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We show that the combination of charge and dipole conservation—characteristic of fracton systems—
leads to an extensive fragmentation of the Hilbert space, which, in turn, can lead to a breakdown of
thermalization. As a concrete example, we investigate the out-of-equilibrium dynamics of one-dimensional
spin-1 models that conserve charge (total Sz) and its associated dipole moment. First, we consider a
minimal model including only three-site terms and find that the infinite temperature autocorrelation
saturates to a finite value—showcasing nonthermal behavior. The absence of thermalization is identified as
a consequence of the strong fragmentation of the Hilbert space into exponentially many invariant
subspaces in the local Sz basis, arising from the interplay of dipole conservation and local interactions.
Second, we extend the model by including four-site terms and find that this perturbation leads to a weak
fragmentation: The system still has exponentially many invariant subspaces, but they are no longer
sufficient to avoid thermalization for typical initial states. More generally, for any finite range of
interactions, the system still exhibits nonthermal eigenstates appearing throughout the entire spectrum. We
compare our results to charge and dipole moment-conserving random unitary circuit models for which we
reach identical conclusions.
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I. INTRODUCTION

Recent years have seen a great deal of effort—both
theoretical and experimental—to understand quantum
thermalization: the question of how closed quantum
systems, evolving under unitary dynamics, reach a state
of thermal equilibrium [1–9]. Thermalization is believed to
be characterized in terms of the eigenstate thermalization
hypothesis (ETH) [7,10–12]. According to this hypothesis,
each eigenstate of a thermalizing Hamiltonian essentially
behaves like a thermal ensemble as far as expectation
values of local observables are concerned. While no
proof of the ETH exists, there are many cases where it
is shown numerically that indeed all eigenstates satisfy this
hypothesis [7,12,13].
Given its supposed generality, there has been much

interest in systems that violate the ETH. Two well-known

instances are integrable systems [14,15] and the many-body
localized (MBL) phase [16–19], both of which avoid the
ETH due to the existence of extensively many conserved
quantities [20–22]. These conservation laws lead to non-
ergodicity even at high-energy densities. One important
question concerns whether behavior similar to MBL can
appear in systems without spatial disorder [23–30].
Another key question is about the possibility of systems

that exhibit interesting intermediate behavior, neither local-
ized nor fully ergodic. In particular, we can distinguish
between the strong and weak ETH: The former says that all
eigenstates in the bulk of the spectrum become thermal in
the thermodynamic limit, while the latter allows for the
presence of outlying nonthermal states, as long as their ratio
is vanishingly small at any given energy [31–33]. It is
important to stress that if only the weak ETH is satisfied,
then we can always find initial conditions which have
narrow energy distributions but nevertheless fail to thermal-
ize [8]. Indeed, generic systems are expected to exhibit the
strong version of the ETH [13]. Recently, however, several
exceptions have been discovered [34–38]. Systems with
constrained dynamics [39,40] are an especially promising
avenue where nonthermal eigenstates, dubbed scar states,
can occur [33,41–45]. These are believed to be responsible
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for persistent oscillations observed in a recent Rydberg
atom experiment [46].
Constrained dynamics occurs naturally in so-called

fracton systems, which are characterized by the existence
of excitations that exhibit restricted mobility [47,48].
On one hand, these systems have been studied in three-
dimensional exactly solvable lattice models with discrete
symmetries, where fractons are created on the corners of a
membrane or fractal operator [48–53]. On the other hand,
different approaches for fractons with U(1) symmetry show
that their mobility constraints are related to the conserva-
tion of the dipole moment which localizes isolated charged
excitations [54–60]. An analytical connection between the
two approaches is discussed in Refs. [61,62]. The exotic
behavior of fractons also gives rise to the study of their
nonequilibrium physics [63,64], and it has been argued that
fracton models with discrete symmetries show glassy
dynamics [49,63,65].
In this paper, we study the consequences of dipole

conservation associated with a global U(1) charge (i.e.,
the conservation of total spin Sz) in one-dimensional (1D)
spin systems, for which a numerical study is feasible. Apart
from fracton systems, such charge- and dipole-conserving
Hamiltonians also occur naturally in other contexts, for
example, in the quantum Hall effect [66–70] and in systems
of charged particles exposed to a strong electric field [29,30].
Interestingly, a recent work [71] argues that random local
unitary dynamics with such symmetries fails to thermalize.
We find the same nonergodic behavior in a minimal
Hamiltonian that contains only three-site interactions. We
discover that the source of nonergodicity is an extensive
fragmentation of the Hilbert space into exponentially many
disconnected sectors in the local z basis. In particular, based
on the Hilbert space structure, we obtain a lower bound for
the long-time autocorrelation, which remains finite in the
thermodynamic limit. This type of nonergodic behavior is
novel, arising in a translation-invariant system, but never-
theless sharing certain features ofMBL, which we denote by
strong fragmentation of the Hilbert space.
However, we find that this strongly nonergodic behavior

