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Abstract— Many approaches for testing automated and au-
tonomous driving systems in dynamic traffic scenarios rely on
the reuse of test cases, e.g., recording test scenarios during
real test drives or creating “test catalogs.” Both are widely
used in industry and in literature. By counterexample, we
show that the quality of test cases is system-dependent and
that faulty system behavior may stay unrevealed during testing
if test cases are naı̈vely re-used. We argue that, in general,
system-specific “good” test cases need to be generated. Thus,
recorded scenarios in general cannot simply be used for testing,
and regression testing strategies needs to be rethought for
automated and autonomous driving systems. The counterex-
ample involves a system built according to state-of-the-art
literature, which is tested in a traffic scenario using a high-
fidelity physical simulation tool. Test scenarios are generated
using standard techniques from the literature and state-of-the-
art methodologies. By comparing the quality of test cases, we
argue against a naı̈ve re-use of test cases.

I. INTRODUCTION

Striving for highly automated and autonomous driving
systems results in more and more complex and capable
systems. The complexity of these systems as well as the
complexity and sheer number of possible scenarios makes
safety and functional correctness a crucial challenge [17].
Since testing by real test drives alone becomes practically
infeasible [15], [33], the focus shifts to virtual test drives. For
virtual testing of vehicle safety, scenario-based closed-loop
testing in the form of X-in-the-loop settings is used [30].
Such scenarios usually contain dynamic traffic situations
to test the behavior of automated and autonomous driving
systems. An exemplary test scenario for testing a highway
pilot is depicted in Fig. 1.
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Fig. 1. Example test scenario for testing lane change functionality

The ego vehicle e is driving on a two-lane highway
behind the car c3 and performs a lane change into the gap
between the cars c1 and c2. It is tested whether the system
keeps a sufficient safety distance (shaded areas in Fig. 1)
to the surrounding cars during the lane change. In case
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the system violates the safety distance to e.g. c1, because
the gap between c1 and c2 is too small, a faulty behavior
of the system is revealed. Now assume that the system is
updated by “correcting” this faulty behavior and that the
test scenario is re-run to test whether the system behaves
correctly now. In this case, it may turn out that the system
does not even perform a lane change anymore, since the
planning component considers the gap too narrow. Thus, by
slightly modifying the system, the previously useful test case
now has become essentially useless for testing whether a
safety distance is violated during a lane change. Even worse:
The system may still violate a minimum safety distance
threshold during a lane change. This stays unrevealed unless
a new suitable test case is found instead of the re-used one.
Since the consequences of a system change for its behavior
in dynamic traffic in general cannot be known a-priori, we
argue that this problem is of a general nature.

Conventional classical tests can usually be re-used, e.g.
for testing the door locking systems. In contrast, the above
consideration of driving scenarios has severe implications for
the re-use of tests for regression testing as well as for the
re-use of recorded test scenarios and tests of so-called “test
catalogs.” All these approaches rely on the idea of creating
test cases once and re-using them later on. They are widely
used in industry and literature. Unfortunately, as the simple
example conveys, naı̈vely re-using test scenarios in general
cannot directly provide the basis for an argumentation about
safety and functional correctness.

The contribution of this paper is as follows. We provide a
numerical counterexample to the re-usability of concrete test
scenarios, heavily relied on by many approaches in industry
and literature. Using standard techniques from literature,
we generate test scenarios to test an autonomous driving
system built according to state-of-the-art approaches. With
the experimental results, we can show that naı̈vely re-using
concrete test scenarios cannot guarantee the quality of a test
as this test may not even trigger relevant behavior.

The remainder is structured as follows. §II explains
scenario-based testing and what constitutes a “good” test
case, before the methodology of creating the counterexample
is described in §III. §IV explains the experiments and the re-
usability issue, and §V provides an overview of related work.
We conclude in §VI.

