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ABSTRACT In order to effectively detect moving targets in a nonhomogeneous sea clutter, the non-local
Log-Euclidean mean is studied and an effective algorithm based on non-local Log-Euclidean mean is
proposed. Firstly, the mathematical model of the received signal returned from a target is established.
Then, the Log-Euclidean distance is introduced and the non-local method is employed for computing the
Log-Euclidean mean. Furthermore, an adaptive matched filter with non-local Log-Euclidean mean is
investigated. As the non-localmethod adopts samples similar to a given sample to estimate the Log-Euclidean
mean, a robust covariance matrix estimation is obtained in a nonhomogeneous sea clutter. In the end,
numerical simulations and real High-Frequency radar datasets are used to verify the validity of this proposed
algorithm, and the results demonstrate that the proposed method not only outperforms the conventional
detection method but also exhibits more robustness in a nonhomogeneous environment.

INDEX TERMS Covariance matrix estimation, Log-Euclidean distance, target detection, non-local mean,
nonhomogeneous sea clutter.

I. INTRODUCTION
Robust and effective detection of a moving target embedded
in a nonhomogeneous sea clutter in a High-Frequency (HF)
radar system is one of the fundamental problems in both
military and civil remote sensing fields. Due to the variation
of sea states (wind speed, wave height), and parameters of
the system (grazing angle, polarization), sea clutter usually
shows significant nonhomogeneous in an HF system [1].
The nonhomogeneous sea clutter often contains the so-called
outliers caused by clutter edge, sea spike, and other target
which is not interested in the processing. Outliers that have
different spectral properties with others have an has an impact
on the clutter covariance estimation, which may result in poor
detection performance [2]–[4]. As a consequence, it is neces-
sary and important to improve the detection performance of
an HF system.

A lot of efforts have been made to improve the
detection performance of an HF system, classical detection
methods, such as Kelly’s detector [5], adaptive matched
filter (AMF) [6], [7], have achieved well performance in a

The associate editor coordinating the review of this manuscript and

approving it for publication was Chengpeng Hao .

homogeneous environment. However, the estimation accu-
racy of sample covariance matrix is strongly affected by the
nonhomogeneous property of samples data. When detect-
ing signals buried in a nonhomogeneous sea clutter, severe
performance degradations are experienced. To ameliorate
the detection performance, many works are concentrated on
incorporating the knowledge-aided paradigm into the detec-
tor design. For instance, Maio et al. [8] achieves significant
performance improvements by incorporating the geographic
information of surrounding environment into detector design.
In [9], the authors suppose that the clutter data obeys a suit-
able distribution. Based on this clutter model, the Bayesian
approach is exploited to obtain a Generalized Likelihood
Ratio Test (GLRT) detector. Real data is used to analyze
the detection performance, and the results validate the supe-
riority of the proposed detector. In [10]–[13], the clutter
is modeled as a auto-regressive process, and the structural
information on clutter covariance matrix is used to be esti-
mated. However, these detection methods, which achieve
performance improvements, depend on the prior knowledge
of clutter distribution [14], [15].

Another popular technique is the geometry-based
detection method proposed by Barbaresco [16], [17], and
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Hua et al. [18], [19], where clutter data is modeled as a
Hermitian positive-definite (HPD) matrix, which repre-
sents the clutter correlation characteristics or clutter power.
Geometry-based detection methods have been applied for
wake turbulence monitoring [20], [21], and the superiority
has been validated by real data with respect to traditional
methods. In [16], [22], the Riemannian mean and median
are used together with the geometric detection framework,
and results on target detection in coastal X-band and HF
system have shown the performance improvement compared
to the classical fast Fourier transform (FFT) based constant
false alarm rate (CFAR) detector. In [23], space-time adaptive
processing (STAP) with a Riemannian mean estimator has
achieved significant improvement. Moreover, information
divergence measures are presented and applied to target
detection. In [19], five geometric measures-based detectors
are proposed, and numerical experiments on simulation data
and real radar data are given to validate the superiority. Signif-
icant signal-to-noise/clutter ratio (SNR/SCR) improvement is
achieved via geometric measures in an HF system. Geometric
means have also been employed to select training sample data
in nonhomogeneous environment.

The mean associated with the Euclidean distance is not
robust to the outlier. Then, the performance of Euclidean
mean-based covariance estimator is poor, which results
in a remarkably degradation in detection performance in
nonhomogeneous clutter. Recently, many works have proven
that the mean associated with the Log-Euclidean distance
has perfect robustness, and can achieve an accurate and
stable estimation performance in nonhomogeneous clutter
[24]–[26]. Following this guideline, in this paper, we pro-
pose a non-local Log-Euclidean mean of HPD matrices by
incorporating a non-local method into the computation of
Log-Euclidean mean in nonhomogeneous clutter. In partic-
ular, the Log-Euclidean mean-based sample selection algo-
rithm is utilized to eliminate the outlier in nonhomogeneous
clutter. Similar sample data is selected via clutter statistical
characteristics in the non-local domain of cell under test
(CUT). Then, the selected homogeneous sample data in each
cell is modeled as an HPD matrix. These HPD matrices
estimated by the sample data in the non-local domain are used
to compute the Log-Euclidean mean, that is the non-local
Log-Euclidean mean. Furthermore, an AMF with the non-
local Log-Euclidean mean estimator is designed and applied
to target detection in nonhomogeneous clutter in an HF sys-
tem. The output SNR/SCR and the robustness to outlier are
analyzed, and numerical experiments and real HF clutter data
are given to validate the superiority of the proposed algorithm
with respect to its traditional ones.