disappears once we add longer-range interactions, such as a
four-site term. In this case, the dipole constraint is no longer
sufficient to violate ergodicity, and the infinite temperature
autocorrelator decays to zero. Nevertheless, the model
still violates the strong version of the ETH and exhibits
exponentially many nonthermal eigenstates, disconnected
from the bulk of the spectrum and coexisting with thermal
eigenstates at the same energies. We term this behavior,
which is reminiscent of quantum many-body scars, weak
fragmentation and give an analytical lower bound on the
number of product eigenstates for an arbitrary finite range
of dipole-conserving interactions. We compare our results
to random unitary circuit dynamics and find the same
behavior: While circuits constructed from three-site gates
fail to thermalize, adding four-site gates is sufficient to

delocalize the system and lead to thermalization for typical
initial states. We numerically verify that the invariant
subspaces for Hamiltonian and random circuit dynamics
coincide exactly.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the Hamiltonians we study and
describe their relevant symmetries. In Sec. III, we inves-
tigate the minimal model containing only three-site inter-
actions and show that it fails to thermalize. We prove that
the Hilbert space fragments into exponentially many
invariant subspaces, some of which we construct analyti-
cally, and connect these to the finite saturation value of the
autocorrelation function. In Sec. IV, we extend the model
by adding four-site interactions and argue that, while these
are sufficient to make the majority of eigenstates thermal—
leading to ergodic behavior for typical initial states—the
system still violates the strong ETH. In Sec. V, we compare
our results to random unitary circuit dynamics and find
similar behavior. We conclude in Sec. VI with a summary
and outlook. The Appendixes provide further comparisons
of our numerical results on autocorrelations for different
system sizes, as well as other dynamical quantities, such as
entanglement growth and operator spreading. Appendix D
shows an explicit construction, relating the minimal
Hamiltonian we consider to the PXP model [41,72] that
appears in the context of quantum many-body scars [73].

II. MODEL AND SYMMETRIES

We consider two spin-1 Hamiltonians on a chain of
length N of the form

H3 ¼ −
X
n

½Sþn ðS−nþ1Þ2Sþnþ2 þ H:c:� ð1Þ

and

H4 ¼ −
X
n

½Sþn S−nþ1S
−
nþ2S

þ
nþ3 þ H:c:�; ð2Þ

acting on three and four consecutive sites, respectively.
Apart from being translation and inversion symmetric,

both Hamiltonians share two additional global symmetries:
They conserve a U(1) charge Q and its associated dipole
moment Pn0 :

Q≡X
n

Szn and Pn0 ≡
X
n

ðn − n0ÞSzn; ð3Þ

with respective eigenvalues q and p defining the symmetry
sector Hq;p [74]. Since ½Q;Pn0 � ¼ 0, the local Sz basis,
denoted by jþi; j0i; j−i, is a common eigenbasis of Q and
Pn0 . The definition of the dipole symmetry Pn0 also
depends on the reference position n0, except when
Q ¼ 0. Unless specified otherwise, we choose open boun-
dary conditions [75] and take N ¼ 2mþ 1 odd, labeling
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sites n ¼ −m;…; 0;…; m. We choose the reference site n0
to be the center site, n0 ¼ 0, and denote P≡ Pn0¼0. The
operator P does not commute with spatial translations and
changes sign under inversion; thus, it is not an internal
symmetry [60]. Dipole conservation is the relevant global
symmetry appearing in the description of fracton phases of
matter with the U(1) symmetry group [54–60]. Motivated
by this knowledge, we use the following notations: We call
the states j�i on a given site a fracton with charge q ¼ �1
and a two-site configuration jþ−i (j−þi) a dipole with
zero charge and dipole moment p ¼ −1 (þ1). Notice that
the dipole moment of a (�) fracton on a site n is p ¼ �n.
Thus, in order to conserve the total dipole moment, a
fracton can move only by emitting dipoles [54,71].
There also exists an operator that anticommutes with H3

