

research communications

Received 5 November 2020 Accepted 20 November 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; thulium; nitrate; hydrate; hydrogen bonding.

CCDC references: 2045553; 2045552

Supporting information: this article has supporting information at journals.iucr.org/e

Wilhelm Klein*

Technische Universität München, Department of Chemistry, Lichtenbergstr. 4, 85747 Garching, Germany. *Correspondence e-mail: wilhelm.klein@tum.de

Tm(NO₃)₃·5H₂O and Tm(NO₃)₃·6H₂O, or more precisely [Tm(NO₃)₃(H₂O)₄]·-H₂O and [Tm(NO₃)₃(H₂O)₄]·2H₂O, respectively, have been obtained from a concentrated solution of Tm₂O₃ in HNO₃. The crystal structures of the two hydrates show strong similarities as both crystallize in space group $P\overline{1}$ with all atoms at general positions and contain neutral, molecular [Tm(NO₃)₃(H₂O)₄] complexes, *i.e.* ten-coordinated Tm^{III} cations with three nitrate anions as bidentate ligands and four coordinating water molecules, and one or two additional crystal water molecules, respectively. All building units are connected by medium–strong to weak O–H···O hydrogen bonds. Tm(NO₃)₃·6H₂O represents the maximally hydrated thulium nitrate as well as the heaviest rare earth nitrate hexahydrate known to date.

1. Chemical context

The nitrates of the rare earth metals have long been used to separate and purify these elements. For example, when thulium was discovered (Cleve, 1897), fusion of nitrates was already used to separate the element from the erbiumcontaining earth, and a hydrate of thulium nitrate in substance was already described more than 100 years ago with four equivalents of water of crystallization and of highly hygroscopic nature (James, 1911). Later, among others, double nitrates like Mg₃Ln₂(NO₃)₁₂·24H₂O and (NH₄)₂Ln(NO₃)₅·- $4H_2O$ (*Ln* = rare earth element) were used to separate the elements by means of fractional crystallization (Prandtl, 1938). Also, when more sophisticated separation procedures such as chromatographic methods and solvent extraction were developed (Bock, 1950), there was still considerable interest in these complex nitrates because of their high solubility even in organic solvents. Numerous structural investigations have been reported for this family, not least for the hydrated compounds (Wickleder, 2002).

Considering the structural information for the maximally hydrated rare earth nitrates, a general tendency of a decreasing amount of water with increasing atomic number is obvious: for the lighter homologues La–Nd and Sm–Tb, the hexahydrates are found as maximally hydrated compounds for the nitrates (La: Eriksson *et al.*, 1980; Ce: Milinski *et al.*, 1980; Pr: Decadt *et al.*, 2012; Nd: Rogers *et al.*, 1983; Sm: Kawashima *et al.*, 2000; Eu: Stumpf & Bolte, 2001; Gd: Taha *et al.*, 2012; Tb: Moret *et al.*, 1990) while for the heavier elements Dy–Er and Yb, only pentahydrates have been reported (Ho: Rincke *et al.*, 2017; other: Junk *et al.*, 1999). Confirming this trend, the highest hydrate of Lu nitrate is the tetrahydrate (Junk *et al.*, 1999), and for Tm the trihydrate exhibits the highest number of water molecules reported so far (Riess, 2012).

research communications

In the present research communication, the new penta- and hexahydrates of $Tm(NO_3)_3$ are reported. While the penta-hydrate of $Tm(NO_3)_3$ fills the gap within the known compounds containing Er and Yb, the hexahydrate indeed represents the highest hydrated nitrate including Tm and shifts the border of known stable compounds notably to heavier rare earth elements.

2. Structural commentary

 $Tm(NO_3)_3 \cdot 5H_2O$ crystallizes in the $Y(NO_3)_3 \cdot 5H_2O$ type of structure (Eriksson, 1982) in space group $P\overline{1}$ with all atoms at general positions. The structure consists of isolated molecular $[Tm(NO_3)_3(H_2O)_4]$ complexes and one additional free water molecule per formula unit (Fig. 1). The nitrate anions act as bidentate ligands so the Tm^{III} atom is tenfold coordinated. The nitrate ions form an equatorial belt separating one aqua ligand from the other three, and are slightly inclined in the same sense and form a propeller-like shape. The nitrate anions coordinate asymmetrically at one shorter [2.3980 (17)-2.4479 (16) Å] and one slightly longer distance [2.5081 (16)-2.6193 (18) Å] each. The shortest Tm-O bonds [2.3235 (17)-2.3526 (18) Å] are formed with the three agua ligands on the same side of the plane, while the remaining Tm - O(H2) bond is in the range of the shorter bonds to the nitrate ions. The anions are almost planar with an O-N-O angular sum of 360.0° where the angle formed by the coordinating O atoms is significantly reduced. The N-O bond lengths are between 1.256 (3) and 1.290 (3) Å for coordinating and 1.213 (3) and 1.220 (3) Å for non-coordinating O atoms. Within the water molecules, the O-H bond lengths are between 0.68 (6) and 0.86 (4) Å, and the H–O–H angles between 102 (4) and 111 (4)°. The structural entities, *i.e.* the molecular $[Tm(NO_3)_3(H_2O)_4]$ complexes and H_2O molecules, are interconnected by almost linear hydrogen bonds (see Fig. 2) of medium-strong to weak strength. In detail, eight of ten independent H atoms form hydrogen bonds shorter than

Figure 1

Asymmetric unit of $Tm(NO_3)_3$. $5H_2O$ with the atom-numbering scheme. Anisotropic displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Table 1				
Hydrogen-bond geometry	(Å,	°) f	or '	$Tm(NO_3)_3 \cdot 5H_2O.$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O10-H1\cdots O1^{i}$	0.82 (4)	2.03 (4)	2.849 (2)	174 (3)
$O10-H2\cdots O13^{ii}$	0.78 (4)	2.32 (4)	2.996 (3)	145 (3)
$O10-H2\cdots O2^{ii}$	0.78 (4)	2.48 (4)	3.035 (3)	129 (3)
$O11-H3\cdots O14^{i}$	0.77 (5)	1.98 (5)	2.739 (3)	167 (5)
$O11-H4\cdots O2^{iii}$	0.85 (4)	2.03 (4)	2.874 (2)	171 (4)
$O12-H5\cdots O14^{iv}$	0.83 (4)	1.90 (4)	2.715 (3)	165 (4)
$O12-H6\cdots O7^{v}$	0.83 (4)	1.95 (4)	2.776 (2)	174 (4)
$O13-H7\cdots O5^{vi}$	0.82 (5)	1.98 (5)	2.784 (2)	166 (4)
O13−H8···O3 ^{vii}	0.86 (4)	2.12 (4)	2.953 (3)	163 (4)
O14−H9···O3 ^{vii}	0.84 (4)	2.27 (5)	3.095 (3)	167 (4)
O14−H10···O9	0.68 (6)	2.44 (6)	3.040 (3)	148 (5)
$O14-H10\cdots O6^{viii}$	0.68 (6)	2.62 (6)	3.132 (4)	134 (5)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) x, y - 1, z; (v) -x, -y + 1, -z; (vi) -x + 1, -y + 1, -z; (vii) -x + 1, -y + 1, -z + 1; (viii) x - 1, y + 1, z.

2.30 Å with $O-H\cdots O$ angles greater than 163° , while atoms H2 and H10 are part of bifurcated and slightly longer hydrogen bonds (Table 1).

 $Tm(NO_3)_3$ ·6H₂O also crystallizes in space group $P\overline{1}$ without occupying special positions and is isotypic with the respective Pr compound (Decadt et al., 2012). In comparison with $Tm(NO_3)_3 \cdot 5H_2O$ the volume (as determined at 223 K) increases by 34.4 Å^3 for the two additional H₂O molecules per unit cell. Further structural similarities to the pentahydrate include the presence of molecular $[Tm(NO_3)_3(H_2O)_4]$ complexes and free water molecules, but here two per formula unit. The $[Tm(NO_3)_3(H_2O)_4]$ complexes of the penta- and hexahydrates differ slightly, since in the latter the four water molecules and the three nitrate ligands accumulate on opposite sides of the complex (Fig. 3). With the nitrate anions as more or less bidentate ligands, again ten atoms are found in the first coordination sphere of the Tm^{III} atom in Tm(NO₃)₃·6H₂O. The resulting polyhedron can be described as a strongly distorted bicapped square antiprism. The shortest Tm-O bonds are observed to the aqua ligands [2.2897 (18)-2.3360 (16) Å]. Similar to the pentahydrate, the nitrate anions

Crystal structure of $Tm(NO_3)_3 \cdot 5H_2O$ in a view along [100]. Hydrogen bonds are shown as dotted lines up to an $O \cdots H$ distance of 2.45 Å. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Figure 3

Asymmetric unit of $Tm(NO_3)_3$. $6H_2O$ with the atom-numbering scheme. Anisotropic displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

show an asymmetric coordination with one shorter [2.4039 (17)-2.4677 (17) Å] and one longer Tm-O distance [2.5034 (18), 2.5252 (18), 2.991 (2) Å] each. In one case, this is so severe that the corresponding Tm-O distance is even larger than the distance between the Tm^{III} atom and the central N atoms of the two remaining anions, and the arrangement should therefore rather be described as a [9 + 1]coordination. The reason for this is probably the missing space in the coordination sphere of the Tm^{III} atom, which makes such a distance increase necessary. A qualitatively analogous observation of a single extended Ln - N distance was made for all isotypic compounds of other rare earth elements, but the relative extension of the distance in the structure described here is much larger than in all other examples, as can be expected for the representative with the smallest ion radius so far. The consideration including a reduced coordination number for the Tm^{III} atom is supported by the different shape of the respective nitrate ion. While two anions are very similar

Table 2Hydrogen-bond geometry (Å, °) for Tm(NO3)3.6H2O.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O10-H1···O14	0.85 (4)	1.89 (4)	2.730 (3)	170 (4)
O10−H2···O15	0.73 (5)	2.00(5)	2.714 (3)	164 (5)
$O11-H4\cdots O15^{i}$	0.74(4)	1.93 (4)	2.666 (2)	174 (4)
$O11-H3\cdots O7^{ii}$	0.81 (4)	2.20 (4)	3.006 (2)	175 (4)
$O12-H5\cdots O8^{iii}$	0.80(4)	2.15 (4)	2.943 (3)	172 (4)
$O12-H6\cdots O5^{iv}$	0.79 (4)	2.57 (4)	3.260 (3)	147 (4)
$O12-H6\cdots O7^{iv}$	0.79 (4)	2.61 (4)	3.269 (3)	142 (4)
$O13-H7\cdots O14^{v}$	0.78 (4)	1.93 (4)	2.713 (3)	174 (4)
$O13-H8\cdots O5^{vi}$	0.83 (5)	2.13 (5)	2.963 (2)	179 (5)
$O14-H9\cdots O6^{vi}$	0.80(4)	2.01 (4)	2.804 (3)	176 (4)
$O14-H10\cdots O3^{iv}$	0.80(5)	2.64 (5)	3.111 (3)	119 (4)
$O14-H10\cdots O3^{vii}$	0.80(5)	2.24 (5)	2.885 (2)	138 (4)
$O15-H11\cdots O9^{ii}$	0.79 (5)	2.01 (5)	2.782 (3)	168 (4)
$O15-H12\cdots O4^{viii}$	0.79 (5)	2.29 (5)	2.926 (2)	137 (4)
$O15{-}H12{\cdot}{\cdot}{\cdot}O3^{iv}$	0.79 (5)	2.47 (5)	2.992 (3)	125 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z; (vi) -x, -y + 1, -z; (vii) -x, -y + 2, -z; (viii) x, y + 1, z.

with two longer and one shorter N-O bonds for coordinating and non-coordinating O atoms, respectively, and one reduced O-N-O angle between the coordinating O atoms, the third anion exhibits only one longer N–O bond of 1.275 (2) Å, indicating the coordinating O atom, and two shorter and almost equal N-O distances of 1.232 (3) Å and 1.236 (3) Å with more regular O-N-O angles. However, all nitrate ions are planar with an O–N–O angular sum of 360.0°. The water molecules show O-H bond lengths between 0.73 (5) and 0.85 (4) Å and H–O–H angles between 105 (5) and 112 (4)°. The metal complexes and the water molecules build a threedimensional network of hydrogen bonds, again of mediumstrong to weak character (Table 2, Fig. 4). Nine of twelve independent H atoms form hydrogen bonds shorter than 2.2 Å with $O-H\cdots O$ angles greater than 164° while H6, H10, and H12 are involved in weak and bifurcated hydrogen bonds.

Interestingly, the molecular Tm complexes in both crystal structures exhibit an alleged higher symmetry, *viz*. a threefold rotation axis in the pentahydrate and a mirror plane in the hexahydrate, as illustrated in Fig. 5. However, these are

Figure 4

Crystal structure of $Tm(NO_3)_3 \cdot 6H_2O$ in a view along [100]. Hydrogen bonds are shown as dotted lines up to an $O \cdots H$ distance of 2.5 Å. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Structural details to emphasize the molecular pseudo-symmetry in the title compounds: (a) a pseudo-threefold rotation axis in the molecular complex present in $Tm(NO_3)_3$ · $5H_2O$; (b) a pseudo-mirror plane in the molecular complex present in $Tm(NO_3)_3$ · $6H_2O$. Anisotropic displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

research communications

Table 3Experimental details.

