerian velocities in a subspace of the originally estab-
lished RKHS V . This approach is similar to finite-element methods.
In [4], Arguillère et al. reformulate the constrained LDDMM framework into a control theory
formulation which helps to impose constraints on the Eulerian velocities without explicitly spec-
ifying basis-functions. Therein, the constraints are applied onto the RKHS where the Eulerian
velocities for diffeomorphic evolutions exist. Additionally, based on that, inequality constraints
are introduced for the first time in relation to a LDDMM framework.

In this work, the translation-free restriction is applied to the control variable v(x(t)) in a suitable
RKHS as it finally parameterizes the non-rigid transformation and builds the basis for the further
statistical analysis. In the proposed setting, the adjustment is not formulated as a constraint on
the governing ODE in Equation 2.1.17 of the control variable v(x(t)), but is realized with the
construction of a translation-free RKHS V? where the control velocity vector field v?(t) resides
at every t 2 [0, 1]. In other words, the constructed space V? is orthogonal to rigid translations: in
each time step t, v? is free of components parallel to the rigid translations with regard to the axes
of a global Euclidean coordinate system. As a result, translational displacements are eliminated
and v? does not contain information about rigid translations.
In the same manner, also rotational rigid transformations could excluded from v?. However, as
explained, the rotation information should be preserved in v?.

Before the construction of the translation-free V? is presented, projector P k and its orthogo-
nal complement P?, which are employed in the construction, are introduced.
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3.1.1. Projector formulation
In Linear Algebra, a projector P is a linear mapping operator from a vector space V into itself
P : V 7! V , fulfilling the projection property

P 2 = P (3.1.2)

with P called idempotent.

In the finite-dimensional case of vector space V = Rn, the projector P is a n ⇥ n matrix and is
composed of

P = B(BTB)�1BT Rn⇥n (3.1.3)

with matrix B 2 Rn⇥m. Matrix B comprises the m basis vectors b 2 Rn which are projected
onto and builds the associated subspace U ✓ V . The product BTB is assumed invertible which
implies that matrix B has full rank.

Projector P is also idempotent as stated with

P 2 =
�
B(BTB)�1BT

� · �B(BTB)�1BT
�

= B(BTB)�1
((((((((
BTB(BTB)�1BT

= B(BTB)�1BT = P .

Projection matrix P with a composition as in Equation 3.1.3 is an orthogonal projector. Also,
projector P is symmetric since

PT =
�
B(BTB)�1BT

�T

=
�
BT

�T�
(BTB)�1

�T
BT

= B(BTB)�1BT = P .

Figure 3.1.1 illustrates the projection of a vector a 2 Rn onto the subspace U ✓ V with

ak = P k · a 2 Rn.

The projector P k 2 Rn⇥n is built according to Equation 3.1.3 with corresponding matrix B 2
Rn⇥m consisting of m basis vectors bi 2 Rn for i = (1, . . . , m) as

B = [b1, . . . , bm] Rn⇥m. (3.1.4)

The available property of orthogonality allows for the direct sum

V = U � U? (3.1.5)

with the disjoint orthogonal complementary subspace U?. Also, U\U? = 0 follows. As a result,
a vector a 2 V ✓ Rn can be uniquely decomposed into

a = ak + a? 2 Rn, (3.1.6)
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a� = a � P �a

a� = P �a

a

a = a� + a�

U

U�

= (I � P �) a

.

Figure 3.1.1.: Illustration of projector P k functionality on vector a. The projection decomposes a
in a component ak in U and a? in complementary space U?, yielding a = ak+a?.

with ak 2 U and a? 2 U?. In other words, ak is the projection of a into U and a? the respective
projection of a into U? [12] with

ak = P ka,

a? = a� ak

= (I � P k) a. (3.1.7)

The expression I � P k projects a into the orthogonal complementary space U? and is denoted
from now on with P? = I � P k. The projector P? is also idempotent with

P?2 = (I � P k)2

= I2 � 2 · P k + P k2

= I � 2 · P k + P k

= I � P k = P?,

since P k2 = P k. Also, the projector P? is symmetric since

(P?)T =
�
I � P k�T (3.1.8)

= I � P k

using the symmetry of P k.

So far, finite-dimensional general vector spaces, which are subspaces of n-dimensional Eu-
clidean spaces Rn, have been addressed. In the following, the projection theory is expanded
to Hilbert spaces and then to RKHS.
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Projections in Hilbert spaces

The RKHS V , which is a Hilbert space, is a vector space with a defined inner product. The inner
product defines the notion of orthogonality. Two vectors u, w 2 V are orthogonal or perpendic-
ular if and only if hu, wi = 0.
As for the finite-dimensional vector spaces, Hilbert spaces also allow for orthonormal bases. To
that end, and to be able to apply the methods developed in the finite-dimensional case, the Hilbert
space V is defined on the discretized subspace X and includes a countable orthonormal basis,
namely a Schauder basis. Thus, the Hilbert space V is (topologically) separable. Therefore, the
orthonormal basis consists of a linearly independent collection of vectors. The interested reader
is referred to [12, 105].

Since the orthogonal projector P k is a constant function, it represents a continuous symmetric
linear operator. Subsequently, a vector v 2 V is projected onto P kv = u 2 U ✓ V . Therewith,
the subspace U builds the image Im(P k) of P k. In this work, V is closed. Therefore, U is also
closed.
Also, the unique orthogonal complementary subspace U? comprises all vectors u? and builds
therewith the kernel Ker(P k) of P k. Thus, the orthonormal subspace U? is a closed subspace of
V , too.
As a consequence, the vector v can be uniquely decomposed as v = u + u? where u 2 U and
u? 2 U?. The direct sum can be formulated with V = U � U?.
Projector P? can be additionally defined to map the vector u 2 U directly to the orthogonal
complementary subspace U? with P? = I � P k.

In summary, according to [12], a continuous linear operator P on RKHS V generates an or-
thogonal projection to a closed linear subspace U of Hilbert space V only if it satisfies P 2 = P
and is symmetric. This can be achieved by the projector introduced in Equation 3.1.3.

Hilbert projection theorem

The Hilbert projection theorem states the uniqueness of the projection for each v 2 V onto the
subspace U . Let the subspace U be a closed subset of V and let u denote the projection of v onto
U . For determining the appropriate u, the error vector v � u has to be orthogonal to the base
vectors of U . By doing so, the shortest distance of v and u is established. Only then, u is the
orthogonal projection of w onto U .

By choosing the orthogonal projector P k as in Equation 3.1.3, the structure and basis vectors
of subspace U are determined [12].

Projector P? to eliminate parallel components in V
In this section, the expanded orthogonal projection is applied to the velocity vector field v(x(t))
in RKHS V . Still assuming a finite-dimensional description of surface S with nx vertices, the
velocity vector field v becomes a vector field of dimension R3n

x (more on spatial discretization
in subsection 3.3.1). The illustrated vector field v in the left in Figure 3.1.2 is such a discretized
velocity vector field on nx surface vertices.
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As a result of the discretization, the RKHS V becomes a Hilbert space of vector fields v(x(t))
on R3n

x . The associated reproducing kernel KV is the mapping defined by the 3nx⇥ 3nx matrix
applied to the nx vertices of shape S.
Consequently, the previously deduced requirements and properties of orthogonal projections on
Hilbert spaces are applied for v 2 R3n

x .

In order to eliminate rigid translations produced by integration of v(x(t)) over a time t 2 [0, 1],
the components of v which are parallel to global Euclidean directions in 3D space should be elim-
inated by projection. These are denoted with vk and the associated closed subspace is Vk ✓ V .
Accordingly, the orthonormal basis vectors of subspace Vk ✓ V are the global Euclidean axes
in 3D. The corresponding basis matrix B consists hence of three basis vectors bi 2 R3·n

x , i =
(1, . . . , 3). The resulting matrix B = [b1, . . . , b3] is of dimension R3n

x

⇥3 and can be written as

B =

2

6666666664

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
...

...
...

3

7777777775

2 R3n
x

⇥3. (3.1.9)

In order to project the velocity vector field v(x(t)) 2 V onto the subspace Vk ✓ V with basis
vectors B, a projector P k is constructed with the established B in Equation 3.1.9 according to
Equation 3.1.3.

Thus, the resulting projection P kv = vk 2 Vk ✓ V yields the components vk of v which are
parallel to the global Euclidean axes given in B.

Now, the orthogonal complementary component v? 2 V? is the required one for the desired
translation-free non-rigid deformation. To that end, the projector P? = I � P k is applied on
v 2 V to directly acquire v? 2 V? ✓ V .
The projector P? satisfies the properties and requirements for an orthogonal projection and al-
lows for a unique decomposition into the two subspaces. The direct sum V = Vk � V? and
v = vk + v? follow.

Figure 3.1.2 illustrates the achieved decomposition of the velocity vector field v 2 V to its
components vk and v? = P? · v after the application of projection matrix P? onto it.

Thus, the subspace V? ✓ V includes the required component v? which is free of compo-
nents parallel to the Euclidean axes in the 3D space. Consequently, when v? is integrated over
t = [t1, t2], it does not generate rigid translational displacements.

In the next part, the projector P? is integrated in a RKHS formulation such that the resulting
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P� · vv v�

Figure 3.1.2.: Visualization of projector P? application on a vector field v 2 V . Projector P?

is defined with regard to the Euclidean axes. When multiplying v with P?, the
parallel components to global 3D axes are extracted and eliminated, denoted with
vk. The vector field P? · v is free of rigid translation components and equals v?.

v?(t) over the temporal evolution in t 2 [0, 1] still produces diffeomorphic non-rigid deforma-
tions without rigid translations.

3.1.2. Construction of translation-free RKHS V?
In this section, a valid RKHS V? with corresponding kernel KV? is constructed to embed only
translation-free velocity vector fields v?(x(t)) such that ẋ(t) = P? v(x(t)) =: v?(x(t)). The
derivation is based on the already introduced v in the unconstrained RKHS V and the projector
P?.

Incorporation of the projector P?

The incorporation of the projector P? in the original LDDMM framework relies on the ex-
tended formulation of the original LDDMM non-rigid deformation from Arguillère et al. [3].
As mentioned before, the final temporal evolution of x(t) should look somewhat like ẋ(t) =
P? v(x(t)) =: v?(x(t)) with the new formulation v? 2 V?. The challenge now lies in the proper
formulation of the associated V?. Following the extensive derivation of the original RKHS V in
subsection 2.1.1, a starting point is therefore the determination of kernel KV? .

To that end, let X be a subspace of V that the operator P? maps to according to

P? : V ! U . (3.1.10)
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The form of U depends obviously on the structure of operator P?. As P? produces a linear
continuous mapping, the space X is a subset of vector space V with dimension R3n

x . Hence, the
deformations it produces act on the same finite-dimensional shape manifold M.
In this context, the subspace X is the translation-free RKHS V? and builds the kernel Ker(P?)
of projector P?. Equation 3.1.10 can be therefore formulated directly with

P? : V 7! V?

P? : v 7! v? := P? v. (3.1.11)

The corresponding dual spaces to Equation 3.1.11 are defined by the transpose (P?)T with

(P?)T : V?⇤ 7! V⇤

(P?)T : µ? 7! µ := (P?)T µ?. (3.1.12)

The space V⇤ denotes the already established dual space of the RKHS V . Elements of V?⇤ will
be denoted with µ?. The pull back of µ? 2 V?⇤ to V⇤ is defined with Equation 3.1.12 and is
achieved via the transpose (P?)T, i.e. (P?)Tµ? lies in V⇤. Accordingly, the relation

h(P?)Tµ?, viV = hµ?, P?viV? (3.1.13)

between the spaces V? and V and their dual spaces is established for every v 2 V .

The inclusion of the kernel matrix KV yields

h(P?)Tµ?, viV = (KV(P?)Tµ?, v)V . (3.1.14)

According to [140], the momentum map is realized with the mapping (x, µ?) 2 M ⇥ V?⇤ 7!
(P?)Tµ? 2 V⇤.

Assuming the image Im(P?) to be closed, there exists a unique µ? 2 V?⇤ for every v 2 V
such that the resulting v(x(t)) = KV(P?)Tµ? has the minimal norm over all elements v0(t) 2 V .

Subsequently, the former unconstrained control variable v 2 V in Equation 2.1.9 can be re-
placed in a discretized fashion with

v(x(t)) = KV(P?)Tµ?(t). (3.1.15)

The required velocity vector field v? 2 V? is thus constructed from v(x(t)) with

v? = P? KV (P?)T µ?

|{z}
2V?⇤

| {z }
2V⇤

| {z }
2V

2 V?. (3.1.16)

Figure 3.1.3 visualizes the mappings and the associated operators. Starting with the momenta
µ? 2 V⇤, the operator (P?)T transports it to the dual space V⇤ of RKHS V to become µ 2 V⇤
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P�

(P�)T

V�

V

KV KV�

V�

V��dual 
spaces

RKHS

K V
· (P

� )
T

Figure 3.1.3.: Visualization of relation of spaces and the isometric mappings. The construction of
an appropriate KV? is displayed. The reconstruction of KV? can be thus achieved
with P? KV(P?)T, following the blue arrows which depict the construction steps
(V?⇤ ! V ! V?). The grey arrows show the isometric mapping between the
RKHS and its associated dual space.

according to Equation 3.1.12. This transformation allows the subsequent transformation onto V
with KV , which generates v 2 V . Then, by the projection with projector P?, v 2 V becomes
v? 2 V? according to Equation 3.1.11.

Hence, the control system ẋ(t) = P? v(x(t)) in conjunction with Equation 3.1.16 yields the
system

ẋ(t) = P?KV(P?)Tµ?(t). (3.1.17)

The new kernel formulation can be thus written as

KV? := P? KV(P?)T (3.1.18)

for every x 2M.

The operator KV? is symmetric and continuous and generates the mapping

KV? : V?⇤ ! V?, (3.1.19)

establishing the connection between the space V? and its dual space V?⇤. The kernel satisfies
hµ?, KV?µ?iV? = kKV(P?)Tµ?k2V for every µ? 2 V?.
Consequently, the kernel matrix KV? can be regarded as the Green’s function of the differential
operator L as described for the mapping in Equation 2.1.7.
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The temporal evolution of V? over t 2 [0, 1] follows

ẋ(t) = KV?µ?(t) (3.1.20)

for t 2 [0, 1].

As the projector P? has been proven to be symmetric in Equation 3.1.8, (P?)T = P? follows.
Consequently, the kernel KV? can be written with

KV? := P? KVP?. (3.1.21)

As P? is just a constant matrix, the produced KV? benefits from the smooth qualities of the
original kernel KV , thus creating a RKHS V?.

Summarizing, the temporal evolution of x(t) is thus formulated as

ẋ(t) = v?(t) = P? v(x(t)) = KV?µ?(t) (3.1.22)

at every t 2 [0, 1], with constant P? in all configurations x(t), t 2 [0, 1].

3.1.3. Surface matching in V?
As the orthogonal complementary space V? is a closed subspace of the original RKHS V , the
space V? defines a RKHS acting on the finite-dimensional surface manifold M ⇢ R3n

x . The
associated mapping results in

'v?

1 (X) 2 G : X 7! 'v?

1 (X) 2M (3.1.23)

with the defined action of the group G (see Equation 2.1.4). Consequently, with the introduction
of v? 2 V?, the transformation produced by the diffeomorphic group action G does not change
in nature; solely the structure of the vector field in the tangent space g is changed. The character-
istics of transformation ' are preserved as defined in subsection 2.1.1. More details concerning
this are discussed in the course of this section.

Accordingly, in order to produce geodesic connections of source S and a target T like in the
original formulation of Equation 2.1.18, the surface matching problem in V? minimizes the cost
function

J?(µ?(t)) = �E ·
Z 1

0

hµ?(t), KV?µ?(t)iV? dt + k'µ?
0

1 (S)� Tk2W⇤ (3.1.24)

such that ẋ(t) = KV?µ?(t) 2 V? for t 2 [0, 1]. In this formulation, the vector field v0 is re-
placed by the underlying momenta vector field µ

0
as these are optimized in the minimization of

J?. The expression '
µ?
0

1 (S) is equivalent to '
v?
0

1 (S) as the momenta vector field µ?
0

represents
v?
0 in the dual space V?⇤.
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The cost function consists of an energy term and a data-fidelity term. The energy term is deter-
mined by the metric

R 1

0 hµ?(t), KV?µ?(t)iV? in the new RKHS V?. Also here, the parameter
�E achieves the weighing between the data-fidelity and energy term.

To generate a temporal evolution of µ?(t) which produces a v?(t) for a diffeomorphic deforma-
tion in t 2 [0, 1], the same approach is followed as in the unconstrained case in Equation 2.1.13
and Equation 2.1.16, with the symmetric and positive semi-definite kernel matrix KV? . In this
setting, the temporal evolution of µ?(t) results in

µ̇?(t) = �1

2
rx((µ

?)T(t)KV?µ?(t)) (3.1.25)

for t 2 [0, 1] with x(0) = X and µ?(0) = µ?
0

. Hence, the group deformation '(t) 2 G presented
in subsection 2.1.1 is retained.

As for all geodesic evolutions, momentum conversation also applies in V?. As a consequence,
the surface matching cost function in Equation 3.1.24 becomes

J?(µ?
0
) = �Ehµ?

0
, KV?µ?

0
iV? + k'µ?

0

1 (S)� Tk2W⇤ , (3.1.26)

denoting with µ?
0

the momenta µ?(t0) 2 V?⇤ at the initial time t(0) = t0.

Existence of solution

Obviously, there is a correspondence between the surface matching problem in the unconstrained
and the translation-free case, and also between the minimizers v0 2 V and v?

0 2 V?. As stated
before, the application of the projector P? on RKHS V results in the direct sum of the subspaces
with V = Vk � V?. The velocity vector field v 2 V is given by v(x(t)) = vk(x(t)) + v?(x(t))
with vk 2 Vk and v? 2 V?. From this, it follows

Z 1

0

kv?(x(t))k2V dt 
Z 1

0

kv(x(t))k2V dt.

Accordingly, if v?
0 is inserted in the original cost function JV (see Equation 2.1.18), it follows

that JV(v?
0 )  JV(v0) and infJ?  infJV .

As a consequence, with these established relations and with the closed V? = Im(P?), the sur-
face matching problems defined with JV and J? are equivalent in the sense that infJV = infJ?

over the respective constraints and setups. A one-to-one correspondence between the minimizers
of both optimization problems exist:
If v̄0 minimizes JV , then there exists an associated v̄?

0 which minimizes J? and vice versa.

The existence of a solution to Equation 3.1.24 is thus proven as well: If a solution exists to
match source S to target T with a geodesic path induced by v0 2 V , then there is an equivalent
geodesic path induced by v?

0 2 V? with the applied projection matrix P?. The existence of the
solution to the original matching problem JV has been proven before in [198].
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Additionally, according to [198], finding the geodesic path connecting source S to target T with
a constrained velocity vector field v? 2 V? ⇢ V is equivalent to minimizing the energy

Z 1

0

kv(x(t))k2V dt

which is subject to @'
@t

= v � ', x(t) = '(t) �X and the pivotal condition of v(t, ·) 2 V?.

