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ABSTRACT We investigate the problem of semi-decentralized, interference aware scheduling in a cellular
network with Device-to-Device (D2D) links. Our goal is an algorithm that allows optimal resource allocation
and power control in spite of mutual interference from and to D2D links, as well as the creation of a
reporting structure that is independent of the exact optimization goal and D2D modes. To achieve this,
we formulate an interference aware scheduling problem with general rate-utility and generalized reuse
constraints. By applying aGeneralized Benders Decomposition, the problem is decomposed into two coupled
sub-problems, a ‘‘primal’’ power control problem and a ‘‘master’’ scheduling problem, that can be dealt with
independently. By this, we decouple the tedious power optimization from the scheduling part. We evaluate
performance of the proposed structure analytically and find it to allow optimal scheduling independent of
the used utility and D2D modes, provided that the master scheduling problem is solved optimally. Finally,
we propose a solution for the master problem of weighted sum-rate maximization. Our simulations indicate
that using the proposed scheme, D2D reuse can increase by an order of magnitude compared to the often
targeted one-fold reuse, reaching a maximum of 31-fold frequency reuse in our set-ups. It is further capable
of improving sum-rate performance by around 35% over existing works, while keeping signaling overhead
and optimization delay at the same order of magnitude.

INDEX TERMS Device-to-Device, D2D, 5G, interference management, frequency reuse, power control,
scheduling.

I. INTRODUCTION
Direct communication among user equipments (UEs) is
envisioned to enhance future cellular networks. Such direct
communication, referred to as Device-to-Device (D2D) com-
munication, is considered to offload spatially local traffic
from the cellular base station and has received increased
attention among network researchers [1], [2]. One of the
potential benefits is that D2D communication can leverage
the proximity of devices to perform dynamic frequency reuse,
which allows pushing the frequency reuse factor beyond
one [3]. However, the management of dynamic frequency
reuse is a challenging task, due to intracell interference added
to the system.

Frequency reuse by D2D links has attracted much attention
in academia. The often taken perspective is to treat cellular
uplinks as primary users, whose channels may be reused by
D2D sidelinks as long as the uplink transmissions are not
disturbed too much. To ensure the quality of uplink trans-
missions, the employed techniques include aspects of power
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control, scheduling and reuse link pairing, i.e., identification
of appropriate links to share a channel.

Because the full optimization over all available parame-
ters often creates mixed-integer nonlinear problem (MINLP)
structures, which are considered intractably complex for the
D2D set-up, simplifications are used in the respective lit-
erature, such as fixing transmission powers or restricting
reuse to at most one D2D link per channel. However, while
these restrictions ease the management effort, they also limit
the performance potential of D2D communication. Previous
works [4]–[7], show that up to 40-fold frequency reuse in a
cell can be achieved if these limitations are lifted. Although
the exact number depends on many parameters, such as the
cell size, average link distance and targeted Signal to Interfer-
ence andNoise Ratio (SINR), the conclusion is that frequency
reuse could in fact be by orders of magnitude larger than
often targeted in research. The main enabler for this large
number of reuses seems to be dynamic power control, which
adapts the transmission powers to the current interference
situation. Unfortunately, to unleash the full potential of D2D-
reuse, a complex interference aware scheduling problemmust
be solved with power control and without any simplifying
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restrictions. How to do so in an efficient and implementable
manner is investigated in this article.

In this work, we apply a Generalized Benders Decomposi-
tion (GBD) to an interference aware D2D scheduling problem
including full power control and allowing an arbitrary amount
of reuse. The result is a two-stage management structure with
low communication overhead, in which part of the parameters
are optimized decentrally, effectively taking the burden off
the base station while still allowing optimal parameter choice.
A scheduling problem remains that may be adapted to the
specific needs of the operator and that can be solved with
conventional methods. We show with simulations that our
proposed solution can enable frequency reuse in an order of
magnitude around 30 times per cell, which goes far beyond
the often targeted one-fold reuse of underlay communication.
Further, we are able to give mathematical pre-requisites for
optimality of the resulting schedule. Due to the generality
of our formulation, the results are applicable to a variety of
problem cases, including reuse in uplink or downlink bands or
solely among D2D-links and including one-fold or multi-fold
reuse of a channel.

A. RELATED WORK AND CONTRIBUTION
Interference management in the context of underlay D2D
communication creates an interesting interplay of traditional
power control problems [8] and mixed-integer scheduling
problems. Additional flavor is added by the network setup,
which is characterized by a lack of central parameter knowl-
edge such that the use of fully centralized solutions is disad-
vantageous. The combination of these properties has led to a
number of research works that we discuss at this point.

A series of works deal with interference management for
D2D links [9]–[25], each of which targets a slightly different
system model or problem target. For example, the works dif-
fer in whether downlink bands [11], [19] or uplink bands [9],
[10], [12]–[18], [20]–[25] are considered, in whether fixed
transmission powers are assumed [9], [12], [13], [22]–[24]
or power control is part of the optimization [10], [11], [14]–
[21], [25], whether frequency reuse is constrained to one-fold
reuse by D2D links [9]–[11], [14], [18], [20], [25] or multiple
D2D links may use the same frequency [12], [13], [15]–[17],
[19], [21]–[24], or in the optimization target, which typically
is assumed to be the sum-rate [9], [10], [12], [13], [16]–[23],
[25] but can also be proportional fair rate [24], a general util-
ity [11] or just the satisfaction of rate constraints [15]. Due to
the complexity of the considered problem, various solutions
have been proposed, each tailored to another special case
and dependent on the particular assumptions of the specific
investigated system. Unfortunately, many of these solutions
have incompatible reporting structures, as they require dif-
ferent levels and amount of information. Further, surprisingly
many solutions rely on explicit channel knowledge, which
however is inefficient to obtain. In this work we try to ease
these constraints by proposing an efficient reporting structure
that may be applied to various use-cases, while preserving the
opportunity to achieve an optimal resource allocation.

The work closest related to ours is in the field of multi-fold
reuse with dynamic power control, for which we find
[15]–[17], [21]. In [16], Zhao and Wang propose the use
of an alternating optimization, switching between a greedy
resource allocation and an interference management that is
solved for fixed allocation using the method of differences
of convex functions. The result is a centralized scheme that
outperforms that of Feng et al. [10]. Zhao and Wang also
propose a three-stage optimization in [17]. In the first stage,
they construct a method to identify D2D-pairs that will
cause too much harm when reusing a channel at the same
time. Then, resources are allocated with a greedy approach
and powers are assigned by neglecting mutual interference
among D2D links, resulting in a waterfilling solution. Again,
the scheme is centralized. Yin et al. [15], [21] investigate
decentralized pricing schemes for multi-fold D2D-reuse with
power control, to find an allocation that satisfies D2D rate
constraints [15] and maximizes D2D sum-rate [21] while
protecting uplinks from interference. They formulate a Stack-
elberg game with the base station as leader, having the goal
of protecting the data rates of the uplinks by an interference
price, and the D2D-links trying to satisfy their constraints or
maximizing their rate. The result is in both cases an iterative
waterfilling algorithm for the D2D-users and a pricing mech-
anism at the base station (BS).

Note that more related work exists for multi-fold reuse
without power control [12], [13], [22], [23] and one-fold
reuse with power control [10], [11], [14], [18]–[20], [25].
However, fixed powers yield a completely different, simpler
problem that is purely combinatorial. One-fold reuse, on the
other hand, significantly limits D2D performance and is also
simpler, because optimal power allocations can be explicitly
enumerated for each reuse pair, which is leveraged, e.g.,
in [10], [14], [18], [19], [25].

Our work differs from the ones mentioned for multi-fold
D2D reuse with dynamic power control already in the
used model and problem formulation. In contrast to
[15]–[17], [21], we optimize towards a general rate-utility
instead of the sum-rate, do not use the Shannon bound
approximation for rate but include Modulation and Cod-
ing Scheme (MCS) selection explicitly into the problem.
Compared to [16], [17], we provide a solution that can solve
the problem optimally or with well-defined performance
bounds. Further, our solution can be readily applied to various
D2D scenarios, to one-fold andmulti-fold reuse, with or with-
out rate constraints and adjacency constraints for frequencies.

We have investigated similar problems to the one presented
here in previous works [4], [5], [26], [27]. In [4], [5], [26],
we investigated the Reuse Maximization Problem (RMP),
i.e., the problem of how to maximize the number of reusing
D2D links on a single transmission resource, with the most
promising result being a GBD-based solution. Compared to
these works, in which wemaximized the reuse factor, we here
investigate the problem of rate-utility maximization, which is
significantly different and more complex. The idea of trans-
ferring the general concept of the GBD-based solution [5] to
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a utility maximization is briefly discussed in [26] with initial
simulation results presented in [27]. However, this article
significantly enhances both works by formally developing
Algorithm 1, analyzing it analytically in Section IV and by
largely augmenting the simulation results in Section V.

B. CONTRIBUTIONS OF THIS WORK
In this work, we investigate an interference-aware rate-utility
maximization problem for D2D communication. Our contri-
butions can be summarized as follows:
• We investigate a rate-utility maximization problem in
a very general form. This makes it harder to solve but
also makes it powerful, because the results can be trans-
ferred to D2D communication underlaying uplink or
dowlink bands or network slices, to D2D links that share
a slice in an overlay fashion, to problems with one-fold
or multi-fold reuse and to problems with general rate
constraints and resource restrictions.

• Wepropose a semi-distributed structure that splits power
control from the scheduling problem. This reduces com-
plexity significantly, as it avoids tedious power opti-
mization alongside scheduling.

• Our solution can be implemented relying only on SINR
measurements, avoiding the overhead of full channel
reporting.

• The structure allows provenly optimal resource alloca-
tion for all set-ups contained in our model, provided
that the scheduling problem is optimally solved. For
sub-optimal solutions, we provide performance bounds.

• With simulations, we show that the same method can be
applied to different types of reuse. Compared to one-fold
reuse, we are able to increase the system rate by a
factor of seven and the average frequency reuse by a
factor of 18. Compared to existing works, we are able
to increase the sum-rate by around 35%.

• We show-case the applicability to varying channel con-
ditions with simulations.

C. MATHEMATICAL NOTATIONS
In this article, the following mathematical notations are used:
Lower case, Greek or Roman letters a denote scalars, whereas
bold, lower case variables a are used for column vectors and
matrices A are described with upper case, bold letters. Vector
or matrix transposition is written as (·)T , i.e., aT , AT are
the transposed of a and A. The `p-norm of a vector is given

as ‖a‖p = p
√∑

i a
p
i . Functions or relations on vectors and

matrices, e.g., ea, a ≤ b are to be interpreted element-wise.
Calligraphic upper case letters, e.g., A, are used for gen-

eral sets, whereas the set of real numbers is given by R
and that of integers by N. The latter two are restricted to
non-negative numbers by R+, N+, respectively. The expres-
sion 2A refers to the power set ofA, which is the set of subsets
of A.
The function 1{·} denotes the indicator function, which

is one if the expression in the brackets is true and zero

TABLE 1. Used variables and their meanings.

otherwise. Finally, the expression [a]+ = max{a, 0} projects
a vector to the non-negative orthant.

