
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

Efficient Implementation of Symbolic Controllers for
Cyber-Physical Systems

Mahmoud Khaled Mohamed Mahmoud

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Werner Hemmert

Prüfende der Dissertation:
1. Prof. Dr.-Ing. Martin Buss
2. Prof. Dr. Majid Zamani

Die Dissertation wurde am 13.04.2021 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
10.08.2021 angenommen.

This dissertation is dedicated to my wife Mona and my sons Youssef and
Younes.

iii

Acknowledgments

This dissertation is the result of the years of my doctoral research studies in the De-
partment of Electrical and Computer Engineering at the Technical University of Munich
(TUM), Germany. In this short note, I would like to take the opportunity and ac-
knowledge those people who supported me to make the completion of this dissertation
possible.

First and foremost, I would like to express my sincere gratitude to my advisor Prof.
Dr. Majid Zamani for his consistent support, encouragement, and generous advice
throughout these years. I would like to thank him for introducing me to this interesting
topic and guiding me through the whole research work.

Besides, I would also like to extend my sincere gratitude to Prof. Dr.-Ing./Univ. Tokio
Martin Buss for welcoming me to his research group in the Chair of Automatic Control
Engineering at the Technical University of Munich, Germany, since July 2019. I would
greatly appreciate all his generous help, support, and consideration during this time.

I would like to thank Prof. Dr. Murat Arcak for inviting me to his research group
during 2019 at the University of California, Berkeley, USA, and also to the fruitful
discussions with him during several meetings. My thanks also go to his former Ph.D.
student, Dr. Eric S. Kim, for the worthwhile discussions.

My deep thanks also go to the German Academic Exchange Service (DAAD), Ger-
many, and the Cultural Affairs and Missions Sector (CAM), Ministry of Higher Educa-
tion, Egypt, for supporting my Ph.D. studies through the German Egyptian Long-term
Research Program (GERLS), and for enabling such a remarkable interdisciplinary re-
search experience.

I also thank all of my colleagues at HyConSys Lab (www.hyconsys.com), and the co-
authors of the publications I took part in, for the fruitful discussions and enjoyable times
we shared during the last five years.

Finally, I would like to thank my parents, my brothers, and my sister for their enduring
support which brought me into the position of writing this thesis, and their sympathy
and understanding when I had hard times.

I also gratefully acknowledge the support I received from Intel, Amazon, NVIDIA, and
Xilinx. Many of the case studies reported in the thesis were run on hardware resources
provided through grants from them in the form of donated hardware platforms and/or
access to their remote computing platforms.

This work was also supported in part by the H2020 ERC Starting Grant AutoCPS
(grant agreement No. 804639).

M. Khaled
Munich, April 2021

v

www.hyconsys.com

Abstract

Cyber-Physical Systems (CPSs) are complex systems resulting from an intricate inter-
action of digital computational devices with physical systems. In safety-critical CPS,
a failure or malfunction may result in death/injury to people, loss/damage to equip-
ment/property, or environmental harm. Safety-Critical Control Software (SCCS) are
the main cores of safety-critical CPSs. They interface with multiple sensors, perform
control and planning tasks, and command the actuators to interact with the physical
environment.

SCCS are currently designed using approaches that may result into unsafe CPSs. Their
design requirements are not defined in a formal way which leaves a chance for ambiguity
and false specifications. The design/development phases of SCCS involve many human
factors which may result in faulty and buggy software. Additionally, traditional testing
phases leave many edge-cases undetected. Since any failure in any life-critical SCCS
can potentially cause death or injury to human lives, ensuring their correctness is very
important and new design approaches need to be investigated.

Symbolic control is a promising approach for designing automatically correct-by-
construction SCCS. Given models of CPS and formally-described design requirements,
symbolic control techniques design algorithmically certifiable controllers that enforce the
deign requirements on CPS. Unfortunately, symbolic control suffers from major issues
that hinder its application in today’s CPS: (1) the algorithms of symbolic control are
computationally complex which makes it limited to small-sized systems, (2) its current
implementations can only deal with simple design requirements, and finally (3) it has
no standard approach for extracting and implementing the designed controllers, which
leaves such critical task to ad-hoc techniques that may ruin the obtained correctness
guarantees.

In this thesis, we propose solutions to address the identified issues of symbolic control
and make it applicable to real-world CPS. We introduce data-parallel algorithms, which,
along with variable computing resources, allow controlling the computational complexity
of symbolic control. We then introduce an approach for handling specifications given as
automata on infinite strings allowing symbolic control to support much more practical
design requirements. We finally discuss the types of controllers resulting from the algo-
rithms introduced in the thesis, and introduce automated formal deployments of them.
The results of the thesis introduce a practical end-to-end framework for symbolic control
in the sense that, given high-level design requirements and models of systems, certifiable
deployments of controllers are automatically generated.

vii

Zusammenfassung

Cyber-Physical Systems (CPS) sind komplexe Systeme, die aus einer komplexen In-
teraktion digitaler Rechengeräte mit physischen Systemen resultieren. Bei sicherheit-
skritischen CPS kann ein Ausfall oder eine Fehlfunktion zum/zur Tod/Verletzung von
Personen, zum/zur Verlust/Beschädigung von Geräten oder zu Umweltschäden führen.
Sicherheitskritische Steuerungssoftware (SCCS) sind die Gehirne der sicherheitskritis-
cher CPS. Sie verbinden mehrere Sensoren, führen Steuerungs- und Planungsaufgaben
aus und befehlen den Aktuatoren, mit der physischen Umgebung zu interagieren.

SCCS werden derzeit unter Verwendung von Ansätzen entwickelt, die zu unsicheren
CPS führen. Ihre Entwurfsanforderungen sind nicht formal definiert, was zu Unklarheiten
und falschen Angaben führen kann. Die Entwurfs- / Entwicklungsphasen von SCCS bein-
halten viele menschliche Faktoren, was zu fehlerhafter und fehlerhafter Software führt.
Darüber hinaus lassen herkömmliche Testphasen viele Randfälle unentdeckt. Da ein
Ausfall eines lebenskritischen SCCS möglicherweise zum Tod oder zur Verletzung von
Menschen führen kann, ist es nicht tolerierbar, sicherzustellen, dass diese korrekt sind,
und es müssen neue Entwurfsansätze untersucht werden.

Die symbolische Steuerung ist ein vielversprechender Ansatz für das Entwerfen von
SCCS mit automatischer Konstruktionskorrektur. Angesichts von CPS-Modellen und
formal beschriebenen Entwurfsanforderungen entwerfen symbolische Steuerungsansätze
algorithmisch zertifizierbare Steuerungen, die die Entwurfsanforderungen an CPS durch-
setzen. Die Modelle werden verwendet, um Abstraktionen mit endlichen Zuständen zu
konstruieren, die wichtige Merkmale ursprünglicher Systeme erfassen. Unter Verwen-
dung von Ansätzen aus der Informatik wie ”Fixed-Point Operations” und ”Two-player
Games” werden formal korrekte Controller algorithmisch entworfen, um die Entwurfsan-
forderungen durchzusetzen. Die symbolische Steuerung weist drei Hauptprobleme auf,
die verhindern, dass sie zum Entwerfen des SCCS des heutigen CPS verwendet wird: (1)
Die Algorithmen der symbolischen Steuerung sind rechnerisch komplex, wodurch sie auf
kleine Systeme beschränkt ist, (2) ihre aktuellen Implementierungen können befassen sich
nur mit einfachen Spezifikationen, und (3) es gibt keinen einheitlichen Standardansatz
zum Extrahieren der entworfenen Controller und zum Generieren ihrer Bereitstellungen.

In dieser Doktorarbeit befassen wir uns mit den drei identifizierten Problemen der
symbolischen Kontrolle, um sie in realen Anwendungen verwendbar zu machen. Wir
führen datenparallele Algorithmen ein, die zusammen mit variablen Rechenressourcen
die Steuerung der Rechenkomplexität der symbolischen Steuerung ermöglichen. Wir
haben auch einen Ansatz der symbolischen Steuerung eingeführt, der Spezifikationen
verarbeiten kann, die als Automaten für unendliche Zeichenfolgen angegeben werden, so-
dass die symbolische Steuerung wesentlich praktischere Entwurfsanforderungen erfüllen
kann. Wir diskutieren schließlich die Arten von Controllern, die sich aus den in der

ix

Zusammenfassung

Doktorarbeit vorgestellten Algorithmen ergeben, und führen formale Bereitstellungen
für sie ein. Die Ergebnisse der Arbeit führen zusammen ein praktisches ”End-to-End
Framework” für die symbolische Steuerung in dem Sinne ein, dass angesichts der prak-
tischen Anforderungen und der Modelle von Systemen zertifizierbare Bereitstellungen
von Steuerungen automatisch generiert werden.

x

List of Publications

Patents

1. M. Khaled and M. Zamani. Distributed Automated Synthesis Of Correct-by-construction
Controllers. Patent Nr. EP3633468A1. European Patent Office (EPO). April 2020.

2. M. Khaled and M. Zamani, Distributed Automated Synthesis Of Correct-by-construction
Controllers. Patent Nr. WO2020070206. World Intellectual Property Organization (WIPO).
April 2020.

Journal Papers

1. M. Khaled, K. Zhang, and M. Zamani. Output-Feedback Symbolic Control. IEEE
Transactions on Automatic Control. Submitted for publication.

2. M. Khaled and M. Zamani, Cloud-Ready Acceleration of Formal Method Techniques for
Cyber-Physical Systems. IEEE Design & Test. Oct. 2020.

3. M. Zamani, M. Mazo Jr, M. Khaled, and A. Abate. Symbolic models for networked
control systems. IEEE Transactions on Control of Network Systems. Dec. 2018.

Conference Papers

1. M. Khaled and M. Zamani. OmegaThreads: Symbolic Control from ω-regular Specifica-
tions. 24th ACM International Conference on Hybrid Systems: Computation and Control
(HSCC 2021). (Accepted, to appear).

2. A. Abate, H. Blom, N. Cauchi, J. Delicaris,d A. Hartmanns, M. Khaled, A. Lavaei,
C. Pilch, A. Remke, S. Schupp, F. Shmarov, S. Soudjani, A. Vinod, B. Wooding, M.
Zamani, P. Zuliani. ARCH-COMP20 Category Report: Stochastic Models. 7th Interna-
tional Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20).
Sep. 2020.

3. A. Lavei1, M. Khaled1, S. Soudjani, M. Zamani. AMYTISS: Parallelized Automated
Controller Synthesis for Large-Scale Stochastic Systems. 32nd Conference on Computer
Aided Verification (CAV 2020). July 2020. (Acceptance rate: 27%).

4. A. Devonport1, M. Khaled1, M. Arcak, M. Zamani. PIRK: Scalable Interval Reachability
Analysis for High-Dimensional Nonlinear Systems. 32nd Conference on Computer Aided
Verification (CAV 2020). July 2020. (Acceptance rate: 27%).

5. M. Khaled, E. S. Kim, M. Arcak, M. Zamani. Synthesis of Symbolic Controllers: A
Parallelized and Sparsity-Aware Approach. 25th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). April 2019. (Accep-
tance rate: 31%).

1Both authors have contributed equally.

xi

List of Publications

6. M. Khaled and M. Zamani. pFaces: An Acceleration Ecosystem for Symbolic Control.
22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC
2019). April 2019.

7. M. Khaled, M. Rungger, and M. Zamani. SENSE: Abstraction-Based Synthesis of Net-
worked Control Systems. 1st International Workshop on Methods and Tools for Rigorous
System Design (MeTRiD 2018). April 2018.

8. M. Khaled, M. Rungger, M. Zamani. Symbolic models of networked control systems: A
feedback refinement relation approach. The 54th Annual Allerton Conference on Commu-
nication, Control, and Computing. Sept. 2016.

Posters

1. M. Khaled, M. Zamani. Poster: OmegaThreads: Symbolic Control from ω-regular Spec-
ifications. 24th ACM International Conference on Hybrid Systems: Computation and
Control (HSCC 2021). (Accepted, to appear).

2. A. Lavaei1, M. Khaled1, S. Soudjani, M. Zamani. AMYTISS: A Parallelized Tool on Au-
tomated Controller Synthesis for Large-Scale Stochastic Systems. 23rd ACM International
Conference on Hybrid Systems: Computation and Control (HSCC 2020). April 2020.

3. M. Khaled, E. Kim, M. Arcak, M. Zamani. Synthesis of Symbolic Controllers: A Paral-
lelized and Sparsity-Aware Approach. European Joint Conferences on Theory and Practice
of Software (ETAPS 2019). April 2019.

4. E. Kim, M. Khaled, M. Zamani, Major, Arcak, Murat. Major Computational Break-
throughs in the Synthesis of Symbolic Controllers via Decomposed Algorithms. 21st ACM
International Conference on Hybrid Systems: Computation and Control (HSCC 2018)
April 2018.

5. M. Khaled, M. Rungger, M. Zamani, Symbolic Models of Networked Control Systems.
NET-CPS 2016: International Symposium on Networked Cyber-Physical Systems. Septem-
ber 2016.

1Both authors have contributed equally.

xii

Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

List of Publications xi

Contents xiii

List of Figures xvii

Acronyms xix

1 Introduction 3
1.1 Promising Design Approach for SCCS . 6
1.2 Contributions . 9
1.3 Thesis Organization . 10

2 Preliminaries 13
2.1 Notations . 13
2.2 Mathematical Framework for Systems . 14

2.2.1 Composition of Systems . 15
2.3 Symbolic Models . 15

2.3.1 Control Systems . 16
2.3.2 Control Systems as Systems . 17
2.3.3 Symbolic Models of Control Systems 17

2.4 Symbolic Controller Synthesis . 18
2.4.1 Behaviors and Specifications . 18
2.4.2 Synthesis and Refinement of Symbolic Controllers 20

2.5 Limitations of Current Symbolic Control Techniques 21
2.5.1 The Curse of Dimensionality . 22
2.5.2 Impractical Specifications . 23
2.5.3 Ad-Hoc Deployments . 24

2.6 Summary . 24

3 A Framework for Designing Efficient Algorithms of Symbolic Control 25
3.1 High Performance Computing (HPC) . 25

xiii

CONTENTS

3.2 Ecosystem for Parallel Computing . 26

3.3 Hardware Configuration (HWC)-Level and Compute Node (CN)-Level
Accelerations . 28

3.3.1 Internal Design Structure . 29

3.3.2 Resource Management and Kernel Tuning 30

3.3.3 Managing Computation and Memory Resources 30

3.3.4 Modules for Supporting Kernel Development 31

3.3.5 Supporting Symbolic Control Approaches 31

3.4 Workflow of Kernels . 32

3.5 A Cloud-Ready Installation . 32

3.6 Summary . 33

4 Efficient Algorithms for Symbolic Control 35
4.1 Existing Implementations of Symbolic Control 35

4.2 Data-Parallel Algorithms for Symbolic Control 36

4.2.1 Data-Parallel Construction of Symbolic Models 36

4.2.2 Data-Parallel Synthesis of Symbolic Controllers 38

4.2.3 Memory-Efficient Kernels for Data-Parallel Symbolic Control . . . 39

4.2.4 Implementation Details . 39

4.2.5 Controlling Time Complexity of Symbolic Control Applications . . 43

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control 45

4.3.1 Sparsity of Discrete-Time Systems 46

4.3.2 Sparsity-Aware Distributed Constructions of Abstractions 48

4.3.3 Sparsity-Aware Distributed Synthesis of Symbolic Controllers . . . 51

4.3.4 Sparsity-Aware Data-Parallelism for Symbolic Controller Synthesis 55

4.3.5 Case Study: Autonomous Vehicle Avoiding Crash on Highway . . 56

4.4 Summary . 57

5 Efficient Algorithms for the Computation of Reachable Sets 59
5.1 Approximations of Reachable Sets . 59

5.2 Interval Reachability Analysis . 60

5.2.1 Contraction/Growth Bound (GB) Method 62

5.2.2 Continuous-Time Mixed-Monotonicity (CTMM) Method 62

5.2.3 Monte Carlo (MC) Method . 62

5.3 Data-Parallel Algorithms for Computing Interval Reachable Sets 63

5.3.1 Data-Parallel Runge-Kutta Scheme 64

5.3.2 Parallelizing Interval Reachability Methods 65

5.4 Case Studies . 66

5.4.1 Multi-Link Road Traffic Model . 67

5.4.2 Quadrotor Swarm . 69

5.4.3 Quadrotor Swarm with Artificial Potential Field 69

5.4.4 Heat Diffusion . 71

5.4.5 Overtaking Maneuver on Highway 72

5.4.6 Performance on ARCH Benchmarks 73

xiv

CONTENTS

5.5 Summary . 73

6 Efficient Algorithms for Stochastic Symbolic Control 75
6.1 Discrete-Time Stochastic Control Systems (dt-SCS) 76

6.2 Markov Decision Processes (MDPs) as Symbolic Models 77

6.3 Parallel Construction of Finite MDPs . 79

6.3.1 Data-Parallel Threads for Computing Transitions 80

6.3.2 Less Memory for Post States in the Transitions 80

6.3.3 Less Memory for Handing Disturbances of Dynamics 81

6.3.4 Data-Parallel Algorithm for Constructing MDPs 82

6.4 Data-Parallel Synthesis of Symbolic Controllers 84

6.4.1 On-the-Fly Construction of Transitions 86

6.4.2 Supporting Multiplicative Noises and Practical Distributions . . . 86

6.5 Illustrative Examples . 88

6.5.1 Synthesis of a Safety Controller . 88

6.5.2 Synthesis of a Reach-Avoid Controller 90

6.6 Benchmarking and Case Studies . 90

6.6.1 Controlling Computational Complexities of Stochastic Applications 90

6.6.2 Room Temperature Network . 93

6.6.3 Road Traffic Network . 94

6.6.4 Autonomous Vehicle . 95

6.6.5 Benchmarking Against Most Recent State-of-the-art Tool 96

6.7 Summary . 97

7 Supporting Practical Design Requirements 99
7.1 Specifications and Control Problems . 100

7.2 Specifications as Automata on Infinite Strings 100

7.3 Construction of Parity Games and Symbolic Controller Synthesis 101

7.4 Implementation Details . 103

7.4.1 Submitting Control Problems . 104

7.4.2 Synthesizing Symbolic Controllers 106

7.4.3 Collecting Results and Simulations 106

7.5 Examples . 109

7.5.1 Motion Planning for Autonomous Vehicles 109

7.5.2 Pickup-Delivery Drone on Battery 110

7.6 Summary . 112

8 Standardized Implementations of Synthesized Symbolic Controllers 115
8.1 Types of Symbolic Controllers . 115

8.2 Formal Implementations of Static Symbolic Controllers 116

8.2.1 Look-Up-Tables (LUTs) . 116

8.2.1.1 Example Implementations: 117

8.2.2 Binary Decision Diagram (BDD)-encoded Symbolic Controllers . . 118

8.2.2.1 Example Implementations: 119

xv

CONTENTS

8.2.3 Boolean Functions as Control Laws 120
8.2.3.1 Example Hardware Implementation 121
8.2.3.2 Example Software Implementation 121

8.3 Formal Implementations of Dynamic Symbolic Controllers 121
8.4 Summary . 122

9 Conclusions and Future Works 123
9.1 Conclusions . 123
9.2 Strengths, Weaknesses and Limitations . 125
9.3 Recommendations for Future Works . 126

9.3.1 Memory-efficient Data-parallelism for Symbolic Control 127
9.3.2 User-Friendly Cloud-Application for Designing and Implementing

Parallel Algorithms . 127
9.3.3 Supporting Continuous-time Stochastic Control Systems 128
9.3.4 Supporting Output-based Control Systems 129
9.3.5 Stochastic Parity Games and Counter-strategy Analysis 129

Bibliography 131

xvi

List of Figures

1.1 Examples of safety-critical CPSs. Top left: a surgical robot, top right: an
autonomous vehicle, bottom left: a railway signaling and control system,
and bottom right: an insulin pump. Source: Wikipedia.com. License:
Creative Commons (CC). 3

1.2 The cockpit of Tesla Model 3 car consists of a single 15.4-inch touch screen
and a driving wheel. Source: piqsels.com. License: CC. 4

1.3 Uber’s self-driving car struck and killed a jaywalker, Tempe, Arizona,
2018. Source: ABC 15. 5

1.4 A waterfall model simplifying the development cycle of SCCS. 5

1.5 Controller synthesis for control systems based on symbolic models. . . . 8

1.6 A dependency map for the chapters of the thesis. 11

2.1 Symbolic control as an abstraction-refinement approach. 21

3.1 An example Cloud-based deployment of pFaces. 27

3.2 Screenshot from the web-based interface of pFaces. 28

3.3 (a) Internal structure of pFaces. (b) General workflow inside pFaces. . . 29

4.1 Workflow of the symbolic control kernel inside pFaces. 41

4.2 (a) A truck with N trailers. (b) real-time implementation of the kernel. . 44

4.3 The sparsity graph of the vehicle example as introduced in [GKA17]. . . . 46

4.4 An example task distributions for the data-parallel sparsity-aware ab-
straction. 49

4.5 Comparison between the serial and parallel algorithms for constructing
abstractions of a traffic network model by varying the dimensions. 50

4.6 A visualization of one arbitrary fixed-point iteration of the sparsity-aware
synthesis technique for a two-dimensional robot system. 53

4.7 The evolution of the fixed-point sets for the robot example by the end of
fixed-point iterations 5 (left side) and 228 (right side). 55

4.8 An autonomous vehicle trying to avoid a sudden obstacle on the highway. 56

5.1 Interval approximation of the flow pipe for the Van der Pol oscillator. . . 61

5.2 Speed test results for kernel PIRK. 68

5.3 Interval flow pipe approximating the behavior of the BMW 320i car. . . . 72

6.1 A 2-dimensional visualization of the cutting probability region. 80

xvii

LIST OF FIGURES

6.2 A 2-dimensional visualization of the cutting probability region after ap-
proximating the effect of Ŵ . 81

6.3 A visualization of transitions for one source state x := (0, 0) and input
ν := (0.7, 0.8) of the MDP approximating the robot example. 89

6.4 Repeated simulations of the closed-loop behavior of the robot under a
safety controller. 90

6.5 Different simulations of the closed-loop behavior of the robot example
under a reach-avoid controller. 91

6.6 Model of a road traffic network composed of 5 cells of 500 meters with 2
entries and 2 ways out. 94

7.1 A technique on symbolic control that supports ω-regular specifications. . . 101
7.2 Closed-loop simulation of the vehicle example captured once region target2

(blue rectangle) is reached. 108
7.3 Simulation of the drone example after 63 seconds as the drone starts a

charging task. 111

8.1 A LUT encoding controller Cq for system Sq. 116
8.2 An implementation of a LUT encoding controller Cq. 117
8.3 A BDD encoding a controller Cq for a symbolic model with |Xq| = 16 and

|Uq| = 4. 118
8.4 An implementation of a BDD encoding controller Cq. 119
8.5 A Boolean circuit of NU Boolean functions encoding a controller Cq. . . 120

xviii

Acronyms

AI Artificial Intelligence.
AMI Amazon Machine Image.
API Application Programming Interface.
ASR Alternating (Bi-)Simulation Relation.
AWS Amazon Web Services.

BDC Binary Coded Decimal.
BDD Binary Decision Diagram.
BFS Breadth First Search.

CC Creative Commons.
CN Compute Node.
CoD Curse of Dimensionality.
CoG Center of Gravity.
CPS Cyber-Physical System.
CPU Central Processing Unit.
CU Compute Unit.

DNF Disjunctive Normal Form.
DNS Domain Name System.
DPA Deterministic Parity Automata.
dt-SCS Discrete-time Stochastic Control System.

EC2 Elastic Computing.

FLTS Finite Labeled Transition System.
FPGA Field Programmable Gate Array.
FRR Feedback Refinement Relation.

GBFP Growth-Bound and Fixed-Point.
GPGPU General Purpose GPU.
GPU Graphics Processing Unit.
GR(1) General Reactivity (1).

HDL Hardware Description Language.
HPC High-Performance Computing.

xix

Acronyms

HW Hardware.
HWA Hardware Accelerator.
HWC Hardware Configuration.

IDE Integrated Development Environment.
IoR Internet-of-Robots.
IoT Internet-of-Things.

LTI Linear Time-Invariant.
LTL Linear Temporal Logic.
LUT Lookup Table.

MCAS Maneuvering Characteristics Augmentation System.
MDP Markov Decision Process.
MemGBFP Memory-Efficient GBFP.
MPI Message Passing Interface.
MTL Metric Temporal Logic.

OARS Over-Approximation of the Reachable Set.
ODE Ordinary Differential Equation.
OS Operating System.

PC Personal Computer.
PDE Partial Differential Equation.
PDF Probability Density Function.
PE Processing Element.
PRAM Parallel Random Access Memory.

RAM Random Access Memory.
RDS Relational Database Service.
RESTful Representational State Transfer.
RHS Right-Hand Side.

SaaS Software as a Service.
SCCS Safety-Critical Control Software.

xx

Acronyms

1

Acronyms

2

1 Introduction

CPSs are complex systems resulting from an intricate interaction of digital computational
devices with physical systems. Within CPSs, (embedded) control software monitors and
adjusts several physical variables, e.g. temperature, velocity, pressure, density, and so
on, through feedback loops where physical processes affect computation and vice versa
[Maj16, Ray16]. Safety-critical CPS is a class of CPSs where a failure or malfunction may
result in death/injury to people, loss/damage to equipment/property, or environmental
harm. Examples of safety-critical CPSs are airplanes, autonomous vehicles, and surgical
robots.

Figure 1.1: Examples of safety-critical CPSs. Top left: a surgical robot, top right: an au-
tonomous vehicle, bottom left: a railway signaling and control system, and bottom
right: an insulin pump. Source: Wikipedia.com. License: CC.

SCCS plays a significant role in safety-critical CPSs by interfacing with multiple sen-
sors, performing control and planning tasks, and commanding the actuators to interact
with the physical environment. A simple program with few lines of code and a complex
software library with a million lines of code are both considered SCCS if they take part

3

1 Introduction

Figure 1.2: The cockpit of Tesla Model 3 car consists of a single 15.4-inch touch screen and a
driving wheel. Source: piqsels.com. License: CC.

in safety-critical CPSs. Examples of SCCS are the embedded software in insulin pumps,
the autopilot software in autonomous vehicles, or the fly-by-wire software in airplanes.

SCCS is becoming more and more ubiquitous in many application domains including
automotive, aerospace, transportation systems, robotics, healthcare, etc. With the cur-
rent growing trend in computational devices, the designers of safety-critical CPSs tend to
use off-the-shelf computing devices to standardize system design and allow for software
reusability and maintainability. Many hardware components are consequently replaced
with software which eventually increases the complexity of SCCS. Consider for example
the user interface of the Tesla Model 3 car as depicted in Fig. 1.2. The single 15.4-inch
touch screen provides access to all the driving and infotainment functionalities of the car.
Such a minimalistic user interface is only the tip of the iceberg, and it hides underneath
a complex software design that communicates with hundreds of sensors, performs inten-
sive image processing and Artificial Intelligence (AI) computations, handles automated
driving/control tasks and provides this easy-to-use user interface. Although the user
interfaces of today’s SCCS are becoming more user-friendly and, in some cases, oversim-
plified, their internal designs are unfortunately becoming more complex and error-prone.
This is anticipated because every application has an inherent amount of complexity that
cannot be removed or hidden [Yab20, Tesler’s Law].

As SCCS becomes more complex internally, there are increasingly higher possibilities
of faults or failures, and consequently fatalities, injuries, or at least, less trust from the
community. Since the current designs of SCCS are still based on ad-hoc solutions that
try to make connections between classical techniques of control theory and (embedded)
systems engineering, they are more vulnerable to software errors and bugs. Two re-

4

Figure 1.3: Uber’s self-driving car struck and killed a jaywalker, Tempe, Arizona, 2018. Source:
ABC 15.

cent examples show how devastating the failures of SCCS can be: (1) in 2018, Uber’s
self-driving car stuck and killed a jaywaler as its autopilot software failed to stop the
car before the crash [1518], and (2) in 2019, the faulty Maneuvering Characteristics
Augmentation System (MCAS) in Boeing 737 Max caused the death of around 350 pas-
sengers in two consecutive crashes [oTotUSHoR19]. Ensuring the highest possible levels
of correctness of SCCS should be the first requirement in any SCCS design process. This
is unfortunately not the case with today’s SCCS.

Re
qu
ire
m
en
ts

De
sig
n/
De
ve
lop

Te
sti
ng

De
pl
oy
m
en
t

Te
sti
ng

Figure 1.4: A waterfall model simplifying the development cycle of SCCS.

Figure 1.4 shows a diagram of the development cycle of SCCS. This waterfall software
model, although not exactly what is used nowadays in practice, has at least the main
building blocks that we must pay attention to. It starts with a phase where the require-
ments are collected and analyzed. Here, humans collect, analyze, write and communicate
the requirements. Humans do mistakes all the time. As a result, the requirements can
be false or ambiguous. They may be also miscommunicated to other persons responsible
for the next steps. Second step in the diagram is where the SCCS is actually designed
and coded. A developer responsible for coding some features of the SCCS may make
mistakes and write buggy code. Some of these bugs are logical ones that are hard to

5

1 Introduction

find using traditional static/dynamic testing techniques. Next step is testing. Testing of
SCCS is also usually done by humans who can not cover all testing scenarios and conse-
quently many edge-cases are left undetected. Even if testing is automated, it is usually
based on scenarios that are defined by humans. Next step is deployment where the final
product is integrated into the target CPS either as a software running on a computer or
as a hardware circuit that implements the designed logic. Here, issues may happen due
to the unplanned integrations of software and hardware. Notice that SCCS is originally
intended to interface various sensors and actuators. This requires an additional final
step of testing, which would also leave many edge-cases undetected.

In order to detect and eliminate design flaws and inevitable software bugs, a large
portion of the design budget nowadays is consumed with testing and validation efforts
which are often very costly. As an example, a recent report [Mat] showed that, in 2017,
software failures affected 3.6 billion people, and caused $1.7 trillion in financial losses
and a cumulative total of 268 years of downtime.

Clearly, current design approaches of SCCS do not consider the correctness of the fi-
nal product as their first goals. Ensuring the correctness of SCCS requires some radical
changes in their design processes. The sources of human-related faults must be elimi-
nated or minimized. New techniques for declaring the design requirements in a more
precise, formal and unambiguous way, are required, so that they can be safely commu-
nicated. The design/development tasks need to be automated to reduce many of the
human-related bugs in today’s SCCS. Less testing is needed and this can be achieved
though design/development steps that produce correct-by-construction software.

1.1 Promising Design Approach for SCCS

From control theory perspective, CPSs and their SCCS are considered hybrid systems.
The computation units combining hardware and software are modeled with discrete
dynamics, while physical components are modeled with continuous dynamics. Hybrid
systems have state variables of real numbers, and consequently, they have an uncount-
able number of states. This makes it intractable to operate on them algorithmically
in their original versions in order to automatically synthesize their controllers. Conse-
quently, classical control theory techniques have been traditionally used to synthesize
their controllers. They are however limited to basic design requirements such as stabi-
lizability and transient response specifications. This is unfortunately not sufficient for
today’s CPS which usually require approaches that can handle complex high-level design
specifications.

On the other hand, computer science literature is rich with approaches for automated
synthesis of systems from high-level formal specifications (see [LMS20, PR89, and the
references therein]) which are traditionally known as reactive synthesis techniques. Given
design requirements in formal languages, e.g. Linear Temporal Logic (LTL) formulae
[Pnu77], these approaches can automatically design systems that implement the given
requirements. This is promising since (1) no human interaction is involved which mini-
mizes human-related faults, and (2) the final products are certifiable in the sense that one

6

1.1 Promising Design Approach for SCCS

can guarantee that they must comply with the original design requirements, and hence,
no post-development testing phases are necessary. Unfortunately, those approaches can
not be used directly to design SCCS for CPSs. This is again because of the uncountable
number of states of CPSs which makes it impossible to programmatically operate on
them in their original forms. Moreover, these approaches accept specifications describ-
ing the systems to be designed, whereas here we need to provide requirements describing
behaviors of systems to be enforced by the to-be-designed SCCS.

The need for utilizing reactive synthesis techniques to design correct-by-construction
SCCS for CPSs resulted recently in several formal methods techniques for control sys-
tems such as symbolic control [Tab09, ZPMT12, CDD+13]. In symbolic control, systems
are abstracted as finite-state models (a.k.a. symbolic models) that can be analyzed al-
gorithmically to synthesize digital controllers (a.k.a. symbolic controllers) that enforce
given high-level specifications on original systems. Symbolic control is promising for the
design of SCCS since, unlike reactive synthesis techniques, hybrid systems can be han-
dled. The designed symbolic controllers are also guaranteed to enforce the given design
requirements on original systems, and post-development testing phases are consequently
minimal.

In symbolic control, symbolic models replace the original (a.k.a. concrete) systems
in the analysis and controller synthesis phases. They are finite-state abstractions of
continuous-space hybrid systems in which each discrete state and input correspond to an
aggregate of continuous states and inputs of the original system, respectively. In general,
there exist two types of symbolic models: (1) sound symbolic models, whose behaviors
(approximately) contain the behaviors of the concrete systems and (2) complete symbolic
models, whose behaviors are (approximately) equivalent to the behaviors of concrete
systems [Tab09]. The existence of a complete symbolic model results in a sufficient and
necessary guarantee in the sense that, there exists a controller enforcing the desired
specifications on the concrete system if and only if there exists a controller enforcing the
same specifications on the symbolic model. On the other hand, sound symbolic models
provide only sufficient guarantees in the sense that failing to find controllers for symbolic
models does not imply the nonexistence of controllers for concrete systems.

Several studies have investigated the construction of symbolic models for various
classes of control systems; linear systems [TP06], nonlinear systems [ZPMT12, PGT08a,
RWR17, PGT08b, PT09, BH06, Tab08, ZMAL13, LLO15], mixed monotone systems
[CA17], switched systems [ADLB14, GPT10], singularly perturbed hybrid affine systems
[KG19], time-delay systems [PPBT10, PPB15], infinite dimensional systems [Gir14],
networked control systems [ZMKA18, KRZ16, BPB19], and stochastic systems [ZA14,
ZMM+14, ZMAL13]. Interested reader can also find more details about some of the
results mentioned above in [BYG17, GP11].

Since symbolic models are finite, controller synthesis problems can be algorithmi-
cally solved over them by resorting to automata-theoretic approaches [MPS95, Tho95,
BJP+12]. Here, symbolic models are viewed as labelled graphs that can be analyzed
and control laws can be extracted from them. Given formally-defined specifications,
techniques like search on graphs [Val02], fixed-point operations [PBW06], or two-player
games [EGW02] can be applied to synthesize symbolic controllers that enforce the given

7

1 Introduction

Symbolic
Controller

Refined
Controller

ξ̇(t) = f(ξ(t), v(t))

Control System

Infinte state/input sets

q1 q2

q4

q3

a

a
b

a

b

Symbolic Model

Finte state/input sets

Relation

Figure 1.5: Controller synthesis for control systems based on symbolic models.

specifications. One can then refine the synthesized symbolic controllers back to the
original systems based on some behavioral relations between original systems and their
symbolic models. This includes for example (approximate) Alternating (Bi-)Simulation
Relations (ASRs) [PT09] or Feedback Refinement Relations (FRRs) [RWR17]. The rela-
tions from original systems to their symbolic models ensure that controllers synthesized
for the symbolic models can be refined with some suitable interfaces to work with the
original systems. It is here also guaranteed that the refined controllers will enforce the
given design requirements on the original systems. Figure 1.5 schematically depicts
symbolic control.

Unfortunately, the construction of symbolic models and synthesis of their controllers,
for large-scale CPSs, suffer from the so-called Curse of Dimensionality (CoD). Specif-
ically, the computational complexity of the algorithms responsible for computing the
models or synthesizing the controllers grow exponentially with respect to the dimensions
of the state and input sets. Consequently, symbolic control becomes limited to small case
studies with fewer symptoms of CoD. Several approaches have been proposed in the lit-
erature to overcome this scalability problem. Adaptive multi-resolution and multi-scale
state-space discretization approaches have been proposed in [TI09, CGG11, HMMS18b].
A state-space discretization free approach was introduced in [LCGG13, ZAG15, Gir14]
where symbolic states are given by input sequences. In [WRR17], the size of symbolic
models were minimized using optimal discretization parameters. In [HMMS18a], a lazy
version of multi-layered abstractions for nonlinear systems against safety and reachabil-
ity specifications have been proposed. The authors in [GGM16] introduced lazy safety
synthesis for incrementally stable switched systems using multi-scale symbolic models.
In [GKA17], the authors proposed constructing symbolic models that utilize the sparsity
of the dynamics in discrete-time systems. Unfortunately, all of these approaches do not

8

1.2 Contributions

consider the inherent parallelism in the algorithms of symbolic control. If the algorithms
of symbolic control are parallelized and, at the same time, distributed computing re-
sources are considered, the computational complexity of symbolic control can be tuned
to match the timing requirements of target applications.

Scalability is not the only challenge facing symbolic control and preventing its appli-
cation to practical CPSs. The types of specifications or the class of systems supported
by all current methodologies of symbolic control, and the tools that implement them, are
limited. Tools like Pessoa [MDT10], Tulip [WTO+11], CoSyMA [MGG13] SCOTS [RZ16],
and ROCS [LL18], which have been used in the past few years to construct symbolic mod-
els and design automatically their symbolic controllers, cannot handle complex dynamics
and advanced practical specifications. Tulip handles only piece-wise affine control sys-
tems, and CoSyMA accepts only incrementally stable systems. ROCS and CoSyMA support
only reachability and safety requirements, while Tulip supports only General Reactiv-
ity (1) (GR(1)) specifications [PR89], which is a fragment of LTL. Tools Pessoa and
SCOTS requires the users to encode any extended requirements in µ-calculus expressions
before manually implementing them, which is very tedious and highly error-prone. In
all mentioned tools, to extract the resulting symbolic controllers and deploy them, users
have to manually define custom data structures and algorithms to implement the control
laws. Notice that such ad-hoc approaches of controller extraction and deployment are
not formally-verifiable. Consequently, they negatively affect the correctness guarantees
obtained from the symbolic control techniques.

In a summary, symbolic control is a promising approach for constructing, automati-
cally, formally-verified controllers for CPSs. It is however still limited in functionality
and usability because of the following main three issues:

(1) The construction of symbolic models and synthesis of symbolic controllers suffers
from the CoD,

(2) The class of specifications supported by most of existing methodologies of symbolic
control, and all of existing tools, are limited and impractical, and

(3) The ad-hoc techniques used to extract the designed controllers and deploy them
weaken, and may ruin, the correctness guarantees obtained from symbolic control.

1.2 Contributions

In the previous section, we argued that SCCS is currently designed using approaches
that may result into unsafe software. Moreover, we showed that today’s safety-critical
CPSs require new approaches for designing bug-free, reliable and safe SCCS. We also
introduced briefly symbolic control as a promising approach for designing automatically
SCCS. Symbolic control is not ready for real-world CPSs due to the major issues we
identified earlier. This thesis offers solutions to each of these issues so that symbolic
control can be possibly applied to today’s safety-critical CPSs. The main contributions
of this thesis are:

9

1 Introduction

(1) We introduce a framework for designing and implementing efficient scalable par-
allel algorithms while utilizing all available computing platforms such as Central
Processing Units (CPUs), Graphics Processing Units (GPUs), Hardware Acceler-
ators (HWAs), and interconnections of them. It is used throughout the thesis to
design efficient scalable algorithms for symbolic control.

(2) We introduce novel data-parallel algorithms for:

– the construction of symbolic models from different classes of control systems,

– the construction of Markov Decision Processs (MDPs) as abstractions of a
class of stochastic control systems,

– the synthesis of symbolic controllers using fixed-point operations, dynamic
programming or solving two-player games, and

– the computation of reachable sets for extremely high-dimensional systems.

The algorithms scale with available computing resources, and can, using the intro-
duced framework, utilize High-Performance Computing (HPC) platforms to miti-
gate the effects of the CoD.

(3) We introduce an approach that allows symbolic control to utilize more complex
and practical design requirements given as LTL formulae or as automata on infinite
strings.

(4) We introduce unified formal approaches for extracting the designed controllers and
deploying them as software or hardware. As a result, the correctness guarantees
obtained from symbolic control is maintained.

1.3 Thesis Organization

This thesis is divided into 9 chapters, the first of which is the current introduction.
Figure 1.6 shows the chapters and their dependencies.

Chapter 2 introduces some preliminaries. First, symbolic control is introduced as a
promising approach for designing, automatically, correct-by-construction controllers that
can enforce high-level specifications on original systems. We introduce formally control
systems, the construction of symbolic models and the synthesis of symbolic controllers.
We show with examples that current techniques of symbolic control suffer from the major
issues discussed earlier. We also show that these issues prevent symbolic control from
being applicable to designing the SCCS of today’s CPS.

In Chapters 3-8, we propose solutions to the identified issues of symbolic control.
Chapter 3 introduces a framework used throughout the thesis for designing and imple-
menting the introduced novel algorithms.

Chapter 4 introduces parallel scalable algorithms for constructing the symbolic models
and synthesizing their symbolic controllers. We show that these algorithms, alongside
with variable computing resources, allow controlling the computational complexities of
symbolic control algorithms and mitigating the effects of the CoD.

10

1.3 Thesis Organization

Chapter 1

Introduction

Chapter 2

Preliminaries

Chapter 3

Framework for
efficient design/
implementation

Chapter 4

Efficient
symbolic control

Chapter 5

Efficient comp.
of reachable sets

Chapter 8

Formal implm.
of symbolic
controllers

Chapter 6

Efficient stochastic
symbolic control

Chapter 7

Supporting more
practical specifications

Chapter 9

Conclusions and
future works

Figure 1.6: A dependency map for the chapters of the thesis.