The remainder of this paper is organized as follows.
In Section 2, the mathematical model of the received echo
signal is presented. Section 3 introduces the non-local sam-
ple data selection method. Particularly, the Log-Euclidean
mean is used together with the generalized inner prod-
uct (GIP) algorithm to eliminate outliers in the nonhomo-
geneous clutter. The non-local Log-Euclidean mean-based

AMF algorithm is proposed in Section 4. Then, some exper-
iments on real sea clutter datasets are used for verification
in Section 5. Finally, some concluding remarks are given in
Section 6.

A. NOTATION
In this paper, a boldface lower-case letter a denotes a vector,
and a boldface upper-case letter A denotes a matrix. Symbol
AH represents the conjugate transpose of matrix A. 1j is the
imaginary unit, i.e.,

√
−1 = 1j. The n × n identity matrix is

denoted by In. All n × n Hermitian matrices are represented
as H(n). P(n) stands for the set of n × n Hermitian positive-
definite matrices. R is the set of real numbers. Symbols
det(·) and tr(·) denote the determinant and the trace of a
matrix, respectively. a! denotes the factorial of a. Symbol
‖A‖F denotes the Frobenius norm of matrix A. The matrix
logarithm and matrix exponent of a positive-definite matrix
A are noted by log(A) and exp(A), respectively.

II. THE MATHEMATICAL MODEL OF RECEIVED SIGNAL
In this Section, the mathematical model of echo signal is
presented. Consider N -channel linear array, and the space of
each sensor is d . The length of carrier wave is λ, and the
number of pulses in each cell in one coherent processing
interval (CPI) is M . The received signal in the i-th cell can
be expressed as

xi = αis(f , θ)+ ci + ni (1)

where θ is the phase angle. αi denotes the amplitude of echo
signal, and f is the normalized Doppler frequency. ci and ni
stand for the clutter and the electrical noise, respectively. The
steer vector s(f , θ) is constituted by the space and temporal
components,

s(f , θ) = stem(f )⊗ sspa(θ ) (2)

where stem(f ) denotes the temporal component, and sspa(θ )
is the space component. ⊗ stands for the Kronecker product.
stem(f ) and sspa(θ ) are formulated as,

stem(f ) = [1 exp(j2π f ) ... exp(j2π (M − 1)f )]T (3)

sspa(θ ) = [1 exp(j2πdsin(θ )/λ) ...

× exp(j2πd(N − 1)sin(θ )/λ)]T (4)

According to the mentioned mathematical model of echo
signal, a non-local sample selection algorithm is used to
eliminate the nonhomogeneous clutter data.

III. NON-LOCAL SAMPLE DATA SELECTION
In this Section, a non-local sample selection method is
introduced. Firstly, the pulse data in each cell is modeled
as an HPD matrix, and the non-local domain is obtained
via the Log-Euclidean distance between two HPD matrices.
Then, the Log-Euclidean mean is used together with the GIP
algorithm to eliminate outliers in the non-local domain.
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A. FORMULATION OF NON-LOCAL DOMAIN
The pulse data contains the power information and the
correlation information. Given a n-length pulses data
x = [x1, x2, . . . , xn]T , x can be modeled as a covariance
matrix R,

R = xxH (5)

where covariance matrix R is Hermitian but not positive-
definite. HPD matrix has many attractive properties, and is
the most studied example in the last decades. In order to facil-
itate the analysis, covariance matrix R can be transformed to
an HPD matrix P as follow,

P = R+ In (6)

All n × n HPD matrices form the space P(n). Given two
HPD matrices P1 and P2 in P(n), the Log-Euclidean distance
between them can be formulated as,

dLogE (P1,P2) = ‖log(P1)− log(P2)‖F (7)

The Log-Euclidean distance is defined in the tangent space
on P(n). Matrix logarithm maps a point on P(n) into its
tangent space, while matrix exponent maps a point on its
tangent space into P(n).
Consider a real number y and a set of m real numbers
{y1, y2, . . . , ym}, the distance between y and y1 can be defined
as,

d(y, y1) = |y− y1| (8)

Compute m distances |y − y1|, |y − y2|, . . . , |y − ym| and
sort them in increasing order. Then, real numbers accord-
ing to the first K distances constitute the non-local domain
{y1, y2, . . . , yK } of y.

Similarly, given an HPD matrix PD in CUT and its
surrounding matrices {P1,P2, . . . ,Pm}, m Log-Euclidean
distances dLogE (P,P1), dLogE (P,P2), . . . , dLogE (P,Pm) are
computed and sorted in increasing order. A set of K
HPD matrices {P1,P2, . . . ,PK } with respect to the first K
Log-Euclidean distances constitute the non-local domain of
CUT. The HPD matrices in this domain have some similar
structures to PD, such as eigenvalues.