II. “GOOD” TEST CASES IN SCENARIO-BASED TESTING

In scenario-based testing the goal is to mimic real traffic
scenarios in simulation to test the safety of the driving
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behavior automated and autonomous driving systems. A
variety of different scenario types (lane change, emergency
brake, etc.) take place in real traffic. Lists of such scenario
types are derived from experience [31] and real data [11], and
the completeness of such lists is determined with statistical
models [13]. For each scenario type, a parameterized sce-
nario is created, called logical scenario [21]. The intention is
to capture the variability of the real world with n parameters
P and their domains Dj ∈ D, j = 1..n, e.g. the initial
velocity of other traffic participants in a scenario is not set
to a specific value of 100km/h, but is assigned a parameter
vother with domain [80, 130]. The domains span a space
A = D1 ×D2 × ...×Dn ⊂ Rn of test cases. Assigning to
each parameter a value from its domain yields a single,
executable test case, which is called concrete test scenario
[21]. Not every candidate in such a space A is of the correct
form (e.g. the ego vehicle should perform a lane change,
but does not) and among those that have the correct form
not all are interesting (e.g. all other vehicles are several
hundred meters away from the ego vehicle) [12]. In other
words, many test scenarios in such a search space are not
the “good” test scenarios we are searching for. The concrete
scenario describes the input and environment conditions of
a test case. The expected behavior of continuous systems is
described with the help a safe operating envelope (cf. Fig. 2).
Inside the envelope, the system is allowed to freely optimize
its performance [17], and as long as it does not leave the
envelope it is considered safe. A variety of works present
such safety envelopes [24], [26], [28].
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Fig. 2. Example of a safe operating envelope (green plain rectangle)
bounded by the necessary safety distances (red shaded rectangle) and lane
markings

In the spirit of limit testing, we define “good” test cases to
test vehicle safety as follows [12], [25]: A “good” test case
can reveal potential faulty system behavior. In a “good” test
scenario, a correct system approaches the limits of the safe
operating envelope, and a faulty system violates them.

III. CREATION OF THE COUNTEREXAMPLE

To argue against naı̈ve re-use, we generate test cases for
different variants of a system and then simulate “re-use” of
these tests by applying each test to all variants. If concrete
test scenarios were re-usable, the quality of a test case should
not drop when re-used for another system. This requires that
“good” test cases are generated and that the quality of the
test cases can be measured.

Existing works suggest the use of search-based techniques
for the selection of “good” test scenarios (detailed infor-
mation in Sec V). Such techniques try to identify the best
candidate (here: concrete test scenario) in a search space
(here: logical scenario) with the help of a fitness function,
which provides a quality measure for a test case of how

good it is. In the following, the logical scenario, the fitness
function, and the systems that are used in the experiments
are explained.

A. Logical Scenario

The logical scenario used for the experiments is shown
in Fig. 3. It is a simplification of the exemplary scenario in
Fig. 1. The cars c2 and c3 have been removed. When re-using
concrete test scenarios for such a simple lane change like in
Fig 3, we can expect that at least the form of the concrete
scenario is still correct, i.e. the ego vehicle performs a lane
change behind c1. For more complex scenario types this is
not the case as illustrated for the example in Fig. 1.

The ego car will start at the longitudinal position 0m and
accelerate to the initial velocity ve. As soon as starting time
tstart,c1 is reached, the other car starts accelerating from a
longitudinal starting position s0,c1 to an initial velocity vc1 .
As soon as both cars reach their initial velocities, the lane
change request is triggered after time ttrg. Those parameters
provide the necessary search space to allow c1 with vc1 to
be located arbitrarily on the road at the point in time when
e is triggered to perform a lane change.

c1

e

Parameter Lower Bound Upper Bound
Ego vehicle e:
Initially reached velocity ve [m/s]
lane change trigger time ttrg [s]

22.22 (80km/h)
0

36.11 (130kmh)
5

Other car c1:
Longitudinal starting position s0,c1 [m]
Starting time tstart,c1 [s]
Initially reached velocity vc1 [m/s]

0
0

22.22 (80km/h)

500
5

36.11 (130km/h)

Fig. 3. Parameterized scenario used for the experiments

B. Fitness Function

The fitness function assigns a quality to each concrete test
scenario, which allows the search-based technique to select
the “good” test cases. The goal is to test whether the system
keeps sufficient distance during a lane change behind another
car. Thus, the fitness function has to guide the search-based
technique to identify test cases of the correct form, i.e. ego
vehicle performs a lane change behind the other car. Among
those with the correct form, the biggest violation of the
safety distance is searched. We created the fitness function
according to the literature [12] (the optimizer minimizes):
The fitness function with t ∈ [tstart, tend]:

f =


∞; no lane change happens{
se(tstart)− sc1(tstart); sc1(tstart) ≤ se(tstart)
min{d− safeDist(t)}; sc1(tstart) > se(tstart)