	$Tm(NO_3)_3$ ·5H ₂ O	$Tm(NO_3)_3 \cdot 6H_2O$
Crystal data		
Chemical formula	$[Tm(NO_3)_3(H_2O)_4]\cdot H_2O$	$[Tm(NO_3)_3(H_2O)_4] \cdot 2H_2O$
M_r	445.04	463.06
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	223	223
a, b, c (Å)	6.5782 (4), 9.5213 (5), 10.4848 (6)	6.7050 (3), 8.9733 (4), 11.4915 (6)
α, β, γ (°)	63.696 (4), 84.656 (5), 76.146 (4)	70.924 (4), 88.908 (4), 68.923 (4)
$V(\dot{A}^3)$	571.51 (6)	605.90 (5)
Z	2	2
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	7.85	7.41
Crystal size (mm)	$0.25 \times 0.2 \times 0.2$	$0.4 \times 0.2 \times 0.15$
Data collection		
Diffractometer	Stoe StadiVari	Stoe StadiVari
Absorption correction	Empirical (using intensity measurements)	Empirical (using intensity measurements)
-	(X-AREA; Stoe, 2015)	(X-AREA; Stoe, 2015)
T_{\min}, T_{\max}	0.798, 1.000	0.615, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	18549, 4113, 3394	29880, 4385, 3899
R _{int}	0.038	0.031
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.756	0.756
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.017, 0.029, 0.65	0.016, 0.035, 0.91
No. of reflections	4113	4385
No. of parameters	204	221
H-atom treatment	All H-atom parameters refined	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.94, -0.92	1.11, -1.19

Computer programs: X-AREA (Stoe, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2012) and publcIF (Westrip, 2010).

pseudo-symmetries, with the higher symmetry violated at a molecular level and in the first coordination sphere, and incompatible with the space-group symmetry.

3. Database survey

The crystal structure of anhydrous $Tm(NO_3)_3$ was determined quite recently (Heinrichs, 2013), and one hydrated phase has been reported so far, *i.e.* the trihydrate (Riess, 2012). In addition, basic oxo-hydroxo-nitrate hydrates are known with Tm (Giester *et al.*, 2009). The thulium nitrate pentahydrate adopts the Y(NO₃)₃·5H₂O type of structure (Eriksson, 1982; Klein, 2020), and is isotypic with the respective Eu (Ribár *et al.*, 1986), Gd (Stockhause & Meyer, 1997), Dy, Er, Yb (Junk *et al.*, 1999) and Ho compounds (Rincke *et al.*, 2017). Tm(NO₃)₃·6H₂O is isotypic with the nitrate hexahydrates of Y (Ribár *et al.*, 1980), Pr (Rumanova *et al.*, 1964; Fuller & Jacobsen, 1976; Decadt *et al.*, 2012), Nd (Rogers *et al.*, 1983; Shi & Wang, 1991), Sm (Shi & Wang, 1990; Kawashima *et al.*, 2000), Eu (Stumpf & Bolte, 2001; Ananyev *et al.*, 2016), Gd (Ma *et al.*, 1991; Taha *et al.*, 2012) and Tb (Moret *et al.*, 1990).

4. Synthesis and crystallization

 $[Tm(NO_3)_3(H_2O)_4]\cdot H_2O$ was prepared by dissolving Tm_2O_3 (Fluka AG; 99.9%) in hot aqueous nitric acid (65%_{wt}). From saturated solutions, crystals with sizes up to the millimetre range were grown at room temperature within one day. Single

crystals were removed, cleansed from the mother liquor and placed on a microscope slide in air. For the single-crystal data collection, crystals were immersed into perfluoroalkyl ether, which also acts as glue on a glass tip during the measurement. The remaining crystals were carefully ground to measure an X-ray powder pattern that, according to a comparison with the pattern simulated from the single-crystal structure determination, showed exclusively reflections of the pentahydrate. The crystals are hygroscopic and usually deliquesce within hours under ambient conditions depending on air humidity. Rapid re-crystallization within minutes can be induced by scratching on the glass slide. Surprisingly, from one recrystallization the hexahydrate [Tm(NO₃)₃(H₂O)₄]·2H₂O was obtained. All investigated crystals from this batch revealed the unit cell of the hexahydrate, so the crystallization seemed to result in a pure product in this case as well. Optically indistinguishable, the crystals of the hexahydrate showed the same deliquescence behaviour. It has not been possible to determine the exact conditions required to obtain the hexahydrate so far. According to EDX measurements, the crystals contain Tm as the only element heavier than oxygen.

5. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. In both structure refinements, all hydrogen atoms have been located from difference Fourier maps and refined with free atomic coordinates and isotropic displacement parameters.

References

- Ananyev, I. V., Nelyubina, Yu. V., Puntus, L. N., Lyssenko, K. A. & Eremenko, I. L. (2016). *Russ. Chem. Bull.* **65**, 1178–1188.
- Bock, R. (1950). Angew. Chem. 62, 375-382.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Cleve, P. T. (1897). C. R. Hebd. Seances Acad. Sci. 89, 328-329.
- Decadt, R., Van Der Voort, P., Van Driessche, I., Van Deun, R. & Van Hecke, K. (2012). Acta Cryst. E68, i59–i60.
- Eriksson, B. (1982). Acta Chem. Scand. A36, 186-188.
- Eriksson, B., Larsson, L. O., Niinistö, L. & Valkonen, J. (1980). *Inorg. Chem.* **19**, 1207–1210.
- Fuller, C. C. & Jacobsen, R. A. (1976). Cryst. Struct. Commun. 5, 349– 352.
- Giester, G., Žák, Z. & Unfried, P. (2009). J. Alloys Compd. 481, 116– 128.
- Heinrichs, C. (2013). Dissertation, Universität zu Köln, Köln, Germany.
- James, C. (1911). J. Am. Chem. Soc. 33, 1332-1344.
- Junk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497–505.
- Kawashima, R., Sasaki, M., Satoh, S., Isoda, H., Kino, Y. & Shiozaki, Y. (2000). J. Phys. Soc. Jpn, 69, 3297–3303.
- Klein, W. (2020). Z. Kristallogr. New Cryst. Struct. 235, 801-802.
- Ma, H., Gao, S. & Yang, Z. (1991). Wuji Huaxue Xuebao, 7, 351-353.

- Milinski, N., Ribár, B. & Satarić, M. (1980). Cryst. Struct. Commun. 9, 473–476.
- Moret, E., Bünzli, J. G. & Schenk, K. J. (1990). *Inorg. Chim. Acta*, **178**, 83–88.
- Prandtl, W. (1938). Z. Anorg. Allg. Chem. 238, 321-334.
- Ribár, B., Kapor, A., Argay, Gy. & Kálmán, A. (1986). *Acta Cryst.* C42, 1450–1452.
- Ribár, B., Milinski, N., Budovalcev, Z. & Krstanović, I. (1980). Cryst. Struct. Commun. 9, 203–206.
- Riess, K. (2012). *Dissertation*. Carl von Ossietzky Universität, Oldenburg, Germany.
- Rincke, C., Schmidt, H. & Voigt, W. (2017). Z. Anorg. Allg. Chem. 643, 437–442.
- Rogers, D. J., Taylor, N. J. & Toogood, G. E. (1983). Acta Cryst. C39, 939–941.
- Rumanova, I. M., Volodina, G. F. & Belov, N. V. (1964). *Kristallografiya*, **9**, 642–654.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shi, B. D. & Wang, J. Z. (1990). Jiegou Huaxue, 9, 164-167.
- Shi, B. D. & Wang, J. Z. (1991). Xiamen Daxue Xuebao Ziran Kexueban 30, 55–58.
- Stockhause, S. & Meyer, G. (1997). Z. Kristallogr. New Cryst. Struct. 212, 315.
- Stoe (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Stumpf, T. & Bolte, M. (2001). Acta Cryst. E57, i10-i11.
- Taha, Z. A., Ajlouni, A., Hijazi, A. K., Kühn, F. E. & Herdtweck, E. (2012). Acta Cryst. E68, i56–i57.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wickleder, M. S. (2002). Chem. Rev. 102, 2011-2088.

Acta Cryst. (2020). E76, 1863-1867 [https://doi.org/10.1107/S2056989020015388]

Crystal structures of the penta- and hexahydrate of thulium nitrate

Wilhelm Klein

Computing details

For both structures, data collection: *X-AREA* (Stoe, 2015); cell refinement: *X-AREA* (Stoe, 2015); data reduction: *X-AREA* (Stoe, 2015); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Z = 2

F(000) = 424

 $\theta = 3.2 - 36.9^{\circ}$ $\mu = 7.85 \text{ mm}^{-1}$

Block, colourless

 $0.25 \times 0.2 \times 0.2$ mm

T = 223 K

 $D_{\rm x} = 2.586 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 15951 reflections

Thulium nitrate (TONi-2_223K)

Crystal data [Tm(NO₃)₃(H₂O)₄]·H₂O $M_r = 445.04$ Triclinic, $P\overline{1}$ a = 6.5782 (4) Å b = 9.5213 (5) Å c = 10.4848 (6) Å a = 63.696 (4)° $\beta = 84.656$ (5)° $\gamma = 76.146$ (4)° V = 571.51 (6) Å³

Data collection

STOE StadiVari diffractometer Radiation source: Genix 3D HF Mo Graded multilayer mirror monochromator Detector resolution: 5.81 pixels mm ⁻¹ ω scans Absorption correction: empirical (using intensity measurements)	$T_{\min} = 0.798, T_{\max} = 1.000$ 18549 measured reflections 4113 independent reflections 3394 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{\max} = 32.5^{\circ}, \theta_{\min} = 3.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -13 \rightarrow 14$
(X-AREA; Stoe, 2015)	$l = -14 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.029$ S = 0.65 4113 reflections 204 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2)]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.94$ e Å ⁻³ $\Delta\rho_{min} = -0.92$ e Å ⁻³

Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0130 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Tm	0.24261 (2)	0.34935 (2)	0.29463 (2)	0.01335 (4)
N1	0.4678 (3)	0.2804 (2)	0.5557 (2)	0.0181 (4)
01	0.2946 (3)	0.38136 (19)	0.50762 (18)	0.0237 (3)
O2	0.5532 (3)	0.21177 (19)	0.47971 (17)	0.0235 (3)
O3	0.5463 (4)	0.2559 (3)	0.6667 (2)	0.0334 (5)
N2	0.5187 (3)	0.2148 (2)	0.1245 (2)	0.0224 (4)
O4	0.4995 (3)	0.1419 (2)	0.25849 (18)	0.0281 (4)
05	0.4049 (3)	0.35678 (19)	0.06621 (17)	0.0235 (3)
O6	0.6366 (4)	0.1552 (2)	0.0567 (2)	0.0393 (5)
N3	0.0240 (3)	0.6856 (2)	0.1466 (2)	0.0207 (4)
07	0.0612 (3)	0.58072 (19)	0.09609 (18)	0.0229 (4)
08	0.1039 (3)	0.63874 (19)	0.26683 (17)	0.0232 (3)
O9	-0.0817 (4)	0.8199 (2)	0.0805 (2)	0.0371 (5)
O10	-0.0906 (3)	0.3864 (2)	0.39356 (19)	0.0222 (3)
H1	-0.150 (6)	0.447 (4)	0.428 (4)	0.034 (8)*
H2	-0.182 (6)	0.374 (4)	0.360 (4)	0.028 (8)*
011	0.1965 (3)	0.1013 (2)	0.46732 (19)	0.0221 (3)
Н3	0.124 (7)	0.088 (5)	0.532 (5)	0.047 (11)*
H4	0.278 (6)	0.014 (5)	0.475 (4)	0.035 (9)*
O12	0.0243 (3)	0.2649 (2)	0.19433 (18)	0.0229 (3)
Н5	0.038 (6)	0.169 (5)	0.212 (4)	0.041 (10)*
H6	0.009 (6)	0.311 (4)	0.106 (4)	0.035 (9)*
O13	0.5125 (3)	0.5005 (2)	0.22335 (18)	0.0207 (3)
H7	0.556 (8)	0.530 (5)	0.141 (5)	0.059 (12)*
H8	0.495 (7)	0.586 (5)	0.237 (4)	0.045 (10)*
O14	0.0035 (5)	0.9548 (2)	0.2793 (2)	0.0322 (5)
Н9	0.120 (7)	0.892 (5)	0.285 (4)	0.038 (9)*
H10	-0.046 (9)	0.956 (6)	0.224 (6)	0.066 (16)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tm	0.01449 (5)	0.01318 (5)	0.01242 (4)	-0.00290 (3)	-0.00004 (3)	-0.00565 (3)
N1	0.0201 (10)	0.0177 (8)	0.0181 (8)	-0.0059 (7)	-0.0007 (7)	-0.0082 (7)
01	0.0221 (9)	0.0251 (8)	0.0241 (8)	0.0038 (7)	-0.0053 (6)	-0.0142 (7)