B. NON-LOCAL LOG-EUCLIDEAN MEAN-BASED
SAMPLE SELECTION
In a nonhomogeneous clutter environment, the outlier may
have an effect on the estimation accuracy of the clutter covari-
ance matrix, which can result in poor detection performance.
Consequently, it is necessary to select homogeneous sam-
ple to estimate the clutter covariance matrix. A. Aubry has
exploited the GIP algorithm together with geometric barycen-
ters to discard outliers in nonhomogeneous sample data [25].
In compound Gaussian clutter, the clutter covariance matrix
is estimated using the sample data censored from the non-
homogeneous clutter to improve the detection performance
of a normalized adaptive matched filter [26]. In this subsec-
tion, the GIP algorithm is used together with the non-local
Log-Euclidean mean to select homogeneous sample data.

As mentioned above, given an HPD matrix PD, its
corresponding non-local domain {P1,P2, . . . ,PK } can be
obtained. Then, the Log-Euclidean mean in this non-local
domain is the solution of minimization problem as blow,

min
P∈P(n)

i=K∑
i=1

d2LogE (P,Pi) (9)

Substitute Eq.(7) into Eq.(9), and the minimization prob-
lem can be written as,

min
P∈P(n)

i=K∑
i=1

‖log(P)− log(Pi)‖2F (10)

Let F(P) denotes the function,

F(P) =
i=K∑
i=1

‖log(P)− log(Pi)‖2F (11)

Then, the derivative of F(P) is given as,

1F(P) = 2
i=K∑
i=1

(log(P)− log(Pi))P−1 (12)

Let Eq.(12) equals to zero, and we can obtain,

1
K

i=K∑
i=1

log(Pi) = log(P) (13)

According to Eq.(13), the solution of the minimization
problem Eq.(10) is given as,

P = exp{
1
K

i=K∑
i=1

logPi} (14)

where P is the non-local Log-Euclidean mean, and is also an
HPD matrix.

The robustness of Log-Euclidean mean outperforms that
of Euclidean mean which is used in the GIP sample selector.
Here, the influence function [24] is employed to analyze the
robustness of Log-Euclidean mean. Suppose P̄ be the Log-
Euclidean mean of m HPD matrices {P1,P2, . . . ,Pm}. P̃ is
the Log-Euclidean mean of m HPD matrices and n outliers
{Q1,Q2, . . . ,Qn} with a weight ε(ε � 1). Then, a relation
between P̄ and P̃ can be given as,

P̃ = P̄+ H (Q) (15)

whereH (Q) is the influence function of Log-Euclideanmean.
The influence function can be formulated as H (Q) = P̃− P̄.
That is to say, the influence function elaborates the difference
between the Log-Euclidean mean P̄ of HPD matrices and
the Log-Euclidean mean P̃ of HPD matrices and the injected
outliers. It is obvious that a smaller value of influence func-
tion means a smaller difference between P̄ and P̃. As P̃ is
the Log-Euclidean mean of HPD matrices and the injected
outliers, a smaller difference between P̄ and P̃ means a
smaller influence of outliers on the Log-Euclidean mean. The
robustness of the Log-Euclidean mean indicates the influence
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of outliers on the mean. Thus, it can be concluded that a
smaller influence function means better robustness.
Proposition 1: The influence function of Log-Euclidean

mean related to the Log-Euclidean distance, of m HPD
matrices {P1,P2, . . . ,Pm} and n outliers {Q1,Q2, . . . ,Qn}

is given by,

H (Q) =
1
n

n∑
j=1

(log(Qj − log(P̄))P̄ (16)

The detailed proof can be seen in Appendix.
Proposition 2: The influence function of Euclidean mean

related to the Euclidean distance, of m HPD matrices
{P1,P2, . . . ,Pm} and n outliers {Q1,Q2, . . . ,Qn} is given by,

H (Q) =
1
n

n∑
j=1

(Qj − P̄) (17)

The detailed proof also can be seen in Appendix.
Based on the influence function, the robustness of

Euclidean mean and Log-Euclidean mean can be analyzed
quantitatively. This work will be done in Section 5. As sat-
isfactory performances are achieved when the sample data
share the same spectral property, the outliers contained in the
nonhomogeneous sample data must be discarded. However,
the homogeneity spectral property could not hold, because of
the presence of outliers within the sample data in nonhomo-
geneous clutter. A sample selector is necessary to choose the
homogeneous data used in the covariance matrix estimation.
According to the Log-Euclidean distance and its correspond-
ing Log-Euclidean mean, the sample data selection strategy
can be given as,

1) Compute the HPD matrix Pi, i = 1, 2, . . . ,m using the
sample data in each cell, as Eq.(6);

2) Given the HPD matrix PD, calculate m Log-Euclidean
distances dLogE (PD,Pi), i = 1, 2, ..,m. Sort these dis-
tances in increasing order, and the first K distances
constitute the non-local domain of PD;

3) The Log-Euclidean mean estimator P̂ is achieved using
the sample data of non-local domain, as Eq.(14);

4) For all the sample data in the non-local domain,
compute the GIP

βi = xHi P̂
−1xi, i = 1, 2, . . . ,K (18)

and sort βi in decreasing order;
5) The sample data with large value βi is treated as the

outlier and is discarded.
Based on the sample data selection strategy, we can obtain

the most homogeneous sample data. Then, accurate Log-
Euclidean estimator is achieved, which is estimated using the
selected homogeneous sample.