In Chapters 5 and 6, we introduce two additional enhancements to symbolic con-
trol. Chapter 5 introduces scalable algorithms for selected methodologies of reachability
analysis that we use internally to construct the symbolic models. Chapter 6 introduces
extensions to symbolic control to support stochastic control systems. Efficient parallel
algorithms for automated controller synthesis of controllers for stochastic control systems
are introduced.

Chapter 7 handles the issue of symbolic control related to the lack of support for
practical formal specifications. The chapter introduces a technique that allows handling
specifications given as LTL formulae or as Deterministic Parity Automata (DPA).

Chapter 8 discusses the types of symbolic controllers resulting from the algorithms
introduced in the first 7 chapters, and introduces formal deployments for the designed
symbolic controllers.

Chapter 9 provides a summary of the results introduced in all chapter and discusses
possible future research directions.

11

2 Preliminaries

We start this chapter with some general notations. Then, in Section 2.2, we introduce
the notion of systems as a general mathematical framework to describe original systems,
symbolic models, symbolic controllers and their interconnections. In Section 2.3, the
process of constructing symbolic models from original systems is formally introduced.
Later in Section 2.4, we discuss the process of controller synthesis. Finally, Section 2.5
discuses the issues of symbolic control that we address in the next chapters.

2.1 Notations

Symbols N, Z, and R denote, respectively, the set of natural, integer, and real numbers.
Additionally, symbols N+,R+, and R0+ denote, respectively, the set of positive natu-
ral, positive real, and nonnegative real numbers, as restricted versions of their original
number sets.

The identity map on a set X is denoted by idX . The relative complement of a set
A in a set B is denoted by B\A. For a set A, we denote by |A| the cardinality of the
set and by 2A the set of all subsets of A including the empty set ∅. For sets A and B,
we denote by A × B the Cartesian product of A and B, and by A \ B the Pontryagin
difference between the sets A and B. A cover of a set A is a set of subsets of A whose
union equals A. A partition of a set A is a set of pairwise disjoint subsets of A whose
union equals A.

We denote by A∗ the set of all finite strings (a.k.a. sequences) obtained by concate-
nating elements in A, by Aω the set of all infinite strings obtained by concatenating
elements in A, and by A∞ the set of all finite and infinite strings obtained by con-
catenating elements in A. For any finite string s, |s| denotes the length of the string,
si, i ∈ {0, 1, · · · , |s| − 1}, denotes the i-th element of s, and s[i, j], j ≥ i, denotes the
substring sisi+1 · · · sj . Symbol e denotes the empty string and |e| = 0. We use the dot
symbol · to concatenate two strings.

Given a map R : A→ B and a set A ⊆ A, we define

R(A) :=
⋃
a∈A
{R(a)}.

Similarly, given a set-valued map Z : A→ 2B and a set A ⊆ A, we define

Z(A) :=
⋃
a∈A

Z(a).

Consider a relation R ⊆ A × B where A and B are sets. R is strict when R(a) 6= ∅
for every a ∈ A. R naturally introduces a map R : A → 2B such that R(a) = {b ∈

13

2 Preliminaries

B | (a, b) ∈ R}. R also admits an inverse relation R−1 := {(b, a) ∈ B × A | (a, b) ∈ R}.
Given an element r := (a, b) ∈ R, πA(r) denotes the natural projection of r on the set
A, i.e., πA(r) = a. We sometimes abuse the notation and apply the projection map πA
to a string (resp., a set of strings) of elements of R, which means applying it iteratively
to all elements in the string (resp., all strings in the set). When R is an equivalence
relation on a set X, we denote by [x] the equivalence class of x ∈ X and by X/R the set
of all equivalence classes (a.k.a. quotient set). πR : X → X/R is a natural projection
map taking a point x ∈ X to its equivalence class, i.e., πR(x) = [x] ∈ X/R. We say that
an equivalence relation is finite when it has finitely many equivalence classes.

Set Rn represents the n-dimensional Euclidean space of real number vectors with n
elements. Given a vector v ∈ Rn, we denote by vi, i ∈ {0, 1, · · ·n− 1}, the i-th element
(a.k.a. component) of v and by ‖v‖ the infinity norm of v. Given N vectors xi ∈ Rni ,
ni ∈ N+, and i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN] to denote the corresponding
augmented vector of dimension

∑
i ni. Given a matrix A in Rn×m, A(:, b) denotes the

all rows together with the bth column of A, and A(b, :) the other way around.
Any n-dimensional hyper-rectangle (a.k.a. hyper interval) is characterized by two

corner vectors xlb, xub ∈ Rn, and we denote the hyper-rectangle by

[[xlb, xub]] := [xlb,1, xub,1]× [xlb,2, xub,2]× · · · × [xlb,n, xub,n].

2.2 Mathematical Framework for Systems

We introduce the notion of systems as a general mathematical framework used through-
out this thesis to describe sampled original systems, symbolic models, symbolic con-
trollers, and their interconnections. We use a similar definition for systems as in [Tab09].

Definition 2.2.1 (System). A system is a tuple

S := (X,X0, U, T, Y,H),

where X is a set of states, X0 ⊆ X is a set of initial states, U is a set of inputs,
T ⊆ X × U × X is a transition relation, Y is a set of outputs, and H : X → Y is an
output map.

All sets in tuple S are assumed to be non-empty. For any x ∈ X and u ∈ U , we
denote by PostSu(x) := {x′ ∈ X | (x, u, x′) ∈ T} the set of u-successors of x in S. When
S is known from the context, the set of u-successors of x is simply denoted by Postu(x).
We sometimes abuse the notation and apply PostSu(·) to a subset X̃ ⊆ X which means
applying it to all the elements of X̃. Specifically, given subset X̃ ⊆ X, we have that

PostSu(X̃) :=
⋃
x∈X̃

{PostSu(x)}.

The inputs admissible to a state x is denoted by US(x) := {u ∈ U | Postu(x) 6= ∅}.
System S is said to be static if X is singleton; autonomous if U is singleton; state-based

(a.k.a. simple system [RWR17]) when X = Y , H = idX , and all states are admissible

14

2.3 Symbolic Models

as initial ones, i.e., X = X0; output-based when X 6= Y ; total when for any x ∈ X and
any u ∈ U there exists at least one x′ ∈ X such that x′ ∈ Postu(x); deterministic when
for any x ∈ X and any u ∈ U we have |Postu(x)| ≤ 1; and symbolic when X and U
are both finite sets. For any x̄ ⊆ X0, we denote by S(x̄) the restricted version of S with
X0 = x̄.

A run of system S is an infinite sequence r := x0u0x1u1 · · ·xn−1un−1xn · · · such that
x0 ∈ X0, and for any i ≥ 0 we have (xi, ui, xi+1) ∈ T . The prefix up to xn of r is
denoted by r(n) and its last element is Last(r(n)) := xn. The set of all runs and the set
of all n-length prefixes are denoted by RUNS(S) and PREFSn(S), respectively. A state
x is said to be reachable iff there exists at least one prefix r(n) ∈ PREFSn(S) such that
Last(r(n)) = x for some n ∈ N.

2.2.1 Composition of Systems

Systems can be composed together to construct new systems. Here, we define formally
different types of compositions.

Definition 2.2.2 (Serial Composition). Let Si := (Xi, Xi,0, Ui, Ti, Yi, Hi), i ∈ {1, 2},
be two systems such that Y1 ⊆ U2. The serial (a.k.a. cascade) composition of S1 and
S2, denoted by S2 ◦ S1, is a new system S12 := (X1 ×X2, X1,0 ×X2,0, U1, T12, Y2, H12),
where ((x1, x2), u1, (x

′
1, x
′
2)) ∈ T12 iff there exist two transitions (x1, u1, x

′
1) ∈ T1 and

(x2, H1(x1), x′2) ∈ T2, and map H12 is defined as follows for any (x1, x2) ∈ X1 × X2:
H12((x1, x2)) := H2(x2).

Definition 2.2.3 (Feedback Composition). Let Si := (Xi, Xi,0, Ui, Ti, Yi, Hi), i ∈ {1, 2},
be two systems such that Y1 ⊆ U2, Y2 ⊆ U1, and the following holds:

y2 = H2(x2) ∧ y1 = H1(x1) ∧ PostS1
y2 (x1) = ∅ =⇒ PostS2

y1 (x2) = ∅.

Then, S1 is said to be feedback-composable with S2 and the new composed system is
S12 := (X1 × X2, X1,0 × X2,0, {0}, T

12
, Y1 × Y2, H12), where ((x1, x2), 0, (x′1, x

′
2)) ∈ T

12
iff

there exist two transitions (x1, H2(x2), x′1) ∈ T1 and (x2, H1(x1), x′2) ∈ T2, and the map
H12 is defined as follows for any (x1, x2) ∈ X1 ×X2:

H12((x1, x2)) := (H1(x1), H2(x2)).

The feedback composition between S1 and S2 is denoted by S1 × S2.

2.3 Symbolic Models

In symbolic control, a control system (e.g., a physical process described by a set of differ-
ential equations of state variables and input variables) is related to an abstraction (i.e.,
a system with finite state and input sets) via a formal relation. Throughout his thesis,
control systems may be referred to as original systems or concrete systems, while their
abstractions are referred to as symbolic models or abstract systems. A formal relation

15

2 Preliminaries

between a control system and its symbolic model ensures that the latter captures some
required features from the original system. Symbolic models can be used to abstract sev-
eral classes of control systems as discussed in Chapter 1. As symbolic models are finite,
reactive synthesis techniques [PR89, Var95, BJP+12] are applicable to algorithmically
synthesize controllers enforcing given high-level specifications. The designed controllers
are usually referred to as symbolic controllers. In this section, we construct symbolic
models as abstractions of control systems.

Hereinafter, we consider mainly state-based systems to represent original systems and
their symbolic models. Hence, the representation of systems is reduced to

S := (X,U, T). (2.3.1)

We now revise FRRs [RWR17] which we use later in this section to relate original
systems with their symbolic models.

Definition 2.3.1 (FRR). Let Si := (Xi, Ui, Ti), i ∈ {1, 2}, be two systems such that
U2 ⊆ U1. A strict relation Q ⊆ X1×X2 is an FRR from S1 to S2 if all of the followings
hold for all (x1, x2) ∈ Q:

(i) US2(x2) ⊆ US1(x1), and

(ii) u ∈ US2(x2) =⇒ Q(PostS1
u (x1)) ⊆ PostS2

u (x2).

When Q is an FRR from S1 to S2, this is denoted by S1 4Q S2.

FRRs are introduced to resolve common shortcomings in ASRs and their approxi-
mate versions. As discussed in [RWR17], using ASRs results in controllers that require
exact state information of concrete systems while only quantized state information is
usually available. Additionally, the refined controllers contain symbolic models of origi-
nal systems as building blocks inside them, which makes the implementation much more
complex. On the other hand, controllers designed for systems related via FRRs require
only quantized-state information. They can be feedback-composed with original sys-
tems through static quantizers, and they do not require the symbolic models as building
blocks inside them. Such features simplify refining and implementing the synthesized
symbolic controllers.

2.3.1 Control Systems

Now, we introduce the class of control systems considered in this thesis. Unless stated
otherwise, we consider general (possibly nonlinear) continuous-time systems.

Definition 2.3.2 (Control System). A control system is a tuple Σ := (X ,U , f), where
X ⊆ Rn is the state set; U ⊆ Rm is an input set; f : X × U → X is a continuous map
satisfying the following Lipschitz assumption: for each compact set X ⊆ X , there exists
a constant L ∈ R+ such that

‖f(x1, u)− f(x2, u)‖ ≤ L‖x1 − x2‖,

for all x1, x2 ∈ X and all u ∈ U .

16

2.3 Symbolic Models

Let U be the set of all functions of time from]a, b[⊆ R to U with a < 0 and b > 0.
We define a trajectory of Σ by the locally absolutely continuous curve ξ :]a, b[→ X
if there exists a v ∈ U that satisfies ξ̇(t) = f(ξ(t), v(t)) at any t ∈]a, b[. We redefine
ξ : [0, t] → X for trajectories over closed intervals with the understanding that there
exists a trajectory ξ′ :]a, b[→ X for which ξ = ξ′|[0,t] with a < 0 and b > t. ξxv(t)
denotes the state reached at time t under input v and with the initial condition ξxv(0).
Such a state is uniquely determined since the assumptions on f ensure the existence and
uniqueness of its trajectories [Son99]. System Σ is said to be forward complete if every
trajectory is defined on an interval of the form]a,∞[. Hereinafter, we consider forward
complete control systems.

2.3.2 Control Systems as Systems

Let Σ be a control system as defined in Definition 2.3.2. The sampled version of Σ (a.k.a.
concrete system) is a system

Sτ (Σ) := (Xτ , Uτ , Tτ), (2.3.2)

that encapsulates the information contained in Σ at sampling times kτ , for all k ∈ N,
where Xτ ⊆ X , Uτ is the set of piece-wise constant curves of length τ defined as follows:

Uτ := {vτ : [0, τ [→ U | vτ (t) = vτ (0) ∧ t ∈ [0, τ [},

and a transition (xτ , vτ , x
′
τ) ∈ Tτ iff there exists a trajectory ξ : [0, τ] → X in Σ such

that ξxτvτ (τ) = x′τ . We sometimes use Sτ to refer to the sampled-data system Sτ (Σ).

Remark 2.3.3. System Sτ is deterministic since any trajectory of the forward complete
control system Σ is uniquely determined. Sets Xτ and Uτ are both uncountable, and
hence, Sτ is not symbolic. Since all trajectories of Σ are defined for all inputs and all
states, we have USτ (xτ) = Uτ , for all xτ ∈ Xτ .

In the next subsections, we construct symbolic models of sampled original systems,
synthesize their symbolic controllers, and refine the designed symbolic controllers.

2.3.3 Symbolic Models of Control Systems

We utilize FRRs to construct symbolic models that approximate Sτ . FRRs mainly
ensure synchronized state-based evolutions between concrete systems and their symbolic
models. Given a control system Σ, let Sτ be its sampled-data representation, as defined
in (2.3.2). A symbolic model of Sτ is a system

Sq := (Xq, Uq, Tq), (2.3.3)

where Xq := Xτ/Q̄, Q̄ is a finite equivalence relation on Xτ , Uq is a finite subset of Uτ ,
and (xq, uq, x

′
q) ∈ Tq if there exist x ∈ xq and x′ ∈ x′q such that (x, uq, x

′) ∈ Tτ .
The following theorem shows that the constructed symbolic model is related via an

FRR with its original system.

17

2 Preliminaries

Theorem 2.3.4. Let Sτ a control system as defined in (2.3.2). Let Sq the symbolic
model of Sτ as introduced in (2.3.3). Then, there exist an FRR from Sτ to Sq such that
Sτ 4Q Sq

Proof. Fix

Q := {(xτ , xq) ∈ Xτ ×Xq | xτ ∈ xq},

where Xq is the sates set of Sq as defined in (2.3.3).
We show that Q is an FRR from Sτ to Sq. We show first that Q is strict. Consider

any xτ ∈ Xτ . We know that Xq is a partition of Xτ since Q̄ is an equivalence relation.
Consequently, there exist one xq ∈ Xq such that xτ ∈ xq and hence, (xτ , xq) ∈ Q.

Condition (i) in Definition 2.3.1 is satisfied since by the definition of the input set Uq
of Sq in (2.3.3), we have that USq(xq) ⊆ USτ (xτ) for any tuple (xτ , xq) ∈ Q.

We now show that condition (ii) in Definition 2.3.1 is also satisfied. Consider one
tuple (xτ , xq) ∈ Q. Let u ∈ Uq be an arbitrary input. Let x′ := PostSτu (xτ) be the
post state of Sτ with u as an applied input. Notice that Sτ is deterministic. We know
from the definition of Q above that there exists x′q := Q(x′) for which x′ ∈ x′q. Let

(xτ , u, x
′) ∈ Tτ be the transition of Sτ we just took with PostSτu (xτ) and remember

that xτ ∈ xq and x′ ∈ x′q. We now conclude from the definition Tq that there exists a

transition (xq, u, x
′
q) ∈ Tq, and hence, x′q ∈ Post

Sq
u (xq). The last conclusion results in

satisfying condition (ii) in Definition 2.3.1 and concludes the proof.

2.4 Symbolic Controller Synthesis

Here, we discuss the second phase of symbolic control, that is, the synthesis of sym-
bolic controllers using the constructed symbolic models. We first discuss the behaviors
of systems and the considered specifications to be enforced on them. Then, we intro-
duce control problems and controllers. Finally, we show how symbolic controllers are
synthesized and refined.

2.4.1 Behaviors and Specifications

Let S be a system as defined in Definition 2.2.1. The behavior of S is a subset of the
set of all (possibly infinite) prefixes of S, i.e.,

B(S) ⊆
⋃

n∈N∪{∞}

PREFSn(S).

Unlike behaviors which describe possible runs of systems, specifications are mainly
used to declare sets of runs that must conform with some given desired requirements.

Definition 2.4.1 (Specification). Let S be a system as defined in Definition 2.2.1. Let
ΓS := πX(B(S)) be the set of all state sequences of S. A specification ψ ⊆ ΓS on S is
a set of state sequences that must be enforced on S. System S satisfies ψ (denoted by
S |= ψ) iff πX(B(S)) ⊆ ψ.

18

2.4 Symbolic Controller Synthesis

Specifications can adopt formal requirements encoded as LTL formulae [Pnu77] or
Automata on finite strings. Classical requirements like invariance (often referred to as
safety) and reachability can be readily included. Given a safe set of observations F ⊆ X,
we denote by Safe(F) the safety specification, and we define it as follows:

Safe(F) := {x0x1x2 · · · ∈ ΓS | ∀k ≥ 0 (xk ∈ F)}.

The safety objective requires that the state of S always remains within subset F . Using
LTL, such a safety specification is encoded as the formula �F . Similarly, for a target
set of observations T ⊆ X, we denote by Reach(T) the reachability specification, and we
define it as follows:

Reach(T) := {x0x1x2 · · · ∈ ΓS | ∃k ≥ 0 (xk ∈ T)}.

The reachability objective requires that the state of S visits, at least once, some elements
in T . Such a reachability specification is encoded as the LTL formula ♦T .

Specifications like infinitely often (a.k.a. recurrence) (�♦G) and eventually forever
(a.k.a. persistence) (♦�G), for a set of observations G ⊆ X, can be defined similarly.

Now, we introduce the concept of control problems and the definition of controllers.

Problem 2.4.2 (Control Problem). Consider a system S as defined in Definition 2.2.1.
Let ψ be a given specification on S following Definition 2.4.1. We denote by the tuple
(S, ψ) the control problem of finding a system C such that C × S |= ψ.

System C that solves a control problem (S, ψ) (i.e., C × S |= ψ) is called a controller.
We define controllers formally next.

Definition 2.4.3 (Controller). Given a control problem (S, ψ) as defined in Problem
2.4.2, a controller solving (S, ψ) is a system

C := (XC , XC,0, UC , TC , YC , HC),

where UC := X and YC := U . All of XC , XC,0, TC , and HC are constructed such that
C × S |= ψ.

The domain of controller C is the set of initial states of the controlled systems that
can be controlled to solve the main control problem. We define it formally next.

Definition 2.4.4 (Domain of Controller). Consider a controller C solving a given con-
trol problem (S, ψ), as defined in Definition 2.4.3. The domain of the controller is
denoted by D(C) ⊆ X0, and it is defined as follows:

D(C) := {x ∈ X0 | C × S({x}) |= ψ}.

The introduced control problem follows a generic definition as it is defined based
on Systems and their specifications. If system S used in Definition 2.4.2 is symbolic,
the control problem is referred to as the symbolic control problem and its controller is
referred to as its symbolic controller. We discuss this more precisely next.

19

2 Preliminaries

2.4.2 Synthesis and Refinement of Symbolic Controllers

Consider a concrete system Sτ . Let ψτ be some given specification on Sτ . Sτ and ψτ
represent together a concrete control problem (Sτ , ψτ). Since Sτ is infinite, the concrete
control problem is not directly solvable using algorithmic controller synthesis techniques.
Instead, a symbolic control problem (Sq, ψq) is constructed from (Sτ , ψτ) and then used
to synthesize a symbolic controller Cq solving (Sq, ψq). Here, Sq is the symbolic model
of Sτ , as introduced in (2.3.3), and it is related to Sτ via some FRR Q. Specification ψq
is constructed by applying Q as a static map to all sequences of ψτ . Formally, given ψτ ,
we define ψq as follows:

ψq := {s̄ ∈ ΓSq | ∃s ∈ ψτ ∀i ∈ {0, 1, · · · , |s| − 1} (s̄i = Q(si))}. (2.4.1)

Now, since Sq is a finite-state system, controller Cq can be simply synthesized to solve
the symbolic control problem (Sq, ψq) using techniques from computer science [Tho95,
Tab09, EC82, GLPN93, PR89, Var95, BJP+12]. This includes fixed-point operations
on Sq, searching on the graph constructed from the states of Sq as its vertices and the
transition as its edges, and two-player games. Synthesis based on fixed-point operations
is the state-of-the art approach already implemented in almost all tools of symbolic
control. Refer to the discussion in Chapter 1 for further details.

For the sake of demonstration, we introduce the process of synthesis of symbolic con-
trollers using fixed-point operations. Given symbolic model Sq, we define the controllable
predecessor map CPreTq : 2Xq×Uq → 2Xq×Uq for Z ⊆ Xq × Uq by:

CPreTq(Z) := {(xq, uq) ∈ Xq × Uq | ∅ 6= Tq(xq, uq) ⊆ πXq(Z)}, (2.4.2)

where πXq(Z) := {xq ∈ Xq | ∃uq∈Uq(uq, xq) ∈ Z}, and Tq(xq, uq) is an interpretation of
the transitions set Tq as a map Tq : Xq × Uq → 2Xq that evaluates a set of post-states
from a state-input pair. CPreTq(Z) is informally the set of non-blocking input/state
pairs for which all successor states are in the projection of Z on Xq.

We consider for example reachability specifications given by the LTL formulae ψ = ♦φ,
where φ is a propositional formula over a set of atomic propositions AP ⊆ 2Xq×Uq .

We first construct an initial winning set Zψ = {(xq, uq) ∈ Xq × Uq | L(xq, uq) |= φ)},
where L : Xq × Uq → 2AP is some labeling function.

To synthesize symbolic controllers for the selected reachability specifications, we utilize
the monotone function

G(Z) := CPreTq(Z) ∪ Zψ (2.4.3)

to iteratively solve the fixed-point equation Z∞ = µZ.G(Z) starting with Z0 := ∅. Here,
we adopt a notation from µ-calculus with µ as the minimal fixed-point operator and Z
is the operated variable. Interested readers can find more details in [MPS95] and the
references therein.

The synthesized controller is then a map Cq : Xw → 2Uq , where Xw ⊆ Xq represents
a winning (a.k.a. controllable) set of states. Map Cq is defined by: C(xq) := {uq ∈
Uq | (xq, uq) ∈ µj(xq)Z.G(Z)}, where j(xq) := inf{i ∈ N | xq ∈ πXq(µ

iZ.G(Z))}, and
µiZ.G(Z) represents the value of ith iteration of the minimal fixed-point computation.

20

2.5 Limitations of Current Symbolic Control Techniques

Sτ Sq

Cq

uq

xq

Cq

uq xq

Q

xτ

ψqψτ

Cτ

Abstraction

Refinement

Figure 2.1: Symbolic control as an abstraction-refinement approach.

Later in Chapter 7, we propose another approach for automated synthesis of Cq using
two-player parity games, which allows handling much richer specifications.

Now, we explain the refinement process. We show that FRR preserve the behavioral
inclusion from concrete systems to their symbolic models. More specifically, we show in
the next result that the behavior of a refined concrete closed-loop Cτ ×Sτ is included in
the behavior of its corresponding symbolic closed-loop Cq × Sq.

Theorem 2.4.5. Consider systems Sτ and Sq as introduced in (2.3.2) and (2.3.3),
respectively. Let Q ⊆ Xτ ×Xq be an FRR such that Sτ 4Q Sq. Let Cq be a controller
that solves (Sq, ψq). Then,

(i) (Cq ◦Q) is feedback-composable with Sτ ; and

(ii) B((Cq ◦Q)× Sτ) ⊆ B(Cq × Sq);

Proof. The proof is given in [RWR17].

Figure 2.1 provides an illustration for the synthesis and refinement of symbolic con-
trollers for control systems. Systems are represented by rectangles, specifications by
diamonds and interconnections by arrows. The refined controller is the symbolic con-
troller serially composed after map Q, i.e. Cτ = Q ◦ Cq [RWR17].

2.5 Limitations of Current Symbolic Control Techniques

Symbolic control is a promising approach for automated synthesis of controllers for
CPS. Yet, it is not used in practice due to some issues that limit it to small-sized control
systems. Here, we discuss the limitations of symbolic control that hinder applying it to
real-world applications.

21

2 Preliminaries

2.5.1 The Curse of Dimensionality

Algorithm 1: A skeleton algorithm for constructing symbolic model Sq.

Input: Sτ , Xq and Uq
Output: Sq

1 Tq ← ∅ ;
2 for all xq ∈ Xq do
3 for all uq ∈ Uq do

4 X ′q ← {x′q ∈ Xq | PostSτuq (xq) ∩ x′q 6= ∅};
5 for all x′q ∈ X ′q do

6 Tq ← Tq ∪ {(xq, uq, x′q)} ;

7 end

8 end

9 end
10 Sq ← (Xq, Uq, Tq);

Algorithm 1 shows a traditional implementation for constructing the symbolic model
Sq. To show how the complexity of Algorithm 1 is sensitive to the dimensionality of Σ,
we assume for the sake of simplicity that Xq is a partition of Xτ constructed by a set of
hyper-cubes. The following theorem shows the complexity of Algorithm 1.

Theorem 2.5.1. The complexity of Algorithm 1 is O(N2n
X |Uq|), where NX ∈ N.

Proof. Knowing that for any (xq, uq) ∈ Xq×Uq the set of post states can be Xq (e.g., f is
a fast-exploding Ordinary Differential Equation (ODE)), the complexity of Algorithm 1
is seen initially as O(|Xq|× |Uq|× |Xq|). Now, having hyper-cubes as elements of Xq, we
conclude that each state variable (a.k.a. dimension) of Xτ is quantized equally. Assume
that the number of quantization steps for each variable of Xτ is NX . We then have that
|Xq| = Nn

X where n is the number of state variables of Σ. Consequently, the complexity
of Algorithm 1 is seen as O(N2n

X |Uq|).

Theorem 2.5.1 presents formally what is known as the CoD. More precisely, the com-
plexity of constructing symbolic model Sq is exponentially sensitive to number of state
variables (a.k.a. dimensionality) of Σ.

The synthesis of symbolic controller is also sensitive to the dimensionality of Σ. To
synthesize controller Cq, there exist however several techniques such as fixed-point oper-
ations and search on graphs. Each technique would require separate complexity analysis.
Additionally, the complexity of each technique is sensitive to which specification ψτ is
being considered. For example, it is known that the complexity of controller synthesis
for GR(1) specifications (a fragment of LTL) is O(wN2n

X) [MR15], where w is computed
from the number of goals in the specification. Later in Chapter 4, we show one concrete
example algorithm for automated synthesis of Cq using fixed-point operations. We dis-
cuss at that point the complexity of this specific implementation of controller synthesis.

22

2.5 Limitations of Current Symbolic Control Techniques

Table 2.1: Examples of simple specifications ψ, their compact LTL representation, and their
corresponding µ-calculus equations.

ψ as LTL µ-calculus Formula Notes

�A Z∞ = νZν .(CPre(Zν) ∩ Zψ) Safety
♦A Z∞ = µZµ.(CPre(Zµ) ∪ Zψ) Reachability
�♦A Z∞ = µZµ.(CPre(Zµ) ∩ (νZν .(CPre(Zν) ∪ Zψ))) Persistence
♦�A Z∞ = νZν .(CPre(Zν) ∪ (µZµ.(CPre(Zµ) ∩ Zψ))) Recurrence

2.5.2 Impractical Specifications

The set of design requirements supported by current symbolic control techniques and
the software tools implementing them are unfortunately limited and impractical. All
existing tools of symbolic control [MDT10, WTO+11, MGG13, RZ16, LL18] rely mainly
on computing the symbolic controllers by computing fixed-point operations on the graphs
representing the symbolic models. The fixed-point operations are mainly deducted from
µ-calculus equations encapsulating the given high-level specifications.

Table 2.1 shows some common simple specifications ψ supported by these tools, their
compact LTL representation and their corresponding µ-calculus equations. See how a
simple change to the specifications (e.g., from Safety to Persistence) results in a much
complex and nested µ-calculus expression. Nested µ-calculus expressions result in prac-
tice in nested fixed-point operations. Unfortunately, it is impractical, complex, and
tedious to represent high-level design requirements as µ-calculus. Consequently, most of
these tools support only the simplest of these specifications, namely, Safety and Reach-
ability.

Only tools Pessoa and SCOTS provide general algorithms for the computation of min-
imal and maximal fixed-points allowing them to cover wider ranges of specifications.
However, using them to design controllers for complex design requirements (e.g., those
described with complex LTL formulae) is not practical due to the following two main
reasons: (1) users have to analytically convert the LTL requirements as µ-calculus expres-
sions before implementing them manually in these tools, a task that is highly error-prone
and provides no way to check its correctness, and (2) to extract the resulting dynamic
controllers, users have to manually define custom data structures and algorithms to
extract the controllers from subsets resulting from the computations of minimal and
maximal fixed-points. Notice that such ad-hoc controller extraction and deployment are
not formally-verifiable. Consequently, they negatively affect the correctness guarantees
obtained from the symbolic control techniques.

A workaround to lift such burdens from the users is to implement an automatic trans-
lator from LTL to µ-calculus. This is also not practical since the translation process
is complex and the size of µ-calculus expressions grows dramatically with respect to
the size of the input LTL expression. Additionally, converting the LTL expressions to
fixed-point operations may require dynamic code generation and run-time compilations
which increase the complexity of the approach.

23

2 Preliminaries

2.5.3 Ad-Hoc Deployments

The resulting symbolic controllers from the synthesis phase come in form of either static
symbolic controllers or dynamic ones. All the tools of symbolic control produce such con-
trollers in their raw forms. For example, tool SCOTS generates Binary Decision Diagrams
(BDDs) encoding the synthesized static symbolic controllers. Users are then left to han-
dle the actual deployments of the resulting controllers. Here, deployment means taking
the resulting controller Cq, representing it as software or hardware, choosing suitable in-
terfaces, and constructing the closed loop Cq×Σ. The deployment process becomes more
complex for the case of dynamic controllers. We discuss static and dynamic controllers
and their representations in Chapter 8.

Such ad-hoc deployments implemented by the users do usually destroy the correctness-
guarantees resulting from the symbolic control approach due to one or more of the
following reasons:

• although the controllers are correct, their deployments may not be,

• the deployments may rely on other third-party libraries to interpret the raw rep-
resentations of the controllers, which can be faulty or not verifiable, and

• the software and hardware components used to represent the various parts of the
deployments may not be compatible and may fail during the runtime.

2.6 Summary

We first introduced some notations used in this thesis. We then introduced a general
mathematical framework used throughout this thesis to describe concrete systems, sym-
bolic models, symbolic controllers, and their interconnections.

Symbolic control is introduced as an approach for the algorithmic construction of
formally-verified controllers for control systems. Control systems are approximated as
symbolic models using FRRs and then digital controllers are algorithmically constructed
for them to satisfy some given high-level specifications.

We showed in Theorem 2.4.5 that the controllers synthesized for the symbolic models
can be refined to enforce the given specifications on the original systems.

Finally, we discussed the limitations of all current symbolic control techniques. We
started with the CoD and showed that the algorithms used traditionally for constructing
symboic models suffer exponential time complexity with respect to the system’s dimen-
sionality. Then, we showed that the set of design requirements supported by current
symbolic control techniques and the software tools implementing them are limited and
impractical. We also showed that current ad-hoc deployments of symbolic controllers
usually result in ruining the correctness guarantees obtained from the symbolic control
approaches.

24

3 A Framework for Designing Efficient
Algorithms of Symbolic Control

The correctness of control software in many safety-critical CPS applications such as au-
tonomous vehicles and traffic networks is crucial. Having models of physical systems and
high-level requirements, symbolic control (see Chapter 2) can be leveraged to provide, al-
gorithmically, certifiable control software from given high-level specifications. However,
the complexity of applying symbolic control to real-world applications is high and grows
exponentially in the number of state variables of the physical systems. On the other
hand, if distributed implementations are considered, HPC platforms, such as Many-
core systems, clusters of computers, and Cloud-computing1 platforms can be utilized to
mitigate the effects of the CoD.

Since one of the main goals of this thesis is to provide solutions to the complexity
problems of symbolic control, several scalable and parallelized algorithms will be intro-
duced throughout the next chapters. Before we start introducing the algorithms, we
present a framework that can host and facilitate their implementations.

In this chapter, we present an acceleration framework (we call it pFaces [KZ19]) that
will be used throughout the thesis to design and implement several parallel algorithms for
symbolic control. pFaces leverages computing resources, locally or in Cloud-computing
platforms, to facilitate designing and implementing scalable parallel algorithms. We
present the internal structure and workflow inside pFaces. We also introduce an instal-
lation of pFaces in Amazon Web Services (AWS) with a web-based interface to help
deploy and run the designed parallel algorithms.

3.1 High Performance Computing (HPC)

Traditionally, compute platforms such as super-computers, which are able to solve com-
plex computing problems, were expensive and inaccessible to many scientific communi-
ties. Motivated by the market (e.g., gaming and mining of crypto-currencies), compute-
devices such as GPUs showed remarkable improvements in speed and usability. This
introduced new paradigms of general-purpose computing like General Purpose GPU
(GPGPU) to utilize such devices for scientific data-parallel tasks. One good example is
how GPUs played a major role in crunching data collected by the LIGO observatories,
in 2015, making the detection of gravitational waves possible [NVI]. Recently, Cloud-
computing providers, like Amazon and Microsoft, made it possible for customers to build
clusters combining CPUs, GPUs, and HWAs for general-purpose computing.

1Cloud-computing is a recent computing paradigm that provides public access to shared pools of con-
figurable HPC resources along with high-level services to utilize them, all over the Internet.

25

3 A Framework for Designing Efficient Algorithms of Symbolic Control

Here, it is also worth mentioning that HPC platforms are mainly concerned with
maximizing the performance of two main types of parallel computing: data-parallelism
and task-parallelism. Data-parallelism is the simultaneous execution of the same func-
tion using multiple Processing Elements (PEs) across the elements of a dataset. Task-
parallelism, on the other hand, is the simultaneous execution of different functions using
multiple PEs across the same or different datasets.

Most of the current implementations of symbolic control techniques are unfortunately
developed for serial execution (i.e., to run sequentially within one PE). They do not
benefit from available computing resources containing large number of PEs, such as
Many-core CPUs, GPUs, HWAs, clusters of computers, and Cloud-computing platforms.
These unutilized resources can be leveraged for accelerating symbolic control techniques
and to mitigate the effects of their state-explosion problem.

Tool pFaces [KZ19] is introduced as an acceleration ecosystem that facilitates uti-
lizing HPC platforms for designing and implementing efficient parallel algorithms. It
provides explicit support to design parallel algorithms for formal synthesis and verifi-
cation techniques. Generally, pFaces serves as an interface between the user (e.g., an
engineer developing parallel algorithms for CPS-based applications) and heterogeneous
HPC platforms.

In the next subsections, we present the internal structure and the workflow of pFaces.
Additionally, we illustrate how pFaces can be deployed in AWS, one of the commonly
used Cloud-computing services that provide access to diverse computing platforms. The
implementation includes a web-based interface that simplifies the development of parallel
algorithms and allows running them remotely. In next chapters, we utilize pFaces to
implement efficient algorithms for symbolic control.

3.2 Ecosystem for Parallel Computing

pFaces is designed to support heterogeneous computing platforms that are available
locally or in Cloud-computing platforms. More specifically, pFaces targets Hardware
Configurations (HWCs) similar to the ones depicted in Figure 3.1. An HWC is an HPC
system generalized by the following top-bottom hierarchy:

• A network that has at least one Compute Node (CN). We sometimes refer to such
network as compute cluster.

• A CN is a device that hosts at least on Compute Unit (CU). An example for a CN
is a Personal Computer (PC), a Workstation, or machine instance in AWS. CNs
have memories that are usually shared among all of their CUs. Each CN runs an
operating system (e.g., Linux) that manages its CUs.

• A CU is a compute-device of particular type. For example, a GPU from a specific
vendor is a CU. A Field Programmable Gate Array (FPGA) card is an additional
example for CUs. At least one CU in each CN should be a CPU, and we call it the
host-CPU. CUs have their own memory spaces, and they can access the memories
of their hosting CNs.

26

3.2 Ecosystem for Parallel Computing

HWCHWC HWC

Cloud-computing Service

pFaces Instance Manager

...

Web-based Interface

Interconnection Network

CN CN, master CN· · ·

CPU

GPU

CPU

GPU HWA

CPU

HWC

pFaces pFaces pFaces

Figure 3.1: An example Cloud-based deployment of pFaces.

• PEs represent the Hardware (HW) circuits doing computations (mathematical,
logical and memory access operations). CPUs have a few number of PEs (a.k.a.
cores), but they are able to do fast mathematical computations. GPUs have less
powerful PEs, but they come in a very large number. For example, the NVIDIA
GEFORCE RTX 3090 GPU has 10496 PEs. PEs of re-configurable HWAs like
FPGAs have customizable HW circuits. Developers can construct the computation
HW that perfectly match their needs.

• A thread is a sequence of compiled software codes that run inside a PE.

pFaces allows parallel algorithms to benefit from all available PEs in any heteroge-
neous HWC. Cloud-computing platforms provides access to HWCs that vary in comput-
ing power and pFaces can benefit from this to facilitate the design and implementation
of efficient parallel algorithms for symbolic control techniques. In Figure 3.1, we also
propose a Cloud-based deployment of pFaces. The system is initiated by users running
terminal platforms (e.g., a cell phone with a web-browser). They access a web-based
interface to select or configure HWCs that fit their needs. Then, they develop and
run parallel algorithms using a browser-friendly Integrated Development Environment
(IDE).

Figure 3.2 shows a screenshot of the web-based interface of pFaces. The figure shows
the Terminal tab of the interface where users run three example commands: (1) login,
a command to check-in in target HWCs, (2) list− hwcs, a command to show the
attached HWCs, and (3) list− devices, a command to list available CNs/CUs in a
specific HWC. The implementation presented in Figures 3.1 and 3.2 is deployed in AWS.
It can however be deployed in any Cloud-computing platform or run locally.

27

3 A Framework for Designing Efficient Algorithms of Symbolic Control

Figure 3.2: Screenshot from the web-based interface of pFaces.

Under the hood, an instance manager receives requests from different users and or-
chestrates the access to the HWCs. This includes launching, stopping, running programs
inside, and collecting data from those HWCs. Finally, at the deepest-level inside this
stack, instances of pFaces software are ready to accept and accelerate the provided par-
allel computing tasks, using all available PEs of the targeted HWC. In the next section,
we discuss, with more details, the operation of pFaces within one HWC.

3.3 Hardware Configuration (HWC)-Level and Compute Node
(CN)-Level Accelerations

We focus on one HWC that is deployed locally or in a Cloud-computing service. pFaces
is assumed to be installed in all the CNs of the HWC and that one of the installations
is designated as a master CN. When a job that spans all CNs in the HWC is requested,
the master pFaces is responsible for distributing it to its CN and all other CN. This
is achieved using a Message Passing Interface (MPI) protocol implemented by a library
used by each pFaces installation within each CN. The master pFaces uses the library to
communicate with other pFaces installations in order to coordinate the task scheduling
on the HWC level. For the rest of this section, we discuss how pFaces works within one
of the CNs, and how it identifies and utilizes the CUs attached to the targeted HWC.

28

3.3 Hardware Configuration (HWC)-Level and Compute Node (CN)-Level Accelerations

pFaces
User
Config.
Files

C++=MPI C++=OpenCL, user-supplied

Debug and
Log
Files Configure

the kernel

Start

Compile, tune, and
schedule the kernel

Identify the
recources

Run the kernel
on all PEs

End

(a) (b)

Algorithm 1:

Figure 3.3: (a) Internal structure of pFaces. (b) General workflow inside pFaces.

3.3.1 Internal Design Structure

Figure 3.3-(a) depicts the internal structure of pFaces. It consists of two main parts:
(1) the exchangeable kernel, and (2) the management system. In order to allow for de-
velopment of different parallel algorithms, pFaces implements the core computing parts
as exchangeable kernels (shown in purple color). The user is responsible for supplying a
kernel to pFaces, and the management system of pFaces is responsible for accelerating
it.

A kernel is a compiled program that is executed by pFaces. Such modular design
allows replacing the computation parts, when needed, with ones matching the problem
under consideration. The kernels in pFaces are developed in two languages: C++ and
OpenCL. OpenCL is a C-like standard for parallel computing. It is used to describe
data-parallel tasks that should run on all the PEs belonging to a CN.

A kernel driver is a collection of serial instructions written in C++ that provides
an execution plan that pFaces must follow to run the kernel. Each instruction of the
plan belongs to one of three main categories: (1) serial code instructions, (2) parallel
code instructions, and (3) management instructions. Serial code instructions request
execution of codes that are written as C++ functions. Parallel code instructions request
execution of codes written in OpenCL. Management instructions are used to reserve
memory, to describe the code logic (i.e., what order code instructions should follow),
to synchronize the parallel execution within all PEs of the CN, and to synchronize the
parallel execution within all CNs.

29

3 A Framework for Designing Efficient Algorithms of Symbolic Control

Remark 3.3.1. Using existing OpenCL codes in pFaces is readily doable. Users only
need to develop the kernel driver (i.e., the execution plan) that guides pFaces to work
with the data-parallel codes provided by the users.