An overview over used variables and their meanings is
given in Table 1.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a single cell1 of a D2D-enabled cellular network,
as is shown in Figure 1. The cell comprises of uplink, down-
link and direct link connections that need to be scheduled for
transmissions. Several time-frequency blocks, called Physi-
cal Resource Blocks (PRBs), are available for transmission
and on each PRB, one out of a set of possible MCS needs to
be chosen together with a transmission power. Each MCS is
associated with a minimum SINR that needs to be satisfied in
order to comply with a maximum block error rate. The net-
work operator may define a set of scheduling constraints that
limit the usable PRBs, the amount of reuse and guaranteed
rate for cellular links. However, if allowed by the operator,
any links may reuse a channel, as long as the respective
SINR constraints associated with their desired MCS can be
satisfied. In this setup, the target is to find optimal MCSs,
transmission powers and PRB allocation to maximize a given
rate-utility.

A. SYSTEM MODEL
Formally, we model the network as a set of nodes N , which
are grouped into the set of transmission links L ∈ 2N×N

1We assume that for larger scale networks, spectrum is partitioned in a way
that inter-cell interference can be neglected, which leads to the optimization
of several, independent single cells. Ways for extension towards multicell
environments are discussed in Section V-D.
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FIGURE 1. Example setup of the D2D-enabled cellular network. We consider a network with given Physical Resource Block
(PRB) structure that is divided into uplink and downlink partitions. Each link is assigned PRB resources and Modulation
and Coding Schemes (MCSs), which provide a certain rate if certain SINR constraints are satisfied. The D2D links may reuse
PRBs while causing interference with adaptive power control, however all SINR constraints of all links need to be satisfied.

containing L = |L| links in total. Note that L may include
uplinks, downlinks and D2D links. The PRBs are given as
a resource set R out of which each link i ∈ L is allowed
to use a subset Ri ⊆ R. Ri can constrain PRB usage to
uplink bands, downlink bands, dedicated D2D bands or a
network slice. On each PRB k ∈ R a link may use one out
of a set Xi of MCS for transmission, which it employs in
combination with a transmission power p(k)i on that resource.
The transmission powers of link i on the different PRBs are
gathered in the column power vector pi = [p(1)i , . . . , p

(|R|)
i ]T

and all powers are gathered in the overall power vector p =
[pT1 , . . . , p

T
L ]
T , respectively. Each links’ power vector pi is

subject to maximum power constraints of the form pi ≤ pi,
where the vector pi = [p(1)i , . . . , p

(|R|)
i ]T .

The use of an MCS q on PRB k by link i is indicated by
variable x(k)qi ∈ {0, 1}, which is one if, and only if, the MCS
is to be used. A scheduling decision is entirely reflected
by the MCS choices, because links that are not scheduled
for transmission on PRB k simply satisfy

∑
q∈Xi

x(k)qi = 0.

All x(k)qi are gathered into a vector per link and PRB,

x(k)i = [x(k)1i , . . . , x
(k)
|Xi|i

]T , and further into a vector per

link, xi = [x(1)Ti , . . . , x(|R|)Ti ]T , and an overall vector
x = [xT1 , . . . , x

T
L ]
T , respectively. Depending on the transmis-

sion capabilities, each link is subject to a vector of scheduling
constraints, given as g(x) ≤ 0. These scheduling constraints
are used to restrict resource usage in a fashion desired by the
operator. In particular, they can capture that resource usage
is restricted to uplink or downlink bands or network slices
(e.g., if g(x) contains elements g(k)i (x) =

∑
q∈Xi

x(k)qi −1{k ∈
Ri} for appropriate Ri ⊆ R), that reuse is restricted to
a certain number (e.g., if g(x) contains elements g(k)r (x) =∑

i∈L
∑

q∈Xi
x(k)qi − K (k), where K (k) is the allowed reuse

factor on PRB k) or that resource usage must comply with the
used technology, e.g., that PRBsmust be used on adjacent fre-
quencies for Single-Channel Frequency Division Multiplex
(SC-FDM) transmissions.

All nodes are assumed to have a single antenna.
Attenuation of the wireless channel between transmitter of
link j and receiver of link i on PRB k is captured by the
scalar channel coefficient h(k)ij , which incorporates the effect
of distance dependent path-loss, shadowing and multi-path
effects. While drawn randomly according to a given dis-
tribution, we assume that h(k)ij remains constant during our
optimization.2 Further, the receiver of link i has a specific
noise temperature σ (k)

i on PRB k . Both, channel and noise
value can be equal over different PRBs, e.g., when they reside
on the same frequency channel. When all links transmit with
a given power on PRB k , each receiver will experience an
SINR according to

0
(k)
i (p) =

h(k)ii p
(k)
i∑

j 6=i h
(k)
ij p

(k)
j + σ

(k)
i

. (1)

An MCS choice qi ∈ Xi is associated with a minimum
SINR requirement γ qi , which is again gathered in the vectors
γ i = [γ q1 , . . . , γ q|Xi| ]

T and γ = [γ T
1 , . . . , γ

T
L ]
T , respec-

tively.Without loss of generality, we assume that the elements
of γ i are sorted with increasing value. A transmission on PRB
k with MCS qi yields a data rate of dqi if 0

(k)
i (p) ≥ γ qi and

zero rate otherwise. As before, the values of dqi are captured
by vectors d i = [d1i, . . . , d|Xi|i]

T , d = [dT1 , . . . , d
T
L ]
T .

Finally, assume that communication quality is measured
by a network utility function Ui(ri) : R+ 7→ R, which is

2Note that we do investigate the impact of channel variations with simu-
lations in Section V.
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a function that reflects how desirable a certain instantaneous
rate ri is for communication. The rate reflects the aggregate
rate over all PRBs, which are denoted by r (k)i ∀i ∈ L, k ∈ R
and are again grouped according to ri = [r (1)i , . . . , r (|R|)i ]T ,
r = [rT1 , . . . , r

T
|L|]

T . To ensure that the quality of certain
links is within the bounds required by the operator, a set of
constraints h(r) ≤ 0 is used, which for example can reflect
minimum rate constraints if it contains elements hi(r) =
rmin − ri for minimum rate rmin, respectively.

B. PROBLEM FORMULATION
Using the introduced system model, a general utility maxi-
mization problem can be formulated as follows:

max
r,x,p,γ

∑
i∈L

Ui(ri) (2a)

s.t. h(r) ≤ 0 (2b)

0 ≤ ri ≤
∑
k∈R

r (k)i (2c)

−−−−−−−−−−−−−−−−

r (k)i ≤ dTi x
(k)
i ∀i, k (2d)∑

q∈Xi

x(k)qi ≤ 1{k ∈ Ri} ∀i, k (2e)

g(x) ≤ 0 (2f)

x(k)qi ∈ {0, 1}∀i, q, k (2g)

−−−−−−−−−−−−−−−−

γ T
i x

(k)
i ≤ γ

(k)
i ∀i, k (2h)

γ
(k)
i

(∑
j 6=i

h(k)ij

h(k)ii
p(k)j +

σ
(k)
i

h(k)ii

)
≤ p(k)i ∀i, k (2i)

pi ≤ pi ∀i (2j)

The intuition of this optimization problem is as follows:
The utility (2a) to be maximized evaluates the quality of the
current network state as aggregation of all per-link utilities.
Constraint (2b) is a vector of rate constraints, while (2c)
ensures that the evaluated rate does not exceed the actually
accumulated one. Both together define an upper Medium
Access Control (MAC) layer perspective on the problem,
as there is no information on the underlying MAC mecha-
nisms, nor on the actually transported commodities.

In constraints (2d)-(2g), MCSs are set on each PRB.
Constraint (2d) guarantees that on each PRB, the assumed
rate does not exceed that of the chosen MCS. Constraint (2e)
restricts PRB use to the allowed setRi and ensures that if the
PRB may be used, at most one MCS is set. Constraint (2f)
enforces the scheduling constraints and (2g) is an integer
constraint for all x(k)qi . The four constraints together form a

resource allocation perspective, where the rate values d (k)i act
as interface towards the upper layer MAC perspective.

Finally, equations (2h)-(2j) define the actual SINR targets,
interference and power constraints on all PRBs. In particular,
(2h) ensures that the SINR target γ (k)

i satisfies that of the
chosen MCS on each PRB, while (2i) is a reformulation of

the SINR constraint 0(k)
i (p) ≥ γ (k)

i . Here, variable x(k)i serves
as an interface to the resource allocation part.

It can be seen, and is also indicated by the dashed lines
between equations, that the considered problem combines the
three aspects of interference management, resource alloca-
tion and network utility maximization. Because the utility
function is not clearly defined here, the resulting problem
can assume a variety of properties only from changing the
used utility, rate and scheduling constraints. In this general
form, it can be shown to be non-deterministic, polynomial
time (NP) complete [26]. However, NP completeness does
not come from the undetermined properties of the utility
or constraint vectors - as we can show, even for seemingly
simple problem instances the problem remains complex:
Proposition 1 (NP-Compeleteness for Symmetric,

Non-Negative and Increasing Utilities): Let the utilities be
symmetric, non-negative and increasing, such that Ui(ri) =
U (ri) ∀i and U (0) = 0, ∂U (ri)/∂ri > 0 ∀ri ≥ 0. Then for
any such utility the Problem (2) is NP-complete.

Proof: Under the given assumptions, we can reduce the
problem to the Reuse Maximization Problem (RMP), which
is written as maxx,p,γ

∑
i∈L

xi s.t. (2g)-(2j) with |R| = 1,

|Xi| = 1 and which we investigated and showed to be NP-
complete in [5], [26]. Consider the special case of |R| = 1,
|Xi| = 1 ∀i and d i = d ∀i, i.e., there is a single PRB and a
single MCS available for every link leading to a particular
rate d , and let the constraint vectors h(r), g(x) be empty.
In this case, it can be seen that the optimal choice of ri is
ri = d · xi. Because in this case U (ri) = U (d · xi) = U (d)xi,
problem (2) then reduces to maxx,p,γ U (d)

∑
i∈L

xi s.t. (2g)-(2j)

and is equivalent to the RMP. As we can construct such an
equivalent problem for any instance of RMP, Problem (2) can
be reduced to it and NP-completeness transfers.

Note that the conditions given in Proposition 1 apply to
some well-known utilities, most prominently to sum-rate
(U (ri) = ri) and proportional-fair rate (U (ri) = log(ri)) max-
imization without any scheduling constraints or rate guaran-
tees. We can thus not expect to solve even these simpler prob-
lems optimally and efficiently at the same time, although they
have a well-defined utility and no complicating constraints.
On the other hand, from a purely technical perspective the
efficient, optimal solution is not the only property of inter-
est. Of same or even more importance is well-definedness,
i.e., whatever approach we choose to solve the problem
should allow a well-defined performance independent of
whether it achieves optimality or not. Further, the signaling
overhead should be bounded to keep the system efficient
and ideally, the same system would allow optimization to
different performance metrics, enabling the operators to tune
their network as they see fit.

Turning back to Problem (2), in the given formulation,
constraint (2i) renders the problem non-convex. However,
it is known that constraints (2h)-(2j) can be made convex
with a logarithmic transformation [28]–[30], by reformulat-
ing γ (k)

i := eγ̃
(k)
i and p(k)i := ep̃

(k)
i , and using γ̃ (k)

i and p̃(k)i
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as variables, respectively. Additionally, we define γ (k)
xi :=

γ T
i x

(k)
i , γ̃ (k)

xi := log(γ (k)
xi ) to be the linear and logarithmically

transformed SINR constraint chosen by xi, where for consis-
tency we use log(0) := −∞ to denote an unbounded negative
value. After this transformation, constraints (2i)-(2j) take the
form of

γ̃ (k)
xi ≤ γ̃

(k)
i ∀i, k (3a)

eγ̃
(k)
i

(∑
j 6=i

h(k)ij

h(k)ii
ep̃

(k)
j +

σ
(k)
i

h(k)ii

)
e−p̃

(k)
i ≤ 1 ∀i, k (3b)

p̃i ≤ p̃i ∀i. (3c)

It can be seen that all three constraints are convex. In par-
ticular the left hand side of (3b) can be seen to be the sum of
convex functions, hence the constraint is also convex.We thus
have successfully convexified the SINR constraints.