IV. NON-LOCAL LOG-EUCLIDEAN MEAN-BASED
TARGET DETECTION ALGORITHM
In this Section, the problem of target detection is formulated,
and then a non-local Log-Euclidean mean-based target
detection algorithm is presented.

Consider a detection problem, which can be given as,
H0 :

{
x = n+ c

xi = ni + ci, i = 1, 2, . . . ,K

H1 :

{
x = βs+ n+ c

xi = ni + ci, i = 1, 2, . . . ,K

(19)

where H0 and H1 denote the hypotheses of the absence and
presence of a target.K is the number of sample data which are
censored from the nonhomogeneous sample data in non-local
domain. x, c, and n are the received signal, clutter data,
and white noise, respectively. The terms c and ci are the
compound Gaussian vectors, and can be formulated as,

c =
√
τg, ci =

√
τigi, i = 1, 2, . . . ,K (20)

where g and gi both are N -dimensional zero-mean Gaussian
vectors, and share the same covariance matrix 6,

6 = σ 2
c ρ
|i−k|ej2π f (i−k) + I, i, k = 1, 2, . . . ,N (21)

where σ 2
c denotes the clutter-to-noise ratio, and ρ is the

one-lag correlation coefficient. τ and τi are the independent
and identical distribution real random variables, particularly,
they are supposed to follow the inverse gamma distribution,

f (z) =
βα

0(α)
z−α−1exp(−

β

z
), z ≥ 0 (22)

where β and α denote the scale and shape parameters,
respectively. 0(.) is the gamma function.

The adaptive matched filter is usually used for target
detection in an HF system, and the scheme can be given as,

sH 6̂−1x

(sH 6̂−1s)

H0
≷
H1

γ (23)

where 6̂ denotes the estimated clutter covariance matrix. γ
is the threshold derived by the Monte Carlo method. Given a
probability of false alarm (Pfa), the appropriate threshold can
be given as,

γ =
K + 1

K − N + 1
[(Pfa)

(− 1
K−N+2 ) − 1] (24)

More details of the proof can be seen in Appendix.
Given an HPD matrix P0, its surrounding M HPD matri-

ces are {P1,P2, . . . ,PM }, and then, its non-local domain
{P1,P2, . . . ,PK0} can be obtained according to the method
presented in Section III-A. The Log-Euclidean mean can be
computed using K0 HPD matrices in the non-local domain.
To discard outliers in the non-local domain, theGIP algorithm
is used together with the Log-Euclidean mean to choose
the most homogeneous sample data {P1,P2, . . . ,PK }. The
clutter covariance matrix 6̂ can be estimated using the K
homogeneous sample data, and the AMF algorithm with the
estimated covariance matrix 6̂ is applied for target detection
embedded in sea clutter in next context. The computational
cost is relative expensive, as the algorithm involves several
operations of matric exponent, logarithm and inverse.
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FIGURE 1. Influence function values of 100 trials. M = 20, N = 8,
Noutlier = 1.

V. EXPERIMENTAL RESULTS
Many covariance matrix estimators have been used for sam-
ple data selection and target detection in nonhomogeneous
clutter, e.g., Log-Euclidean mean, root-Euclidean mean,
power-Euclidean mean, cholesky mean, and Euclidean mean.
It has been proven in [25], [26] that the Log-Euclidean mean
estimator has the best sample selection performance among
these means, and the AMF with the Log-Euclidean mean has
the best detection performance among their corresponding
algorithms. In this Section, the performance of our proposed
algorithm is analyzed via numerical experiments in compar-
ison with the AMF with the classical covariance matrix esti-
mator. Firstly, the robustness of the Log-Euclidean mean is
analyzed in a nonhomogeneous clutter; and then, the correct
selection rate of the non-local Log-Euclidean mean-based
sample selector is given in comparison with the conventional
method; finally, real clutter data are given to validate the
superiority of the proposed algorithm.

A. ROBUSTNESS ANALYSIS
To analyze the robustness of the Log-Euclidean mean
in a nonhomogeneous clutter, sample data with num-
bers of injected outliers are simulated. m sample data
treated as homogeneous data are generated from a zero-
mean multidimensional Gaussian distribution with a covari-
ance matrix given as Eq.(21). The clutter-to-noise ratio is
σ 2
c = 15 dB, and the one-lag correlation coefficient is
ρ = 0.92. The clutter normalized Doppler frequency is
f = 0.25. n outliers are obtained by adding a signal s =
α[1, ej2π foutlier , . . . , ej2π (l−1)foutlier ] into n homogeneous sam-
ple data, where α denotes the amplitude value. In the sim-
ulation, the normalized Doppler frequency is foutlier = 0.2,
and the dimension of sample data is l = 8. 20 homogeneous
sample data is used for computing the Log-Euclidean mean,
and the influence function value is obtained by adding a
outlier into the homogeneous sample data. Plots of 100 trials
are given in Figure 1.