The key requirement for a solution to exist lies in [198] as in the unconstrained LDDMM frame-
work. This requirement also ensures that the resulting path '(n) of v(n) converges uniformly in
time and space to the optimal geodesic path ' that belongs to v.
As a result, for the constrained as well as the unconstrained geodesic deformation, it is assumed
that the action ' � x for all x 2 M is continuous in ' which is originally derived in subsec-
tion 2.1.1. In addition, particularly in the constrained framework, V? must depend continuously
on x 2 M which implies that the projector P? has to be continuous in x 2 M which is given
with the constant P?.
As a consequence, the following applies

'(n)(1) �X = x(1) ! '(1) �X = x(1)

P?(v(n)(t), '(n) �X) = v?(n)(t) ! P?(v(x(t)), ' �X) = v?(t).

The last relation confirms v?(t) 2 V?.

If the above assumptions are satisfied, then there exists a minimizing geodesic path between
S and T with finite energy. If also the evaluation of the similarity term dW with every x(t) is
continuous, then a solution to Equation 3.1.24 exists.

As in the unconstrained case, the shape manifold M is connected. As a result, there is a geodesic
path '(t) that connects source S and T . This means that every configuration x(t) of source S
with initial parameterization x(0) = X has to lie in the shape manifold M in every t 2 [0, 1].
To that end, the velocity vector field v?

0 has to generate a transformation '(t) 2 G whose result-
ing flow of surface configuration x(t) lies in M in every t 2 [0, 1]. Moreover, the vector field
v?
0 2 V? is as smooth as v0 2 V which guarantees that the resulting x(t) from the action '

v?
0

1 on
X are the shape manifold M.
A sufficient condition is given with Chow’s theorem. The theorem states that in a connected
manifold any two points can be connected by a path in the manifold. As there are no boundary
conditions on the shape manifold M, any two configurations S and T can be connected in it.
To that end, the parameterization of the group G with transformations '(t), i.e. the tangent space
on M in every x(t), has to contain the required velocity vector field v?(t) such that v?(t) · x(t)
is defined and lies in M. If this is satisfied, then the induced path 'v?

0 (t) completely lies in M
[13].

3.2. Matching framework in orthogonal spaces
As developed in the preceeding section 3.1, the non-rigid deformation is performed in the
translation-free RKHS V? and is parameterized with v? 2 V? or more precisely the under-
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lying µ? 2 V?⇤. The corresponding group transformation remains ' 2 G, but with the non-rigid
component v? 2 V? in the associated tangent space g.
However, the translation-free attribute only applies to the form of the deformation, and not to
the actual necessary deformation of source S to target T which might include a rigid transla-
tional component as well. In such a case, the deformation has to be extended with a further rigid
transformation module as the non-rigid deformation in V? cannot perform the rigid translational
module in an energetically efficient way.

For that reason, in this section, a modular matching framework is introduced that incorporates
two modules:

• a rigid translational transformation module,

• a non-rigid translation-free deformation module according to the translation-free LDDMM
framework in V? (see section 3.1).

Due to the nature of the resulting registration setup, the parameterization of both transformations
has to be realized in two orthogonal spaces: one space contains only the rigid translations, while
the other space contains the non-rigid translation-free deformation parameters. The obtained
transformations therefore take place in two orthogonal spaces. Thus, for this modular transfor-
mation, the modular transformation group F is defined and comprises an Euclidean group E and
the group G of diffeomorphisms. The tangent space of transformation group F is denoted with f.
In this work, the transformation group E is determined with a translation velocity vector field ⌧
in tangent space e associated to the group E . The generated translation vector is denoted with
r(t) at time t and is element of the tranformation group E .

As a result, the tangent space f of the transformation group F combines e and g and produces
a mapping with ⌧ 2 e and v? 2 g. Figure 3.2.1 illustrates the application of the joined trans-
formation group F on the shape manifold M and how the orthogonal transformations act: At
every point in time t, the final vF 2 f in the tangent-space of a configuration x in manifold M
is a result of two separate velocity fields in two orthogonal spaces, namely the non-rigid param-
eterization v? 2 V? and ⌧ 2 e which produces the rigid translation. For a discretized source
surface S with nx vertices, x, v, v?, ⌧ 2 R3n

x follows. The associated transformation 'F con-
sists of a rigid translation produced by the rigid transformation E and a non-rigid translation-free
deformation of 'v?

0 (t) at every t 2 [0, 1]. Therefore, the temporal evolution 'F can be written as

d'F(t)

dt
= v?(t) + ⌧ . (3.2.1)

The associated coordinate change is obviously

dx(t)

dt
= v?(t) + ⌧ . (3.2.2)

according to derivation in Equation 2.1.5.

Several modular approaches in the LDDMM framework have been introduced in literature. Sim-
ilar to this work, the goal is always to model the deformation and growth process of anatomical
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= v� +

� 2 se(3)
v� 2 V�

�

M

vF 2 f

vF

Figure 3.2.1.: An abstract representation of the modular group action in two orthogonal spaces
on the shape manifold M. The final vF 2 f in the tangent-space (grey plane) at
a configuration x of source surface S in manifold M is a result of two separate
velocity fields in two orthogonal spaces, namely the non-rigid v? 2 V? (red plane)
and ⌧ 2 e (blue) which produces the rigid translation and lies in the orthogonal
plane (blue) to V? (red plane). For a discretized source surface S with nx vertices,
x, vF , v?, ⌧ 2 R3n

x follows.

shapes in the most accurate way, subject to constraints and external factors. There, constraints
are imposed on LDDMM diffeomorphisms by constricting the deformation to be a combina-
tion of local deformation modules, thus creating together a global smooth velocity vector field
v 2 V , like in [73] with the definition of sub-Riemann metrics as [2]. Compared to the presented
modular approach, the rigid module is only a rigid transport of the diffeomorphism which is
completely achieved in V?, eliminating complicated sub-Riemann computations.

3.2.1. Non-rigid and rigid transformations in the orthogonal spaces
Figure 3.2.2 illustrates the interaction of both transformations during registration. Starting at
t = 0 (state I), the vertices X are transported simultaneously by the rigid and non-rigid transfor-
mations at every t. The deformed configuration x(t) is subsequently achieved by the rigid trans-
lation r(t) (state II) and the non-rigid deformation '

µ?
0

t (X + r(t)) (state III) which is orthogonal
to the rigid transformation. The rigid translation velocity ⌧ is constant for every t 2 [0, 1] and it
does not evolve from a prescribed acceleration ⌧̇(t) = 0.

The state variable x(t) is accordingly computed using

x(t) = '
µ?
0

t (X) +

Z t

0

⌧(t) dt

| {z }
:=r(t)

(3.2.3)
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r(t)

x(t)

I IIIII

X + r(t)

x(t) = �
µ�

0
t

�
X

�
+ r(t)

�
µ�

0
t

�
X + r(t)

�

= �
µ�

0
t

�
X

�

x(0) = X

Figure 3.2.2.: Visualization of the transformation in the modular framework. Starting at time t =
0 with x(0) = X , µ?(0) = µ?

0
and ⌧ = ⌧ 0, the rigid and non-rigid transformation

take place simultaneously in two orthogonal spaces. The deformed X at time t

results in x(t) = '
µ?
0

t (X) + r(t). The notations '
µ?
0

t and '
v?
0

t are equivalent.

and its temporal evolution using

@x(t)

@t
= v?(t) + ⌧(t) (3.2.4)

at every t 2 [0, 1] with x(0) = X, v?(0) = v?
0 and ⌧(0) = ⌧ 0.

In this general form, at each time t, the transformation of the state variable x(t) consists of
transformations of the non-rigid translation-free LDDMM module (first term) and the rigid trans-
lational module (second term).

The structure of the RKHS V? brings with it a very useful feature for the new control vari-
ables (v?(t), ⌧(t)): the parameterization of the non-rigid deformation component with v?(t)
and the parameterization of the rigid deformation component with ⌧(t) do not only belong to
two orthogonal spaces, but are independent of each other. This feature is owed to the structure of
kernel KV? = P? KV(P?)T. Therein, the projection operators P? and (P?)T are independent
of any configurations x(t) and are referenced with respect to the global x�, y� and z� axes.
Also, the kernel KV is independent of rigid transformations of the underlying structure. This
is guaranteed by the radial Gaussian kernel function kV(x, y) = exp(�kx�yk2

�2

V
) in KV which is

invariant to Euclidean rigid transformations.

In this context, the Euclidean transformations act as isometries on V?: The velocity v?(t) is
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independent of the translational transformation as v̂ := v?(x + �x) also belongs to the same
RKHS V? as v?(x). This is due to the rigid invariance of metric kernel KV? . Consequently, the
same norm kv̂k2V? = kv?k2V? is generated by v̂ at every t 2 [0, 1].

Consequently, the non-rigid deformation '
µ?
0

t (X) is independent of the rigid translation r(t),
yielding two independent group actions. Starting with the diffeomorphic transformation in Equa-
tion 2.1.2, the aforementioned isometry with regard to rigid transformations can be proven by

'
µ?
0

t (X + r(t)) =

Z t

0

v?(X + r(t)) dt + X + r(t)

=

Z t

0

hKV?µ?, µ?iV? dt + X

| {z }
'
µ

?
0

t

(X)

+ r(t)

= '
µ?
0

t (X) + r(t). (3.2.5)

Equation 3.2.5 simply integrates Equation 2.1.2. The proof is only achieved with the isometric
property of the Gaussian kernel in KV? .

3.2.2. Surface matching in the orthogonal spaces
To realize the presented modular transformation in the two orthogonal groups, the cost function
takes the form

J(vF) = �E · kvFk2 + k'vF

1 (S)� Tk2W⇤ (3.2.6)
= �E · E'F + dW .

The velocity vector field vF comprises the non-rigid transformation parameter v?
0 and the trans-

lation velocity vector field ⌧ . The term kvFk2 ensures the geodesic property and decomposes
into kv?

0 k2V? and k⌧k22. As the rigid translation vector ⌧ is constant in t 2 [0, 1] and no bounding
is necessary, the energy term of ⌧ is omitted. For the regularization of the non-rigid transforma-
tion and the guarantee of a geodesic mapping, the path energy kv?

0 k2V? is kept. Hence, only the
similarity term (latter term) depends on the rigid velocity vector ⌧(t).
The cost function for the matching becomes then

J(µ?
0
, ⌧) = �E · kµ?

0
k2V?⇤ + k'vF

1 (S)� Tk2W⇤ (3.2.7)

= �E · EV? + dW

with regard to

dµ?(t)

dt
= �1

2
rx((µ

?)T(t)KV?µ?(t)) := F (µ(t)) 2 R3n
x ,

dx(t)

dt
= v?(t) + ⌧(t) := G(µ(t), x(t)) + ⌧(t) 2 R3n

x . (3.2.8)
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according to Equation 3.1.25 and Equation 3.2.4. The cost function J is minimized with regard
to the control variables µ?

0
and ⌧(t) = const. for t 2 [0, 1]. The initial momenta vector field µ?

0

is minimized for the optimal v?
0 . The notation 'vF

1 (S) represents the transformed source surface
S at final time step t = 1 and is achieved with transformations '

µ?
0

1 (X) + r(1). The parameter
�E represents the weighing factor.

The introduced form of the cost function J(µ?
0
, ⌧) creates rigid and non-rigid transformation

paths of specific behaviour:

• The non-rigid deformation in V? is totally determined by the initial momenta vector µ?
0

at time t0. The temporal course of the non-rigid deformation follows the ODE of Equa-
tion 3.1.22 which guarantees a geodesic path from S to T in RKHS V?. A complete
geodesic shooting is obtained by including the translation vector ⌧ as in Equation 3.2.4.
Only by doing so, can the correct final vF be built (see Figure 3.2.1).

• The rigid translational transformation is performed with one straight line starting at X at
t = 0 and ending at t = 1.

• The temporal evolution of the non-rigid deformation and the rigid transformation are fol-
lowed independently as this does not involve energy minimization in each time step t. That
is also why the rigid transformation results in one straight line connecting S to T .

• However, there is still an indirect connection between the optimal initial momenta µ?
0

and the optimal ⌧ : The optimal ⌧ is determined such that the similarity measure with
the resulting non-rigid deformation '

µ?

1 at time t = 1 is minimized. As a result, from
an energy efficiency standpoint, the necessary translational rigid transformation along the
non-rigid path in t 2 [0, 1] is comprised in the optimal ⌧ .

Existence of solution

The minimization problem in Equation 3.2.7 of the modular framework estimates the optimal
variables ⌧ and µ?

0
to register the source S to the target T . As the RKHS V? is invariant to affine

alignment, the properties of the RKHS and the existence of its solution are preserved. The added
translational velocity ⌧ only affects the dissimilarity term dW in Equation 3.2.7. Consequently,
the energy term is not affected and the optimal translational velocity ⌧ is determined only by the
dissimilarity term, independently from the optimal non-rigid transformation parameterized with
µ?
0

.

Gradient in the control variables

The cost function in Equation 3.2.7 is evaluated at the last time step t = 1. However, the opti-
mization variables µ?

0
and ⌧ of non-rigid and rigid module exist at the initial time step t = 0.

In [32, 43, 48, 188], approaches are introduced to tackle similar registration problems. Therein,
the gradient is evaluated at t = 1 and transported to t = 0 where it is deployed to update the
optimization variables according to the chosen gradient method. The transport is achieved with
backward integration in time of the spatially discretized ODEs.
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To that end, a variational approach is followed. A perturbation of the initial value µ?
0

denoted
as �µ?

0
results in a perturbation of time evolution of momenta µ?(t) and source vertices x(t).

The resulting perturbations denoted with �µ?(t) and �x(t) generate a perturbation �J of the cost
function J of Equation 3.2.7 so that

�J =
�rx(1)dW

�T
�x(1) + �E · �rµ?

0

EV?
�T

�µ
0
. (3.2.9)

The associated perturbed linearized ODE in Equation 3.2.8 is written as:

�µ̇?(t) = dµ?(t)F �µ?(t) �µ?(0) = µ?
0

�ẋ(t) = @1G�x(t) + @2G�µ?(t) �x(0) = 0. (3.2.10)

As the source vertices x(0) = X are not to be optimized in this registration procedure, the cor-
responding perturbation is simply 0.
Additionally, in �ẋ(t), as the translational component ⌧ depends neither on x(t) nor on µ?(t), it
does not appear in the perturbed ODE of x(t) and is not influenced by the perturbation of µ?

0
.

The solutions of the perturbed ODE are respectively

�µ?(t) = exp
� Z t

0

dµ?(s)F ds
�
�µ?

0

�x(t) =

Z t

0

exp
� Z t

s

@1G(s)ds
�
@2G(s)�µ?(s) ds. (3.2.11)

Substituting �µ?(t) in �x(t) delivers

�x(t) =

Z t

0

exp
� Z t

n

@1G(s) ds
�

| {z }
V

nt

@2G(n) · exp
� Z n

0

dµ?(n)Fdn
�

| {z }
R

0n

�µ
0
dn (3.2.12)

which then respectively replaces �x(1) in Equation 3.2.9 with t = 1. The resulting gradient with
regard to µ?

0
is thus

rµ?
0

J =

Z 1

0

�
RT

0t @2G(x(t), µ?(t))T V T
t1rx(1)dW

�
dt + �E ·rµ?

0

EV? (3.2.13)

with

R0t = exp
� Z t

0

dµ?(s)F ds
�
,

V t1 = exp
� Z 1

t

@1G(x(s), µ?(s)) ds
�
.

With the introduction of two further auxiliary variables g(t) and p(t) as

g(t) = @2G(t)T
�
V T

t1rx(1)dW
�
,

p(t) =

Z 1

t

RT
ts g(s) ds
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the gradient Equation 3.2.13 can be formulated accordingly as

rµ?
0

J =

Z 1

0

RT
0sg(s) ds + �E ·rµ?

0

EV?

= p(0) + �E ·rµ?
0

EV? . (3.2.14)

Starting from this form and applying some reformulations given in [48], the auxiliary variable
p(t) becomes the time-dependent gradient of optimization variable µ

0
. Its temporal evolution

has been derived to fulfill

ṗ(t) = �g(t)� dµ?(t)F
Tp(t) p(1) = 0. (3.2.15)

As a result, for the gradient computation rµ?
0

J , starting with p(1) = 0, a backward integration
in time takes place with Equation 3.2.15 to deliver p(0) which is used in Equation 3.2.14. The
initial condition µ?

0
is accordingly updated in t = 0.

The second term of Equation 3.2.14 is the partial derivative @EV?
@µ?

0

which is straightforward, and
results in

rµ?
0

EV? = 2 · KV?µ?
0
.

Regarding the rigid module, only the similarity term dW depends on ⌧ as the energy term EV?

only depends on v? which is invariant to rigid transformations, resulting in

@J

@⌧
=

@dW

@⌧
+

�
�

��✓
0

@EV?

@⌧
.

Also in the rigid module, the gradient with regard to ⌧ is evaluated at the last time step t = 1.
As the velocity vector is constant over t 2 [0, 1], the associated displacement at t = 1 is r(1) =
1s · ⌧ . Subsequently, at t = 1, the final configuration is x(1) = '

v
0

1 (X) + r(1), as described in
Equation 3.2.3. As a result, the term @dW

@⌧
is computed as

@dW

@⌧
=

@dW

@x(1)
·
�

�
��✓

1
@x(1)

@r(1)
·
�
�
��✓

1
@r(1)

@⌧
. (3.2.16)

The remaining term @dW
@x(1) is calculated by incorporating the original formulation for dW from

Equation 2.1.25 and building the gradient of every term with regard to a q(1).

Solving the minimization problem

In summary, the gradients w.r.t. the optimization variables ⌧ of the rigid module and µ?
0

of the
non-rigid module are computed independently and simultaneously at the last time step t = 1 and
transported back to the initial time step t = 0 where the optimization variables exist.
To update the optimization variables, a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) optmization algorithm is employed. This algorithm is a modified line search steepest
descent method and enhances the simple steepest gradient descent method for unconstrained
non-linear minimization problems. More details on the minimization algorithm can be found in
[23].
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3.3. Implementation
The modular matching framework has been incorporated in the open-source software Deformet-
rica 4 [19]. Deformetrica is primarily developed in the context of computational anatomy and
supports statistical shape analysis of anatomical 2D fibres or 3D volumes. The supported sta-
tistical shape analysis is based on a registration of a reference geometry to every shape in the
examined cohort in a LDDMM framework.
To that end, Deformetrica provides an object-oriented skeleton in Python [186] with different
registration options, kernel choices and computational settings and algorithms with computa-
tionally efficient modules and libraries.
In Deformetrica’s current implementation, non-rigid registrations take place in the LDDMM
framework with unconstrained diffeomorphic geodesic paths. The modular registration method
presented in this work has been added as a further registration module to Deformetrica software.

In this section, a more detailed description of Deformetrica is given, along with the integra-
tion of the presented modular matching framework.
Before that, the numerical setup of the modular matching framework and the corresponding op-
timization algorithms and gradients are displayed. The section concludes with some exemplary
results which serve as validation of the novel method.

3.3.1. Numerical presentation of modular transformation
The dynamical control system of the presented modular transformation framework is determined
by the temporal evolution of the control variable v?(t) 2 V? (or more precise µ?(t) 2 V?⇤)
and ⌧(t) 2 R3n

x . The resulting temporal evolution of the state variable x(t) 2 M is given by
the initial conditions X , µ?

0
and ⌧ to realize with the ODE in Equation 3.2.8 the diffeomorphic

mapping.

In the following, the spatial and temporal discretizations of the implemented diffeomorphic map-
ping are presented, followed by the numerical solution of the registration problem.