O2	0.0262 (9)	0.0215 (7)	0.0233 (8)	-0.0017 (7)	0.0005 (7)	-0.0118 (6)	
O3	0.0384 (12)	0.0372 (10)	0.0277 (10)	-0.0024 (9)	-0.0141 (9)	-0.0170 (8)	
N2	0.0248 (11)	0.0220 (9)	0.0214 (9)	-0.0042 (8)	0.0040 (8)	-0.0117 (8)	
O4	0.0330 (10)	0.0251 (8)	0.0171 (8)	0.0029 (7)	0.0007 (7)	-0.0059 (6)	
O5	0.0291 (10)	0.0197 (7)	0.0214 (8)	-0.0053 (7)	0.0058 (7)	-0.0097 (6)	
06	0.0454 (13)	0.0381 (10)	0.0335 (10)	0.0016 (9)	0.0120 (9)	-0.0224 (8)	
N3	0.0231 (10)	0.0150 (8)	0.0220 (9)	-0.0010 (7)	-0.0039(7)	-0.0072 (7)	
O7	0.0329 (10)	0.0166 (7)	0.0192 (8)	-0.0016 (7)	-0.0056 (7)	-0.0084 (6)	
08	0.0266 (9)	0.0240 (8)	0.0225 (8)	-0.0042 (7)	-0.0037 (7)	-0.0131 (6)	
09	0.0451 (13)	0.0182 (8)	0.0380 (10)	0.0105 (8)	-0.0137 (9)	-0.0093 (8)	
O10	0.0165 (9)	0.0288 (8)	0.0288 (9)	-0.0047 (7)	0.0026 (7)	-0.0198 (7)	
O11	0.0238 (9)	0.0172 (7)	0.0205 (8)	-0.0036 (7)	0.0038 (7)	-0.0051 (6)	
O12	0.0371 (10)	0.0185 (8)	0.0152 (8)	-0.0110 (7)	-0.0035 (7)	-0.0062 (6)	
O13	0.0257 (9)	0.0196 (7)	0.0170 (8)	-0.0078 (6)	0.0028 (6)	-0.0073 (6)	
O14	0.0520 (15)	0.0212 (9)	0.0236 (10)	-0.0045 (9)	0.0004 (9)	-0.0117 (8)	

Geometric parameters (Å, °)

Tm—012	2.3235 (18)	N3—O9	1.216 (3)
Tm—011	2.3235 (17)	N3—O8	1.256 (3)
Tm—O10	2.3526 (18)	N3—O7	1.290 (2)
Tm—O7	2.3980 (17)	O7—O8	2.153 (2)
Tm-013	2.4089 (18)	O7—O9	2.184 (2)
Tm—O4	2.4181 (17)	O7—O12 ^{vii}	2.776 (2)
Tm01	2.4479 (16)	O7—O12	2.778 (2)
Tm—O5	2.5081 (16)	O7—O10	3.056 (3)
Tm—O8	2.5776 (15)	O7—O13	3.150 (3)
Tm—O2	2.6193 (18)	O8—O9	2.175 (2)
Tm—N2	2.9035 (19)	O8—O10	2.738 (3)
Tm—N3	2.9212 (18)	O8—O13	2.788 (2)
Tm—N1	2.9690 (19)	O8—O3 ^{iv}	2.969 (3)
N103	1.220 (3)	O8—O14	2.982 (3)
N1	1.257 (2)	O9—O14	3.040 (3)
N1-01	1.276 (3)	O9—O6 ^v	3.153 (3)
01—02	2.144 (2)	O9—O6 ^{viii}	3.199 (2)
01—03	2.180 (3)	O10—O11	2.736 (2)
01—08	2.755 (2)	O10—O12	2.775 (2)
01-010 ⁱ	2.849 (2)	O10—O1 ⁱ	2.849 (2)
01—010	2.882 (3)	O10—O13 ^{ix}	2.996 (3)
01—013	3.035 (2)	O10—O2 ^{ix}	3.035 (3)
01-011	3.095 (2)	O10—H1	0.82 (4)
02—03	2.174 (2)	O10—H2	0.78 (4)
02—04	2.753 (2)	O11—O14 ⁱ	2.739 (3)
02-011	2.827 (3)	O11—O12	2.777 (2)
02—013	2.844 (2)	O11—O2 ⁱⁱ	2.874 (2)
O2—O11 ⁱⁱ	2.874 (2)	O11—O4 ⁱⁱ	3.253 (2)
O2—O10 ⁱⁱⁱ	3.035 (3)	O11—H3	0.77 (5)
O3—O13 ^{iv}	2.953 (3)	O11—H4	0.85 (4)

O3—O8 ^{iv}	2.969 (3)	O12—O14 ^x	2.715 (3)
O3—O14 ^{iv}	3.095 (3)	O12—O7 ^{vii}	2.776 (2)
N2—O6	1.213 (3)	O12—O9 ^{vii}	3.288 (3)
N2—O4	1.271 (3)	O12—H5	0.83 (4)
N2—O5	1.277 (3)	012—Н6	0.83 (4)
04—05	2.146 (2)	O13—O5 ^v	2.784 (2)
04—06	2.184 (2)	O13—O3 ^{iv}	2.953 (3)
04-011	2.779 (3)	O13—O10 ⁱⁱⁱ	2.996 (3)
04-012	3.088 (3)	013—06 ^v	3.286 (3)
05-06	2.181 (2)	O13—H7	0.82 (5)
05-013 ^v	2.784 (2)	013—H8	0.86(4)
05-013	2.786 (2)	$014 - 012^{xi}$	2.715 (3)
05-07	2 812 (2)	$014-011^{i}$	2,739 (3)
05-012	2.867 (3)	$014-03^{iv}$	3 095 (3)
05-012	2 981 (3)	$014-06^{\text{viii}}$	3 132 (4)
06-014 ^{vi}	3 132 (4)	014—H9	0.84(4)
$06-09^{v}$	3 153 (3)	014—H10	0.68 (6)
$06-09^{vi}$	3 199 (2)		0.00 (0)
00 09	5.177 (2)		
012—Tm—011	73 38 (6)	N3-08-01	146 83 (13)
012 m 011	72.80 (7)	07 - 08 - 01	114 60 (8)
012 m 010	71.63 (6)	09-08-01	171.00(0)
012—Tm— 07	72 07 (6)	Tm = 08 = 01	54 53 (5)
012 $Tm=07$	140.36(7)	010-08-01	63 30 (7)
010 - Tm - 07	80.06 (7)	N3_08_013	100.19(13)
012 - Tm - 013	139 17 (6)	07 - 08 - 013	78.06 (8)
012 - 1m - 013	137.77(6)	0^{9} 08 013	117.62(10)
010 - Tm - 013	137.72 (0)	$T_{m} = 08 = 013$	117.02(10) 53.17(5)
0.07 Tm 0.013	81.00 (6)	010 08 013	104.61(7)
0/-111-013	81.30 (0)	010-08-013	104.01(7)
012 - 111 - 04	31.20(7)	$N_2 = 08 = 013$	127.07(15)
010 Tm 04	13074(7)	$07 08 03^{iv}$	127.07(13) 120.06(11)
0.0-10-0.04	139.74 (7)	0^{-} 0^{-} 0^{-} 0^{-} 0^{-}	130.90(11)
0/-111-04	120.00 (0) 85.01 (6)	$\frac{09-08-03}{100}$	113.90(10) 107.07(7)
013 - 111 - 04	83.91(0)	$\frac{111}{08} = 03^{10}$	107.97(7)
012— 111 — 01	142.71(7)	01 - 08 - 03	137.00(9)
010 Tm 01	(0) (0) (7)	$012 08 03^{11}$	(4.92(7))
010-111-01	13.77(7)	N2 08 014	01.03(7)
0/-111-01	117.47(3)	$N_{3} = 0_{8} = 0_{14}$	97.81 (13)
013-111-01	115 70 (6)	$0^{-}_{-}0$	130.13(10)
04-111-01	113.79(0)	09-08-014	1(0.27(8))
012—1m—05	72.09 (0) 11(78 (C)	1m-08-014	108.88 (9)
011—1m—05	116./8 (6)	010-08-014	129.72 (9)
010—1m—05	139.04 (/)	01 - 08 - 014	115.20 (8)
0/—1m—05	09.91 (0)	013 - 08 - 014	120.95(9)
013—1m—05	09.01 (0)	$U_3 \cdots U_8 \longrightarrow U_14$	02.07(8)
04—1m—05	51.62 (5)	N3-09-07	28.84 (12)
01—1m—05	144.29 (6)	N3-09-07	30.33 (11)
012—Tm—08	113.85 (6)	U8—U9—U7	59.18 (7)

O11—Tm—O8	132.83 (6)	N3	95.93 (15)
O10—Tm—O8	67.31 (6)	O8—O9—O14	67.39 (8)
O7—Tm—O8	51.11 (5)	07—09—014	125.90 (11)
O13—Tm—O8	67.90 (6)	N3—O9—O6 ^v	76.99 (16)
O4—Tm—O8	152.92 (6)	O8—O9—O6 ^v	82.55 (9)
O1—Tm—O8	66.42 (5)	O7—O9—O6 ^v	74.67 (9)
O5—Tm—O8	109.44 (5)	O14—O9—O6 ^v	91.35 (9)
O12—Tm—O2	136.38 (6)	N3-09-06 ^{viii}	152.81 (17)
O11—Tm—O2	69.47 (6)	O8—O9—O6 ^{viii}	124.77 (10)
O10—Tm—O2	114.60 (6)	O7—O9—O6 ^{viii}	170.46 (13)
O7—Tm—O2	149.67 (6)	O14—O9—O6 ^{viii}	60.20 (7)
O13—Tm—O2	68.73 (6)	O6 ^v O9O6 ^{viii}	113.72 (8)
O4—Tm—O2	66.13 (6)	Tm-O10-O11	53.69 (5)
O1—Tm—O2	49.93 (5)	Tm01008	60.27 (6)
O5—Tm—O2	104.73 (6)	011-010-08	110.30 (8)
O8—Tm—O2	108.01 (5)	Tm010012	53.11 (5)
O12—Tm—N2	75.56 (6)	011-010-012	60.49 (6)
O11—Tm—N2	94.20 (6)	O8—O10—O12	96.36 (7)
O10—Tm—N2	147.88 (7)	Tm01001 ⁱ	130.59 (9)
O7—Tm—N2	95.49 (6)	011-010-01 ⁱ	143.50 (9)
O13—Tm—N2	76.27 (6)	O8-010-01 ⁱ	73.51 (7)
O4—Tm—N2	25.62 (6)	O12O10O1 ⁱ	155.76 (9)
O1—Tm—N2	133.73 (6)	TmO10O1	54.63 (5)
O5—Tm—N2	26.00 (6)	011-010-01	66.79 (7)
O8—Tm—N2	132.96 (6)	O8—O10—O1	58.62 (6)
O2—Tm—N2	85.07 (6)	012-010-01	106.09 (8)
O12—Tm—N3	92.45 (6)	O1 ⁱ O10O1	87.67 (7)
O11—Tm—N3	142.15 (6)	Tm-O10-O13 ^{ix}	122.60 (8)
O10—Tm—N3	70.66 (6)	O11O10O13 ^{ix}	128.05 (9)
O7—Tm—N3	25.75 (6)	O8—O10—O13 ^{ix}	103.81 (7)
O13—Tm—N3	74.57 (6)	O12O10O13 ^{ix}	78.12 (7)
O4—Tm—N3	141.95 (6)	O1 ⁱ O10O13 ^{ix}	82.96 (7)
O1—Tm—N3	91.72 (5)	O1O10O13 ^{ix}	162.00 (8)
O5—Tm—N3	90.60 (5)	Tm	135.89 (8)
O8—Tm—N3	25.43 (5)	O11O10O2 ^{ix}	90.74 (7)
O2—Tm—N3	131.08 (5)	O8—O10—O2 ^{ix}	158.09 (8)
N2—Tm—N3	116.50 (6)	O12O10O2 ^{ix}	88.57 (7)
O12—Tm—N1	145.99 (6)	O1 ⁱ —O10—O2 ^{ix}	93.44 (7)
O11—Tm—N1	72.73 (6)	O1	140.06 (8)
O10—Tm—N1	93.76 (6)	O13 ^{ix} —O10—O2 ^{ix}	56.26 (6)
O7—Tm—N1	137.60 (5)	Tm01007	50.62 (5)
O13—Tm—N1	72.24 (6)	011-010-07	100.01 (7)
O4—Tm—N1	90.89 (6)	O8—O10—O7	43.18 (5)
O1—Tm—N1	24.96 (5)	O12—O10—O7	56.67 (6)
O5—Tm—N1	126.60 (6)	O1 ⁱ —O10—O7	105.10 (7)
O8—Tm—N1	87.63 (5)	O1—O10—O7	88.42 (7)
O2—Tm—N1	25.01 (5)	O13 ^{ix} —O10—O7	79.30 (7)
N2—Tm—N1	109.73 (6)	O2 ^{ix} —O10—O7	129.22 (8)