It can be noted from Figure 1 that the influence function
value of Euclidean mean is lager than that of Log-Euclidean
mean. This means that the influence of outliers on the

FIGURE 2. Influence function values under different numbers of sample
data. M varies from 5 to 20, N = 8, Noutlier = 1.

FIGURE 3. Influence function values under different numbers of outliers.
M = 20, N = 8, Noutlier varies from 1 to 15.

Log-Euclidean mean is smaller than on the Euclidean mean.
It can be concluded that the Log-Euclidean mean is more
robust than the Euclidean mean when the sample data con-
tains an outlier. To make further efforts to verify the robust-
ness, the influence of outliers on different numbers of sample
is analyzed. The number of outlier is n = 1, and the number
of sample data varies from 5 to 20. The influence function
values are shown in Figure 2.

From Figure 2 we can know that the influence function
value decreases when the number of sample data increases.
This implies that the influence of outlier on the Euclidean
mean and the Log-Euclidean mean become smaller with
increasing numbers of sample data. Moreover, the influence
function value of the Euclidean mean is larger than that of
the Log-Euclidean mean under different numbers of sample
data. These results suggest that the Log-Euclidean mean is
more robust than the Euclidean mean with different numbers
of sample data.

In order to analyze the influence of different numbers of
outliers on the Euclidean mean and the Log-Euclidean mean,
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FIGURE 4. Illustrating the correct selection rate against average power from 5 dB to 35 dB with different numbers of outliers. M = 100,
N = 8, σ2

c = 15 dB, ρ = 0.92, f = 0.25.

the influence function values with numbers of outliers are
computed. The number of sample data is m = 20, and the
dimension of sample data is N = 8. The number of outlier
varies from 1 to 15. The influence function values of different
numbers of outliers are illustrated in Figure 3.

From Figure 3, we can find that the influence values of
different numbers of outliers on the Euclidean mean and the
Log-Euclidean mean are not very large. It means that the
number of outlier has little effect on the estimation accu-
racy of the Euclidean mean and the Log-Euclidean mean.
Furthermore, the influence of different numbers of outliers
is larger on the Euclidean mean than on the Log-Euclidean
mean. These results demonstrate that the Log-Euclidean
mean is more robust than the Euclidean mean.

In this paper, the three algorithms, including the AMFwith
the Euclidean mean, the AMF with the Log-Euclidean mean,
and the AMF with the non-local Log-Euclidean mean, are
provided to compare the detection performance. However,
the Log-Euclidean mean is used both in the AMF with
the Log-Euclidean mean, and the AMF with the non-local
Log-Euclidean mean. Thus, only to compare the robustness
of the Euclidean mean and the Log-Euclidean mean.

B. PERFORMANCE ANALYSIS OF THE SAMPLE SELECTOR
The real environment is simulated to evaluate the correct
selection rate of non-local Log-Euclidean mean estimator in
comparison with the GIP and Log-Euclidean mean estimator.

The total secondary sample data is set to beM = 100, and the
dimension of sample data in each cell is N = 8. The clutter-
to-noise ratio is σ 2

c = 15 dB, and the one-lag correlation
coefficient is ρ = 0.92. The clutter normalized Doppler
frequency is f = 0.25. The correct selection rate denotes
the proportion of the selected outliers to the selected sample.
For instance, 8 outliers are injected into the 100 secondary
samples. The GIP of each sample is computed as (18), and
all values of GIP are sorted in decreasing order. Sample data
corresponding to the first 8 values are selected. When there
are 4 outliers in the selected 8 samples, the correct selection
rate is 0.5. In the simulation, The Monte Carlo simulation is
repeated 500 times to compute the relative frequency of cor-
rect selection rate. Several outliers are injected into the clutter
data, and each outlier has the same power. The normalized
Doppler frequency of the outlier is set to be 0.2. Figure 4 gives
plots of correct selection rate against average power under
different numbers of outliers from 6 to 12 with an interval
of 2.

It can be observed from Figure 4 that both the
Log-Euclidean and non-local Log-Euclidean selectors have
better performance than the GIP selector. Particularly,
the non-local Log-Euclidean selector have the highest cor-
rect selection rate. It is well known that the performance
of covariance estimator decreases in heterogeneous clutter.
The selection performance of the GIP with mean estimator is
related with the robustness of mean. According to the results
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FIGURE 5. Illustrating the correct selection rate against average power from 5 dB to 30 dB with different normalized Doppler frequencies
of outliers. M = 100, N = 8, σ2

c = 15 dB, ρ = 0.92, Noutlier = 10, f = 0.25.

in Section V-A, the robustness of the Log-Euclidean mean
is better than that of the Euclidean mean. Then, the perfor-
mance of the Log-Euclidean mean estimator is better than
that of the Euclidean mean estimator in heterogeneous clutter
when a sufficient number of secondary data is available.
Therefore, the selection performance of the Log-Euclidean
mean is better than that of the Euclidean mean. Moreover,
as the non-local Log-Euclidean mean is obtained in the non-
local domain, which discards the outlier priori to compute
the Log-Euclidean mean. Thus, the selection performance
of the non-local Log-Euclidean mean outperforms that of
Log-Euclidean mean. Moreover, the selection performances
of three selectors decrease, as the number of outlier increases.
The result implies that the clutter environment becomes more
nonhomogeneous with the increasing numbers of outliers,
which result in a degradation in the selection performance.