Spatial discretization

The spatial discretization is relevant for different areas in the modular transformation frame-
work. The first area concerns the computational representation of source S and target T with a
triangular mesh and the associated representation with surface currents in the similarity measure
dW . To that end, the integral S(!) in Equation 2.1.19 is approximated by the sum

S(!) ⇡
n
fX

i=1

(ni)
TkW(ci, ck)nk

with nf the number of faces of the triangular S in 3D space, the center ci 2 R3 and normal
vector ni 2 R3 of each mesh triangle.
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Accordingly, the inner product of two surfaces S1 and S2 in W⇤ can be derived as

< S1, S2 >W⇤⇡
n1

fX

i=1

n2

fX

k=1

(n1
i )

TkW(c1i , c
2
k)n

2
k (3.3.1)

with kW being the scalar kernel function with kernel width �W . With the spatial discretization,
the flux of ! through a face i is bundled through the center point ci of face i along the associated
normal ni.

The mesh size plays thus an important role in the accuracy of the probing vector field and its
ability to assess dissimilarities. The accuracy is furthermore determined by the kernel width �W
of Gaussian kernel kW . Consequently, the mesh size and the kernel width �W have to be adjusted
with regard to one another. There is no golden rule for the appropriate relation. However, �W
should be bigger than the mesh size.
The chosen mesh length is ⇡ 1.5mm. An accurate similarity measure does not necessitate a fine
mesh; a coarse mesh is sufficient. The accuracy depends more on the chosen �W . Later in this
section, a parameter analysis is performed to analyse the dependence of similarity measure on
�W .
The computation of center point ci and normal vector ni of a mesh face i follows:

ci =
1

3
(q1

i
+ q2

i
+ q3

i
),

ni =
1

2
(q2

i
� q1

i
)⇥ (q3

i
� q1

i
). (3.3.2)

The vertices q1
i
, q2

i
, q3

i
represent the vertices of a mesh i.

The second area relevant to the spatial discretization is the computational representation of the
control variable v?(t) 2 V?. In this work, the velocity vector field v?(t) is defined on the ver-
tices x(t) of the triangular mesh of 3D source surface S as already introduced in subsection 3.1.2
with µ? 2 V?⇤. This spatial discretization facilitates the realization of the translation-free LD-
DMM with RKHS V? in Equation 3.1.22 with kernel KV? in Equation 3.1.18

v?
q (q(t)) =

n
xX

k=1

kV?(q, q
k
(t))µ?

q,k
(t) 2 R3. (3.3.3)

Herein, nx denotes the number of mesh vertices where the momenta vectors µ?
q
2 V?⇤ reside

and kV? represents the kernel function associated to KV? , incorporating the projector P?.
The velocity vector field v? 2 R3n

x containing all velocity vectors Equation 3.3.3 is summarized
by

v?(x(t)) = KV? · µ?(t) with v?, x, µ? 2 R3n
x , KV? 2 R3n

x

⇥3n
x , (3.3.4)

compare to Equation 2.1.9.
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Because the initial velocity vector field v?
0 is defined on the control points X of the triangu-

lar mesh, the mesh length is relevant for the choice of an appropriate �V? . Again, there is no
golden rule for the best relation between mesh length and �V? . However, �V? should be bigger
than the mesh length `.

Moreover, there is also no formula for an appropriate relation between the kernel widths �W
and �V? . Results have nonetheless shown that �V? should be equal to or smaller than �W : With
�W the similarity is measured and guides the optimization to find an appropriate v?

0 to minimize
the dissimilarity. In order to achieve this, the non-rigid deformation should be elastic enough to
produce the necessary deformation. The elasticity is determined with �V? . In [48], a good esti-
mate is �V? = 1

2�W . In the present work, a relation of �V? = �W has been found to be suitable
for the examined surface shapes.

Temporal discretization

The modular transformation of non-rigid and rigid transformations is performed in a pseudo-
time interval t 2 [0, 1]. Depending on the fixed number of time steps Nt, a time step �t is
computed with

�t =
1

Nt

s.

With the previously detailed spatial discretization, the ODEs of the dynamical system result in

@x(t)

@t
= KV?µ?(t)
| {z }

=v?(t)

+⌧ x(0) = X

@µ?(x, t)

@t
= �rxKV?µ?(t)Tµ?(t) µ?(0) = µ?

0

for t 2 [0, 1] and with v?, x, µ? 2 R3n
x and KV? 2 R3n

x

⇥3n
x . The first ODE describes the tem-

poral evolution of the state variable x(t) which represents the path of the vertices of a triangular
mesh of source S during the registration. The control variable v(x(t)) is also time-dependent and
is computed from the momenta µ?(t) whose temporal change is given above in the second ODE.

The numerical integration of the presented ODEs of the system is addressed in the following.
The solution of xk+1 and µ?

k+1
at time step k + 1 is linked and approximated with the explicit

single mid-point second order Runge-Kutta method. The mid-points are computed according to

xmid := xk +
�t

2
KV?(xk, xk)µ

? +
�t

2
⌧

µ?
mid

:= µ?
k
� �t

2
rxKV?(xk, xk)µ

?
k
.

The term �t
2 ⌧ in xmid can be left out as the further steps with kernel KV? and its Jacobian

rKV? are isometric with regard to rigid transformations. Accordingly, µ?
mid

is used to explicitly
compute the control variable µ?

k+1
at time step k + 1 with

µ?
k+1

= µ?
k
��trxKV?(xmid, xmid)µ

?
mid
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which generates the non-rigid transformation velocity field

v?
k+1 = KV?(xmid, xmid)µ

?
k+1

. (3.3.5)

On that basis, incorporating the translational displacement with ⌧ , the state variable xk+1 is

xk+1 = xk + �t v?
k+1 + �t ⌧ . (3.3.6)

With the given initial conditions X and µ?
0

, the integration according to Equation 3.3.6 produces
a geodesic path transporting X to the end state x(t = 1).

3.3.2. Numerical solution to the minimization problem
The discretized cost function J (Equation 3.2.7) can be thus formulated as

J(µ?
0
, ⌧) =

nS

fX

i=1

nS

fX

k=1

(nS
i [1])TkW(cSi [1], cSk [1])nS

k [1] +

nT

fX

i=1

nT

fX

k=1

(nT
i )TkW(cTi , cTk )nT

k

� 2 ·
nS

fX

i=1

nT

fX

k=1

(nS
i [1])TkW(cSi [1], cTk )nT

k + �E · (µ?
0
)TKV?(X, X)µ?

0
(3.3.7)

and subject to

ẋ[t] = KV?(x[t], x[t])µ?[t] + ⌧ [t] x[0] = X

µ̇?[t] = �1

2
µ?[t]Tµ?[t]rxKV?(x[t], x[t]) µ?[0] = µ?

0
(3.3.8)

with regard to the control variables ⌧ and µ?
0

which are already spatially discretized. The su-
perscripts S and T refer to the associated surface: S stands for source, T for target surface. The
denoted center points c and normals n are evaluated in the last time step t = 1. nf is the number
of corresponding faces, nx the number of mesh vertices of source S surface.
The last term of Equation 3.3.7 expresses the path energy in V?. The momenta µ?(t) reside in
the vertices x(t) of source S.

In the minimization procedure of J for registration, the estimation of the optimal discretized
variables (µ?, ⌧ ) is performed simultaneously as both control variables are independently com-
puted. In the following, the implementation of the minimizing algorithm is presented.

Minimization algorithm

The minimization technique was introduced in section 3.2. The procedure is detailed in algo-
rithm 1, below.

The initialization step includes:

• Initializing the optimization parameters ⌧ 0 and µ
0,0

to 0,
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Algorithm 1: Optimization algorithm for the registration problem in the modular transfor-
mation framework.

Input : triangular mesh of source S and target T , stored each as a list of mesh vertices
and the corresponding face matrix

1 initialization;
2 while i  Nit do
3 compute a geodesic shooting with µ?

0,i
, ⌧ i and evaluate J(µ?

0,i
, ⌧ i) (Equation 3.3.7);

4 if J(µ?
0,i

, ⌧ i)  ✏ then
5 break;
6 else
7 compute the gradients (Equation 3.2.14, Equation 3.2.16);
8 update optimization variables µ?

0,i
, ⌧ i according to the LBFG-S method;

9 µ?
0,i+1

, ⌧ i+1  µ?
0,i

, ⌧ i;
10 i + 1 i ;
11 end
12 end

Output: Optimal values for µ?
0
, ⌧ that achieve a geodesic diffeomorphic registration of S

to T

• Bringing source S and target T surfaces to an initial position where they overlap such that
the similarity measure dW can determine initial dissimilarities. This is achieved by moving
source S to target T with a rigid translation

�r = X �XT

with X as the mean vector of the initial vertices X of source S and XT as the mean vector
of vertices of target T .

• Offline computing and storing of projector P? (Equation 3.1.11) for the registration prob-
lem. Projector P? is constant for all configurations x(t) of the source surface S in all
t 2 [0, 1].

Nit is the number of iterations. In this work, it is set to Nit = 100. The error tolerance ✏ is set to
✏ = 10�6.

The gradients computation in line 7 and the subsequent update in line 8 are performed in parallel
since both optimization variables are independent of each other.

The presented implementation of the modular registration method is supported and realized with
the PyTorch library within Deformetrica, as addressed in the following section.

3.3.3. Implementation framework in PyTorch

In Deformetrica, the implemented registration in the LDDMM framework exploits the features of
PyTorch, as does the implemented modular registration method - for both, the forward geodesic
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shooting and the inverse problem.
In this setting, the PyTorch library basically provides algorithms to build the forward geodesic
model, especially for the expensive and very frequent kernel convolutions. Based on the forward
model, the PyTorch library offers automatic differentiation techniques which allow for a very
convenient gradient computation. The gradient can be further used for update of optimization
variables in a L-BFGS implementation.

The PyTorch library was initially developed by Facebook’s AI Research lab in 2016. It is an
open-source, free deep- and machine-learning library implemented with high-performance ca-
pabilities and is based on the original Torch library for machine-learning. However, since 2018,
Torch is not in active development anymore and has been replaced by PyTorch. PyTorch is widely
used because of the enabled accelerated tensor computations on GPUs. In a way, it is similar to
the NumPy library but using the power of GPUs [142].
PyTorch has an interface for python as well as for C++ although it has been primarily developed
for Python use. According to [142], the interface to Python has been kept as simple and as broad
as possible. That is why, for instance, during the development of PyTorch, the interoperability
and extensibility within Python libraries was a priority to ensure an easy integration with already
existing Python libraries. For instance, tools are implemented to easily convert between NumPy
arrays and PyTorch tensors. Also the memory sharing between Python and PyTorch modules has
been enabled and simplified.

Kernel convolutions with KeOps library

In almost every evaluation, be it in the geodesic shooting or the gradient computation, the kernel
convolution has to be evaluated several times. Such convolution computations grow quadratically
with the number of considered points. Also, memory requirements for the differential computa-
tions increase quadratically with the size of the input data. Consequently, the matching problem
in the modular framework demands huge computational power.

In Deformetrica, the computational challenge is met with the integration of accelerating par-
allel computation components based on PyTorch libraries. In this work, a KeOps library is used
in a PyTorch-compatible wrapper in Python. This library is used for kernel-efficient computa-
tions and the corresponding derivatives.

For the computationally demanding kernel operations, the KeOps library allows generic reduc-
tions of very large arrays which are defined with mathematical formulae, such as

ai = Reduction
j=1...N

[f(p
j
, xi, yj

)], i = 1 . . . M (3.3.9)

with the vector-valued function f , parameter vectors p
i
2 Rn

p and input vectors or variables
xi 2 Rn and y

j
2 Rn

y . Also the derivatives of Equation 3.3.9 with regard to any parameters or
variables can be computed efficiently [27].

Usually, the reduced functions are kernel dot products of the form K(xi, yj
) · bj that are summed

to approximate a kernel convolution as seen in the numerical discretizations earlier. KeOps han-
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dles this summation relying on online map-reduce schemes using CUDA. These online reduc-
tions sum the coefficients K(xi, yj

) · bj as they are computed, without ever storing the full kernel
matrix K in memory like as in standard array-centric frameworks. As a consequence, reduced
memory usage is achieved, in addition to a speed-up of kernel computations with efficient simple
map-reduce operations.

In this work, the function f of Equation 3.3.9 is the approximated kernel convolution with

ai =
X

j

K(q
i
, q

j
)bj i = 1 . . . M (3.3.10)

for the computation of the similarity measure dW with scalar product in Equation 3.3.1 and the
velocity vector field v?(t) 2 V? in Equation 3.3.3 with kernel KW and KV? respectively.

With a Gaussian kernel, the generic reduction for Equation 3.3.10 is realized with the generic
function

gaussianConv = genericSum (”Exp (�G ⇤ SqDist(q
i
, q

j
)) ⇤B”,

”A = V x(3)”, ”G = Pm(1)”,

”X = V x(3)”, ”Y = V y(3)”, ”B = V y(3)”).

A describes the resulting vector ai. In this case, it is a vector of dimension 3. G is a scalar
and describes the square kernel width 1

�2

W
or 1

�2

V
respectively. Also, B is three-dimensional and

represents the bj’s in Equation 3.3.10. The summation takes place over j-elements (q
j
, bj). The

basic generic function genericSum is supplied in the PyKeops library for torch computations,
i.e., pykeops.torch. The generic function is then called with

A = gaussianConv (G, q
i
, q

j
, B).

KeOps for evaluation of v?

In the case of the kernel convolution to compute the velocity vector field v? from the momenta
vectors µ? (Equation 3.3.3) with kernel KV? , the presented generic function is employed in the
defined kernel convolution function

v?
q (q

j
) = kernelConv(

1

�2
V
, q, q

j
, µ?

q,j
, P?)

which incorporates the projector P? and the associated kernel KV? in the Gaussian convolution.
The kernelConv function incorporates the generic gaussianConv according to

v?
q (q

i
) = P?

i · gaussianConv(
1

�2
V
, q

i
, q, P? µ?

q
)

with constant projector P? that is computed offline and loaded only once in the model object as
mentioned earlier, to compute

v?
q (q

i
) = P?

i ·
X

j

kV(q
i
, q

j
)P?

ij µ?
q,j

.
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KeOps for evaluation of similariy measure dW

In the case of the similarity measure dW with kernel KW in the discretized numerical form of
Equation 3.3.1, the generic gaussianConv is embedded in the computation of the scalar product

hS1, S2iW⇤ = scalarProduct(c1, c2, n1, n2,
1

�2
W

).

The scalarProduct generic function is also composed of a gaussianConv generic function ac-
cording to

scalarProduct = (n1)T · gaussianConv(
1

�2
W

, c1, c2, n2).

Torch tensors

In order to profit from the automatic differentiation and accelerated computations in PyTorch, all
employed vectors x, µ?, c or n and the parameter � in the previous reduction functions must be
torch tensors. The torch tensor belongs to the PyTorch library and is a multi-dimensional matrix
of elements of a single data type. The conversion of numpy arrays to torch tensors is easily
achieved by the well-established torch-numPy interface in both directions:

xTORCH = torch.tensor(x, dtype = torch.float),

x = xTORCH.numpy().

In the PyTorch library, some essential functions are provided for a torch tensor, like dot, diag-
onal, inverse, zero, rand, eye, add and many others which are comparable to array functions in
NumPy. The PyTorch backend provides GPU acceleration of the tensor operations which is ben-
eficial for KeOps generic functions.

Moreover, the declaration of the vectors as torch tensors enables the automatic differentiation.
Then, the gradient of a loss or cost function with respect to the tensor variable can be easily
computed.

PyTorch module for automatic differentiation

With the previously displayed generic functions for torch tensors, the construction of the cost
function J creates a graph of the forward model. Figure 3.3.1 shows the graph of constructing
the cost function J at the final time step t = 1, denoted with t1. The optimization variables are
µ?
0

and ⌧ (in blue circles). X is the initial configuration of source S. Through the geodesic shoot-

ing '
µ?
0

1 (X) and rigid translation of X , the end configuration x(t1) = x(1) is achieved. Thus, the
similarity measure term dW can be computed. The energy metric term in J(1) is also computed
with the initial momenta µ?

0
to kv?

0 k2V? . The PyTorch module for automatic differentiation is
part of the previously presented PyTorch library which is equipped with reverse-mode automatic
differentiation. The automatic differentiation is based on autograd mechanics [141].

Back-propagation is only possible if a forward model exists. This requirement is fulfilled with
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Input Output

�

x(1)

X

�
µ�

0
1 (X)

µ�
0 EV�

dW(1) J(1)

·�E

Figure 3.3.1.: Computational graph of the forward computational model. The control variables
µ?
0

and ⌧ are the input variables (blue), along with the initial position X of source
S (grey). At the final time step t1 the end position x(1) = x(t = 1) (orange) is
computed from the input according to x(1) = '

µ?
0

1 (X) + r, with displacement
r = 1s · ⌧ . The cost function (orange) is calculated with x(1) and the energy term
kv?

0 k2V? depending on the initial momenta µ?
0

.

the previously described forward model implementation. The gradient of a torch tensor Variable
can be obtained with

@J(1)

@µ?
0

= µ?
0,TORCH

.grad().

The loss function J(1) must be specified as a loss function and this is achieved with J(1).backward().

The resulting back-propagation of J(1) to the optimization variable µ?
0

is achieved by the chain
rule and can be tracked in Figure 3.3.2. Starting at the output J(1) of forward model, the node
paths are followed backward with partial differentiations till the node of the desired optimal vari-
able is reached.

Hence, indirectly, the gradient of @J(1)
@x(1) is transported to the initial time step t = 0 where the

optimization variables reside.
The resulting gradients with respect to ⌧ and µ?

0
are then used in the L-BFGS scheme in the

optimization process.

Minimization scheme in Python

With the SciPy module [190], Python delivers packages for numerical computations in the fields
of mathematics, engineering, data analysis and science. The core package SciPy of this module
supports, with its optimize library, the implementation and solution of optimization problems.
In Deformetrica, the optimize library is taken advantage of in solving the minimization problem
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Figure 3.3.2.: Chain rule for automatic differentiation using PyTorch tensors. To that end, the
backward model of the function is used.

of cost function J , specifically with the function minimze of this library.
With the computed gradients, the update of the optimization variables is performed by the L-
BFGS method at every iteration step. For further details on the minimize function, the reader is
referred to [190].

3.4. Experimental results
For a better method understanding and as a proof of concept of the method, some simple cases are
considered in this section. In all cases, a cylindrical reference geometry is registered to different
targets Ti, illustrating the possible applications of the implemented method. The possible cases
covered, the corresponding models and the expected registration results can be understood as
follows:

1. independence of the non-rigid deformation from the initial positions of reference geom-
etry and target surface. To examine this behaviour, the cylindrical reference geometry is
registered to the same target surface T which is then placed in different initial locations b1
and b2 (see Figure 3.4.1), creating the two targets T1 and T2 respectively. The registration
results should consist of different rigid transformations, but of the same non-rigid defor-
mations. The plotted existing �b should also result between 1s · ⌧ 1 and 1s · ⌧ 2. Also the
non-rigid deformation is to be proven to be translation-free.

2. right employment of the rigid and non-rigid transformations. The examination of this fea-
ture is achieved by the registration of the cylindrical reference geometry to the same cylin-
drical geometry in different locations. The expected registration results should only consist
of the correct rigid translation vector and of no non-rigid deformation at all.
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.	

.	