III. APPLICATION OF GBD
In this section the application of the Generalized Benders
Decomposition (GBD) to the defined problem will be devel-
oped. The original Benders decomposition was proposed by
Benders [31] for integer linear problems (ILPs) and extended
to solve general mixed integer problems by Geoffrion [32].
A comprehensive introduction is given by Floudas [33], who
further defined special cases of the GBD that we make use of.

As we do not consider the GBD as well-known procedure,
we give a short comprehensive introduction on the main
intuition here that roughly follows those given in [32], [33].
For the mathematically concise development, we refer to
[32], [33], respectively. The core idea of a GBD is the notion
of complicating variables. These are variables which, if kept
fixed, render the remaining problem efficiently solvable by
allowing the application of known solutions or standard tech-
niques. By solving the problem with fixed complicating vari-
ables, an outer approximation with respect to these variables
can be generated. In particular, consider the problem3

min
x,y

f (x, y) s.t. g(x, y) ≤ 0, (4)

where y are complicating variables. Then, this problem can
equivalently be written as [32]

min
y
v(y) s.t. y ∈ Y, where (5)

v(y) = inf
x
f (x, y) s.t. g(x, y) ≤ 0 and (6)

Y = {y|∃x : g(x, y) ≤ 0}. (7)

In words, v(y) is obtained by keeping y fixed and optimizing
for x, while the optimization in y is done in an outer step.
Optimization for x is assumed to be ‘‘easy’’ because it is y that
complicates the problem. Problem (5) is referred to asmaster
problem and that of optimizing the right hand side of (6) as
primal problem, while Y is the set of y for which the primal

3Note that we re-use variables here due to the standardized formulation of
optimization problems [32], [33]. These have nothing to dowith the variables
for the utility function given in the previous and following sections.

problem has a solution. Under certain assumptions, the func-
tion v(y) and set Y can be approximated using Lagrangian
duality. In particular, if f (x, y) and g(x, y) are convex in x
for fixed y, then strong duality holds for the primal problem
and, given the Lagrange function LP(x, y,λ) for multipliers λ,
it holds that [33]

v(y) = inf
x
sup
λ≥0

LP(x, y,λ) = sup
λ≥0

inf
x
LP(x, y,λ)

≥ inf
x
LP(x, y,λk ) ∀λk ≥ 0. (8)

According to the last line, for fixed λ := λk , the function
ζk (y) = infx LP(x, y,λk ) can be interpreted as supporting
function to v(y), i.e., v(y) ≥ ζk (y) and v(y′) = ζk (y′) for
a specific y′. As result, v(y) can be approximated below by
v̂(y) = maxk ζk (y), using a finite number of such ζk (y).
Similarly, consider the problem

min
x

0 s.t. g(x, y) ≤ 0, (9)

which is called feasibility problem [32], [33].4 Given the
Lagrangian LF (x, y,λ) associated with this problem, a point y
is shown to be in Y if, and only if [32],

inf
x
LF (x, y,λ) ≤ 0 ∀λ ≥ 0. (10)

In words, if there exists a single multiplier vector λ ren-
dering (10) positive for given y, then y /∈ Y , and if not,
then y ∈ Y . Similar to the function v(y), the set Y can be
outer approximated by a number of constraints ξl(y) ≤ 0,
where ξl(y) := infx LF (x, y,λl) for fixed λl , respectively.
Both approximations ζk (y) and ξl(y) lead to a relaxed master
problem of the form

min
µ,y

µ s.t. µ ≥ ζk (y) ∀k, ξl(y) ≤ 0 ∀l, (11)

where the constraints µ ≥ ζk (y) ∀k realize the function
v̂(y) = maxk ζk (y) and the constraints ξl(y) ≤ 0 approxi-
mate Y , respectively.

The rough flow of the GBD algorithm now follows by
iteratively re-fining the set of ζk (y) and ξl(y) [32], [33]:
(0) Start with an approximation of v(y) and Y . (1) Solve the
relaxed master problem, yielding an outcome yk . (2) If the
primal problem is feasible, identify new function ζk (y) and
add constraint µ ≥ ζk (y). This re-fines the approximation of
v(y). (3) If it is infeasible, identify λl such that ξl(yk ) > 0
and add constraint ξl(y) ≤ 0. This re-fines the approximation
of Y . (4) If optimality criterion is not met, go to (1).

The multipliers λl in step (3) can be identified as Lagrange
multipliers associated with the solution to particular feasi-
bility problems, as is summarized in [33], respectively. The
given algorithm describes an iterative solution that relies on a
consecutive outer approximation of the problem space. That
is, the master problem starts with a coarse approximation
of its problem space and optimizing function and with each
iteration a new constraint is added that refines the problem,

4Because the objective function is constant, any feasible point is also
optimal, so the problem is that of finding a random feasible point.
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until it is accurate enough to allow an optimal solution (or
in general, until a convergence criterion such as a maximum
error bound is satisfied). A key property is finite convergence,
which guarantees that the refinement terminates within a
finite number of steps. This holds under certain conditions,
e.g., if the master problem is purely integer [32].

A. PRIMAL AND FEASIBILITY PROBLEM
We will now generate the primal and feasibility problem of
the GBD. We choose x and r as complicating variables, such
that they are kept fixed in the primal and feasibility prob-
lem. As result, all constraints that only contain complicating
variables can be neglected. In particular, the constraints h(r)
and g(x) contain only complicating variables and hence play
no role for the primal and feasibility problem. The primal
problem can be formulated as

(P) max
p̃,γ̃

∑
i∈L

Ui(ri) (12a)

s.t. γ̃ (k)
xi ≤ γ̃

(k)
i ∀i, k (12b)

eγ̃
(k)
i

(∑
j 6=i

h(k)ij

h(k)ii
ep̃

(k)
j +

σ
(k)
i

h(k)ii

)
e−p̃

(k)
i ≤ 1 ∀i, k

(12c)

p̃i ≤ p̃i ∀i. (12d)

If (P) is found to be infeasible due to the choice of x,
a feasibility problem is solved, which is of the form
[33, Ch. 6.3.3.1]:

(F) min
z,p̃,γ̃

p

√∑
i∈L

∑
k∈R

(
z(k)i
)p

(13a)

s.t. z(k)i ≥ 0 ∀i, k (13b)

γ̃ (k)
xi ≤ γ̃

(k)
i ∀i, k (13c)

eγ̃
(k)
i

(∑
j 6=i

h(k)ij

h(k)ii
ep̃

(k)
j +

σ
(k)
i

h(k)ii

)
e−p̃

(k)
i − 1 ≤ z(k)i

(13d)

p̃i ≤ p̃i ∀i. (13e)

The feasibility problem aims at minimizing the slack vari-
ables z(k)i on equation (13d) with respect to an `p norm for
p ∈ N+, p ≥ 1, under the constraint that z(k)i ≥ 0. As is
summarized in [33], the optimal Lagrange multipliers of (F)
satisfy ξl(y) > 0 whenever (P) is infeasible. On the other
hand, the optimal value of (F) is zero if and only if (P) is
feasible.

We can now compare the two problems (P) and (F) and
find that (P) can be solved by (F): As the utility of (P) is
constant, any feasible point is in fact also optimal. However,
if a feasible point exist, it is found by the feasibility problem.
As result, it is sufficient to optimize (F).

B. INVESTIGATION OF THE FEASIBILITY PROBLEM
As can be seen from (13c) and (13d) that, without loss of
generality, γ̃ (k)

i := γ̃
(k)
xi is an optimal variable choice, because

it is the feasible value of γ̃ (k)
i that allows the smallest value

of z(k)i . This choice corresponds to setting the SINR constraint
to that imposed by the fixed MCS variable x(k)i . Using this,
(13d) can be reformulated into

eγ̃
(k)
xi

1+ z(k)i

∑
j 6=i

h(k)ij

h(k)ii
ep̃

(k)
j +

σ
(k)
i

h(k)ii

− ep̃(k)i ≤ 0. (14)

We now define the values γ (k)′

i := eγ̃
(k)′
i = eγ̃

(k)
xi /(1 + z(k)i ),

which can be interpreted as an achieved SINR, as the term
may take any value smaller than the actual SINR. Reverting

the relationship yields z(k)i = eγ̃
(k)
xi −γ̃

(k)′
i − 1. By plugging the

relations into (F), a problem equivalent to (F) can stated as:

min
p̃,γ̃ ′

∑
i∈L

∑
k∈R

(
eγ̃

(k)
xi −γ̃

(k)′
i − 1

)p
s.t. γ̃ (k)′

i ≤ γ̃ (k)
xi ∀i, k (15)

eγ̃
(k)′
i

(∑
j 6=i

h(k)ij

h(k)ii
ep̃

(k)
j +

σ
(k)
i

h(k)ii

)
− ep̃

(k)
i ≤ 0 ∀i, k (16)

ep̃
(k)
i ≤ p(k)i ∀i, k. (17)

In words, the feasibility problem is that of minimizing
a polynomial of factors γ (k)

xi /γ
(k)′

i , under the constraints
that the variables γ (k)′

i exceed neither the achieved SINR
(equation (16)), nor the targets γ (k)

xi (equation (15)). The
stated problem is convex on continuous problem space and
satisfies Slaters’ condition. Hence, it has either one unique
local optimum that is also globally optimal or several local
optima that all are globally optimal. For any local optimum,
theKarush-Kuhn-Tucker (KKT) conditions are necessary and
sufficient, hence they can serve to identify optimal points.
The associated Lagrange function is:

L =
∑
i∈L

∑
k∈R

[(
eγ̃

(k)
xi −γ̃

(k)′
i − 1

)p
+µ

(k)
i

[
γ̃
(k)′

i − γ̃ (k)
xi

]
+ ν

(k)
i

[
ep̃

(k)
i − p(k)i

]
+ η

(k)
i

eγ̃ (k)′i

∑
j 6=i

h(k)ij

h(k)ii
ep̃j +

σ
(k)
i

h(k)ii

− ep̃(k)i
 , (18)

where µ(k)
i ≥ 0, η(k)i ≥ 0 and ν(k)i ≥ 0 are multipliers.

As the defined problem is convex, the optimal solution can
be found by solving min

p̃,γ̃ ′
max
µ,η,ν

L(p̃, γ̃ ′,µ, η, ν). That is, p̃ and

γ̃ ′ should be chosen tominimize L, whereasµ, η and ν should
be chosen to maximize it. The KKT conditions can be derived
by setting ∂L/∂γ̃ (k)′

i = 0 and ∂L/∂ p̃(k)i = 0. The derivatives
of the Lagrange function L with respect to γ̃ (k)′

i and p̃(k)i are:

∂L/∂γ̃ (k)′

i = −peγ̃
(k)
xi −γ̃

(k)′
i

(
eγ̃

(k)
xi −γ̃

(k)′
i − 1

)p−1
+η

(k)
i eγ̃

(k)′
i

∑
j 6=i

h(k)ij

h(k)ii
ep̃j +

σ
(k)
i

h(k)ii

+ µ(k)
i (19)
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∂L/∂ p̃(k)i = ep̃
(k)
i

∑
j 6=i

eγ̃
(k)′
j

hji
hjj
η
(k)
j − η

(k)
i + ν

(k)
i

 . (20)

The corresponding complementary slackness conditions are:

η
(k)
i

[
eγ̃

(k)′
i

(∑
j 6=i

h(k)ij

h(k)ii
ep̃

(k)
j +

σ
(k)
i

h(k)ii

)
− ep̃

(k)
i

]
= 0 ∀i, k

ν
(k)
i

[
ep̃

(k)
i − p(k)i

]
= 0; µ

(k)
i

[
γ̃
(k)′

i − γ̃ (k)
xi

]
= 0 ∀i, k.