In order to analyze the performance under different
normalized Doppler frequencies of an outlier, a clutter envi-
ronment is simulated, which has the same parameters except
the normalized Doppler frequency of the outlier. The number
of outlier is set to 10. The normalized Doppler frequencies of
the outlier are set to be fo = 0.15, fo = 0.18, fo = 0.21, and
fo = 0.24, respectively.

Figure 5 shows the correct selection rate against average
power with different normalized Doppler frequencies of out-
liers. From Figure 5 we can know that different selector has

different performance at a certain outlier normalized Doppler
frequency, and performances of selectors vary with different
outlier normalized Doppler frequency. Specifically, the per-
formance of the non-local Log-Euclidean selector outper-
forms that of the Log-Euclidean selector, followed by the GIP
selector. The performance of the selector decreases and the
performance difference among the three selectors increase,
as the difference between the clutter normalized Doppler
frequency and the outlier normalized Doppler frequency
decreases. This is because the sample selector exploits the
correlation to discriminate the outlier and the homogeneous
sample data. As the closer the outlier Doppler is to the sample
Doppler, the worse the correct selection rate will be.

C. APPLICATION OF TARGET DETECTION METHOD
Our proposed non-local Log-Euclidean mean-based sample
selection algorithm is applied to target detection in real HF
radar clutter. Sea clutter in HF radar often contains the first
order and second order components. The first order clutter
data is also known as Bragg lines caused by a resonant
scattering of the transmitted radar signal, and the second order
clutter comprises a few strong discrete scatters [27], [28].
The sea clutter data in HF radar often exhibits strong het-
erogeneity and need to be suppressed or eliminated [29].
The AMF algorithm is commonly used for target detec-
tion in sea clutter. An approximate theoretical value of the
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FIGURE 6. Illustrating the detection performance in real HF clutter dataset 24 with a simulated target. (a) The original Range-Doppler map,
(b) Range-Doppler map of the GIP-based AMF algorithm, (c) Range-Doppler map of the Log-Euclidean mean-based AMF algorithm,
(d) Range-Doppler map of the non-local Log-Euclidean mean-based AMF algorithm.

threshold has been given as eq. (24). This theoretical value is
derived based on the compound-Gaussian model, which has
been proven to be appropriate to describe the non-Gaussian
radar clutter [30]. Many mostly used distributions, such as
Gaussian, Log-normal, Weibull, K, Pareto, the generalized
compound probability density function, can be modeled as a
compound-Gaussian model. The detection algorithm in this
paper contains the two parts, that are the sample selection
part and the target detection part. The purpose of the sample
selection part is to select the most homogeneous sample data.
The selected sample data are seemed to be the homogeneous
sample, which share the same spectral property, and conform
to the same distribution. The target detection is conducted
on these selected homogeneous sample data. Therefore, it is
reasonable to use this theoretical value of the threshold to
measure detection probability. As the performance of GIP
sample selector is the worst among these three selectors,
the detection performance of AMF with the GIP selector is
also the worst. In this subsection, we analyze the detection
performance of AMFwith the non-local Log-Euclideanmean

in comparison with the Log-Euclidean mean. The real clutter
data is collected by an HF system designed by Nanjing Insti-
tute of Technology in 2015. The number of receiving array is
16, and the sensor interval is 5m. The carrier frequency of the
HF system is 15.82 MHz, and the pulse repetition frequency
is 78.76 Hz.
A simulated target is injected into the batch 24 and 35

dataset, respectively. The target is located in the 23 ∼ 26th
range cells and 51 ∼ 52th Doppler bins. The target signal is
simulated as the model αp, where α accounts for the clutter
power, p is the target steering vector. The normalized Doppler
frequency of the simulated target is 0.25 Hz. The SCR is
defined as the ratio of the mean energy of target signal to the
mean energy of clutter data surrounding the cell under test
with 16 range-Doppler cells. The dataset contains 90 range
cells, and 256 pulses data. M = 64 sample data is used for
computing the Log-Euclidean mean. The size of the non-
local domain is set to be K = 32. The detection perfor-
mances of the AMF with the Log-Euclidean mean and the
non-local Log-Euclidean mean are shown in Figure 6 and 7.
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FIGURE 7. Illustrating the detection performance in real HF clutter dataset 35 with a simulated target. (a) The original Range-Doppler map,
(b) Range-Doppler map of the GIP-based AMF algorithm, (c) Range-Doppler map of the Log-Euclidean mean-based AMF algorithm,
(d) Range-Doppler map of the non-local Log-Euclidean mean-based AMF algorithm.