The first part of the fitness function assigns ∞ as a very
bad, high value to scenarios in which the ego vehicle does
not perform a lane change. Instead, if such a lane change
takes place, the longitudinal position of the ego vehicle at
the start of the lane change se(tstart) is compared with the
one of the other vehicle sc1(tstart). If the ego vehicle is in



front of the other car, the distance between the cars at this
moment d(tstart) = se(tstart) − sc1(tstart) is assigned as
bad fitness value. The smaller this distance is, the better the
fitness value. In the third case, the lane change takes place
behind the other car. The difference of distance d(t) and the
the safety distance safeDist(t) is the remaining distance until
the safety distance is violated. By computing the minimum of
it throughout a lane change (t ∈ [tstart, tend]), the least safe
remaining distance until violation during this lane change
is determined. During the search through the search space
this yields the least safe remaining distance in the whole
search space. If the system behavior is faulty, it will yield
the biggest violation in the search space instead. The safety
distance is computed according to a formalization [26] of
the Vienna Road Convention. However, other safety models
may be used as well, e.g. [24], [28].

C. Driving Systems

The driving systems for the experiments are different
versions and variants of a single system type for two reasons:
First, we want to show that even small changes in the
configuration already cause issues with the re-usability of
concrete test scenarios. Changing the whole system design
has a far bigger impact than small configuration changes.
Second, testing different versions of a single system better
represents regression testing, which is the common use case
for re-using test cases.

The architecture of our demonstration system is shown in
Fig. 4. It follows the general control paradigm, which con-
tains the notions of sensing, long-term planning (or decision-
making), short-term planning, tracking and actuation [4].
To ease the interpretation of the experimental results, we
excluded sensing from the experiment setup. Also for the
sake of simplicity, the car c3 from the introductory example
scenario has been removed as a trigger to the decision
making to change lanes. Thus, also the decision making
is removed. To preserve the variability of decision making
caused by different relative positions of the ego vehicle and
this c3, the desire to change is triggered by a time trigger
(cf. ttrg in Sec. III-A). For the short-term planning, a state-
of-the-art approach for lane change maneuvers of automated
vehicles [23] was used. This system was chosen to closely
resemble automated and autonomous driving systems of SAE
levels 4 & 5 [27], e.g. a Highway Pilot of SAE level 4.

This model predictive control approach first predicts the
positions xi and velocities vi of surrounding cars ci for each
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Fig. 4. System architecture overview
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Fig. 5. Schematic simplified depiction of the predicted positions xi and
time gaps tg(vi) at a specific prediction time tk of the system

sample time step tk over a short time horizon (cf. Fig. 5).
For safety distance planning, a time gap τ = 0.5s is used
as proposed in the paper series of [23]. The safety corridor
for the lane change (dashed green lines) is bounded by the
distance tg(vi) = τ · vi to the predicted positions xi of
other cars ci. First, a safe longitudinal and afterwards a
safe lateral trajectory is computed within these bounds. The
objective is to keep the velocity at each time step of the
trajectory as close to the velocity before the lane change
(given by the scenario parameter “initially reached velocity”
ve) and the acceleration as low as possible. The tracking of
the trajectories is done by classic control of the gas and brake
pedals as well as the steering wheel. Both are tuned for a
physical model of a sports car provided by the widely used
physical simulation software CarMaker by IPG Automotive,
which served as the simulation environment for this work.

IV. EXPERIMENTS

Decrease proportio-
nal gain of tracking

Increase time gap
from 0.5s  to 1.2s

Scenario A:
𝑠𝑎𝑓𝑒𝐷𝑖𝑠𝑡
violation

Scenario B:
Correct system

Scenario C:
𝑠𝑎𝑓𝑒𝐷𝑖𝑠𝑡
violation

System A

System B
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Logical Scenario with
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Genetic Algorithm
Population Size: 20

Iterations: 20
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Fig. 6. Experiment Overview

In Fig. 6, an overview over the experiments is given.
Three systems configurations are created (systems A,B,C).
System A is the system described above, while system B
is created by increasing the time gap τ from 0.5s to 1.2s,
and system C is yielded by decreasing the proportional
gain of the longitudinal PID controller in system B. The
fitness function from Sec. III-B and the logical scenario
as the search space from Sec. III-A are used for all three
experiments. For the optimization, a single-objective genetic
algorithm is applied. Note that the technological aspect is
not the focus of this work and more advanced techniques
could be used, as described in [9]. The population size and
the number of generations were both set to 20, resulting
in 400 simulation executions, which means each system is
tested in 400 concrete scenarios during the optimization.
The experiments were executed multiple times to rule out
randomization effects. The scenario with the best fitness
value of each experiment is presented in detail in the images
of respective Fig. 7, 8, 9: (1) distances during lane change,



and (2) velocities during lane change. Experiment A shows
that faulty behavior of the trajectory planner can be revealed,
B presents a case where the system behavior is seemingly
correct, and in C faulty behavior caused by slow tracking is
detected.