Now some properties of optimal solutions can be observed:
Proposition 2: There always is an optimal point such that

γ
(k)′

i = min{0(k)
i (p), γ (k)

xi }.
Proof: Observe that if γ (k)′

i = γ
(k)
xi , constraint (15) is

tight and if γ (k)′

i = 0
(k)
i (p), constraint (16) is. Assume that

γ
(k)′

i < min{0(k)
i (p), γ (k)

xi }, then due to the complementary
slackness conditions, η(k)i = µ

(k)
i = 0. Plugging this into (19)

leads to ∂L/∂γ̃ (k)′

i < 0. Thus, by increasing γ̃ (k)′

i , a lower
value of L can be obtained and the chosen γ (k)′

i cannot be
optimal. The result is that for the optimal γ̃ (k)′

i one of (15),
(16) must be tight, leading to the stated observation.
Proposition 3: There always exists an optimal point for

which γ (k)′

i = 0
(k)
i (p) ∀i holds. Proof: Again observe

that γ (k)′

i = 0
(k)
i (p) corresponds to constraint (16) being

tight. Assume that γ (k)′

i < 0
(k)
i (p) at optimality, then due

to the complementary slackness conditions, η(k)i = 0. As all
considered variables are non-negative, plugging this into (20)
leads to ∂L/∂ p̃(k)i ≥ 0, with equality if, and only if η = 0

and ν(k)i = 0. Due to the complementary slackness condi-
tions, the case of all multipliers being zero can be optimal
only when all links fully achieve the SINR targets γ (k)

xi ,
i.e., when (P) is feasible. In this case any feasible power
vector is an optimal point, so there can be multiple optima.
If ∂L/∂ p̃(k)i = 0 holds, the value of p̃(k)i may be decreased

until γ (k)′

i = 0
(k)
i (p) without loosing optimality. Otherwise,

∂L/∂ p̃(k)i > 0, so by decreasing p̃(k)i the value of L will
definitely be decreased, leading to a contradiction on the
optimality assumption.
Proposition 4: For at least one optimal point,

p(k)i = min

γ (k)
xi

∑
j 6=i

h(k)ij

h(k)ii
p(k)j +

σ
(k)
i

h(k)ii

 , p(k)i
 ∀i (21)

holds. Proof:
The combination of Proposition 2 and 3 lead to the corol-

lary that there is an optimal point such that 0(k)
i (p) = γ (k)′

i ≤

γ
(k)
xi ∀i. Using the expression for SINR, this can be reformu-

lated into

p(k)i ≤ γ
(k)
xi

∑
j 6=i

h(k)ij

h(k)ii
p(k)j +

σ
(k)
i

h(k)ii

 , (22)

which holds with equality if, and only if, γ (k)′

i = γ
(k)
xi .

Equation (21) thus corresponds to the claim that if

γ
(k)′

i < γ
(k)
xi , then p(k)i = p(k)i must hold. To prove this,

a perturbation analysis is done: Assume that γ (k)′

i < γ
(k)
xi and

p(k)i < p(k)i , which induces µ(k)
i = 0 and ν(k)i = 0, i.e., no

constraint is active and the optimal values γ (k)′

i and p(k)i are
in the relative interior of their feasible domains. Because of
this, the value of γ (k)

xi can be unilaterally altered into any
value γ (k)′

xi , γ (k)′

i < γ
(k)′
xi < γ

(k)
xi , while keeping γ (k)

xj with
j 6= i constant. Now the original problem using γ (k)

xi can be
interpreted as relaxation of the perturbed problem with γ (k)′

xi .
It is known that if the solution of a relaxed problem lies in
the non-relaxed optimization domain, it is also optimal for
the non-relaxed problem [33]. So as the optimal values of
p(k)i , γ (k)′

i are within the perturbed optimization domain by
design, they must remain optimal throughout the perturbation
process. However, by demanding ∂L/∂γ̃ (k)′

i = ∂L/∂ p̃(k)i = 0,
considering that µ(k)

i = ν
(k)
i = 0 ∀i, k still holds, reformu-

lating (19), (20) and combining the results, it can be deduced
that at any optimal point,

η
(k)
i =

∑
j 6=i

γ
(k)′

j

h(k)ji

h(k)jj
η
(k)
j ; η

(k)
i =

pγ (k)
xi

(
γ
(k)′
xi

γ
(k)′
i

− 1
)p−1

(γ (k)′
i )2I (k)i (p)

;

(23)

where I (k)i (p) =
∑

j 6=i
h(k)ji
h(k)ii

p(k)j +
σ
(k)
i

h(k)ii
. It can be seen that in

the right expression, η(k)i depends on γ (k)′
xi but is independent

of γ (k)
xj , j 6= i. In the left expression η(k)i depends on all γ (k)

xj

because the optimal multipliers η(k)j do, respectively, but is

independent of γ (k)′
xi . Any unilateral change of γ (k)′

xi cannot
satisfy both expressions anymore, because it would change
the optimal η(k)i , while η(k)j would have to remain constant.
So optimal points of the original problem cannot remain
optimal after perturbation. This forms a contradiction to the
assumption that γ (k)′

i , p(k)i are in the relative interior of the
optimization domain, for which they would have to remain
optimal. As conclusion, γ (k)′

i < γ
(k)
xi and p(k)i < p(k)i cannot

hold at the same time. Taking this result, the conclusion is that
if γ (k)′

i = 0
(k)
i (p) < γ

(k)
xi , then p(k)i = p(k)i must hold and vice

versa, leading to equation (21).
The result of Proposition 4 is important, as it relates the

RMP to a set of well-known power control algorithms. The
power-constrained Foschini-Miljanic PCA (FM-PCA) [34]
iteratively adapts powers exactly according to the rule

p(k)i [t + 1] = min

γ (k)
xi

∑
j 6=i

h(k)ij

h(k)ii
p(k)j [t]+

σ
(k)
i

h(k)ii

 , p(k)i
 .
(24)

It is known to always converge to a unique point, at which
(21) holds. The power control algorithm (PCA) can be imple-
mented in a distributed fashion, where each transmitter and
receiver optimize solely themselves but do not coordinate
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with other links. Also, it does not require any explicit infor-
mation on channel gains but can be implemented using SINR
values, because the left part of the update rule can be inter-
preted as [35]:

γ (k)
xi

(∑
j 6=i h

(k)
ij p

(k)
j [t]+ σ (k)

i

h(k)ii p
(k)
i [t]

)
p(k)i [t] =

γ
(k)
xi

0
(k)
i (p[t])

p(k)i [t].

(25)

The PCA is known to converge towards its solution with at
least linear rate. Typically, convergence can be claimed after
6-10 iterations, where one iteration comprises one transmis-
sion and one SINR feedback. The algorithm has been further
re-fined for a variety of use-cases, including the use of safety
margins on the SINR target [35], asynchronous operation [36]
and discrete power levels [37].

The conclusion of Proposition 4 is that Foschini-Miljanic
type PCAs can be used to determine the optimal solution
of the feasibility problem. By letting the algorithm run for
a sufficient amount of iterations and then setting γ (k)′

i =

0
(k)
i (p), the optimal value of γ (k)′

i can be found.

C. THE MASTER PROBLEM
After adapting the feasibility problem, the master prob-
lem needs to be derived. In particular, constraints must be
added to it from each instance of (P) and (F). We start
with constraints of (F), which generate a bound of the
form ξl(x, r) ≤ 0. Let xl , rl be the current choice of
complicating variables. We need to identify the arguments
of argminp̃,γ̃ maxγ̃ ,τ ,η,ν LF (xl, rl, p̃, γ̃ , τ , η, ν) to generate
ξl(x, r) [32]. By considering the formulation (13a)-(13c),
the Lagrangian function corresponding to (F) takes the form
of:

LF = ‖z‖p +
∑
i∈L

∑
k∈R

[
τ
(k)
i

[
γ̃ (k)
xi − γ̃

(k)
i

]
+ν

(k)
i

[
ep̃

(k)
i − p(k)i

]
−

∑
i∈L

µ
(k)
i z(k)i +

η
(k)
i

eγ̃ (k)i

∑
j 6=i

h(k)ij

h(k)ii
ep̃

(k)
j +

σ
(k)
i

h(k)ii

 e−p̃
(k)
i −1−z(k)i

 .
(26)

where τ (k)i ≥ 0, η(k)i ≥ 0, ν(k)i ≥ 0 and µ(k)
i ≥ 0

are multipliers. Defining LF to be LF |z=0, ξl(x, r) =
infp̃,γ̃ LF (x, r, p̃, γ̃ , τ l, ηl, νl) is given by [32]:

ξl(x, r) =
∑
i∈L

∑
k∈R

[
τ
(k)
i

[
log(γ T

i x
(k)
i )− γ̃ (k)

i

]

+η
(k)
i

[
γ
(k)
xl ,i

0
(k)
i (p)

− 1

]]
,

where the variables τ l , ηl and νl are kept fixed at the optimal
values derived from minimizing LF [33]. It was used that
for fixed multipliers, the optimization with respect to p̃ and
γ̃ is independent of the complicating variables x, r and that

the optimal values must equal those derived in the instance
of (F) [33]. As result, all neglected terms must be zero due to
the complementary slackness conditions. It can be seen that
ξl(x, r) = ξl(x) is in fact independent of r. It remains to derive
the optimal values of τ (k)i and η(k)i . Consider the derivatives
of the Lagrangian LF ,

∂LF/∂z
(k)
i =

(
z(k)i
‖z‖p

)p−1
− η

(k)
i − µ

(k)
i , (27)

∂LF/∂γ̃
(k)
i = η

(k)
i eγ̃

(k)
i /0

(k)
i (p̃)− τ (k)i , (28)

and the complementary slackness conditions:

η
(k)
i

[
eγ̃

(k)
i /0

(k)
i (p̃)− 1− z(k)i

]
= 0; µ(k)

i z(k)i = 0.

Proposition 5: The choices of

τ
(k)
i : = η

(k)
i

γ
(k)
xl ,i

0
(k)
i (p)

; η
(k)
i =

(
z(k)i
‖z‖p

)p−1

with z(k)i : =

[
γ
(k)
xl ,i

0
(k)
i (p)

− 1

]+
∀i, k (29)

are optimal multipliers.
Proof: Setting ∂LF/∂γ̃

(k)
i to zero yields τ (k)i :=

η
(k)
i γ

(k)
i /0

(k)
i (p) = η

(k)
i γ

(k)
xi /0

(k)
i (p), where the optimal

choice of γ (k)
i := γ

(k)
xi was used. Now, assume that at optimal-

ity, z(k)i > 0. From the complementary slackness, this leads

to µ(k)
i = 0, to η(k)i =

(
z(k)i /‖z‖p

)p−1
from setting ∂LF/∂z

(k)
i

to zero and hence to the stated result by using the optimal
value of z(k)i . On the other hand, assume that z(k)i = 0, then
µ
(k)
i +η

(k)
i = 0 must hold for p > 1, yielding τ (k)i = η

(k)
i = 0.