Figure 6 and 7 show the range-Doppler maps in dataset 24 and
35, respectively. Figure 6(c) and 7(c) are the range-Doppler
maps of the Log-Euclidean mean-based AMF algorithm, and
Figure 6(d) and 7(d) are the range-Doppler maps of our
proposed detection algorithm.

The results show that the target can be detected by
the non-local Log-Euclidean mean-based target detection
algorithm. However, the target can not be detected by the
Log-Euclidean mean-based AMF algorithm. In particular,
the clutter power in the range-Doppler map of our proposed
detection algorithm is lower than the range-Doppler map of
Log-Euclidean mean-based AMF algorithm. It implies that
the output signal-to-clutter rate (SCR) of our proposed detec-
tion algorithm is higher than that of the Log-Euclidean mean-
based AMF algorithm. That is to say, our proposed algorithm
can achieve a better clutter suppression performance with
respect to the Log-Euclidean mean-based AMF algorithm.
These results show the superiority of our proposed detection
algorithm.

In order to compare detection performances of the AMF
with the GIP (AMF-GIP), the AMF with the Log-Euclidean

mean (AMF-LEM), and the AMF with the non-local
Log-Euclidean mean (NLLEM), three real HF sea clutter
datasets (batch 24, 35, and 57) with a simulated target are
used to estimate the detection probability (Pd ) under different
SCRs. Each dataset contains 90 range cells, and 256 Doppler
bins. A simulated target is injected into the 45-th range cell.
The 256 Doppler bins in each range cell are divided into 32
sample data. Each sample is modeled as an HPD matrix of
order 8. The total 90 groups data are used for target detection,
where each group includes 90 range cells and 8 Doppler bins.
Pd s of the AMF-GIP, the AMF-LEM, and the AMF-NLLEM
are estimated by the relative frequency of correct detection.
The SCR varies from −10dB to 10dB. The probability of
false alsrm (Pfa) is set to be Pfa = 10−5. Figure 8 shows
the plot of Pd s of the AMF-GIP, the AMF-LEM, and the
AMF-NLLEM under different SCRs in real HF sea clutter.

From Figure 8, it can be seen that our proposed algorithm
has the best detection performance. In particular, the
detection performance of the AMF-NLLEM is better than
that of the AMF-LEM, which is followed by the AMF-GIP.
This is because all three algorithms exploit AMF algorithm
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FIGURE 8. The plot of Pd vs SCRs in real HF sea clutter with a simulated
target, Pfa = 10−5.

to detection a moving target, and the essential difference
between the three algorithms lies in different sample selec-
tors. As performances of the three sample selectors are quite
different, then, the homogeneity of the sample data used for
target detection is different. Moreover, the performance of
the non-local Log-Euclidean selector is much better than that
of the GIP selector. Consequently, the detection performance
of the AMF algorithm with the non-local Log-Euclidean
mean is much better than that of the AMF algorithm with
the GIP. These results can prove the superiority of detection
performance of our proposed algorithm sufficiently.

VI. CONCLUSION
In this paper, we have presented a non-local Log-Euclidean
mean-based algorithm for target detection in real HF
nonhomogeneous clutter. In particular, we have proposed a
non-local Log-Euclidean mean-based sample selection algo-
rithm to choose themost homogeneous sample data. An adap-
tive matched filter with the non-local Log-Euclidean mean
covariance estimator is used for target detection in the simu-
lation and real HF nonhomogeneous clutter. At the analysis
stage, we have analyzed the robustness of the Log-Euclidean
mean and the Euclidean mean, and simulation experiments
are given to assess the correct selection rates of the GIP,
the GIP with the Log-Euclidean mean, and the GIP with non-
local Log-Euclidean mean. Furthermore, we have assessed
the detection performance in real HF sea clutter with a simu-
lated target. These results have shown the superiority of our
proposed algorithm.

APPENDIX
The Proof of Proposition 1: According to Eq.(10), let F(P)
be the objection function,

F(P) = (1− ε)
1
m

m∑
i=1

‖ log(P)− log(Pi)‖2F

+ ε
1
n

n∑
j=1

‖ log(P)− log(Qj)‖2F (25)

Note that P̃ is the Log-Euclidean mean of m HPD matrices
{P1,P2, . . . ,Pm} and n outliers {Q1,Q2, . . . ,Qn}, and we
have

P̃ = argmin
P

F(P)

⇒ (1− ε)
1
m

m∑
i=1

2(log(P̃)− log(Pi)P̃−1

+ ε
1
n

n∑
j=1

2(log(P̃)− log(Qj)P̃−1 = 0

⇒ (1− ε)
1
m

m∑
i=1

(log(P̃)− log(Pi)

+ ε
1
n

n∑
j=1

(log(P̃)− log(Qj) = 0 (26)

P̄ is the Log-Euclidean mean of m HPD matrices
{P1,P2, . . . ,Pm}, and we have,

P̄ = argmin
P

G(P),G(P) =
1
m

m∑
i=1

‖ log(P̄)− log(Pi)‖2F

⇒ ∇G(P) =
1
m

m∑
i=1

2(log(P̄)− log(Pi))P̄−1 = 0

⇒ ∇G(P) =
1
m

m∑
i=1

(log(P̄)− log(Pi)) = 0 (27)