0

�b

b1

b2
10

0
m

m
20 mm�

T2

T1

Figure 3.4.1.: Setup of method validation. The same target surface T is placed initially in two
different positions relative to the origin of coordinate system and center of cylin-
drical source, creating two targets T1 and T2 respectively.

The rigid translations b1 and b2 in Figure 3.4.1 are given between the origin of global coordinate
system (= center point of cylinder) and the zero point of the parameterized AAAs. The zero
point of the parameterized AAAs is consistent for all parameterized AAAs and is given by the
construction rules in [84]. The evaluation tools of the registration results are:

• measurement of the registration quality measured in L2 using the closest-node method
which delivers the node-wise distances dcn,

• visualization of rigid and non-rigid transformation parameters ⌧ and µ?
0

as vector field.

These evaluation tools are consistently used throughout the work at hand.

In the discussion on the parameter choice, the overall surface area A of a geometry is com-
pared to triangular mesh precision `f [mm], the approximate edge length of one face, and the
number of vertices nx. The area of a mesh face Af is computed with

Af ⇡ A/nf (3.4.1)

with nf the number of mesh faces. Assuming regular triangular mesh and uniform edge length
`f , the edge length `f is computed with

`f ⇡
s

Af · 4p
3

. (3.4.2)

The cylindrical reference geometry is chosen to have a number of faces nf and an approximate
edge length `f similar to the mean of those of all target surfaces.

The corresponding registration parameters �V and �W are adjusted to the chosen precision of
the mesh. According to [44, 48], �V is related to the feature variation that needs to be captured
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(a) (b)

m
m
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v�
0

�

kv�
0 k2

Figure 3.4.2.: Visualization of resulting optimal control variables for described matching prob-
lem. (a) The optimal rigid translation vector ⌧ . (b) The optimal initial velocity
vector field v?

0 2 V? with magnitude kv?
0 k2 of case 1.

and determines the deformation elasticity. The smaller �V , the more independent is the flow of
neighboured vertices. Also, the smaller �V , the less integrated are bigger anatomical differences.
A finer sampling also creates a redundant parameterization of the velocity fields v?

0 which is
unfavourable for the subsequent statistical analysis.
Good parameters for the examined cases have proven to be �W = �V = 15 mm and �E =
0.0001.

Case 1: rigid and non-rigid transformation

The first displayed example is the registration of the cylindrical reference geometry to the param-
eterized AAA geometry T1 with initial relative translation b1. The correct registration is expected
to result in a rigid translation velocity vector and a corresponding translation-free non-rigid pa-
rameterization v?

0 .
The rigid and non-rigid results are shown in Figure 3.4.2. The left figure shows the registration
result ⌧ of the rigid translational module, the right figure shows the registration result v?

0 of the
non-rigid transformation module. The resulting non-rigid vector field v?

0 is free of translational
components. This can be examined by multiplying the flattened vector field v?

0 2 R3·n
x

⇥1 by the
matrix B 2 R3·n

x

⇥3 from Equation 3.1.9

a = vT
?,0 · B 2 R1⇥3, (3.4.3)

which results in a vector denoted by a. Each component of a indicates the scalar product of the
corresponding global axis x, y, z with the flattened vector field.
For the examined case 1, the vector a equals [11.0,�4.1, 60.6] · 10�5 ⇡ 0.
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The quality of fit is evaluated by computing the node-wise distance dcn in the Euclidean L2.
This distance is selected since the accepted error tolerance is computed in the Euclidean L2 and
equals the segmentation precision of 2 mm. In this case, the maximum distance is 0.79 mm and
occurs at the lower outlet of the parameterized AAA. Figure 3.4.3 shows the results for the per-
formed registration.
The optimization behaviour is depicted in Figure 3.4.4 where the cost function J is plotted
against the iterations.
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Figure 3.4.3.: (a) Quality of registration result depicted in point-wise distance dcn of transformed
reference geometry S to target T measured with the L2 norm. (b) Node-wise dis-
tance graph.

Case 2: rigid and non-rigid transformation

Case 2 builds on Case 1 and aims at demonstrating the independence of the non-rigid transfor-
mation results from the initial translational relative position of cylindrical source S and the target
surface. To that end, the cylindrical reference is registered to target T2 as in Figure 3.4.1. In this
case, the rigid result can be validated: The resulting difference between 1s · ⌧ 1 and 1s · ⌧ 2 should
be equal to the true �b. Apart from that, the optimal v?

0 should be translation-free.
Figure 3.4.5 shows results of the registration problem of S to T2. The multiplication of the flat-
tened v?

0 with the matrix B gives [�0.33,�1.2, 2.5] · 10�4 ⇡ 0.
Figure 3.4.2 and Figure 3.4.5 state visually that the optimal non-rigid parameter v?

0 in case 1 and
case 2 are the same. Computationally, the difference kv?,1

0 � v?,2
0 k22 in L2 equals 0.0005mm

s
.
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Figure 3.4.4.: Plot of cost function J over iterations of registration problem in case 1.
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Figure 3.4.5.: Visualization of registration results of S to T2. (a) The optimal rigid translation
vector ⌧ . (b) The optimal initial velocity vector field v?

0 2 V? with magnitude
kv?

0 k2V? of case 2.
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Figure 3.4.6.: The cylindrical source geometry (red) is shown with the resulting optimal ⌧ =
[52.1, 17.5,�23.4]Tmm

1s as a vector field. The color of the vectors is uniform as the
rigid translation is uniform for all vertices. The blue surface is the target.

Case 3: rigid transformation

Case 3 is aimed at demonstrating that the method identifies the suitable employment of the
non-rigid and rigid module. For instance, if the positions of source S and target T differ with
translation, the method should only perform the rigid transformation. In order to test this, the
target T is just the translated cylindrical surface S to a random position. The expected registration
result is the estimation of the correct translational ⌧ without the involvement of the non-rigid
module. Hence, the non-rigid parameter v?

0 should be 0.
Figure 3.4.6 shows the registration result of the translational rigid module. The non-rigid module
has been correctly and automatically self-deactivated in the registration with v?

0 = 0.

3.5. Summary
In this chapter, a registration method was introduced which incorporates a translational and a
non-rigid translation-free transformation in a modular framework. The implementation using
the PyTorch module in Python has been also displayed, followed by some numerical results.
These results validated the intended behaviour of the method which includes amongst others:

• a clear separation of rigid and non-rigid transformations,

• independence from a pre-alignment step,

• a translation-free non-rigid transformation which is parameterized by tangent-space pa-
rameters.

In the next chapter, the application of the method to the available AAA cohort is performed,
building the basis for the subsequent shape analysis in the second part of the present work.
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4. Feature space of abdominal aortic
aneurysms

After the introduction of the modular registration framework in the previous chapter, its appli-
cation to the shapes of abdominal aortic aneurysms (AAAs) is presented in this chapter. To that
end, the study population is discussed in detail, starting with the geometry extraction from CT
images. Afterwards, the novel modular registration method is applied to the extracted AAA ge-
ometries. The chapter concludes with depictions of the registration results with an appropriate
choice of parameters.
The resulting initial momenta for each AAA case are together the basis for the subsequent sta-
tistical analyses in the second part of this work.

4.1. AAA study population
In the introductory chapter 1, the complete cohort of real abdominal aortic aneurysm cases is
displayed. This section focuses on this cohort and its preparation for the modular registration.

4.1.1. Data preparation
As the statistical shape analysis is built upon 3D abluminal surfaces of the examined AAA shapes
in the database, the construction of the corresponding 3D models from computed tomography
(CT) scans plays a crucial role and is addressed in the following.

Medical images

In the examined database, all geometrical information is retrieved from patient-specific CT scans
which were provided by the clinical partner at the university hospital Rechts der Isar, TUM [114].
The scans are obtained with a Philips Brilliance 64 channel CT Scanner (Philips Healthcare, DA
Best, The Netherlands) using contrast-enhanced thoraco-abdominal multi-slice CT angiography.
The reconstruction takes place with a spatial resolution of 0.6 mm. The captured anatomy repre-
sents the diastolic state with a blood pressure of p ⇡ 87 mmHg [153].

CT attenuation values are given in Hounsfield Units (HU) according to a linear density scale.
The HU is a measure of the radio-density which is a physical property of the imaged material.
Consequently, the different anatomical structures in a CT image can be identified by the corre-
sponding HU values [89].
Water has been arbitrarily assigned the value of 0 HU. The HU values of all other materials are
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(a) coronal plane (b) sagittal plane

Figure 4.1.1.: AAA representation in the (a) coronal and (b) sagittal 2D plane. The 2D views are
obtained from a 3D CT scan of the abdominal region. The AAA region is encircled
with a red dashed line.

calculated relative to water according to

HU =
cM � cH

2

O

cH
2

O

with the CT attenuation values cM for material and cH
2

O for water. The HU values of the human
body range between �1000 HU for air to approx. 3000 HU for bones [102].

Figure 4.1.1 shows a CT image of the abdominal region with a common presentation of an
AAA. The AAA region is presented in the coronal and sagittal plane and is encircled by a red
dashed line. In the ideal case, the HU values identify the different attenuation: contrast-enhanced
blood 150 HU �500 HU, ILT 28 HU �45 HU and calcifications 200 HU �1000 HU [37, 77].
However, the fourth component, the aortic wall, cannot be recognized in the CT image due to its
small thickness which is comparable to the available CT resolution [114, 153].
The material-specific HU values facilitate the differentiation between the abdominal organs and
the extraction of the anatomical structure of interest, the AAA, which is addressed in the next
step. The treatment of missing wall thickness information is also described.

3D AAA geometry model

The aforementioned partitioning of medical images based on HU values is known as segmen-
tation. Maier presents in [114] a detailed segmentation protocol which has been followed to
construct AAA 3D geometry models from the available CT images in the database. In the fol-
lowing, the relevant steps to the work at hand are recapitulated. Based on that, further preparation
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lumen

thrombus

abluminal 
surface

coronalsagittal left sagittal right

Figure 4.1.2.: The AAA 3D geometric model resulting from the outlined segmentation process.
The reconstructed 3D model consists of a lumen and thrombus.

steps complete the pre-processing of the AAA geometries.

The segmentation process of the whole AAA geometry roughly consists of

1. semi-automatic segmentation of blood lumen,

2. segmentation of the complete AAA geometry,

3. construction of the ILT 3D geometry with a 3D boolean separation of the lumen from the
complete AAA geometry,

4. filtering and smoothing operations.

After the described segmentation process, the segmented parts are uniformly cut 2 cm distal to
the aortic bifurcation and at the branching of the renal arteries (see Figure 4.1.2).

Since it is impossible to recognize and segment the patient-specific aortic wall from CT-images,
an idealized AAA wall is extruded conformly to the abluminal ILT surface by one pixel which is
1 mm. The whole presented procedure is conducted with the commercial software Simpleware™
ScanIP (Version M-2017.06-SP2; Synopsis, Inc., Mountain View, USA).

According to literature, despite the uniform AAA wall reconstruction, the resulting geometry
depicts the 3D AAA geometry with great accuracy. Other inaccuracies are introduced to the 3D
model reconstruction by the concluding filtering and smoothing steps of the segmentation pro-
cedure described above. However, all in all, the estimated inaccuracy of all contributing factors
in the 3D geometry reconstruction is roughly 2 mm.
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Abluminal surface preparation

The resulting segmented 3D AAA volumes build the basis for further pre-processing steps which
are necessary for the attempted shape analysis. According to the literature review in chapter 1,
relevant AAA shape characterizations are related to the AAA abluminal surface. That is why in
this work, only the abluminal surface of the reconstructed 3D AAA model is taken into consid-
eration for shape analysis. To that end, the further pre-processing steps comprise the following:

1. extraction of abluminal surface of 3D AAA (Trelis™ 15.1, Csimsoft, Utah),

2. automatic spatial discretization of the abluminal surface with an element length between
1� 2 mm (Trelis™ 15.1, Csimsoft, Utah),

3. automatic generation of centreline of AAA abluminal surface (Simpleware™ ScanIP, Ver-
sion M-2017.06-SP2; Synopsis, Inc., Mountain View, USA),

4. automatic assessment of selected shape features (section 1.4) using the centreline (Sim-
pleware™ ScanIP, Version M-2017.06-SP2; Synopsis, Inc., Mountain View, USA),

5. calculation of derived morphologic features based on step 3 (Simpleware™ ScanIP, Ver-
sion M-2017.06-SP2; Synopsis, Inc., Mountain View, USA),

6. assessment of bifurcation point and corresponding tangent along centreline,

7. cut of the abluminal surface with a plane perpendicular to the centreline at bifurcation
point.

The procedure is illustrated in Figure 4.1.3.

To facilitate the computation of the similarity measure with surface currents as in subsection 2.1.3,
the abluminal surface is spatially discretized with a triangular mesh. The mesh size is chosen to
be between 1 - 2 mm. A finer mesh creates higher dimensional deformation parameters µ?

0
with

redundant shape information which overloads the subsequent shape analysis. Moreover, the ker-
nel widths �V and �W are adapted to the mesh size later on. So, a finer mesh is not advantageous
as in a biomechanical analysis of the 3D model where a finer mesh is beneficial.

Without any rigid alignment steps, the results of the cutting pre-processing step are the final
abluminal shapes which are examined in the shape analysis. Selected final cut abluminal shapes
are shown in Figure 4.1.4 with the cut off bifurcation arteries underneath.
As seen in Figure 4.1.4, relevant shape features are preserved despite excluding the iliac arteries
which do not provide relevant shape information and exhibit random appearances. The orienta-
tion and spatial information of each AAA is also preserved. Moreover, with absent bifurcation
arteries, the deformation parameters describe more the form of the AAA shape and are not dis-
turbed by the arteries which might expend unnecessary deformation energy and influences the
shape analysis.
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Figure 4.1.3.: Illustration of further pre-processing steps of segmented 3D AAA volumes to gen-
erate the final abluminal AAA surface.

4.2. Modular registration
For shape analysis, the entire cohort 142 AAA abluminal surfaces is taken into consideration. In
this section, the corresponding mathematical abstract representation of each surface is retrieved
for shape analysis. To that end, a reference geometry is registered to each abluminal surface
of the cohort according to the established modular registration framework. The abstract shape
representation is obtained with the parameter of the non-rigid module, the initial momenta µ?

0
.

Amongst others, the aim of this section is to determine appropriate registration parameters �V
and �W for this cohort.

4.2.1. Settings

Reference geometry
In some statistical shape analysis methods in CA, an optimized reference geometry is estimated
such that it has the minimum distance to all shapes in the cohort. The cost function consists of the
similarity measure and the energy term, too, as in Equation 3.2.7. The minimum distance refers
therefore to the distance both energetically in V? and with regard to the similarity measure in
W⇤. During the optimization procedure, the vertices of the reference geometry are added as an
optimization variable and are updated respectively while staying connected.
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In this work, a cylindrical surface is the reference geometry. Consequently, the reference ge-
ometry is not estimated in an optimization algorithm for the following reasons:

• A healthy aorta has a roughly cylindrical shape. When taking a cylindrical surface as
the reference geometry for AAA shape analysis, the resulting registration captures the
morphology difference between the diseased aorta and a healthy one. Consequently, the
non-rigid registration parameter v?

0 2 V? or the underlying µ?
0
2 V?⇤ is a valid basis for

shape analysis and captures statistically significant and useful shape information.

• Since the iliac arteries are cut off, the remaining shapes of AAA are deformed cylinders.
The deformation goes in every direction, especially without a prior orientation alignment
which is omitted in this work. That is why, with enough AAA samples, the mean geometry
would be a cylinder.

• From a probabilistic point of view, by setting the mean geometry to that of a healthy aorta,
both stable and unstable AAA shapes are regarded as observations or samples around the
healthy aorta, without any bias to a certain AAA shape or AAA class. This yields a more
descriptive AAA shape parameterization with v?

0 2 V? or the underlying µ?
0
2 V?⇤

compared with a mean AAA shape which would already show some deformations since
the data set is not big enough. With a neutral mean geometry, the stable and unstable
cohort can be better identified later in the shape analysis. A more general distribution of
AAA shapes is generated therewith.

• As the stable and unstable AAA cohorts show too much variation, a fair mean geometry
is also hard to obtain without a bias, especially with the unequal number of stable and
unstable observations which would distort the mean geometry estimation.

On these grounds, the cylindrical reference geometry is shown in Figure 4.2.1 with the displayed
dimensions and is generated in Trelis™ 15.1 (Csimsoft, Utah). The spatial discretization is
automatically generated as a triangular mesh with an element length of 1 mm.

Parameter choice
As there is no golden rule for the parameter choice �W and �V for spatial resolution, the mapping
is performed first with several pairs (�W , �V) to identify an appropriate parameter combination
with regard to accuracy.

For the parameter choice, the only applicable rule is that the deformation parameter �V shall
be equal to or smaller than the similarity parameter �W such that a registration is possible (see
subsection 3.3.1).
Preceding explanatory modular registrations of the reference geometry to AAA shapes in the co-
hort revealed that appropriate values range from �W = [12 mm, . . . , 30 mm] and �V = [10 mm,
. . . , 25 mm]. The probing pairs (�W , �V) are selected within these ranges.

The trade-off parameter �E is chosen such that the non-rigid deformation is as elastic as pos-
sible, i.e. the energy term in Equation 3.2.7 does not have a big impact on the registration quality
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and the registration allows for large deformations. Therefore, the parameter �E is always set to
0.0001.

In this context, an appropriate parameter pair (�W , �V) is a pair for which the registration is
the most accurate and its parameterization depicts the associated AAA case as accurately as
possible. Mathematically speaking, it is the parameter pair which achieves a registration charac-
terized with a low similarity measure dW . The similarity measure assesses the achieved registra-
tion’s quality of fit.

It is important to note that different similarity measures dW of different kernel widths �W cannot
be compared to each other. The dW is a norm which is only valid for a �W in the associated
RKHS W . For a chosen �W , the larger �V becomes, the closer comes dW to its asymptotic value
d̄W where the undeformed cylinder S is compared to the target T according to

d̄W = k'µ?
0

1 (S)� Tk2W⇤ . (4.2.1)

This can be explained by the fact that for larger �V the non-rigid module produces an increas-
ingly rigid deformation. So, for one �W and increasing �V , the similarity measure dW gets larger
towards d̄W .
The defined asymptotic value d̄W is used for normalizing dW to achieve dimensionless compa-
rable values among different �W .

In Table 4.1, the mean values of normalized similarity measures dnorm
W = dW/d̄W for various

pairs (�W , �V) are displayed.

Table 4.1.: Mean values of normalized similarity measure dnorm
W = dW/d̄W [-] over all AAA

cases for every pair (�W , �V). The values for �W and �V are given in mm.

�W

�V 10.0 12.0 15.0 18.0 20.0 25.0

12.0 0.0343 0.0138 0.0075 0.0023 0.0071 0.0056
15.0 0.1586 0.0417 0.0048 0.0006 0.0009 0.0022
18.0 0.368 0.2934 0.0853 0.0223 0.0004 0.001
20.0 0.7369 0.5051 0.1713 0.038 0.0003 0.0008
25.0 1.1632 1.0535 0.6638 0.3265 0.1353 0.0759
30.0 1.6167 1.6305 1.3244 0.7814 0.5843 0.2344

It is obvious that for successful cases and with a constant �W , the bigger the kernel width �V ,
the bigger the normalized similarity measure dnorm

W . This is due to the fact that with bigger �V ,
the stiffer the deformation, the more neglected are the small shape details in the registration pro-
cedure.