N3—Tm—N1	112.83 (5)	Tm-O10-H1	133 (3)
O3—N1—O2	122.7 (2)	O11—O10—H1	140 (2)
O3—N1—O1	121.65 (19)	O8—O10—H1	77 (3)
O2—N1—O1	115.65 (18)	O12—O10—H1	159 (2)
O3—N1—Tm	175.24 (17)	O1 ⁱ —O10—H1	5 (2)
Ω_{2} N1 — Tm	61.74 (11)	O1—O10—H1	88 (3)
01— $N1$ — Tm	54.03 (10)	013^{ix} 010 H1	84 (3)
N1-01-02	31.90 (10)	$02^{ix} - 010 - H1$	91 (3)
N1-01-03	28 46 (11)	07-010-H1	110(2)
$0^{2}-0^{1}-0^{3}$	60.35 (8)	Tm010H2	117(2)
N1 01 Tm	$101 \ 01 \ (12)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103(2)
$\Omega_2 = \Omega_1 - Tm$	60 10 (6)	O8 O10 H2	105(2) 125(3)
02-01-1	120.44(0)		125(3)
03-01-111 N1 01 08	129.44(9) 142.01(14)		04(2)
N1 = 01 = 08	142.91(14)	01 - 010 - H2	103(2)
02-01-08	117.71 (9)	OI = OI O = H2	169 (2)
03-01-08	152.42 (12)	013 ^{IX} —010—H2	26 (2)
Tm0108	59.05 (5)	$O2^{ix}$ — $O10$ — $H2$	39 (3)
N1—O1—O10 ⁱ	125.68 (13)	O7—O10—H2	90 (3)
O2—O1—O10 ⁱ	155.65 (10)	H1—O10—H2	103 (4)
O3—O1—O10 ⁱ	97.77 (9)	Tm011010	54.68 (5)
$Tm - O1 - O10^i$	132.31 (7)	Tm—O11—O14 ⁱ	126.09 (8)
O8—O1—O10 ⁱ	76.13 (6)	O10-011-014 ⁱ	79.46 (8)
N1-01-010	136.42 (14)	Tm011012	53.31 (5)
O2—O1—O10	111.95 (9)	O10-011-012	60.44 (6)
O3—O1—O10	149.48 (11)	014 ⁱ —011—012	128.28 (10)
Tm—O1—O10	51.60 (5)	Tm01104	55.71 (5)
08-01-010	58.08 (6)	010-011-04	108.60 (8)
O10 ⁱ —O1—O10	92.33 (7)	014 ⁱ —011—04	163.22 (11)
N1-01-013	85.66 (12)	012-011-04	67.54 (7)
02-01-013	63.91 (7)	Tm - 011 - 02	60.20 (5)
03-01-013	$105\ 20\ (10)$	010-011-02	97.60(7)
$T_{m} - 01 - 013$	50.75 (5)	014^{i} - 011 - 02	106.22(9)
08-01-013	57 34 (6)	012 - 011 - 02	100.22(9)
010^{i} 01 013	11755(8)	04_011_02	58 83 (7)
010 - 01 - 013	117.33(0) 05.28(7)	04-011-02	128 10(0)
010-01-013	93.20 (7)		128.10(9)
	82.07(12)	$010-011-02^{\circ}$	109.77 (9)
02-01-011	02.22(7)	$012 - 011 - 02^{2}$	102.25 (8)
	101.73 (9)	$012-011-02^{n}$	112.15 (8)
1m_01_011	47.83 (4)	04-011-02"	72.52 (7)
08-01-011	100.20 (7)	$O2-O11-O2^{n}$	91.62 (7)
O10 ¹ —O1—O11	138.47 (9)	Tm—O11—O1	51.34 (5)
010-01-011	54.35 (6)	010-011-01	58.86 (6)
013—01—011	92.12 (6)	014 ⁱ 01101	82.73 (7)
N1	32.45 (11)	012-011-01	100.57 (7)
N1	28.19 (11)	04-011-01	88.96 (7)
01-02-03	60.63 (8)	02-011-01	42.16 (5)
N1—O2—Tm	93.26 (12)	O2 ⁱⁱ —O11—O1	131.25 (8)
O1—O2—Tm	60.88 (6)	Tm01104 ⁱⁱ	126.48 (8)

O3—O2—Tm	121.43 (9)	O10O11O4 ⁱⁱ	135.39 (8)
N1	145.77 (15)	O14 ⁱ O11O4 ⁱⁱ	67.19 (8)
01-02-04	114.04 (9)	O12—O11—O4 ⁱⁱ	163.11 (9)
03—02—04	170.50 (12)	O4—O11—O4 ⁱⁱ	98.00 (7)
Tm	53.43 (5)	O2—O11—O4 ⁱⁱ	66.31 (6)
N1-02-011	94.41 (14)	O2 ⁱⁱ —O11—O4 ⁱⁱ	52.98 (5)
01-02-011	75.62 (8)	O1O11O4 ⁱⁱ	87.35 (6)
03-02-011	110.77 (10)	Tm—O11—H3	125 (3)
Tm	50.33 (5)	O10—O11—H3	75 (3)
04-02-011	59.72 (7)	O14 ⁱ —O11—H3	9 (3)
N1-02-013	94.71 (12)	O12—O11—H3	120 (3)
01-02-013	73.45 (7)	O4—O11—H3	172 (3)
03-02-013	111.95 (9)	O2—O11—H3	114 (3)
Tm	52.13 (5)	O2 ⁱⁱ —O11—H3	105 (3)
04-02-013	71.96 (6)	01—011—H3	87 (3)
011-02-013	102.24 (7)	O4 ⁱⁱ —O11—H3	75 (3)
N1-02-011 ⁱⁱ	135.37 (13)	Tm—O11—H4	122 (3)
O1-O2-O11 ⁱⁱ	156.10 (10)	O10—O11—H4	169 (2)
O3—O2—O11 ⁱⁱ	110.89 (9)	O14 ⁱ —O11—H4	108 (2)
Tm—O2—O11 ⁱⁱ	121.11 (7)	O12—O11—H4	109 (2)
O4—O2—O11 ⁱⁱ	70.59 (6)	O4—O11—H4	66 (2)
O11—O2—O11 ⁱⁱ	88.37 (7)	O2—O11—H4	88 (3)
O13—O2—O11 ⁱⁱ	128.19 (8)	O2 ⁱⁱ —O11—H4	6 (3)
N1-02-010 ⁱⁱⁱ	93.92 (13)	O1—O11—H4	129 (3)
O1—O2—O10 ⁱⁱⁱ	103.88 (9)	O4 ⁱⁱ —O11—H4	56 (2)
O3—O2—O10 ⁱⁱⁱ	83.51 (9)	H3—O11—H4	111 (4)
Tm—O2—O10 ⁱⁱⁱ	113.27 (7)	Tm—O12—O14 ^x	125.11 (10)
O4—O2—O10 ⁱⁱⁱ	105.78 (8)	Tm	54.08 (5)
O11—O2—O10 ⁱⁱⁱ	162.02 (8)	O14 ^x —O12—O10	116.16 (9)
O13—O2—O10 ⁱⁱⁱ	61.18 (6)	Tm-012-07 ^{vii}	120.70 (8)
O11 ⁱⁱ —O2—O10 ⁱⁱⁱ	96.80 (7)	O14 ^x —O12—O7 ^{vii}	105.94 (8)
N1—O3—O2	29.13 (11)	O10-012-07 ^{vii}	128.10 (8)
N1-03-01	29.90 (11)	Tm—O12—O11	53.31 (5)
02-03-01	59.02 (8)	O14 ^x —O12—O11	75.07 (8)
N1-03-013 ^{iv}	123.70 (15)	010-012-011	59.06 (6)
O2-O3-O13 ^{iv}	146.33 (11)	O7 ^{vii} —O12—O11	167.99 (10)
O1-O3-O13 ^{iv}	96.81 (9)	Tm—O12—O7	55.21 (5)
N1-03-08 ^{iv}	133.41 (18)	O14 ^x —O12—O7	176.85 (10)
O2-O3-O8 ^{iv}	120.98 (12)	010-012-07	66.77 (6)
O1O3O8 ^{iv}	132.24 (11)	O7 ^{vii} —O12—O7	72.20 (7)
O13 ^{iv} —O3—O8 ^{iv}	56.18 (6)	011-012-07	106.19 (8)
N1-03-014 ^{iv}	113.40 (16)	Tm—O12—O5	56.63 (5)
O2O3O14 ^{iv}	84.49 (9)	O14 ^x —O12—O5	117.49 (9)
O1O3O14 ^{iv}	142.73 (10)	010-012-05	107.92 (8)
O13 ^{iv} —O3—O14 ^{iv}	112.24 (8)	O7 ^{vii} —O12—O5	75.17 (7)
O8 ^{iv} —O3—O14 ^{iv}	58.87 (6)	011-012-05	93.64 (8)
O6—N2—O4	122.98 (19)	07—012—05	59.73 (6)
O6—N2—O5	122.2 (2)	Tm—O12—O4	50.70 (5)

04—N2—05	114 76 (17)	$014^{x}-012-04$	87 49 (9)
06—N2—Tm	178 28 (17)	010-012-04	99 49 (7)
$O_4 N_2 T_m$	55 33 (10)	010 - 012 - 04	(7)
$O_{1} = N_{2} = T_{m}$	50.33(10)	0^{11} 0^{12} 0^{4}	56 27 (6)
N2 04 05	39.44(10)	07 012 04	30.27(0)
N2-04-05	32.70(10)	07-012-04	90.83 (7)
N2-04-06	27.78(11)	05-012-04	42.04 (5)
05-04-06	60.48 (8)	1m-012-09 ^m	131.81 (9)
N2—O4—Tm	99.05 (12)	014 ^x 01209 ^{vn}	70.05 (7)
O5—O4—Tm	66.35 (6)	O10—O12—O9 ^{vn}	168.34 (9)
O6—O4—Tm	126.84 (9)	07^{vii} — 012 — 09^{vii}	41.15 (5)
N2	133.14 (15)	011—012—09 ^{vii}	132.43 (8)
05-04-02	111.36 (9)	O7—O12—O9 ^{vii}	107.30 (7)
06-04-02	141.71 (12)	O5—O12—O9 ^{vii}	75.57 (7)
Tm	60.45 (5)	O4—O12—O9 ^{vii}	90.46 (7)
N2-04-011	140.81 (15)	Tm-012-H5	123 (3)
05-04-011	112.74 (9)	O14 ^x —O12—H5	10 (3)
06-04-011	156.42 (13)	O10—O12—H5	124 (3)
Tm—O4—O11	52.55 (5)	O7 ^{vii} —O12—H5	102 (3)
02-04-011	61.45 (6)	011-012-H5	77 (3)
N2-04-012	84 97 (14)	07—012—H5	166 (3)
05-04-012	63 46 (7)	05-012-H5	100(3) 107(3)
06-04-012	$104\ 30\ (10)$	04 - 012 - H5	80 (3)
$T_{\rm m} = 04 - 012$	104.50 (10)	$O_{12} = 012 = 012$	63(3)
02 04 012	40.04(3)	07 - 012 - 115	03(3)
02-04-012	105.44(7)		118 (3)
011-04-012	56.19 (6) 22.54 (11)	014 [*] 012H6	107 (2)
N2-05-04	32.54 (11)	010-012-H6	130 (2)
N2	28.07 (11)	O7 ^{vn} —O12—H6	4 (3)
04—05—06	60.61 (8)	O11—O12—H6	164 (3)
N2—O5—Tm	94.56 (12)	O7—O12—H6	71 (2)
O4—O5—Tm	62.03 (6)	O5—O12—H6	71 (3)
O6—O5—Tm	122.63 (9)	O4—O12—H6	107 (3)
N2	109.94 (13)	O9 ^{vii} —O12—H6	40 (2)
O4—O5—O13 ^v	142.41 (9)	Н5—О12—Н6	102 (4)
O6—O5—O13 ^v	81.90 (8)	Tm-013-05 ^v	116.85 (8)
TmO5O13 ^v	155.31 (8)	Tm01305	57.18 (5)
N2-05-013	102.32 (14)	O5 ^v —O13—O5	64.70 (7)
04-05-013	82.54 (8)	Tm01308	58.93 (5)
06-05-013	117.15 (11)	05 ^v —013—08	108.57 (8)
Tm - 05 - 013	53 82 (5)	05-013-08	96 27 (7)
$013^{v} - 05 - 013$	115 30 (7)	Tm - 013 - 02	59.14 (5)
N2_05_07	146.29(14)	$0.5^{v} - 0.13 - 0.2$	147.07(8)
04 05 07	114.25(14) 114.45(0)	05 013 02	177.07(0)
06 05 07	117.75(7) 170/00(11)	08 013 02	92.32(7)
$T_{\rm m} = 05 = 07$	53 21 (5)	$T_{m} = 013 = 02$	112 12 (1)
111-03-07	33.21(3)	$0.5 \times 0.12 0.2 \text{iv}$	113.42(8)
013 - 03 - 07	103.03(7)	05 - 012 - 02iv	100./3(8)
015-05-012	00.48 (0)	$03 - 013 - 03^{**}$	155.51 (9)
N2-05-012	94.81 (14)	$08-013-03^{10}$	62.20 (7)
04-05-012	74.50 (8)	$02-013-03^{iv}$	101.59 (7)