A special case is p = 1 and z(k)i = 0, in which µ(k)
i +η

(k)
i = 1

must hold. In this case, for any value of µ(k)
i ∈ [0, 1] there

is a η(k)i ≥ 0 such that ∂LF/∂z
(k)
i is zero, rendering both

together optimal. Although not unique, the choice µ(k)
i = 0

remains an optimal multiplier here and leads to η(k)i = 1 and
τ
(k)
i = γ

(k)
xi /0

(k)
i (p), respectively.

This finally yields functions of the form:

ξl(x)=
∑
i∈L

∑
k∈R

[
τ
(k)
l,i

[
log(γ T

i x
(k)
i )− γ̃ (k)

xl ,i

]
+η

(k)
l,i z

(k)
l,i

]
(30)

where

τ
(k)
l,i : =

(
z(k)l,i
‖zl‖p

)p−1
γ
(k)
xl ,i

0
(k)
i (pl)

, η
(k)
l,i =

(
z(k)l,i
‖z‖p

)p−1
,

z(k)l,i : =

[
γ
(k)
xl ,i

0
(k)
i (pl)

− 1

]+
∀i, k.

Now consider a feasible primal problem, in which case a
constraint ζk (x, r) is generated from the Lagrange function
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of (P). The Lagrange function reads:

LP =
∑
i∈L

[
−Ui(ri)+

∑
k∈R

τ
(k)
i

[
γ̃ (k)
xi − γ̃

(k)
i

]]

+

∑
i∈L

∑
k∈R

[
η
(k)
i

[
eγ̃

(k)
i

0
(k)
i (p̃)

− 1

]
+ ν

(k)
i

[
ep̃

(k)
i − p(k)i

]]
.

This leads to a constraint function of:

ζ (x, r) = min
p̃,γ̃

LP(x, r, p̃, γ̃ )

= −

∑
i∈L

Ui(ri)+
∑
k∈R

τ
(k)
i

[
log(γ T

i x
(k)
i )− γ̃ (k)

xl ,i

]
,

where the same arguments as for ξl(x) were used. Again,
an optimal value of the multipliers τ (k)i must be determined.
We have argued already that any feasible point found with
the feasibility problem (F) is also optimal to (P). Further,
the difference among their Lagrangian functions is LF−LP =∑

i Ui(ri), which is a constant term for fixed r. As result,
the KKT and complementary slackness conditions of LF and
LP are the same, rendering optimal multipliers derived from
(F) with z = 0 also optimal for (P). As we have argued in
the context of (F), for z(k)i = 0, any multiplier η(k)i ∈ [0, 1]
can be claimed optimal, from which follows that any τ (k)i ∈

[0, γ (k)
xi /0

(k)
i (p)] is optimal for (P). We choose τ (k)i = 0 in

this context, as it simplifies the form of ζk (x, r) to:

ζk (x, r) = −
∑
i∈L

Ui(ri).

The obtained master problem in general form is that
of [32]:

(M) min
µ,x,r

µ s.t. µ ≥ ζk (x, r), (2c)-(2g), ξl(x) ≤ 0 ∀l.

By using the generated bounds, it can be stated in explicit
form as:

(M) max
x,r

∑
i∈L

Ui(ri)

s.t. (2c)-(2g),
∑
i∈L

∑
k∈R

τ
(k)
l,i log(γ

T
i x

(k)
i ) ≤ Wl∀l, (31)

where Wl = τTl γ̃ xl − ηTl zl , respectively.
As can be seen, the master problem (M) might be

non-convex and is in general complex to solve, as it is a
mixed-integer problem. However, note that it can easily be
transformed into a purely integer problem when the utility
functions Ui(ri) are non-decreasing, which is the case for
the most commonly used functions, e.g., weighted sum-rate
or proportional fair rates, and h(r) enforces minimum rate
constraints, which is an often made assumption in literature.
In this case, the constraints (2c) and (2d) can be assumed
tight at optimality, because lower rates do not produce larger
utility. Thus, equations (2a)-(2d) may be replaced with two
lines as

max
x,p,γ

∑
i∈L

Ui

(∑
k∈R

dTi x
(k)
i

)
s.t. h

(∑
k∈R

dTi x
(k)
i

)
≤ 0. (32)

Algorithm 1 Semi-Decentralized Scheduling
1: Choose utilities Ui(ri) and constraints h(r), g(x)
2: Choose p for `p norm, T > 0, ε > 0, set l := 0.
3: Initialize bounds as: UB := ∞, LB := −∞
4: while UB− LB ≥ ε do
5: l := l + 1
6: Solve (M), yielding xl , r.
7: Set UB := min{UB,

∑
i∈L Ui(ri)}

8: Communicate xl to all links
9: Initialize p[1] := p
10: for t = 1,. . . ,T do
11: Transmit with p[t], using MCS xl
12: Rx’s feed back SINRs 0(k)

i (p[t]) to Tx’s
13: Set p(k)i [t + 1] := min{p(k)i [t]γ (k)

xl ,i/0
(k)
i (p[t]), p(k)i }

14: end for
15: Tx’s report SINRs 0(k)

i (p[T ]) to BS
16: Add constraint ξl(x) ≤ 0 to (M) according to (30)
17: Set x̂(k)qi := 1{qi = argmax{rqi : 0

(k)
i (p[T ]) ≥ γqi}}

18: Set r̂i =
∑

k∈R rTi x̂
(k)
i

19: Set LB := max{LB,
∑

i∈L Ui(r̂i)}
20: end while
21: Output: x̂, p[T ].

i.e., the variables r are not part of the optimization anymore.
Further, the logarithm in (31) can be approximated by defin-
ing a vector γ̃ = log γ and a parameter θ ≫ 0, yielding

log(γ T
i x

(k)
i ) ≈ γ̃

T
i x

(k)
i − θ

(
1− 1T x(k)i

)
. (33)

As long as 1T x(k)i = 1, the approximation is exact, yielding
the SINR target of chosen MCS in logarithmic domain. Only
if no MCS is chosen, the approximation is not exact, as the
actual value would by minus infinity, effectively deactivating
the respective constraint in (31). By choosing θ large enough,
this behavior can be reproduced, leading to an equivalent
formulation.

IV. ALGORITHM & PERFORMANCE STATEMENTS
From the applied GBD, we can derive a semi-decentralized
scheduling mechanism as shown in Algorithm 1 and, more
comprehensively, in the flow-chart of Figure 2. The intuition
is as follows: At first, the scheduling problem is solved at
the BS, neglecting completely the SINR constraints (2h)-(2j).
The resulting schedule and MCS assignment is communi-
cated to the transmitters, which derive the associated SINR
targets. Then, the power-constrained FM-PCA is run for T
iterations and the last measured SINR values are reported
back to the BS. The BS adds a constraint of the form ξl(x) ≤
0 to the master problem and by this incorporates an esti-
mate for which MCS combinations can be achieved with
the current channel state into future scheduling instances.
For example, if the SINR constraints of an MCS assignment
could not be satisfied, this particular assignment and some
more infeasible assignments are eliminated from all future
schedules. With this additional constraint, a new schedule
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FIGURE 2. Flowchart of Algorithm 1.

is calculated and the whole procedure is repeated. In the
course of repetitions, the space of feasible MCS assignments
is explored and bounded until it is known well enough to
find a close-to-optimal schedule. To evaluate how close the
quality is to the optimum solution, an upper bound UB and
lower bound LB of the optimal utility are tracked during
algorithm execution. The UB thereby considers the smallest
so far targeted utility as outcome of the master problem (M),
i.e., the smallest observed upper bound to the optimum, while
the LB considers the largest actually achieved utility as result
of the PCA, which is the largest observed lower bound. When
UB and LB are within a tolerable range ε, the algorithm
terminates.

A. PERFORMANCE STATEMENTS
We will now present performance statements of proposed
Algorithm 1. For this, we define the sets FX = {x | ∃γ ,
p : (2e)-(2j)} and Fl = {x | (2e)-(2g), ξn(x) ≤ 0 ∀n < l}.
While FX denotes the actual set of feasible x, i.e., MCS
assignments that satisfy all scheduling constraints and can be
satisfied for a valid power vector, the set Fl denotes the valid
MCS assignments at the l’th instance of (M), respectively.
Note that by design, it holds that Fl ⊇ FX ∀l [32].
Proposition 6: For increasing T , the result of the for loop

in lines 10-14 converges towards an optimal solution of (F)
with linear rate.

Proof: It is a well established result of power control
theory [8], [30], [34], [36] that the loop in lines 10-14 con-
verges to a unique fixed point with linear rate. As we have
shown in Proposition 4, the fixed point is an optimal solution
to (F).
Note that more specific convergence bounds can be

derived by using results from Perron-Frobenius Theory [30],

particularly stating the accuracy of obtained multipliers.
However, these are out of the scope of this work and depend
heavily on the actual channel coefficients, more precisely
on the spectral radius of the relative gain matrix [30].
Sufficiently good values for T must therefore be derived by
experience in practice.
Proposition 7: For any T < ∞, proposed Algorithm 1

terminates within a finite number of steps when ε > 0, and
even when ε = 0.

Proof: Consider the constraints ξl(x) given in (30),
which are added after each instance of (F). By using the
definitions, it must hold that log(γ T

i x
(k)
l,i ) = γ̃

(k)
xl ,i ∀i, k and

hence ξl(xl) ≥ 0, with equality if, and only if, z(k)i = 0
∀i, k . As result, it holds that Fl+1 ⊆ (Fl \ xl), i.e., xl is
removed from the domain of (M) for any future instance if it
was infeasible. Now observe that the set F1, defined simply
by (2e)-(2g), is finite and that LB = UB holds whenever
xl is found to be feasible, triggering the termination of the
algorithm. Assume that the algorithm would never terminate.
Then at each instance, at least one vector xl is removed from
the finite domain of (M), thus at some point, it would have
to be empty, rendering the (M) infeasible. As optimization
over an infeasible space yields UB := −∞, the termination
criterion would be met, contradicting the assumption that the
algorithm does not terminate.
Propositions 6 and 7 together create the picture that

increasing T , the accuracy of solving (F) is increased,
which also increases the accuracy of obtained bounds ξl(x).
However, even for low T , the algorithm will always terminate
and produce an output result. Although this tells nothing
about the actual complexity, nor on the quality of the pro-
duced output, it guarantees awell-defined functionality in any
case, as the algorithm will never be caught in a deadlock.
Proposition 8: Assume an algorithm for solving (M) that,

for each instance l, is guaranteed to produce a solution (xl, rl)
with utilityU (rl) ≥ αU (r∗l )−β, where (x

∗
l , r
∗
l ) is the optimal

solution to the l’th instance of (M), α ∈ [0, 1] and β ≥ 0.
Then, using this algorithm for solution of (M) and for T
large enough, upon termination Algorithm 1 will produce a
solution (x′, r′) such that U (r′) ≥ αU (r∗)− β − ε.

Proof: If T is large enough, the result of the PCA
converges arbitrarily close the optimal solution of (F) or (P)
due to convergence with linear rate. Assume T it to be so
large that the solution inaccuracy is negligible. Let UB[l] =
min{UB[l− 1],U (r′l)} with UB[0] := ∞ be the upper bound
obtained from the l’th instance of (M) with the approxima-
tion. It holds ∀l that

UB[l] = inf{U (r′1), . . . ,U (r′l)}

≥ inf{αU (r∗1)− β, . . . , αU (r∗l )− β}

≥ αU (r∗)− β. (34)

The last inequality holds because each instance of (M) is a
relaxation to the original problem, as Fl ⊇ FX ∀l, and hence
U (r∗l ) ≥ U (r∗) ∀l. As the algorithm terminates whenU (r′) =
LB[l] ≥ UB[l]− ε, the result holds.
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In particular, by choosing α = 1, β = 0 and ε = 0,
Proposition 8 states that when the master problem is solved
optimally, Algorithm 1 converges to the optimal solution of
the targeted problem. Concluding this section, Algorithm 1
has the properties that (i) it always terminates in a finite
number of steps, (ii) approximation statements that can be
made for the master problem transfer to the overall solution
and (iii) the larger T , the more precise the solution of the
feasibility problem becomes.