In comparison with pure OpenCL, the data-parallel codes in pFaces are dynamic. Users
can use special keywords in the OpenCL code that are identified by pFaces and can be
controlled from the kernel driver. This gives the user the ability to design more flexible
codes. It also helps them change parameters in the OpenCL code after loading them from
text config files (see Fig. 3.3(a)).

The management system (shown in light orange color) is responsible for accelerating
the kernel, and managing the memory and the computing resources. It launches kernels
and synchronizes their parallel execution within PEs in the CN. As depicted in Figure
3.3-(a), it consists of different modules, and we discuss them separately in the next
subsections.

3.3.2 Resource Management and Kernel Tuning

A module for resource identification and management identifies the CUs in the CN and
their capabilities. This includes, for example, their computation power (e.g., processor
frequency and number of PEs), their available memory spaces, and their supported
communication interfaces. Such information is stored in a database for later use during
task scheduling and execution.

A kernel tuner module executes parts of the kernel in order to identify near-accurate
information about the computing power of available CUs. Such information, which is in
the form of time measurements, helps other modules to distribute the tasks efficiently
over all PEs. By this, pFaces makes sure that all PEs are fairly utilized during the
run-time of the kernel.

3.3.3 Managing Computation and Memory Resources

The management engine module uses the collected data from the modules in the previous
subsection to decide how the kernels are scheduled. Since it is aware of their memory
resources (as collected from the resource identification and management module) and
their computation power (as collected from the kernel tuner module), it automatically,
and efficiently, decides which balanced execution the kernels should undergo in the PEs.
This is mainly achieved by assigning fair subsets of the input data to different PEs. In
Subsection 3.4, we provide more details about the scheduling of tasks in pFaces.

Having a near-optimal task distribution, the management engine en-queues the kernel
for actual execution using the task scheduling module. The task scheduling module man-
ages the en-queued tasks for parallel execution. It reserves memory spaces on each CU,
sends tasks for execution, collects results, and copies data between CUs when needed.

The management engine is also responsible for running the instructions supplied by the
user in the kernel driver. Serial code instructions are dispatched for execution within
the host-CPU. Parallel code instructions launch parallel codes in all available PEs as
low-level threads. The number of low-level threads in each PE is assigned based on

30

3.3 Hardware Configuration (HWC)-Level and Compute Node (CN)-Level Accelerations

the decisions from the task scheduling module. To synchronize the execution among
various low-level threads, pFaces offers various instructions for code synchronization.
They range from instructions for low-level synchronization between PEs to instructions
for balancing the execution among CNs over the network, using MPI messages.

3.3.4 Modules for Supporting Kernel Development

As users develop their kernels, they can launch them with different configuration param-
eters. Such parameters are placed in configuration text files. The users can specify new
configuration parameters to be included in the configuration files. New parameters can,
for example, be used to set some variables in the developed kernel before launching it.
A configuration interface module reads and parses these configuration files and apply
them when requested to the kernel.

A logging and debugging module reports information collected from the management
system and the kernel. This includes: (1) suggestions for improving the kernel instruc-
tions to make it more efficient; (2) a task distribution report showing how the kernel is
distributed among the targeted CUs; (3) a detailed memory report about the reserved
memory buffers; (4) a detailed compilation report for each CUs that allows refining the
warnings/bugs; and (5) messages regarding the progress of the kernel during the parallel
execution.

pFaces also generates several reports to assist the developers. A task allocation report
shows how low-level threads are distributed among the CUs. A memory allocation report
shows, per memory buffer, the allocated memory. In case multiple CUs are attached to
the CN, pFaces constructs sub-buffers in the CUs and generates a sub-buffering report.
Finally, upon the completion of execution, pFaces reports the time spent to execute
parallel and serial codes, and the time spent to access the memory.

3.3.5 Supporting Symbolic Control Approaches

pFaces provides additional helper libraries and modules to facilitate the development of
kernels symbolic control techniques. This includes:

1. libraries for managing data structures used in those domains, such as raw-data,
BDDs, bitmaps and sparse-matrices,

2. a library for parsing mathematical expressions,

3. a library for symbolic mathematics,

5. a library for code generation (C++ and VHDL/Verilog),

4. an interface with MATLAB/Simulink for accessing the generated files, and

5. a library for developing Representational State Transfer (RESTful) web services
as web-based interfaces to the kernels.

31

3 A Framework for Designing Efficient Algorithms of Symbolic Control

3.4 Workflow of Kernels

Having PEs belonging to CUs of different types, pFaces relies on the following two
assumptions to ensure that a heterogeneous parallelization is successful:

(1) the kernels’ parallel codes follows the OpenCL standard, and

(2) each vendor (e.g., Intel for CPUs, NVIDIA for GPUs, and Intel-Altera for FPGAs)
provides an OpenCL-compiler that produces binaries (resp. HW circuit in case of
HWAs) from the kernels’ parallel codes.

Now, using different compiled binaries of the same kernel, pFaces asks different CUs
to execute the same kernel in parallel. The same applies to all neighboring CNs in the
HWC. The master pFaces installation ensures that all CN share the same kernel and
any required configuration files.

Users need then to represent the parallelizable parts of their algorithms as data-parallel
codes following the OpenCL standard. Data is here assumed to be big chunks of one-,
two-, or three-dimensional memory spaces. pFaces then schedules, in a computationally
balanced manner, PEs to run the binaries on disjoint subsets of the data spaces. Users
may aid pFaces in such scheduling, or it can be done completely automatic from the
collected tuning data.

Figure 3.3-(b) depicts the general workflow inside pFaces. In the beginning, pFaces
identifies the resources available CUs and memories in the current CN. Then, it reads
any provided configuration file and re-configures the kernel based on it. Finally, pFaces
compiles, tunes and schedules the kernel.

3.5 A Cloud-Ready Installation

Algorithm 2 gives more insights about the compilation of kernels and the tune-based
scheduling. Function ScheduleCUThreads uses the collected tune data (t1, t2, · · · , tD)
and the stored resource-information to give a decision regarding the number of low-level
threads N̂d that should be assigned to any CU with an index d ∈ D. Developers can
override the function and assign fixed distribution of low-level threads. Finally, the
kernel is sent to each CU for parallel execution.

The general Cloud-based architecture presented in Figure 3.1 is used to deploy pFaces

on AWS. We provide more details about the implementation within such specific Cloud-
computing service. An HWC is one or more (networked) instances deployed using the
AWS-Elastic Computing (EC2) service (a service for hosting virtual private machines).
pFaces is installed in all instances and it is managed through one Amazon Machine
Image (AMI) configured with all required libraries. The service AWS-CloudFormation
is used to template and deploy the HWC. The pFaces instance manager is developed
in ASP.NET (a programming language for web application development) and deployed
within one EC2-instance and it uses the AWS Application Programming Interface (API)
to manage the HWCs. The web-based interface is developed on top of Eclipse Orion

32

3.6 Summary

Algorithm 2: Kernel compilation and tune-based task scheduling.

Input: K: the kernel under consideration, N : number of low-level threads, D:
a list of indices of targeted CUs.

Parameters: Ñ : Constant number of threads for tuning.
Output: N̂1, N̂2, · · · , N̂D: per-CU number of low-level threads.

1 for d ∈ D do
2 if K is not compiled for CU d then
3 bd := Compile(CU d, K) ; . Per-CU compilation

4 else
5 bd := LoadBinaries(K) ; . Load pre-compiled binaries

6 end
7 if K is not tuned for CU d then

8 td := KernelTuner.Run(bd,Ñ) ; . Run for fixed threads

9 else
10 td := LoadTuneData(K) ; . Load tune data

11 end

12 end
13 for d ∈ D do

14 N̂d := ScheduleCUThreads(N , d, t1, t2, · · · , tD);
15 end

and it is deployed as an independent web-server in one EC2-instance using the AWS-
ElasticBeanstalk service. Databases for the web-based interface and instance manager
are managed by Microsoft SQL Servers through the AWS-Relational Database Service
(RDS). Finally, a Domain Name System (DNS)-lookup-table and a domain-name are
managed through the AWS-Route53 service.

3.6 Summary

We presented pFaces as an acceleration framework that will be used throughout the
thesis to design and implement several parallel algorithms for symbolic control. pFaces
leverages computing resources, locally or in Cloud-computing platforms, to facilitate
designing and implementing scalable parallel algorithms. It allows parallel algorithms
to benefit from all available PEs in any heterogeneous HWC.

The internal structure of pFaces was introduced. It consists of two main parts: (1) the
exchangeable kernel, and (2) the management system. A kernel is a compiled program
that is executed by pFaces. The management system, on the other hand, is responsible
for running the kernel, and managing its memory and computing resources.

The workflow in pFaces was also introduced. Users need to represent the paralleliz-
able parts of their algorithms as data-parallel and serial codes as kernels acceptable by
pFaces. pFaces then launches the kernel and synchronizes its parallel execution within
all available PEs.

33

3 A Framework for Designing Efficient Algorithms of Symbolic Control

An example Cloud-based installation of pFaces on Amazon AWS was also presented.
An HWC here is one or more (networked) instances deployed using the AWS-EC2 service.
pFaces was then installed in all instances and it is managed through one AMI configured
with all required libraries.

34

4 Efficient Algorithms for Symbolic Control

Current state-of-the-art implementations of symbolic control are designed to run seri-
ally in one PE. This way of implementation interacts poorly with the symbolic control
approach, whose complexity grows exponentially in the number of state variables in the
original systems. The same problem is also observed when original systems are an inter-
connection of many subsystems, which is always the case in Internet-of-Things (IoT) and
networked control systems [KRZ18]. Consequently, such implementations are limited to
small dynamical systems where controllers are computed offline. In this chapter, we
investigate efficient data-parallel algorithms and distributed data structures to address
the computational complexity issue of symbolic control. Using pFaces, we design kernels
that utilize HPC platforms to mitigate the effects of the state explosion problem that
appears in the majority of symbolic control techniques.

4.1 Existing Implementations of Symbolic Control

Most of the existing techniques of symbolic control take a monolithic view of systems,
where the entire system is modeled, abstracted, and then a controller is synthesized
from the overall state-space. Tools like Pessoa [MDT10], Tulip [WTO+11], CoSyMA

[MGG13], SCOTS [RZ16], SENSE [KRZ18], ROCS [LL18], and MASCOTS [HMMS18b] con-
sider a monolithic view of systems where the original system is abstracted as a whole.
Consequently, they severely suffer from the CoD. With respect to their implementations,
they are all designed to run serially in one CPU. On the other hand, the process of con-
structing the abstractions is inherently parallelizable. The states of symbolic models
can be constructed independently and in parallel. Also, the process of automated con-
troller synthesis can be partially parallelized. This makes symbolic control in general
parallelizable.

Surprisingly, most modern CPUs come equipped with multiple cores and internal
GPUs that never get utilized by serial programs. For example, the Intel Core i5 6200U
processor has two CPU cores and an internal GPU that can outperform similar single-
core CPUs if a data-parallel task is well implemented. Now, having any of those existing
tools run in this processor, might not utilize the second CPU core and will never utilize
the internal GPU, which is a waste of resources. Parallelizing the phases of abstraction
construction and controller synthesis, while considering HPC platforms as computing
platforms, can help control the computational complexity of symbolic control.

In the next subsections, we redesign the algorithms of the symbolic control technique
used in [MDT10, MGG13, RZ16, HMMS18b], implement them using pFaces and com-
pare them with existing tools. To be implemented in pFaces, the two main phases in

35

4 Efficient Algorithms for Symbolic Control

symbolic control (i.e., constructing the symbolic model and synthesizing the controllers)
must be parallelized.

4.2 Data-Parallel Algorithms for Symbolic Control

We consider symbolic model constructed based on the theory in [RWR17], which utilizes
a growth-bound formula as an Over-Approximation of the Reachable Set (OARS). Al-
gorithmic controller synthesis is done based on the technique presented in [RZ16], which
uses fixed-point computations on the constructed symbolic models. We refer to this
technique on symbolic control as the Growth-Bound and Fixed-Point (GBFP).

4.2.1 Data-Parallel Construction of Symbolic Models

As declared earlier in Chapter 2, we consider general nonlinear continuous-time systems
as control systems Σ. Let us be more specific here and provide a definition for map f in
Σ. Consider the following control system Σ given in the form of a differential equation:

ẋ(t) = f(x(t), u), (4.2.1)

where x(t) ∈ Xτ ⊆ Rn is the state vector and u ∈ Uτ ⊆ Rm is the input vector.
Consequently, the considered concrete system is Sτ := (Xτ , Uτ , Tτ), where Tτ is as
defined in (2.3.2).

For the construction of Sq, we consider set Xq as a finite partition on Xτ constructed
by a set of hyper-rectangles of identical widths η ∈ Rn+, and set Uq as a finite subset of
Uτ . The symbolic model is then the finite-state system Sq := (Xq, Uq, Tq) as introduced
in (2.3.3). In Theorem 2.3.4, we showed that there exist an FRR relating Sq to Sτ . An
FRR here is simply the equivalence relation used to construct the partition Xq of Xτ .
We denote such FRR by Q ⊆ Xτ ×Xq.

We now discuss in details how the construction of Sq is implemented. A discussion of
an algorithm that constructs Xq and Uq is omitted since they are simply constructed via
the quantization of their corresponding spaces (i.e., Xτ and Uτ). For interested readers,
an example implementation for the quantization algorithms are given in [RZ16]. We
focus here on the construction of Tq since it is the part that suffers from the CoD, as
discussed earlier in Section 2.5.1.

For the vector field of (4.2.1), a function Ωf : Xq × Uq → X2
τ characterizes the over-

approximations of the reachable sets starting from symbolic state xq ∈ Xq when an
input uq ∈ Uq is applied. For example, if the growth-bound map (β : Rn × Uτ → Rn)
introduced in [RWR17] is used, Ωf can be defined as follows: Ωf (xq, uq) = (xlb, xub) :=
(−r+ ξxc,uq(τ), r+ ξxc,uq(τ)), where r = β(η/2, u), and xc ∈ xq denotes the center of xq.
An over approximation of the reachable sets can then be obtained by the map

Of : Xq × Uq → 2Xq , (4.2.2)

defined by Of (xq, uq) := Q ◦ Ωf (xq, uq), where Q is a quantization map defined by:

Q(xlb, xub) := {x′q ∈ Xq | x′q ∩ [[xlb, xub]] 6= ∅}. (4.2.3)

36

4.2 Data-Parallel Algorithms for Symbolic Control

Remark 4.2.1. Map Q is a cosmetic encapsulation of FRR Q. While Q accepts one
element x ∈ Xτ as input, Q operates on a hyper-rectangle X̃ ⊆ Xτ defined by the lower
and upper bound points xlb and xub. Q then returns all elements x′q ∈ Xq that Q would

return if it is applied iteratively to all points in X̃.

Algorithm 3: Serial algorithm for constructing abstractions.

Input: Xq, Uq, O
f

Output: A transition relation Tq ⊆ Xq × Uq ×Xq.
1 Tq ← ∅ ;
2 for all xq ∈ Xq do
3 for all uq ∈ Uq do
4 for all x′q ∈ Of (xq, uq) do

5 Tq ← Tq ∪ {(xq, uq, x′q)} ;

6 end

7 end

8 end

Algorithm 3 depicts the traditional algorithm for constructing finite abstractions of
dynamical systems. It is a more detailed version of Algorithm 1. It constructs, serially,
Tq ⊆ Xq×Uq×Xq by iterating over all elements of Xq×Uq. For any (xq, uq) ∈ Xq×Uq,
the evaluation of Of and Tq|(xq ,uq) is independent of any other elements of Xq × Uq.
Hence, such evaluation can be implemented completely in parallel. This is an ideal case
of data-parallelism.

Algorithm 4: Proposed data-parallel algorithm for constructing discrete ab-
stractions.

Input: Xq, Uq,Ω
f

Output: A characteristic set K ⊆ Xq × Uq ×X2
τ .

1 K ← ∅;
2 for all p ∈ {1, 2, · · · , P} do
3 Kp

loc ← ∅;
4 end
5 for all (xq, uq) ∈ Xq × Uq in parallel with index i do
6 p = I(i);

7 (xlb, xub)← Ωf (xq, uq);
8 Kp

loc ← Kp
loc ∪ {(xq, uq, (xlb, xub))};

9 end
10 for all p ∈ {1, 2, · · · , P} do
11 K ← K ∪Kp

loc;
12 end

37

4 Efficient Algorithms for Symbolic Control

Algorithm 4 is the proposed parallelization of Algorithm 3 to exploit its inherent
data-parallelism. In Algorithm 4, each PE, annotated with an index p ∈ {1, 2, · · · , P},
where P is the number of available PEs, handles one (xq, uq) ∈ Xq × Uq. Function
I : N+ \ {∞} → {1, 2, . . . , P} maps a parallel job (i.e., an iteration of the parallel for-
all statement) with index i to a PE with an index p = I(i). The algorithm introduces the
abstraction task as an ideal data-parallel task with no communication overhead among
the processing elements. It is more suitable for CUs with massive number of PEs (e.g.
GPUs and super computers).

Remark 4.2.2. Having P > |Xq × Uq| is a waste of computation power.

In Algorithm 4, instead of storing symbolic transitions in Tq, Ωf is used to construct
a distributed container K := K1

loc ∪K2
loc ∪ · · · ∪KP

loc, where the subscript loc indicates
that Kp

loc ⊆ Xq × Uq × X2
τ is stored in a local-memory of the PE with index p. Lines

10-12 in Algorithm 4 are optional and can be omitted if there is no interest to obtain a
combined abstraction. We show later in Subsection 4.2.2 that the proposed algorithm for
controller synthesis requires only the distributed containers Kp

loc to synthesize symbolic
controllers for Sq.

Remark 4.2.3. Using K and not Tq is much more efficient since |Tq| is sensitive to
|Of (xq, uq)|, while |K| = 2n|Xq×Uq| is constant and consumes, practically, less memory.
It is efficient when such operations are executed in PEs of GPUs or HWAs known for
having limited memory. Later in Subsection 4.2.3, we show that the distributed container
Kp
loc can be omitted and the abstraction is done on-the-fly.

To investigate the complexity of Algorithm 4, we assume for the sake of simplicity
that Xq is a partition of Xτ constructed by a set of hyper-cubes. The following theorem
shows the complexity of Algorithm 4.

Theorem 4.2.4. The complexity of Algorithm 4 is O(
Nn
X |Uq |
P), where NX ∈ N and P is

a variable number of PEs.

Proof. The proof follows directly the computation of parallel complexity for Parallel
Random Access Memory (PRAM) models as introduced in [Jaj92, Chapter 1].

Remark 4.2.5. A variant of Algorithm 4, which is more suitable for CUs with small
number of fast PEs (e.g., CPUs and FPGAs), can be easily provided by aggregating the
computation of all (xq, uq) having the same xq in one PE.

4.2.2 Data-Parallel Synthesis of Symbolic Controllers

Let Sq := (Xq, Uq, Tq) be a symbolic model and recall the procedure of symbolic con-
troller synthesis introduced in Section 2.4.2. Algorithm 5 shows a traditional serial
implementation of the minimal fixed-point computation Z∞ = µZ.G(Z) to synthesize a
symbolic controller that enforces reachability specifications. Synthesizing controllers for
invariance specifications is much similar and uses a maximal fixed-point computation.
Interested readers can find more details in [RZ16].

38

4.2 Data-Parallel Algorithms for Symbolic Control

Algorithm 5: Traditional serial algorithm to synthesize Cq enforcing the spec-
ification ψ := ♦φ.

Input: Initial winning domain Zψ ⊂ Xq × Uq and Tq
Output: A controller Cq : Xw → 2Uq .

1 Z∞ ← ∅ ;
2 Xw ← ∅ ;
3 do
4 Z0 ← Z∞ ;
5 Z∞ ← CPreTq(Z0) ∪ Zψ ;
6 D ← Z∞ \ Z0 ;
7 foreach xq ∈ πXq(D) with xq 6∈ Xw do
8 Xw ← Xw ∪ {xq} ;
9 Cq(xq) := {uq ∈ Uq | (xq, uq) ∈ D} ;

10 end

11 while Z∞ 6= Z0;

Algorithm 6 is the proposed parallelization of Algorithm 5. We assume using the same
indexing map I(·) from Algorithm 4. Line (11) corresponds to computing T (xq, uq) from
the stored characteristic values (xlb, xub). Since all PEs use Z0 when running lines (12)
and (15), the synchronization among all PEs is required to ensure all PEs get the most
updated version of Z0. Such synchronization happens every iteration of the fixed-point
by collecting all local versions Zploc in line (21) and the update in line (4) before starting
another parallel synthesis iteration of the parallel for-loop in line (9). Similar to the
discussion in Remark 4.2.5, a variant of the algorithm, that is more suitable for CPUs
and HWAs, is provided in the implementation of the GBFP kernel.

4.2.3 Memory-Efficient Kernels for Data-Parallel Symbolic Control

Modern CUs contain hundreds to thousands of PE. This motivates the concept of more-
compute/less-memory where recomputing results between repeated iterations is favored
over storing them. We apply this by eliminating the use of Kp

loc in line (11) of Algorithm
6 and computing it on the fly using the same way done in lines (7) and (8) of Algorithm
4. We refer to such modified kernel as Memory-Efficient GBFP (MemGBFP).

4.2.4 Implementation Details

Figure 4.1 shows, as a flow-chart, the overall execution of the GBFP kernel inside pFaces.
The steps (blocks) in the diagram describes each part of the implementation. Blocks in
orange correspond to software components of pFaces while those in purple correspond
to parts of the GBFP kernel.

pFaces starts reading and applying the configuration files describing the control prob-
lem. A configuration file for the symbolic control kernel should follow a template text file.
This includes configurations such as the dynamics of the physical systems in the form of

39

4 Efficient Algorithms for Symbolic Control

Algorithm 6: Proposed parallel algorithm to synthesize Cq enforcing the spec-
ification ψ := ♦φ.

Input: Initial winning domain Zψ ⊂ Xq × Uq and Tq
Output: A controller Cq : Xw → 2Uq .

1 Z∞ ← ∅ ;
2 Xw ← ∅ ;
3 do
4 Z0 ← Z∞ ;
5 for all p ∈ {1, 2, · · · , P} do
6 Zploc ← ∅;
7 Xp

w,loc ← ∅;
8 end
9 for all (xq, uq) ∈ Xq × Uq in parallel with index i do

10 p = I(i);
11 Posts← Q ◦Kp

loc(xq, uq);
12 if Posts ⊆ Z0 ∪ Zψ then
13 Zploc ← Zploc ∪ {(xq, uq)};
14 Xp

w,loc ← Xp
w,loc ∪ {x̂};

15 if xq 6∈ πXq(Z0) then
16 Cq(xq)← C(xq) ∪ {uq};
17 end

18 end

19 end
20 for all p ∈ {1, 2, · · · , P} do
21 Z∞ ← Z∞ ∪ Zploc;
22 Xw ← Xw ∪Xp

w,loc;

23 end

24 while Z∞ 6= Z0;

40

4.2 Data-Parallel Algorithms for Symbolic Control

Start

Run Abstraction
Algorithm
in Parallel

Run Synthesis
Algorithm
in Parallel

Collect results

in Parallel

Yes No

No

End

Yes

· · ·

· · ·

· · ·

PE: Processing Element

Device: CPU, GPU, or HWA

Figure 4.1: Workflow of the symbolic control kernel inside pFaces.

41

4 Efficient Algorithms for Symbolic Control

Table 4.1: Used HWCs for the case studies in this chapter.

Code Details # PEs
CPU1 Intel Core i5-6200U 2
CPU2 Intel Xeon E5-2630 10
CPU3 Intel Xeon E-2666 36
CPU4 Intel Xeon E5-1620 (3.6 GHz) 8
CPU5 Intel Xeon E5-2686 (2.3 GHz) 64
CPU6 Intel Xeon Platinum 8000 (3.6 GHz) 72
GPU1 NVIDIA Quadro P5000 2560
GPU2 NVIDIA Tesla V100 5120
GPU3 AMD Radeon Pro Vega 20 1280
FPGA1 Altera DE5-Net FPGA Board 2
FPGA2 Xilinx Kintex UltraScale FPGA KCU1500 2
MIX1 CPU1 and its internal GPU 24
MIX2 8 × GPU1 with NVLink interconnection 40960
CLS1 Two networked CNs: 32-core CPU and GPU2 5152

Table 4.2: Comparison between SCOTS and GBFP for the 2d-Robot example.
HWC CPU1 CPU2 GPU1 GPU2 GPU3 FPGA1 MIX1 MIX2 CLS1

Time: SCOTS 4423 3949 N/A N/A N/A N/A N/A N/A N/A

Time: pFaces 154 97 8.3 1.85 13.2 147 136 0.309 96.2

Speedup 25x 40x 475x 2134x 299x 26x 29x 12779x 41x

ODEs mixed with C code. The configurations also allow describing the requirements to
be enforced on the system by the synthesized controllers.

Then, three main parallel code blocks are developed in the kernel: (1) the parallel
algorithm for constructing the abstraction, (2) the parallel algorithm for synthesizing
the controller, and (3) a parallel algorithm to collect the data (i.e., the controller).
The controller synthesis algorithm is based on a fixed-point operation. This requires a
repeated computation of the parallel algorithms till it converges to a fixed-point set-of-
states. Some synchronization points are then required to ensure the integrity of data
shared among the different CUs (and/or among different CNs in the HWC using MPI
messages).

Once the fixed-point iterations settle, the kernel starts to dump the final controller
which is distributed on many memory spaces in different CUs (and/or different CNs
in the HWC). Controllers are given in the form of Lookup Tables (LUTs) and can be
stored in different formats (e.g., BDDs or bitmaps). With one of the libraries shipped in
pFaces, C++ and VHDL codes can be also automatically generated. The generated codes
are ready for implementation in target (possibly embedded) devices that will control the
original system.

In [KZ19], we presented a detailed benchmark for the GBFP kernel covering several
case studies and using different HWCs. For the sake of demonstration, we present here
a subset of this benchmark. We mainly show a comparison between the implemented

42

4.2 Data-Parallel Algorithms for Symbolic Control

kernel in pFaces and tool SCOTS [RZ16], which is the current state-of-the-art tool for
symbolic controller synthesis. Table 4.2 shows this comparison for an example of a 2-
dimensional robot (introduced in [KRZ18, Section 4.2]) whose abstraction has 1364889
symbols. Table 4.1 shows the used HWCs and the total number of PEs in all of their
CNs/CUs. HWCs with codes CPU, GPU, or FPGA refer to HWCs with a single CU
within a single CN. Each GPU-HWC, or FPGA-HWC, has a host-CPU attached to its
CN and it is used for serial code execution. However, since most of the contribution to
the speedup comes from the parallel codes, we don’t report the details of the host-CPU.
A HWC with the code MIX refers to a HWC with a single CN that has multiple CUs
with different classes. The HWC CLS1 is a cluster of two CNs. All reported times are
in seconds. SCOTS can only work with the first two HWCs and when we compute the
speedup pFaces achieves, we use the fastest result of SCOTS (3949 seconds). Speedup is
calculated by dividing the time required by SCOTS by the time required by pFaces.

Remark 4.2.6. The GBFP kernel requires intensive synchronization at each fixed-point
convergence check. Such synchronization requires repeated sharing of large data blocks
between different CNs/CUs. Although GPUs2 and CLS1 has a similar number of PEs,
GPUs2 achieves much higher speedup. This is basically due to the time wasted in the
synchronization between the two CNs of CLS1 which comes in the form of MPI messages
over a slow Ethernet network.

The results show how controlling the number of PEs can be utilized to reduce the
computational complexities of symbolic control. In the next subsection, we leverage the
kernel to mitigate the effects of the CoD and deploy it as an online Cloud-computing
service.

4.2.5 Controlling Time Complexity of Symbolic Control Applications

We show how pFaces can be used to mitigate computation complexities resulting from
the CoD in symbolic control algorithms. We consider a truck-with-a-trailer system as
presented in [RMT13]. It is a three-dimensional system, where each dimension represents
a state variable in the ODEs describing the system. More specifically, one state variable
is dedicated to the velocity of the truck, another to the distance between the truck and
the trailer, and the third for the velocity of the trailer. As depicted in Figure 4.2-(a),
we generalize the example for N trailers. Remark that adding an extra trailer increases
the dimension by two. v0 is the velocity of the truck and vi, for i ∈ {1, 2, 3 · · ·N}, is the
velocity of trailer i, while di, for i ∈ {1, 2, 3 · · ·N}, is the distance from trailer i and the
trailer i− 1.

The requirement in this example is to reach some target speed while maintaining
safe distances between the trailers. We require the controller to be computed in real-
time with a deadline window of 1.0 second. This allows recomputing and deploying the
controller within the deadline window if environment parameters or system parameters
change. For different N , we are concerned with the number of transitions in the symbolic
model as it affects directly the complexity of the parallel algorithms.

43

4 Efficient Algorithms for Symbolic Control

1 2 N
...v0

v1
v2 vN

d1 d2 dN

Cloud-computing Service

...

Controller

Model + Requirements

(a)

(b)

Figure 4.2: (a) A truck with N trailers. (b) real-time implementation of the kernel.

Table 4.3: Details and results for the truck-and-trailers example.

N = 1 N = 2 N = 3 N = 4
Dimension of Σ 3 5 7 9
|Tq| (×106) 2.64 36.17 398.29 5520.4

Total memory (M.B.) 63 1414 379 5264
Memory-optimized kernel No No Yes Yes

HWC CPU3 GPU2 MIX2 MIX2
Number of PEs 36 5120 40960 40960

Time to find Cq (sec.) 0.42 0.98 0.96 46.6

For the original problem (i.e., one trailer), the existing state-of-the-art tool SCOTS [RZ16]
solves the problem in 87 seconds using the HWC CPU3, which violates the real-time
constraint. Using the same HWC, the implementation of GBFP in pFaces solves the
same problem in 0.42 seconds (a speedup of around 207x). Clearly, such speedup is due
to the ability of pFaces in utilizing all the 36 PEs of CPU3.

We upgrade the system and synthesize a controller for 2 trailers. In order to respect
the real-time deadline, we update the HWC to GPU2. The problem is then solved in
0.98 seconds. Notice the increase in total-memory as reported in Table 4.3 when tar-
geting more complex systems. We benefit from the feature in pFaces allowing different
variations of the same kernel, and apply the variant kernel MemGBFP which saves more
memory.

For 3 trailers, we use the HWC MIX2. Now, the problem is solved in 0.96 seconds.
We report the time needed for a system with 4 trailers using the last HWC to illustrate
that increasing the complexity of the problem without sufficient number of PEs uncovers
the CoD. All details about this case study are given in Table 4.3.

44

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control

Now, having a kernel that respects the real-time constraint, we present a Cloud-
based online real-time implementation of the truck-and-trailers system. Figure 4.2-
(b) depicts the proposed implementation providing automated controller synthesis as a
service for many trucks. The trucks are assumed to have some access to the internet.
They submit requests for new controllers. The requests are packages containing the
updated model and requirements to be enforced. Such packages are delivered to a web-
based API (a.k.a. web service) developed with the RESTful interfaces library in pFaces.
This communication is assumed to take less than 4 milliseconds so that the real-time
constraint is still respected for N ∈ {1, 2, 3}. The packages are parsed and analyzed
using the API. Then, the API utilizes the instance manager module to get access to one
HWC with suitable resources that can respond in real-time to the request. Then, the
computation is done in the HWC using pFaces running in the launched HWC. Once
the controller is synthesized, it is delivered back to the truck that initiated the request.
The truck is responsible for putting the controller into action. This implementation is
deployed in Amazon’s AWS.

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic
Control

Traditional symbolic control algorithms (i.e., Algorithms 3 and 5) traverse the state space
in a brute force way and suffer from an exponential runtime with respect to the number
of state variables. The authors of [GKA17] noticed that a majority of continuous-space
systems exhibit a coordinate structure, where the governing equation for each state
variable is defined independently. When the equations of discrete-time systems depend
only on few continuous variables, then they are said to be sparse. They proposed a
modification to the traditional brute-force procedure to take advantage of such sparsity
only in constructing abstractions. Unfortunately, their work suffers from the following
drawbacks: (1) sparsity of dynamics is not leveraged to improve synthesis of symbolic
controllers, which is, practically, more computationally complex than the construction
of symbolic models (cf. the discussion in Section 2.5.1), and (2) the algorithms they
introduced are designed for serial execution and consequently, they still suffer from the
CoD.

In this section, we propose a data-parallel implementation of sparsity-aware algorithms
that can utilize HPC platforms. In particular, we

(1) introduce a data-parallel algorithm for constructing abstractions with a distributed
data container. The algorithm utilizes sparsity and can run on HPC platforms.
We implement it in pFaces and compare it with the results in [GKA17].

(2) introduce a data-parallel algorithm that integrates sparsity of dynamical systems
into the controller synthesis phase. This algorithm returns the same result as
Algorithm 5, while exhibiting much lower running time.

45

4 Efficient Algorithms for Symbolic Control

x1

x2

x3

x
+
1

x
+
2

x
+
3

u1

u2

Σ

Figure 4.3: The sparsity graph of the vehicle example as introduced in [GKA17].

4.3.1 Sparsity of Discrete-Time Systems

The concept of sparsity is currently limited to discrete time systems [GKA17]. If system
Σ is given in from of an ODE as in (4.2.1), we consider its forward Euler approxima-
tion. More precisely, (4.2.1) is approximated by the following update equation (a.k.a.
difference equation):

Σ : x+ = x+ τf(x, u), (4.3.1)

where x+ ∈ Rn is the approximation of the system’s state after τ seconds starting from
state x ∈ Rn and applying constantly input u ∈ Rm. τ is the same sampling period used
in (2.3.2) to embed Σ as system Sτ . Sq := (Xq, Uq, Tq) should then be constructed as
introduced earlier in Section 2.3.

Remark 4.3.1. Notice that when the approximation in (4.3.1) is used to construct the
transition relation Tq of Sq, the approximation error (a.k.a. local truncation error) does
not propagate since x+ is computed once for each state-input pair. Therefore, one can
include this error (see [Cha18] for an upper bound of the local truncation error in Euler-
approximated ODE) in the symbolic model which is manifested as extra nondeterminism
in Tq. Consequently, a controller synthesized for Sq can still enforce the specification on
the original continuous-time system in (4.2.1).

For a simpler presentation throughout the section, we abuse the notation and refer
to the Right-Hand Side (RHS) of equation (4.3.1) as f(x, u) instead of x + τf(x, u).
Given a system Sτ , an update-dependency graph is a directed graph of vertices repre-
senting input variables {u1, u2, · · · , um}, state variables {x1, x2, · · · , xn}, and updated
state variables {x+

1 , x
+
2 , · · · , x+

n }, and edges that connect input (resp. states) variables
to the affected updated state variables based on map f . For example, Figure 4.3 depicts
the update-dependency graph of the vehicle case study presented in [GKA17] with the
update equation: x+

1

x+
2

x+
3

 =

f1(x1, x3, u1, u2)
f2(x2, x3, u1, u2)
f3(x3, u1, u2)

 ,
for some nonlinear functions f1, f2, and f3. The state variable x3 affects all updated
state variables x+

1 , x+
2 , and x+

3 . Hence, the graph has edges connecting x3 to x+
1 , x+

2 ,
and x+

3 , respectively. As update-dependency graphs become denser, sparsity of their
corresponding symbolic models is reduced. The same graph applies to the symbolic
model Σq.

46

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control

During this section, we sometimes refer to Xq, Uq, and Tq as monolithic state set,
monolithic input set and monolithic transition relation, respectively. A generic projec-
tion map

P fi : A→ πi(A)

is used to extract elements of the corresponding subsets affecting the updated state x+
q,i.

Note that A ⊆ Xq := Xq,1 × Xq,2 × · · · × Xq,n when we are interested in extracting
subsets of the state set and A ⊆ Uq := Uq,1×Uq,2× · · ·×Uq,m when we are interested in
extracting subsets of the input set. When extracting subsets of the state set, πi is the
projection map πXq,k1×Xq,k2×···×Xq,kK , where kj ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · ,K}, and

Xq,k1 ×Xq,k2 × · · · ×Xq,kK is a subset of states affecting the updated state variable x+
q,i.

When extracting subsets of the input set, πi is the projection map πUq,p1×Uq,p2×···×Uq,pP ,
where pi ∈ {1, 2, · · · ,m}, i ∈ {1, 2, · · · , P}, and Uq,p1 × Uq,p2 × · · · × Uq,pP is a subset of
inputs affecting the updated state variable x+

q,i.

For example, assume that the monolithic state (resp. input) set of the system Sq in
Figure 4.3 is given by Xq := Xq,1 × Xq,2 × Xq,3 (resp. Uq := Uq,1 × Uq,2) such that
for any xq := (xq,1, xq,2, xq,3) ∈ Xq and uq := (uq,1, uq,2) ∈ Uq, one has xq,1 ∈ Xq,1,
xq,2 ∈ Xq,2, xq,3 ∈ Xq,3, uq,1 ∈ Uq,1, and uq,2 ∈ Uq,2. Now, based on the dependency

graph, P f1 (xq) := πXq,1×Xq,3(xq) = (xq,1, xq,3) and P f1 (uq) := πUq,1×Uq,2(uq) = (uq,1, uq,2).

We can also apply the map to subsets of Xq and Uq, e.g., P f1 (Xq) = Xq,1 × Xq,3, and

P f1 (Uq) = Uq,1 × Uq,2.

For a transition t := (xq, uq, x
′
q) ∈ Tq, we define P fi (t) := (P fi (xq), P

f
i (uq), πXq,i(x

′
q)),

for any component i ∈ {1, 2, · · · , n}. Note that for t, the successor state x′q is treated

differently as it is related directly to the updated state variable x+
q,i. We can apply the

map to subsets of Tq, e.g., for the given update-dependency graph in Figure 4.3, one has

P f1 (Tq) = Xq,1 ×Xq,3 × Uq,1 × Uq,2 ×Xq,1.

A generic recovery map

Df
i : P fi (A)→ 2A

is also used to recover elements (resp. subsets) from the projected subsets back to their
original monolithic sets. Similarly, A ⊆ Xq := Xq,1 × Xq,2 × · · · × Xq,n when we are
interested in subsets of the state set and A ⊆ Uq := Uq,1×Uq,2× · · ·×Uq,m when we are
interested in subsets of the input set.

For the same example in Figure 4.3, let xq := (xq,1, xq,2, xq,3) ∈ Xq be a state. Now,

define xq,p := P f1 (xq) = (xq,1, xq,3). We then have Df
1 (xq,p) := {(xq,1, x∗q,2, xq,3) | x∗q,2 ∈

Xq,2}. For a transition element t := ((xq,1, xq,2, xq,3), (uq,1, uq,2), (x′q,1, x
′
q,2, x

′
q,3)) ∈ Tq

and its projection tp := P f1 (t) = ((xq,1, xq,3), (uq,1, uq,2), (x′q,1)), the recovered transitions

is the set Df
1 (tp) = {((xq,1, x∗q,2, xq,3), (uq,1, uq,2), (x′q,1, x

′∗
q,2, x

′∗
q,3)) | x∗q,2 ∈ Xq,2, x′∗q,2 ∈

Xq,2, and x′∗q,3 ∈ Xq,3}.

Remark 4.3.2. Given a subset X̃ ⊆ Xq, let [X̃] := Df
1 ◦ P

f
1 (X̃). Note that [X̃] is not

necessarily equal to X̃. However, we have that X̃ ⊆ [X̃]. Here, [X̃] over-approximates
X̃.

47

4 Efficient Algorithms for Symbolic Control

Now, recall map Of defined in (4.2.2). We assume it can be decomposed component-
wise (i.e., per dimension i ∈ {1, 2, · · · , n}) such that for any (xq, uq) ∈ Xq × Uq,

Of (xq, uq) =
⋂n
i=1D

f
i (Ofi (P fi (xq), P

f
i (uq))), where Ofi : P fi (Xq) × P fi (Uq) → 2P

f
i (Xq)

is an over-approximation function restricted to component i ∈ {1, 2, · · · , n} of f . The
same assumption applies to the underlying characterization function Ωf .

4.3.2 Sparsity-Aware Distributed Constructions of Abstractions

Algorithm 7: Serial sparsity-aware algorithm for constructing abstractions as
introduced in [GKA17].

Input: Xq, Uq, O
f

Output: A transition relation Tq ⊆ Xq × Uq ×Xq.
1 Tq ← Xq × Uq ×Xq;
2 for all i ∈ {1, 2, · · · , n} do

3 Tq,i ← Algorithm-3(P fi (Xq), P
f
i (Uq), O

f
i);

4 Tq ← Tq ∩Df
i (Tq,i);

5 end

Earlier in this chapter, Algorithm 3 is presented as the traditional serial algorithm
for constructing Sq. The drawback of the exhaustive iteration over Xq in Algorithm
3 is mitigated in Algorithm 7 by the technique introduced in [GKA17] which utilizes
the sparsity of Sq. Tq is constructed by applying the Algorithm 3 to subsets of each
component. Algorithm 7 presents a sparsity-aware serial algorithm for constructing Sq.

If we assume a bounded number of elements in subsets of each component (i.e.,

|P fi (Xq)| and |P fi (Uq)| from line 3 in Algorithm 7), we would expect a near-linear com-
plexity of the algorithm. This is not clearly the case in [GKA17, Figure 3] as the authors
decided to use BDDs to represent transition relation Tq.

Clearly, representing Tq as a single storage entity is a drawback in Algorithm 7. All
component-wise transition sets Tq,i will eventually need to push their results into Tq.
This hinders any attempt to parallelize it unless a lock-free data structure is used, which
affects the performance dramatically.