For some cases, e.g. for case no. 132, different parameter pairs (�W , �V) significantly impact
the registration results as displayed in Figure 4.2.2. Consequently, for the parameter choice, a
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parameter pair (�W , �V) is chosen where more or less all AAA cases are matched accurately
enough. In the case of AAA shapes, these inaccuracies arise at the boundaries.

According to Table 4.1, the following pairs produce the smallest mean of the similarity value for
every similarity kernel �W and have in this regard the best registration results:

• �W = 15.0 mm and �V = 18.0 mm,

• �W = 18.0 mm and �V = 20.0 mm,

• �W = 20.0 mm and �V = 20.0 mm,

• �W = 20.0 mm and �V = 25.0 mm.

This implies that for the available study population the best registration results are achieved in
the modular registration framework with similar or even equal kernel lengths for similarity mea-
sure and deformation.

In the same manner, comparison of registration results obtained with different (�W , �V) is car-
ried out based on the deformation energy kv?

0 k2V? (as in Equation 3.2.7).

The calculated mean values in Table 4.2 indicate that for a constant �V , the deformation energy
is almost the same. However, for a small similarity kernel �W , like 12.0 mm, the deformation
energy is relatively higher than for the other �W since the similarity measure is stricter and re-
quires high accuracies. The bigger �V , the less elastic the non-rigid deformation, the smaller the
required energy for deformation.

Table 4.2.: Mean values of deformation energy kv?
0 k2V? [mm

s
] over all AAA cases for every pair

(�W , �V). The values for �W and �V are given in mm.

�V

�W 12.0 15.0 18.0 20.0 25.0 30.0

10.0 21187.98 19861.37 17701.84 17149.65 17008.08 16985.32
12.0 18873.6 15526.88 13807.51 13428.62 13264.12 13180.06
15.0 14922.65 11943.85 10520.79 10269.29 10136.05 10014.32
18.0 12863.74 10334.76 8600.72 8455.89 8312.28 8209.5
20.0 11679.56 9568.67 7855.64 7720.51 7579.77 7448.11
25.0 10650.14 8608.35 6983.8 6834.48 6641.6 6685.08

Nevertheless, to determine the most suitable pair of the identified four pairs, the similarity mea-
sure is taken into account. From the identified four appropriate parameter pairs (�W , �V), the
most appropriate one is determined with regards to the mean values of similarity in L2 over all
AAA cases. This measure is also employed in the explanatory example of the previous chapter
and represents the visual accuracy assessment.

Table 4.3 reveals the optimal parameter pair which is (�V = 20 mm, �W = 20 mm). For this
pair, all registration cases succeed and deliver an overall accuracy of only 0.52 mm. Appendix A
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Table 4.3.: Mean values of closest-node distances d̄cn [mm] over all AAA cases for every pair
(�W , �V) The values for �W and �V are given in mm.

�W

�V 10.0 12.0 15.0 18.0 20.0 25.0

12 2.10E+16 1.515 0.915 0.748 0.706 0.741
15 7.09E+17 1.48E+17 0.636 0.547 0.597 0.639
18 1.61E+18 1.24E+18 2.95E+17 1.15E+17 0.496 0.582
20 3.14E+18 2.26E+18 5.88E+17 1.57E+17 0.522 0.603
25 5.57E+18 5.73E+18 2.35E+18 1.00E+18 3.66E+17 1.71E+17
30 8.91E+18 9.39E+18 6.87E+18 4.01E+18 2.60E+18 1.18E+18

shows the registration results for this parameter pair for every AAA abluminal surface in the
cohort. Therein, the normalized similarity measure dnorm

W , the path energy kv?
0 k2V? in V? and the

average closest-node distance d̄cn are listed for every AAA surface.

In the following, the registration results for the selected parameter pair are discussed.

4.2.2. Results and discussion
With the identified optimal parameter pair (�W = 20 mm, �V = 20 mm), all registrations suc-
ceed with an average accuracy of 0.52 mm, as assessed by mean dcn distance measurements
between the deformed source S and the target T . The success for all registration problems is one
of the main reasons for the optimal parameter pair selection.

The achieved mean d̄cn distance is small and readily acceptable. However, it is only a mean
value. For some AAA cases, the registration results are better or worse than the mean. For al-
most all cases, due to the relatively big kernel widths �W and �V , detailed shape features or
segmentation artefacts are not captured in the registration, see Figure 4.2.3. Simply said, the
function cost, especially the similarity measure, does not see these details.

For the same case no. 85 and the selected parameter pair, the corresponding dcn distance dis-
tribution over the whole deformed surface '

v?
0

1 (S) is displayed in Figure 4.2.4, along with the
percentage of vertices over distance.

The corresponding vertex percentage over the distance dcn is additionally displayed in the graph
of Figure 4.2.5. Nevertheless, for some AAA cases, in most cases smaller ones, the achieved
registration results are of high accuracy, like for case no. 55. For this case and the selected pa-
rameter pair, the mean d̄cn distance is 0.42 mm. The deformed source '

v?
0

1 (S), the corresponding
dcn distribution over '

v?
0

1 (S) and the percentage of points over distance dcn are displayed in Fig-
ure 4.2.6 and in Figure 4.2.7.

Corresponding percentage of points over distance dcn are displayed in Figure 4.2.8. In summary,
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the employed registration methods requires a constant parameter pair (�W , �V) for all registered
AAA cases. By doing so, a consistency is achieved for further statistical analysis. However, for
a cohort with widely spread geometrical features, the selected pair (�W , �V) cannot achieve the
same registration quality and accuracy.
For the examined AAA cohort, the selected parameter pair �W = �V = 20 guarantees successful
registrations for all cases. Due to the relatively big kernel widths, segmentation artefacts are fil-
tered out in the resulting deformed source '

v?
0

1 (S) and small shape alternations are not captured
in '

v?
0

1 (S), too. This can be regarded as a benefit to eliminate local, irrelevant shape information
in the following statistical analysis.

4.2.3. Summary
In this chapter, the focus was on the available database and on its preparation for shape analysis.
To that end, a reference geometry was chosen and registered to every AAA shape in the cohort
with an identified suitable pair of kernel parameters (�W , �V). With the resulting AAA-specific
non-rigid registration parameter µ?

0
, the required abstract shape description for every individual

AAA shape was obtained.

The selected parameter pair is �W = �V = 20 mm, which guarantees successful registrations
and the best registration results with regard to dW and the dcn distance with L2 norm which
represents the visual inspection. For this parameter pair, the registration results have a mean ac-
curacy error of 0.52 mm which is assessed with the dcn distance measured with the L2 norm.
Due to the different size and shape evolutions of examined AAA cases, the registration results
slightly show different registration accuracies and quality with the selected parameter pair.

Nonetheless, the obtained abstract shape-specific parameter µ?
0

depicts the associated shape with
an appropriate accuracy. Building on all obtained case-specific µ?

0
, the shape statistical analy-

sis is conducted in the second part of this thesis. A dimensionality reduction method is applied
on these shape parameters, allowing for a statistically significant description of shapes using a
so-called shape descriptor s.
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100 mm

30 mm

Figure 4.2.1.: The selected cylindrical reference geometry has a height of Hcyl = 100 mm and a
diameter of Dcyl = 30 mm.

�V = 12mm�V = 10mm �V = 15mm �V = 20mm �V = 25mm

dW
¯dW

= 0.0017
dW
¯dW

= 0.0005
dW
¯dW

= 0.0008
dW
¯dW

= 0.0017
dW
¯dW

= 0.0005

Figure 4.2.2.: Registration results of AAA case no. 132 with �W = 12 mm and different �V . The
great impact of parameter choice (�W , �V) is observed for this case.
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T

�
v�
0

1 (S)

Figure 4.2.3.: Registration result of AAA case no. 85 with �W = �V = 20 mm in sagittal view.
For this selected parameter pair, segmentation artefacts and detailed shape features
are not captured in the registration process.

sagittallateral left lateral right

d c
n
[m

m
]

Figure 4.2.4.: The closest-node dcn distance distribution of '
v?
0

1 (S) for AAA case no. 85 with
�W = �V = 20 mm in sagittal, lateral left and lateral right view. The mean d̄cn

distance of all points is 0.589 mm. The displayed graph on the right shows the dcn

distance distribution over deformed '
v?
0

1 (S). The largest dcn distances are found in
the neck and inlet boundaries.
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Figure 4.2.5.: Plot of percentage of points over the dcn distance. For case no. 85 and the selected
parameter pair, 100 % of vertices have 2 mm or less distance error.

T

�
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0

1 (S)

Figure 4.2.6.: Registration result of AAA case no. 55 with �W = �V = 20 mm in sagittal view.
For this selected parameter pair, the registration result for case no. 55 captures the
detailed shape features. Segmentation artefacts are still filtered.
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d c
n
[m

m
]

Figure 4.2.7.: Closest-node distance dcn distribution of '
v?
0

1 (S) for AAA case no. 55 with �W =
�V = 20 mm in sagittal, lateral left and lateral right view. The mean d̄cn distance of
all points is 0.42 mm. The displayed graph on the right side shows the dcn distance
distribution over deformed '

v?
0

1 (S). The largest dcn distances are found on inlet
boundaries.
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Figure 4.2.8.: Plot of percentage of points over the dcn distance measured with the L2 norm. For
case no. 55 and the selected parameter pair, 100 % of vertices have 1.1 mm or less
distance error.
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case 55case 51case 29 case 83
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Figure 4.2.9.: Visualization of registration results of some patient-specific AAA abluminal sur-
faces from the coronal view. The results are represented with the closest-node dcn

distance in mm which is measured between the registration result at t = 1 and the
associated original shape T .
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Part II.

Statistical shape analysis
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5. Mathematical background
The second part of the present work is concerned with the statistical interpretation of the initial
momenta µ?

0
that was acquired for each AAA in the cohort at the end of the first part. Thanks

to the momentum conservation given for the geodesic paths starting with initial momenta µ?
0

(review subsection 2.1.1), the AAA-specific initial momenta provide a legitimate representation
of the individual AAA shape in the tangent-space.
According to Vaillant et al. [182] who first introduced statistical analysis on diffeomorphisms in
2004, the tangent vectors µ?

0
span a linear space and parameterize the diffeomorphism of refer-

ence geometry S to N target AAA shapes T . The thereby created tangent space representation
enables Log-Euclidean statistical applications on diffeomorphisms following vectorial statistics,
and consequently statistical analysis of shapes.
Employing dimensionality-reduction techniques on this linear shape space achieves an abstract
and low-dimensional geometrical characterization of each AAA shape with so-called shape de-
scriptors s.

Consequently, the statistical shape analysis conducted in the tangent-space opens up new possi-
bilities for shape understanding compared to shape analysis in the non-linear shape space. With
the established approximated linear shape representation in the tangent-space, mean shape ap-
pearances and the variabilities can be calculated with standard vectorial methods. Also, point
correspondences and noise in the shape space can be overcome.
Following this concept, shape variability of several anatomical surface models has been con-
ducted over the past years. Durrleman et al. examine for instance the brain structure variability
based on diffeomorphisms [45], while Bruse et al. benefit from statistics in tangent-space to de-
termine biomarkers of repaired aortic coarctation arches for potential functional relevance [24].
Also, Mansi et. al employ this technique to develop a quantification and prediction model of the
cardiac remodelling in the case of Fallot [117].

The rigid parameterization with ⌧ is not incorporated in the statistical analysis as the rigid reg-
istration component does not involve shape information. That is why it is important to clearly
separate the non-rigid and rigid components in a diffeomorphism.

In this work, the statistical analysis builds on principal component analysis (PCA). The ap-
plication of this method in the field of shape analysis goes back to 1995 when Cootes et al.
employ it in their active shape models [31]. In the field of shape analysis, the PCA is used to
extract principal shape features that are defined as the shape features with the maximum vari-
ance. Furthermore, it is used to create abstract dimensionally reduced shape descriptors which
are acquired in the generated reduced systems of PCA. Two forms of PCA are examined in this
work: linear/classical and kernel PCA which are presented in the following.
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Figure 5.1.1.: Visualization of PCA concept of dimensionality reduction. The red direction rep-
resents the direction identified by PCA which possesses the maximum variance
when the data are mapped onto it. Subsequently, a datum can be represented with
one variable, namely x̃ in the PCA dimensionality reduced space.

5.1. Principal component analysis
The principal component analysis method (PCA) belongs to the most widely used techniques
for dimensionality reduction and was introduced by Karl Pearson in 1901 [143]. The PCA is
effectively a linear orthogonal transformation of input data to a new coordinate system where
the input data can be expressed with remarkably fewer variables and without a significant loss
of information. The new basis is unique for an examined data set and can meet different require-
ments. Its determination is subject of this section.
PCA represents an unsupervised learning technique such that no class information or similar
knowledge is integrated in the procedure. The PCA is usually a preprocessing step of dimen-
sionality reduction and is solely based on data variances. It helps eliminate dimensions with low
variance.

5.1.1. Linear principal component analysis
For the explanation of the PCA method, let p be one datum or feature vector of the data set P .
The vector p of dimension Rp contains hence all p features that belong to one observation. The
collection of all (p

1
, . . . , p

N
) builds the data set P and includes N observations.

Figure 5.1.1 shows the concept of PCA in 2D. The PCA identifies one dimension (in red) with
the maximum variance. This means that when the data points (black dots) are projected onto this
dimension, they are not mapped on top of each other.
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Optimization problem

According to [91], an appropriate basis with a dimension p̃⌧ p is estimated with a least-square
optimization problem. The aim is to find as few orthogonal directions as possible that can capture
most of the variance of the input data as possible. In addition, the reconstructed p̃ from the low-
dimensional basis should be as close as possible to the original data set P . This goal can be
achieved by minimizing the error in

JPCA = E
�kp� p̃k2 . (5.1.1)

The reconstructed p̃ is carried out with

p̃ =
p̃X

i

hwi, piwi. (5.1.2)

The vectors wi 2 Rp are the basis vectors of the new coordinate system and are constructed so
as to be orthonormal. The scalar product hwi, pi is the orthogonal projection of original feature
vector p onto one new basis vector wi. The resulting scalar si is called score. For a basis of
dimension p̃, the reduced vector s has p̃ scores, one for the projection onto each axis w

s = [hw1, pi, . . . , hwp̃, pi]T.

The vector s 2 Rp̃ is the low-dimensional representation of original observation vector p. Thus,
the reconstructed p̃ can be formulated with

p̃ =
p̃X

i

si · wi. (5.1.3)

If the orthonormal basis vectors are grouped in the basis matrix W 2 Rp⇥p̃ with W = [w1, . . . , wp̃],
the reduction can be simplified to

s = WTp. (5.1.4)

Hence, the matrix W is responsible for the linear orthogonal transformation of high-dimensional
p to a lower dimensional representation s. As W is an orthonormal matrix, WTW = I is given.
Additionally, the reconstructed p̃ can be computed with p̃ = W WTp. Integrating this reformu-
lation in Equation 5.1.1 yields

JPCA = E
�kp�W WTpk2 . (5.1.5)

The questions of how to determine appropriate principal directions W and of how to assess the
variance captured with one direction wi are answered in the following.

Variance and covariance

First, some variance-related terms need to be clarified. The variance is a measure of how spread
out the data p is. It measures therewith the variability of the data set P according to

var(p) =
1

N

NX

i

(p
i
� p̂)T(p

i
� p̂)
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with p̂ as the mean vector p̂ = 1
N

PN
i p

i
of data set P . The corresponding covariance matrix ⌃P

of the data set P is formulated with

⌃P =
1

N � 1

�
PP � P̂P

��
PP � P̂P

�T 2 Rp⇥p. (5.1.6)

The flattened vector PP 2 Rp·N⇥1 contains all N observations of the data set P as PP =
[p

i
, . . . , p

N
], but in a flattened representation. P̂P represents the mean in the flattened form.

The covariance reveals the correlation between two random data sets P and U with

cov(p, u) =
1

N

NX

i

(p
i
� p̂)T(ui � û).

û represents the mean of U . If cov(p, u) is zero, there is no correlation between both data sets.

Solution

According to [82], the PCA objective function in Equation 5.1.5 can be reformulated to

JPCA = Tr
�
WT⌃PW

 
. (5.1.7)

According to [91, 92], JPCA in Equation 5.1.7 is minimized if the p̃ basis vectors w in basis W
are the p̃ eigenvectors associated with the p̃ largest eigenvalues of the covariance matrix ⌃P .

The eigenvalue decomposition of orthonormal ⌃ delivers

⌃P = V ⇤ V T (5.1.8)

with unitary matrix V 2 Rp⇥p of p eigenvectors ve and diagonal matrix ⇤ 2 Rp⇥p of p eigenval-
ues (�1, . . . , �p). The eigenvalues are arranged by value �1 � �2 � . . . � �p.

Consequently, after choosing the number of necessary p̃ eigenvectors, the reduction in Equa-
tion 5.1.4 can be written with

s = ⇤� 1

2V Tp 2 Rp̃

with the decreased diagonal matrix ⇤ 2 Rp̃⇥p̃ with p̃ eigenvalues � and the corresponding p̃
eigenvectors ve in V 2 Rp⇥p̃. The input vector p is expected to be a centered, i.e. zero-mean,
vector which can be easily achieved by substracting the mean vector p̂.

The resulting projection on each basis vector wi is the so-called score and generates the new
variable si in a reduced s. As the basis vectors are orthonormal, the scores si in a s are uncorre-
lated.

Therewith, the original datum p can be approximated with

p̃ ⇡ s1 · w1 + . . . + sp̃ · wp̃ (5.1.9)

in the reduced basis according to Equation 5.1.3.

90



5. Mathematical background

Singular value decomposition for PCA

If the size of a datum exceeds the number of available observations in the dataset, then the eigen-
value decomposition of ⌃P in Equation 5.1.8 can become difficult due to the null eigenvalues.
Another more appropriate approach to the PCA problem is in this case the Singular Value De-
composition (SVD) which can handle null eigenvalues [67]. The SVD is performed directly on
the (centered) data matrix PP with

PP = U D V T (5.1.10)
with PP 2 Rp⇥N , D is a diagonal matrix of size p⇥N , U 2 Rp⇥p and V 2 RN⇥N .

In this case, the principal axes are the columns of V and have the same directions as the axes
found by the eigenvalue decomposition on ⌃P in Equation 5.1.8. The only difference lies in the
scaled eigenvalues. The scale is determined if the expression in Equation 5.1.10 for input space
PP is embedded in the covariance matrix (Equation 5.1.6) with

⌃SVD
P = (U D V T)TU D V T/(n� 1)

= V D UTU D V T/(n + 1)

= V
D2

n� 1
V T. (5.1.11)

The comparison of the last expression of Equation 5.1.11 and the original PCA covariance matrix
(Equation 5.1.8) yields the scaling difference according to

�2
i =

d2
i

n� 1

with di the eigenvalues of ⌃SVD
P .

As mentioned, the SVD can handle null eigenvalues. Hence, SVD can generate eigenvalues
equal to or very close to 0. This would mean that one dimension is linearly dependent on another
dimension and thus can be totally represented by the first one.
In a 2D case with two linear dependent dimensions, all (centered) data points would already
lie on the first principal component with an eigenvalue �1 6= 0. The second identified principal
component would be orthogonal to the first one with an eigenvalue �2 = 0. The mapping of the
centered data points onto the second component would always generate a zero.