B. OVERHEAD & COMPLEXITY
We stated already that the problemwe investigate is generally
NP-complete, due to the coupling of the binary decision
variable with SINR-constraint. Because we show that our
approach allows optimal solution, we cannot expect it to run
fast for all instances and remain optimal. At this level of
generality, the only analytic complexity statement we can
make is that the overall complexity is �(K ·�((M ))), where
�((M )) is the complexity of (M) andK is the required number
of outer iterations. While we might give values for�((M )) in
specific cases, K is in general unknown. We will therefore
assess it in the simulative analysis in Section V.

As for information exchange, Algorithm 1 contains (i) the
broadcast of a schedule of |L||R| numeric values in line 8
after each master problem solution, (ii) |L||R| SINR reports
from receiver to transmitter per PCA step in line 12 and (iii)
|L||R| final SINR reports in line 15. So if the algorithm
requires K outer iterations and has T PCA steps per iteration,
the overall reports require transportation of K (T + 2)|L||R|
numeric values over signaling channels. As the algorithm
runs for KT slots, on average (1 + 2/T )|L||R| values are
transported per slot. Note that the reporting overhead grows
linearly with the number of links. In comparison, the average
overhead of full channel measurement reporting that is done
every K slots in the order of�(|L|2|R|/K ) per slot [4], as all
channel values need to be communicated to the base station.

C. SOLVING A PARTICULAR MASTER PROBLEM
Due to our general formulation, clearly we cannot expect to
give a solution that applies to all cases of (M). We therefore
investigate solution of a particular problem, which is that
of Weighted Sum-Rate (WSR) maximization with minimum
connectivity demands for cellular links. We stress that our
previous performance assessment remains valid for a large
range of problems, such that we can use Algorithm 1 in
a variety of set-ups by just changing the way the master
problem is solved in line 6, respectively.

Mathematically, WSR maximization corresponds to
(M) withUi(ri) = wiri ∀i, wherewi ≥ 0 is a weighting factor,
and an empty h(r). Using (32) and (33), defining as C ⊆ L
the set of cellular uplinks, as D ⊆ L \ C that of D2D links
and setting Ri = R ∀i, we can formulate the problem as:

(WSR-M) max
x,r

∑
i∈L

∑
i∈L

wi
∑
k∈R

dTi x
(k)
i s.t. (2e)-(2g),

1−
∑

k∈R

∑
q∈Xi

x(k)qi ≤ 0 ∀i ∈ C, (35a)

∑
i∈C

∑
q∈Xi

x(k)qi − 1 ≤ 0 ∀k ∈ R, (35b)∑
i∈L

∑
k∈R

τ
(k)
n,i (γ̃ i + θ1)

T x(k)i
−Wn − θ

∑
i∈L

∑
k∈R

τ
(k)
n,i ≤ 0 ∀n ≤ l. (35c)

Note that the constraints (35a)-(35c) are instances of the
scheduling constraint vector g(x). Constraint (35a) ensures
that all cellular links remain connected, i.e., may choose at
least one MCS on a PRB, while (35b) demands that not more
than one uplink uses a PRB and (35c) is a reformulation of the
master constraints (31) that were adapted using (32) and (33).
For ease of notation, we use gn(x) ≤ 0 to refer to the n’th
instance of (35c) in the following.

Problem (WSR-M) takes the form of a multi-dimensional
Knapsack problem, which is hard to solve exactly. However,
we can approximate it in the following fashion: In addition
to the constraints given in (WSR-M), we add a scheduling
mask of the form x ≤ x̂l with x̂(k)l,qi ∈ {0, 1} ∀q, i, k to
the l’th master problem instance, that forbids certain links
the use of specific MCS on specified PRBs. We begin with
x̂0 such that x̂(k)0,qii

= 1{τ
(k)
n,i γ qi ≤ Wn ∀n ≤ l}, which

allows each link to use any MCS setting of maximum rate
that alone would not violate a gn(x). Then, for each master
constraint gn(x), n ≤ l, in (35c), we construct the vector
xn = [xTn,1, . . . , x

T
n,L]

T with x(k)n,qii = 1{qi = sup{qi ∈ Xi |

x̂(k)n−1,qii
= 1}}, that indicates the maximum allowed MCS,

and search for the resource-link combination of maximum
weight (i∗, k∗) = argmaxi,k{τ

(k)
n,i }. From this we construct

x̂n = [x̂Tn,1, . . . , x̂
T
n,L]

T by assigning x̂n,j = x̂n−1,j ∀j 6= i∗

and x̂i∗ := f n(γ
∗), where f n(γ

∗) is a vector valued function
with the elements f̂qi (γ

∗) := 1{γ qi∗ ≤ γ ∗} ∀qi∗ and γ ∗

is chosen to satisfy γ ∗ = sup{γ qi : gn(xn+1(γ qi )) ≤ 0}.
In words, for the resource-link combination with maximum
weight, we search for the maximum MCS that would not
violate gn(x) if all other links choose their maximum allowed
MCS. Note that we can always find a γ ∗ such that gn(x̂l) ≤ 0:
If the right hand side set of its assignment is empty, γ ∗ = −∞
and x̂(k

∗)
l,qi∗ i∗

= 0 ∀qi∗ ∈ Xi∗ . In this case, because of the effect
of θ discussed around (33), gn(x̂l) ≤ 0 holds true.
Because the constraint x ≤ x̂l allows only allocations that

satisfy gn(x̂l) ≤ 0, the master constraints (35c) become obso-
lete. The remaining problem can be split into two independent
problems, one for the cellular links that includes constraints
(35a)-(35b) and one for the D2D links. The cellular link
problem can be transformed into weighted bipartite matching
problem that can be solved in �(|C|3|R|3) operations using
the Hungarian method of Kuhn [38] and Munkres [39], while
the D2D link problem can be solved optimally in �(|D||R|)
operations by using a greedy assignment on each PRB. As we
will show now, the optimal solution of the adapted problem
is an approximation of the master problem:
Proposition 9: Denote by (WSR-M-A) the adapted ver-

sion of (WSR-M) with l constraints, where (35c) is replaced
by x ≤ x̂l with x̂l adapted as discussed above. Then the
optimal solution (WSR-M-A) approximates that of (WSR-M)
with α = 1 and β = l ·maxi,q{widqi}.
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Proof: For each of the l constraints gn(x) ≤ 0, n ≤ l,
in the worst case one link is unnecessarily completely deacti-
vated, which might reduce the WSR at most by maxi,q{widqi}
compared to the actual optimum.

V. SIMULATION RESULTS
To showcase the validity of the proposed structure, we present
simulation results for the discussed weighted sum-rate utility
in a scenario where D2D is allowed to use uplink bands.
For the sake of transparency, the entire tool-chain used for
simulation and evaluation, as well as the raw result data are
made available at [40].

A single cell is considered with six frequency channels
of 180 kHz width that are placed with center frequencies
of 2 GHz and larger and a slot-length of 1 ms. A predeter-
mined number of D2D links are distributed on a spatial area of
500m×500m, with the BS at the center and a maximumD2D
distance of 25 m. With each D2D link, an uplink UE is added
to the network, however, the total number of uplink UEs is
upper bounded to the number of frequencies (i.e., six) to
guarantee existence of a dedicated channel for each. Channel
attenuation is generated according to scenario C2 (Urban
Macro) of theWinner-II model [41], which takes into account
the distance based path loss, line-of-sight probability and
shadowing, based on the devices’ antenna heights. Different
MCS are used, corresponding to Long Term Evolution (LTE)
MCS, which range from Quadrature Phase Shift Keying
(QPSK) to 64 - Quadrature Amplitude Modulation (64-
QAM). EachMCS is associatedwith a data rate andminimum
SINR target according to [42, Appendix A2]. Whenever an
MCS is chosen, the associated SINR target was activated to
guarantee a defined performance. In general, it was assumed
that each UE uses at most one channel.

In this set-up, a sum-rate maximization problem was opti-
mized, using the proposed GBD-based method. Three differ-
ent reuse-policies were targeted: i) One-Fold Reuse (OFR):
Here, each channel is to be used at most by one D2D link and
under the constraint that all uplink UEs can achieve at least
the SINR of the minimum-rate MCS. ii) Multi-Fold Reuse
(MFR): Here, each channel may be used by any D2D link,
again under the constraint that all uplink UEs can achieve
at least the SINR of the minimum-rate MCS. iii) Arbitrary
Reuse (AR): Similar to MFR, AR allows the channels to be
used by any D2D link but drops the uplink SINR guarantees.

Before starting the comparison, we performed an impact
analysis of the used `p norm and number of PCA iterations T ,
which we unfortunately cannot show due to space restric-
tions. The result is that the achieved sum-rate is in general
independent of p. However, we use p = 2 in the following due
to fastest convergence. Further, to our surprise, the achieved
sum-rate does not improve significantly after T ≥ 2 and
fastest convergence can be achieved for T = 2. This is an
important practical insight, because theoretically, we can only
prove that T needs to be ‘‘sufficiently large’’. However this
sufficiency is given already after very few PCA iterations.

A. GENERAL PERFORMANCE
Using the approximate solution to (M) as presented in
Section IV-C, we compare OFR, MFR and AR for the a
SC-FDM use-case, in which each link is restricted to use a
single channel. The algorithm performance in terms of sum-
rate, convergence delay and achieved reuse factor is depicted
in Figure 3, where all data points represent averages over
network 1000 realizations. In Figure 3a we show the achieved
sum-rate, together with an upper bound that we achieved by
directly relaxing the integer constraint for each master prob-
lem. Note that this upper bound is not tight but overestimates
the achievable rate. Figure 3b shows the required delay to
termination, including the time for PCA but excluding opti-
mization, and 3c the achieved reuse-factor, which is the total
number of allocated links divided by the number of channels.
Figure 3c further shows the maximum reuse factor on a single
channel, achieved over all Monte-Carlo runs by either OFR,
MFR or AR. Surprisingly, MFR and AR show almost equal
performance. This is counter-intuitive, as technically AR is
a relaxation to MFR that allow reducing the performance
of uplinks to enable larger sum-rate by increased frequency
reuse. However, as both are close to the upper bound of AR,
we conclude that not much performance can be gained by
shutting down the cellular links.

It can be seen in the figures that for one-fold reuse,
the performance converges to a fixed value early. An aver-
age reuse factor of two is achieved for 15 links and more,
however, it also needs only four milliseconds (two master
problem instances) for convergence over the full range of
links. For MFR and AR, the sum-rate increases linearly
over the considered link range, which indicates that the
number of links could in principle be increased further, as the
network is not saturated yet. In fact, our analysis shows
that saturation effects slowly at begin around 200 nodes.
Algorithm delay increases slightly more than linearly and
achieves the mark of 100 ms, corresponding to a typi-
cal coherence time for low-movement scenarios, at around
100 links. Finally, the increase in reuse factors can be seen
in Figure 3c. While OFR allows reuse factors of up to two,
with MFR and AR the average reuse increases to 16 for
one hundred links. Even further, the maximum reuse fac-
tor reached throughout all simulation runs grows to 30 for
100 links, which is indeed an order of magnitude more than
the typically targeted one-fold reuse. Note that the OFR case
poses an upper bound to a series of works [9]–[11], [14], [18],
[20], [25], which therefore must achieve lower performance
compared to ours.