On the other hand, Algorithm 4 introduces a technique for constructing Sq by using a
distributed data container to maintain the transition set Tq without constructing it ex-
plicitly. Using a continuous over-approximation Ωf is favored as opposed to the discrete
over-approximation Of since it requires less memory in practice. The actual compu-
tation of transitions (i.e., using Of to compute discrete successor states) is delayed to
the synthesis phase and done on the fly. The parallel algorithm scales remarkably with
respect to the number of PEs P since the task is parallelizable with no data dependency.
However, it still handles the problem monolithically which means, for a fixed P , it will
not probably scale as the system dimension n grows.

We then introduce Algorithm 8 which utilizes sparsity to construct Sq in parallel. It
is a combination of Algorithm 4 and Algorithm 7. Function I : N+ \ {∞}×N+ \ {∞} →

48

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control

Algorithm 8: Proposed sparsity-aware data-parallel algorithm for construct-
ing discrete abstractions.

Input: Xq, Uq,Ω
f

Output: A list of characteristic sets: K :=
P⋃
p=1

n⋃
i=1
Kp
loc,i.

1 for all i ∈ {1, 2, · · · , n} do
2 for all p ∈ {1, 2, · · · , P} do
3 Kp

loc,i ← ∅;
4 end

5 end
6 for all i ∈ {1, 2, · · · , n} in parallel do

7 for all (xq, uq) ∈ P fi (Xq)× P fi (Uq) in parallel with index i do
8 p = I(i, j);

9 (xlb, xub)← Ωf (xq, uq);
10 Kp

loc,i ← Kp
loc,i ∪ {(xq, uq, (xlb, xub))};

11 end

12 end

P
f

1
(X̄)

P
f

1
(Ū)

= X̄1 × X̄3

= Ū1 × Ū2

K1
loc;1

K2
loc;1

K3
loc;2

K4
loc;2

K5
loc;3

K6
loc;3

P
f

2
(X̄)

= X̄2 × X̄3

P
f

3
(X̄)

= X̄3

P
f

2
(Ū)

= Ū1 × Ū2

P
f

3
(Ū)

= Ū1 × Ū2

Figure 4.4: An example task distributions for the data-parallel sparsity-aware abstraction.

{1, 2, · · · , P} maps a parallel job (i.e., lines 9 and 10 inside the inner parallel for-all
statement), for a component i and a tuple (xq, uq) with index j, to a PE with an
index p = I(i, j). Kp

loc,i stores the characterizations of abstraction of ith component

and is located in PE of index p. Collectively, K1
loc,1, . . . ,K

p
loc,i, . . . ,K

P
loc,n constitute a

distributed container that stores the abstraction of the system.

Figure 4.4 depicts an example of the job and task distributions for the example pre-
sented in Figure 4.3. Here, we use P = 6 with a mapping I that distributes one partition
element of one subset P fi (Xq)×P fi (Uq) to one PE. We also assume that the used PEs have

equal computation power. Consequently, we try to divide each subset P fi (Xq)×P fi (Uq)
into two equal partition elements such that we have, in total, 6 similar computation
spaces. Inside each partition element, we indicate which distributed storage container
Kp
loc,i is used.

49

4 Efficient Algorithms for Symbolic Control

0 10 20 30 40 50 60 70 80 90 100

Dimension of the state set

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 (

s
e

c
.)

Serial algorithm for sparsity-aware abstraction

Distributed algorithm for sparsity-aware abstraction

Figure 4.5: Comparison between the serial and parallel algorithms for constructing abstractions
of a traffic network model by varying the dimensions.

To assess the distributed algorithm in comparison with the serial one presented in
[GKA17], we implement it in pFaces. We use the same traffic model presented in
[GKA17, Subsection VI-B] and the same parameters. For this example, the authors
of [GKA17] construct Tq,i, for each component i ∈ {1, 2, · · · , n}. They combine them
incrementally in a BDD that represents Tq. A monolithic construction of Tq from Tq,i is
required in [GKA17] since symbolic controller synthesis is done monolithically. On the
other hand, using Kp

loc,i in our technique plays a major role in reducing the complexity
of constructing higher dimensional abstractions. Later in Subsection 4.3.3, we utilize
Kp
loc,i directly to synthesize symbolic controllers with no need to explicitly construct Tq.

Figure 4.5 depicts a comparison between the results reported in [GKA17, Figure 3]
and the ones obtained from our implementation in pFaces. We use an Intel Core i5 CPU,
which comes equipped with an internal GPU yielding around 24 PEs being utilized by
pFaces. The implementation stores the distributed containers Kp

loc,i as raw-data inside
the memories of their corresponding PEs. As expected, the distributed algorithm scales
linearly and we are able to go beyond 100 dimensions in a few seconds, whereas Figure
3 in [GKA17] shows only abstractions up to a 51-dimensional traffic model because
constructing the monolithic Tq begins to incur an exponential cost for higher dimensions.

Remark 4.3.3. Algorithms 7 and 8 utilize the sparsity of Σ to reduce the space com-
plexity of abstractions from O(|Xq × Uq|) to O(maxi=1 |P fi (Xq) × P fi (Uq)|). However,
Algorithm 7 iterates over the space serially. Algorithm 8, on the other hand, handles

50

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control

the computation over the space in parallel using variable P of PEs and hence reduces the

complexity to O(
maxi=1 |P fi (Xq)×P fi (Uq)|

P).

4.3.3 Sparsity-Aware Distributed Synthesis of Symbolic Controllers

Recall the controllable predecessor map defined in (2.4.2). Now, we introduce a component-

wise controllable predecessor map CPreTq,i : 2P
f
i (Xq)×P fi (Uq) → 2P

f
i (Xq)×P fi (Uq), for any

component i ∈ {1, 2, · · · , n} and any Z̃ := P fi (Z) := π
P fi (Xq)×P fi (Uq)

(Z), as follows:

CPreTq,i(Z̃) := {(xq, uq) ∈ P fi (Xq)× P fi (Uq) | ∅ 6= Tq,i(xq, uq) ⊆ πXq,i(Z̃)}. (4.3.2)

Proposition 4.3.4. The following inclusion holds for any i ∈ {1, 2, · · · , n} and any
Z ⊆ Xq × Uq:

P fi (CPreTq(Z)) ⊆ CPreTq,i(P fi (Z)).

Proof. Consider an element zp ∈ P fi (CPreTq(Z)). This implies that there exists z ∈
Xq × Uq such that z ∈ CPreTq(Z) and zp = P fi (z). Consequently, Tq,i(zp) 6= ∅ since
Tq(z) 6= ∅. Also, since z ∈ CPreTq(Z), then Tq(z) ⊆ πXq(Z). Now, recall how Tq,i is
constructed as a component-wise set of transitions in line 2 in Algorithm 7. Then, we
conclude that Tq,i(zp) ⊆ πXq,i(P

f
i (Z)). By this, we already satisfy the requirements in

(4.3.2) such that zp = (xq, uq) ∈ CPreTq,i(Z).

To demonstrate the intended improvements to the synthesis phase of symbolic control,
we focus on reachability specifications. A similar discussion can be pursued for spec-
ifications that can be represented with fixed-point operations. To synthesize symbolic
controllers for the reachability specifications ψ := ♦φ, recall a monotone function G(Z)
defined in 2.4.3 and Algorithm 5 for traditional serial algorithm of symbolic controller
synthesis for reachability specifications. In Algorithm 6, we already introduced a parallel
implementation of Algorithm 5 that mitigates the complexity of the fixed-point compu-
tation. In that algorithm, for a set Z ⊆ Xq×Uq, each iteration of µZ.G(Z) is computed
via parallel traversal in the complete space Xq × Uq. Each PE is assigned a disjoint set
of state-input pairs from Xq × Uq and it declares whether, or not, each pair belongs to
the next winning pairs (i.e., G(Z)). Although Algorithm 6 scales well with respect to
P , it still suffers from the CoD for a fixed P . In the next Subsection, we will present
a modified version of the algorithm that utilizes sparsity to reduce the parallel search
space at each iteration.

First, we introduce the component-wise monotone function:

Gi(Z) := CPreTq,i(P fi (Z)) ∪ P fi (Zψ), (4.3.3)

for any i ∈ {1, 2, · · · , n} and any Z ⊆ Xq × Uq. Now, an iteration in the sparsity-aware
fixed-point can be summarized by the following three steps:

51

4 Efficient Algorithms for Symbolic Control

(1) Compute the component-wise setsGi(Z). Note thatGi(Z) lives in the set P fi (Xq)×
P fi (Uq).

(2) Recover a monolithic set Gi(Z), for each i ∈ {1, 2, · · · , n}, using the map Df
i and

intersect these sets. Formally, we denote this intersection by:

[G(Z)] :=
n⋂
i=1

(Df
i (Gi(Z))). (4.3.4)

Note that [G(Z)] is an over-approximation of the monolithic set G(Z), which we
prove in Theorem 4.3.5.

(3) Now, based on the next theorem, there is no need for a parallel search in Xq × Uq
and the search can be done in [G(Z)]. More accurately, the search for new elements
in the next winning set can be done in [G(Z)] \ Z.

Theorem 4.3.5. Consider a symbolic model Sq := (Xq, Uq, Tq). For any set Z ⊆
Xq × Uq, G(Z) ⊆ [G(Z)].

Proof. Consider any element z ∈ G(Z). This implies that z ∈ Z, z ∈ Zψ or z ∈
CPreTq(Z). We show that z ∈ [G(Z)] for any of these cases.

Case 1 [z ∈ Z]: By the definition of map P fi , we know that P fi (z) ∈ P fi (Z). By the mono-

tonicity of map Gi, P
f
i (Z) ⊆ Gi(Z). This implies that P fi (z) ∈ Gi(Z). Also, by

the definition of map Df
i , we know that z ∈ Df

i (Gi(Z)). The above argument holds

for any component i ∈ {1, 2, · · · , n} which implies that z ∈
⋂n
i=1(Df

i (Gi(Z))) =
[G(Z)].

Case 2 [z ∈ Zψ]: The same argument used for the previous case can be used for this one
as well.

Case 3 [z ∈ CPreTq(Z)]: We apply the map P fi to both sides of the inclusion. We

then have P fi (z) ∈ P fi (CPreTq(Z)). Using Proposition 4.3.4, we know that

P fi (CPreTq(Z)) ⊆ CPreTq,i(Z). This implies that P fi (z) ∈ CPreTq,i(P fi (Z)).

From (4.3.3) we obtain that P fi (z) ∈ Gi(Z), and consequently, z ∈ Df
i (Gi(Z)).

The above argument holds for any component i ∈ {1, 2, · · · , n}. This, conse-

quently, implies that z ∈
⋂n
i=1(Df

i (Gi(Z))) = [G(Z)], which completes the proof.

Remark 4.3.6. The computation of the controllable predecessor is done component-wise
in step (1) utilizing the sparsity of Sq and can be implemented in parallel. In step (3), a
monolithic search is required. However, unlike the implementation in Algorithm 6, the
search is performed only for a subset of Xq × Uq, which is [G(Z)] \ Z.

52

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control

X̄1

X̄2

P
f

1
(Z)

G
1
(Z)

P
f

2
(Z)

G
2
(Z)

D
f

2
(G2(Z))

D
f

1
(G1(Z))

[G(Z)]

G(Z)

Figure 4.6: A visualization of one arbitrary fixed-point iteration of the sparsity-aware synthesis
technique for a two-dimensional robot system.

Note that dynamical systems enjoy some locality properties (i.e., starting from nearby
states, successor states are also nearby) and an initial winning set will grow incrementally
with each fixed-point iteration. This makes the set [G(Z)]\Z relatively small with respect
to |Xq×Uq|. We clarify this and the result in Theorem 4.3.5 with a small two-dimensional
example.

Consider a robot described by the following ODE:[
ẋ1

ẋ2

]
=

[
u1

u2

]
,

where (x1, x2) ∈ Xq := Xq,1 ×Xq,2 is a state vector and (u1, u2) ∈ Uq := Uq,1 × Uq,2 is
an input vector.

The ODE is approximated with Euler’s method as discussed earlier and the following
difference equation is the resulting discrete-time dynamics:[

x+
1

x+
2

]
=

[
x1 + τu1

x2 + τu2

]
,

Figure 4.6 shows a visualization of the sets related to this sparsity-aware technique for
symbolic controller synthesis for one fixed-point iteration. Set Zψ is the initial winning-
set (a.k.a. target-set for reachability specifications) constructed from a given specifica-
tion (e.g., a region in Xq to be reached by the robot) and Z is the winning-set of the
current fixed-point iteration. For simplicity, all sets are projected on Xq and the readers
can think of Uq as an additional dimension perpendicular to the surface of this paper.

As depicted in Figure 4.6, the next winning-set G(Z) is over-approximated by [G(Z)],
as a result of Theorem 4.3.5. Algorithm 6 searches for G(Z) in (Xq,1×Xq,2)×(Uq,1×Uq,2).
The modification we suggest is to search for G(Z) in [G(Z)] \ Z instead.

53

4 Efficient Algorithms for Symbolic Control

Algorithm 9: Proposed parallel sparsity-aware algorithm to synthesize C
enforcing specification ψ := ♦φ.

Input: Initial winning domain Zψ ⊂ Xq × Uq and Tq
Output: A controller C : Xw → 2Uq .

1 Z∞ ← ∅;
2 Xw ← ∅;
3 do
4 Z0 ← Z∞;
5 for all p ∈ {1, 2, · · · , P} do
6 Zploc ← ∅;
7 Xp

w,loc ← ∅;
8 end
9 [G]← Xq × Uq;

10 for all i ∈ {1, 2, · · · , n} do

11 [G]← [G] ∩Df
i (Gi(Z∞));

12 end
13 for all (xq, uq) ∈ [G] \ Z∞ in parallel with index i do
14 p = I(i);
15 Posts← Q ◦Kp

loc(xq, uq);
16 if Posts ⊆ Z0 ∪ Zψ then
17 Zploc ← Zploc ∪ {(xq, uq)};
18 Xp

w,loc ← Xp
w,loc ∪ {xq};

19 if xq 6∈ πXq(Z0) then
20 C(xq)← C(xq) ∪ {uq};
21 end

22 end

23 end
24 for all p ∈ {1, 2, · · · , P} do
25 Z∞ ← Z∞ ∪ Zploc;
26 Xw ← Xw ∪Xp

w,loc;

27 end

28 while Z∞ 6= Z0;

54

4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control

X̄1

X̄2

target set

Z

Obstacles to be avoided Undescoverd
state-space

Latest winning set Z

[G(Z)] n Z
Orange area:

Search space
Black box:

for next Z

Obstacles to be avoided

X̄2

X̄1

Iteration 5 Iteration 228

Figure 4.7: The evolution of the fixed-point sets for the robot example by the end of fixed-point
iterations 5 (left side) and 228 (right side).

4.3.4 Sparsity-Aware Data-Parallelism for Symbolic Controller Synthesis

We propose Algorithm 9 as a parallel algorithm for sparsity-aware controller synthesis.
The main difference between it and Algorithm 6 are lines 9-12. They correspond to
computing [G(Z)] at each iteration of the fixed-point computation. Line 13 is modified
to do the parallel search inside [G(Z)] \ Z instead of Xq × Uq in the original algorithm.
The rest of the algorithm is similar to what we already discussed earlier in this chapter.

The algorithm, along with Algorithm 8, are implemented in pFaces as updated ver-
sions of the kernels GBFP and MemGBFP. We denote the sparsity-aware versions by
GBFP-s and MemGBFP-s [KKAZ19]. We synthesize a reachability controller for the
robot example presented earlier. Figure 4.7 shows an arena with obstacles depicted as
red boxes. It depicts the result at the fixed point iterations 5 and 228. The blue box
indicates the target set (i.e., Zψ). The region colored with purple indicates the current
winning states. The orange region indicates [G(Z)]\Z. The black box is the next search
region which is a rectangular over approximation of the [G(Z)]\Z. We over-approximate
[G(Z)] \ Z with such rectangle as it is straightforward for PEs in pFaces to work with
rectangular parallel jobs. The synthesis problem is solved in 322 fixed-point iterations.
Unlike Algorithm 6 which searches for the next winning region inside Xq × Uq at each
iteration, the implementation of the proposed algorithm reduces the parallel search by
an average of 87% when searching inside the black boxes in each iteration.

55

4 Efficient Algorithms for Symbolic Control

Figure 4.8: An autonomous vehicle trying to avoid a sudden obstacle on the highway.

4.3.5 Case Study: Autonomous Vehicle Avoiding Crash on Highway

We consider a vehicle described by the following 7-dimensional continuous-time single
track model [Alt17]:

ẋ1 = x4 cos(x5 + x7),
ẋ2 = x4 sin(x5 + x7),
ẋ3 = u1,
ẋ4 = u2,
ẋ5 = x6,
ẋ6 = µm

Iz(lr+lf)

(
lfCS,f (glr − u2hcg)x3 + (lrCS,r(glf + u2hcg)− lfCS,f (glr

−u2hcg))x7 − (lf lfCS,f (glr − u2hcg) + l2rCS,r(glf + u2hcg))
x6
x4

)
,

ẋ7 = µ
x4∗(lf+lr)

(
CS,f (glr − u2hcg)x3 − (CS,r(glf + u2hcg) + CS,f (glr

−u2hcg))x7 + (Cs,r(glf + u2hcg)lr − CS,f (glr − u2hcg)lf)x6x4

)
− x6,

where x1 and x2 are the position coordinates, x3 is the steering angle, x4 is the heading
velocity, x5 is the yaw angle, x6 is the yaw rate, and x7 is the slip angle. Variables u1

and u2 are inputs, and they control the steering angle and heading velocity, respectively.
Input and state variables are all members of R. The model takes into account tire slip
making it a good candidate for studies that consider planning of evasive maneuvers that
are very close to the physical limits. We consider an update period τ = 0.1 seconds and
the following parameters for a BMW 320i car: m = 1093 [kg] as the total mass of the
vehicle, µ = 1.048 as the friction coefficient, lf = 1.156 [m] as the distance from the
front axle to Center of Gravity (CoG), lr = 1.422 [m] as the distance from the rear axle
to CoG, hcg = 0.574 [m] as the hight of CoG, Iz = 1791.0 [kg m2] as the moment of
inertia for entire mass around z axis, CS,f = 20.89 [1/rad] as the front cornering stiffness
coefficient, and CS,r = 19.89 [1/rad] as the rear cornering stiffness coefficient.

We first construct a discrete-time approximation of the model as discussed earlier.
Then, to construct a symbolic model Sq, we consider a bounded version of the state
set Xτ := [0, 84] × [0, 6] × [−0.18, 0.8] × [12, 21] × [−0.5, 0.5] × [−0.8, 0.8] × [−0.1, 0.1],
a state quantization vector ηX = (1.0, 1.0, 0.01, 3.0, 0.05, 0.1, 0.02), a input set Uτ :=
[−0.4, 0.4]× [−4, 4], and an input quantization vector ηU = (0.1, 0.5).

We are interested in an autonomous operation of the vehicle on a highway. Consider
a situation on two-lane highway when an accident happens suddenly on the same lane
on which our vehicle is traveling. The vehicle’s controller should find a safe maneuver
to avoid the crash with the next-appearing obstacle. Figure 4.8 depicts such a situation.

56

4.4 Summary

Table 4.4: Results obtained after running the experiments EX1 and EX2.

EX1 (Memory = 22.1 G.B.)
|Xq × Uq| = 23.8× 109

EX2 (Memory = 49.2 G.B.)
|Xq × Uq| = 52.9× 109

HW
Time
MemGBFP

Time
MemGBFP-s

Speedup HW
Time
MemGBFP

Time
MemGBFP-s

Speedup

CPU5 2.1 hours 0.5 hours 4.2x CPU4 ≥ 24 hours 8.7 hours ≥ 2.7x
CPU6 1.9 hours 0.4 hours 4.7x CPU5 8.1 hours 3.2 hours 2.5x

We over-approximate the obstacle with the hyper-box [28, 50] × [0, 3] × [−0.18, 0.8] ×
[12, 21]× [−0.5, 0.5]× [−0.8, 0.8]× [−0.1, 0.1].

We run the implementation on different HWCs. We run two different experiments.
For the first one (denoted by EX1), the goal is to only avoid the crash with the obstacle.
We use a smaller version of the original state set Xτ := [0, 50] × [0, 6] × [−0.18, 0.8] ×
[11, 19]× [−0.5, 0.5]× [−0.8, 0.8]× [−0.1, 0.1]. The second one (denoted by EX2) targets
the full-sized highway window (84 meters), and the goal is to avoid colliding with the
obstacle and get back to the right lane. Table 4.4 reports the obtained results. The
reported times are for constructing finite abstractions of the vehicle and synthesizing
symbolic controllers. Note that our results outperform easily the initial kernels GBFP
and MemGBFP which themselves outperform serial implementations with speedups up
to 30000x as reported in [KZ19]. The speedup in EX1 is higher as the obstacle consumes
a relatively bigger volume in the state space. This makes [G(Z)] \Z smaller and, hence,
faster for our implementation.

4.4 Summary

Most of the existing techniques on symbolic control take a monolithic view of systems,
where the entire system is modeled, abstracted, and then a controller is synthesized
from the overall state-space. On the other hand, the process of constructing finite
abstractions is inherently parallelizable. In this chapter, traditional serial algorithms on
symbolic control were redesigned as data-parallel algorithms that scale with the number
of PEs. This, with the availability of variable number of PEs, allows controlling the
computational complexity of symbolic control.

We first introduced a data-parallel algorithms for the construction of symbolic models
and the synthesis of their symbolic controllers. Algorithm 4 was proposed as paralleliza-
tion of Algorithm 3 to construct symbolic models of control systems. The algorithm
introduces the abstraction task as an ideal data-parallel task with no communication
overhead among the processing elements. As shown in Theorem 4.2.4, the parallel al-
gorithm allows controlling the complexity of the serial one by allowing it to run on
multiple parallel PEs. Algorithm 6 was also the proposed parallelization of Algorithm 5
to synthesize symbolic controllers using parallel fixed-point operations.

We also introduced an approach that utilizes sparsity of dynamical systems for both
the construction of finite abstractions and the synthesis of their symbolic controllers.

57

4 Efficient Algorithms for Symbolic Control

First, a parallel sparsity-aware algorithm was introduced for the constructions of ab-
stractions. It is a combination of Algorithm 4 and the traditional serial algorithm for
sparse construction of abstractions. Similar to the serial one, it constructs in parallel
lower-dimensional abstractions using the information extracted from the sparsity graph
of the system. It however allows running the algorithm on parallel PEs which makes
the algorithm highly scalable. Then, we introduced a sparsity-aware algorithm for the
distributed synthesis of symbolic controllers. The computation of the controllable pre-
decessor is done at lower-dimensional versions of the state space with the help of the
sparsity information. Unlike the serial implementation and the parallel non-sparse imple-
mentation, the search for the predecessor set in the last implementation is only performed
inside smaller subsets of the Xq × Uq.

All the designed parallel algorithms were implemented as kernels on top of pFaces and
the results showed remarkable reductions in computation time. We showed the effec-
tiveness of the introduced approaches using several examples including a 7-dimensional
model of a BMW 320i car.

58

5 Efficient Algorithms for the Computation
of Reachable Sets

Reachable sets characterize the sets of states a control system can reach in a given time
range, starting from a certain initial set and subjected to certain inputs. They play
an important role in several formal methods approaches including the verification of
behaviors of control systems and the synthesis of their controllers.

In Chapter 4, the computation of reachable sets is considered implicitly in Algorithms
3, 4, 7, 8. We used map Ωf , as defined in Section 4.2, to represent the reachable states
starting from a hyper-rectangular set xq ⊆ Xτ , which is an essential step for constructing
symbolic model Sq. Although Algorithm 4 runs in parallel over the symbolic states in
Xq, the computation of Ωf is done serially in every parallel thread. As the dimension of
Σ grow, computing Ωf becomes very complex.

In this chapter, we provide efficient parallel algorithms for the computation of reach-
able sets for extremely high-dimensional systems. We show that considering data-parallel
algorithms and implementing them in HPC platforms can lead to a significant reduction
in the computation time, and allow for handling dynamical systems with billions of state
variables. The parallelized algorithms are implemented as a kernel on top of pFaces.
We denote this kernel by PIRK [DKAZ20].

5.1 Approximations of Reachable Sets

Computing the exact reachable set is generally not possible. For example, even for the
case of discrete-time Linear Time-Invariant (LTI) systems it is not known whether the
exact reachable set is computable in many important applications [FOP+19]. Therefore,
most practical methods resort to computing over-approximations or under-approximations
of the reachable sets, depending on the desired guarantee. Computing these approxima-
tions to a high degree of accuracy is still a computationally intensive task, particularly
for high-dimensional systems.

Many software tools have been developed to address the various challenges of approxi-
mating reachable sets. Each of these tools uses different methods and leverages different
system assumptions to achieve different goals related to computing reachable sets. For
example, CORA [Alt15] and SpaceEx [FLGD+11] tools are designed to compute reachable
sets of high accuracy for very general classes of nonlinear systems, including hybrid ones.
Some reachability analysis methods rely on specific features of dynamical systems, such
as linearity of the dynamics or sparsity in the interconnection structure [BTJ19]. This
allows computing the reachable sets in shorter time or for relatively high-dimensional
systems. However, it limits the approach to smaller classes of applications, less practical

59

5 Efficient Algorithms for the Computation of Reachable Sets

specifications, or requires the use of less accurate (e.g., linearized) models. Some exam-
ples of toolboxes that make these kinds of assumptions are the EllipsoidalToolbox

[KV06], which assumes that system is linear (though it is allowed to be time-varying
and subject to disturbance), and SAPO [Dre17], which assumes polynomial dynamics.
Other methods attack the computational complexity problem by computing reachable
set approximations from a limited class of set representations. Most tools use some
combination of these two approximations. For example, the EllipsoidalToolbox com-
putes ellipsoid over-approximations, and SAPO produces approximations in the form of
polytopes.

An example of limiting the set of allowed over-approximations are interval reachability
methods, in which reachable sets are approximated by Cartesian products of intervals.
Interval reachability methods allow for computing the reachable sets of very general
non-linear and high-dimensional systems in a short amount of time. They also pose
mild constraints on the systems under consideration, usually only requiring some kind
of boundedness constraint instead of a specific form for the system dynamics. Many
reachability tools that are designed to scale well with state dimension focus on interval
reachability methods: these include Flow∗ [CÁS13], CAPD [Gro19], C2E2 [DMVP15],
VNODE− LP [Ned11], DynIbex [SC16], and TIRA [MDA19].

For the rest of this chapter, we consider interval reachability methods for computing
reach sets for continuous-time nonlinear systems. Such choice coincides with the struc-
ture of the state set in symbolic model Sq introduced in the previous chapter which is a
partition on Xτ constructed by a set of hyper-rectangles. In the next subsection, we in-
troduce different interval reachability analysis methods. We consider a simulation-based
approach for interval reachability analysis [HM12, JP09, MA14], which compute rigor-
ous approximations to reachable sets by integrating one or more systems of ODEs. By
focusing on simulation-based methods, the problem of parallelizing the methods is re-
duced to the problem of parallelizing ODE integration, a problem which is well-studied.
Since a particularly novel parallelization scheme is not required, we could focus our work
on contributing a high-quality data-parallel implementation. Also choosing a relatively
simple data-parallelization scheme allows providing scalable large-scale parallelization
that can handle systems of extremely high dimensions.

5.2 Interval Reachability Analysis

Recall the definition of control system Σ and its right-hand f as introduced in (4.2.1).
For a simpler analysis, we redefine f and expose the time variable t as input:

ẋ(t) = f(t, x, u).

Let X0 ⊆ Xτ be a set of initial states, [t0, t1] be a time interval, and U be a set of time-
varying inputs defined over [t0, t1]. Let Φ(t; t0, x0, u) denote the state of the system, at
time t, of the trajectory beginning at time t0 at initial state x0 under input u ∈ U .

The finite-time forward reachable set is defined as

R[t0,t1] = {Φ(t1; t0, x, u) | x ∈ X0 ∧ u ∈ U}.

60

5.2 Interval Reachability Analysis

Figure 5.1: Interval approximation of the flow pipe for the Van der Pol oscillator.

Computing an exact reachable set is typically an impossible or at best intractable task,
so we instead aim to compute an approximation R̂[t0,t1] to the reachable set, either

an over-approximation (so that R[t0,t1] ⊂ R̂[t0,t1]) or an under-approximation (so that

R̂[t0,t1] ⊂ R[t0,t1]). An example of several finite-time reachable sets is shown in Figure
5.1. The example shows the solution to an interval reachability problem for the Van
der Pol oscillator, a nonlinear system with two states. The red rectangle is the interval
initial set. The blue rectangles are interval reachable sets for several final times t1.

For the problem of interval reachability analysis, there are a few more constraints on
the problem structure. An interval set is a set of the form of a hyper-rectangle [[a, a]].
Vectors a and a are, respectively, the lower and upper bounds of the interval set. An
interval set can alternatively be described by its center a∗ := 1

2(a + a) and half-width
[a] := 1

2(a− a).

In interval reachability analysis, the initial set must be an interval, and inputs values
restricted to an interval set, i.e. u(t) ∈ [[u, u]], and the reachable set approximation must
also be an interval. Furthermore, certain methods for computing interval reachable sets
require further restrictions on the system dynamics, such as the state and input Jaco-
bian matrices being bounded or sign-stable. We discuss the following three simulation-
based methods for computing interval reachable sets: (1) the contraction/growth bound
method, (2) the mixed monotonicity method, and (3) a Monte Carlo based method.
They allow for different trade-offs between conservatism and computation speed, as well
as different forms of problem data. Further details on the requirements and limitations
of these methods are presented in [MDA19].

61

5 Efficient Algorithms for the Computation of Reachable Sets

5.2.1 Contraction/Growth Bound (GB) Method

The method computes the reachable set using component-wise contraction properties
of the system [RWR17, TK09, FKJM16]. It may be applied to input-affine systems of
the form ẋ = f(t, x) + u. The growth and contraction properties of each component of
the system are first characterized by a contraction matrix C. Matrix C is a component-
wise generalization of the matrix measure of the Jacobian [MA14, AM18], satisfying
Cii ≥ Jx,ii(t, x, u

∗) for diagonal elements, and Cij ≥ |Jx,ij(t, x, u∗)| for off-diagonal
elements. The method constructs a reachable set over-approximation as interval by
separately establishing its center and half-width. The center is found by simulating the
trajectory of the center of the initial set, that is as Φ(t1; t0, x

∗, u∗). The half width is
found by integrating the growth dynamics ṙ = g(r, u) = Cr + [u], where r denotes the
half-width, over the time range [t0, t1] with initial condition r(t0) = [x].

5.2.2 Continuous-Time Mixed-Monotonicity (CTMM) Method

The method computes the reachable set by separating the increasing and decreasing por-
tions of the system dynamics in an auxiliary system called the embedding system whose
state dimension is twice that of the original system [CAB17, GH94]. The embedding
system is constructed using a decomposition function d(t, x, u, x̂, û), which encodes the
increasing and decreasing parts of the system dynamics and satisfies d(t, x, u, x, u) =
f(t, x, u). The embedding system dynamics are then defined as[

ẋ
˙̂x

]
= h(x, u, x̂, û) =

[
d(t, x, u, x̂, û)
d(t, x̂, û, x, u)

]
. (5.2.1)

For states having x = x̂, (5.2.1) becomes two copies of the original system dynamics by
the properties of the decomposition function: this is the sense in which the embedding
system embeds the original system dynamics.

The evaluation of a single trajectory of the embedding system can be used to find
a reachable set over-approximation for the original system. Specifically, consider the
solution of (5.2.1) over the interval [t0, t1] with the initial condition [x0 x̂0]T = [x x]T ,
and subject to the constant inputs u = u, û = u. Then, the integrated final state [x1 x̂1]T

serves as an over-approximation of the reachable set of the original system dynamics,
that is R[t0,t1] ⊂ [[x1, x̂1]].

5.2.3 Monte Carlo (MC) Method

The method computes a probabilistic approximation to the reachable set by evaluating
the trajectories of a finite number of sample points in the initial set and input set, and
selecting the smallest interval that contains the final points of the trajectories. Unlike the
other two methods, the Monte Carlo method is restricted to constant-valued inputs, i.e.
inputs of the form u(t) = u, where u ∈ [[u, u]]. Formally, we take probability distributions
whose supports are the initial set [[x, x]] and input value set [[u, u]] respectively (for

example, a uniform distribution over the these sets), and pick m pairs (x
(i)
0 , u(i), i ∈

62

5.3 Data-Parallel Algorithms for Computing Interval Reachable Sets

{1, 2, · · · ,m}) of independent and identically distributed (iid) samples from the two

distributions. Each initial state x
(i)
0 is integrated over [t0, t1] with its paired input u(i) to

yield a final state x
(i)
1 . The interval reachable set is then approximated by the element-

wise minimum and maximum of the x
(i)
1 .

This approximation satisfies a probabilistic guarantee of correctness, provided that
enough sample states are chosen [DA20]. Let [[R,R]] be the approximated reachable set,
ε, δ ∈ (0, 1), and m ≥ (2n

ε) log
(

2n
δ

)
. Then, with probability 1 − δ, the approximation

[[R,R]] satisfies P (R[t0,t1]\[[R,R]]) ≤ ε, where P (A) denotes the probability that a sampled
initial state will yield a final state in the set A.

5.3 Data-Parallel Algorithms for Computing Interval Reachable
Sets

Although most reachability methods are presented as serial algorithms, many of them
have some inherent parallelism that can be exploited. One example of a tool that
exploits parallelism is XSpeed [RGD+15], which implements a parallelized version of a
support function-based reachability method. However, this parallel method is limited to
linear systems, and in some cases only linear systems with invertible dynamics. Further,
the parallelization is not suitable for massively parallel hardware: only some of the work
(sampling of the support functions) is offloaded to the parallel device, so only a relatively
small number of parallel processing elements may be employed. Here, on the other hand,
provide parallel algorithms of the three interval reachability methods introduced earlier.
This allows handling general nonlinear systems. As we implement the algorithms later
in pFaces, the algorithms can run on massively parallel hardware and consequently, can
target extremely high-dimensional systems.

The bulk of the computational work in each of the methods introduced earlier is spent
in ODE integration. Hence, the most effective approach by which to parallelize the three
methods is to design a parallel ODE integration method. There are several available
methods for parallelizing the task of ODE integration. Several popular methods for
parallel ODE integration are parallel extensions of Runge-Kutta integration methods,
which are the most popular serial methods for ODE integration. For these methods,
the parallelization may be done in essentially two different ways [SI16]. First, they may
be parallelized across space, in which case the computations associated to each state
variable will be done in parallel. This allows for as many parallel computation elements
as there are state variables. Second, they may be parallelized across time, in which
case the time interval of integration is split up into several parts, and the solution on
each sub-interval is computed in parallel. In contrast to parallelization across space,
parallelization across time can be scaled to an arbitrary degree, as any number of sub-
intervals may be used. However, the iterative solution by shooting introduces additional
computations. To avoid this additional overhead, we introduce parallelizations across
space. Since we target computing reachable sets for extremely high-dimensional systems,
parallelization across space allows for a sufficient degree of parallelization in most cases.

63

5 Efficient Algorithms for the Computation of Reachable Sets

5.3.1 Data-Parallel Runge-Kutta Scheme

Algorithm 10: State-parallelized fourth-order Runge-Kutta scheme for ODE
integration.

Input: Initial state x0; input u; and initial and final times t0,t1.
Parameters: State dimension n; time step size h and ODE RHS f(t, x, u).
Output: Final state x1 as the solution to the ODE at time t1.

1 for all i ∈ {1, . . . , n} in parallel do
2 k0,i = k1,i = k2,i = k3,i = tmpi = 0;
3 x1,i = x0,i;

4 end
5 for t ∈ {t0, t0 + h, . . . , t1 − h, t1} do
6 for all i ∈ {1, . . . , n} in parallel do

7 k0,i = fi(t, x1, u); tmpi = x1 + h
2k0,i;

8 end
9 for all i ∈ {1, . . . , n} in parallel do

10 k1,i = fi(t+ h
2 , tmp, u); tmpi = x1 + h

2k1,i;
11 end
12 for all i ∈ {1, . . . , n} in parallel do

13 k2,i = fi(t+ h
2 , tmp, u); tmpi = x1 + h

2k2,i;
14 end
15 for all i ∈ {1, . . . , n} in parallel do

16 k3,i = fi(t+ h, tmp, u); tmpi = x1 + h
2k2,i;

17 x1,i = x1,i + 1
6 (k0,i + 2k1,i + 2k2,i + k3,i);

18 end

19 end

Algorithm 10 shows a data-parallelization across space of the n-dimensional fourth-
order Runge-Kutta scheme for ODE integration. It starts with a parallel initialization
(steps 1-4) of the internal variables (k0, k1, k2, k3, and tmp) and the final state x1.
Then, for each quantized time step t, as demonstrated by the for loop in step 5, four
parallel sections (starting with steps 6, 9, 12 and 15) are executed on all available PEs.
Each parallel section is responsible for computing intermediate component-wise values of
the integration and storing them in the memory spaces controlled by the corresponding
internal variables. By the end of the last parallel section, step 18, the component-wise
values of the solution to the ODE are computed for the current time step t.

In a parallelization across space, the separation of integration results in less synchro-
nization overhead between the threads executing the parallel code. All that is required is
to make sure that the threads are synchronized after each of the parallel sections, which
is already achieved in the algorithm using separate parallel for loops. This data-parallel
approach fits massively-parallel CUs, such as GPUs and HWAs.

64

5.3 Data-Parallel Algorithms for Computing Interval Reachable Sets

For a system with n dimensions and assuming all PEs have uniform access time to
the memory space, Algorithm 10 scales linearly as the number of PEs (denoted by P)
increases. In a computer with a single PE (i.e., P = 1), the algorithms reduces to the
original traditional serial algorithm. Let T be the time needed to run algorithm on such
single-PE computer. Then, if a parallel computer has P PEs of same type, where P ≤ n,
users may expect a speedup in time of up to ideally P times. Here, each PE will be
responsible for computing n/P components of the state vector.

Remark 5.3.1. For fixed initial and final times, t0 and t1, and variable number of PEs
P , the time complexity of Algorithm 10 is O(nP). Using P > n as a variable number of
PEs is a waste of computation resources since one or more PEs will be left idle.

5.3.2 Parallelizing Interval Reachability Methods

Algorithm 11: Parallel contraction/growth bound method.

Input: System Σ, interval initial set X0, interval input set U , initial time t0,
and final time t1.

Output: Reachable set R̂[t0,t1].

1 for all i ∈ {1, . . . , n} in parallel do
2 Set c0,i as the center of the interval X0,i;
3 Set r0,i as the radius of the interval X0,i;

4 end
5 Set c1 as the result of running Algorithm 10 with c0 as initial state, the center

of U as input, and f as RHS function;
6 Set r1 as the result of running Algorithm 10 with r0 as initial state, the

half-width of U as input, and g as RHS function;
7 for all i ∈ {1, . . . , n} in parallel do

8 Set R̂[t0,t1],i = [c1,i − r1,i, c1,i + r1,i];

9 end

Algorithm 11 presents the parallel version of the contraction/growth bound method.
It uses Algorithm 10 twice. First, it is used to compute the solution of the system’s ODE
f for the center of the initial set X0. Then, it is used to compute the growth/contraction
of the initial set X0 by solving the ODE g of the growth dynamics. Finally, the reachable
set is constructed from the computed center and radius values.

Remark 5.3.2. Since Algorithm 11 uses Algorithm 10 directly, its time complexity is
also O(nP), for fixed t0 and t1, and variable P .

Algorithm 12 presents the parallel version of the method based on the mixed mono-
tonicity. The parallelized implementation of the mixed-monotonicity method uses only
one call to Algorithm 10 to integrate the embedding system. First, the upper and lower
bound vectors of the initial sets are extracted in parallel. Then, Algorithm 10 is called

65

5 Efficient Algorithms for the Computation of Reachable Sets

Algorithm 12: Parallel mixed monotonicity method.

Input: System Σ, interval initial set X0, decomposition function d as defined in
(5.2.1), interval input set U , initial time t0, and final time t1.

Output: Reachable set R̂[t0,t1].

1 for all i ∈ {1, . . . , n} in parallel do
2 Set x0,i as the lower bound of the interval X0,i;
3 Set x̂0,i as the upper bound of the interval X0,i;
4 Set ui as the lower bound of the interval Ui;
5 Set ûi as the upper bound of the interval Ui;
6 end
7 Run Algorithm 10 with [x0 x̂0]T as initial state, [u û]T as input, and d as RHS

function;
8 Store the result of Algorithm 10 in [x1 x̂1]T ;
9 for all i ∈ {1, . . . , n} in parallel do

10 Set R̂[t0,t1],i = [x1,i, x̂1,i];

11 end

once but with an augmented vector constructed by the upper and lower bounds, dupli-
cated ODE RHS and inputs. This is similar to running Algorithm 10 twice.

Remark 5.3.3. Since Algorithm 12 uses Algorithm 10 directly, its time complexity is
also O(nP), for fixed t0 and t1, and variable P . However, since Algorithm 12 is run on
a system of dimension 2n, it requires twice as much memory as Algorithm 11.

Since Algorithm 12 requires twice as much memory as Algorithm 11, it is limited to
systems with half the dimensions for the same HWC.

Algorithm 13 presents the parallelized implementation of the Monte Carlo method.
Algorithm 13 uses Algorithm 10 m times, for m sampled initial states, for which each
time Algorithm 10 is run on an input vectors of dimension n. The implementation
uses two levels of parallelization. The first level is a set of parallel threads over the
samples used for simulations. Then, within each thread, another parallel set of threads
are launched, as a result of calling Algorithm 10. This is realized as one parallel job
of m × n threads. Consequently, the Monte Carlo method has a complexity of O(mnp).
Since only the element-wise minima and maxima of the sampled states need to be stored,
this method only requires as much memory as the growth bound method.