A. Experiment Results

In scenario A, which is the best concrete test scenario
that could be found for system A, the ego vehicle performs
a lane change behind the other car, which drives at lower
velocity. In Fig. 7(1), the actual distance between both
cars d(t), the minimum safety distance safeDist(t), as
well as the remaining distance until this safety distance is
violated are shown (a negative remainder means violation).
Approximately between scenario time 17.5s and 21.5s, the
safety distance is violated (see 7(1)). The biggest violation
of 14m takes place at approximately 19.5s. Even though
tracking will never be perfect, here it is considerably fast (cf.
Fig. 7(2)), which leads to the conclusion that the planned
trajectory does not consider sufficient safety distance in this
scenario with respect to the safe distance computation of
the fitness function. This faulty behavior gets addressed by
increasing τ in the safety distance estimation tg(vi) of the
planning algorithm to 1.2s to yield system B. The concrete
value of 1.2s was determined experimentally. The results of
the scenario B are shown in Fig. 8. It can be seen that even in
the best concrete test scenario, the updated time gap causes
the system to keep sufficient distance to the other vehicle
to not violate the minimum safety distance. Therefore, it
is considered to be safe with respect to this search space.
To yield system C, the proportional gain of the velocity
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Fig. 7. Results of scenario A: Faulty trajectory planner
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Fig. 8. Results of scenario B: Seemingly safe system
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Fig. 9. Results of scenario C: Tracking too slow

tracking PID controller of system B is decreased to make the
tracking more smooth, e.g. for passenger comfort. However,
this also increases the rise time of the controller. The results
of scenario C (cf. Fig. 9(2)) show that the tracking does
not follow the planned trajectory close enough to decrease
the ego vehicle’s speed as fast as necessary, which causes
a violation of the safety distance despite the increased time
gap τ .

B. Why Re-Using Concrete Scenarios Is a Bad Idea

Each system (e.g. system A) is additionally tested using
the best concrete test scenarios identified for the other
systems (e.g. scenario B/ C). The resulting fitness values,
which measure both the test case quality and the remaining
buffer until violation of the safety distance in meters, are
depicted in Tab. I.



System A System B System C
Scenario A -14.001 5.604 -3.065
Scenario B 2.595 2.812 -3.037
Scenario C 20.153 20.484 -4.238

TABLE I
FITNESS VALUES OF THE THREE IDENTIFIED BEST CONCRETE TEST

SCENARIOS FOR THE THREE SYSTEMS

Every concrete test scenario has the best fitness value for
testing the system it was created for (red cells). This confirms
the intuition regarding the re-usability issue implied with the
introductory example in Sec. I. The smallest remaining buffer
until violation (positive fitness value) or biggest violation
(negative fitness value) for distinct systems is found in
different scenarios. Especially the first column of Tab. I
illustrates the following. If the best concrete test scenarios B
and C are “re-used” to test system A, the faulty behavior of
system A is not revealed. In other words: By naı̈vely reusing
test scenarios that have been created, or recorded, for other
system versions or variants, the faulty behavior of a system
might not be revealed. In this example, even the best concrete
test scenario for another system is not sufficient, let alone
scenarios of lower quality. Note that for this observation,
the provenance of these concrete scenarios does not matter,
e.g. they could have originated from test drive recordings or
“test catalogs” of concrete test scenarios, showing the same
result in terms of re-usability. This emphasizes the need for
the identification of system-specific concrete test scenarios,
since re-used test cases may not provide a strong foundation
for a safety argument for the release of an automated or
autonomous driving system.

Our argument does not imply that no test case can ever be
re-used. Our experiments show, instead, that there exist new
system variants for which the quality of existing test cases
is provably bad. Our conclusion is hence that in general, the
quality of test cases considered for re-use is unknown. If there
are external means to ensure that the quality of existing test
cases continues to be good, for instance because it is known
that the driving behavior of the system under test has not
been modified, then these tests may indeed be re-used. It is
then the responsibility of the test engineer to argue that the
quality of tests for an earlier version of a system carries over
to a newer version.