Outliers and PCA
The presented PCA method represents the classic PCA approach. A disadvantage of the classic
PCA is its sensitivity to outliers. It follows from the nature of the minimization problem in Equa-
tion 5.1.1. Therein, the cost function consists of a sum of quadratic norms of original data and
reconstructed data. If outliers are present, they would dominate the total sum and manipulate the
resulting principal axes of the method.
In chapter 6, the outlier detection is covered for the present work.

In literature, derived robust PCA methods were recently developed [90, 133]. These are not
covered in this work, but represent a further interesting development of this work.
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5.1.2. Kernel principal component analysis
The kernel PCA is a non-linear method which makes use of the relation between multidimen-
sional scaling and PCA. It has been mainly brought forward by Scholkopf et al. in the late
nineties [158, 160]. The kernel PCA transforms the input data p with a transformation � into a
higher dimensional space where the resulting mapped vectors �(p) have a shape which can be
captured by linear PCA. The linear PCA is thus applied to �(p) in the higher dimensional space.
The corresponding reduced representation of input PP is obtained.

Multidimensional scaling
Another equivalent, classic linear dimensionality reduction method is multidimensional scaling
(MDS). Therein, instead of a covariance matrix, a Gram matrix G is analysed. A Gram matrix is
constructed with inner products

G = PT
PPP 2 RN⇥N (5.1.12)

with N the number of observations p included in PP . The i�, j� component of G is calculated
from the inner product of observation p

i
and p

j
. Since the Gram matrix G is a real, symmetric

matrix, its eigen-decomposition results in

G = WNDNWT
N (5.1.13)

with eigenvectors in WN and corresponding eigenvalues in DN [22, 103, 104]. The space
spanned by the MDS eigenvectors corresponds to the space spanned by the linear PCA, and
also the eigenvalues are the same [92]. These eigenvectors are orthogonal to one another in the
input space of p.

Multidimensional scaling in kernel PCA
Similar to classic linear PCA, the covariance matrix of mapped �(p) has to be calculated, a
definition of mapping � is therefore required. Finding an appropriate � for every data set is
tedious and not straightforward. At this point, the correspondence to MDS comes into play.
There, for building the Gram matrix, only the inner product between the input data is required,
a precise knowledge of �(p) is not necessary. Also in the kernel PCA method, the Gram matrix
is assembled to perform the non-linear dimensionality reduction: With the defined form of the
inner product, the explicit definition of mapping � is obviated. Usually, kernel functions k are
used to establish these inner products, according to

h�(p
1
), �(p

2
)i = k(p

1
, p

2
). (5.1.14)

The Gram matrix is consequently composed with

G =

2

64
h�(p

1
), �(p

2
)i . . . h�(p

1
), �(p

N
)i

...
...

...
h�(p

N
), �(p

1
)i . . . h�(p

N
), �(p

N
)i

3

75 =

2

64
hk(p

1
, p

1
) . . . k(p

1
, p

N
)

...
...

...
k(p

N
, p

1
) . . . k(p

N
, p

N
)

3

75 2 RN⇥N .

(5.1.15)
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The use of a kernel to expand the dimensionality of the feature space to attain more linear repre-
sentations thereof is known as the kernel trick and was first introduced in [158] for mappings. The
kernel trick is used in various machine learning and data analysis applications [17, 86, 159, 166].
For the interested reader, further developments and applications of kernel PCA can be found in
[15, 34, 150].
The input space is mapped to a higher dimensional space where linear PCA or the equivalent
MDS can be employed. As an exact definition of a mapping � is complicated, the MDS method is
preferred to obtain the principal components. To that end, the eigen-decomposition of the Gram
matrix G produces N eigenvalues �G

i and corresponding eigenvectors g
i

for i = (1, . . . , N),
with N the number of observations in PP . The introduced cost function (Equation 5.1.5) for
linear PCA is also minimized here, but in the higher dimensional space. The eigenvectors are
perpendicular in the higher dimensional space, too.

The principal components are reconstructed from the resulting eigenvalues g
i

for i = (1, . . . , N)
of matrix G with

wi =
NX

k=1

g
i[k]

�(p
k
) 2 R3n

x . (5.1.16)

The expression g
ik

denotes the k-th element of eigenvector g
i
. Hence, the orthogonal principal

components wi are a linear composition of mapped observations �(p) in the high dimensional
space.

Finally, the reduced representation p̃ is obtained by projecting the original p onto the considered
p̃ principal components in the high dimensional space. Consequently, the projection becomes

�̃(p)[i] =
NX

k=1

g
i[k]

�(p
k
)T�(p) k = (1, . . . , p̃) (5.1.17)

with �̃(p)[i] the i-th element of reduced mapped vector �̃(p), g
i[k]

the k-th element of eigenvector
g
i
.

The original mapped data �(p) can therefore be approximated in the higher dimensional space
from �̃(p)[i] with

�(p) ⇡ �̃(p)[1] · w1 + . . . + �̃(p)[p̃] · wp̃ (5.1.18)

with �̃(p)[1] the first component of �̃(p), w1 the first principal component in the higher dimen-
sional space. p̃ is the dimension of reduced model.

However, the reconstruction of p in the original input space is often required than in the higher
dimensional space. Retrieving approximated p̃ 2 Rp̃ from �̃(p) is not straightforward and com-
putationally demanding. Usually, an optimization problem generates an estimation of p̃ by min-
imizing the cost function

Jrecon = k�(p̃)� �̃(p)k2. (5.1.19)
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Depending on the selected inner product and the associated space, this optimization problem is
solved by a gradient descent scheme. In the case of employing kernels for scalar products as
displayed above in Equation 5.1.14, a straightforward derivation of gradient of Jrecon serves as
input for the gradient descent for instance and is described in [122].

Compared to linear PCA, kernel PCA is computationally more expensive. However, the expen-
sive component extraction pays off when kernel PCA is integrated in further statistical methods,
like support vector machines (SVM). Combining kernel PCA with linear SVM achieves an ac-
curate decision boundary of a non-linear dataset much faster than non-linear SVM [158]. .

5.1.3. Quality assessment of dimensionality reduction
As with dimensionality reduction methods, accuracy errors when retrieving the original data in
the dimensionally reduced model occur. In the following, the relevant reconstruction errors and
their definition in this chapter are presented. Additionally, methods to evaluate the statistical
performance of the principal component analysis are introduced.

Reconstruction Errors

In this work, the principal component analysis is performed on the initial momenta vector fields
in the tangent-space of the examined shapes. The dimensionally reduced model is created subse-
quently in the tangent-space. The reconstruction error however is measured in the shape space,
i.e. the shape corresponding to the dimensionally reduced momenta vector field is generated
with geodesic shooting and is compared to the original shape. As the reduction does not include
the translation vector ⌧ , the optimal ⌧ which has resulted in the registration step is taken in the
geodesic shooting. The modular registration method requires both inputs to generate indicative
results. The error is then measured in Euclidean L2 with the node-wise distance and in W using
the normalized dissimilarity measure as in subsection 4.2.1.

Evaluation of statistical performance

In this work, two main statistical qualities play an important role in the evaluation of principal
component analysis performance. One is generalization and the other is compactness.

The generalization error describes the behaviour of a reduced model applied to unseen data.
The question here is if the model can accurately predict or reconstruct unseen data. To that end,
in a Leave-One-Out-Cross-Validation (LOOCV) process, one datum is left out and the reduced
model is built from the remaining N � 1 data. The left-out datum is then passed to the generated
reduced model, i.e. mapped onto the dimensionally reduced PCA model. The ability of the PCA
model to accurately represent the left-out shape is assessed in the shape space using the recon-
struction error.

The compactness error describes the dimensionality of the reduced system: The lower the di-
mension for a comparable reconstruction error, the more compact the reduction.
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5.2. Summary
In this chapter, the mathematical background for the upcoming statistical shape analysis is out-
lined, focusing on the principal component analysis (PCA) with two different approaches, the
linear and kernel PCA method. With both PCA methods, a reduced system for shape represen-
tation is generated. For each method, the derivation is displayed. Additionally, quantifications of
the reduced system qualities are discussed.

In the following, the methods are adapted to the shape representation generated in this work
using the modular matching framework.
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6. Method and implementation
This chapter focuses on the final methods, specifically the linear and kernel PCA, used for statis-
tical analysis of the resulting initial momenta µ?

0
in chapter 4 and the associated implementation.

An exemplary synthetic cohort is generated and examined with regard to its shape by using the
implemented methods. The examinations should provide a better understanding of linear and
kernel PCA when applied to the feature space generated by the modular registration method in
this work.

6.1. Principal component analysis
In this work, principal component analysis (PCA) forms the basis of the statistical analysis. The
mathematical concept of linear and kernel PCA were presented in section 5.1. In the following,
their integration in this work is layed out.

6.1.1. Linear principal component analysis
In this work, linear principal component analysis (LPCA) operates in V?⇤ where the initial mo-
menta vector fields µ?

0
reside. The space V?⇤ represents the dual space of RKHS V? of v?

0 .

Singular value decomposition
The LPCA employed here is based on singular value decomposition (SVD) for constructing the
covariance matrix due to the high dimensionality of flattened initial momenta vector field (3nx).
The resulting covariance matrix ⌃LPCA

P subsequently comprises N initial momenta vector fields
µ?
0
2 R3n

x building its columns. N represents the number of observations, i.e. examined AAA
cases.
Accordingly, the final covariance matrix ⌃LPCA

P has a size of 3nx ⇥N , such that:

⌃LPCA
P = [µ?

0,1
, µ?

0,2
, . . . , µ?

0,N
] 2 R3n

x

⇥N . (6.1.1)

The SVD of ⌃LPCA
P returns N sorted eigenvalues �i, i = (1, . . . , N) and associated normalized

eigenvectors m. These eigenvectors are known as modes which represent the principal compo-
nents in the examined initial momenta vector fields collected in ⌃LPCA

P . These modes describe
the dominating deformation directions of the cylindrical source S to every AAA shape in the
cohort, encoding thus the dominant shape features in the cohort. The shape features can be de-
duced and visualized from the dominant deformation directions with geodesic shooting. These
modes are elements of the dual space V?⇤.
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The associated eigenvalues depict the variance along such a mode. The variance indicates the
variation of the encoded shape feature in the cohort. If the variance is large, the associated shape
feature is represented in the cohort taking a wide range of values [182].

The appropriate number m of principle components sufficient for accurately representing the
higher dimensional data is determined by the explained variance ⇡ which is written as

⇡(m) =

Pm
i �iPN
i �i

(6.1.2)

and is usually set to 0.98 to achieve 98% of accuracy.

One significant feature of this approach lies in the structure of resulting momenta vectors which
are perpendicular to one another. This leads to their statistical independency.

Generation of shape descriptors

The shape descriptors si 2 Rm for every AAA shape Ti result from

si =
h
hµ?

0,i
, m1iV?⇤ , . . . , hµ?

0,i
, mmiV?⇤

iT
(6.1.3)

with scalar products h·, ·iV?⇤ in V?⇤ of every flattened initial momenta field µ?
0,i
2 R3n

x . This
scalar product is equivalent in this case to the dot product.

Reconstruction of initial momenta from shape descriptors
The original initial momenta vector fields µ?

0,i
2 R3n

x are approximated with a linear composi-
tion of the m basis vectors, following:

µ̃?
0,i

= sTi · [m1, . . . , mm] 2 R3n
x . (6.1.4)

6.1.2. Kernel principal component analysis
In this work, the higher dimensional space to which the input space is mapped to is the RKHS
V?. The representation of an input initial momenta µ?

0
in the higher dimensional space RKHS

V? becomes the familiar initial velocity v?
0 which equals the mapping result of �(µ?

0
) (Equa-

tion 5.1.14). The kernel PCA takes place in the RKHS V?.

Accordingly, the Gram matrix G in Equation 5.1.15 consists of inner products

G =

2

64
hv?

0,1, v
?
0,1iV? . . . hv?

0,1, v
?
0,NiV?

...
...

...
hv?

0,N , v?
0,1iV? . . . hv?

0,N , v?
0,NiV?

3

75 (6.1.5)
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The initial velocity vector field v?
0,i represents with i = (1, . . . , N) the centered initial momenta

µ?
0,i

in RKHS V?. The corresponding inner product is defined with kernel kV? according to

hv?
0,i, v

?
0,jiV? =

n
xX

k=1

n
xX

l=1

kV?(q
k
, q

l
)(µ?k

0,i
)Tµ?l

0,j
. (6.1.6)

Herein, µ?k
0,j

and µ?l
0,j

denote the k-th and l-th vector of initial momenta vector field µ?
0,j

. In
the context of kernel PCA, the kernel function k(µ?

0,i
, µ?

0,j
) would take the form k(µ?

0,i
, µ?

0,j
) =

a · (µ?
0,i

)Tµ?
0,j

of input space vectors µ?
0,i

, µ?
0,j

, as prescribed for the kernel k in kernel PCA in
Equation 5.1.14. In this work, the factor a > 0 2 R stands for the evaluation of kV?(xk, xl)
which is always > 0.

The eigendecomposition of G delivers with its N eigenvectors g 2 RN the required principal
components. According to Equation 5.1.16, these eigenvectors g 2 RN are used to reconstruct
the associated N principal deformation modes with

mV? =
NX

k=1

g
[k]

�(µ?
0,k

) 2 R3n
x

=
NX

k=1

g
[k]

KV? µ?
0,k

= KV?

NX

k=1

g
[k]

µ?
0,k

. (6.1.7)

Herein, g
[k]

represents the k-th element of eigenvector g 2 RN , µ?
0,k
2 R3n

x represents the k-
th observation. The reconstructed principal components mV? belong to the higher dimensional
RKHS V?, mV? 2 V?.

Equation 6.1.7 makes use of the dual space relation, the isometric mapping, between µ?
0
2 V?⇤

and the associated v?
0 2 V? (review subsection 3.1.2). The mapping �(µ?

0
) of µ?

0
to the RKHS

V? becomes the isometric mapping realized with operator KV? for the spatially discretized case
(see Figure 3.1.3). This already existing definition facilitates to a large degree the application of
kernel PCA as in the following.
The corresponding representation of mV? 2 V? in the dual space V?⇤ is consequently

m =
NX

k=1

g
[k]

µ?
0,k

. (6.1.8)

Having formulated the principal components in the input space V?⇤ as m, the further analysis
and shape descriptor creation are conducted in the input space V?⇤.

In the next step, the constructed eigenvector m 2 V?⇤ in Equation 6.1.8 needs to be normal-
ized. This is achieved with the factor mnorm

mnorm =
1

kmk2V?⇤
=

1

mTm
(6.1.9)
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for an associated reconstructed deformation mode m. The normalized constructed eigenvector
becomes thus

mnorm = mnorm · m =
1

mTm

NX

k=1

g
[k]

µ?
0,k

. (6.1.10)

As in linear PCA, the number m for required accuracy is determined according to the explained
variance ⇡ in Equation 6.1.2.

Generation of shape descriptors
The shape descriptor vector s 2 Rm is determined by scalar products in the respective space as
in Equation 5.1.17. As the principal component is now defined in the input space V?⇤, the shape
descriptors are calculated with scalar products in V? with

s = [hµ?
0
, mnorm

1 iV?⇤ , . . . , hµ?
0
, mnorm

m iV?⇤ ]T 2 Rm. (6.1.11)

As in Equation 6.1.3, the scalar product is performed as a dot product.

Reconstruction of initial momenta from shape descriptors
The reconstruction of initial momenta from shape descriptors s 2 Rm is also conducted in the
input space V?⇤ following

µ̃?
0

= s1 · mnorm
1 + . . . + sm · mnorm

m (6.1.12)

with s1, . . . , sm being the m elements of the shape vector s and mnorm
1 , . . . , mnorm

m the modes.
This reconstruction only includes the non-rigid deformation part of the registration, thereby ne-
glecting the translational transformation. The translation vector r(1) has to be added respectively
to the resulting non-rigid deformation with µ̃?

0
.

6.1.3. Outlier detection
PCA methods are susceptible to outliers. In an inhomogeneous cohort, outlier detection is there-
fore necessary. A general overview of outlier detection methods can be found in [80].

Mahalanobis distance for multivariate outlier detection

The Mahalanobis distance DM represents a common distance measure and has applications in
many methods, like Hotelling’s T 2 test in process control, k-Nearest Neighbour Method in pat-
tern recognition and outlier detection in the field of multivariate calibration [36]. The DM can be
determined in a reduced space, like one achieved with a principal component analysis (PCA), or
in the original feature space.
In this work, for determining outliers prior to PCA, the DM shall be applied to the original fea-
ture space which is the RKHS V? and V?⇤, respectively.

The Mahalanobis distance was introduced by P.C. Mahalanobis in 1936 [112]. It measures the
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distance between a vector and a distribution, unlike the Euclidean distance which gives the dis-
tance between two distinct vectors. In particular, the DM takes the correlation among the vector
points into consideration. This is achieved with

D2
M = (p� p̄)T · ⌃�1 · (p� p̄) (6.1.13)

with p as feature vector, p̄ as the mean of N feature vectors and ⌃�1 the inverse of the covariance
matrix of features.
The term (p � p̄)T · ⌃�1 is equivalent to the regular standardization, but with a multivariate
feature space. With this construction, the distance DM gets smaller if the correlation within the
variables is high, and larger, if the correlation is low. This measure reflects not only the distance,
but also the correlation relationship.

For all N feature vectors p, the distance DM is measured. Thereof, the mean and standard de-
viation is calculated. The observations which DM lies out of three standard deviations scope, is
considered an outlier according to the empirical rule [147].

6.1.4. Visualization of results
The resulting principal deformation modes mnorm can be visualized with geodesic shooting. The
visualization is possible since the input space for PCA is the shape space characterized by initial
momenta vector fields µ?

0
in the tangent-space. In this geodesic shooting, the translation vector

⌧ is zero.

The geodesic shooting is realized with forward temporal integration of momenta ODE in Equa-
tion 3.1.25, taking as initial momenta vector field the respective modes m+ and m� belonging
to eigenvalue � and eigenvector m. This applies to linear and kernel PCA. The modes are built
according to

m+ = µ̄?
0

+ mnorm,

m� = µ̄?
0
�mnorm. (6.1.14)

The vector µ̄?
0

denotes the mean vector of N initial momenta vector fields.

The resulting deformed source '
m+

i

1 (S) and '
m�

i

1 (S) at time t = 1 are the final shapes represent-
ing the maximum shape variations at both ends of the double variance.

6.2. Implementation
Both linear PCA and kernel PCA are implemented in Python, making use of already existing
functions of the SciPy library. The matrix in linear PCA is built from the flattened feature vectors
of momenta µ?

0
and its eigen-decomposition is performed with SVD. For building the covari-

ance matrix in kernel PCA, the required scalar products in Equation 6.1.5 are computed with the
introduced functions in PyTorch and Keops (see subsection 3.3.3).

The implementation of geodesic shooting is part of the Deformetrica project and contains only
the forward model computation. The required input is the initial momenta vector field µ?

0
.
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(b)	(a)	

Dmax

Ln

Figure 6.3.1.: (a) the skeleton of the modifiable AAA model with the two relevant parameters
for this work, the maximum diameter Dmax and neck length Ln, (b) an example of
a resulting parameterized abluminal AAA shape [84].