Figure 4 shows the mean computational delay for solu-
tion of the master problem (M), again averaged over
1000 instances. Note that the optimization was performed on
an Intel i7 core with 3.6 GHz clock frequency and executed
in Matlab using custom-built code that was not optimized for
speed. Surprisingly, it can be seen that OFR has the longest
optimization delay and is in the order of several ms after
about 25 links, while the optimization delay for MFR and
AR remain below 10 ms for the whole domain. While this is
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FIGURE 3. Simulation results for a sum-rate maximization problem in an SC-FDM scenario with the different interference constraints of One-Fold Reuse
(OFR), Multi-Fold Reuse (MFR) and Arbitrary Reuse (AR). Note that the OFR case poses an upper bound to the performance of works [9]–[11], [14], [18],
[20], [25].

FIGURE 4. Mean computation delay for the instances of (M) using an
unoptimized Matlab code. OFR shows worst performance, because it
requires that all D2D pairs are optimized with the Hungarian method,
while MFR and AR allow greedy allocation of D2D links as explained in
Section IV-C.

counter-intuitive at first, it results from the fact that for OFR
the Hungarian method is used to solve the D2D allocation,
which creates a significant burden as the number of links
increases. For MFR and AR, as explained in Section IV-C,
a greedy allocation is sufficient due to the introduced approx-
imation, such that the main delay originates from identify-
ing the maximum-weight link on each channel and adding
constraints according to Section IV-C. Note that the Matlab
software, while handy, is not known for its efficiency and
also we did not invest effort to optimize the code for speed.
It can therefore be expected that the optimization delay may
be reduced by at least one order of magnitude when using
an optimized C++ implementation and even further when
the optimization is implemented on a hardware platform.
We therefore conclude that with our approximative solution
for the weighted sum-rate maximization, it is realistic to
consider optimization delay as negligible.

B. COMPARISON TO EXISTING METHODS
We now compare our proposed method to the a centralized,
heuristic scheme of Zhao and Wang [17] and the decentral-
ized pricing scheme of Yin et al. [21], which we consider

as closest related works. Compared to our previous inves-
tigation, both works investigate an Orthogonal Frequency
Division Multiplex (OFDM) D2D scenario, in which D2D
links may use an arbitrary number of channels and adapt
their powers dynamically. While Zhao and Wang [17] solve
the problem by heuristically forbidding reuse among links,
Yin et al. [21] cast it to a power control problem that they
solve with game theory. Note that both works optimize the
Shannon bound and hence assume an implicit MCS selection
that achieves capacity, while we assume imperfect MCS and
explicitly set theMCS in our problem. Therefore our schemes
are not directly comparable. To overcome this, we use the
final power allocations to obtain the link SINRs after employ-
ing the solutions of [17], [21] and assign each link the maxi-
mum MCS that it can use with this SINR in retrospective.

Figure 5 shows the comparison in terms of achieved sum-
rate, required algorithm delay and control traffic. Because
the work of Zhao and Wang [17] assumes full parameter
knowledge while the others do not, we incorporated the delay
and reporting traffic of channel sounding into the calculation.
It can be seen from Figure 5a that all curves have a concave
appearance, which can be explained by the fact that, as the
network becomes more congested, all algorithms tend to
choose lower-rate MCS. Our proposed algorithm outper-
forms the other works significantly in terms of achieved
rate, while that of Yin et al. [21] also outperforms that of
Zhao and Wang [17]. In terms of delay, shown in Figure 5b,
the decentralized method of Yin et al. [21] is extremely
fast, converging after only eight ms for the full range of
links. However, it must also be noted that this performance
is vulnerable to misconfiguration - when using the param-
eters given in the original work, the algorithm had severe
convergence issues that would push the convergence time out
of bounds in our plot. The scheme of Zhao and Wang [17]
requires a linear time to sound all channels – each transmitter
must transmit once on all channels – and our proposed
scheme shows linear delay increase for large number of links.
Finally, we compare the produced control traffic in Figure 5c.
For this, we calculated the required number of numeric values
for reporting and broadcasting and converted them into a data
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FIGURE 5. Simulation Results for a sum-rate maximization problem with OFDM D2D-Links. Fig. 5a shows the average achieved sum-rate per number of
links, 5b the algorithm delays and 5c the induced control traffic.

rate by assuming that each value is represented by a single
byte and then dividing the resulting total amount of bytes
by the algorithm delay. It can be seen that central channel
reporting used by Zhao and Wang [17] is inefficient, as the
traffic grows quadratically with the number of links. Both
our proposed scheme an that of Yin et al. [21] show linear
increase, however, the algorithm of Yin et al. [21] has a better
scaling factor.

In Figure 6, we show the time-delay added to each iter-
ation by central calculations at the BS for the different
schemes. As before, all optimizations were performed on an
Intel i7 core with 3.6 GHz clock frequency and executed
in Matlab using custom-built code. The main source of
overhead for Yin et al. [21] comes from the calculation of an
appropriate pricing vector at the base station. Note that some
pre-calculations need to be done once at the very beginning
of the optimization, such as calculation of the schedule for
cellular devices. We reflected this by distributing the delay
of these evenly over all iterations, which explains the delay
decrease for few links. For our proposed GBD-based method,
the overhead comes from the creation of constraints ξl(x) ≤ 0
from SINR reports, the application of the approximation pro-
cedure introduced in Section IV-C and the resulting greedy
MCS allocation. In contrast, for Zhao et al. [17] the full
scheduling algorithm is run in a single-shot procedure, which

FIGURE 6. Mean computation delay per iteration for schedule creation in
the different algorithms using Matlab.

includes calculation of optimal transmission powers for each
3-tuple of devices and the choice of the optimal allocation
afterwards. It can be seen from Figure 6 that the scheme of
Yin et al. [21] has lowest computation overhead and is in
sub-ms range, while our algorithm takes up to 14 ms for the
solution of each (M) instance. The solution of Zhao et al. [17]
adds a single-shot delay of up to 1s for calculating a schedule.
Note that again, we did not optimize the Matlab code for
speed, such that an implementation in C++ or hardware
would reduce the delays by at least one order of magnitude.
For such an optimized implementation, our proposed scheme
maintains good speed over most of the link range.

Concluding, the centralized scheme of Zhao andWang [17]
achieves worst performance at moderate delays and large
reporting overhead, while the decentralized method of
Yin et al. [21] is a slim and powerful scheme. However,
it is still beaten in performance by our proposed algorithm,
which also has moderate delay and low reporting overhead.
The reason why we still out-perform Yin et al. [21] lies in
the fact that they approximate the rate by using the Shannon
capacity formula. This renders the variable space continuous
and allows them to use a performant iterative waterfilling
method. However, it is based on a coarse approximation of
the real rate. On the other hand, we use a more realistic rate
model with explicit MCS selection. This allows us to achieve
full performance but at the cost that the problem becomes
combinatorial, in which case game theoretic approaches
typically have converge issues. Still, we are able to compare
with the decentralized scheme in all aspects except for the
delay, which we consider a strong performance.

C. COMPARISON FOR VARYING CHANNELS
Finally, we compare to the works of Zhao and Wang [17] and
Yin et al. [21] in a varying channel scenario with 50 links. For
this, we kept the positions of nodes fixed and pre-defined a
channel coherence time. Within a coherence time we kept the
channels static and after a coherence time passed, they were
re-generated with independent, identically distributed values.

As our scheme relies on the consecutive approximation of
the feasible space, it is clear that when the channel changes,
this approximation must become inaccurate. We solved this
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FIGURE 7. Algorithm performance under varying channels and for 50 links. Fig. 7a shows a single network instance with 1 and 10 ms
coherence time, while Fig. 7b shows the performance dependency on the channel coherence time.

by defining a ‘‘maximum memory time’’ for the constraints
and dropping constraints that were older than this threshold
time. We used a maximummemory time of 25 ms throughout
our simulations. For the scheme of Zhao and Wang [17],
which relies on full parameter knowledge, we assumed a
continuous channel sounding, in which the channel coeffi-
cients of one link towards all other links are refreshed in a
round-robin fashion.

The results of our comparison are shown in Figure 7. The
performance on a single sample with coherence times Tcoh
of 1 ms and 10 ms is shown in Figure 7a. It can be seen from
the curve of 10 ms that the algorithm of Yin et al. [21] adapts
extremely fast after new channels are generated. Compared to
this, our scheme also shows a following behavior while that
of Zhao and Wang [17] has problems to adapt. Interestingly,
the performance of all algorithms remain comparable to the
static case, with our scheme out-performing the others. This
is particularly true for Tcoh = 1 ms, which corresponds
to an i.i.d channel variation. While all algorithms show
performance variations here, the general order of perfor-
mance magnitude remains the same. In Figure 7b we show
the performance dependency on channel coherence times
by comparing the average rate achieved over 300 ms and
200 different network realizations. Surprisingly, there is little
to no dependency for any of the algorithms, even down to the
very low coherence times of 1s.

D. WAYS TOWARDS MULTICELL SYSTEMS
In this work we made a single-cell assumption in order
to have a well-defined system. However, in reality D2D
interference problems can span multiple cells, rendering the
problem even more challenging. From a purely mathemat-
ical perspective, the formulation of a full-fledged multicell
scheduling problem is a variant of (2) in which the set of
UEs is simply extended to cover multiple cells. Therefore,
it would also be possible to extend our proposed proce-
dure to multicell systems. However, in practice this would
require a multicell scheduler, i.e., a central entity that makes
joint scheduling decisions for multiple cells. This is rather

unrealistic considering the number of UEs such a sched-
uler would have to deal with and the time scale at which
scheduling is done. Alternatively, it could be possible to split
Algorithm 1 into independent subroutines that would run
on different entities. This could be done, e.g., by using an
on-line spectrum partitioning among cells (this would adapt
g(x) andRi) or by identifying UE groups that have negligible
mutual cross-group interference coupling and optimizing
solely among each group. Both methods would allow (2) to
be divided into independent sub-problems that can be solved
on BS level. Unfortunately, the investigation of methods for
this kind of adaptation is out of the scope of this article, such
that we leave this topic open for future work.

VI. CONCLUSION
We conclude by summarizing the main insights gained in
this article. An interference aware scheduling problem for a
D2D-enabled cellular network was investigated, with a level
of generality that makes it applicable to overlay, underlay,
uplink and downlink D2D for various utility functions and
scheduling constraints. By applying a Generalized Benders
Decomposition, the problem was split into a power control
problem and a scheduling problem. The power control prob-
lem was shown to be solved by a Foschini-Miljanic type
algorithm, which is decentralized and based on SINR mea-
surements instead of channel measurements. The master
problem, on the other hand, is a traditional scheduling
problem without interference constraints. We established an
optimization flow and reporting structure that can be used
to solve interference aware resource allocation for D2D
communication in various setups. Convergence properties
of the overall procedure were established by stating that
independent of the exact constraints and optimization goal,
the algorithm terminates in a finite number of steps and
that approximations on the master problem transfer to the
overall solution. Simulations verified the theoretic statements
and showcased the amount of reuse that can be achieved
by releasing the constraint of one-fold reuse. In particular,
in the given simulation set-up up to 31-fold frequency reuse
was achieved within a single cell, which is by an order of
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magnitude larger than the often assumed one-fold reuse.
Further, we proposed an explicit approximative solution
for the weighted sum-rate maximization problem and com-
pared our algorithm with existing state of the art. It could
be seen that our algorithm outperforms existing work by
around 35%while still achieving reasonable convergence and
signaling overhead. Although designed for static channels,
our algorithm also outperforms existing works in variable
channel setup. In summary, the proposed algorithm is semi-
decentralized, allows flexible adaptation to various network
configurations and enables well-defined performance.