06-05-012	111.87 (10)	Tm013010 ⁱⁱⁱ	121.66 (7)
Tm05012	50.68 (5)	O5 ^v —O13—O10 ⁱⁱⁱ	110.19 (8)
O13 ^v —O5—O12	126.93 (9)	O5—O13—O10 ⁱⁱⁱ	124.94 (8)
013-05-012	103.34 (7)	O8—O13—O10 ⁱⁱⁱ	132.34 (8)
07—05—012	58.56 (6)	O2—O13—O10 ⁱⁱⁱ	62.57 (6)
N2—O5—O5 ^v	121.20 (17)	O3 ^{iv} —O13—O10 ⁱⁱⁱ	79.74 (7)
O4—O5—O5 ^v	128.22 (13)	Tm01301	51.90 (5)
O6—O5—O5 ^v	107.16 (11)	O5 ^v —O13—O1	163.64 (9)
TmO5O5 ^v	107.25 (8)	05-013-01	108.19 (7)
O13 ^v —O5—O5 ^v	57.69 (6)	08-013-01	56.27 (6)
O13—O5—O5 ^v	57.60 (7)	02-013-01	42.63 (5)
O7—O5—O5 ^v	82.40 (7)	O3 ^{iv} —O13—O1	71.17 (7)
O12—O5—O5 ^v	140.96 (9)	O10 ⁱⁱⁱ —O13—O1	86.04 (6)
N2—O6—O5	29.68 (12)	Tm01307	48.90 (5)
N2—O6—O4	29.23 (11)	O5 ^v —O13—O7	79.82 (7)
05-06-04	58.91 (7)	05-013-07	56.15 (6)
N2	99.61 (16)	O8—O13—O7	41.95 (5)
O5	122.89 (10)	02-013-07	107.68 (8)
O4O6O14 ^{vi}	75.58 (9)	O3 ^{iv} —O13—O7	99.84 (7)
N2—O6—O9 ^v	136.91 (18)	O10 ⁱⁱⁱ —O13—O7	169.66 (8)
O5—O6—O9 ^v	124.28 (11)	01—013—07	84.06 (7)
O4—O6—O9 ^v	134.81 (12)	Tm01306 ^v	111.12 (7)
O14 ^{vi} —O6—O9 ^v	67.17 (7)	O5 ^v —O13—O6 ^v	41.08 (5)
N2	142.10 (16)	O5—O13—O6 ^v	86.61 (7)
O5—O6—O9 ^{vi}	169.33 (12)	O8—O13—O6 ^v	71.96 (6)
O4O6O9 ^{vi}	113.34 (10)	O2—O13—O6 ^v	168.28 (9)
O14 ^{vi} —O6—O9 ^{vi}	57.38 (6)	O3 ^{iv} —O13—O6 ^v	75.62 (6)
O9 ^v O6O9 ^{vi}	66.27 (8)	O10 ⁱⁱⁱⁱ —O13—O6 ^v	127.02 (8)
O9—N3—O8	123.31 (19)	O1—O13—O6 ^v	126.97 (7)
O9—N3—O7	121.3 (2)	O7—O13—O6 ^v	62.22 (6)
O8—N3—O7	115.44 (17)	Tm013H7	119 (3)
O9—N3—Tm	173.32 (18)	O5 ^v —O13—H7	10 (3)
O8—N3—Tm	61.80 (10)	O5—O13—H7	64 (3)
O7—N3—Tm	53.84 (10)	O8—O13—H7	119 (3)
N3—O7—O8	31.79 (10)	O2—O13—H7	138 (3)
N3—O7—O9	28.42 (11)	O3 ^{iv} —O13—H7	114 (3)
08—07—09	60.21 (8)	O10 ⁱⁱⁱ —O13—H7	102 (3)
N3—O7—Tm	100.41 (12)	O1—O13—H7	171 (3)
O8—O7—Tm	68.76 (6)	O7—O13—H7	88 (3)
O9—O7—Tm	128.67 (10)	O6 ^v —O13—H7	51 (3)
N3-07-012 ^{vii}	109.38 (13)	Tm013H8	119 (3)
O8—O7—O12 ^{vii}	139.23 (9)	O5 ^v —O13—H8	97 (3)
O9—O7—O12 ^{vii}	82.11 (8)	О5—О13—Н8	148 (3)
Tm-07-012 ^{vii}	148.08 (8)	O8—O13—H8	63 (3)
N3—O7—O12	135.69 (15)	O2—O13—H8	114 (3)
O8—O7—O12	112.27 (9)	O3 ^{iv} —O13—H8	12 (3)
09-07-012	146.72 (12)	O10 ⁱⁱⁱⁱ —O13—H8	86 (3)
Tm—O7—O12	52.72 (5)	O1—O13—H8	82 (3)

O12 ^{vii} —O7—O12	107.80 (7)	O7—O13—H8	96 (3)
N3—O7—O5	138.14 (16)	O6 ^v —O13—H8	64 (3)
08—07—05	112.81 (9)	Н7—О13—Н8	103 (4)
09—07—05	151.26 (12)	O12 ^{xi} —O14—O11 ⁱ	99.62 (8)
Tm—O7—O5	56.88 (5)	O12 ^{xi} —O14—O8	155.24 (10)
O12 ^{vii} —O7—O5	92.35 (7)	O11 ⁱ —O14—O8	104.73 (8)
012-07-05	61.71 (6)	O12 ^{xi} —O14—O9	124.30 (10)
N3—O7—O10	79.13 (13)	O11 ⁱ —O14—O9	123.04 (11)
O8—O7—O10	60.53 (7)	O8—O14—O9	42.34 (5)
O9—O7—O10	97.66 (9)	O12 ^{xi} —O14—O3 ^{iv}	108.74 (10)
Tm—O7—O10	49.32 (5)	O11 ⁱ —O14—O3 ^{iv}	109.99 (9)
O12 ^{vii} —O7—O10	146.96 (10)	O8—O14—O3 ^{iv}	58.46 (7)
O12—O7—O10	56.57 (6)	O9—O14—O3 ^{iv}	89.88 (8)
O5—O7—O10	101.99 (7)	O12 ^{xi} —O14—O6 ^{viii}	75.69 (8)
N3—O7—O13	82.94 (13)	O11 ⁱ —O14—O6 ^{viiii}	102.46 (10)
O8—O7—O13	59.99 (7)	O8—O14—O6 ^{viii}	103.01 (9)
09—07—013	104.46 (10)	O9—O14—O6 ^{viii}	62.42 (7)
Tm—O7—O13	49.20 (5)	O3 ^{iv} —O14—O6 ^{viii}	145.65 (9)
O12 ^{vii} —O7—O13	122.65 (9)	O12 ^{xi} —O14—H9	114 (3)
O12—O7—O13	96.65 (7)	O11 ⁱ —O14—H9	115 (3)
O5—O7—O13	55.37 (6)	O8—O14—H9	50 (3)
O10—O7—O13	89.60 (7)	O9—O14—H9	80 (3)
N3—O8—O7	32.77 (10)	O3 ^{iv} —O14—H9	10 (3)
N3—O8—O9	27.84 (10)	O6 ^{viii} —O14—H9	137 (3)
07—08—09	60.61 (8)	O12 ^{xi} —O14—H10	104 (5)
N3—O8—Tm	92.77 (11)	O11 ⁱ —O14—H10	120 (5)
O7—O8—Tm	60.13 (6)	O8—O14—H10	67 (4)
O9—O8—Tm	120.49 (8)	O9—O14—H10	25 (4)
N3—O8—O10	93.66 (14)	O3 ^{iv} —O14—H10	112 (5)
O7—O8—O10	76.28 (8)	O6 ^{viii} —O14—H10	37 (4)
O9—O8—O10	107.87 (10)	H9—O14—H10	103 (5)
Tm—O8—O10	52.43 (5)		

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*; (vi) *x*+1, *y*-1, *z*; (vii) -*x*, -*y*+1, -*z*; (viii) *x*-1, *y*, *z*; (ix) *x*-1, *y*, *z*; (ix) *x*, *y*-1, *z*; (iii) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
010—H1…O1i	0.82 (4)	2.03 (4)	2.849 (2)	174 (3)
O10—H2…O13 ^{ix}	0.78 (4)	2.32 (4)	2.996 (3)	145 (3)
O10—H2…O2 ^{ix}	0.78 (4)	2.48 (4)	3.035 (3)	129 (3)
O11—H3…O14 ⁱ	0.77 (5)	1.98 (5)	2.739 (3)	167 (5)
O11—H4···O2 ⁱⁱ	0.85 (4)	2.03 (4)	2.874 (2)	171 (4)
O12—H5…O14 ^x	0.83 (4)	1.90 (4)	2.715 (3)	165 (4)
O12—H6…O7 ^{vii}	0.83 (4)	1.95 (4)	2.776 (2)	174 (4)
O13—H7···O5 ^v	0.82 (5)	1.98 (5)	2.784 (2)	166 (4)
O13—H8…O3 ^{iv}	0.86 (4)	2.12 (4)	2.953 (3)	163 (4)
O14—H9····O3 ^{iv}	0.84 (4)	2.27 (5)	3.095 (3)	167 (4)

O14—H10…O9	0.68 (6)	2.44 (6)	3.040 (3)	148 (5)
O14—H10···O6 ^{viii}	0.68 (6)	2.62 (6)	3.132 (4)	134 (5)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*+1, -*y*+1, -*z*; (vii) -*x*, -*y*+1, -*z*; (viii) *x*-1, *y*+1, *z*; (ix) *x*-1, *y*, *z*; (x) *x*, *y*-1, *z*.

Z = 2

F(000) = 444

 $\theta = 2.6 - 36.6^{\circ}$ $\mu = 7.41 \text{ mm}^{-1}$

Block, colourless

 $0.4 \times 0.2 \times 0.15 \text{ mm}$

T = 223 K

 $D_{\rm x} = 2.538 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 47483 reflections

Thulium nitrate (TONii-3_223K)

Crystal data

 $[Tm(NO_3)_3(H_2O)_4] \cdot 2H_2O$ $M_r = 463.06$ Triclinic, $P\overline{1}$ a = 6.7050 (3) Å b = 8.9733 (4) Å c = 11.4915 (6) Å a = 70.924 (4)° $\beta = 88.908$ (4)° $\gamma = 68.923$ (4)° V = 605.90 (5) Å³

Data collection

STOE StadiVari	$T_{\min} = 0.615, \ T_{\max} = 1.000$
diffractometer	29880 measured reflections
Radiation source: Genix 3D HF Mo	4385 independent reflections
Graded multilayer mirror monochromator	3899 reflections with $I > 2\sigma(I)$
Detector resolution: 5.81 pixels mm ⁻¹	$R_{\rm int} = 0.031$
ω scans	$\theta_{\text{max}} = 32.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: empirical (using	$h = -10 \rightarrow 10$
intensity measurements)	$k = -13 \rightarrow 13$
(X-AREA; Stoe, 2015)	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.016$	$w = 1/[\sigma^2(F_o^2) + (0.020P)^2]$
$wR(F^2) = 0.035$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.91	$(\Delta/\sigma)_{\rm max} < 0.001$
4385 reflections	$\Delta \rho_{\rm max} = 1.11 \text{ e } \text{\AA}^{-3}$
221 parameters	$\Delta \rho_{\rm min} = -1.18 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	Extinction correction: SHELXL-2014/7
Primary atom site location: structure-invariant	(Sheldrick, 2015),
direct methods	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0687 (8)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Tm	0.19543 (2)	0.41275 (2)	0.27232 (2)	0.01566 (4)

N1	-0.1763 (3)	0.7245 (2)	0.18627 (18)	0.0219 (3)
O1	-0.1088 (3)	0.6386 (2)	0.29939 (16)	0.0306 (4)
O2	-0.0716 (3)	0.6650(2)	0.10973 (17)	0.0332 (4)
O3	-0.3348 (3)	0.8577 (2)	0.15483 (19)	0.0338 (4)
N2	0.0790 (3)	0.1833 (2)	0.18432 (18)	0.0239 (4)
O4	0.2565 (3)	0.1444 (2)	0.24492 (17)	0.0283 (3)
05	-0.0588 (3)	0.3320 (2)	0.16876 (17)	0.0282 (3)
O6	0.0422 (4)	0.0843 (2)	0.14426 (19)	0.0358 (4)
N3	0.0931 (3)	0.1599 (2)	0.50588 (18)	0.0216 (3)
07	-0.0255 (3)	0.2987 (2)	0.42350 (16)	0.0267 (3)
08	0.2889 (3)	0.1045 (3)	0.4993 (2)	0.0356 (4)
O9	0.0120 (3)	0.0838 (2)	0.59033 (18)	0.0367 (4)
O10	0.3559 (3)	0.6083 (2)	0.22157 (17)	0.0282 (4)
H1	0.361 (6)	0.677 (5)	0.151 (4)	0.049 (10)*
H2	0.385 (7)	0.637 (6)	0.269 (4)	0.051 (11)*
O11	0.2745 (3)	0.4539 (2)	0.45290 (15)	0.0234 (3)
Н3	0.200 (7)	0.521 (5)	0.484 (4)	0.048 (11)*
H4	0.367 (6)	0.390 (5)	0.499 (3)	0.034 (9)*
O12	0.5603 (3)	0.2458 (2)	0.32343 (18)	0.0251 (3)
Н5	0.606 (6)	0.147 (5)	0.366 (3)	0.037 (9)*
H6	0.652 (7)	0.283 (5)	0.310 (4)	0.049 (11)*
O13	0.3038 (3)	0.4359 (2)	0.07487 (15)	0.0230 (3)
H7	0.400 (7)	0.363 (5)	0.063 (4)	0.046 (10)*
H8	0.236 (7)	0.500 (6)	0.006 (4)	0.059 (12)*
O14	0.3663 (3)	0.8009 (2)	-0.01622 (17)	0.0272 (3)
H9	0.252 (7)	0.832 (5)	-0.055 (4)	0.039 (10)*
H10	0.391 (7)	0.883 (6)	-0.019 (4)	0.058 (12)*
O15	0.4146 (3)	0.7754 (2)	0.36863 (17)	0.0244 (3)
H11	0.301 (7)	0.813 (6)	0.390 (4)	0.052 (12)*
H12	0.439 (8)	0.856 (6)	0.327 (4)	0.066 (14)*