5.4 Case Studies

The algorithms introduced in the previous section are implemented in tool PIRK as a
kernel on top of pFaces in a process similar to the one discussed in Chapter 4. We
present some case studies to demonstrate that the introduced algorithms can be used to
compute interval forward reachable sets for high-dimensional nonlinear systems. In each
of the case studies to follow, we report the time kernel PIRK takes to compute reachable

66

5.4 Case Studies

Algorithm 13: Parallel Monte Carlo simulation method.

Input: System Σ, interval initial set X0, interval input set U , initial time t0,
final time t1, and probabilistic guarantee parameters ε and δ.

Output: Reachable set R̂[t0,t1].

1 Set number of samples m =
⌈

2n
ε log

(
2n
δ

)⌉
;

2 for all i ∈ {1, . . . ,m} in parallel do

3 Sample x
(i)
0 uniformly from X0;

4 Sample u(i) uniformly from U ;

5 Run Algorithm 10 with x
(i)
0 as initial state, u(i) as input, and f as RHS

function;

6 Store the result of Algorithm 10 in x
(i)
1 ;

7 end
8 for all j ∈ {1, . . . , n} in parallel do

9 Set R̂[t0,t1],j = [min
i∈{1···m}

x
(i)
1,j , max

i∈{1···m}
x

(i)
1,j]

10 end

sets for systems of varying dimension using all three of its methods on a variety of parallel
computing platforms. We perform some of the same tests using the serial tool TIRA, to
measure the speedup gained by PIRK’s ability to use massively parallel hardware.

We set a time limit of 1 hour for all the targeted case studies, and report the maximum
dimensions that could be reached under this limit. We use four AWS machines for the
computations with PIRK:

(1) m4.10xlarge which has a CPU with 40 PEs,

(2) c5.24xlarge which a CPU with 96 PEs,

(3) g3.4xlarge which has a GPU with 2048 PEs, and

(4) p3.2xlarge which has a GPU with 5120 PEs.

For the computations with TIRA, we used a machine with a 3.6 GHz Intel i7 CPU.
The two most common sources of extremely high-dimensional systems are discretiza-

tions of continuum models (e.g. discretized Partial Differential Equations (PDEs)) and
swarms of independent agents. Three of the following case studies come from these
sources. Such systems naturally have sparse dynamics, which PIRK uses to speed up the
ODE integration and reduce the memory usage. However, sparsity is not a requirement
for PIRK to be effective, and we have used systems with dense dynamics for test cases
as well.

5.4.1 Multi-Link Road Traffic Model

We consider the road traffic analysis problem reported in [CA18], a proposed benchmark
for formal controller synthesis. We are interested in the density of cars along a single one-

67

5 Efficient Algorithms for the Computation of Reachable Sets

101 102 103 104 105 106 107 108 109
10-2

100

102

104

T
im

e
(s

ec
)

GB method | "Traffic" model

1 second

1 minute

1 hour

101 102 103 104 105
10-2

100

102

104

T
im

e
(s

ec
)

CTMM method | "Traffic" model

1 second

1 minute

1 hour

101 102 103 104 105 106
10-2

100

102

104

T
im

e
(s

ec
)

MC method | "Traffic" model

1 second

1 minute

1 hour

101 102 103 104 105 106 107 108 109

Number of state variables

10-2

100

102

104

T
im

e
(s

ec
)

GB method | "Quadrotor Swarm" model

1 second

1 minute

1 hour

101 102 103 104 105

Number of state variables

10-2

100

102

104

T
im

e
(s

ec
)

CTMM method | "Quadrotor Swarm" model

1 second

1 minute

1 hour

101 102 103 104 105 106

Number of state variables

10-2

100

102

104

T
im

e
(s

ec
)

MC method | "Quadrotor Swarm" model

1 second

1 minute

1 hour

m4.10xlarge c5.24xlarge g3.4xlarge p3.2xlarge

TIRA

TIRATIRA

Figure 5.2: Speed test results for kernel PIRK.

way lane. The lane is divided into n segments, and the density of cars in each segment
is a state variable. The continuous-time dynamics for the segment densities are derived
from a spatially discretized version of the Cell Transmission Model [CA15], which have
been also used in conjunction with abstraction-based formal control synthesis [CAB17].

For the single-road case described here, the dynamics are

ẋ0 =
1

T
(βmin(c, vx1, w(x− x2)/β))

ẋi =
1

T
(βmin(c, vxi−1, w(x− xi)/β)−min(c, vxi, w(x− xi+1)/β))

ẋn−1 =
1

T
(βmin(c, vxi−1, w(x− xi)/β)−min(c, vxi)/β))

where xi represents the density of traffic in the ith discretized segment. T , β, v, c and
w are some constants. Since a system of this form can easily be defined for any natural
number n, this system is a good candidate for testing the effectiveness of the parallelized
reachability methods as a function of state dimension. This is a nonlinear system with
sparse coupling between the state variables, in the sense that the dynamics for each state
variable xi depends only on itself and its neighbors xi−1 and xi+1. This means that the
system’s Jacobian matrix is sparse, which PIRK can use to reduce the used memory.

The results of the speed test are shown in the first row of Figure 5.2. The ma-
chines m4.10xlarge and c5.24xlarge reach up to 2 billion and 4 billion dimensions,
respectively, using the growth/contraction method, in 47.3 minutes and 44.7 minutes,
respectively. Due to memory limitations of the GPUs, the machines g3.4xlarge and
p3.2xlarge both reach up to 400 million in 106 seconds and 11 seconds, respectively.

The relative improvement of PIRK’s computation time over TIRA’s is significantly larger
for the growth bound method than for the other two. This difference stems from a

68

5.4 Case Studies

difference in how each tool computes the half-width of the reachable set from the radius
dynamics. TIRA solves the radius dynamics by computing the full matrix exponential
using MATLAB’s expm, whereas TIRA directly integrates the dynamics using parallel Runge-
Kutta. This caveat applies to the next case study as well.

5.4.2 Quadrotor Swarm

The second test system is a swarm of K identical quadrotors. The dynamics for an
individual quadrotor is given as follows

p̈n =
F

m
(− cos(φ) sin(θ) cos(ψ)− sin(φ) sin(ψ))

p̈e =
F

m
(− cos(φ) sin(θ) sin(ψ) + sin(φ) cos(ψ))

ḧ = g − F

m
cos(φ) cos(θ)

φ̈ =
1

Jx
τφ

θ̈ =
1

Jy
τθ

ψ̈ =
1

Jz
τψ

where pn and pe denote the y-axis (“north”) and x-axis (“east”) position of the quadro-
tor, h its height, and φ, θ, and ψ its pitch, roll, and yaw angles respectively. The system
dynamics of each quadrotor model are derived in a similar way to the model used in the
ARCH competition [IAC+18], with the added simplification of a small angle approxi-
mation in the angular dynamics and the neglect of Coriolis force terms. A derivation of
both models is available in [Bea08]. Similar to the n-link traffic model in the previous
subsection, this system is convenient for scaling: system consisting of one quadrotor can
be expressed with 12 states, so the state dimension of the swarm system is n = 12K.

The results of the speed test are shown in figure 5.2 (second row). The machines
m4.10xlarge and c5.24xlarge reach up to 1.8 billion dimensions and 3.6 billion di-
mensions, respectively, (using the growth/contraction method) in 48 minutes and 32
minutes, respectively. The machines g3.4xlarge and p3.2xlarge both reach up to 120
million dimensions in 10.6 minutes and 46 seconds, respectively.

5.4.3 Quadrotor Swarm with Artificial Potential Field

The third test system is a modification of the quadrotor swarm system which adds inter-
actions between the quadrotors. In addition to the base quadrotor dynamics described
in Section 5.4.2, this model augments each quadrotor with an artificial potential field to
guide the quadrotors to the origin while avoiding their collisions.

This controller applies a force to the quadrotors that seeks to minimize a artificial
potential U that depends on the position of all of the quadrotors. The potential applied

69

5 Efficient Algorithms for the Computation of Reachable Sets

to each quadrotor is intended to repel it from the other quadrotors, and to attract
it towards the origin. Each quadrotor will be subject to three potential fields, which
separately consider pn, pe, and h. This allows us to ensure that the forces resulting from
the potential fields are contained in an interval set.

The potential fields for the ith quadrotor are

Ui,pn = Fre
−minj 6=i|p

(i)
n −p

(j)
n | + Fa|p(i)

n |

Ui,pe = Fre
−minj 6=i|p

(i)
e −p

(j)
e | + Fa|p(i)

e |

Ui,h = Fre
−minj 6=i|h(i)−h(j)| + Fa|e(i)|,

where the (i) and (j) superscripts denote state variables belonging to the ith and jth

quadrotors respectively. The magnitude of this potential field depends on the distance
from the origin and the position of the nearest quadrotor in the pn, pe, and h directions,
so the control action arising from this potential field will tend to guide a quadrotor away
from whichever other quadrotor is nearest to it while also guiding it towards the origin.

The forces applied to the system in each direction are just the negative derivatives of
each direction’s potential field. Therefore, the dynamics for quadrotor i are

p̈n =
F

m
(− cos(φ) sin(θ) cos(ψ)− sin(φ) sin(ψ)) + Fi,pn

p̈e =
F

m
(− cos(φ) sin(θ) sin(ψ) + sin(φ) cos(ψ)) + Fi,pe

ḧ = g − F

m
cos(φ) cos(θ) + Fi,h

φ̈ =
1

Jx
τφ

θ̈ =
1

Jy
τθ

ψ̈ =
1

Jz
τψ,

where Fi,pn , Fi,pe , and Fi,h are the forces induced by the artificial potential fields. These
have the form

Fi,pn = −∂Ui,pn
∂p

(i)
n

= Frsgn(p(i)
n − p(j∗)

n)e−|p
(i)
n −p

(j∗)
n | − Fasgn(p(i)

n)

Fi,pe = −∂Ui,pe
∂p

(i)
e

= Frsgn(p(i)
e − p(j∗)

e)e−|p
(i)
e −p

(j∗)
e | − Fasgn(p(i)

e)

Fi,h = −
∂Ui,h

∂h(i)
= Frsgn(h(i) − h(j∗))e−|h

(i)−h(j∗)| − Fasgn(h(i)),

where j∗ = argminj 6=i|xi − xj | in the Fi,x equation, and is defined analogously for the
other two. Each force is bounded by the interval [−(Fr + Fa), Fr + Fa]. The second
derivatives of the potential functions, which appear in the system Jacobian, are bounded

70

5.4 Case Studies

Table 5.1: Results for running PIRK to compute the reach set of the quadrotors swarm with
artificial potential field. N/M means that the machine does not have enough memory
to compute the reachable set.

No. of Memory Time (seconds)
Method States (MB) m4.10xlarge c5.24xlarge g3.4xlarge p3.2xlarge

GB 1200 2.8 ≤ 1.0 ≤ 1.0 4.3 ≤ 1.0
GB 12000 275.3 ≤ 1.0 ≤ 1.0 47.1 ≤ 1.0
GB 120000 27,473.1 69.6 68.3 N/M N/M

MC 1200 45.7 1.0 ≤ 1.0 2.0 ≤ 1.0
MC 12000 457.5 56.8 23.7 233.1 40.6
MC 120000 4577.6 ≥ 2h 3091.8 N/M 5081.0

by the interval [−Fr, Fr] almost everywhere. Due to the interaction of the state variables
in the Fi,pn , Fi,pe , and Fi,h terms, this system has a dense Jacobian. In particular, at
least 25% of the Jacobian elements will be nonzero for any number of quadrotors.

Table 5.1 shows the times of running PIRK using his system within the four machines
m4.10xlarge, c5.24xlarge, g3.4xlarge and p3.2xlarge in AWS. Due to the high
density of this example, the required memory grows very fast. Here, we focus on the
growth bound and the Monte-Carlo methods since they require less memory. For the
Monte-Carlo method, we fix the number of samples to 1000 samples.

PIRK manged to compute the reach sets of systems up to 12,000 state variables (i.e.,
1,000 quadrotors). Up to 120 states, all machines solve the problems in less than one
second. Some of the machines lack the required memory to solve the problems with large
memory requirement (e.g., a 27.7 GB memory is required to compute the reach set of
the system with 12,000 state variables using the growth bound method).

5.4.4 Heat Diffusion

The fourth test system is a model for the diffusion of heat in a 3-dimensional cube.
The model is based on a benchmark used in [BTJ19] to test a method for numerical
verification of affine systems. The solid is a cube of unit length, which is insulated on all
sides but one: the non-insulated side can exchange heat with the outside environment,
which is assumed to be at zero temperature. A portion of the cube is heated at an
initial time, and the heat diffuses through the rest of the cube as time progresses, until
all the heat has left through the non-insulated side. The dynamics for the transfer of
heat through the cube are governed by the heat equation, a classical second-order linear
partial differential equation:

∂u

∂t
= α

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

where u(t;x, y, z) denotes the temperature of the cube at coordinates x, y, and z at time
t, and α is the diffusivity of the material of the cube. A model of the form ẋ = f(t, x, u)

71

5 Efficient Algorithms for the Computation of Reachable Sets

Figure 5.3: Interval flow pipe approximating the behavior of the BMW 320i car.

which approximates the heat transfer through the cube according to the heat equation
can be obtained by discretizing the cube into an ` × ` × ` grid, yielding a system with
`3 states. The temperature at each grid point is taken as a state variable. Each spatial
partial derivative is replaced with its first-order discrete approximation based on the
discretized state variables, accounting for boundary conditions. Since the heat equation
is a linear PDE, the discretized system is linear.

We take a fixed state dimension of n = 109 by fixing ` = 1000. This example uses
a finer time-sampling constant compared to other examples. Integration takes place
over [t0, t1] = [0, 20] with time step size h = 0.02, leading to 1000 integration steps.
PIRK solves the problem on m4.10xlarge in 472 minutes, and in 350.2 minutes on
c5.24xlarge.

5.4.5 Overtaking Maneuver on Highway

This and the remaining case studies focus on models of practical importance which have
relatively low state dimension. Although the introduced algorithms are designed to
perform well on high-dimensional systems, they are also effective at quickly computing
reachable sets for lower-dimensional systems, for applications that need many reachable
sets.

We consider the BMW’s 7-dimensional continuous-time model introduced in Chapter
4. We verify the safety of a lane change maneuver in a highway. We consider a step-size
of 0.005 seconds between the reach sets in a time window of 6.5 seconds. This results in
computing 1300 reach sets of the system.

72

5.5 Summary

Table 5.2: Results from running PIRK (growth bound method) to compute the reach sets for
the examples reported in the ARCH-2018 competition.

Benchmark model PIRK CORA CORA/SX C2E2 Flow∗ Isabelle SymReach

Van der Pol (2 states) 0.13 2.3 0.6 38.5 1.5 1.5 17.14
Laub-Loomis (7 states) 0.04 0.82 0.85 0.12 4.5 10 1.93

Quadrotor (12 states) 0.01 5.2 1.5 - 5.9 30 2.96

We are interested in verifying the autonomous operation of the vehicle. We fix an
input that performs a maneuver to overtake a car in the middle lane of a 3-lane highway.
We ran PIRK with the growth-bound method and extracted the reach pipe to verify the
maneuver is applied successfully. Within an Intel i7 processor with 8GB of Random
Access Memory (RAM), PIRK managed to compute the reach pipe in 0.25 seconds. The
reach pipe is shown in Fig. 5.3.

5.4.6 Performance on ARCH Benchmarks

In order to compare PIRK’s performance to existing toolset, we tested PIRK’s growth
bound implementation on three systems from the ARCH-COMP’18 category report for
systems with nonlinear dynamics [IAC+18]. This report contains benchmark data from
several popular reachability analysis tools (C2E2, CORA, Flow∗, Isabelle, SpaceEx, and
SymReach) on several nonlinear reachability problems with state dimensions between 2
and 12.

Table 5.2 compares the computation times for PIRK on the three systems are to those
in the report. The results are compared to the times reported by other tools in [IAC+18].
All times are in seconds. PIRK ran on an i9 CPU, while the others ran on i7 and i5 (see
[IAC+18] for more hardware details).

PIRK solves each of the benchmark problems faster than the other tools. Both of the
used i7 and i9 processors have multi processors (from 6 cores to 8 cores). The advantage
of PIRK is its ability to utilize all available cores.

5.5 Summary

Reachable sets play an important role in several formal methods approaches including
the verification of behaviors of control systems and the synthesis of their controllers. In
previous chapters, the computation of reachable sets is considered implicitly during the
construction of abstractions. In this chapter, we provided efficient parallel algorithms for
the computation of reachable sets for extremely high-dimensional systems. Using simple
parallelizations of interval reachability analysis techniques, we were able to compute
reachable sets for nonlinear systems faster and at higher dimensions than all existing
tools.

Interval reachability was selected as candidate technique for the construction of reach-
able sets as it is already used in many symbolic control approaches. Certain methods

73

5 Efficient Algorithms for the Computation of Reachable Sets

for computing interval reachable sets were selected. More precisely, we discussed the
following three simulation-based methods for computing interval reachable sets: (1)
the contraction/growth bound method, (2) the mixed monotonicity method, and (3) a
Monte Carlo based method. They allow for different trade-offs between conservatism
and computation speed, as well as different forms of problem data. We showed that the
bulk of the computational work in all methods of computing the reach sets is spent in
ODE integration. Hence, we concluded that the most effective approach by which to
parallelize these methods is to design a parallel ODE integration method.

Algorithm 10 introduced a data-parallelization across space of the n-dimensional
fourth-order Runge-Kutta scheme for ODE integration. For a system with n dimen-
sions and assuming all PEs have uniform access time to the memory space, Algorithm
10 scales linearly as the number of PEs increases. Algorithm 11 presented the parallel
version of the contraction/growth bound method, Algorithm 12 presented the parallel
version of the method based on the mixed monotonicity method, and Algorithm 13
presented the parallelized implementation of the Monte Carlo method. All algorithms
allow controlling the computational complexity by introducing more PEs. The algo-
rithms introduced in this chapter are implemented in tool PIRK as a kernel on top of
pFaces.

We also presented some case studies to demonstrate that the introduced algorithms
can be used to compute interval forward reachable sets for high-dimensional nonlinear
systems. The performance increase shown by all case studies comes from pFaces’s ability
to use massively parallel hardware such as GPUs, CPUs, and clusters, to accelerate
the parallelized simulation-based methods. Of the three interval reachability methods
implemented, the growth bound method was the most efficient.

74

6 Efficient Algorithms for Stochastic
Symbolic Control

Stochastic systems are an important modeling framework to describe many safety-critical
CPSs such as power grids and traffic networks. For such complex systems, automating
the synthesis of controllers that achieve some high-level specifications is inherently very
challenging. Symbolic models can be employed as replacements of original systems in
the controller synthesis procedure. More precisely, one can abstract a given original
stochastic system by a finite MDP, and then performs the analysis and synthesis over
the MDP using algorithmic techniques from computer science [BK08]. The results are
then carried back to the original system, while providing a guaranteed error bound.

There exist few tools for synthesizing controllers of stochastic control systems. To
the best of our knowledge, all available tools for automatic synthesis of formally-correct
controllers use finite MDPs as abstractions that capture the stochasticity in original
systems. Unfortunately, constructing finite MDPs for dynamical systems suffers from
the CoD. Tool FAUST [SGA15] generates MDPs from uncountable-state discrete-time
stochastic processes, and performs verification and synthesis for safety and reachability
specifications. However, it is originally implemented in MATLAB and suffers severely from
the CoD. Tool StocHy [CDA19] can analyze discrete-time stochastic hybrid systems,
construct interval-MDPs, and perform verification and synthesis tasks. Although it is
implemented in C++, it also suffers the CoD because of its serial implementation. In
practice, both tools are limited to small-sized systems (up to 2 dimensions).

In this chapter, we propose scalable parallel algorithms and efficient distributed data
structures for constructing finite MDPs of large-scale stochastic systems and automating
the computation of their correct-by-construction controllers. The proposed algorithms
handle stochastic systems with noises and bounded disturbances. We implement the
algorithms as a kernel on top of pFaces and compare the results with existing similar
tools. The implemented kernel is referred to as AMYTISS [LKSZ20]. We then apply
the implementation to some real-world applications including a traffic network and an
autonomous vehicle.

The implementations discussed in this chapter differs from all available tools in two
main directions. First, we consider parallel algorithms and distributed data structures
and target HPC platforms to reduce the effects of the CoD. Additionally, we target
stochastic systems with bounded disturbances which, e.g., in case of interconnected sys-
tems, can be used to model the effects of other subsystems (internal inputs) as bounded
disturbances. The mentioned tools, unlike this work, can only handle disturbance-free
systems.

75

6 Efficient Algorithms for Stochastic Symbolic Control

6.1 Discrete-Time Stochastic Control Systems (dt-SCS)

We recall some concepts needed throughout this chapter. A topological space S is a
Borel space if it is homeomorphic to a Borel subset of a Polish space (i.e., a separable
and completely metrizable space). The Euclidean spaces Rn, its Borel subsets endowed
with a subspace topology, and hybrid spaces are examples of Borel spaces. A Borel
sigma-algebra is denoted by B(S), and any Borel space S is assumed to be endowed
with it. A map f : S → Y is measurable if it is Borel measurable.

A probability space is a tuple (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a
sigma-algebra on Ω, which comprises subsets of Ω as events, and PΩ is a probability
measure that assigns probabilities to events. A random variable X is a measurable
function X : FΩ → FX inducing a probability measure Prob{A} := PΩ{X−1(A)} for
any A ∈ FX . Here, for simplicity, we directly present the probability measure on the
space of X without explicitly mentioning the underlying probability space.

Now, we formally introduce Discrete-time Stochastic Control Systems (dt-SCSs).

Definition 6.1.1. A dt-SCS is a tuple

Σ := (X,U,W, ς, f, Y, h), (6.1.1)

where X ⊆ Rn is a Borel space representing the state set and (X,B(X)) is its measurable
space, U ⊆ Rm is a Borel space representing the input set, W ⊆ Rp is a Borel space
representing a disturbance set, ς is a sequence of independent and identically distributed
(i.i.d.) random variables from a sample space Ω to a measurable set Vς and it is defined
as follows:

ς := {ς(k) : Ω→ Vς , k ∈ N},

f : X × U ×W × Vς → X is a measurable function characterizing the state evolution of
the system, Y ⊆ Rq is a Borel space as an output set, and h : X → Y is a measurable
function that maps a state x ∈ X to its output y = h(x).

The state evolution of Σ, for a given initial state x(0) ∈ X, an input sequence ν(·) :
N → U , and a disturbance sequence w(·) : N → W , is characterized by the difference
equations

x(k + 1) = f(x(k), ν(k), w(k)) + Υ(k), k ∈ N, (6.1.2)

where Υ(k) := ς(k) with Vς := Rn for the case of the additive noise, and Υ(k) := ς(k)x(k)
with Vς equals to the set of diagonal matrices of the dimension n for the case of the
multiplicative noise [WTS05]. We keep the notation Σ to indicate both cases and use
respectively Σa and Σm when discussing these cases individually.

Remark 6.1.2. Although we assume discrete-time systems, an extension to support
continuous-time system is possible in the same way introduced in Subsection 4.3.1. More
precisely, continuous-time systems as given in (4.2.1) are approximated to discrete-time
systems using forward Euler method and the local truncation error of the approximation
is considered as disturbance by inflating set W .

76

6.2 Markov Decision Processes (MDPs) as Symbolic Models

We should mention that the parallel algorithms we plan to introduce in this chapter
are generally independent of the noise distribution. Only for an easier presentation, we
present the algorithms and case studies based on normal distributions knowing that they
can be extended to support other practical distributions including uniform, exponential,
and beta.

Definition 6.1.3. For the dt-SCS Σ in (6.1.1), a Markov policy is a sequence ρ :=
(ρ0, ρ1, ρ2, . . .) of universally measurable stochastic kernels ρn [BS96], each defined on the
input space U given X×W and such that for all (xn, wn) ∈ X×W , ρn(U | (xn, wn)) = 1.
The class of all such Markov policies is denoted by ΠM .

We are interested in Markov policies to control the dt-SCS system in (6.1.1). One
may be also interested in analyzing dt-SCSs without disturbances. In this case, the
tuple (6.1.1) reduces to

Σ := (X,U, ς, f, Y, h), (6.1.3)

with f : X×U×Vς → X, and the evolution equation (6.1.2) can be re-written as follows:

x(k + 1) = f(x(k), ν(k), ς(k)), k ∈ N.

In the next section, we formally define MDPs and discuss how to build finite ones from
given dt-SCSs.

6.2 Markov Decision Processes (MDPs) as Symbolic Models

A dt-SCS Σ is equivalently represented by an MDP [HSA17]:

Σ=(X,U,W, Tx, Y, h),

where the map Tx : B(X) ×X × U ×W → [0, 1] is a conditional stochastic kernel that
assigns to any x ∈ X, ν ∈ U , and w ∈ W, a probability measure Tx(· | x, ν, w) on the
measurable space (X,B(X)) so that for any set A ∈ B(X), we have

P(x(k + 1) ∈ A | x(k), ν(k), w(k)) :=

∫
A
Tx(dx̄ | x(k), ν(k), w(k)).

For given input ν(·), and disturbance w(·), the stochastic kernel Tx captures the evo-
lution of the state of Σ and can be uniquely determined by the pair (ς, f) from (6.1.1).
In other words, Tx contains the information of function f and the distribution of noise
ς(·) in the dynamical representation.

The alternative representation as MDP is utilized in [SAM15] to approximate a dt-SCS
Σ with a finite MDP Σ̂. Algorithm 14, which is adopted from [SAM15], presents such
approximation. The algorithm first constructs a finite partition of state set X, input set
U , and disturbance set W . Then, representative points x̄i ∈ Xi, ν̄i ∈ Ui and w̄i ∈ Wi

are selected as abstract states, inputs and disturbances. Transition probabilities in the
finite MDP Σ̂ are also computed according to (6.2.1). The output map ĥ is the same
as h with their domain restricted to finite state set X̂ (Step 7), and the output set Ŷ is
just image of X̂ under h (Step 6).

77

6 Efficient Algorithms for Stochastic Symbolic Control

Algorithm 14: Abstraction of dt-SCS Σ by a finite MDP Σ̂

Input: dt-SCS Σ=(X,U,W, Tx, Y, h).
Output: Finite MDP Σ̂ = (X̂, Û , Ŵ , T̂x, Ŷ , ĥ).

1 Select finite partitions of X,U, and W s.t. X = ∪nxi=1Xi, U = ∪nνj=1Uj ,

W = ∪nwk=1Wk;
2 For each Xi,Uj , and Wk, select unique representative points x̄i ∈ Xi, ν̄j ∈ Uj ,

w̄k ∈Wk;

3 Define X̂ = {x̄i, i = 1, ..., nx} as a finite state set, Û = {ν̄j , j = 1, ..., nν} as a

finite input set, and Ŵ = {w̄k, k = 1, ..., nw} as a finite disturbance set;
4 Define the map Ξ : X → 2X that assigns to any x ∈ X, the corresponding

partition element it belongs to, i.e., Ξ(x) = Xi if x ∈ Xi;

5 For all x, x′ ∈ X̂, ν ∈ Û , w ∈ Ŵ , compute the discrete transition probability

matrix T̂x as follows:

T̂x(x′ | x, ν, w) := Tx(Ξ(x′) | x, ν, w). (6.2.1)

6 Define Ŷ = h(X̂) as an output set;

7 Define ĥ = h | X̂ as an output map;

Remark 6.2.1. Since X̂, Û and Ŵ are finite sets, T̂x is a static map. It can be rep-
resented with a matrix and we will refer to it hereinafter as the transition probability
matrix.

Given a dt-SCS Σ = (X,U,W, ς, f, Y, h), the finite MDP Σ̂ constructed in Algorithm
14, can be represented as an finite dt-SCS:

Σ̂ := (X̂, Û , Ŵ , ς, f̂ , Ŷ , ĥ),

where f̂ : X̂ × Û × Ŵ × Vς → X̂ is defined as

f̂(x̂, ν̂, ŵ, ς) := Πx(f(x̂, ν̂, ŵ, ς)),

and Πx : X → X̂ is a map that assigns to any x ∈ X, the representative point x̄ ∈ X̂ of
the corresponding partition set containing x. Map Πx satisfies the inequality

‖Πx(x)− x‖ ≤ δ, ∀x ∈ X,

where δ := sup{ ‖x−x′‖ | x, x′ ∈ Xi, i = 1, 2, . . . , nx} is a state discretization parameter.
An initial state of Σ̂ is also selected according to x̂0 := Πx(x0) with x0 being an initial
state of Σ.

For a given specification ϕ and accuracy level ε, the discretization parameter δ can be
selected a priori such that

| P(Σ � ϕ)− P(Σ̂ � ϕ) | ≤ ε,

78

6.3 Parallel Construction of Finite MDPs

where ε depends on the horizon of formula ϕ, the Lipschitz constant of the stochastic
kernel, and δ (cf. [SAM15, Theorem 9]).

In the next sections, we propose novel data-parallel algorithms for the construction of
finite MDPs and the synthesis of their controllers.

6.3 Parallel Construction of Finite MDPs

In this section, we propose a technique to efficiently compute the transition probability
matrix T̂x of the finite MDP Σ̂, which is essential for any controller synthesis procedure,
as we discuss later in Section 6.4.

Algorithm 15: Serial algorithm for computing T̂x

Input: X̂, Û , Ŵ , and a noise covariance matrix Σ ∈ Rn×n.
Output: Transition probability matrix T̂x with dimension of

(nx × nν × nw, nx).
1 for all x̄i ∈ X̂, s.t. i ∈ {1, ..., nx}, do

2 for all ν̄j ∈ Û , s.t. j ∈ {1, ..., nν}, do

3 for all w̄k ∈ Ŵ , s.t. k ∈ {1, ..., nw}, do
4 Compute mean µ = f(x̄i, ν̄j , w̄k, 0);
5 Construct a Probability Density Function (PDF) as follows:

PDF(x | µ,Σ) =
1

((2π)ndet(Σ))
1
2

exp[−1

2
(x− µ)TΣ−1(x− µ)],

where π = 3.1415;

6 for all x̄′l ∈ X̂, s.t. l ∈ {1, ..., nx}, do

7 Set T̂x(x̄′l|x̄i, ν̄j , w̄k) :=
∫

Ξ(x′) PDF(dx | µ,Σ).;

8 end

9 end

10 end

11 end

Algorithm 15 presents the traditional serial algorithm for computing T̂x. It is a refine-
ment of Step 5 in Algorithm 14, which represents the most computationally demanding
part in Algorithm 14.

Remark 6.3.1. If there are no disturbances in the given dynamics as discussed in
(6.1.3), one can still employ Algorithm 15 to compute transition probability matrix but
without step 3.

In the following subsections, we address improvements of Algorithm 15. Each of the
subsections targets one inefficient aspect of Algorithm 15 and discusses how to improve
it. Then, in subsection 6.3.4, we combine all the improvements and introduce a parallel

79

6 Efficient Algorithms for Stochastic Symbolic Control

x1

x2

µ

γ

γ

γ

γ

f(x̄i; ν̄j; w̄k; 0)

x̄i

T̂x(jx̄i; ν̄j; w̄k) > 0

T̂x(jx̄i; ν̄j; w̄k) = 0

Cutting Region

PDF

Figure 6.1: A 2-dimensional visualization of the cutting probability region.

algorithm for constructing T̂x. Note that, for now, PDFs follow Gaussian distributions
and the improvements are tuned to this. Extending the ideas in the next subsections to
different distributions is discussed later.

6.3.1 Data-Parallel Threads for Computing Transitions

The inner steps inside the nested for-loops 1, 2, and 3 in Algorithm 15 are computa-
tionally independent. More specifically, the computations of µ, PDF(x | µ,Σ), and T̂x

all do not share date from one inner-loop to another. This is clearly an embarrassingly
data-parallel section of the algorithm. pFaces can be used to launch necessary number
of parallel threads on the employed HWC to control the computation time of the algo-
rithm. Each thread will eventually compute and store, independently, its corresponding
values within T̂x.

6.3.2 Less Memory for Post States in the Transitions

T̂x is a matrix with a dimension of (nx × nν × nw, nx). The number of its columns is
nx as we need to compute and store the probability for each reachable partition element
Ξ(x′l), corresponding to the representing post state x′l.

For simplicity, we now focus on the computation done for a tuple (x̄i, ν̄j , w̄k). In many
applications, when the PDFs are decaying fast, only those partition elements near µ
have relatively high probability values for being reached, starting from x̄i and applying
an input ν̄j .

We set a cutting probability threshold γ ∈ [0, 1] to control how much information
for the partition elements around µ is stored. For a given mean value µ, a covariance
matrix Σ and a cutting probability threshold γ, x ∈ X is called a cutting point of the
PDF if γ = PDF (x | µ,Σ). Since PDFs here are symmetric, we have cutting points
that form a hyper-rectangle in X, which we call the cutting region and denote it by
X̂Σ
γ . This is visualized in Fig. 6.1 for a 2-dimensional system. The boundary of the

80

6.3 Parallel Construction of Finite MDPs

x1

x2

µ
∗

f(x̄i; ν̄j ; 0; 0)

x̄i

µ1

µ2

f(x̄i; ν̄j ; w̄1; 0)

f(x̄i; ν̄j ; w̄2; 0)

X̂
Σ;W
γ

T̂x(jx̄i; ν̄j) > 0

T̂x(jx̄i; ν̄j) = 0

Figure 6.2: A 2-dimensional visualization of the cutting probability region after approximating
the effect of Ŵ .

cutting probability region is shown in red. The cutting region encloses representative
post states (blue dots) that have non-zero probabilities in T̂x. Other representative post
states outside the cutting region are considered to have zero probabilities in T̂x.

For a tuple (x̄i, ν̄j , w̄k), X̂
Σ
γ is the set of representative points with probabilities of

being reached greater than γ. Formally,

X̂Σ
γ := {x̄ ∈ X̂ | P

(
x(k + 1) ∈ Ξ(x̄) | x(k) = xi, ν(k) = νj , w(k) = wk

)
≥ γ}.

Any partition element Ξ(x′l) with x′l outside the cutting region is considered to have a
zero probability of being reached. Such approximation allows controlling the sparsity of
the columns of T̂x. The closer the value of γ to zero, the more accurate T̂x in representing
the transitions of Σ̂. On the other hand, the close the value of γ to one, fewer values need
to be stored as columns in T̂x. The number of probabilities to be stored for each tuple
(x̄i, ν̄j , w̄k) is |X̂Σ

γ |. Figure 6.1 also visualizes how the proposed γ allows controlling the

required memory for storing the transitions in T̂x.
Note that since Σ is fixed prior to running the algorithm, number of columns needed for

a fixed γ can be identified before launching the computation. We can then accurately
allocate a uniform fixed number of memory locations for any tuple (x̄i, ν̄j , w̄k) in T̂x.
Hence, there is no need for a dynamic sparse matrix data structure and T̂x is now a
matrix with a dimension of (nx × nν × nw, |X̂Σ

γ |).

6.3.3 Less Memory for Handing Disturbances of Dynamics

Fix an initial state xi and an input νj . This corresponds to an analysis of Algorithm 15
starting from step 3. The disturbance value wk now affects the location of the mean post
state µ inside the state set X. Accordingly, one post state x̄′l (step 6 in Algorithm 15),
and its enclosing partition element Ξ(x̄′l), may be reached with different probabilities for
different values of w̄k. This is mainly because the origin of the PDF (i.e., µ) is shifted

81

6 Efficient Algorithms for Stochastic Symbolic Control

according to the value of w̄k resulting into different values of the integration in step
6. This issue is visually depicted in Fig. 6.2. It shows a 2-dimensional visualization
of the cutting probability region (nx × nν × nw, |X̂Σ

γ |) after approximating the effect

of Ŵ = {w̄1, w̄2}. Red regions are for cutting probability corresponding to specific
disturbance values. The orange region is (nx × nν × nw, |X̂Σ

γ |). PDFs are not visualized
to make the figure simpler.

All the computed probabilities are stored in T̂x. Later when T̂x is used to synthesize
controllers for safety and reachability requirements using dynamic programming, we only
need the minimum value of T̂x with respect to all w̄k ∈ Ŵ , for a fixed (x̄i, ν̄j). Then,
instead of storing probability values for each different w̄k ∈ Ŵ inside T̂x, we can compute
the minimum values and store them. We also store the maximum values in case the user
is interested to see how the disturbance affects the probability of reaching a specific post
state. Now, when storing minimum and maximum values only, T̂x becomes a matrix
with a dimension of (nx × nν × 2, |X̂Σ

γ |).
Note that due to this shifting phenomenon, the probability threshold γ is also shifted.

We then need to include more post states around µ such that, for each reachable post
state, the minimum probability value, with respect to different values of w̄i, is still greater
than γ. We denote such set of considered post states by X̂Σ,W

γ . Set X̂Σ,W
γ is simply an

inflation of X̂Σ
γ with ‖W‖ := sup{‖w‖ | w ∈ W}. Finally, T̂x becomes a matrix with a

dimension of (nx × nν × 2, |X̂Σ,W
γ |).

Remark 6.3.2. Constructing X̂Σ
γ and X̂Σ,W

γ is practically simple. We start by solving
the equation PDF(x∗ | 0,Σ) = γ for x∗ ∈ Rn+ to compute the cutting points. Since the

PDF is symmetric, we have that X̂Σ
γ is enclosed by the hyper-rectangle [[µ− x∗, µ+ x∗]]

and X̂Σ,W
γ is enclosed by the hyper-rectangle [[µ∗ − x∗ − ‖W‖, µ∗ + x∗ + ‖W‖]], where

µ∗ = µ | w=0. Finally, we have that

X̂Σ
γ := {x̄ ∈ X̂|x̄ ∈ [[µ− x∗, µ+ x∗]]},

and

X̂Σ,W
γ := {x̄ ∈ X̂|x̄ ∈ [[µ∗ − x∗ − ‖W‖, µ∗ + x∗ + ‖W‖]]}.

Note that the location of X̂Σ
γ (not its cardinality) varies based on x̄, ν̄, and the

location of ŵ, while X̂Σ,W
γ (not its cardinality) varies only based on x̄ and ν̄. A simple

visualization of the relation between both sets is depicted in Fig. 6.2.

6.3.4 Data-Parallel Algorithm for Constructing MDPs

Algorithm 14 is a utility high-level algorithm to put all necessary sets of Σ̂ together and
no need to parallelize it. We present next a parallel algorithm to efficiently construct
and store T̂x as a successor to Algorithm 15. We employ the discussed enhancements
from subsections 6.3.1, 6.3.2, and 6.3.3 within the proposed algorithm.

Algorithm 16 is the proposed data-parallel version of Algorithm 15. We leave the
for-loop in Algorithm 16 step 8 unparallelized to avoid any race conditions reading and

82

6.3 Parallel Construction of Finite MDPs

Algorithm 16: Proposed parallel algorithm for computing T̂x

Input: X̂, Û , Ŵ , γ, and a noise covariance matrix Σ ∈ Rn×n.
Output: Transition probability matrix T̂x with dimension of

(nx × nν × 2, |X̂Σ,W
γ |).

1 for all (x̄, ν̄) ∈ X̂ × Û in parallel do
2 Set µ∗ = f(x̄, µ̂, 0, 0);

3 Construct X̂Σ,W
γ as described in Remark 6.3.2;

4 for all x∗ ∈ X̂Σ,W
γ do

5 Set T̂x(x∗ | x̄, ν̄,min) = 1.0;

6 Set T̂x(x∗ | x̄, ν̄,max) = 0.0;

7 end

8 for all w̄ ∈ Ŵ do
9 Set µ = f(x̄, µ̂, ŵ, 0);

10 Construct X̂Σ
γ as described in Remark 6.3.2;

11 for all x∗ ∈ X̂Σ
γ do

12 Set p :=
∫

Ξ(x∗) PDF(dx|µ,Σ);

13 if p < T̂x(x∗ | x̄, ν̄,min) then

14 Set T̂x(x∗ | x̄, ν̄,min) = p;
15 end

16 if p > T̂x(x∗ | x̄, ν̄,max) then

17 Set T̂x(x∗ | x̄, ν̄,max) = p;
18 end

19 end

20 end

21 end

83

6 Efficient Algorithms for Stochastic Symbolic Control

assigning values to T̂x(x∗ | x̄, ν̄, ·) in steps 14 and 17. A race condition is possible since,
when Ŵ 6= ∅, two overlapping X̂Σ

γ in two different threads may need to access the same
memory location Tx(x∗ | x̄, ν̄, ·) at the same time.

Theorem 6.3.3. The computational complexity of Algorithm 15 is O(|X̂|2|Û ||Ŵ |), while

the computational complexity of Algorithm 16 is O(|X̂Σ
γ |
|X̂||Û |
P max{ |Ŵ |, |X̂Σ,W

γ |}), given
that its main parallel for-loop is run on P PEs and P is variable.

Proof. We hold the proof of the complexity of Algorithm 15 to be self-evident. The proof
of the complexity of Algorithm 16 follows directly from the improvements in Subsections
6.3.1, 6.3.2, and 6.3.3, and the computation of parallel complexity for PRAM models as
introduced in [Jaj92, Chapter 1].