Using the Taylor expansion on P̃ = P̄ + εH (Q), and we
can obtain,

log(P̃) = log(P̄)+ εH (Q)P̄−1 (28)

Substitute Eq. (28) into Eq.(26), and we have,

(1− ε)
1
m

m∑
i=1

(log(P̄)+ εH (Q)P̄−1 − log(Pi)

+ ε
1
n

n∑
j=1

(log(P̄)+ εH (Q)P̄−1 − log(Qj) = 0

⇒ (1− ε)
1
m

m∑
i=1

(log(P̄)− log(Pi)+ (1− ε)εH (Q)P̄−1

+ ε
1
n

n∑
j=1

(log(P̄)− log(Qj)+ ε2 H (Q)P̄−1 = 0 (29)

Consider Eq.(27) and Eq.(29), and ignore the terms contain
ε2 (as the term ε � 1),

εH (Q)P̄−1 + ε
1
n

n∑
j=1

(log(P̄)− log(Qj) = 0 (30)

Then, the influence function of Log-Euclidean mean can
be given as follows,

H (Q) =
1
n

n∑
j=1

(log(Qj − log(P̄))P̄ (31)
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The Proof of Proposition 2: The mean P̄, associated with
the Euclidean distance, of m HPD matrices {P1,P2, . . . ,Pm}
is the solution of the minimum as follow,

P̄ = argmin
P∈P(n)

1
m

i=m∑
i=1

‖ P− Pi ‖2F (32)

Let F(P) be the objection function,

F(P)= (1− ε)
1
m

m∑
i=1

‖P−Pi‖2F+ε
1
n

n∑
j=1

‖P−Qj‖
2
F (33)

The derivative of objection function F(P) is,

∇F(P)= (1− ε)
1
m

m∑
i=1

2(P− Pi)+ε
1
n

n∑
j=1

2(P−Qj) (34)

P̃ is the Euclidean mean of m HPD matrices
{P1,P2, . . . ,Pm} and n outliers {Q1,Q2, . . . ,Qn}, and we
have

P̃ = argmin
P

F(P)

⇒ ∇F(P̃) = (1− ε)
1
m

m∑
i=1

2(P̃− Pi)

+ ε
1
n

n∑
j=1

2(P̃−Qj) = 0 (35)

P̄ is the Euclidean mean of m HPD matrices
{P1,P2, . . . ,Pm}, and P̄ can be given,

P̄ = argmin
P

G(P),G(P) =
1
m

m∑
i=1

‖P− Pi‖2F

⇒ ∇F(P̄) =
1
m

m∑
i=1

2(P̄− Pi) = 0 (36)

Substitute P̃ = P̄+ εH (Q) into Eq.(35), and we have,

2(1− ε)
1
m

m∑
i=1

(P̄+ εH (Q)− Pi)

+ 2ε
1
n

n∑
j=1

(P̄+ εH (Q)−Qj) = 0

⇒ (1− ε)
1
m

m∑
i=1

(P̄− Pi)+ (1− ε)εH (Q)

+ ε
1
n

n∑
j=1

(P̄+ εH (Q)−Qj) = 0

⇒ εH (Q)− ε2 H (Q)+ ε
1
n

n∑
j=1

(P̄−Qj)+ ε2 H (Q) = 0

(37)

Consider Eq.(36) and Eq.(37), and ignore the terms
contain ε2. Then, the influence function of Euclidean mean

can be formulated as,

H (Q) =
1
n

n∑
j=1

(Qj − P̄) (38)

In the following, we give the proof of the appropriate
threshold.

The probability of false alarm (Pfa) has an integral form,

Pfa =
∫ 1

0
Pfa|ρ f (ρ)dρ (39)

where

f (ρ)=
K !

(N − 2)!(K − N + 1)!
(1− ρ)N−2ρK−N+1 (40)

and

Pfa|ρ = (1+ ργ )−(K−N+1) (41)

Substitute Eq.(40) and Eq.(41) into Eq.(39), and then,
we have [31]

Pfa =
K !

(N − 2)!(K − N + 1)!

∫ 1

0
ρ(K−N+1)

× (1− ρ)(N−2)(1+ ργ )−(K−N+1)dρ

= F2
1 (K − N + 1,KN + 2;K + 1;−γ ) (42)

whereF2
1 (a, b; c; x) is the Gaussian hypergeometric function,

which is defined as [31],

F2
1 (a, b; c; x) =

∞∑
i=0

(a)i(b)i
(c)ii!

x i (43)

with the Pochhammer symbol (a)i = a(a + 1)...(a + i − 1).
According to the Theorem of [31], Eq.(42) can be formulated
as a Gaussian hypergeometric function

Pfa = G(K − N + 1,KN + 2;K + 1;−γ )

= (1+
K − N + 1
K + 1

γ )−(K−N+2) (44)

Thus, the threshold γ can be given as

γ =
K + 1

K − N + 1
[(Pfa)

(− 1
K−N+2 ) − 1] (45)
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