Atomic displacement parameters $(Å^2)$

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tm	0.01512 (5)	0.01444 (4)	0.01475 (5)	-0.00368 (3)	0.00155 (2)	-0.00370 (3)
N1	0.0208 (8)	0.0134 (7)	0.0251 (9)	-0.0038 (6)	0.0013 (7)	-0.0012 (6)
01	0.0303 (9)	0.0238 (8)	0.0203 (8)	0.0029 (7)	0.0054 (6)	-0.0003 (6)
O2	0.0341 (9)	0.0324 (9)	0.0227 (8)	0.0000 (7)	0.0010 (7)	-0.0103 (7)
03	0.0260 (8)	0.0168 (7)	0.0389 (10)	0.0031 (6)	0.0023 (7)	0.0028 (7)
N2	0.0287 (9)	0.0200 (8)	0.0211 (8)	-0.0114 (7)	-0.0005 (7)	-0.0019 (7)
O4	0.0266 (8)	0.0189 (7)	0.0328 (9)	-0.0058 (6)	-0.0084(7)	-0.0028 (6)
05	0.0235 (8)	0.0266 (8)	0.0298 (8)	-0.0052 (6)	-0.0022 (6)	-0.0081 (7)
06	0.0485 (12)	0.0275 (9)	0.0345 (10)	-0.0192 (8)	-0.0063 (8)	-0.0084 (7)
N3	0.0214 (8)	0.0162 (7)	0.0242 (9)	-0.0049 (6)	0.0059 (7)	-0.0056 (6)
07	0.0282 (8)	0.0178 (7)	0.0252 (8)	-0.0058 (6)	0.0035 (6)	0.0004 (6)
08	0.0191 (8)	0.0347 (10)	0.0532 (12)	-0.0060 (7)	0.0103 (8)	-0.0200 (9)
09	0.0394 (10)	0.0256 (8)	0.0320 (9)	-0.0102 (8)	0.0145 (8)	0.0039 (7)
O10	0.0495 (11)	0.0276 (8)	0.0170 (7)	-0.0257 (8)	0.0066 (7)	-0.0073 (6)

011	0.0259 (8)	0.0216 (7)	0.0160 (7)	-0.0025 (6)	-0.0007 (6)	-0.0050 (6)	
012	0.0169 (7)	0.0180 (7)	0.0331 (9)	-0.0032 (6)	-0.0001 (6)	-0.0029 (6)	
013	0.0257 (8)	0.0220 (7)	0.0165 (7)	-0.0040 (6)	0.0027 (6)	-0.0061 (6)	
O14	0.0336 (9)	0.0208 (8)	0.0258 (8)	-0.0112 (7)	0.0027 (7)	-0.0049 (6)	
015	0.0267 (8)	0.0183 (7)	0.0249 (8)	-0.0065 (6)	-0.0009 (7)	-0.0050 (6)	

Geometric parameters (Å, °)

Tm—O10	2.2897 (18)	07—08	2.162 (3)
Tm011	2.3255 (17)	07—09	2.171 (2)
Tm012	2.3276 (17)	07—011	2.907 (3)
Tm013	2.3360 (16)	O7—O11 ⁱ	3.006 (2)
Tm—O1	2.4039 (17)	O8—O9	2.151 (3)
Tm—O4	2.4179 (18)	O8—O8 ^{vii}	2.774 (4)
Tm—O7	2.4677 (17)	O8—O12 ^{vii}	2.943 (3)
Tm—O2	2.5034 (18)	O8—O11	2.969 (3)
Tm—O5	2.5252 (18)	O8—O12	2.974 (3)
Tm—N1	2.8787 (18)	O8—O15 ^{viii}	3.184 (3)
Tm—N2	2.902 (2)	O9—O15 ⁱ	2.782 (3)
Tm—O8	2.991 (2)	O9—O9 ^{vi}	2.970 (5)
Tm—N3	3.1452 (18)	O9—O6 ^{vi}	3.009 (3)
N1—O3	1.227 (2)	O10—O11	2.714 (2)
N1—O2	1.251 (3)	O10—O15	2.714 (3)
N1—O1	1.267 (2)	O10—O14	2.730 (3)
01—02	2.134 (2)	O10—O13	2.734 (2)
01—03	2.177 (2)	O10—O12	2.863 (3)
01—07	2.758 (2)	O10—H1	0.85 (4)
01-011	2.768 (3)	O10—H2	0.73 (5)
01—011 ⁱ	3.004 (2)	O11—O15 ^{viii}	2.666 (2)
O1—O10	3.166 (3)	011—012	2.917 (3)
O1—O15 ⁱⁱ	3.174 (3)	011—01 ⁱ	3.004 (2)
O2—O3	2.175 (3)	O11—O7 ⁱ	3.006 (2)
O2—O13	2.738 (3)	011—015	3.199 (3)
02—05	2.809 (3)	О11—Н3	0.81 (4)
O2—O10	2.965 (3)	O11—H4	0.74 (4)
O2—O6 ⁱⁱⁱ	3.102 (3)	O12—O8 ^{vii}	2.943 (3)
O2—O13 ⁱⁱⁱ	3.184 (3)	O12—O13	2.986 (3)
O3—O14 ^{iv}	2.885 (2)	O12—O9 ^{vii}	3.170 (3)
O3—O15 ⁱⁱ	2.992 (3)	О12—Н5	0.80 (4)
O3—O14 ⁱⁱ	3.111 (3)	О12—Н6	0.79 (4)
N2—O6	1.221 (3)	O13—O14 ^{ix}	2.713 (3)
N2—O4	1.263 (3)	O13—O5 ⁱⁱⁱ	2.963 (2)
N2—O5	1.277 (3)	O13—O2 ⁱⁱⁱ	3.184 (3)
04—05	2.148 (2)	O13—H7	0.78 (4)
04—06	2.173 (3)	О13—Н8	0.83 (5)
O4—O12	2.781 (3)	O14—O13 ^{ix}	2.713 (3)
O4—O13	2.827 (2)	O14—O6 ⁱⁱⁱ	2.804 (3)
O4—O8	2.829 (3)	O14—O3 ^{iv}	2.885 (2)

O4—O15 ^v	2.926 (2)	O14—O3 ^x	3.111 (3)
O4—O7	3.087 (3)	O14—H9	0.80 (4)
05—06	2.190 (3)	O14—H10	0.80 (5)
05—07	2.849 (3)	O15—O11 ^{viii}	2.666 (2)
05—013 ⁱⁱⁱ	2.963 (2)	015—09 ⁱ	2.782 (3)
05-013	2 969 (2)	$015-04^{xi}$	2.926(2)
06-014 ⁱⁱⁱ	2.909(2) 2 804(3)	$015-03^{x}$	2.920(2) 2.992(3)
$06-09^{vi}$	3,009(3)	$015-01^{x}$	2.372(3)
$06 02^{iii}$	3.007(3)	$015 08^{\text{viii}}$	3.174(3)
N3 00	3.102(3)	015 H11	5.164(5)
N2 08	1.232(2) 1.236(2)	015 112	0.79(3)
N3-07	1.250(5)	015—п12	0.79(3)
N3-07	1.275 (2)		
O10—Tm—O11	72.03 (6)	07—08—012	100.29 (9)
O10—Tm—O12	76.62 (7)	O8 ^{vii} —O8—O12	61.49 (8)
011—Tm—012	77.63 (7)	04-08-012	57.20 (6)
010 - Tm - 013	72 46 (6)	$012^{\text{vii}} - 08 - 012$	$124\ 10\ (7)$
011 - Tm - 013	141 28 (6)	011 - 08 - 012	58 78 (6)
012 - Tm - 013	79 64 (7)	N3_08_Tm	85 50 (14)
012 - 1m - 013	75.04(7)	$\Omega_{0}^{0} \Omega_{0}^{0} Tm$	11483(0)
010 - 111 - 01	71.62(6)	07 - 08 - 111	54 20 (6)
012 Tm 01	71.02(0)	$O_{1} = O_{2} = I_{1}$	106.06(10)
012 Tr 01	147.70(7)	0.4 0.8 Trr	100.00(10)
013—1m—01	119.00 (0)	04—08—1m	49.00 (5)
010-1m-04	136.37 (7)	$012^{vn} - 08 - 1m$	164.48 (8)
011—Tm—04	127.07 (6)	011—08—1m	45.93 (4)
O12—Tm—O4	71.71 (6)	O12—O8—Tm	45.93 (5)
O13—Tm—O4	72.95 (6)	N3—O8—O15 ^{viii}	118.44 (15)
O1—Tm—O4	136.08 (7)	O9—O8—O15 ^{viii}	114.99 (11)
O10—Tm—O7	142.62 (6)	O7—O8—O15 ^{viii}	113.47 (9)
O11—Tm—O7	74.59 (6)	O8 ^{vii} —O8—O15 ^{viii}	73.26 (9)
O12—Tm—O7	112.05 (6)	O4O8O15 ^{viii}	125.89 (8)
O13—Tm—O7	143.65 (6)	O12 ^{vii} —O8—O15 ^{viii}	95.36 (8)
O1—Tm—O7	68.96 (6)	O11O8O15 ^{viii}	51.20 (6)
O4—Tm—O7	78.37 (6)	O12-O8-O15 ^{viii}	68.83 (7)
O10—Tm—O2	76.28 (7)	Tm-O8-O15 ^{viii}	90.93 (6)
O11—Tm—O2	116.27 (6)	N3—O9—O8	29.45 (12)
O12—Tm—O2	143.26 (7)	N3—O9—O7	30.60 (11)
013—Tm—02	68.82 (6)	08-09-07	60.05 (9)
01—Tm—02	51.50 (6)	$N3-09-015^{i}$	122.54 (15)
04—Tm— 02	114 16 (6)	$08-09-015^{i}$	151 29 (11)
0.7 - Tm - 0.2	104 56 (6)	$07 - 09 - 015^{i}$	92 26 (9)
010 - Tm - 05	138 32 (6)	N3-09-09 ^{vi}	81 16 (15)
011_Tm_05	143 50 (6)	$08-09-09^{vi}$	81.92 (10)
012_Tm_05	172.22 (6)	$07 - 09 - 09^{vi}$	87.92(10)
012 - 111 - 05	75 17 (6)	015^{i} 00 00 ^{vi}	103.45(10)
015 - 111 - 05	(0) 80.05 (6)	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	103.43 (11)
01 - 111 - 03	67.05 (0) 51.46 (6)	$0^{\circ} = 0^{\circ} = 0^{\circ}$	133.34(18)
04—1m—05	31.40 (0)		152.59 (12)
U/-1m-05	69.36 (6)	U/U9U6 ^{v1}	154.89 (11)

O2—Tm—O5	67.92 (6)	O15 ⁱ —O9—O6 ^{vi}	70.34 (7)
O10—Tm—N1	79.34 (6)	O9 ^{vi} —O9—O6 ^{vi}	117.98 (10)
O11—Tm—N1	94.01 (6)	Tm010011	54.60 (5)
O12—Tm—N1	155.94 (6)	Tm	125.53 (8)
O13—Tm—N1	94.17 (6)	011-010-015	72.21 (7)
O1—Tm—N1	25.80 (6)	Tm	123.63 (9)
O4—Tm—N1	128.96 (6)	011-010-014	170.18 (10)
O7—Tm—N1	86.74 (5)	015-010-014	106.61 (8)
O2—Tm—N1	25.70 (6)	Tm	54.55 (5)
O5—Tm—N1	77.55 (6)	011-010-013	107.65 (8)
O10—Tm—N2	143.67 (6)	015-010-013	179.02 (11)
O11—Tm—N2	142.17 (6)	014-010-013	73.69 (7)
012—Tm—N2	96.51 (6)	Tm	52.28 (5)
013—Tm—N2	71.21 (6)	011-010-012	63.00 (7)
O1—Tm—N2	113.66 (7)	015-010-012	114.74 (9)
04—Tm—N2	25.46 (6)	014-010-012	124.80 (9)
07—Tm—N2	73.26 (6)	013-010-012	64.45 (7)
Ω_{2} Tm N_{2}	90.88 (6)	Tm - O10 - O2	55.11 (6)
05—Tm—N2	26.04 (6)	011-010-02	92.39 (8)
N1— Tm — $N2$	103.50 (6)	015-010-02	123.68 (9)
010—Tm—08	128.95 (6)	014 - 010 - 02	80.12 (8)
O11—Tm—O8	66.54 (6)	013-010-02	57.26 (6)
O12—Tm—O8	66.66 (6)	012-010-02	103.77 (8)
013—Tm—08	129.82 (6)	Tm	49.12 (5)
01—Tm—08	108.14 (5)	011-010-01	55.52 (6)
04—Tm—08	62.01 (6)	015-010-01	93.03 (8)
Q7—Tm—Q8	45.43 (5)	014-010-01	115.31 (9)
O2—Tm—O8	149.59 (6)	013-010-01	87.66 (7)
O5—Tm—O8	92.10 (6)	012-010-01	97.74 (7)
N1—Tm—O8	130.80 (5)	02-010-01	40.57 (5)
N2—Tm—O8	76.75 (5)	Tm-O10-H1	130 (3)
O10—Tm—N3	140.57 (6)	O11—O10—H1	167 (3)
O11—Tm—N3	68.94 (6)	O15—O10—H1	100 (3)
O12—Tm—N3	89.70 (6)	O14—O10—H1	7 (3)
O13—Tm—N3	141.77 (6)	O13—O10—H1	81 (3)
O1—Tm—N3	88.19 (5)	O12—O10—H1	130 (3)
O4—Tm—N3	68.85 (6)	O2—O10—H1	84 (3)
O7—Tm—N3	22.36 (5)	O1—O10—H1	116 (3)
O2—Tm—N3	126.79 (6)	Tm-O10-H2	120 (3)
O5—Tm—N3	80.10 (6)	O11—O10—H2	65 (3)
N1—Tm—N3	108.51 (5)	O15—O10—H2	11 (3)
N2—Tm—N3	73.74 (5)	O14—O10—H2	115 (3)
O8—Tm—N3	23.07 (5)	O13—O10—H2	168 (3)
O3—N1—O2	122.6 (2)	O12—O10—H2	103 (3)
O3—N1—O1	121.5 (2)	O2—O10—H2	131 (3)
O2—N1—O1	115.82 (18)	O1—O10—H2	96 (3)
O3—N1—Tm	177.14 (17)	H1—O10—H2	108 (4)
O2—N1—Tm	60.15 (11)	Tm—O11—O15 ^{viii}	123.70 (8)
			· (-)