6.3. Explanatory cases
A synthetic cohort of 50 parameterized AAA abluminal surfaces is created with the model pre-
sented by Hemmler et. al [84] (see Figure 6.3.1). Therein, on the left, the skeleton of the param-
eterized surfaces is shown with the two relevant parameters for this work, namely the maximum
diameter Dmax and neck length Ln. On the right, an example of a resulting AAA abluminal shape
is displayed.
The aim of creating this cohort is to examine and understand the behaviour of principal compo-
nent analysis methods when applied to the novel non-rigid translation-free initial momenta. That
is why - for simplification reasons - the cohort does not depict the real geometrical variation of
the patient-specific AAA cohort presented in this work, but varies only in two parameters.

The two parameters Dmax (maximum diameter) and Ln (neck length) are chosen to create the
cohort. They vary according to a Gaussian distribution of mean µ and variance � with

Dmax : µ = 44 mm; �v = 16 mm

Ln : µ = 21 mm; �v = 8 mm.

The two parameters are chosen such that they do not influence each other when being changed
within the created cohort. In the ideal case, if every geometrical parameter of the two parameters
controls one shape feature, two principal components are expected when applying linear or ker-
nel PCA on shape-specific initial momenta vector fields. These two principal components shall
depict the two main varying geometrical features which are maximum diameter Dmax and neck
length Ln.
However, as shown in Figure 6.3.2, when the diameter is changed, some other hidden geomet-
rical features get affected and altered too, like the posterior bucket. That is why it is expected
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6. Method and implementation

that the main two principal components with biggest eigenvalues reflect Dmax and Ln, while the
remaining principal directions depict these hidden shape variations.
Also, as the maximum diameter Dmax possesses the larger variation compared to Ln, the first
principal axis with the biggest eigenvalue shall belong to this feature.

Modular registration

As with the patient-specific cohort, the cohort representation in the tangent-space is achieved
with the registration of a reference geometry to every AAA abluminal shape in the synthetic
cohort using the modular registration. The reference geometry is the same as for the real AAA
cases in chapter 4 (see Figure 4.2.1). The registration parameters �W = �V? = 18.0 mm are
used for a most accurate registration result.

Registration results

Figure 6.3.3 shows some registration results of the parameterized cohort for parameters �W =
�V? = 18.0 mm. The results are expressed with local node-wise distance dcn in L2 and normal-
ized dissimilarity dnorm

W . The biggest inaccuracies are located at the inlet. The average error of
registration amounts to the following values:

closest� node distance d̄cn : 0.394 mm

dnorm
W : 0.00037.

Consequently, the resulting shape-characteristic initial momenta of the non-rigid module are ac-
curate enough and suitable to represent the associated shapes in the following shape analysis. The
results of applying such shape analysis methods, here the linear and kernel PCA, are presented
in the following.

Linear PCA

In order to extract the principal shape components in the parameterized cohort, linear PCA is ap-
plied to all initial momenta vector fields according to subsection 6.1.1. Taking all cases into con-
sideration, the linear PCA delivers four principal components necessary to represent the shape
variability with an accuracy of 98 %. The principal modes are visualized in Figure 6.3.4 after
being reconstructed according to Equation 6.1.14. For every eigenvalue �, the modes m+ and
m� are displayed respectively.
The associated eigenvalues are

�1 = 1.46; �2 = 1.12; �3 = 0.14; �4 = 0.04.

The visualized modes m+ and m� in Figure 6.3.4 depict the principal shape variations in the
synthetic cohort. The largest two eigenvalues, �1 and �2, correctly exhibit the two varying pa-
rameters of the cohort, namely �1 illustrates the changing diameter Dmax and �2 the changing
length of the neck Ln.
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Dmax = 45mm

Ln = 17mm

Dmax = 42mm

Ln = 26mm

Dmax = 40mm

Ln = 16mm

Dmax = 39mm

Ln = 16mm

Dmax = 36mm

Ln = 23mm

Dmax = 46mm

Ln = 19mm

Dmax = 48mm

Ln = 22mm

Dmax = 50mm

Ln = 27mm

Dmax = 52mm

Ln = 21mm

Dmax = 53mm

Ln = 15mm

Figure 6.3.2.: Some shapes of the synthetic cohort of parameterized AAA abluminal shapes.
The shapes vary in the two parameters Dmax (maximum diameter) and Ln (neck
length) and are constructed according to [84].
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Dmax = 36mm

Ln = 23mm

Dmax = 44mm

Ln = 13mm

Dmax = 48mm

Ln = 22mm

Dmax = 53mm

Ln = 15mm
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Figure 6.3.3.: Visualization of registration results. The displayed node-wise dcn distance in mm
is measured between the registration result '

µ?
0

1 (S) at t = 1 and associated original
shape T .
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�2

�3

�1

�4

Figure 6.3.4.: Visualization of the four principal components m associated with the four eigen-
values generated in linear PCA to represent the shape variability with an accuracy
of 98 %. For one eigenvalue � in the Figure, the left shape represents the compo-
nent m+, the right shape m� of Equation 6.1.14.

As can be seen in Figure 6.3.2, the maximum diameter Dmax is defined in an off-center fashion.
Changing it, creates therefore other implicit diameter-related morphologic features. These are
captured in the remaining two modes with eigenvalues �3 and �4: mode 3 highlights the associ-
ated change in the posterior sack wall, while mode 4 depicts the anterior curve at the transition
to the neck.

The resulting shape vector s of a parameterized AAA in the cohort consists of four shape de-
scriptors. Every shape descriptor is calculated according to Equation 6.1.11 by projecting the
associated initial momenta vector field µ?

0
onto the respective principal component m. The re-

duced model is four-dimensional, the shape vector writes s 2 R4.

The reconstruction accuracy in the reduced model is retrieved with Equation 6.1.12 where the
approximated initial momenta vector field µ̃?

0
is reconstructed from the associated shape vector

s. With this reconstructed µ̃?
0

, a geodesic shooting is performed to generate the approximated
shape T̃ . For the geodesic shooting, the optimal translation vector ⌧ is taken which resulted from
the registration step for a synthetic AAA shape.
For this cohort and this parameter choice, the linear PCA achieves a shape reconstruction accu-
racy of

closest� node distance d̄cn : 0.4074 mm

dnorm
W : 0.0009.
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Dmax = 36mm

Ln = 23mm

Dmax = 44mm

Ln = 13mm

Dmax = 48mm

Ln = 22mm

Dmax = 53mm
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Figure 6.3.5.: Visualization of some reconstructed shapes T̃ in the reduced model generated with
linear PCA, the same shapes as in Figure 6.3.3. The displayed node-wise dcn dis-
tance in mm is calculated with the L2 norm and is measured between a recon-
structed shape T̃ and associated original shape T .

Reconstruction results are visualized in Figure 6.3.5 with node-wise dcn distances with L2 norm.

As described in subsection 5.1.3, the quality of the reduced system is determined amongst others
by the generalization error. Here, a LOOCV approach is followed to calculate the generalization
error of linear PCA applied on the initial momenta vector fields. The error amounts to the follow-
ing average values, evaluating the difference between the reconstruction of left-out geometries
in the reduced system and the original shape:

closest� node distance d̄cn : 0.416 mm

dnorm
W : 0.0014.

These values validate the generalization ability of the reduced model generated by linear PCA;
unseen data can be represented in the reduced system with high accuracy albeit slightly worse
than the registration error of 0.394 mm.

Kernel PCA

The kernel PCA delivers three principal components necessary to represent the shape variability
with an accuracy of 98 %. The principal modes are visualized in Figure 6.3.6 after being recon-
structed also according to Equation 6.1.14. For every eigenvalue �, the modes m+ and m� are
displayed respectively.
The associated eigenvalues are

�1 = 4.015 · 103; �2 = 1.634 · 103; �3 = 1.414 · 102.
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�2

�3

�1

Figure 6.3.6.: Visualization of the three principal components m associated to the three eigenval-
ues generated in kernel PCA to represent the shape variability with an accuracy of
98 %. For one eigenvalue � in the Figure, the left shape represents the component
m+, the right shape m� of Equation 6.1.14.

The visualized modes m+ and m� in Figure 6.3.6 depict the principal shape variations in the
synthetic cohort. The largest two eigenvalues, �1 and �2, also correctly exhibit the two varying
parameters of the cohort, namely �1 illustrates the changing diameter Dmax and �2 the changing
length of the neck Ln.
As mentioned in the linear PCA application, the remaining third mode associated with �3, de-
picts the implicit diameter-related shape features. Here, it combines the change in the posterior
sack wall and the change of the anterior curve at the transition to the neck.

The resulting shape vector s of a parameterized AAA in the cohort consists of three shape de-
scriptors. Every shape descriptor is calculated according to Equation 6.1.11 by projecting the
associated initial momenta vector field µ?

0
onto the respective principal component m. The re-

duced model is three-dimensional and the shape vector writes s 2 R3.

The reconstruction accuracy in the reduced model is retrieved with Equation 6.1.12 where the
approximated initial momenta vector field µ̃?

0
is reconstructed from the associated shape vector

s. With this reconstructed µ̃?
0

, a geodesic shooting is performed to generate the approximated
shape T̃ . Here also, for the geodesic shooting, the optimal translation vector ⌧ from the registra-
tion step is taken.
For this cohort and this parameter choice, the kernel PCA achieves a shape reconstruction accu-
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Dmax = 36mm
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Figure 6.3.7.: Visualization of some reconstructed shapes T̃ in the reduced model generated with
kernel PCA, the same shapes as in Figure 6.3.3. The displayed node-wise dcn dis-
tance in mm is measured between a reconstructed shape T̃ and associated original
shape T .

racy of average

closest� node distance d̄cn : 0.434 mm

dnorm
W : 0.002.

Reconstruction results with kernel PCA are visualized in Figure 6.3.7 with node-wise dcn dis-
tances.

The computed LOOCV results reveal the generalization error of kernel PCA on the parame-
terized cohort with parameters �W = �V? = 18.0 mm. These amount to the following average
values:

closest� node distance d̄cn : 0.444 mm

dnorm
W : 0.002.

Also here, with an accuracy slightly worse than the registration results, the kernel PCA shows
its ability to represent unseen data in the cohort.

Linear PCA vs kernel PCA

The application of linear and kernel PCA to the initial momenta vector fields of the synthetic
cohort is evaluated first with regard to compactness and generalization error. Regarding com-
pactness, kernel PCA with its three principal components creates a lower dimensional model
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to capture 98% of shape variability than the linear PCA with four principal components. The
largest two eigenvalues, �1 and �2, in both methods express the two varying parameters of the
cohort as observed. The greater compactness of kernel PCA is achieved by combining the two
implicit diameter-related shape features into one principal component, in contrast to linear PCA
that expresses them in two separate components.

However, with these compact principal components, the generality of the model suffers. This
is examined with a leave-one-out cross-validation (LOOCV) approach as described before. The
LOOCV for the linear PCA delivers with its four principal components the shown accuracy of
0.416 mm, while kernel PCA shows an accuracy of 0.981 mm with three principal components.
Apparently, the combination of both implicit diameter-related features costs the kernel PCA
some accuracy. An explanation of this behaviour could be the shape data structure and the
high-dimensional RKHS space where the shape descriptors are created using the scalar prod-
uct h·, ·iV? . As the RKHS is a smoothing space, it can be the case that some features are lost in
the aforementioned scalar product for creating the shape descriptors.

6.4. Summary
In this chapter, statistical methods for shape analysis on initial momenta in the tangent-space
have been introduced. Additionally, the implementation details have been briefly discussed.
A cohort of 50 synthetic AAA abluminal surfaces was created to which the statistical methods,
linear and kernel PCA, were applied and examined. The following conclusions can be made as
result:

• The linear and kernel PCA show expected behaviour with regard to detecting the largest
shape variances in the synthetic cohort.

• The kernel PCA delivers a more compact reduced model with less principal components
to depict 98% shape variability in the cohort than the linear PCA.

• The linear PCA achieves a higher accuracy with regard to the generalization error assessed
by LOOCV. The accuracy is almost twice that of kernel PCA.

Depending on the goal of the shape analysis and on the available data structure, linear or kernel
PCA can be used, respectively. Both methods have proven to be beneficial and functioning cor-
rectly.

In the next chapter, linear and kernel PCA are applied to the real patient-specific AAA cohort to
determine the shape variability and obtain the associated shape descriptors. A favourable method
is then discussed for the cohort.
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7. Shape analysis of AAAs
In this chapter, the shape descriptors of the patient-specific AAA shapes are extracted by em-
ploying the presented statistical methods in chapter 6, namely the linear and kernel PCA. Also,
the shape variability in the examined AAA cohort is assessed, leading to an elementary interpre-
tation of the acquired shape descriptors.
The chapter starts with the prior handling of the available data for statistical analysis.

7.1. Data handling
The data in this chapter consist of the resulting initial momenta (µ?

0
, v?

0 ) for parameters �V =
�W = 20.0 mm that are generated in chapter 4 for all AAA shapes in the examined cohort in
chapter 1.

In this section, these initial momenta (µ?
0
, v?

0 ) are examined more closely with respect to the
subsequent statistical analysis, followed by the outlier detection.

7.2. Outlier detection
As described in subsection 6.1.3, both principal component methods are sensitive to outliers.
For detecting the outliers of µ?

0
2 V?⇤ for linear PCA or v?

0 2 V? for kernel PCA, the Ma-
halanobis distance for multivariate outlier detection is consequently employed as introduced in
subsection 6.1.3.

For linear PCA, the outlier detection on µ?
0
2 V?⇤ delivers three outliers, namely cases no.

20, 46 and 129, that lie beyond of the three standard deviation window.
For kernel PCA, the outlier detection on v?

0 2 V? does not deliver any observations beyond the
three standard deviation window.

7.3. Principal component analysis
In the context of patient-specific AAA cases, linear PCA is regarded as a data-based method,
while kernel PCA represents a patient-based approach, since the comparison in the kernel PCA
is based on the patients. In the following, these two approaches are followed to extract the shape
descriptors from initial momenta (µ?

0
, v?

0 ).
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7.3.1. Linear principal component analysis
The linear PCA is performed without the identified outliers, generating 76 principal components
to describe 98 % of the cohort’s shape variability for parameters �V = �W = 20.0 mm.

Modes

The first ten eigenvalues in descending order are �1 = 6.79, �2 = 5.04, �3 = 3.78, �4 =
3.14, �5 = 2.67, �6 = 2.31, �7 = 2.11, �8 = 1.88, �9 = 1.64 and �10 = 1.52. The corre-
sponding modes m are visualized in Figure 7.3.1. The visualization is achieved with geodesic
shooting according to subsection 6.1.4.

Accuracy

Accordingly, the resulting shape vector s of a patient-specific AAA in the cohort consists of 76
shape descriptors. Every shape descriptor is calculated according to Equation 6.1.11 by project-
ing the associated initial momenta vector field µ?

0
onto the respective principal component m.

The reduced model is three-dimensional and the shape vector is s 2 R76.
The reconstruction accuracy in the reduced model is retrieved with Equation 6.1.12 where the
approximated initial momenta vector field µ̃?

0
is reconstructed from the associated shape vector

s. With this reconstructed µ̃?
0

, a geodesic shooting is performed to generate the approximated
shape T̃ . The complementing translational vector ⌧ resulting from the registration step is em-
ployed in the geodesic shooting.
For this cohort and this parameter choice, the linear PCA achieves a shape reconstruction accu-
racy of average values

closest� node distance d̄cn : 0.748 mm,

dnorm
W : 0.261.

Reconstruction results with linear PCA are visualized in Figure 7.3.2 with node-wise dcn dis-
tances measured with the L2 norm.

7.3.2. Kernel principal component analysis
The kernel PCA generates 39 principal components to describe 98 % of the cohort’s shape vari-
ability for parameters �V = �W = 20.0 mm.

Modes

The first ten eigenvalues in descending order are �1 = 1.37 · 105, �2 = 7.85 · 104, �3 = 5.44 ·
104, �4 = 5.09 · 104, �5 = 3.60 · 104, �6 = 2.85 · 104, �7 = 1.83 · 104, �8 = 1.71 · 104, �9 =
1.65 · 104 and �10 = 1.16 · 104. The corresponding modes m are visualized in Figure 7.3.3. The
visualization is achieved with geodesic shooting according to subsection 6.1.4.
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�2
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�5 �6
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Figure 7.3.1.: First eight principal modes of real AAA cohort extracted with linear PCA, rep-
resenting the shape variability with an accuracy of 98 %. For one eigenvalue �
in the Figure, the left shape represents the component m+, the right shape m� of
Equation 6.1.14.
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Figure 7.3.2.: Visualization of some reconstructed shapes T̃ in the reduced model generated with
linear PCA, with the same shapes as in Figure 4.2.9. The displayed reconstruction
accuracy is given with the node-wise distance dcn in mm. The distance is measured
between the reconstructed shape T̃ and the associated original shape T . The shapes
are displayed in the coronal view.
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Figure 7.3.3.: First eight principal modes of real AAA cohort extracted with kernel PCA, rep-
resenting the shape variability with an accuracy of 98 %. For one eigenvalue �
in the Figure, the left shape represents the component m+, the right shape m� of
Equation 6.1.14.
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Table 7.1.: The generalization error of the reduced systems generated by linear and kernel PCA
on the initial momenta of AAA shape cohort. The error is computed between the re-
constructed and original AAA shapes in an LOOCV approach, using once the closest-
node distance d̄cn with the L2 norm and once the normalized similarity measure dnorm

W .
The displayed values represent the average for each measurement method over the
examined AAA shapes.

Linear PCA Kernel PCA
closest� node distance d̄cn [mm] 1.51 3.41
dnorm
W [-] 0.251 0.373

Accuracy

Accordingly, the resulting shape vector s of a patient-specific AAA in the cohort consists of 39
shape descriptors. Every shape descriptor is calculated according to Equation 6.1.11 by project-
ing the associated initial momenta vector field µ?

0
onto the respective principal component m.

The reduced model is three-dimensional and the shape vector is s 2 R39.
The reconstruction accuracy in the reduced model is retrieved with Equation 6.1.12 where the
approximated initial momenta vector field µ̃?

0
is reconstructed from the associated shape vector

s. With this reconstructed µ̃?
0

, a geodesic shooting is performed to generate the approximated
shape T̃ . Also here, the complementing translational vector ⌧ resulting from the registration step
is employed in the geodesic shooting
For this cohort and this parameter choice, the kernel PCA achieves a shape reconstruction accu-
racy of average

closest� node distance d̄cn : 3.196 mm,

dnorm
W : 0.407,

calculated over all AAA shapes. Reconstruction results with kernel PCA are visualized in Fig-
ure 7.3.4 with node-wise dcn distances measured with the L2 norm.

7.4. Evaluation of statistical model
As described in subsection 5.1.3 and as employed for the synthetic cohort in section 6.3, the
quality of the reduced system is determined amongst others by the generalization error. The er-
ror is evaluated with the LOOCV approach. Table 7.1 shows the error for the linear and kernel
PCA. Therein, for every method, the generalization error is computed between reconstructed and
original AAA shapes in a LOOCV approach, once with the closest-node distance dcn with the
L2 norm and once with normalized similarity measure dnorm

W . The displayed values represent the
average for each measurement method over all examined AAA shapes.