REFERENCES

[1] A. Asadi, Q. Wang, and V. Mancuso, ‘‘A survey on device-to-device
communication in cellular networks,’’ IEEE Commun. Surveys Tuts.,
vol. 16, no. 4, pp. 1801–1819, 4th Quart., 2014.

[2] P. Mach, Z. Becvar, and T. Vanek, ‘‘In-band device-to-device commu-
nication in OFDMA cellular networks: A survey and challenges,’’ IEEE
Commun. Surveys Tuts., vol. 17, no. 4, pp. 1885–1922, 4th Quart., 2015.

[3] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklós, and
Z. Turányi, ‘‘Design aspects of network assisted device-to-device commu-
nications,’’ IEEE Commun. Mag., vol. 50, no. 3, pp. 170–177, Mar. 2012.

[4] M. Klugel, M. He, and W. Kellerer, ‘‘Investigation of decision metrics for
reuse link selection in device-to-device communication,’’ in Proc. IEEE
27th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC),
Sep. 2016, pp. 1–6.

[5] M. Klugel and W. Kellerer, ‘‘The Device-to-Device reuse maximization
problem with power control,’’ IEEE Trans. Wireless Commun., vol. 17,
no. 3, pp. 1836–1848, Mar. 2018.

[6] P. Liu, C. Hu, T. Peng, R. Qian, and W. Wang, ‘‘Admission and power
control for device-to-device links with quality of service protection in
spectrum sharing hybrid network,’’ in Proc. IEEE 23rd Int. Symp. Pers.,
Indoor Mobile Radio Commun. (PIMRC), Sep. 2012, pp. 1192–1197.

[7] H. Sun, M. Sheng, X. Wang, Y. Zhang, J. Liu, and K. Wang, ‘‘Resource
allocation for maximizing the device-to-device communications
underlaying LTE-advanced networks,’’ in Proc. IEEE/CIC Int. Conf.
Commun. China Workshops (CIC/ICCC), Aug. 2013, pp. 60–64.

[8] M. Chiang, P. Hande, T. Lan, and C. W. Tan, ‘‘Power control in wireless
cellular networks,’’ Found. Trends Netw., vol. 2, no. 4, pp. 381–533, 2007,
doi: 10.1561/1300000009.

[9] M. Zulhasnine, C. Huang, andA. Srinivasan, ‘‘Efficient resource allocation
for device-to-device communication underlaying LTE network,’’ in Proc.
IEEE 6th Int. Conf. Wireless Mobile Comput., Netw. Commun., Oct. 2010,
pp. 368–375.

[10] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, ‘‘Device-
to-device communications underlaying cellular networks,’’ IEEE Trans.
Commun., vol. 61, no. 8, pp. 3541–3551, Aug. 2013.

[11] D. Zhu, J. Wang, A. L. Swindlehurst, and C. Zhao, ‘‘Downlink resource
reuse for Device-to-Device communications underlaying cellular net-
works,’’ IEEE Signal Process. Lett., vol. 21, no. 5, pp. 531–534,May 2014.

[12] X. Cai, J. Zheng, and Y. Zhang, ‘‘A graph-coloring based resource
allocation algorithm for D2D communication in cellular networks,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 5429–5434.

[13] S.-A. Ciou, J.-C. Kao, C. Y. Lee, and K.-Y. Chen, ‘‘Multi-sharing resource
allocation for device-to-device communication underlaying 5G mobile
networks,’’ in Proc. IEEE 26th Annu. Int. Symp. Pers., Indoor, Mobile
Radio Commun. (PIMRC), Aug. 2015, pp. 1509–1514.

[14] Y. Gu, Y. Zhang, M. Pan, and Z. Han, ‘‘Matching and cheating in device
to device communications underlying cellular networks,’’ IEEE J. Sel.
Areas Commun., vol. 33, no. 10, pp. 2156–2166, Oct. 2015.

[15] R. Yin, G. Yu, H. Zhang, Z. Zhang, and G. Y. Li, ‘‘Pricing-based
interference coordination for D2D communications in cellular networks,’’
IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1519–1532, Mar. 2015.

[16] W. Zhao and S. Wang, ‘‘Resource allocation for device-to-device
communication underlaying cellular networks: An alternating optimization
method,’’ IEEE Commun. Lett., vol. 19, no. 8, pp. 1398–1401, Aug. 2015.

[17] W. Zhao and S. Wang, ‘‘Resource sharing scheme for device-to-device
communication underlaying cellular networks,’’ IEEE Trans. Commun.,
vol. 63, no. 12, pp. 4838–4848, Dec. 2015.

[18] T. D. Hoang, ‘‘Resource allocation for D2D communication underlaid
cellular networks using graph-based approach,’’ IEEE Trans. Wireless
Commun., vol. 15, no. 10, pp. 7099–7113, Oct. 2016.

[19] T. Huynh, T. Onuma, K. Kuroda, M. Hasegawa, and W.-J. Hwang,
‘‘Joint downlink and uplink interference management for device to device
communication underlaying cellular networks,’’ IEEE Access, vol. 4,
pp. 4420–4430, 2016.

[20] S. Maghsudi and S. Stanczak, ‘‘Hybrid Centralized–distributed resource
allocation for device-to-device communication underlaying cellular
networks,’’ IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2481–2495,
Apr. 2016.

[21] R. Yin, C. Zhong, G. Yu, Z. Zhang, K. K. Wong, and X. Chen,
‘‘Joint spectrum and power allocation for D2D communications
underlaying cellular networks,’’ IEEE Trans. Veh. Technol., vol. 65,
no. 4, pp. 2182–2195, Apr. 2016.

[22] H. Zhang, L. Song, and Z. Han, ‘‘Radio resource allocation for device-to-
device underlay communication using hypergraph theory,’’ IEEE Trans.
Wireless Commun., vol. 15, no. 7, pp. 4852–4861, Jul. 2016.

[23] J. Hu,W. Heng, Y. Zhu, G.Wang, X. Li, and J. Wu, ‘‘Overlapping coalition
formation games for joint interferencemanagement and resource allocation
in D2D communications,’’ IEEE Access, vol. 6, pp. 6341–6349, 2018.

[24] P. S. Bithas, K. Maliatsos, and F. Foukalas, ‘‘An SINR-aware joint
mode selection, scheduling, and resource allocation scheme for
D2D communications,’’ IEEE Trans. Veh. Technol., vol. 68, no. 5,
pp. 4949–4963, May 2019.

[25] J. Li, ‘‘D2D communication mode selection and resource optimization
algorithm with optimal throughput in 5G network,’’ IEEE Access, vol. 7,
pp. 25263–25273, 2019.

[26] M. Klügel, ‘‘Operation and control of device-to-device communication
in cellular networks,’’ Ph.D. dissertation, Dept. Elektrotechnik
Informationstechnik, Tech. Univ. Munich, Munich, Germany, 2018.
[Online]. Available: http://mediatum.ub.tum.de/node?id=1425301

[27] M. Klugel and W. Kellerer, ‘‘Poster abstract: Semi-decentralized
interference management in D2D-enabled cellular networks,’’ in Proc.
IEEE Conf. Comput. Commun. Workshops, Apr. 2018, pp. 1–2.

[28] C. Wan Sung, ‘‘Log-convexity property of the feasible SIR region in
power-controlled cellular systems,’’ IEEE Commun. Lett., vol. 6, no. 6,
pp. 248–249, Jun. 2002.

[29] C. W. Tan, D. P. Palomar, and M. Chiang, ‘‘Exploiting hidden convexity
for flexible and robust resource allocation in cellular networks,’’ in Proc.
26th IEEE Int. Conf. Comput. Commun., Dec. 2007, pp. 964–972.

[30] S. Stanczak, Fundamentals Resource Allocation Wireless Networks:
Theory Algorithms, 2nd ed. Berlin, Germany: Springer, 2009.

[31] J. F. Benders, ‘‘Partitioning procedures for solving mixed-variables
programming problems,’’ Numerische Math., vol. 4, no. 1, pp. 238–252,
Dec. 1962.

[32] A. M. Geoffrion, ‘‘Generalized benders decomposition,’’ J. Optim. Theory
Appl., vol. 10, no. 4, pp. 237–260, Oct. 1972.

[33] C. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals
and Applications (Topics in Chemical Engineering). London, U.K.:
Oxford Univ. Press, 1995.

[34] G. J. Foschini and Z. Miljanic, ‘‘A simple distributed autonomous power
control algorithm and its convergence,’’ IEEE Trans. Veh. Technol.,
vol. 42, no. 4, pp. 641–646, Nov. 1993.

[35] N. Bambos, S. C. Chen, and G. J. Pottie, ‘‘Channel access algorithms with
active link protection for wireless communication networks with power
control,’’ IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 583–597, Oct. 2000.

[36] R. D. Yates, ‘‘A framework for uplink power control in cellular radio
systems,’’ IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341–1347,
Sep. 1995.

[37] D. Kim, ‘‘On the convergence of fixed-step power control algorithms
with binary feedback for mobile communication systems,’’ IEEE Trans.
Commun., vol. 49, no. 2, pp. 249–252, Feb. 2001.

[38] H. W. Kuhn, ‘‘The hungarian method for the assignment problem,’’ Nav.
Res. Logistics Quart., vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.

[39] J. Munkres, ‘‘Algorithms for the assignment and transportation problems,’’
J. Soc. Ind. Appl. Math., vol. 5, no. 1, pp. 32–38, Mar. 1957.

[40] Results and Tool-Chain for, Semi-Decentralized Interference Aware
Scheduling in D2D-Enabled Cellular Networks. Accessed: Jul. 20, 2020.
[Online]. Available: https://mediatum.ub.tum.de/1483807

[41] P. Kyösti. (2007). WINNER II Channel Models. [Online]. Available:
http://www.ist-winner.org/WINNER2-Deliverables/D1.1.2v1.1.pdf

[42] Evolved Universal Terrestrial Radio Access (E-Utra); Radio Frequency
(RF) System Scenarios, document TR 36.942, 3rd Generation Partnership
Project, Sep. 2012.

VOLUME 8, 2020 132301

http://dx.doi.org/10.1561/1300000009

	INTRODUCTION
	RELATED WORK AND CONTRIBUTION
	CONTRIBUTIONS OF THIS WORK
	MATHEMATICAL NOTATIONS

	SYSTEM MODEL AND PROBLEM FORMULATION
	SYSTEM MODEL
	PROBLEM FORMULATION

	APPLICATION OF GBD
	PRIMAL AND FEASIBILITY PROBLEM
	INVESTIGATION OF THE FEASIBILITY PROBLEM
	THE MASTER PROBLEM

	ALGORITHM & PERFORMANCE STATEMENTS
	PERFORMANCE STATEMENTS
	OVERHEAD & COMPLEXITY
	SOLVING A PARTICULAR MASTER PROBLEM

	SIMULATION RESULTS
	GENERAL PERFORMANCE
	COMPARISON TO EXISTING METHODS
	COMPARISON FOR VARYING CHANNELS
	WAYS TOWARDS MULTICELL SYSTEMS

	CONCLUSION
	REFERENCES