O1—N1—Tm	55.68 (10)	Tm—O11—O10	53.37 (5)
N1-01-02	31.87 (11)	O15 ^{viii} —O11—O10	122.60 (9)
N1—O1—O3	28.72 (11)	Tm01101	55.51 (5)
02-01-03	60.58 (9)	O15 ^{viii} —O11—O1	164.63 (9)
N1—O1—Tm	98.52 (12)	010-011-01	70.56 (7)
O2—O1—Tm	66.66 (7)	Tm-011-07	54.93 (5)
O3—O1—Tm	127.24 (9)	O15 ^{viii} —O11—O7	107.83 (8)
N1—01—07	128.53 (15)	010-011-07	106.57 (8)
02-01-07	106.29 (10)	01—011—07	58.11 (6)
03-01-07	140.60 (12)	Tm	51.22 (5)
Tm—O1—O7	56.61 (5)	O15 ^{viii} —O11—O12	77.11 (7)
N1-01-011	139.90 (14)	010-011-012	60.99 (6)
02-01-011	112.99 (9)	01—011—012	106.16 (7)
03-01-011	155.01 (11)	07-011-012	86.16 (7)
Tm	52.87 (5)	Tm	67.52 (6)
07-01-011	63.47 (6)	015^{viii} 011 - 08	68.58 (7)
N1	140.49 (14)	010-011-08	114.24 (8)
$02-01-011^{i}$	158.78 (12)	01-011-08	99.54 (8)
$03-01-011^{i}$	115.14 (9)	07-011-08	43.17 (6)
$Tm - O1 - O11^{i}$	114.13 (7)	012-011-08	60.70 (6)
07-01-011 ⁱ	62.71 (6)	$Tm - O11 - O1^{i}$	129.79 (8)
011—01—011 ⁱ	79.48 (7)	015 ^{viii} —011—01 ⁱ	67.77 (7)
N1-01-010	86.14 (13)	010-011-01 ⁱ	167.02 (9)
02-01-010	64.64 (8)	01-011-01 ⁱ	100.52 (7)
03-01-010	106.16 (9)	07—011—01 ⁱ	74.86 (7)
Tm—O1—O10	46.07 (5)	012—011—01 ⁱ	131.78 (8)
07—01—010	98.82 (7)	08—011—01 ⁱ	75.93 (7)
011-01-010	53.92 (6)	Tm-011-07 ⁱ	132.35 (8)
O11 ⁱ —O1—O10	132.50 (8)	O15 ^{viii} —O11—O7 ⁱ	102.34 (7)
N1—O1—O15 ⁱⁱ	89.65 (13)	O10-011-07 ⁱ	113.06 (8)
O2-O1-O15 ⁱⁱ	117.05 (9)	01-011-07 ⁱ	76.86 (7)
O3—O1—O15 ⁱⁱ	64.92 (7)	07—011—07 ⁱ	102.68 (7)
Tm—O1—O15 ⁱⁱ	150.29 (9)	O12-011-07 ⁱ	170.75 (9)
O7—O1—O15 ⁱⁱ	96.18 (7)	08—011—07 ⁱ	127.94 (8)
O11—O1—O15 ⁱⁱ	129.57 (8)	O1 ⁱ O11O7 ⁱ	54.64 (5)
011 ⁱ —01—015 ⁱⁱ	51.03 (5)	Tm-011-015	106.37 (7)
O10-O1-O15 ⁱⁱ	163.64 (8)	O15 ^{viii} —O11—O15	102.98 (7)
N1-02-01	32.31 (11)	010-011-015	53.90 (6)
N1—O2—O3	28.38 (11)	01—011—015	91.32 (7)
01—02—03	60.69 (8)	07—011—015	149.18 (8)
N1—O2—Tm	94.15 (13)	012-011-015	100.27 (7)
O1—O2—Tm	61.84 (6)	08-011-015	160.04 (8)
O3—O2—Tm	122.53 (9)	01 ⁱ 011015	118.68 (7)
N1	145.64 (15)	07 ⁱ 011015	70.75 (6)
01-02-013	113.94 (9)	Tm—O11—H3	129 (3)
03—02—013	170.33 (12)	O15 ^{viii} —O11—H3	105 (3)
Tm—O2—O13	52.70 (5)	O10—O11—H3	113 (3)
N1—O2—O5	107.14 (15)	O1—O11—H3	74 (3)

01—02—05	87.66 (9)	O7—O11—H3	99 (3)
03—02—05	121.17 (11)	O12—O11—H3	173 (3)
Tm—O2—O5	56.41 (5)	O8—O11—H3	126 (3)
013—02—05	64.70 (7)	O1 ⁱ —O11—H3	54 (3)
N1	95.68 (14)	O7 ⁱ —O11—H3	4 (3)
01-02-010	74.80 (8)	015—011—Н3	73 (3)
03-02-010	113.21 (10)	Tm-011-H4	121 (3)
Tm	48.61 (5)	015 ^{viii} —011—H4	4 (3)
013 - 02 - 010	57.13 (6)	010-011-H4	118 (3)
05-02-010	102 39 (8)	01 - 011 - H4	168 (3)
$N1 - O2 - O6^{iii}$	102.59(0) 118 54 (14)	07-011-H4	100(3)
$01 - 02 - 06^{iii}$	143 35 (11)	012-011-H4	74(3)
$0^{2} - 0^{2} - 0^{6}$	143.33(11) 02.77(0)	012 - 011 - 114	(-4)(3)
$T_{m} = 02 = 06^{11}$	33.77(3) 124 72 (0)		(3)
111-02-00	134.73(9)	01 - 011 - H4	72(3)
013-02-06	80.94 (7)	0/ — 011—H4	105(3)
	128.98 (8)	015—011—H4	101 (3)
010—02—06 ^m	94.82 (8)	H3—O11—H4	108 (4)
N1—O2—O13 ⁱⁿ	119.36 (15)	Tm—O12—O4	55.65 (5)
O1—O2—O13 ⁱⁿ	129.73 (11)	Tm—O12—O10	51.09 (5)
O3—O2—O13 ⁱⁱⁱ	103.41 (9)	O4—O12—O10	101.51 (7)
Tm—O2—O13 ⁱⁱⁱ	113.12 (7)	Tm012011	51.15 (5)
O13—O2—O13 ⁱⁱⁱ	86.20 (7)	04—012—011	96.35 (7)
O5—O2—O13 ⁱⁱⁱ	58.87 (6)	010-012-011	56.01 (6)
O10—O2—O13 ⁱⁱⁱ	143.20 (8)	Tm	121.45 (8)
O6 ⁱⁱⁱ —O2—O13 ⁱⁱⁱ	78.86 (6)	O4—O12—O8 ^{vii}	81.85 (7)
N1	28.99 (12)	O10-012-08 ^{vii}	161.11 (9)
N1-03-01	29.74 (11)	O11-O12-O8 ^{vii}	105.28 (8)
02-03-01	58.73 (8)	Tm-012-08	67.41 (6)
N1-03-014 ^{iv}	129.45 (15)	04—012—08	58.77 (7)
O2—O3—O14 ^{iv}	112.88 (10)	010-012-08	109.76 (8)
01-03-014 ^{iv}	136.24 (11)	011-012-08	60.52 (6)
$N1 - O3 - O15^{ii}$	99 15 (14)	$08^{\text{vii}}-012-08$	55.90(7)
$02-03-015^{ii}$	123 07 (9)	Tm = 012 = 013	50.30(5)
$01 - 03 - 015^{ii}$	73.86 (8)	04-012-013	58.57 (6)
014^{iv} 03 015	123 21 (8)	010-012-013	55.69 (6)
$N1 O3 O14^{ii}$	123.21(0) 103.78(16)	011 012 013	95.07(0)
02 03 014	105.78 (10) 96.21 (0)	011 - 012 - 013	30.31(7)
02-03-014	30.31(9)	$0^{8} - 0^{12} - 0^{13}$	130.79(9)
$01 - 03 - 014^{ii}$	119.12(10) 101(2(7))	06-012-013	108.55 (8)
$014^{11} - 03 - 014^{11}$	101.02(7)		159.42 (9)
015"-03-014"	91.31 (7)	04—012—09 ^{vii}	105.31 (8)
06—N2—04	122.0 (2)	010-012-09 ^{vin}	149.31 (9)
06-N2-05	122.5 (2)	011—012—09 ^{vn}	133.55 (8)
O4—N2—O5	115.49 (19)	08 ^{vn} —012—09 ^{vii}	40.99 (5)
O6—N2—Tm	175.95 (18)	O8—O12—O9 ^{vii}	96.86 (7)
O4—N2—Tm	55.34 (11)	O13—O12—O9 ^{vii}	130.07 (8)
O5—N2—Tm	60.28 (11)	Tm—O12—H5	124 (3)
N2	32.44 (11)	O4—O12—H5	80 (3)
N2	28.47 (12)	O10—O12—H5	167 (3)

05-04-06	60.91 (9)	O11—O12—H5	111 (3)
N2—O4—Tm	99.20 (13)	O8 ^{vii} —O12—H5	6 (3)
O5—O4—Tm	66.85 (7)	O8—O12—H5	60 (3)
O6—O4—Tm	127.60 (9)	O13—O12—H5	133 (3)
N2-04-012	149.28 (14)	O9 ^{vii} —O12—H5	38 (3)
05-04-012	118.57 (9)	Tm	124 (3)
06-04-012	167.51 (11)	O4—O12—H6	151 (3)
Tm—O4—O12	52.63 (5)	О10—О12—Н6	73 (3)
N2-04-013	89.39 (12)	О11—О12—Н6	103 (3)
05-04-013	71.81 (8)	O8 ^{vii} —O12—H6	113 (3)
06-04-013	105.26 (9)	O8—O12—H6	150 (3)
Tm—O4—O13	52.19 (5)	013—012—Н6	98 (3)
012-04-013	64.35 (6)	O9 ^{vii} —O12—H6	76 (3)
N2—O4—O8	121.99 (15)	Н5—О12—Н6	112 (4)
05-04-08	105.54 (10)	Tm-013-014 ^{ix}	126.06 (8)
06-04-08	128.45 (10)	Tm013010	52.99 (5)
Tm—O4—O8	68.99 (6)	O14 ^{ix} —O13—O10	123.85 (9)
012-04-08	64.03 (7)	Tm	58.48 (5)
013-04-08	117.39 (8)	O14 ^{ix} —O13—O2	170.54 (10)
N2—O4—O15 ^v	105.48 (13)	010-013-02	65.61 (7)
O5—O4—O15 ^v	132.47 (10)	Tm01304	54.86 (5)
O6—O4—O15 ^v	80.38 (8)	O14 ^{ix} —O13—O4	82.46 (7)
Tm—O4—O15 ^v	144.77 (8)	010-013-04	103.61 (7)
O12—O4—O15 ^v	105.17 (7)	02—013—04	95.85 (8)
O13—O4—O15 ^v	150.26 (9)	Tm01305 ⁱⁱⁱ	128.52 (8)
O8—O4—O15 ^v	76.65 (7)	O14 ^{ix} —O13—O5 ⁱⁱⁱ	103.47 (7)
N2—O4—O7	84.55 (14)	O10-013-05 ⁱⁱⁱ	112.21 (8)
05-04-07	62.95 (8)	O2—O13—O5 ⁱⁱⁱⁱ	70.49 (7)
06—04—07	104.27 (9)	O4—O13—O5 ⁱⁱⁱⁱ	130.25 (8)
Tm—O4—O7	51.53 (5)	Tm01305	55.31 (5)
012-04-07	85.18 (7)	O14 ^{ix} —O13—O5	115.55 (8)
013—04—07	100.94 (7)	010-013-05	104.14 (7)
08-04-07	42.60 (6)	02—013—05	58.80 (7)
O15 ^v —O4—O7	105.93 (7)	04—013—05	43.43 (6)
N2—O5—O4	32.07 (11)	O5 ⁱⁱⁱ —O13—O5	93.63 (7)
N2—O5—O6	28.04 (11)	Tm013012	50.06 (5)
04-05-06	60.10 (8)	O14 ^{ix} —O13—O12	80.61 (7)
N2—O5—Tm	93.68 (13)	010-013-012	59.86 (6)
O4—O5—Tm	61.69 (7)	02-013-012	106.36 (7)
O6—O5—Tm	121.66 (9)	04—013—012	57.07 (6)
N2—O5—O2	138.74 (15)	O5 ⁱⁱⁱ —O13—O12	171.66 (8)
04-05-02	112.22 (9)	05-013-012	91.06 (7)
06-05-02	153.44 (11)	Tm	119.90 (8)
Tm—O5—O2	55.67 (5)	O14 ^{ix} —O13—O2 ⁱⁱⁱ	76.74 (7)
N2-05-07	95.06 (13)	O10—O13—O2 ⁱⁱⁱ	159.18 (9)
04-05-07	74.85 (8)	O2—O13—O2 ⁱⁱⁱ	93.80 (7)
06-05-07	111.87 (9)	O4—O13—O2 ⁱⁱⁱ	80.58 (7)
Tm—O5—O7	54.27 (5)	O5 ⁱⁱⁱ —O13—O2 ⁱⁱⁱ	54.24 (6)
,			· ··= · (*)