6.4 Data-Parallel Synthesis of Symbolic Controllers

Algorithm 17: Serial algorithm for controller synthesis satisfying safety spec-
ifications

Input: Transition probability matrix T̂x and bounded time horizon Td.
Output: Optimal safety probability Vs at time step Td = 1, and optimal policy

ν? corresponding to optimal safety probability.
1 Set value function Vs := ones(nx, Td + 1);
2 for all k = Td : −1 : 1 backward in time do

3 Set Vint = T̂xVs(: , k + 1);
4 Reshape Vint to a matrix V̄int of dimension (nx × nν , nw);

5 Minimize V̄int with respect to disturbance set Ŵ as Vmin of dimension
(nx × nν , 1);

6 Reshape Vmin to a matrix V̄min of dimension (nx, nν);

7 Maximize V̄min with respect to input set Û as Vmax of dimension (nx, 1);
8 Update Vs(:, k) := Vmax;

9 end

In this section, we employ dynamic programming to synthesize controllers for con-
structed finite MDPs satisfying safety and reachability properties [Esm14, SA13]. We
first present traditional serial algorithm for controller synthesis satisfying safety specifi-
cations in Algorithm 17. Note that if there are no disturbances in the given dynamics,
Steps 5, 6 of Algorithm 17, and 7, 8 of Algorithm 18 should not be taken into account.

Algorithms 17 and 18 are both doing the repetitive matrix multiplication in each
loop that corresponds to different time instance of the bounded time Td. Although we
cannot parallelize the for-loop in Algorithm 17, step 2 and Algorithm 18, step 4 due to
data dependency, we can still parallelize the contents of each loop by simply considering
standard parallel algorithms for the matrix multiplication. Additional essential update

84

6.4 Data-Parallel Synthesis of Symbolic Controllers

Algorithm 18: Serial algorithm for controller synthesis satisfying reachability
(or reach-avoid in case an avoid set A is provided) specifications

Input: X̂, Û , Ŵ , target-set T , avoid set A, and bounded time horizon Td.
Output: Optimal reachability probability Vr at time step Td = 1, and optimal

policy ν? corresponding to optimal reachability probability.
1 Compute transition probability matrix T̂0x from X̂\(T ∪ A) to T ;

2 Compute transition probability matrix T̂1x in X̂\(T ∪ A);
3 Set value function Vr := zeros(nx, Td + 1);
4 for all k = Td : −1 : 1 backward in time do

5 Set Vint = T̂0x + T̂1xVr(: , k + 1);
6 Reshape Vint to a matrix V̄int of dimension (nx × nν , nw);

7 Minimize V̄int with respect to disturbance set Ŵ as Vmin;
8 Reshape Vmin to a matrix V̄min of dimension (nx, nν);

9 Maximize V̄min with respect to input set Û as Vmax of dimension (nx, 1);
10 Update Vr(:, k) := Vmax;

11 end

Algorithm 19: Proposed parallel algorithm for controller synthesis satisfying
safety specifications

Input: Transition probability matrix T̂x and bounded time horizon Td.
Output: Optimal safety probability Vs at time step Td = 1, and optimal policy

ν corresponding to optimal safety probability.
1 Set, in parallel, Vs := ones(nx, Td + 1);
2 for all k = Td : −1 : 1 backward in time do

3 for all (x̄, ν̄) ∈ X̂ × Û in parallel do
4 Set µ∗ = f(x̄, µ̂, 0);

5 Construct X̂Σ,W
γ as described in Remark 6.3.2;

6 Set Ṽint(x̄, ν̄) :=
∑

x∗∈X̂Σ,W
γ

Vs(x
∗, k + 1) ∗ Tx(x∗ | x̄, ν̄,min);

7 end

8 for all x̄ ∈ X̂ in parallel do

9 Set Vs(x̄, k) := max
ν̄∈Û
{Ṽint(x̄, ν̄)};

10 Set ν(x̄, k) := argmax
ν̄∈Û

{Ṽint(x̄, ν̄)};

11 end

12 end

85

6 Efficient Algorithms for Stochastic Symbolic Control

is to use the pre-stored minimum values in Tx(x∗ | x̄, ν̄,min) rather than minimizing the
values with respect to Ŵ (Algorithm 17, step 5 and Algorithm 18, step 7).

Algorithm 19 is a parallelization of Algorithm 17. Step 3 in Algorithm 19 is the
parallel implementation of the matrix multiplication in Algorithm 17, step 3. Step 8 in
Algorithm 19 selects and stores the inputs ν̄ that maximizes the probabilities of enforcing
the safety specification.

A significant reduction in the computation of the intermediate matrix Vint is also
introduced in Algorithm 19. In Algorithm 17, step 3, the computation of Vint requires a
matrix multiplication between P (dimension of (nx×nν×nw, nx)) and V (:, ·) (dimension
of (nx, 1)). On the other hand, in the parallel version in Algorithm 19, the corresponding
computation is done in parallel for Ṽint for which each element, i.e., Ṽint(x̄, ν̄), requires

only |X̂Σ,W
γ | scalar multiplications. Here, we clearly utilize the techniques discussed in

Subsections 6.3.2 and 6.3.3 to consider only those post states in the cutting region X̂Σ,W
γ .

Remember that other post states outside X̂Σ,W
γ are considered to have probability zero

which means we can avoid their scalar multiplications.

Algorithm 20 extends Algorithm 19 to support safety, reachability and reach-avoid
specifications.

Theorem 6.4.1. The computational complexity of Algorithm 17 and Algorithm 18 is

O(Td|X̂|2|Û ||Ŵ |). The combinational complexity of Algorithm 19 is O(Td
|X̂||Û |
P |X̂Σ,W

γ |)
and the computational complexity of Algorithm 20 is O(Td

|X̂||Û |
P |Ŵ ||X̂Σ,W

γ |), where P is
the variable number of PEs used to run the parallel for-loop in the algorithm.

Proof. The proof of the computational complexity of Algorithms 17 and 18 can be di-
rectly shown based on the fact that |T̂ | = |X̂|2|Û ||Ŵ |. The proof of the complexity of
Algorithms 19 and 20 follows directly from the improvements in this Subsections and the
computation of parallel complexity for PRAM models as introduced in [Jaj92, Chapter
1].

6.4.1 On-the-Fly Construction of Transitions

We consider another technique that further reduces the required memory. We construct
T̂x on-the-fly and refer to the modified version of Algorithm 20 as the OFA version. In
the OFA version, we skip computing and storing the MDP T̂x and the matrix T̂0x (i.e.,
Steps 1 and 6). We instead compute the required entries of T̂x and T̂0x on-the-fly as they
are needed (i.e., Steps 14 and 16). This significantly reduces the required memory for
T̂x and T̂0x but at the cost of repeated computation of their entries in each time-step
from 1 to Td. This gives the user an additional control over the trade-off between the
computation time and memory.

6.4.2 Supporting Multiplicative Noises and Practical Distributions

The introduced algorithms can be extended to support multiplicative noises and prac-
tical distributions such as uniform, exponential, and beta distributions. The technique

86

6.4 Data-Parallel Synthesis of Symbolic Controllers

Algorithm 20: Proposed parallel algorithm for controller synthesis satisfying safety,

reachability and reach-avoid specifications

Input: X̂, Û , Ŵ , bounded time horizon Td, specs ∈ {Safety,Reachability,
Reach-Avoid}, target-set T (in case
specs = Reachability, Reach-Avoid), and avoid set A (in case
specs = Reach-Avoid).

Output: Optimal satisfaction probability Vv at time step Td = 1, and optimal
policy ν? corresponding to the optimal satisfaction probability.

1 Compute T̂x in parallel as presented in Algorithm 16;
2 if specs == Safety then
3 Set value function Vv := ones(nx, Td + 1);
4 end
5 else

6 Compute a transition probability matrix T̂0x from X̂\(T ∪ A) to T ;

7 Set T̂x to zero for any post-state in (T ∪ A);
8 Set value function Vv := zeros(nx, Td + 1);

9 end
10 for all k = Td : −1 : 1 (backward in time) do

11 for all (x̄, ν̄) ∈ X̂ × Û in parallel do

12 for all w̄ ∈ Ŵ do

13 Construct X̂Σ
γ as discussed in Subsection 6.3.2;

14 Set Vin(x̄, ν̄, w̄) :=
∑

x∗∈X̂Σ
γ

Vv(x
∗, k + 1)Tx(x∗ | x̄, ν̄, w̄);

15 if specs == Reach-Avoid and x̄ 6∈ (T ∪ A) then
16 Set Vin(x̄, ν̄, w̄) := Vin(x̄, ν̄, w̄) + T0x(x̄, ν̄, w̄);
17 end

18 end

19 end

20 for all x̄ ∈ X̂ in parallel do
21 Set Vv(x̄, k) := max

ν̄∈Û
{min
w̄∈Ŵ
{Vin(x̄, ν̄, w̄)}};

22 Set ν?(x̄, k) := argmax
ν̄∈Û

{min
w̄∈Ŵ
{Vin(x̄, ν̄, w̄)}};

23 end

24 end

87

6 Efficient Algorithms for Stochastic Symbolic Control

introduced in Subsection 6.3.2 for reducing the memory usage can be tuned for other
distributions based on the support of their PDFs. In the implementation of AMYTISS,
users can specify their desired PDFs and hyper-rectangles enclosing their supports so
that AMYTISS can include them in the parallel computation of T̂x.

Kernel AMYTISS also supports multiplicative noises as introduced in (6.1.2). Cur-
rently, the memory reduction technique from Subsection 6.3.2 is disabled for systems
with multiplicative noises. This means users should expect larger memory requirements
for systems with multiplicative noises. However, users can still benefit from the pro-
posed OFA version to compensate for the increase in memory requirement. We plan to
include this feature for multiplicative noises in a future update of AMYTISS. Only for a
better demonstration, the previous sections were presented assuming additive noise and
Gaussian normal PDF.

6.5 Illustrative Examples

We introduce a simple 2-dimensional example to illustrate the proposed algorithms.
Consider a robot described by the following ODE:[

ẋ1

ẋ2

]
=

[
ν1(k)cos(ν2(k))
ν2(k)sin(ν2(k))

]
,

where (x1, x2) ∈ X := [−10, 10]2 is a state vector and (ν1, ν2) ∈ U := [−1, 1]2 is an input
vector. As we consider discrete-time systems, we approximate the system using forward
Euler method and include disturbances and noise so that the system is a dt-SCS. The
following is the dt-SCS of the 2d robot:[

x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + τν1(k)cos(ν2(k)) + w(k) + ς1(k)
x2(k) + τν2(k)sin(ν2(k)) + w(k) + ς2(k)

]
, (6.5.1)

where w ∈ W := [−1, 1] is a disturbance set that includes the upper bound of the local
truncation error from the forward Euler approximation, (ς1, ς2) is a noise following a
Gaussian distribution with the covariance matrix Σ := diag(0.75, 0.75)3, and τ := 10 is
the sampling period.

To construct a PDF approximating the system, we consider a state quantization pa-
rameter of (0.5, 0.5), an input quantization parameter of (0.1, 0.1), a disturbance quan-
tization parameter of 0.2, and a cutting probability threshold γ of 0.001. Using such
quantization parameters, the number of state-input pairs |X̂ × Û | in Σ̂ is 203401. We
use |X̂ × Û | as an indicator of the size of the system.

6.5.1 Synthesis of a Safety Controller

We synthesize a controller for the robot system in to keep the state of the robot inside X
within 8 time steps. The synthesized controller should enforce the safety specification in

3diag(d) builds an n× n diagonal matrix from a supplied n-dimensional vector d.

88

6.5 Illustrative Examples

Figure 6.3: A visualization of transitions for one source state x := (0, 0) and input ν := (0.7, 0.8)
of the MDP approximating the robot example.

the presence of the disturbance and noise. We launch AMYTISS to construct the MDP of
the robot and synthesize a safety controller for it. We visualize some transitions of the
constructed PDF and show them in Figure 6.3. It shows a visualization of transitions
for one source state x := (0, 0) and input ν = (0.7, 0.8) of the MDP approximating the
robot example. The green point is the source state, the transparent bell-like shape is the
PDF and the red rectangle is the cutting region. Probabilities of reaching the partition
elements inside the cutting regions are shown as bars below the PDF.

We simulate the closed-loop behavior of the robot with the synthesized controller.
The simulation is done with random choices of w̄ ∈ Ŵ and random values for the noise
according to the given covariance matrix. At each time step, the simulation queries the
strategy from the output file and applies it to the system. We repeat the simulation 100
times.

Figure 6.4 shows the closed-loop simulation results. It shows the 100 different simu-
lations of the closed-loop behavior of the robot under a safety controller synthesized for
maintaining the robot inside X. At left, we show the state trajectory of the system at
each time step. At right, we show the applied input at each time step. For the sake of
readability, the input plots are shown as piece-wise linear signal. Note that the input is
always fixed at the time step k = 0. This is because we store only one input, which is
the one maximizing the probability of satisfaction. After the time step k = 0 and due
to the noise/disturbance, the system lands in different states which requires applying
different inputs to satisfy the specification.

89

6 Efficient Algorithms for Stochastic Symbolic Control

0 2 4 6 8

Time

-10

0

10

x
1

State (x
1
) trajectory for 100 simulations

0 2 4 6 8

Time

-10

0

10

x
2

State (x
2
) trajectory for 100 simulations

0 2 4 6 8

Time

-1

0

1

u
1

Input (u
1
) sequence for 100 simulations

0 2 4 6 8

Time

-1

0

1

u
2

Input (u
2
) sequence for 100 simulations

Figure 6.4: Repeated simulations of the closed-loop behavior of the robot under a safety con-
troller.

6.5.2 Synthesis of a Reach-Avoid Controller

We synthesize a controller for the robot system to reach the set [5, 7]2 while avoiding the
set [−2, 2]2 within 16 time steps. Again, we launch AMYTISS to construct an MDP of the
robot system and synthesize a reach-avoid controller for it. The MATLAB interface is used
to simulate the closed-loop. We run the closed loop and generate 9 different simulations
from 9 different initial states.

Figure 6.5 shows the closed-loop simulation results. It shows the 9 different simulations
of the closed-loop behavior of the robot example under a synthesized controller enforcing
the robot to reach a target-set while avoiding an avoid-set. The 9 dots at the left bottom
correspond to 9 initial states for 9 different simulation runs. The red rectangle is the
avoid-set of states. The blue rectangle is the target-set of states.

6.6 Benchmarking and Case Studies

6.6.1 Controlling Computational Complexities of Stochastic Applications

Using the introduced algorithms as implemented in AMYTISS, one can utilize the com-
puting power in modern HPC systems and Cloud-computing platforms to control the
computational complexities of stochastic symbolic control. We fix the robot example as
a system in hand and show how the computation time of solving the control problem is
controlled using different computing platforms.

Table 6.1 lists the HWCs used to benchmark the introduced algorithms. The devices
range from local devices in laptops and desktop computers to advanced compute-devices
in AWS.

90

6.6 Benchmarking and Case Studies

-10 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 -10

x
1

-10

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

-10

x
2

System trajectory for 9 different simulations

Figure 6.5: Different simulations of the closed-loop behavior of the robot example under a
reach-avoid controller.

Table 6.1: HWCs used for benchmarking the parallel algorithms of stochastic symbolic control.

Id Description PEs
CPU1 PC: Intel Xeon E5-1620 8
CPU2 AWS instance c5.18xlarge: Intel Xeon Platinum 8000 72
GPU1 Macbook Pro 15 laptop: AMD Radeon Pro Vega 20 1280
GPU2 AWS instance p3.2xlarge: NVIDIA Tesla V100 5120

91

6 Efficient Algorithms for Stochastic Symbolic Control

Table 6.2: Comparison between AMYTISS, FAUST and StocHy based on their native features
for several (physical) case studies. CSB refers to the continuous-space benchmark
provided in [CDA19]. † refers to cases when we run AMYTISS with the OFA algorithm.
N/M refers to the situation when there is not enough memory to run the case study.
N/S refers to the lack of native support for nonlinear systems. (Kx) refers to a 1000-
times speedup. The presented speedup is the maximum speedup value across all
reported devices. The reported times are in seconds, unless other units are denoted.

AMYTISS (time) FAUST StocHy Speedup vs.

Problem/Spec. |X̂ × Û | Td CPU1 CPU2 GPU1 GPU2 Time Time FAUST StocHy

2-d StocHy CSB/Safety 4 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0001 0.002 0.015 20 x 150 x

3-d StocHy CSB/Safety 8 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0001 0.002 0.08 20 x 800 x

4-d StocHy CSB/Safety 16 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0002 0.01 0.17 50 x 850 Kx

5-d StocHy CSB/Safety 32 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0003 0.01 0.54 33 x 1.8 Kx

6-d StocHy CSB/Safety 64 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0006 1.2 2.17 2.0 Kx 3.6 Kx

7-d StocHy CSB/Safety 128 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0012 6 9.57 5 Kx 7.9 Kx

8-d StocHy CSB/Safety 256 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0026 37 40.5 14.2 Kx 15.6 Kx

9-d StocHy CSB/Safety 512 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0057 501 171.6 87.8 Kx 30.1 Kx

10-d StocHy CSB/Safety 1024 6 ≤ 1.0 ≤ 1.0 ≤ 1.0 0.0122 N/M 385.5 N/A 32 Kx

11-d StocHy CSB/Safety 2048 6 1.0912 ≤ 1.0 ≤ 1.0 0.0284 N/M 1708.2 N/A 60 Kx

12-d StocHy CSB/Safety 4096 6 4.3029 ≤ 1.0 ≤ 1.0 0.0624 N/M 11216 N/A 179 Kx

13-d StocHy CSB/Safety 8192 6 18.681 1.8515 ≤ 1.0 0.1277 N/M ≥ 24h N/A ≥676 Kx

14-d StocHy CSB /Safety 16384 6 81.647 7.9987 6.1632 0.2739 N/M ≥ 24h N/A ≥320 Kx

2-d Robot†/Safety 203401 8 8.5299 0.7572 ≤ 1.0 0.0154 N/A N/A N/A N/A

2-d Robot/R.Avoid 741321 16 48.593 4.5127 3.4353 0.3083 N/S N/S N/A N/A

2-d Robot†/R.Avoid 741321 16 132.10 11.745 3.6264 0.1301 N/A N/A N/A N/A

3-d Room Temp./Safety 7776 8 0.1072 0.0120 ≤ 1.0 0.0018 1247 N/M 692 Kx N/A

3-d Room Temp.†/Safety 7776 8 0.5701 0.0627 ≤ 1.0 0.0028 N/A N/A N/A N/A

5-d Room Temp./Safety 279936 8 200.00 19.376 N/M 1.8663 3248 N/M 1740 x N/A

5-d Room Temp.†/Safety 279936 8 716.84 63.758 22.334 0.5639 N/A N/A N/A N/A

3-d Road Traffic/Safety 2125764 16 29.200 3.0508 10.234 1.2895 N/M N/M N/A N/A

3-d Road Traffic†/Safety 2125764 16 160.45 13.632 11.657 0.3062 N/A N/A N/A N/A

5-d Road Traffic/Safety 68841472 7 N/M 38.635 N/M 4.3935 N/M N/M N/A N/A

5-d Road Traffic†/Safety 68841472 7 1148.5 95.767 36.487 0.7397 N/A N/A N/A N/A

3-d Vehicle/R.Avoid 1528065 32 2.5h 871.89 271.41 10.235 N/S N/S N/A N/A

3-d Vehicle†/R.Avoid 1528065 32 2.8h 879.78 613.55 107.68 N/A N/A N/A N/A

7-d BMW 320i/R.Avoid 3937500 32 N/M 21.5h N/M 825.62 N/S N/S N/A N/A

7-d BMW 320i†/R.Avoid 3937500 32 ≥ 24h ≥ 24h ≥ 24h 1251.7 N/A N/A N/A N/A

92

6.6 Benchmarking and Case Studies

Table 6.2 shows the benchmarking results running AMYTISS with these HWCs for sev-
eral case studies and comparing against FAUST, and StocHy. We employ a machine with
Windows operating system (Intel i7@3.6GHz CPU and 16 GB of RAM) for FAUST, and
StocHy. It should be mentioned that FAUST predefines a minimum number of represen-
tative points based on the desired abstraction error, and accordingly the computation
time and memory usage reported in Table 6.2 are based on the minimum number of
representative points. In addition, to have a fair comparison, we run all the case studies
with additive noises since neither FAUST nor StocHy supports multiplicative noises.

For each HWC, we show the time in seconds to solve the problem. Clearly, employing
HWCs with more PEs reduces the time to solve the problem. This is a strong indication
for the scalability of the proposed algorithms. This also becomes very useful in real-time
applications, where users can control the computation time of their problems by adding
more resources. Since, AMYTISS is the only tool that can utilize the reported HWCs, we
do not compare it with other similar tools.

To show the applicability of our results to large-scale stochastic systems, we apply our
proposed techniques to several physical case studies. First, we synthesize a controller
for 3- and 5-dimensional room temperature networks to keep temperature of rooms in
a comfort zone. Then we synthesize a controller for road traffic networks with 3 and 5
dimensions to keep the density of the traffic below some level. We then consider 3- and
7-dimensional stochastic versions of the nonlinear model of the autonomous vehicle used
in the previous two Chapters, and synthesize reach-avoid controllers to automatically
park the vehicles. For each case study, we compare the results against FAUST and StocHy

and report the technical details in Table 6.2.

6.6.2 Room Temperature Network

We first apply our results to the temperature regulation of 5 rooms each equipped with a
heater and connected on a circle. The model of this case study is borrowed from [LSZ18].
The evolution of temperatures Txi can be described by individual rooms as

Σai :

Txi(k + 1) = aiiTxi(k) + γThνi(k) + ηwi(k) + βTei + 0.01ςi(k), i ∈ {1, 3},
Txi(k + 1) = biiTxi(k) + ηwi(k) + βTei + 0.01ςi(k), i ∈ {2, 4, 5},
yi(k) = Txi(k),

where aii = (1 − 2η − β − γνi(k)), bii = (1 − 2η − β), and wi(k) = Txi−1(k) + Txi+1(k)
(with Tx0 = Txn and Txn+1 = Tx1). Parameters η = 0.3, β = 0.022, and γ = 0.05
are conduction factors, respectively, between rooms i ± 1 and the room i, between the
external environment and the room i, and between the heater and the room i. Moreover,
Tei = −1 ◦C, Th = 50 ◦C are outside and heater temperatures, and Ti(k) and νi(k) are
taking values in sets [19, 21] and [0, 1], respectively, ∀i ∈ {1, . . . , n}.

We synthesize a controller for Σa via the abstraction Σ̂a such that the controller
maintains the temperature of any room in the safe set [19, 21] for at least 8 time steps.
We also apply our algorithms to a smaller version of this case study (3-dimensional
system) with the results also reported in Table6.2.

93

6 Efficient Algorithms for Stochastic Symbolic Control

A

Road Traffic

Network

1

2

3

4

5

A

Traffic lightTraffic light

ExitExit

1

2

34

5

Figure 6.6: Model of a road traffic network composed of 5 cells of 500 meters with 2 entries
and 2 ways out.

6.6.3 Road Traffic Network

Consider a road traffic network divided in 5 cells of 500 meters with 2 entries and 2 ways
out, as schematically depicted in Figure 6.6. The model of this case study is borrowed
from [LCGG13] by including the stochasticity in the model as the additive noise.

The two entries are controlled by traffic lights, denoted by ν1 and ν3, that enable
(green light) or not (red light) the vehicles to pass. In this model, the length of a cell
is in kilometers [km] and the flow speed of vehicles is 100 kilometers per hour [km/h].
Moreover, during the sampling time interval τ = 6.48 seconds, it is assumed that 6
vehicles pass the entry controlled by the light ν1, 8 vehicles pass the entry controlled by
the light ν3, and one quarter of vehicles that leave cells 1 and 3 goes out on the first
exit (its ratio denoted by q). We want to observe the density of the traffic xi, given in
vehicles per cell, for each cell i of the road. The model of cells is described by:

x1(k + 1) = (1− τv1

L1
)x1(k) +

τv5

L5
w1(k) + 6ν1(k) + 0.7ς1(k),

xi(k + 1) = (1− τvi
Li
− q)xi(k) +

τvi−1

Li−1
wi(k) + 0.7ςi(k), i ∈ {2, 4},

x3(k + 1) = (1− τv3

L3
)x3(k) +

τv2

L2
w3(k) + 8ν3(k) + 0.7ς3(k),

x5(k + 1) = (1− τv5

L5
)x5(k) +

τv4

L4
w5(k) + 0.7ς5(k),

where wi(k) = xi−1(k) (with x0 = x5). We are interested first in constructing the
finite MDP of the given 5-dimensional system and then synthesizing policies keeping the
density of the traffic lower than 10 vehicles per cell.

We have X := [0, 10]5 with a quantization parameter of (0.37, 0.37, 0.37, 0.37, 0.37),
U := [0, 1]2 with a quantization parameter of (1, 1), a noise covariance matrix Σ :=
diag(0.7, 0.7, 0.7, 0.7, 0.7), and a cutting probability level γ of 2e − 2. Our algorithms

94

6.6 Benchmarking and Case Studies

are applied to the same case study but with 3 dimensions for the sake of benchmarking.
The results for both cases are reported in Table6.2.

6.6.4 Autonomous Vehicle

Here, to show the applicability of the introduced approach to nonlinear models, we con-
sider a vehicle described by the following hybrid 7-dimensional nonlinear single-track
model introduced earlier in Chapter 4. The model is modified by including the stochas-
ticity inside the dynamics as additive noise:

For |x4(k)| < 0.1:

xi(k + 1) = xi(k) + τai(k) +Riςi(k), i ∈ {1, . . . , 7}\{3, 4},
x3(k + 1) = x3(k) + τSat1(u1) + 0.2ς3(k),

x4(k + 1) = x4(k) + τSat2(u2) + 0.1ς4(k),

and for |x4(k)| ≥ 0.1:

xi(k + 1) = xi(k) + τbi(k) +Riςi(k), i ∈ {1, . . . , 7}\{3, 4},
x3(k + 1) = x3(k) + τSat1(u1) + 0.2ς3(k),

x4(k + 1) = x4(k) + τSat2(u2) + 0.1ς4(k),

where,

R1 = R2 = 0.25, R5 = R6 = R7 = 0.2, a1 = x4cos(x5(k)), a2 = x4sin(x5(k)),

a5 =
x4

lwb
tan(x3(k)), a6 =

u2(k)

lwb
tan(x3(k)) +

x4

lwbcos2(x3(k))
u1(k), a7 = 0,

b1 = x4(k)cos(x5(k) + x7(k)), b2 = x4(k)sin(x5(k) + x7(k)), b5 = x6(k),

b6 =
µ̄m

Iz(lr + lf)
(lfCS,f (glr − u2(k)hcg)x3(k) + (lrCS,r(glf + u2(k)hcg)

− lfCS,f (glr − u2(k)hcg))x7(k)− (l2fCS,f (glr − u2(k)hcg)

+ l2rCS,r(glf + u2(k)hcg))
x6(k)

x4(k)
),

b7 =
µ̄f

x4(k)(lr + lf)
(CS,f (glr − u2(k)hcg)x3(k) + (CS,r(glf + u2(k)hcg)

+ CS,f (glr − u2(k)hcg))x7(k)− (lfCS,f (glr − u2(k)hcg)

− lrCS,r(glf + u2(k)hcg))
x6(k)

x4(k)
)− x6(k).

We consider an update period τ = 0.1 seconds and the following parameters for the
BMW 320i car: lwb = 2.5789 as the wheelbase, m = 1093.3 [kg] as the total mass of
the vehicle, µ̄ = 1.0489 as the friction coefficient, lf = 1.156 [m] as the distance from
the front axle to the CoG, lr = 1.422 [m] as the distance from the rear axle to CoG,
hcg = 0.6137 [m] as the hight of CoG, Iz = 1791.6 [kg m2] as the moment of inertia for

95

6 Efficient Algorithms for Stochastic Symbolic Control

Table 6.3: Comparison between StocHy and AMYTISS for a continuous-space system with di-
mensions up to 12. The reported system is autonomous and, hence, Û is singleton.
|X̂| refers to the size of the system.

Dimension 2 3 4 5 6 7 8 9 10 11 12

|X̂| 4 8 16 32 64 128 265 512 1024 2048 4096

Time (s) - StocHy 0.015 0.08 0.17 0.54 2.17 9.57 40.5 171.6 385.5 1708.2 11216

Time (s) - AMYTISS 0.02 0.92 0.20 0.47 1.02 1.95 3.52 6.32 10.72 17.12 29.95

entire mass around z axis, CS,f = 20.89 [1/rad] as the front cornering stiffness coefficient,
and CS,r = 20.89 [1/rad] as the rear cornering stiffness coefficient.

To construct a finite MDP Σ̂a, we consider a bounded version of the state set X :=
[−10.0, 10.0]×[−10.0, 10.0]×[−0.40, 0.40]×[−2, 2]×[−0.3, 0.3]×[−0.4, 0.4]×[−0.04, 0.04],
a state discretization vector [4.0; 4.0; 0.2; 1.0; 0.1; 0.2;
0.02], an input set U := [−0.4, 0.4]× [−4, 4], and an input discretization vector [0.2; 2.0].

We are interested in an autonomous operation of the vehicle. The vehicle should park
itself automatically in the parking lot located in the projected set [−1.5, 0.0]× [0.0, 1.5]
within 32 time steps. The vehicle should avoid hitting a barrier represented by the set
[−1.5, 0.0]× [−0.5, 0.0].

We also apply our algorithms to a 3-dimensional autonomous vehicle [RWR17, Section
IX-A] for the sake of benchmarking. The results for both cases are reported in Table6.2.

6.6.5 Benchmarking Against Most Recent State-of-the-art Tool

We benchmark our results against the ones provided by StocHy [CDA19]. We employ
the same case study as in [CDA19, Case study 3] which starts from 2-dimensional to
12-dimensional continuous-space systems with the same parameters.

To have a fair comparison, we utilize a machine with the same configuration as the one
employed in [CDA19] (a laptop having an Intel Core i7−8550U CPU at 1.80GHz with 8
GB of RAM). We build a finite MDP for the given model and compare our computation
time with the results provided by StocHy.

Table 6.3 shows the comparison between StocHy and AMYTISS. StocHy suffers signifi-
cantly from the CoD as seen from its exponentially growing computation time. AMYTISS,
on the other hand, outperforms StocHy and can handle bigger systems using the same
hardware. This comparison shows speedups up to maximum 375 times for the 12-
dimensional system. Note that we only reported up to 12-dimensions but AMYTISS can
readily go beyond this limit for this example. For instance, AMYTISS managed to handle
the 20-dimensional version of this system in 1572 seconds using an NVIDIA Tesla V100
GPU in Amazon AWS.

Readers are highly advised to pay attention to the size of the system |X̂ × Û | (or
|X̂| when Û is singleton), not to its dimension. Actually, here, the 12-dimensional
system, which has a size of 4096 state-input pairs is much smaller than the 2-dimensional
illustrative example we introduced in Section 6.5, which has a size of 203401 state-
input pairs. The current example has a small size due to the very coarse quantization
parameters and the tight bounds used to quantize X.

96

6.7 Summary

As seen in Table 6.2, AMYTISS outperforms FAUST and StocHy in all the case studies
(maximum speedups up to 692000 times). Moreover, AMYTISS is the only tool that
can utilize all available computing resources. The OFA version of AMYTISS reduces
dramatically the required memory, while still solves the problems in a reasonable time.
FAUST and StocHy fail to solve many of the problems since they lack the native support
for nonlinear systems, they require large amounts of memory, or they do not finish
computing within 24 hours.

6.7 Summary

Stochastic systems are an important modeling framework to describe many safety-critical
CPSs such as power grids and traffic networks. For such complex systems, automating
the synthesis of controllers that achieve some high-level specifications is inherently very
challenging. In this chapter, we introduced efficient data-parallel algorithms to auto-
matically design controllers for stochastic control systems.

dt-SCSs were chosen as modeling framework for stochastic control systems. dt-SCSs
are usually abstracted using finite MDPs. We then propose a technique to efficiently
compute the transition probability matrices of the finite MDPs. We presented a parallel
algorithm (Algorithm 16) to efficiently construct and store the MDPs as a successor to
a traditional serial algorithm. It employs several enhancements from Subsections 6.3.1,
6.3.2, and 6.3.3.

We then employed dynamic programming to synthesize controllers for constructed
finite MDPs satisfying safety and reachability properties. Algorithm 20 was also intro-
duced as a unified algorithm for the synthesis of symbolic controllers. It supports safety,
reachability and reach-avoid specifications.

The algorithms presented in this chapter were implemented on top of pFaces as
a kernel that constructs finite MDPs and synthesizes symbolic controllers satisfying
given high-level specifications. Kernel AMYTISS can utilize HPC platforms and Cloud-
computing services to reduce the effects of the CoD. As illustrated with several case
studies, AMYTISS significantly outperforms all available tools with respect to the compu-
tation time.

97

7 Supporting Practical Design
Requirements

Computer science literature is rich with approaches for automated synthesis of sys-
tems from high-level formal specifications (see [LMS20, PR89, BK08, and the references
therein]) which are traditionally known as reactive synthesis techniques. Software tools
such as STRIX [MSL18], Acacia+ [BBF+12], and SLUGS [ER16] provide various imple-
mentations of these techniques. Table 7.1 shows a comparison between state-of-art tools
of reactive synthesis and symbolic control tools. Unlike the tools developed for symbolic
control, the tools of reactive synthesis can handle much richer specifications, including
requirements given in LTL or as automata on infinite strings. Unfortunately, they can
not be used directly to design controller of control systems. This is mainly because
control systems have an uncountable number of states which makes it impossible to pro-
grammatically operate on them in their original forms using these tools. Moreover, these
tools accept specifications describing the systems to be designed (i.e., the controllers in
our case), whereas here we need to provide requirements describing control systems’
behaviors to be enforced by the synthesized controllers.

In the previous chapters, we discussed several improvements to the scalability and
efficiency of symbolic control. In all the techniques (and algorithms) we introduced,
we considered simple high-level specifications, namely, safety and reachability specifi-
cations. The goal was to focus on the improvements of the techniques, while knowing
that extensions to them can be addressed later to include more practical specifications.
In this chapter, we provide a technique on symbolic control that extends the class of
supported specifications. More specifically, instead of considering only reachability and
safety specifications, we consider ω-regular specifications given as DPAs or as LTL for-
mulae. The proposed extension is implemented on top of pFaces as a kernel that we
refer to as OmegaThreads [KZ21].

Table 7.1: A comparison between state-of-art tools of reactive synthesis and symbolic control

Discrete Synthesis Tools Symbolic Control Tools
Aspect Strix† SLUGS‡ SCOTS§ Pessoa¶

Systems Systems Finite-state systems general nonlinear§ linear¶

Specs. LTL†, GR(1)‡ safety/reachability
Algorithms Parallel and serial Serial
Platforms CPUs (or limited GPUs) CPUs
Output Machines/Auto-gen. Ad-hoc

99

7 Supporting Practical Design Requirements

7.1 Specifications and Control Problems

Recall the definition of Sτ as a general continuous-time nonlinear control system which
is introduced in (2.3.2) as an embedding of the sampled version of the control system Σ.
Assume that x0 ∈ X0 is the initial state of Sτ , where X0 ⊆ Xτ is a set of initial states.
When a sequence of control inputs ũ := ũ(0)ũ(1) · · · , where ũ(i) ∈ Uτ and i ∈ N, is
applied to Sτ such that u(t) = ũ(i) and t ∈ [iτ, (i+ 1)τ [for every i, system Sτ generates
a run captured by the sequence of τ -sampled states x̃ := x̃(0)x̃(1) · · · x̃(k) · · · , where
x̃(k) = ξ(x̃(k−1),ũ(k−1))(τ) for every k ∈ N+, and x̃(0) = x0.

Now, consider one control system Sτ and its initial set of states X0. We provide a
definition of ω-regular specifications.

Definition 7.1.1 (ω-regular Specification). Let PX and PU be sets of atomic propo-
sitions labeling subsets in Xτ and Uτ , respectively, such that PX ∩ PU = ∅. Also, let
LX : Xτ → 2PX and LU : Uτ → 2PU be labeling functions. An ω-regular specification ψ
for Sτ is a set of ω-words on P := 2PX∪PU (i.e., ψ ⊆ Pω).

Given a sequence ũ of control inputs, Sτ is said to satisfy ψ (denoted as usual by
Sτ |= ψ) if the following holds:

∀x0 ∈ X0. ∃α ∈ ψ. ∀i ∈ N. LX(x̃(i)) ∪ LU (ũ(i)) ⊆ α(i).

The controller synthesis problem (denoted by the tuple (Sτ ,ψ)) is to find a function
δ : X∗τ → Uτ such that Sτ |= ψ when ũ(i) = δ(x̃(0)x̃(1) · · · x̃(i)) for all i ≥ 0.

7.2 Specifications as Automata on Infinite Strings

Consider symbolic model Sq of Sτ constructed as discussed in Section 4.2. We then
construct a two-player parity game (a turn-based game played on a finite graph) [BCJ18]
via simultaneous exploration of both Sq and a parity Automaton A whose language is
ψ. Finally, we solve the game and extracts a winning strategy in the form of a Mealy
machine Cq encapsulating function δ : X∗τ → Uτ such that, when it is refined with FRR
Q as a static map and attached in a closed-loop fashion to Sτ , we have that Sτ |= ψ.
We discuss each of these steps next with brief details and refer the reader to their
corresponding literature for more details.

Notice that set Xq is a finite partition of set Xτ constructed by a set of hyper-rectangles
of identical widths ηX ∈ Rn+. Hereinafter, each hyper-rectangle in Xq is represented with
its center. The representative of the lower-left (resp. upper-right) hyper-rectangle in Xq

is denoted by xfirst (resp. xlast). Similarly, set Uq is a finite set of centers of hyper-
rectangles of identical widths ηU ∈ Rm+ forming a partition of Uτ . The first (resp. last)
element in Uq is denoted by ufirst (resp. ulast).

Now, we formally introduce DPAs.

Definition 7.2.1 (Deterministic Parity Automaton (DPA)). A DPA is a tuple A :=
(Q, q0,Γ, TA,X , d, p), where Q is a set of states, q0 is an initial state, Γ is alphabet,

100

7.3 Construction of Parity Games and Symbolic Controller Synthesis

Sτ

Sq

ψ

A

Construct
Parity Game

P

Σ

Cq

Solve

Q

Figure 7.1: A technique on symbolic control that supports ω-regular specifications.

TA : Q× Γ → Q is a transition map, X : Q× Γ → {0, 1, . . . , d} is a transition coloring
map, d ≥ 1 is a maximal color, and p ∈ {0, 1} is the parity defining which runs of A are
accepted.

Run µ := q0γ0q1γ0 · · · ∈ (Q×Γ)ω of a DPA is A is accepting iff the highest value that
occurs infinitely often in the sequence c(µ0γ0)c(µ1γ1)c(µ2γ2) · · · is even/odd (depending
on p). The language of DPA A is the set of all its accepting runs. More details about
DPAs can be found in [BCJ18].

We assume that specification ψ is given as either a DPA A whose language is ψ, or
as an LTL formula. In case an LTL formula is given, we construct a DPA from it as
discussed in [EKS18]. LTL formulae make describing the requirements of systems easier,
formal, compact, and unambiguous. In both cases, we end up having a DPA A.

7.3 Construction of Parity Games and Symbolic Controller
Synthesis

We introduce parity games.

Definition 7.3.1 (Parity Game). A parity game is a two-player turn-based game defined
by a tuple P = (VS , VC , V0, ES , EC ,K), where VC ⊆ (Xq ∪ dx) × (Uq ∪ du) × Q is the
set of nodes from which Player 1 can play, dx and du are dummy symbols, VC ⊆ N
is the set of nodes from which Player 2 can play, V0 := (d1, d2, q0) is an initial node,
ES ⊆ VS×VC×Xq are Xq-labelled edges that can be played by Player 1, EC ⊆ VC×VS×Uq
are Uq-labelled edges that can be played by Player 2, and K : EC → {0, 1, . . . , d} is an
edge coloring map for edges played by Cq. All the edges played by Player 1 are colored
with a neutral color (see [LMS20, Section 3] for more details).

Figure 7.1 depicts the proposed technique on symbolic control that supports ω-regular
specifications. Having a symbolic model Sq and a DPA A, we construct a parity game P
by exploring simultaneously Sq (starting at each state of some initial finite set Xq,0 ⊆ X0)
andA (starting at q0). In the constructed game, Player 1 is Sq and Player 2 is a controller
Cq that is defined later as Mealy machine.

101

7 Supporting Practical Design Requirements

Algorithm 21: Construction of the parity game P .

Input: Sq,A
Output: P = (VS , VC , V0, ES , EC ,K).

1 V0 := (d1, d2, q0); Vnew := {V0};
2 VS = {V0}; IC := 0;
3 while Vnew 6= ∅ do
4 v := (x, u, q) := Pop(Vnew) ;
5 if x == dx and u == du then
6 Xposts := Xq,0 ;
7 else
8 Xposts := Tq(x, u) ;
9 end

10 for all xpost ∈ Xposts do
11 VC := VC ∪ IC ;
12 ES := ES ∪ (v, IC , xpost) ;
13 for all uapply ∈ Uq do
14 w := LX(xpost) ∪ LU (uapply) ;
15 qnew := TA(q, w) ;
16 color := X (q, label) ;
17 nS := (xpost, uapply, qnew) ;
18 if nS /∈ VS then
19 VS := VS ∪ nS ;
20 Vnew := Vnew ∪ nS ;

21 end
22 EC : = EC ∪ (IC , nS , uapply) ;
23 K := K ∪ ((IC , nS , uapply), color) ;

24 end
25 IC := IC + 1 ;

26 end

27 end

102

7.4 Implementation Details

The construction of P is presented in Algorithm 21. Vnew is a queue of newly discovered
nodes in VS . Operation Pop(Vnew) refers to the extraction (i.e., read and remove) of
the first element in Vnew. IC represents a new node created for player Cq. nS represents
a new node created for player Sq. The construction ends when there are no more new
nodes in Vnew.

Game P can then be passed to an off-the-shelf parity game solver. We use the open
source implementation of the solver provided in tool STRIX which is based on the algo-
rithm in [Lut08]. If Cq has a winning strategy, the solver marks one or more edges of
Cq, for each edge of Sq, as winning counter-play edges.