V. RELATED WORK

Several existing works are based on the idea of extracting
concrete test scenarios from data according to a variety
of different selection and filtering criteria. This data is
collected with real test drives [5], [19], [22] or simulation
setups [29]. Similar to manual test case generation based on
experience, the result of those approaches are “test catalogs”
of concrete test scenarios. These are subject to the presented
re-usability issue. Additionally, the extracted scenarios are
randomly encountered scenarios, which is problematic for
safety argumentations, as such are hardly possible based
on randomly encountered scenarios. An infeasible amount
of driving hours or driven kilometer is necessary for each

version of the system [33], [15] for each version and variant
of the system.

A very popular idea to circumvent this issue is to ex-
tract all concrete test scenarios that occur in real data and
filter for the “critical” ones, where a multitude of distinct
metrics of criticality exist [14], [20], [32]. The resulting
“test catalogs” are relatively small as they contain only the
critical scenarios. When the amount of data is huge, there
is the hope that the resulting “test catalog” overcomes the
randomness of encountering certain concrete scenarios in real
traffic. However, it is still subject to the re-usability issue.
The critical concrete test scenarios are critical with respect
to the behavior of the recording test vehicle or the driver
maneuvering the recording vehicle. When such concrete test
scenarios are re-used for testing another vehicle, e.g. the
next generation automated or autonomous vehicle, it is not
guaranteed that the concrete test scenarios are still critical.
It might be an easy non-critical test scenario for the new
system. Note that such criticality metrics might be used for
targeted generation of concrete test scenario, e.g. as fitness
function for the application of search-based techniques [10].
In this case, the usage of such criticality metrics is not an
instance of the re-usability issue.

A variety of existing works suggest the use of search-
based techniques for the selection of concrete test scenarios.
We followed this idea to generate system-specific concrete
test scenarios. Some of those works focus on the technical
aspects of the scenario search [1], [2], [3], [6], some describe
fitness functions for different specific purposes [7], [8],
[16], and another one provides fitness function templates for
testing against safe operating envelopes [12]. Even though
these works implicitly advocate the generation of system-
specific concrete test scenarios, neither of them discusses the
re-usability issue or provides a numerical counterexample to
the re-usability.

VI. CONCLUSION

We started by sketching that re-using concrete test sce-
narios for the testing of automated and autonomous driving
systems in general is problematic, since the quality of a test
case is system-dependent and may become bad when the
system changes. However, many approaches in industry and
literature rely on this re-usability. We provided a numerical
counterexample to the re-usability of concrete test scenar-
ios. We used standard techniques to generate concrete test
scenarios for three different configurations of an exemplary
system. As scenario type, we chose an easy lane change. The
experimental results showed that even the best concrete test
scenario for one system configuration may not be a “good”
concrete test scenario for the other. Note that even for a
simple lane change and configurations of the identical system
design, the re-usability issue could be shown. Systems with
different designs (e.g. systems from different vendors) differ
much more than configurations of a single design. Thus, re-
usability may even be worse. While for this lane change
scenario the re-used concrete test scenarios at least are of
the correct form, i.e. the ego vehicle performs a lane change



behind the other car, for more complex scenario types,
re-used scenarios might not even be of the correct form
anymore. In the case of the introductory example of Fig.
1, almost certainly the lane changes will not be performed
into the gap anymore as different systems decide to do their
lane changes at different moments in time. In terms of re-
usability, the provenance of the concrete test scenarios does
not matter, e.g. they could be recorded test cases or reference
tests from “test catalogs.”

We have argued that this shows that the quality of existing
tests in general cannot be predicted for new versions of a
system. While this shows that there cannot be “canonical”
reference tests for a product line in general, this does not
mean that the quality of existing test cases never carries
over to new versions of the system. There may well be
situations where an engineer can argue that the re-use of
tests is justified.

As a direct consequence, regression testing of automated
and autonomous driving systems needs to be reviewed, and
new methodologies are necessary. As a solution, we recom-
mend the re-use of logical scenarios instead of concrete test
scenarios. Then, for a new system, system-specific concrete
test scenarios are generated for each logical scenario instead
of re-using concrete test scenarios—which is the automated
technique we used to generate all test cases in this paper.
The generation of tests obviously is more costly than simple
re-use, but our arguments suggest that this cost cannot be
avoided unless one can argue that tests for earlier versions
are safe to re-use. In addition to using recorded scenarios
directly as test cases when this can be explicitly justified,
we deem these recorded scenarios useful for the derivation
of logical scenarios for test case generation, e.g. as done in
[18], [34].
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