The quality of the reduced systems can be also assessed with the compactness. As for the syn-
thetic cohort, the compactness is given by the number of modes necessary to capture a certain
variability in the cohort. For capturing 98% variability, the linear PCA generates 76 principal
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Figure 7.3.4.: Visualization of some reconstructed shapes T̃ in the reduced model generated with
kernel PCA, with the same shapes as in Figure 4.2.9. The displayed reconstruction
accuracy is given with the node-wise distance dcn in mm. The distance is measured
between the reconstructed shape T̃ and the associated original shape T . The shapes
are displayed in the coronal view.
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components, while the kernel PCA requires only 39 principal components.
Consequently, kernel PCA generates a more compact reduced model with higher inaccuracy,
while linear PCA produces a higher dimensional reduced model but with superior accuracy.

7.5. Summary
In this chapter, a statistical analysis is conducted on the registration parameters µ?

0
of the non-

rigid space V? for the patient-specific AAA cohort presented in chapter 1. The statistical analysis
is performed once with the linear PCA and once with the kernel PCA method. The outcome of
each method is a reduced order system constructed with the identified principal modes. The reg-
istration parameters µ?

0
are mapped onto these principal modes, resulting in shape vectors s of

AAA shapes with regard to the reduced system. A shape vector s represents the associated µ?
0

and thus the associated AAA abluminal shape.

The quality of the reduced order systems of the linear and kernel PCA differ in the number
of necessary principal modes and the accuracy of the reduced representations of µ?

0
and the as-

sociated shapes. The accuracy is determined by comparing the reconstructed shape from the re-
duced representation to the original AAA shapes. Linear PCA requires 76 principal components
to describe 98% of shape variability, while kernel PCA requires only 39 principal components.
However, the linear PCA produces a more accurate reduced representation of the AAA shapes.
These results are discussed in detail in section 8.2.
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8. Discussion
In this chapter, the results achieved in the present work are discussed. The discussion includes

• discussion of the modular registration method,

• discussion of its application to the examined AAA cohort,

• discussion of the application of statistical methods, specifically linear and kernel PCA, to
the acquired registration parameters of the examined AAA abluminal shapes.

8.1. Modular registration method (Part I)
The formulation and implementation of the novel modular registration method in chapter 3 per-
form as expected and fullfill the requirements of the two-space registration. The resulting regis-
tration parameterizations in the rigid and non-rigid components are generated correctly accord-
ing to the characteristics of the two spaces.

Regarding the accuracy for both the synthetic AAA cohort and the patient-specific AAA cohort,
the method delivers an accurate representation of the original shapes with an overall average er-
ror of only 0.52 mm for the patient-specific AAA cohort. It is important to note that the method
parameters �W and �V contribute to the method accuracy. In this work, they represent the pair
which produces the best accuracy within an interval of pairs deemed to be reasonable for the
mesh size and shape sizes. A more convenient and consistent approach could be to include these
parameters in the optimization process by minimizing the following cost function

J(�W , �V , M?
0 , T ) =

NX

i

k'µ?
0,i

1 (S)� Tik2W⇤ + �E ·
NX

i

kv?
0,ik2V? (8.1.1)

with regard to the method parameters �W and �V , to the N non-rigid registration parameters µ?
0

summarized in the matrix M?
0 2 RN⇥3n

x and the N rigid registration parameters ⌧ i summarized
in T 2 RN⇥3n

x , with N being the number of shapes and nx the number of vertices of the trian-
gular mesh of the reference shape.

In this spirit, Equation 8.1.1 can be reformulated to

J(Dcyl, Hcyl, M
?
0 , T ) =

NX

i

k'µ?
0,i

1 (S)� Tik2W⇤ + �E ·
NX

i

kv?
0,ik2V? (8.1.2)

where the minimization takes place with regard to Dcyl and Hcyl, the diameter and height of the
cylindrical reference geometry. In so doing, a mean cylindrical shape can be estimated for the
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underlying cohort which energetically lies closer to the mean non-rigid transformation energy of
all shapes in the cohort. This would lead to a more even distribution of the energy in the resulting
µ?
0

of cohort shapes and might reduce the peaks in the statistical analysis.

The algorithmic implementation and performance were achieved by using PyKeops in Python.
The gradient descent scheme also succeeded in finding the optimal registration parameters µ?

0
and ⌧ for all AAA shapes in the cohort for method parameters �W = �V = 20 mm.

AAA discussion
As mentioned above, the application of the modular registration method to the patient-specific
AAA shapes yields accurate registration results. The most inaccuracies are located at the in- and
outlet boundaries (see subsection 4.2.2). This behaviour is due to the nature of the registered
structures.
Due to the great variability in the cohort shapes and the strongly varying sizes of the AAA
shapes, the accuracy varies among the individual AAA shapes for the selected parameter pairs
�W = �V = 20 mm. However, for the sake of consistency in the subsequent statistical analysis,
the method parameters �W = �V = 20 mmmust be the same for the entire examined cohort, as
otherwise the statistical analysis cannot be performed.
An idea here, would be to divide the cohort into groups based on the volume for instance, to then
choose appropriate method parameters �W and �V and to then conduct the statistical anylsis sep-
arately on the groups.
An outlier detection at this point would be reasonable, too. However, for the statistical analysis,
the relevant parameters to determine outliers are the non-rigid µ?

0
or v?

0 . An outlier detection at
this point would be premature in this case.

In general, applying the method to the patient-specific cohort does not require any special char-
acteristics of the cohort shapes, making the method applicable and functional for other shape
types.

8.2. Statistical analysis (Part II)
The statistical analysis which covers the second part of the work at hand focuses on the principal
component analysis (PCA) method in two different forms: the linear or classic form and the ker-
nel form. These two methods are applied separately on the acquired patient-specific non-rigid
registration parameters µ?

0
of the cohort, producing dimensionally reduced systems for their de-

scription. The representation of every µ?
0

in the reduced system provides the shape descriptors
for the associated AAA shape.

For the synthetic AAA cohort, both methods behave as expected: The principal modes gen-
erated by linear and kernel PCA capture the shape variability in the synthetic cohort, which
were basically two main shape features: the length of the neck and the maximum diameter. Due
to the construction mechanism of the synthetic shapes, some implicit shape features occurred in
the cohort when varying the two main features. These were also captured in the prinicipal modes.
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As expected, the kernel PCA generates fewer principal modes than the linear PCA, for the same
required 98% of shape variability to be captured and is hence more compact than the linear PCA.
To that end, some features are represented with one mode.
With regard to the generalization error, linear and kernel PCA achieve a good generalization
with their reduced systems. Additionally, they possess the same reconstruction accuracy which
is high.
Subsequently, both methods are validated and prove the usability of the non-rigid registration
parameters as intended; the non-rigid parameters contain the information which is needed for
the statistical analysis. The employed statistical methods can detect the shape variability and
necessary information in the non-rigid parameters. The non-rigid parameters are therefore an
appropriate basis for the intended shape analysis.

AAA discussion
In the same manner, the linear and kernel PCA were applied to the non-rigid registration param-
eters µ?

0
of the 142 patient-specific AAA shapes in the examined cohort. Also here, as expected,

the kernel PCA achieves a greater compactness than the linear PCA - however, with great losses
regarding generalization. Unlike for the synthetic cohort, the linear and kernel PCA generate
reduced systems with different generalization abilities for the patient-specific AAA cohort, par-
ticularly in terms of reconstruction error. The relatively poor performance of the kernel PCA in
this application can be traced back to the following facts:

• In the patient-specific AAA cohort, the shapes which are encoded with the registration
parameter v?

0 differ more than in the synthetic cohort where the kernel PCA performed
well. Thus, it might be that the large shape differences in the patient-specific AAA cohort
reduced the performance of the kernel PCA.

• It is also possible that the selected reconstruction algorithm in Equation 6.1.12 does not ac-
curately reconstruct the original data from their representations in the higher-dimensional
space. The reconstruction challenge for kernel PCA was highlighted in subsection 5.1.2.
Hence, for a more accurate mapping, solving an optimization problem like described in
Equation 5.1.19 would have been more beneficial.

• Another reason for the poor performance of kernel PCA is possibly the smoothing na-
ture of the used Gaussian kernel. In particular, the Gaussian kernel determines the scalar
product which is built to construct the gram matrix G in Equation 5.1.15 using the ini-
tial velocity vector fields v?

0 (see Equation 6.1.6). Subsequently, the scalar product has a
smoothing character such that crucial shape features might be eradicated with the scalar
product.

Still, depending on the intended application of the shape descriptors, it could be the case that the
kernel PCA delivers the neccessary accuracy. There is always a trade-off between dimensionality
of the shape vector and the accuracy.

So, the linear PCA delivers 76 principal modes to describe the AAA shapes with an overall
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accuracy of 1.51 mm. The identified modes in the cohort depict and combine the maximum
diameter, curvature, asymmetry and many other geometric features. An extensive correlation
analysis should be performed in order to understand the nature of the modes and what geometric
feature each shape descriptor represents.
Since the rigid component of the registration method only comprises rigid translations, rigid ro-
tations can be identified in the modes structure, as expected. However, for the shape analysis of
other anatomical regions, the incorporation of rigid rotations in the rigid component could be
added.
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9. Conclusions and outlook
In this work, the following contributions are achieved:

• A modular matching method extends the widely used LDDMM framework for anatomical
shape analysis. The method constitutes two transformation modules in two perpendicular
spaces and separates hence non-rigid and rigid translational transformations.

• A consistent and expedient preparation of the patient-specific AAA abluminal shapes is
demonstrated for shape analysis.

• Two methods for statistical shape analysis are elaborated, namely the linear and kernel
PCA. These methods are applied to the patient-specific AAA cohort, generating reduced
systems. The AAA shape representation in these reduced systems delivers the required
shape descriptors.

• The principal modes of the linear and kernel PCA reduced systems are visualized, giving
a first impression as to the shape variability in the AAA cohort.

The introduced modular registration method is used in this work to acquire the initial momenta
for the subsequent statistical analysis. The method could be also integrated into growth analysis
and prediction, extending these biomechanical models.

In further works, the acquired shape descriptors should be employed for rupture risk prediction
and for wall parameter estimation for biomechanical modeling. For the rupture risk prediction,
a correlation analysis should be performed to identify existing relations between the shape de-
scriptors and the rupture risk. It must however be noted that this is just a cross-sectional cohort
and it does not represent AAA formation over time. Thus, it is not known when the AAA rup-
tured after the anatomical image was taken.
With regard to the wall parameter estimation, the shape descriptors could be integrated in the
Gaussian process, for instance instead of the concrete geometric features.

It would be also interesting to create synthetic AAA shapes based on combinations of the princi-
pal modes, create biomechanical models from the resulting shapes with consistent wall thickness
and wall properties and then compute the PWS (peak wall stress). The analysis of the relation
between the PWS and the principal modes could indicate relevant shape modes with regard to
rupture risk estimation.
The generated reduced system could be used for segmentation purposes: The principal modes of
the reduced system are constant and the shape descriptors are optimized to minimize a similarity
measure on the medical images.
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9. Conclusions and outlook

Other statistical methods are partial least squares regression (PLS regression) and canonical-
correlation analysis (CCA) could be also applied to the initial momenta. These methods would
select the modes that are relevant for an incident or a change in the clinical values directly.

Finally, the registration method and the statistical analysis could be integrated in a clinical work-
flow, as the computation times and power are minimal and can substitute a cumbersome and
imprecise estimation of concrete geometrical features. It may also be possible to apply the novel
registration method directly to medical images to match 2D images or even 3D volumes. In such
situations, finding an initial position for the target and the source is crucial. With the developed
registration method, this dilemma is solved.
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A. Registration results
In this table, the registration results for the chosen parameter pair �W = �V = 20 mm are pre-
sented for all the N = 142 AAA abluminal surfaces in the cohort. To that end, the cylindrical
surface S of Figure 4.2.1 is mapped to every AAA abluminal shape T with the novel modular
registration method in the two orthogonal spaces. The trade-off parameter �E is 0.0001.

Herein, the registration results are represented with three parameters: the normalized similar-
ity measure dnorm

W , the path energy kv?
0 k2V? [mm

s
] and the average of the closest-node distances

d̄cn [mm] measured with the L2 norm.
The parameters dnorm

W and d̄cn are measured between the deformed cylindrical surface '
v?
0

1 (S) at
t = 1 and the original AAA abluminal surface T .

Table A.1.: The registration results for parameter pair �W = �V = 20 mm for all N = 142 target
AAA surfaces. The registration results include the normalized similarity measure
dnorm
W , the path energy kv?

0 k2V? [mm
s

] and the average of the closest-node distances d̄cn

[mm].
n dnorm

W kv?
0 k2V? d̄cn

1 0.0005 1857.1786 4.23E-01
2 0.0002 4674.3374 4.80E-01
3 0.0002 6295.234 4.61E-01
4 0.0002 2977.1545 4.20E-01
5 0.0006 4349.9243 5.39E-01
6 0.0002 5487.911 5.46E-01
7 0.0007 4287.4497 5.55E-01
8 0.0008 2764.2778 6.05E-01
9 0.0002 4127.046 4.36E-01

10 0.0003 3202.953 5.30E-01
11 0.0003 3066.1338 4.50E-01
12 0.0003 13533.792 5.10E-01
13 0.0002 2538.6868 3.84E-01
14 0.0001 3166.5942 4.17E-01
15 0.0002 8790.074 5.08E-01
16 0.0001 7895.1694 4.25E-01
17 0.0005 3550.0007 5.18E-01
18 0.0003 7416.2466 4.96E-01
19 0.0003 9445.762 5.78E-01
20 0.0001 18836.59 4.51E-01
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A. Registration results

n dnorm
W kv?

0 k2V? d̄cn

21 0.0002 5490.1084 4.13E-01
22 0.0003 4754.5327 5.16E-01
23 0.0002 3908.5288 4.64E-01
24 0.0001 6483.382 4.83E-01
25 0.0003 6679.295 4.69E-01
26 0.0002 3148.4885 4.55E-01
27 0.0001 5114.35 3.97E-01
28 0.0001 4199.453 4.49E-01
29 0.0001 18463.826 4.59E-01
30 0.0003 6067.6514 5.45E-01
31 0.0002 2647.4822 6.11E-01
32 0.0003 4096.875 4.20E-01
33 0.0005 8703.496 6.65E-01
34 0.0001 13003.618 6.39E-01
35 0.0001 2103.994 4.87E-01
36 0.0005 3896.1658 6.09E-01
37 0.0002 6984.037 4.28E-01
38 0.0002 1934.488 4.84E-01
39 0.0003 14521.733 6.13E-01
40 0.0002 12969.447 5.27E-01
41 0.0003 5179.352 5.03E-01
42 0.0001 2555.163 4.60E-01
43 0.0004 2700.0217 4.61E-01
44 0.0002 3741.8235 4.34E-01
45 0.0005 13493.472 1.44E+00
46 0.0003 13958.307 4.48E-01
47 0.0003 4061.6956 4.23E-01
48 0.0003 6149.7637 4.59E-01
49 0.0001 1849.1351 3.81E-01
50 0.0001 2716.1658 4.57E-01
51 0.0002 9017.605 6.04E-01
52 0.0002 3442.1333 5.80E-01
53 0.0002 16856.232 4.74E-01
54 0.0002 12922.504 5.66E-01
55 0.0002 6917.2583 4.16E-01
56 0.0002 17261.207 4.76E-01
57 0.0004 6408.51 4.75E-01
58 0.0001 11431.021 4.70E-01
59 0.0002 8804.433 4.74E-01
60 0.0002 8683.068 5.22E-01
61 0.0002 14125.154 4.25E-01
62 0.0002 3226.8723 4.39E-01
63 0.0002 6881.6147 3.97E-01
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A. Registration results

n dnorm
W kv?

0 k2V? d̄cn

64 0.0002 2103.9912 4.37E-01
65 0.0005 3486.5996 5.68E-01
66 0.0003 3430.366 4.71E-01
67 0.0002 5131.1445 4.94E-01
68 0.0002 11016.881 4.72E-01
69 0.0002 7360.4136 4.93E-01
70 0.0003 16522.29 1.29E+00
71 0.0002 6276.3794 4.38E-01
72 0.0003 2559.6465 4.56E-01
73 0.0004 4008.432 5.44E-01
74 0.0003 9409.031 4.64E-01
75 0.0002 13257.532 4.65E-01
76 0.0002 16591.016 4.18E-01
77 0.0003 7372.486 5.31E-01
78 0.0002 7300.357 5.03E-01
79 0.0003 3475.2126 4.41E-01
80 0.0004 8244.989 5.03E-01
81 0.0001 13207.685 4.13E-01
82 0.0008 10675.137 7.52E-01
83 0.0002 2808.5042 4.49E-01
84 0.0002 2676.56 4.93E-01
85 0.0003 13650.519 5.89E-01
86 0.0003 18052.262 5.48E-01
87 0.0002 6495.4897 4.22E-01
88 0.0002 4725.2554 4.24E-01
89 0.0002 3165.4175 5.65E-01
90 0.0001 5272.72 4.44E-01
91 0.0003 4590.854 4.93E-01
92 0.001 2107.8423 5.00E-01
93 0.0007 9508.215 6.75E-01
94 0.0001 13457.504 3.89E-01
95 0.0004 10532.513 6.07E-01
96 0.0002 5095.771 4.36E-01
97 0.0006 4438.778 6.05E-01
98 0.0005 5082.488 5.40E-01
99 0.0002 6585.152 4.66E-01
100 0.0001 10885.041 3.65E-01
101 0.0004 11591.346 6.09E-01
102 0.0003 3287.9587 4.46E-01
103 0.0001 18044.043 4.07E-01
104 0.0003 2496.918 4.63E-01
105 0.0002 7661.8115 6.38E-01
106 0.0001 13545.529 1.41E+00
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A. Registration results

n dnorm
W kv?

0 k2V? d̄cn

107 0.0003 14232.663 5.22E-01
108 0.0004 17817.475 5.48E-01
109 0.0002 4225.7236 3.87E-01
110 0.0001 8360.858 4.25E-01
111 0.0004 2374.5999 4.85E-01
112 0.0002 3691.1597 5.03E-01
113 0.0001 6185.8296 4.45E-01
114 0.0002 11109.864 5.17E-01
115 0.0002 9649.335 4.63E-01
116 0.0002 2834.7263 4.14E-01
117 0.0003 5087.6426 4.77E-01
118 0.0003 14271.812 9.20E-01
119 0.0003 14994.739 5.14E-01
120 0.0002 5164.3403 4.87E-01
121 0.0003 15163.254 5.39E-01
122 0.0002 2244.4788 4.94E-01
123 0.0001 20847.662 4.71E-01
124 0.0001 5155.613 4.18E-01
125 0.0002 5563.2515 5.65E-01
126 0.0003 9330.3 5.33E-01
127 0.0006 15995.216 1.35E+00
128 0.0004 4698.488 5.05E-01
129 0.0005 19610.809 6.54E-01
130 0.0002 7611.4243 5.26E-01
131 0.0004 18177.53 5.38E-01
132 0.0001 19342.562 4.36E-01
133 0.0002 5060.6035 3.86E-01
134 0.0006 5451.1694 6.59E-01
135 0.0002 10738.782 5.24E-01
136 0.0002 3115.562 4.56E-01
137 0.0002 6415.0044 4.35E-01
138 0.0001 5343.7085 4.41E-01
139 0.0003 4300.8477 5.50E-01
140 0.0002 6788.549 5.16E-01
141 0.0006 2279.511 5.08E-01
142 0.0005 10073.159 7.06E-01
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ical Assessment of Abdominal Aortic Aneurysm Rupture Risk based on its Geometric
Parameters 4, 404–408, 2011.

[190] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
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