02—05—07	88.06 (7)	O5—O13—O2 ⁱⁱⁱ	64.66 (6)
N2	122.46 (14)	O12—O13—O2 ⁱⁱⁱ	134.09 (8)
O4—O5—O13 ⁱⁱⁱ	139.71 (10)	Tm—O13—H7	122 (3)
O6—O5—O13 ⁱⁱⁱ	101.74 (9)	O14 ^{ix} —O13—H7	5 (3)
Tm05013 ⁱⁱⁱ	120.11 (8)	O10—O13—H7	122 (3)
O2—O5—O13 ⁱⁱⁱ	66.89 (6)	O2—O13—H7	171 (3)
07-05-013 ⁱⁱⁱ	142.29 (8)	04—013—H7	78 (3)
N2-05-013	82.93 (13)	O5 ⁱⁱⁱ —O13—H7	108(3)
04-05-013	64 76 (7)	05-013-H7	113(3)
06-05-013	10034(9)	012-013-H7	77 (3)
$T_{m} = 05 = 013$	49 52 (5)	$02^{iii} - 013 - H7$	78 (3)
02-05-013	56 50 (6)	Tm_013_H8	129(3)
07 05 013	103 35 (7)	$\Omega_1 A^{ix}$ $\Omega_1 3$ H8	127(3)
0/-03-013	103.33(7) 86.37(7)	014 - 013 - 118	103(3)
N2 06 04	30.57(7)	010-013-118	71(2)
N2-06-04	29.33(12)	02-013-118	71(3)
$N_2 = 00 = 03$	29.44 (12)		150(5)
04-06-05	58.99 (8)	05	1 (3)
N2	116.45 (16)	05—013—H8	94 (3)
04-06-014	146.00 (11)	012—013—H8	172 (3)
O5—O6—O14 ^m	87.01 (9)	O2 ^m —O13—H8	54 (3)
N2—O6—O9 ^{vi}	83.84 (14)	H7—O13—H8	107 (4)
O4—O6—O9 ^{vi}	77.76 (9)	O13 ^{ix} —O14—O10	98.12 (8)
O5—O6—O9 ^{vi}	91.17 (9)	O13 ^{ix} —O14—O6 ⁱⁱⁱ	118.03 (9)
O14 ⁱⁱⁱ —O6—O9 ^{vi}	104.35 (9)	O10—O14—O6 ⁱⁱⁱ	107.66 (9)
N2—O6—O2 ⁱⁱⁱ	83.25 (14)	O13 ^{ix} —O14—O3 ^{iv}	112.05 (8)
O4—O6—O2 ⁱⁱⁱ	93.56 (9)	O10O14O3 ^{iv}	139.09 (9)
O5—O6—O2 ⁱⁱⁱ	74.80 (8)	O6 ⁱⁱⁱ —O14—O3 ^{iv}	82.46 (7)
O14 ⁱⁱⁱ —O6—O2 ⁱⁱⁱ	76.63 (7)	O13 ^{ix} —O14—O3 ^x	93.53 (8)
O9 ^{vi} —O6—O2 ⁱⁱⁱ	165.92 (9)	O10—O14—O3 ^x	72.61 (7)
O9—N3—O8	121.2 (2)	O6 ⁱⁱⁱ —O14—O3 ^x	147.52 (9)
O9—N3—O7	119.94 (19)	O3 ^{iv} —O14—O3 ^x	78.38 (7)
O8—N3—O7	118.84 (19)	O13 ^{ix} —O14—O13	69.68 (7)
O9—N3—Tm	167.34 (15)	O10-O14-O13	53.22 (6)
O8—N3—Tm	71.43 (13)	O6 ⁱⁱⁱ —O14—O13	82.55 (7)
O7—N3—Tm	47.41 (10)	O3 ^{iv} —O14—O13	163.54 (9)
N3—O7—O8	30.06 (11)	O3 ^x —O14—O13	118.06 (7)
N3—07—09	29.46 (11)	O13 ^{ix} —O14—H9	116 (3)
08-07-09	59.52 (9)	O10—O14—H9	109 (3)
N3—07—Tm	110.23(13)	$O6^{iii}$ $O14$ $H9$	3 (3)
08-07-Tm	80 17 (8)	$O3^{iv} - O14 - H9$	83 (3)
09—07—Tm	139.69(10)	$03^{x} - 014 - H9$	150(3)
N3-07-01	147 87 (15)	013-014-H9	82 (3)
08-07-01	125 43 (10)	$013^{ix} - 014 - H10$	114(3)
09-07-01	123.43(10) 152.51(11)	010 - 014 - H10	114(3)
$T_{m} - 07 - 01$	54 43 (5)	$06^{ii}-014-H10$	108(3)
N3-07-05	12152(3)	$O3^{iv} - O14 - H10$	31(3)
08-07-05	$104 \ 49 \ (9)$	$O_{3^{x}}$ O_{14} H_{10}	48(3)
00 07 05	130.04(10)	0.13 0.14 H10	$\frac{164}{2}$
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	130.27 (10)	013-014-1110	107(3)

Tm0705	56.17 (5)	H9—O14—H10	109 (4)
01—07—05	76.12 (7)	O11 ^{viii} —O15—O10	105.91 (8)
N3—O7—O11	89.75 (13)	O11 ^{viii} —O15—O9 ⁱ	123.52 (9)
O8—O7—O11	69.95 (8)	O10-015-09 ⁱ	97.93 (9)
09—07—011	109.13 (10)	O11 ^{viii} —O15—O4 ^{xi}	135.84 (8)
Tm-07-011	50.47 (5)	O10-015-04 ^{xi}	113.20 (8)
01—07—011	58.42 (6)	O9 ⁱ —O15—O4 ^{xi}	71.01 (7)
05-07-011	106.35 (7)	O11 ^{viii} —O15—O3 ^x	101.79 (8)
N3-07-011 ⁱ	109.28 (13)	O10-O15-O3 ^x	74.76 (7)
08—07—011 ⁱ	123.31 (10)	O9 ⁱ —O15—O3 ^x	133.98 (8)
09—07—011 ⁱ	91.56 (9)	O4 ^{xi} —O15—O3 ^x	70.82 (7)
Tm-07-011 ⁱ	112.11 (7)	O11 ^{viii} —O15—O1 ^x	61.19 (6)
01—07—011 ⁱ	62.65 (6)	O10-015-01 ^x	80.98 (7)
O5—O7—O11 ⁱ	128.92 (7)	O9 ⁱ —O15—O1 ^x	175.19 (8)
O11—O7—O11 ⁱ	77.32 (7)	O4 ^{xi} —O15—O1 ^x	105.04 (8)
N3—O7—O4	83.39 (12)	O3 ^x —O15—O1 ^x	41.22 (5)
O8—O7—O4	62.31 (8)	O11 ^{viii} —O15—O8 ^{viii}	60.23 (6)
09—07—04	105.04 (9)	O10-015-08 ^{viii}	151.59 (9)
Tm—O7—O4	50.10 (4)	O9 ⁱ —O15—O8 ^{viii}	110.39 (8)
01—07—04	99.67 (7)	O4 ^{xi} —O15—O8 ^{viii}	75.62 (6)
05—07—04	42.20 (5)	O3 ^x —O15—O8 ^{viii}	83.73 (7)
011—07—04	90.17 (7)	O1 ^x O15O8 ^{viii}	70.61 (6)
O11 ⁱ —O7—O4	161.88 (7)	O11 ^{viii} —O15—O11	77.02 (7)
N3—O8—O9	29.33 (11)	O10-O15-O11	53.89 (6)
N3—O8—O7	31.10 (11)	O9 ⁱ —O15—O11	77.44 (7)
09—08—07	60.43 (8)	O4 ^{xi} —O15—O11	143.83 (8)
N3—O8—O8 ^{vii}	164.0 (2)	O3 ^x —O15—O11	124.74 (8)
O9—O8—O8 ^{vii}	137.71 (14)	01 ^x 015011	105.40 (7)
O7—O8—O8 ^{vii}	157.96 (15)	O8 ^{viii} —O15—O11	133.51 (8)
N3—O8—O4	95.90 (15)	O11 ^{viii} —O15—H11	116 (3)
09—08—04	114.74 (11)	O10-O15-H11	105 (3)
O7—O8—O4	75.09 (9)	O9 ⁱ —O15—H11	8 (3)
O8 ^{vii} —O8—O4	84.07 (10)	O4 ^{xi} —O15—H11	73 (3)
N3-08-012 ^{vii}	103.77 (15)	O3 ^x —O15—H11	140 (3)
O9—O8—O12 ^{vii}	75.16 (9)	O1 ^x —O15—H11	174 (3)
O7—O8—O12 ^{vii}	133.87 (10)	O8 ^{viii} —O15—H11	104 (3)
O8 ^{vii} —O8—O12 ^{vii}	62.61 (9)	O11—O15—H11	78 (3)
O4O8O12 ^{vii}	116.75 (8)	O11 ^{viii} —O15—H12	116 (3)
N3—O8—O11	87.65 (14)	O10-O15-H12	108 (3)
09—08—011	107.57 (9)	O9 ⁱ —O15—H12	103 (3)
O7—O8—O11	66.87 (8)	O4 ^{xi} —O15—H12	32 (3)
O8 ^{vii} —O8—O11	108.35 (11)	O3 ^x —O15—H12	43 (3)
O4—O8—O11	94.14 (8)	O1 ^x —O15—H12	73 (3)
O12 ^{vii} —O8—O11	145.13 (10)	O8 ^{viii} —O15—H12	64 (3)

N3—O8—O12	131.37 (16)	O11—O15—H12	162 (3)
O9—O8—O12	160.61 (11)	H11—O15—H12	105 (5)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*+1, -*z*; (iv) -*x*, -*y*+2, -*z*; (v) *x*, *y*-1, *z*; (vi) -*x*, -*y*, -*z*+1; (vii) -*x*+1, -*y*, -*z*+1; (viii) -*x*+1, -*y*+1, -*z*; (x) *x*+1, *y*, *z*; (xi) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
010—H1…014	0.85 (4)	1.89 (4)	2.730 (3)	170 (4)
O10—H2…O15	0.73 (5)	2.00 (5)	2.714 (3)	164 (5)
O11—H4…O15 ^{viii}	0.74 (4)	1.93 (4)	2.666 (2)	174 (4)
O11—H3…O7 ⁱ	0.81 (4)	2.20 (4)	3.006 (2)	175 (4)
O12—H5…O8 ^{vii}	0.80 (4)	2.15 (4)	2.943 (3)	172 (4)
O12—H6…O5 ^x	0.79 (4)	2.57 (4)	3.260 (3)	147 (4)
O12—H6…O7 ^x	0.79 (4)	2.61 (4)	3.269 (3)	142 (4)
O13—H7…O14 ^{ix}	0.78 (4)	1.93 (4)	2.713 (3)	174 (4)
O13—H8…O5 ⁱⁱⁱ	0.83 (5)	2.13 (5)	2.963 (2)	179 (5)
O14—H9…O6 ⁱⁱⁱ	0.80 (4)	2.01 (4)	2.804 (3)	176 (4)
O14—H10…O3 ^x	0.80 (5)	2.64 (5)	3.111 (3)	119 (4)
O14—H10····O3 ^{iv}	0.80 (5)	2.24 (5)	2.885 (2)	138 (4)
O15—H11…O9 ⁱ	0.79 (5)	2.01 (5)	2.782 (3)	168 (4)
O15—H12···O4 ^{xi}	0.79 (5)	2.29 (5)	2.926 (2)	137 (4)
O15—H12···O3 ^x	0.79 (5)	2.47 (5)	2.992 (3)	125 (4)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*; (iv) -*x*, -*y*+2, -*z*; (vii) -*x*+1, -*y*, -*z*+1; (viii) -*x*+1, -*y*+1, -*z*+1; (ix) -*x*+1, -*y*+1, -*z*; (x) *x*+1, *y*, *z*; (xi) *x*, *y*+1, *z*.