For a simpler presentation, we assume the winning strategy is given as a set of winning
rounds (one turn from Sq followed by one turn from Cq) W̃ ⊆ ES×EC in the sense that
Cq wins by applying uq that labels edge ec ∈ EC when Sq chooses state xq that labels

edge es ∈ ES if (es, ec) ∈ W̃ . The controller is then extracted as a Mealy machine

Cq := (QC , qC,0, δC , λC), (7.3.1)

where QC := {vS ∈ VS | ∃(vS , vC , x) ∈ ES ((vS , vC , x), eC) ∈ W̃} is a set of states,
qC,0 := V0 is an initial state, δC := {(vS , xq, v′S) ∈ QC×Xq×QC | ((vS , vC , xq), (vC , v′S , uq)) ∈
W̃} is a transition relation, and

λC := {(vS , xq, Ũ) ∈ QC ×Xq × 2Uq | ∃Ŵ ⊆ W̃

(∀((ṽS , vC , x̂), eC) ∈ Ŵ (ṽS = vS ∧ x̂ = xq)) ∧

(Ũ ≡ {uq ∈ Uq | (eS , (vC , v′S , uq)) ∈ Ŵ})}

is an output map.

7.4 Implementation Details

Similar to all kernels introduced in the previous chapters, OmegaThreads is implemented
on top of pFaces. pFaces takes care of running OmegaThreads on all available compute
platforms, which allows the users to control the trade-off between computation time and
available resources.
OmegaThreads requires a configuration file (.cfg file) describing one control problem

(Sτ , ψ). If ψ is given in the form of a text file describing a DPA, we load the DPA file to
be used later. If ψ is given in the form of an LTL formula, we use library OWL [KMS18]
to construct a DPA whose language is ψ.
OmegaThreads constructs the symbolic model Sq in parallel by implementing Algo-

rithm 6 from Chapter 4. Afterwards, it constructs maps LX (resp. LU) by running, in
parallel, threads for each representative point in Xq (resp. Uq). Then, it constructs P
by running the implementation of Algorithm 21 with Sq and A as inputs.

We use the parity game solver in STRIX which combines serial and parallel parts. It is
rewritten to work with pFaces. P is passed to the parity game solver to find a winning
strategy. Once a winning strategy is found, we extract the controller Cq as a Mealy

103

7 Supporting Practical Design Requirements

machine and write it to a text file. In OmegaThreads, we implemented a Python interface
to read the controller Cq and a 2D simulator to simulate the closed-loop constructed from
Σ, Cq and FRR Q as the interface between them.

Kernel OmegaThreads combines the best of all the techniques introduced in the previ-
ous chapters (excluding Chapter 6, which deals with stochastic systems). It is developed
for with simplicity if usage in mind. More precisely, three simple steps get users started
with OmegaThreads: (1) submitting control problem (Sτ , ψ), (2) running OmegaThreads

to synthesize controller Cq, and (3) simulating the closed-loop. We consider motion
planning for an autonomous vehicle as a running example. Complete details about this
example are presented later in Subsection 7.5.1.

7.4.1 Submitting Control Problems

As discussed earlier in this chapter, the synthesis of controller Cq requires two inputs:
(1) a description of the considered control system Sτ , and (2) a specification ψ that Cq
should enforce on Sτ . In OmegaThreads, all user inputs are given in configuration (.cfg)
text files such that each file describes one control problem (Sτ , ψ). They contain scopes
(i.e., titled sections) containing sub-scopes or related configuration contents, which are
lists of (key="value") pairs ending with semicolons. The contents of a scope is enclosed
by curly brackets. The keys and sub-scopes in any scope have unique names. Such
hierarchical structure assigns by construction a unique address for each configuration
value (e.g., in the form of scope.subscope.key in case of two-level nesting). The
configuration file of the autonomous vehicle example in Subsection 7.5.1 is listed below:

1 project name=” v e h i c l e ” ;
2 system {
3 s t a t e s {
4 dimension=”3” ;
5 f i r s t s y m b o l=” 0 .0 ,0 .0 , −1 .6 ” ;
6 l a s t symbo l=” 5 . 0 , 5 . 0 , 1 . 6 ” ;
7 quant i z e r s=” 0 . 2 , 0 . 2 , 0 . 2 ” ;
8 i n i t i a l s e t=” [2 . 3 5 , 2 . 4 5] x [0 . 5 5 , 0 . 6 5] x [−0 . 05 , 0 . 05] ” ;
9 subse t s {

10 names=” target1 , target2 , o b s t a c l e s ” ;
11 mapping target1=” [3 . 7 , 5 . 2] x [−0 . 2 , 1 . 3] x [−2 ,2] ” ;
12 mapping target2=” [3 . 7 , 5 . 2] x [3 . 7 , 5 . 2] x [−2 ,2] ” ;
13 mapping obstac les=” [1 . 5 , 5 . 5] x [1 . 3 , 3 . 7] x [−2 ,2] ” ;
14 }
15 }
16 c o n t r o l s {
17 dimension=”2” ;
18 f i r s t s y m b o l=”−2.0 ,−0.8” ;
19 l a s t symbo l=” 2 . 0 , 0 . 8 ” ;
20 quant i z e r s=” 0 . 4 , 0 . 2 ” ;
21 subse t s {
22 names=” lowspeed ” ;
23 mapping lowspeed=” [−1 . 7 , 1 . 7] x [−1 . 0 , 1 . 0] ” ;
24 }

104

7.4 Implementation Details

25 }
26 dynamics {
27 c o d e f i l e=” v e h i c l e . c l ” ;
28 }
29 }
30 s p e c i f i c a t i o n s {
31 l t l f o r m u l a=”GF(ta rge t1) & GF(ta rge t2) & G(! o b s t a c l e s) & G(lowspeed) ” ;
32 wr i te dpa=” f a l s e ” ;
33 }
34 implementation {
35 type=” mealy machine ” ;
36 g e n e r a t e c o n t r o l l e r=” true ” ;
37 }
38 s imu la t i on {
39 . . .
40 }

project name gives a name for the control problem to be used later for saving any
output files. Scopes system and specifications define Sτ and ψ, respectively. Scope
implementation declares how the synthesized controller should be generated.

Scope system contains sub-scopes states and controls describing, respectively, how
states set Xq and inputs set Uq are constructed. Sub-scope states (resp. controls)
must have the keys: dimension for dimension n (resp. m), first symbol for xfirst (resp.
ufirst), last symbol for xlast (resp. ulast), and quantizers for ηX (resp. ηU). Note
that vector-valued configurations are given as comma-separated lists of floating point
numbers. Sub-scope states must also declare initial set representing X0 ⊂ Xτ as a
hyper-rectangle. Hyper-rectangles are given as Cartesian products of closed intervals.

Sub-scope states (resp. controls) defines atomic propositions PX (resp. PU) in
sub-scope subsets using key names to be used later for defining ψ. For each atomic
proposition in states.subsets.names (resp. controls.subsets.states), one map-
ping value must be supplied. A mapping value is defined with a key that begins with
mapping followed by the atomic proposition. Mapping values are used by OmegaThreads

to construct the labeling maps LX and LU . For example, in the above configuration file,
atomic proposition target1 in PX is identified by its preimage L−1

X (target1) defined
in element system.states.subsets.mapping target1 as a hyper-rectangle [3.7, 5.2]×
[−0.2, 1.3] × [−2, 2]. A mapping value can also be given as a union of hyper-rectangles
using letter U as a separator.

Sub-scope dynamics defines the dynamics of Sτ that is used to construct Tq. It should
contain key code file providing a path to a file that specifies the dynamics. The path
should be relative to the configuration file and the file should declare at least one function
written in C-language with the following function prototype:

1 void model post (
2 c o n c r e t e t ∗ pos t x lb , c o n c r e t e t ∗ post x ub ,
3 const c o n c r e t e t ∗ x , const c o n c r e t e t ∗ u) ;

where concrete t is a floating point precision type shared between C++ and OpenCL

languages. Function outputs post x lb and post x lb should be respectively assigned

105

7 Supporting Practical Design Requirements

by the user’s function to the lower-left vector and upper-right vector defining together
a hyper-rectangle that represents an OARS of Sτ starting at the hyper-rectangle in
Xq whose representative is x and applying constant control input u for one sampling
period. Users can benefit from the parallel ODE solvers implemented in pFaces to
evaluate function model post for continuous-time and hybrid systems, as we show later
in Section 7.5.

Scope specifications should have key ltl formula whose value is an LTL formula
describing ψ, or key dpa file whose value specifies a file of a DPA representing ψ. In
the value of ltl formula, users can use atomic propositions defined in states.names

and controls.names, logical operators (& for logical AND, | for logical OR, ! for logical
NOT, and XOR for logical XOR), and modal operators (X for next, U for until, G for always,
F for eventually, R for release, W for weak until, and M for strong release). Key write dpa

declares whether the DPA constructed from the LTL formula should be written as a file
or not.

Scope implementation defines how the synthesized symbolic controller is implemented.
Currently, OmegaThreads supports generating dynamic controllers as Mealy machines.
Hence, the value of key type is set to mealy machine. Key generate controller de-
clares whether the controller should be generated or not.

Scope simulation defines configurations needed by the simulator to simulate and
visualize the closed-loop. The list of configuration items in scope simulation are omitted
as we discuss them later in Subsection 7.4.3.

The file is saved as vehicle.cfg inside directory ./examples/vehicle3d/ relative to
the installation root directory.

7.4.2 Synthesizing Symbolic Controllers

Having designed configuration files for control problems, users should run OmegaThreads

to synthesize controllers solving them. Since OmegaThreads is a kernel built on top of
pFaces, we launch it by passing it to pFaces as follows (Linux Shell syntax is used for
demonstration):

1 $ p fa c e s −CG −d 1 −k omega −c f g v e h i c l e . c f g

where ($) is the command prompt, (pfaces) calls pFaces, (-CG -d 1) asks pFaces to
run kernels in the first device of all available CPU and GPU devices, (-k omega) tells
pFaces to load OmegaThreads as a kernel, (-cfg vehicle.cfg) asks pFaces to hand the
configuration file vehicle.cfg to OmegaThreads. The command is assumed to be run
in directory ./examples/vehicle3d/. Users can run OmegaThreads on other devices by
changing the device index.

7.4.3 Collecting Results and Simulations

If OmegaThreads is successful in solving the symbolic control problem, it generates a file
(project name.mdf) containing the controller as a Mealy machine, where project name

is the value of key project name. For the current example, the resulting controller

106

7.4 Implementation Details

file should be vehicle.mdf. The controller file is a text file that describes the states,
transitions and outputs of controller Cq.

OmegaThreads provides a Python interface to access the generated controller. Users
can load the controller as follows (assuming the following code runs from a Python file
next to vehicle.mdf):

1 from OmegaInterface import C o n t r o l l e r
2 C = C o n t r o l l e r (’ v e h i c l e . mdf ’)

which constructs object C encapsulating controller Cq. Now, if x is the current state of
system Sτ , users can use object C as follows:

1 c o n t r o l i n p u t s = C. g e t c o n t r o l a c t i o n s (x)

to updates the internal state of the Mealy machine and extract the list of admissible
control inputs.

Users may also simulate the closed-loop using a 2D simulator. It is developed in
Python and it requires some related configurations which need to be supplied in the same
configuration file used to synthesize the controller. The following is scope simulation

used in the configuration file:

1 s imu la t i on {
2 window width = ”600” ;
3 window height = ”600” ;
4 w i d o w t i t l e = ”Autonomous Veh ic l e ” ;
5 i n i t i a l s t a t e = ” cente r ” ;
6 c o n t r o l l e r f i l e = ” v e h i c l e . mdf” ;
7 system image = ” v e h i c l e . png” ;
8 sy s t em image sca l e = ” 0.035 ” ;
9 s t ep t ime = ” 0 .3 ” ;

10 use ode = ” true ” ;
11 v i sua l i z e 3 rdDim = ” true ” ;
12 skip APs = ” lowspeed ” ;
13 }

where keys window width, window height, and widow title configure, respectively,
the width of the simulation window in pixels, its height in pixels, and its title. Key
initial state tells the simulator how to choose initial state x0. Its value can be either
center, random or a specific initial state x ∈ Xq,0. For value center, the simulator will
choose the center point in X0 as initial state. For value random, the simulator will choose
a random point in X0 as initial state. Key controller file should point to the file
containing the synthesized controller. Key system image should point to an image file of
the system to be used for visualization. Key system image scale is a multiplier for the
size of system’s image. Key step time specifies the simulation step time (i.e., sampling
period τ). Key use ode asks the simulator to use (or not use) an ODE solver when
simulating the system which should be consistent with the implementation of function
model post. Setting key visualize 3rdDim to true will ask the simulator to simulate

107

7 Supporting Practical Design Requirements

Figure 7.2: Closed-loop simulation of the vehicle example captured once region target2 (blue
rectangle) is reached.

the third dimension of the system if n ≥ 3. The third dimension is always simulated as a
rotation angle of the system’s image. Key skip APs provides a list of atomic propositions
that should not be visualized. Now, the simulation can be started using a simple Python
script as follows:

1 from Omega2dSimulator import Omega2dSimulator
2 Omega2dSimulator (
3 model post , # system dynamics func t i on
4 ” v e h i c l e . c f g ” # the c o n f i g f i l e
5) . s t a r t ()

where model post is a model dynamics function implemented in Python. Users must
supply an implementation of the system dynamics identical to the one in the file pointed
to by key code file.

Running the simulator will internally do the following: (1) read the provided config-
uration file, (2) create a controller object from the provided controller file, (3) draw the
states set and its subsets on a 2D space using different colors, (3) start an infinite time
closed-loop simulation between Sτ and Cq. Figure 7.2 shows the simulator after few
seconds from launching it.

108

7.5 Examples

7.5 Examples

We consider some examples to demonstrate the capabilities of OmegaThreads. All ex-
amples are run on a MacBook Pro (2018) laptop with 2.9 GHz Intel Core i9 processor
and 32Gb RAM.

7.5.1 Motion Planning for Autonomous Vehicles

We consider an autonomous vehicle described by the following bicycle dynamics [RZ16]:ẋ1

ẋ2

ẋ3

 =

u1
cos(a+x2)

cos(a)

u1
sin(a+x2)

cos(a)

u1 tan(u2)

 , (7.5.1)

where x1 and x2 are the position coordinates, x3 is the orientation of the vehicle, and
a := arctan(tan(u2/2)). Control inputs u1 and u2 are respectively the velocity and
steering angle. The objective is given as an LTL formula

ψ := �♦target1 ∧�♦target2 ∧�!obstacles ∧�low speed,

where target1, target2, obstacles, and low speed are atomic propositions defined in the
configuration file introduced in Subsection 7.4.1. The objective requires that the vehicle
infinitely-often visits the subsets labelled by target1 and target2, always avoids the subset
labeled by obstacles, and always uses low velocity values labeled by low speed.

To implement function (model post), we first introduce map β : Rn × Rm → Rn:

β(

r1

r2

r3

 , [u1

u2

]
) =

r1 + τCr3

r2 + τCr3

r3

 , (7.5.2)

where C := |u1

√
tan2(u2)

4.0 + 1| and τ := 0.3. Map β is used to compute an OARS starting
at any hyper-rectangle in Xq by providing a bound on the growth of the solutions of
(7.5.1).

Now, we provide the implementation of the model post function as follows:

1 #inc lude ” rk4ode . c l ”
2 void model post (
3 c o n c r e t e t ∗ pos t x lb , c o n c r e t e t ∗ post x ub ,
4 const c o n c r e t e t ∗ x , const c o n c r e t e t ∗ u){
5
6 // some requ i r ed vars
7 c o n c r e t e t Q[ssDim] = { ssQnt } ;
8 c o n c r e t e t xx [ssDim] ;
9 c o n c r e t e t r r [ssDim] ;

10 c o n c r e t e t r [ssDim] ;
11
12 // i n i t i a l i z a t i o n

109

7 Supporting Practical Design Requirements

13 f o r (unsigned i n t i = 0 ; i<ssDim ; i++)
14 r [i] = Q[i] / 2 . 0 f ;
15
16 // s o l v e the \ g l s {ode} and c a l c u l a t e the growth bound
17 rk4OdeSolver (xx , x , u , ’ x ’) ;
18 radius dynamics (rr , r , u) ;
19
20 // compute the OARS
21 f o r (unsigned i n t i = 0 ; i <3; i++) {
22 p o s t x l b [i] = xx [i] − r r [i] ;
23 post x ub [i] = xx [i] + r r [i] ;
24 }
25 }

File (rk4ode.cl) is provided by pFaces and it contains a Runge-Kutta ODE solver as a
function rk4OdeSolver that is initialized with the ODE defined in (7.5.1). radius dynamics
is a function encapsulating map β defined in (7.5.2). Variable xx receives the solution of
the system’s ODE after one sampling period using input variable x as initial condition
and input variable u as control input. Variable r is initialized to ηX/2. Variable rr

receives the output of the growth bound map β.

We automate the steps needed for running OmegaThreads and the simulator using two
script files and use them as follows:

1 $ sh s o l v e . sh
2 $ python3 s imulate . py

This should solve the vehicle motion planning control problem and simulate the closed-
loop as depicted in Fig. 7.2.

DPA A is constructed in less than one second and it has 3 states, i.e. |Q| = 3.
Symbolic model Sq is constructed in less than a second, where |Xq| = 11492 and |Uq| =
81. Parity game P is constructed in 5 minutes, where |VS | = 1451521, |ES | = 10456606,
|VC | = 18441, and |EC | = 1493640. OmegaThreads wins P in 20 seconds. The example
is implement in tool SCOTS for comparison. It solves the problem in 4.8 minutes. A
special program is developed to extract the controller from the computed subsets after
the computation of fixed points. Developing such a program costs around 1 hour.

7.5.2 Pickup-Delivery Drone on Battery

Now, we consider another example that is more complex in terms of system dynamics
and requirements. We design a controller for a drone operating on a battery, described
by the following nonlinear impulsive system:

Σ :

{
ẋ(t) = f(x(t), u) t ∈ R≥0 \ Ω

x(t) = g(x(−t), u) t ∈ Ω
, (7.5.3)

110

7.5 Examples

Figure 7.3: Simulation of the drone example after 63 seconds as the drone starts a charging
task.

where Ω := {kτ}k∈N, τ := 0.1 is the sampling period,

f(

x1

x2

x3

 , [u1

u2

]
) =

u1 cos(u2)
u1 sin(u2)

0

 , g(

x1

x2

x3

 , [u1

u2

]
) =

 x1

x2

B(x)

 ,

B(

x1

x2

x3

) =

{
min{99, x3 + 20}, if (x1, x2) ∈ Charger,

max{0, x3 − 1}, otherwise,

x1 and x2 are the 2D position coordinates of the drone, x3 is the state of charge of the
battery, and Charger ⊂ R2 is a selected area where a charger for the drone’s battery is
available. The control inputs u1 and u2 are respectively the velocity and heading angle.
The control objective is given as the LTL formula

ψ := �(!Obstacles) ∧�♦(Pickup1) ∧�♦(Pickup2)

∧�(Pickup1 =⇒ (!Pickup2 ∧ !Delivery2 U Delivery1))

∧�(Pickup2 =⇒ (!Pickup1 ∧ !Delivery1 U Delivery2))

∧�(!low battery) ∧�♦(full battery),

which, in a simple language, asks that

• the drone performs infinitely-often two different pickup-and-delivery tasks,

• when a task starts, it should be completed without starting another task,

• some obstacles must be always avoided, and

111

7 Supporting Practical Design Requirements

• the battery must not reach a low state and from time to time, it should be fully
charged.

We fix X := [0, 15] × [0, 10] × [0, 99], U := [−1, 1] × [−1, 1], and Charger := [6, 9] ×
[−0.5, 3]× [−0.5, 100.5]. The atomic propositions are defined as follows: Pickup1 labels
subset [13, 15.5] × [8, 10.5] × [−0.5, 100.5], Pickup2 labels subset [−0.5, 2] × [8, 10.5] ×
[−0.5, 100.5], Delivery1 labels subset [−0.5, 2]× [−0.5, 2]× [−0.5, 100.5], Delivery2 labels
subset [13, 15.5]× [−0.5, 2]× [−0.5, 100.5], Obstacles labels subset [10.0, 15.5]× [6.0, 7.0]×
[−0.5, 100.5]∪ [−0.5, 5.0]× [6.0, 7.0]× [−0.5, 100.5]∪ [3.0, 4.0]× [−0.5, 3.0]× [−0.5, 100.5]∪
[11.0, 12.0]×[−0.5, 3.0]×[−0.5, 100.5], low battery labels subset [−0.5, 15.5]×[−0.5, 10.5]×
[−0.5, 9.5], and full battery labels subset [−0.5, 15.5]× [−0.5, 10.5]× [98.5, 99.5].

The two equations defined in (7.5.3) are implemented in C-function model post. We
utilize pFaces’s ODE solver for the ODE in (7.5.3). The difference equation in (7.5.3)
is implemented directly inside function model post where one time step is τ . The con-
figuration values and launch scripts are developed for this example and provided to
OmegaThreads as explained in the previous subsection. Figure 7.3 shows the resulting
simulation window.

DPA A is constructed in less than a second, where |Q| = 10. Symbolic model Sq is
constructed in less than a second where |Xq| = 65100 and |Uq| = 9. Parity game P is
constructed in 71 seconds, where |VS | = 3372940, |ES | = 13270952, |VC | = 378550, and
|EC | = 3406941. OmegaThreads wins P in 58 seconds. A comparison with similar tools
is not possible for this case study since all the existing symbolic control tools can not
handle this control problem (see the discussion in Chapter 1 for further details).

7.6 Summary

In all the techniques (and algorithms) we introduced in the previous chapters, we consid-
ered simple high-level specifications, namely, safety and reachability specifications. The
goal was to focus on the improvements of the techniques, while knowing that extensions
to them can be addressed later to include more practical specifications. In this chap-
ter, we provided a technique on symbolic control that extends the class of supported
specifications, namely, ω-regular specifications.

Specifications are given as either DPAs, or as LTL formulae. In case of LTL formulae,
DPAs can be readily constructed from them. LTL formulae make describing the re-
quirements of systems easier, formal, compact, and unambiguous. A parity game is then
constructed from the specification’s DPA and the symbolic model. Such construction is
presented in Algorithm 21. We then used a standard parity game solver which combines
serial and parallel parts. If succeeded, the solver provided a winning strategy to satisfy
the specification. We then extract the controller from the winning strategy as a Mealy
machine.

The technique introduced in this chapter is implemented in kernel OmegaThreads on
top of pFaces. Inputs to OmegaThreads are given in a simple language. It constructs
parity games from abstractions of control systems and DPAs describing high-level objec-

112

7.6 Summary

tives. After solving the parity games, it generates dynamic symbolic controllers as Mealy
machines. The outputs of OmegaThreads are simulated visually using a 2D simulator

113

8 Standardized Implementations of
Synthesized Symbolic Controllers

Symbolic controllers are attached to original systems in a closed-loop fashion to receive
quantized states, and issue correspondingly suitable control inputs that steer the origi-
nal systems ensuring the satisfaction of the design requirements. This process happens
within a hard real-time control window (a.k.a. control cycle). Respecting the tim-
ing limits of control cycles is crucial to the correct operation of symbolic controllers.
The implementations of symbolic controllers should then be highly predictable with re-
spect to both time and memory requirements. Unfortunately, available state-of-the-art
tools for symbolic controller synthesis (e.g., SCOTS) do not provide a formal approach to
implementing the designed controllers. The implementations of the controllers are usu-
ally done using ad-hoc techniques (e.g., manually-coded error-prone implementations).
Consequently, the final product may lose any correctness guarantee obtained from the
controller synthesis tool.

In this chapter, we focus on implementing the symbolic controllers resulting from any
symbolic controller synthesis technique introduced in the previous chapters. Hereinafter,
the term “implementation of symbolic controllers” refers to the process of providing a
software or hardware product that encapsulates a symbolic controller and can be di-
rectly placed in closed-loop with the original system. We discuss the types of symbolic
controllers resulting from the algorithms and software tools introduced in the previous
chapters. We also present formal implementations for both static and dynamic con-
trollers.

8.1 Types of Symbolic Controllers

We discuss briefly the different types of symbolic controllers generated from the kernels
introduced in the previous chapters. More precisely, we discuss the types of controllers
resulting from kernels GBFP, AMYTISS, and OmegaThreads. One can generally classify
the synthesized symbolic controllers resulting from these kernels into two types: static
and dynamic symbolic controllers.

Recall the symbolic model Sq defined in (2.3.3). A static symbolic controller for
Sq, as the name suggests, is a map Cq : Xq → 2Uq that provides a set of admissible
control inputs for a given state of the symbolic model regardless of the wall-clock time
and the history of previous states. Kernels GBFP and AMYTISS generate static symbolic
controllers.

A dynamic symbolic controller has, on the other hand, an internal state (memory)
that gets changed in response to external events (e.g., after receiving a specific sequence

115

8 Standardized Implementations of Synthesized Symbolic Controllers

x ∈ Xq C(x)

x0

x1

x2

x3

x|Xq|−1

{u2, u5, u7}

∅

Uq

{u1, u2, u4, u8}

C(x|Xq|−1)

· · · · · ·

Figure 8.1: A LUT encoding controller Cq for system Sq.

of states from the system or after some predefined time) and consequently, can provide
different control inputs for the same received state of the symbolic model, if needed. A
dynamic symbolic controller can be seen as map on the history of states Cq : X∗q → 2Uq .
However, since this requires infinite memory, it is more practical to maintain the control
laws in dynamic controllers as systems Cq following the definition in 2.2.1. Kernel
OmegaThreads generates dynamic symbolic controllers as Mealy machines (see Chapter
7 for further details).

Initial design requirements help design engineers decide which tool to use and what
type of controllers they would expect. Simple specifications like safety and reachability
can be enforced using simple static controllers. Complex specifications (e.g., LTL-based
specifications) usually require dynamic symbolic controllers to enforce them.

In the next subsections, we discuss several implementations of symbolic controllers. We
address formally implementations of the two types of symbolic controllers by studying
the space and time complexities of each proposed implementation. We assume the
controllers are synthesized for a symbolic model Sq with |Xq| ∈ N+ states and it accepts
control inputs from a set of |Uq| ∈ N+ possible inputs. It is also worth mentioning that,
after the controller synthesis process, the set of control inputs Uq := {u0, u1, · · · , u|Uq |−1}
is known to Cq, and for each state x ∈ Xq := {x0, x1, · · · , x|Xq |−1}, USq(x) is also known
to Cq.

8.2 Formal Implementations of Static Symbolic Controllers

8.2.1 Look-Up-Tables (LUTs)

A LUT for a static symbolic controller is a table that has one entry corresponding to
each state xq ∈ Xq of the symbolic model. Within each entry, there is one or more
admissible control inputs {u ∈ Uq | u ∈ Cq(xq)}. Once a state xq is received by the

116

8.2 Formal Implementations of Static Symbolic Controllers

Memory of C

x0

x1

· · ·

x2

...

x|Xq|−1

x3

∈Uq

function controller(xi ∈ Xq){

return C[i][0];

}

Computer of C (software) get C[i][0]

Σ

Control System

DAC ADC
ξ(t) xi

ADC: Analog to digital converter (a quantizer implementing Q)
DAC: Digital to analog converter (e.g., a ZOH, Zero-order Hold)

ν

uq :=
uq

Figure 8.2: An implementation of a LUT encoding controller Cq.

symbolic controller during the closed-loop, the controller picks one of the control inputs
corresponding to the received state and send it to the original system. Figure 8.1 shows
an example of a LUT. The inputs admissible to each state are selected randomly for the
sake of demonstration.

Such simple implementation is highly predictable in both space and time. In practice,
the states representing of the symbolic model are encoded as integer values from 0 to
|Xq| − 1. This means that the LUT does not need to store explicitly those states.
Consequently, the table becomes an array of length |Xq| where the input admissible to
a state xi are stored in the array element of index i. Clearly, the space requirement for
a LUT of a symbolic controller is O(|Xq| × |Uq|), since any element in the array can, in
the worst case, contain Uq. In an actual implementation of Cq, the array would then be
a 2d array.

Now, since the states are encoded as integers, acquiring the inputs for a state xi
reduces to accessing the entry at index i which is implemented in one computation step
if the LUT is stored in a RAM and the width of the table is fixed. Hence, the time
complexity for a LUT implementation is O(1). Unfortunately, a LUT is not always
practical since usually symbolic models are extremely large (|Xq| equals to millions or
billions) which results in very large LUTs.

8.2.1.1 Example Implementations:

Figure 8.2 shows an example implementation of a LUT implementing a static controller
Cq. The implementation consists of the following two parts:

- Memory: a table stored in RAM containing possible admissible inputs {u ∈
Uq | u ∈ Cq(xi)} (represented with bold dot in Fig. 8.2) for each system state
xi ∈ Xq.

- Computer: a thin layer of software (direct address translation) to directly access
the memory entry of a given state xi. This simple implementation gets the first u
from all those admissible control inputs at xi.

117

8 Standardized Implementations of Synthesized Symbolic Controllers

TRUEFALSE

START

xb0

xb1

xb2

xb3

ub0

ub1

Xq

Uq

TRUE Branch

FALSE Branch

Figure 8.3: A BDD encoding a controller Cq for a symbolic model with |Xq| = 16 and |Uq| = 4.

8.2.2 Binary Decision Diagram (BDD)-encoded Symbolic Controllers

One practical solution to store large control laws is to represent them with BDDs.
Consider a control law represented by a set of state-input pairs {(xq, uq) ∈ Xq ×
Uq | uq ∈ Cq(xq)}. In a BDD that represents the control law, the |Xq| states ex-
pected by the controller are encoded (e.g., Binary Coded Decimal (BDC) coding) with
NX := Log2(|Xq|) binary variables. A binary variable for the symbolic states is denoted
by xbi, i ∈ {0, 1, · · · , NX}. Similarly, the |Uq| possible control inputs are encoded with
NU := Log2(|Uq|) binary variables. A binary variable for the inputs is denoted by ubj ,
j ∈ {0, 1, · · · , NU}.

Then a binary tree of NX +NU levels is constructed. Each level has some nodes and
the nodes connect only to next levels. The tree starts with a single node and at each level
it branches to a branch representing value 0 (FALSE branch) and a branch representing
value 1 (TRUE branch). At the last level of the tree, one would expect 2(NX+NU) final
branches representing the different |Xq| × |Uq| possibilities of state-input pairs. At the
bottom of the such binary tree, we have two special nodes to collect all the branches; a
TRUE node and a FALSE node. Those paths along the tree that encode state-input pairs
from the control law are connected to the TRUE terminal node.

Several reductions are then made to the diagram to reduce its size. This includes
removing all nodes bound directly to the FALSE terminal node, merging equivalent leaves,
or merging isomorphic nodes. This results in a reduced-order BDD which is practically

118

8.2 Formal Implementations of Static Symbolic Controllers

Memory of C

function controller(xi ∈ Xq){

bits = BCD Encode(i);

}

Computer of C (software)

Σ

Control System

DAC ADC
ξ(t) xi

ADC: Analog to digital converter (a quantizer implementing Q)
DAC: Digital to analog converter (e.g., a ZOH, Zero-order Hold)

ν

uq

subtree = BDD Traverse(bits);
u paths = DFS extract(subtree);

function controller(xi ∈ Xq){

j = BCD Decode(u paths[0]);
return uj ;

Figure 8.4: An implementation of a BDD encoding controller Cq.

known to be very compact for symbolic controllers since usually few control inputs are
assigned to each state as a result of the natural sparsity and locality of original systems.

Figure 8.3 depicts an example reduced-order BDD encoding a controller Cq for a
symbolic model with |Xq| = 16 and |Uq| = 4. The branches leading to the FALSE

terminal node are kept for the sake of demonstration. Let us traverse the rightmost
path leading to the TRUE terminal node. Traversing this path leads to the sequence
(xb0xb1xb2xb3) = (1001), which corresponds to BDC code 1001 referring to state x9.
Now we know this branch representing all stat-input pairs of the control law having
x9 as a state. We continue traverse the path to the end which leads to the sequence
(ub0ub1) = (10), which corresponds to BDC 01 referring to input u1. Now, we know that
the control law has the pair (x9, u1) meaning that u1 is admissible when the symbolic
controller receives x9.

The space complexity of BDDs depends on what reductions are made and how the
binary variables are ordered, which usually includes many preprocessing heuristics to
reach a small-sized BDD. This is however done offline and as the BDD is constructed,
no further modifications to its structure are needed. Generally, the required number of
nodes in the BDD is O((NX +NU)×2M) where M is function of the cross-sectional size
of the BDD after fixing the reduction operations and variable ordering.

The time complexity for accessing the elements of the BDD for one state xq ∈ Xq

is O(NX + 2NU) which reflects the fact that one must navigate the tree for NX levels
encoding the received state and then extract the possible control actions along the rest
of levels of the tree (the subtree whose head starts after the NX).

8.2.2.1 Example Implementations:

Figure 8.4 shows an example implementation based on a BDD encoding a static controller
Cq. The implementation consists of the following two parts:

- Memory: a data structure encoding the BDD graph.

- Computer: a Software to traverse the path encoding the received state xi ∈ Xq for
NX levels and then explore the rest of the tree (e.g., using a Breadth First Search
(BFS) algorithm) to collect the admissible control inputs {u ∈ Uq | u ∈ Cq(xi)}.

119

8 Standardized Implementations of Synthesized Symbolic Controllers

Fub0

Fub1

Fub(NU−1)

.

.

.

.

.

.

uq ∈ Uq

xq ∈ Xq

.

.

.

xb0

xb1

xb(NX−1)

· · ·

· · ·

· · ·

ub0

ub1

ub(NU−1)

0

1

1

0

0

1

Figure 8.5: A Boolean circuit of NU Boolean functions encoding a controller Cq.

8.2.3 Boolean Functions as Control Laws

Boolean functions are functions that accept boolean variables, apply AND, OR, NOT, or
XOR operations to them, and finally generate either TRUE (1) or FALSE (0) as outputs. If
a control law is to be encoded as Boolean functions, the states and inputs of the symbolic
model are first encoded (e.g., BDC) as NX and NU binary variables, respectively. A
binary variable for a symbolic state is denoted by xbi, i ∈ {0, 1, · · · , NX}, and a binary
variable for an input is denoted by ubj , j ∈ {0, 1, · · · , NU}. The control law must then
be determinized in the sense that there exists only one control input u for each state xq.
More formally, in a determinized control law, the following holds for each xq ∈ Xq:

|{u ∈ Uq | u ∈ Cq(xq)}| ≤ 1.

A determinized control law can still enforce the original specifications. It is however
more conservative in the sense that there are no possible optimizations that can be
done on the behaviors of original systems by choosing from different admissible con-
trol inputs. Finally, one constructs for each binary variable ubi one Boolean function
Fubi(xb0, xb1, · · · , xb(NX−1)). Function Fubi encodes the part of control law corresponding
to control input ubi. Each Boolean function can be simply implemented in Hardware as
a sequence of logic gates (e.g., AND, OR and NOT gates) or as software that emulate
the gates using logic operations. Figure 8.5 shows an example for a Boolean circuit of
NU Boolean functions encoding a controller Cq.

During runtime of the controller implementation, the BDC encoded value of xi (i.e.,
xb(NX−1) · · ·xb1xb0) is possibly supplied to all functions Fubi , i ∈ {0, 1, · · · , NU − 1}.
Each function returns 1 or 0. The values are collected and concatenated to represent a
BDC-encoded value of the index of uj the controller should return.

120

8.3 Formal Implementations of Dynamic Symbolic Controllers

The space complexity of one Boolean function Fxu in a naive non-reduced Sum-of-
Product (a.k.a. Disjunctive Normal Form (DNF)) implementation is O(NX × 2NX)
gates. To implement the control law, we need to have NU parallel circuits (or one
combinational circuit with NU outputs), where each output correspond to one bit xu of
the control input.

Time complexity of the circuit depends mainly on the implementation. If the Boolean
functions are implemented as combinational logic circuits (e.g., in an FPGA), the time
complexity is O(1), assuming the implementation has the compute-capacity to propagate
the input signals to the terminals of the circuit within one clock cycle. If the Boolean
functions are emulated in software, each Boolean function is of a time complexity of
O(NX × 2NX) logic computation steps (i.e., evaluating AND, OR, or NOT operations)
using the same naive non-reduced DNF. An advantage of using Boolean functions is that
they can be translated automatically (and still formally-correct) from the representation
generated by the controller synthesis tool to a Hardware Description Language (HDL)
(e.g., Verilog or VHDL).

8.2.3.1 Example Hardware Implementation

A symbolic controller can be represented as a multi-output combinational circuit (each
output corresponds to one Boolean function Fubi) as depicted by Fig. 8.5. Then, it is
attached as a controller to the closed loop system.

8.2.3.2 Example Software Implementation

A symbolic controller can be represented as a software emulating the computation of
Boolean functions. The functions can be computed in parallel.

8.3 Formal Implementations of Dynamic Symbolic Controllers

Dynamic symbolic controllers are inherently Finite Labeled Transition System (FLTS)
with outputs. They have internal states, accept inputs (i.e., the quantized states of
original systems), change their internal states accordingly, and generate outputs (i.e.,
the control inputs). One formal implementation of dynamic symbolic controllers is to
use Machines (e.g., Mealy or Moore machines). We consider Mealy machines as concrete
examples since they are generated from kernel OmegaThreads.

To implement the control law as a Mealy machine, we represent it as a transition
along with one memory register to represent its current state. Each row in the table
correspond to one state from M different machine states. Within each row i, the transi-
tions originated from machine state mi are stored. Each transition contains the following
information: (1) one expected input state (a state xq of the symbolic model), (2) next
state m′ of the machine, which is considered if this transition is taken, and (3) a set
of possible control inputs u the controller can generate if this transition is taken. The
machine starts at some initial state m0 and waits for a system state xq. Then, once xq
is received, the machine picks the one transition, that has xq as expected input state,

121

8 Standardized Implementations of Synthesized Symbolic Controllers

from those transitions in the row of state m0, updates the current machine state with
the next state in the selected transition, and applies one of the control inputs u. This
process is repeated infinitely, assuming the controlled system is not blocking (i.e., will
always generate some state xq).

The space complexity of the Mealy machine is clearly O(M |Xq||Uq|). The time com-
plexity for extracting the control inputs in O(|Xq|) assuming the transition table has a
fixed width.

8.4 Summary

The implementations of symbolic controllers for safety-critical CPS should be highly pre-
dictable with respect to both time and memory requirements. Available state-of-the-art
tools for symbolic controller synthesis do not provide a formal approach to implement-
ing the designed controllers. Consequently, the implementations of the controllers are
usually done using ad-hoc techniques, which result in final products (i.e., SCCS) that
do not have any correctness guarantees obtained from the symbolic controller synthesis
tools.

We discussed the types of symbolic controllers resulting from the algorithms and
software tools introduced in the previous chapters. We also introduced formal imple-
mentations for both static and dynamic controllers.

Formal implementations of static symbolic controllers are first introduced. All im-
plementations were introduced along with their time and space complexity. LUTs offer
great access time to the stored controllers. They suffer however from their large sizes.
BDD-based implementations solve the problem of controller size. They require however
more complex implementations. Boolean functions offer the most efficient implementa-
tion with respect to computation time since the controllers are implemented as hardware
circuits. They require however determinizing the symbolic controllers.

Formal implementations of dynamic symbolic controllers were also discussed. We
considered Mealy machines as concrete examples since they are generated from the kernel
OmegaThreads. To implement the control law as a Mealy machine, we represented it as
a transition along with one memory register to represent its current state.

The introduced implementations along with the techniques of symbolic control from
previous chapters form together an end-to-end framework for symbolic control.

122

9 Conclusions and Future Works

In this chapter, we review the results introduced in all previous chapters. We also discuss
and suggest future works to extend these results.

9.1 Conclusions

In this thesis, we argued in Chapter 1 that SCCS are currently designed using approaches
that may result into unsafe products. Unfortunately, in current development cycles of
SCCS, the design requirements are not defined in a formal way which may result in false
and/or ambiguous requirements. The software design/development phases of SCCS
involve many human factors which results in faulty and buggy software. Testing phases
cannot cover all possible test scenarios and hence, many edge-cases are left undetected,
which should be unacceptable in any safety-critical product. Since any failure in any life-
critical SCCS can potentially cause death or injury to humans, ensuring the correctness
of SCCS is very important and new design approaches need to be investigated.

In Chapter 2, we introduced symbolic control as a promising approach for designing,
automatically, correct-by-construction SCCS. Given models of systems and formally-
described design requirements, symbolic control techniques design algorithmically cer-
tifiable controllers that can enforce the design requirements on the original systems.
The models are used to construct finite-state abstractions that capture important fea-
tures of original models. Using approaches from computer science like search on graphs
and fixed-point operations, formally-correct controllers are designed algorithmically to
enforce the design requirements. Unfortunately, symbolic control is not applicable to
today’s real-world CPSs due to some major issues (see Section 2.5 for details):

(1) Symbolic control suffers from the CoD problem in all of its phases: the construction
of abstractions in form of symbolic models and the synthesis of controllers. This
makes it limited to small-sized systems.

(2) Existing tools of symbolic control can only deal with simple specifications like
reachability and safety. This is mainly because handling complex specifications re-
quire complex algorithms of controller synthesis that make symbolic control highly
impractical, even for simple case studies.

(3) Symbolic control lacks a standard and unified approach for extracting the designed
controllers and generating their deployments. This leaves such important task to
ad-hoc techniques that ruin the formality and correctness-guarantees obtained from
symbolic control.

123

9 Conclusions and Future Works

In Chapters 3-8, we introduced solutions to the problems of symbolic control to make it
applicable to designing real-world SCCS.

In Chapter 3, we took a detour before starting to address the issues in symbolic
control. The detour was necessary to lay a ground for the algorithms and techniques
that we introduced in the next chapters, which all required a unified framework for their
design and implementations. We introduced pFaces, a framework for designing and
implementing parallel algorithms for symbolic control. pFaces leverages all available
computing resources, locally or in Cloud-computing platforms, to facilitate designing and
implementing certifiable control software. Our plan was to parallelize the algorithms of
symbolic control so that they scale with available computing resources, which in return,
give us the ability to control their computational complexity. As a result, symbolic
control would have a change against the CoD problem, be able to support wider ranges
of specifications, and have a unified approach for implementing their final products; the
symbolic controllers.

In Chapter 4, we addressed the first issue in symbolic control. Two main concepts
were utilized to provide enhancements to symbolic control algorithms:

• data-parallel algorithms, along with variable computing resources, allow controlling
the time complexity of data-parallel tasks in PRAM machines, and

• sparsity and locality of control systems lead to less computational effort for con-
structing their symbolic models and synthesizing their controllers.

Traditional symbolic control techniques, which suffered significantly from the CoD, were
redesigned as data-parallel algorithms that scale with number of available PEs. We intro-
duced algorithms to construct symbolic models and synthesize their symbolic controllers
in parallel (see Section 4.2). Then, the algorithms were enhanced to utilize the sparsity
of dynamics in original systems (see Section 4.3). With several examples throughout the
chapter, we showed that parallelized sparsity-aware symbolic control over-performs tra-
ditional implementations, even using the same serial computing platform. Implemented
on top of pFaces, the algorithms introduced in Chapter 4 can utilize all computing
platforms available locally or in Cloud-computing platforms.

In Chapters 5 and 6, we introduced two additional enhancements to symbolic control.
Chapter 5 introduced a parallelizations of one reachability analysis approach that we
use internally to construct the symbolic models (see map Ωf in Section 4.2). Using
such additional parallelization, we were able to compute reachable sets for nonlinear
systems faster and at higher dimensions. Note that map Ωf can be used independently
in other approaches of formal methods in control like, for example, using reachability
analysis for the behavioral verification of dynamical and control systems. Chapter 6
introduced enhancements to traditional techniques of stochastic symbolic control. Effi-
cient data-parallel algorithms for automated controller synthesis of symbolic controllers
for stochastic control systems were introduced. More specifically, one data-parallel algo-
rithm was introduced to construct MDPs as symbolic models of dt-SCSs. Additionally,
a data-parallel algorithm for automated synthesis of controllers based on the constructed
MDPs was also introduced. The algorithms from both enhancements were implemented

124

9.2 Strengths, Weaknesses and Limitations

on top of pFaces. Using several examples, we showed how superior the implementations
are compared to all existing software tools, and that they can handle very complex case
studies.

Chapter 7 handled the second issue in symbolic control, that is, the lack of support
for practical classes of formal specifications, which all existing tools of symbolic control
suffer from. The chapter introduced a technique for symbolic control that can handle
ω-regular specifications. It constructs parity games from symbolic models and DPAs
describing high-level objectives. After solving the parity games, dynamic symbolic con-
trollers are generated as Mealy machines. With some examples (e.g., see the example
of a drone operating on battery in Section 7.5), we showed that this enhancement along
with the ones in previous chapters allows symbolic control to handle complex practi-
cal case studies. The ability to generate controllers as Mealy machines provide a base
for unifying the deployment phases of dynamic symbolic controllers, a task that was
previously done using ad-hoc techniques and has negatively affected the formality and
correctness-guarantees obtained from symbolic control.

Chapter 8 discussed the types of symbolic controllers resulting from the algorithms
introduced in the previous chapters. It also introduced formal deployments for both
static and dynamic controllers. Several deployments schemes were discussed like for
example, LUTs, BDDs, and Boolean functions. Each scheme was discussed formally
with respect to the time and space complexities of its deployment. The ideas introduced
in Chapter 8 along with those enhancements from previous chapters form together and
end-to-end framework for symbolic control.

9.2 Strengths, Weaknesses and Limitations

We discussed and addressed the issues of symbolic control hindering its applications to
modern CPSs. By providing scalable algorithms for symbolic control in Chapters 3-6,
we allow controlling the time complexity of symbolic control. Given that the number
of PEs used to solve the problem is a control variable, the parallel algorithms intro-
duced in these chapters can be used to reduce the complexity of the problem. Hence,
symbolic control is now more applicable to more complex case studies. The work in
Chapter 7 allows symbolic control to handle complex high-level specifications and pro-
duce standardized symbolic controllers as Mealy machines. With the introduction of
formal implementations of symbolic controllers in Chapter 8, we presented a complete
end-to-end framework that automates the design cycle of SCCS (see the initial design
cycle of SCCS in Fig. 1.4). Requirements are now formally provided. The design/de-
velopment phase is now automated. The deployments are no longer ad-hoc, but rather
standardized and automatically generated.

As there is no work without weaknesses or limitations, we address here the limitations
of the techniques introduced throughout the previous chapters. A general limitation of
this work is the lack of comparison with traditional (classical) control system approaches.
Although we revealed earlier in Chapter 1 the limitations of symbolic control compared
to classical control approaches (see Section 2.5), we did not provide such a comparison

125

9 Conclusions and Future Works

for the results obtained after resolving such limitations. The main justification for such
limitation is that, this work mainly focuses on accelerating symbolic control as an ap-
proach that promises to provide formally-correct SCCS for safety-critical CPS. Hence,
all the results are compared to traditional implementations of symbolic control. In the
following, we discuss limitations for some approaches introduced in the thesis.

• The parallel algorithms introduced in Chapter 4 and Chapter 6: the
algorithms handle the memory used to store and operate on the symbolic models
as raw memory. For complex and high-dimensional systems, the required memory
space becomes very large and may hinder the implementation of the algorithms on
embedded and hardware devices with limited memory spaces. The algorithms are
also limited to safety, reachability, and reach-avoid specifications.

• The parallel algorithms for controller synthesis in Chapter 4 and Chap-
ter 6: although the algorithms serve as data-parallel algorithms, they suffer some
computational bottlenecks due to the synchronization between the parallel threads
by the end of each fixed-point iteration. The effects of such synchronization is min-
imal when the PEs are within one CU. Having many PEs within a heterogenous
HWC will probably result in noticable overhead since the synchronization will hap-
pen using the shared memories or communication networks between the CUs/CNs.

• The sparsity-aware approach introduced in chapter 4: the approach re-
quires representing the original system as a discrete-time system so that a spar-
sity graph can be concluded. Discretizing continuous-time systems introduces ad-
ditional approximation error that makes the solution (i.e., the synthesized con-
trollers) more conservative and may result in failure to find a solution to the
symbolic control problem.

• The parallel algorithms for computing the OARS in Chapter 5: as the
parallelization of the ODE solver is done over the space of the differential equations,
the approach becomes more useful for very high-dimensional systems. Applying
the approaches of this chapter to small-sized systems and using HPC systems with
thousands of PEs would be a waste of computational resources.

• The technique introduced in Chapter 7: the algorithm used to construct the
parity game is a serial algorithm and needs to be parallelized. This is a bottleneck
in the approach. Nevertheless, the abstraction construction and solving parity
games are both done in parallel.

9.3 Recommendations for Future Works

The first recommendation to push the works in this thesis forward is to handle the
limitations introduced in the previous subsection. We also propose some interesting
subjects that could be considered as future research lines and improvements to the
results introduced in this thesis.

126

9.3 Recommendations for Future Works

9.3.1 Memory-efficient Data-parallelism for Symbolic Control

The data-parallel algorithms introduced in Chapters 4-6, although allow controlling the
time complexity of symbolic control algorithms, they have the drawback of significant
memory requirements. Traditional implementation of construction of symbolic models
(as introduced in Algorithm 3) usually relies on efficient data structures that reduce the
large sizes of symbolic models. For example, tools like SCOTS and Pessoa use BDDs to
store the constructed symbolic models, which results in reductions of space requirements.
Unfortunately, using such data structures within the introduced parallel algorithms is
not practical. It will reduce the algorithm’s ability to scale with available computing
resources. The main reason is that, BDDs for example, are centralized data structure
in the sense that adding or removing elements from the set represented by a BDD is a
centralized operation, which will introduce a significant synchronization overhead when
multiple threads try to access the data structure simultaneously.

In this context, we need to find memory-efficient data structures that have minimal
multi-threaded data-access overhead. An ideal data structure, that parallel symbolic
control would definitely benefit from, is a distributed wait-free lock-free data structure.
For a data structure to be considered as lock-free, multiple threads must be able to
concurrently and safely access the data structure. The threads don’t have to be able to
do the same operations. A lock-free data structure might then allow one thread to add
a transition of the symbolic model and another thread to read the details of another
transition. It should not allow two threads try to write to the same transition location
at the same time. A wait-free data structure on the other hand is a lock-free data
structure with the additional property that every thread accessing the data structure
can complete its operation within a bounded number of steps, regardless of the behavior
of other threads.

A future research line here would then focus on reviewing all applicable distributed
wait/lock-free data structures and discussing their advantages and disadvantages. Then,
candidate data structures are implemented as enhancement to the introduced data-
parallel algorithms and their results are compared. A trade-off should eventually be made
between the communication overhead resulting from introducing the data structures and
the savings in memory they can offer.

9.3.2 User-Friendly Cloud-Application for Designing and Implementing
Parallel Algorithms

The introduced acceleration ecosystem pFaces, as presented in Chapter 2, allows its
users to run parallel algorithms on all available computing platforms locally or on Cloud-
computing platforms. Currently, the followings are required by the users in order to use
pFaces with computing resources in a Cloud-computing platform such as AWS:

(1) create an account with the Cloud-computing provider and activate it with some
payment method (e.g., a credit card),

(2) choose what machines on the Cloud to launch,

127

9 Conclusions and Future Works

(3) launch the machines and install the required Operating System (OS)/software on
them,

(4) configure the interconnection between multiple machines in case a computing clus-
ter should be established,

(5) install pFaces on all instances,

(6) install pFaces− Agent, a software that orchestrates the work between different
pFaces installations and provides remote access to each of the machines in the
cluster, and

(7) run the web-interface of pFaces and connect to the computing cluster.

This process is needed whether users need to design data-parallel algorithms or run
kernels of pFaces. Clearly, this is a burden for a typical user or a developer who only
wants to test the capabilities of pFaces.

A future work in this direction would focus on providing a user-friendly web-service
to facilitate working with pFaces. Like any Software as a Service (SaaS) framework, the
expected features of the web-service are:

• Users should be able to pick the computing resources in well-explained and easy-
to-use way and don’t care about the technical steps needed to make them ready
for work,

• The service should automate the process of launching the machines on the Cloud,
installing the required software, and configuring the interconnection between them,

• Users should have access to a professional web-based IDE that allows them to write
their parallel algorithms and test them with one push-button on any selected HWC,
and

• Users should be able to collect profiling information from the remotely-deployed
machines and possibly visualize the collected profiling data.

9.3.3 Supporting Continuous-time Stochastic Control Systems

The enhancements introduced in Chapter 6 allow constructing abstractions of dt-SCSs.
To consider continuous-time systems, we proposed discretizing them using Euler method
(see Remark 6.1.2). This however introduces additional error that we include in the ab-
straction as a disturbance. If this error is big enough or the system itself has additional
disturbances, finding a controller to enforce the given specifications may not be possible
due to the high nondeterminism in the transitions of the abstraction. A future research
line here is to investigate different mathematical tools for handling continuous-time sys-
tems.

128

9.3 Recommendations for Future Works

9.3.4 Supporting Output-based Control Systems

All the techniques introduced in this thesis consider only state-based control systems, i.e.,
those control systems with full-state information (see Definition 2.2.1). Control systems
are more practically modeled as systems with partial-state or output information. We
refer to these particular types of control systems as output-based systems.

Future work in this direction should first consider extending the results in Chapter
2 to provide mathematical tools for constructing symbolic models of output-based sys-
tems. More precisely, new relations between symbolic models and output-based systems
need to be considered. Different methodologies for constructing the symbolic models and
synthesizing their controllers should be also investigated. Finally, using the ideas intro-
duced in Chapters 4-7, new data-parallel algorithms for the construction of enhanced
symbolic models and the synthesis of their controllers need to be developed.

9.3.5 Stochastic Parity Games and Counter-strategy Analysis

The enhancements introduced in Chapter 7 allow handling complex specification by
representing the requirement formally as DPAs. The DPAs are used along with symbolic
models to construct deterministic parity games. We only introduced the construction
of parity games from those symbolic models abstracting nonstochastic continuous-time
systems. Notice that in Chapter 6, we introduced MDPs as abstractions of dt-SCS, but
we were only able to use them to synthesize controllers enforcing simple specifications
like reachability and safety.

A future work would consider constructing MDPs as abstractions of stochastic control
systems and use them, combined with the DPAs representing the specifications, to con-
struct stochastic parity games. Here, one would also consider researching which types
of strategies (e.g., almost-sure winning or optimal strategy) are convenient and practi-
cally implementable. The enhancement would result into new, possibly data-parallel,
algorithms that will be amended to the ones in kernel OmegaThreads. Another future
work would consider the generation of counter strategies and use them to automatically
identify possible anomalies in model descriptions or to pinpoint any false requirements.

129

Bibliography

[1518] ABC 15. Abc 15: Self-driving uber car hits, kills pedestrian in tempe.
https://bit.ly/3zByn5i, 2018.

[ADLB14] E. Aydin Gol, X. Ding, M. Lazar, and C. Belta. Finite bisimulations
for switched linear systems. IEEE Transactions on Automatic Control,
59(12):3122–3134, 2014.

[Alt15] M. Althoff. An introduction to CORA 2015. In Proceedings of the
Workshop on Applied Verification for Continuous and Hybrid Systems,
2015.

[Alt17] M. Althoff. Commonroad: Vehicle models. Technische Universität
München, Garching, pages 1–25, 2017.

[AM18] M. Arcak and J. Maidens. Simulation-based reachability analysis for
nonlinear systems using componentwise contraction properties. In Prin-
ciples of Modeling, pages 61–76. Springer, 2018.

[BBF+12] A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J. Raskin. Acacia+, a
tool for ltl synthesis. In P. Madhusudan and Sanjit A. Seshia, editors,
Computer Aided Verification, pages 652–657, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[BCJ18] R. Bloem, K. Chatterjee, and B. Jobstmann. Graph Games and Re-
active Synthesis, pages 921–962. Springer International Publishing,
Cham, 2018.

[Bea08] R. Beard. Quadrotor dynamics and control rev 0.1. Technical report,
Brigham Young University, 2008.

[BH06] C. Belta and L. C. G. J. M. Habets. Controlling a class of nonlin-
ear systems on rectangles. IEEE Transactions on Automatic Control,
51(11):1749–1759, 2006.

[BJP+12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Syn-
thesis of reactive(1) designs. Journal of Computer and System Sciences,
78(3):911 – 938, 2012. In Commemoration of Amir Pnueli.

[BK08] C. Baier and J. P. Katoen. Principles of model checking. The MIT
Press, April 2008.

131

https://bit.ly/3zByn5i

BIBLIOGRAPHY

[BPB19] A. Borri, G. Pola, and M. D. D. Benedetto. Design of symbolic con-
trollers for networked control systems. IEEE Trans. Autom. Control,
64(3):1034–1046, 2019.

[BS96] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The
Discrete-Time Case. Athena Scientific, 1996.

[BTJ19] S. Bak, H.-D. Tran, and T. T. Johnson. Numerical verification of affine
systems with up to a billion dimensions. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation and
Control, pages 23–32. ACM, 2019.

[BYG17] C. Belta, B. Yordanov, and E. Gol. Formal Methods for Discrete-Time
Dynamical Systems. Springer, 2017.

[CA15] S. Coogan and M. Arcak. A compartmental model for traffic networks
and its dynamical behavior. IEEE Transactions on Automatic Control,
60(10):2698–2703, 2015.

[CA17] S. Coogan and M. Arcak. Finite abstraction of mixed monotone sys-
tems with discrete and continuous inputs. Nonlinear Analysis: Hybrid
Systems, 23:254 – 271, 2017.

[CA18] S. Coogan and M. Arcak. A benchmark problem in transportation
networks. arXiv preprint arXiv:1803.00367, 2018.

[CAB17] S. Coogan, M. Arcak, and C. Belta. Formal methods for control of
traffic flow: Automated control synthesis from finite-state transition
models. IEEE Control Systems Magazine, 37(2):109–128, 2017.

[CÁS13] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer
for non-linear hybrid systems. In International Conference on Com-
puter Aided Verification, pages 258–263. Springer, 2013.

[CDA19] N. Cauchi, K. Degiorgio, and A. Abate. StocHy: Automated verification
and synthesis of stochastic processes, to appear. In TACAS’19, Lecture
Notes in Computer Science. Springer, 2019.

[CDD+13] A. Champion, R. Delmas, M. Dierkes, P. Garoche, R. Jobredeaux, and
P. Roux. Formal methods for the analysis of critical control systems
models: Combining non-linear and linear analyses. In C. Pecheur and
M. Dierkes, editors, Formal Methods for Industrial Critical Systems,
pages 1–16, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[CGG11] J. Camara, A. Girard, and G. Gössler. Safety controller synthesis for
switched systems using multi-scale symbolic models. In Proceedings
of the 50th IEEE Conference on Decision and Control and European
Control Conference, pages 520–525, 2011.

132

BIBLIOGRAPHY

[Cha18] S. Chapra. Applied Numerical Methods with MATLAB for Engineers
and Scientists. Mc Graw Hill, 2018.

[DA20] A. Devonport and M. Arcak. Data-driven reachable set computation
using adaptive gaussian process classification and monte carlo methods.
In 2020 American Control Conference (ACC), pages 2629–2634, 2020.

[DKAZ20] A. Devonport, M. Khaled, M. Arcak, and M. Zamani. Pirk: Scalable
interval reachability analysis for high-dimensional nonlinear systems. In
Proc. 32nd International Conference on Computer Aided Verification
(CAV), LNCS. Springer, 2020.

[DMVP15] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2e2: A
verification tool for stateflow models. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
pages 68–82. Springer, 2015.

[Dre17] T. Dreossi. SAPO: Reachability computation and parameter synthesis
of polynomial dynamical systems. In Proceedings of the 20th Interna-
tional Conference on Hybrid Systems: Computation and Control, pages
29–34. ACM, 2017.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Program-
ming, 2(3):241 – 266, 1982.

[EGW02] W. Thomas E. Graedel and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research. Springer Heidelberg,
2002.

[EKS18] J. Esparza, J. Křet́ınský, and S. Sickert. One theorem to rule them
all: A unified translation of ltl into ω-automata. In Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’18, page 384–393, New York, NY, USA, 2018. Association for
Computing Machinery.

[ER16] R. Ehlers and V. Raman. Slugs: Extensible gr(1) synthesis. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
pages 333–339, Cham, 2016. Springer International Publishing.

[Esm14] S. Esmaeil Zadeh Soudjani. Formal Abstractions for Automated Ver-
ification and Synthesis of Stochastic Systems. PhD thesis, Technische
Universiteit Delft, The Netherlands, 2014.

[FKJM16] C. Fan, J. Kapinski, X. Jin, and S. Mitra. Locally optimal reach set
over-approximation for nonlinear systems. In 2016 International Con-
ference on Embedded Software (EMSOFT), pages 1–10. IEEE, 2016.

133

BIBLIOGRAPHY

[FLGD+11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable
verification of hybrid systems. In Proc. 23rd International Conference
on Computer Aided Verification (CAV), LNCS. Springer, 2011.

[FOP+19] N. Fijalkow, J. Ouaknine, A. Pouly, J. Sousa-Pinto, and J. Worrell. On
the decidability of reachability in linear time-invariant systems. In Pro-
ceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pages 77–86. ACM, 2019.

[GGM16] A. Girard, G. Gössler, and S. Mouelhi. Safety controller synthesis for in-
crementally stable switched systems using multiscale symbolic models.
IEEE Transactions on Automatic Control, 61(6):1537–1549, 2016.

[GH94] J.-L. Gouzé and K. Hadeler. Monotone flows and order intervals. Non-
linear World, 1:23–34, 1994.

[Gir14] A. Girard. Approximately bisimilar abstractions of incrementally stable
finite or infinite dimensional systems. In 53rd IEEE Conference on
Decision and Control, pages 824–829, Dec 2014.

[GKA17] F. Gruber, E. S. Kim, and M. Arcak. Sparsity-aware finite abstrac-
tion. In Proceedings of 56th IEEE Annual Conference on Decision and
Control (CDC), pages 2366–2371, USA, Dec 2017. IEEE.

[GLPN93] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42(2):177 – 201, 1993.

[GP11] A. Girard and G.J. Pappas. Approximate bisimulation: A bridge be-
tween computer science and control theory. European Journal of Con-
trol, 17(5):568 – 578, 2011.

[GPT10] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. IEEE Transactions
on Automatic Control, 55(1):116–126, 2010.

[Gro19] The CAPD Group. Computer assisted proofs in dynamics group, a c++
package for rigorous numerics. http://capd.ii.uj.edu.pl/, 2019.

[HM12] Z. Huang and S. Mitra. Computing bounded reach sets from sampled
simulation traces. In Proceedings of the 15th ACM international con-
ference on Hybrid Systems: Computation and Control, pages 291–294.
ACM, 2012.

[HMMS18a] K. Hsu, R. Majumdar, K. Mallik, and A. Schmuck. Lazy abstraction-
based control for safety specifications. In 2018 IEEE Conference on
Decision and Control (CDC), pages 4902–4907, 2018.

134

http://capd.ii.uj.edu.pl/

BIBLIOGRAPHY

[HMMS18b] K. Hsu, R. Majumdar, K. Mallik, and A. K. Schmuck. Multi-layered
abstraction-based controller synthesis for continuous-time systems. In
Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control (Part of CPS Week), HSCC ’18, pages 120–
129, New York, NY, USA, 2018. ACM.

[HSA17] S. Haesaert, S. Soudjani, and A. Abate. Verification of general Markov
decision processes by approximate similarity relations and policy refine-
ment. SIAM Journal on Control and Optimization, 55(4):2333–2367,
2017.

[IAC+18] F. Immler, M. Althoff, X. Chen, C. Fan, G. Frehse, N. Kochdumper,
Y. Li, S. Mitra, M. S. Tomar, and M. Zamani. Arch-comp18 category
report: Continuous and hybrid systems with nonlinear dynamics. In
Proceedings of the 5th International Workshop on Applied Verification
for Continuous and Hybrid Systems, 2018.

[Jaj92] J. Jaja. An Introduction to Parallel Algorithms. Addison-Wesley Pro-
fessional, 1992.

[JP09] A. A. Julius and G. J. Pappas. Trajectory based verification using local
finite-time invariance. In International Workshop on Hybrid Systems:
Computation and Control, pages 223–236. Springer, 2009.

[KG19] Z. Kader and A. Girard. Symbolic models for incrementally stable
singularly perturbed hybrid affine systems. In 2019 American Control
Conference (ACC), pages 3002–3007, 2019.

[KKAZ19] M. Khaled, E. S. Kim, M. Arcak, and M. Zamani. Synthesis of symbolic
controllers: A parallelized and sparsity-aware approach. In Tomáš Vo-
jnar and Lijun Zhang, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 265–281, Cham, 2019. Springer
International Publishing.

[KMS18] J. Kret́ınský, T. Meggendorfer, and S. Sickert. Owl: A library for
ω-words, automata, and ltl. In 16th International on Automated Tech-
nology for Verification and Analysis, ATVA 2018, October 7-10 2018.

[KRZ16] M. Khaled, M. Rungger, and M. Zamani. Symbolic models of networked
control systems: A feedback refinement relation approach. In 54th An-
nual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 187–193, Sept 2016.

[KRZ18] M. Khaled, M. Rungger, and M. Zamani. SENSE: Abstraction-based
synthesis of networked control systems. In Electronic Proceedings in
Theoretical Computer Science (EPTCS), 272, pages 65–78, 111 Cooper
Street, Waterloo, Australia, June 2018. Open Publishing Association
(OPA).

135

BIBLIOGRAPHY

[KV06] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox (et). In Pro-
ceedings of the 45th IEEE Conference on Decision and Control, pages
1498–1503. IEEE, 2006.

[KZ19] M. Khaled and M. Zamani. pfaces: An acceleration ecosystem for sym-
bolic control. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC ’19, New York,
NY, USA, 2019. ACM.

[KZ21] M. Khaled and M. Zamani. Omegathreads: Symbolic controller design
for ω-regular objectives. In Proceedings of the 24th ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’21.
ACM, 2021.

[LCGG13] E.l Le Corronc, A. Girard, and G. Goessler. Mode sequences as sym-
bolic states in abstractions of incrementally stable switched systems.
In Proceedings of the 52th IEEE Conference on Decision and Control,
pages 3225–3230, 2013.

[LKSZ20] A. Lavaei, M. Khaled, S. Soudjani, and M. Zamani. Amytiss: Paral-
lelized automated controller synthesis for large-scale stochastic systems.
In Proc. 32nd International Conference on Computer Aided Verification
(CAV), LNCS. Springer, 2020.

[LL18] Y. Li and J. Liu. Rocs: A robustly complete control synthesis tool for
nonlinear dynamical systems. In Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (Part of CPS
Week), HSCC ’18, pages 130–135, New York, NY, USA, 2018. ACM.

[LLO15] Y. Li, J. Liu, and N. Ozay. Computing finite abstractions with ro-
bustness margins via local reachable set over-approximation. In the 5th
IFAC Conference on Analysis and Design of Hyrbid Systems, pages 1
– 6, 2015.

[LMS20] M. Luttenberger, P. J. Meyer, and S. Sickert. Practical synthesis of
reactive systems from ltl specifications via parity games. Acta Infor-
matica, 57(1):3–36, 2020.

[LSZ18] A. Lavaei, S. Soudjani, and M. Zamani. From dissipativity theory to
compositional construction of finite Markov decision processes. In Pro-
ceedings of the 21st ACM International Conference on Hybrid Systems:
Computation and Control, pages 21–30, 2018.

[Lut08] M. Luttenberger. Strategy iteration using non-deterministic strate-
gies for solving parity games. Technical report, Technische Universität
München, Institut für Informatik, April 2008.

136

BIBLIOGRAPHY

[MA14] J. Maidens and M. Arcak. Reachability analysis of nonlinear systems
using matrix measures. IEEE Transactions on Automatic Control,
60(1):265–270, 2014.

[Maj16] R. Majumdar. Robots at the edge of the cloud. In Marsha Chechik and
Jean-François Raskin, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 3–13, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[Mat] S. Matteson. Report: Software failure caused $1.7 trillion in financial
losses in 2017. https://tek.io/3giVDyK. Accessed: 2021-02-01.

[MDA19] P.-J. Meyer, A. Devonport, and M. Arcak. Tira: Toolbox for interval
reachability analysis. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’19,
page 224–229, New York, NY, USA, 2019. Association for Computing
Machinery.

[MDT10] M. Mazo, A. Davitian, and P. Tabuada. Pessoa: A tool for embedded
controller synthesis. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Computer Aided Verification, pages 566–569, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

[MGG13] S. Mouelhi, A. Girard, and G. Gössler. Cosyma: A tool for controller
synthesis using multi-scale abstractions. In Proceedings of 16th Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC
’13, pages 83–88, New York, NY, USA, 2013. ACM.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete con-
trollers for timed systems. In E. W. Mayr and C. Puech, editors,
12th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 95), pages 229–242, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg.

[MR15] S. Maoz and J. O. Ringert. Gr(1) synthesis for ltl specification pat-
terns. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, page 96–106, New York, NY,
USA, 2015. Association for Computing Machinery.

[MSL18] P. J. Meyer, S. Sickert, and M. Luttenberger. Strix: Explicit reactive
synthesis strikes back! In Hana Chockler and Georg Weissenbacher,
editors, Computer Aided Verification, pages 578–586, Cham, 2018.
Springer International Publishing.

[Ned11] N. S. Nedialkov. Implementing a rigorous ode solver through literate
programming. In Modeling, Design, and Simulation of Systems with
Uncertainties, pages 3–19. Springer, 2011.

137

https://tek.io/3giVDyK

BIBLIOGRAPHY

[NVI] NVIDIA. Gpu-accelerated black-hole simulations. https://bit.ly/

3tvObEe. Accessed: 2021-02-01.

[oTotUSHoR19] Committee on Transportation and Infrastructure of the U. S. House of
Representatives. Hearing: The boeing 737 max: Examining the design,
development, and marketing of the aircraft. Technical report, The U.
S. House of Representatives, October 30 2019.

[PBW06] J. van Benthem P. Blackburn and F. Wolter, editors. The Handbook of
Modal Logic. Elsevier, 2006.

[PGT08a] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(10):2508 – 2516,
2008.

[PGT08b] G. Pola, A. Girard, and P. Tabuada. Approximately bisimilar symbolic
models for nonlinear control systems. Automatica, 44(08):2508 – 2516,
2008.

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pages 46–57, 1977.

[PPB15] G. Pola, P. Pepe, and M.D. Di Benedetto. Symbolic models for time-
varying time-delay systems via alternating approximate bisimulation.
Int. J. of Robust and Nonlinear Control, 25(14):2328–2347, 2015.

[PPBT10] G. Pola, P. Pepe, M. D. [Di Benedetto], and P. Tabuada. Symbolic mod-
els for nonlinear time-delay systems using approximate bisimulations.
Systems & Control Letters, 59(6):365 – 373, 2010.

[PR89] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reac-
tive module. In Proceedings of the 16th International Colloquium on
Automata, Languages and Programming, ICALP ’89, pages 652–671,
London, UK, 1989. Springer-Verlag.

[PT09] G. Pola and P. Tabuada. Symbolic models for nonlinear control systems:
Alternating approximate bisimulations. SIAM Journal on Control and
Optimization, 48(2):719–733, 2009.

[Ray16] P. P. Ray. Internet of robotic things: Concept, technologies, and chal-
lenges. IEEE Access, 4:9489–9500, 2016.

[RGD+15] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu.
Xspeed: Accelerating reachability analysis on multi-core processors. In
N. Piterman, editor, Hardware and Software: Verification and Testing,
pages 3–18, Cham, 2015. Springer International Publishing.

138

https://bit.ly/3tvObEe
https://bit.ly/3tvObEe

BIBLIOGRAPHY

[RMT13] M. Rungger, M. Mazo, Jr., and P. Tabuada. Specification-guided con-
troller synthesis for linear systems and safe linear-time temporal logic.
In 16th International Conference on Hybrid Systems: Computation and
Control, HSCC ’13, pages 333–342, New York, NY, USA, 2013. ACM.

[RWR17] G. Reißig, A. Weber, and M. Rungger. Feedback refinement relations for
the synthesis of symbolic controllers. IEEE Transactions on Automatic
Control, 62(4):1781–1796, April 2017.

[RZ16] M. Rungger and M. Zamani. Scots: A tool for the synthesis of symbolic
controllers. In Proceedings of the 19th International Conference on Hy-
brid Systems: Computation and Control, HSCC ’16, pages 99–104, New
York, NY, USA, 2016. ACM.

[SA13] S. Soudjani and A. Abate. Adaptive and sequential gridding proce-
dures for the abstraction and verification of stochastic processes. SIAM
Journal on Applied Dynamical Systems, 12(2):921–956, 2013.

[SAM15] S. Soudjani, A. Abate, and R. Majumdar. Dynamic Bayesian networks
as formal abstractions of structured stochastic processes. In Proceedings
of the 26th International Conference on Concurrency Theory, pages 1–
14, 2015.

[SC16] J. A. D. Sandretto and A. Chapoutot. Validated explicit and implicit
runge-kutta methods. Archive Ouverte, HAL, 2016.

[SGA15] S. Soudjani, C. Gevaerts, and A. Abate. FAUST2: Formal abstractions
of uncountable-state stochastic processes. In TACAS’15, volume 9035
of Lecture Notes in Computer Science, pages 272–286. Springer, 2015.

[SI16] S. I. Solodushkin and I. F. Iumanova. Parallel numerical methods for
ordinary differential equations: a survey. In CEUR Workshop Proceed-
ings, volume 1729, pages 1–10. CEUR-WS, 2016.

[Son99] E. D. Sontag. Mathematical control theory: Deterministic finite dimen-
sional systems, volume 6 of Texts in Applied Mathematics. Springer-
Verlag, New York, 2 edition, 1999.

[Tab08] P. Tabuada. An approximate simulation approach to symbolic control.
IEEE Transactions on Automatic Control, 53(6):1406–1418, 2008.

[Tab09] P. Tabuada. Verification and control of hybrid systems: A symbolic
approach. Springer, USA, 2009.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In
Ernst W. Mayr and Claude Puech, editors, 12th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 95), pages 1–13.
Springer Berlin Heidelberg, 1995.

139

BIBLIOGRAPHY

[TI09] Y. Tazaki and J. Imura. Discrete-state abstractions of nonlinear systems
using multi-resolution quantizer. In Proceedings of the International
Conference on Hybrid Systems: Computation and Control, volume 3,
pages 351–365, 2009.

[TK09] P. Zgliczyński T. Kapela. A lohner-type algorithm for control systems
and ordinary differential inclusions. Discrete & Continuous Dynamical
Systems - B, 11(2):365–385, 2009.

[TP06] P. Tabuada and G. J. Pappas. Linear time logic control of discrete-time
linear systems. IEEE Transactions on Automatic Control, 51(12):1862–
1877, 2006.

[Val02] G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.

[Var95] M. Y. Vardi. An automata-theoretic approach to fair realizability and
synthesis, pages 267–278. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1995.

[WRR17] A. Weber, M. Rungger, and G. Reissig. Optimized state space grids for
abstractions. IEEE Transactions on Automatic Control, 62(11):5816–
5821, 2017.

[WTO+11] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray.
Tulip: A software toolbox for receding horizon temporal logic planning.
In 14th International Conference on Hybrid Systems: Computation and
Control, HSCC ’11, pages 313–314, New York, NY, USA, 2011. ACM.

[WTS05] Weiwei Li, E. Todorov, and R. E. Skelton. Estimation and control
of systems with multiplicative noise via linear matrix inequalities. In
Proceedings of the 2005, American Control Conference, 2005., pages
1811–1816 vol. 3, 2005.

[Yab20] J. Yablonski. Laws of UX: Using Psychology to Design Better Products
& Services. O’Reilly UK Ltd., Farnham, United Kingdom, 2020.

[ZA14] M. Zamani and A. Abate. Approximately bisimilar symbolic models for
randomly switched stochastic systems. Systems and Control Letters,
69:38 – 46, 2014.

[ZAG15] M. Zamani, A. Abate, and A. Girard. Symbolic models for stochastic
switched systems: A discretization and a discretization-free approach.
Automatica, 55:183 – 196, 2015.

[ZMAL13] M. Zamani, P. Mohajerin Esfahani, A. Abate, and J. Lygeros. Symbolic
models for stochastic control systems without stability assumptions. In
2013 European Control Conference (ECC), pages 4257–4262, 2013.

140

BIBLIOGRAPHY

[ZMKA18] M. Zamani, M. Mazo, M. Khaled, and A. Abate. Symbolic abstrac-
tions of networked control systems. IEEE Transactions on Control of
Network Systems, 5(4):1622–1634, 2018.

[ZMM+14] M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and
J. Lygeros. Symbolic control of stochastic systems via approximately
bisimilar finite abstractions. IEEE Transactions on Automatic Control,
59(12):3135–3150, 2014.

[ZPMT12] M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada. Symbolic mod-
els for nonlinear control systems without stability assumptions. IEEE
Transactions on Automatic Control, 57(7):1804–1809, July 2012.

141

	Acknowledgments
	Abstract
	Zusammenfassung
	List of Publications
	Contents
	List of Figures
	Acronyms
	1 Introduction
	1.1 Promising Design Approach for SCCS
	1.2 Contributions
	1.3 Thesis Organization

	2 Preliminaries
	2.1 Notations
	2.2 Mathematical Framework for Systems
	2.2.1 Composition of Systems

	2.3 Symbolic Models
	2.3.1 Control Systems
	2.3.2 Control Systems as Systems
	2.3.3 Symbolic Models of Control Systems

	2.4 Symbolic Controller Synthesis
	2.4.1 Behaviors and Specifications
	2.4.2 Synthesis and Refinement of Symbolic Controllers

	2.5 Limitations of Current Symbolic Control Techniques
	2.5.1 The Curse of Dimensionality
	2.5.2 Impractical Specifications
	2.5.3 Ad-Hoc Deployments

	2.6 Summary

	3 A Framework for Designing Efficient Algorithms of Symbolic Control
	3.1 High Performance Computing (HPC)
	3.2 Ecosystem for Parallel Computing
	3.3 Hardware Configuration (HWC)-Level and Compute Node (CN)-Level Accelerations
	3.3.1 Internal Design Structure
	3.3.2 Resource Management and Kernel Tuning
	3.3.3 Managing Computation and Memory Resources
	3.3.4 Modules for Supporting Kernel Development
	3.3.5 Supporting Symbolic Control Approaches

	3.4 Workflow of Kernels
	3.5 A Cloud-Ready Installation
	3.6 Summary

	4 Efficient Algorithms for Symbolic Control
	4.1 Existing Implementations of Symbolic Control
	4.2 Data-Parallel Algorithms for Symbolic Control
	4.2.1 Data-Parallel Construction of Symbolic Models
	4.2.2 Data-Parallel Synthesis of Symbolic Controllers
	4.2.3 Memory-Efficient Kernels for Data-Parallel Symbolic Control
	4.2.4 Implementation Details
	4.2.5 Controlling Time Complexity of Symbolic Control Applications

	4.3 Data-Parallel Sparsity-Aware Algorithms for Symbolic Control
	4.3.1 Sparsity of Discrete-Time Systems
	4.3.2 Sparsity-Aware Distributed Constructions of Abstractions
	4.3.3 Sparsity-Aware Distributed Synthesis of Symbolic Controllers
	4.3.4 Sparsity-Aware Data-Parallelism for Symbolic Controller Synthesis
	4.3.5 Case Study: Autonomous Vehicle Avoiding Crash on Highway

	4.4 Summary

	5 Efficient Algorithms for the Computation of Reachable Sets
	5.1 Approximations of Reachable Sets
	5.2 Interval Reachability Analysis
	5.2.1 Contraction/Growth Bound (GB) Method
	5.2.2 Continuous-Time Mixed-Monotonicity (CTMM) Method
	5.2.3 Monte Carlo (MC) Method

	5.3 Data-Parallel Algorithms for Computing Interval Reachable Sets
	5.3.1 Data-Parallel Runge-Kutta Scheme
	5.3.2 Parallelizing Interval Reachability Methods

	5.4 Case Studies
	5.4.1 Multi-Link Road Traffic Model
	5.4.2 Quadrotor Swarm
	5.4.3 Quadrotor Swarm with Artificial Potential Field
	5.4.4 Heat Diffusion
	5.4.5 Overtaking Maneuver on Highway
	5.4.6 Performance on ARCH Benchmarks

	5.5 Summary

	6 Efficient Algorithms for Stochastic Symbolic Control
	6.1 Discrete-Time Stochastic Control Systems (dt-SCS)
	6.2 Markov Decision Processes (MDPs) as Symbolic Models
	6.3 Parallel Construction of Finite MDPs
	6.3.1 Data-Parallel Threads for Computing Transitions
	6.3.2 Less Memory for Post States in the Transitions
	6.3.3 Less Memory for Handing Disturbances of Dynamics
	6.3.4 Data-Parallel Algorithm for Constructing MDPs

	6.4 Data-Parallel Synthesis of Symbolic Controllers
	6.4.1 On-the-Fly Construction of Transitions
	6.4.2 Supporting Multiplicative Noises and Practical Distributions

	6.5 Illustrative Examples
	6.5.1 Synthesis of a Safety Controller
	6.5.2 Synthesis of a Reach-Avoid Controller

	6.6 Benchmarking and Case Studies
	6.6.1 Controlling Computational Complexities of Stochastic Applications
	6.6.2 Room Temperature Network
	6.6.3 Road Traffic Network
	6.6.4 Autonomous Vehicle
	6.6.5 Benchmarking Against Most Recent State-of-the-art Tool

	6.7 Summary

	7 Supporting Practical Design Requirements
	7.1 Specifications and Control Problems
	7.2 Specifications as Automata on Infinite Strings
	7.3 Construction of Parity Games and Symbolic Controller Synthesis
	7.4 Implementation Details
	7.4.1 Submitting Control Problems
	7.4.2 Synthesizing Symbolic Controllers
	7.4.3 Collecting Results and Simulations

	7.5 Examples
	7.5.1 Motion Planning for Autonomous Vehicles
	7.5.2 Pickup-Delivery Drone on Battery

	7.6 Summary

	8 Standardized Implementations of Synthesized Symbolic Controllers
	8.1 Types of Symbolic Controllers
	8.2 Formal Implementations of Static Symbolic Controllers
	8.2.1 Look-Up-Tables (LUTs)
	8.2.1.1 Example Implementations:

	8.2.2 Binary Decision Diagram (BDD)-encoded Symbolic Controllers
	8.2.2.1 Example Implementations:

	8.2.3 Boolean Functions as Control Laws
	8.2.3.1 Example Hardware Implementation
	8.2.3.2 Example Software Implementation

	8.3 Formal Implementations of Dynamic Symbolic Controllers
	8.4 Summary

	9 Conclusions and Future Works
	9.1 Conclusions
	9.2 Strengths, Weaknesses and Limitations
	9.3 Recommendations for Future Works
	9.3.1 Memory-efficient Data-parallelism for Symbolic Control
	9.3.2 User-Friendly Cloud-Application for Designing and Implementing Parallel Algorithms
	9.3.3 Supporting Continuous-time Stochastic Control Systems
	9.3.4 Supporting Output-based Control Systems
	9.3.5 Stochastic Parity Games and Counter-strategy Analysis

	Bibliography