but commutes with Q and P (see Appendix A for details).
Consequently, the spectrum ofH3 is symmetric around zero
in every (q; p) sector. The same is also true when H4 is
considered separately, but not for the combinedHamiltonian
H3 þH4. These anticommuting symmetries can also be
broken by adding terms diagonal in the Sz basis, which
would not change any of the physics observed in the
following.
We note in passing that similar charge- and dipole-

conserving Hamiltonians can be written for any spin
representation, in any spatial dimension, as well as for
fermionic systems. For the latter, the dipole symmetry
becomes the center of mass of the particle number operator,
and the corresponding Hamiltonian consists of a symmetric
redistribution of charges with respect to the center sites.
A similar fermionic Hamiltonian appears in the study of
fractional quantumHall on a torus in the Tao-Thouless limit
[66–70]. In addition, such dipole-conserving chains can
arise naturally in the presence of strong electric fields, as
we discuss in the outlook.

III. HAMILTONIAN H3

We start by investigating the three-site Hamiltonian H3

in Eq. (1), as a minimal model that conserves both the total
charge Q and the dipole moment P. We detail its unusual
nonergodic dynamics and identify it as a consequence of
extensive fragmentation of the Hilbert space into invariant
subspaces. In Sec. IV, we add longer-range terms to this
minimal model and describe their effect on the dynamics.

A. Lack of thermalization

We first investigate the behavior of the autocorrelation
function Cz

0ðtÞ≡ hSz0ðtÞSz0ð0Þi at an infinite temperature.
Relying on quantum typicality [77–79], we compute Cz

0ðtÞ
for a random state on the full Hilbert space. For thermalizing
and translational invariant spin-1 systems,Cz

0ðtÞ is expected
to decay to 2=ð3NÞ for a chain of length N, up to potential
boundary contributions [80]. In Fig. 1(a), we show Cz

0ðtÞ,
obtained via an iterative Krylov space-based algorithm [81],

for system sizes N ¼ 13, 15. Instead of relaxing to the
thermal expectation value, the autocorrelation saturates
to a finite value Cz

0ðtÞ − 2=ð3NÞ ∼ 0.2 at long times. In
Appendix B, we confirm that this finite saturation value
persists up to long times t ∼ 1010, with no sign of decay.
Moreover, the long-time values appear to be largely inde-
pendent of N, indicating truly localized behavior that
persists even in the thermodynamic limit. Figure 1(b) shows
the spatially resolved correlation function hSznðtÞSz0ð0Þi,
which exhibits a peak in the center site at all times. We
conclude that the system exhibits nonergodic behavior. This
conclusion is also supported by calculating the growth of
entanglement starting from a random product state, which
saturates to a subthermal von Neumann entropy density, as
we show in Appendix C.

B. Hilbert space fragmentation

In this section, we demonstrate that the constrained
dynamics of H3 leads to a fragmentation of the many-body
Hilbert space: Most (q; p) symmetry sectors split into many
smaller invariant subspaces in the local Sz basis, such that
the total number of such subspaces grows exponentially
with the system size. These disconnected sectors come in a
variety of different sizes; they include “frozen” states
(product eigenstates of H3) and finite-dimensional sub-
spaces, where the chain splits into spatially disconnected
regions.

(b) (c)

(a)

FIG. 1. Thermalization and its absence in the autocorrelation
function. (a) shows the autocorrelation function Cz

0ðtÞ≡
hSz0ðtÞSz0ð0Þi in the full Hilbert space at an infinite temperature
for N ¼ 13 (transparent curves) and N ¼ 15 (opaque curves)
spins. For Hamiltonian H3 in Eq. (1), Cz

0ðtÞ saturates to a finite
value at long times, closely matching the lower bound in Eq. (4)
(dashed line). The autocorrelation function of the combined
Hamiltonian H3 þH4 decays to zero at long times. (b) and
(c) show the spatially resolved correlator hSznðtÞSz0ð0Þi forH3 and
H3 þH4, respectively.
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1. Frozen states

We begin by constructing a family of exponentially
many exact eigenstates of the Hamiltonian, which are all
product states in the local z basis. We refer to these as
frozen states. The simplest example is the vacuum state
j0i≡ j…0000…i, which is annihilated by all terms in H3,
due to ðS�Þ2j0i ¼ 0. We can easily construct other
frozen states by adding blocks of at least two contiguous
charges of equal sign on top of the vacuum, e.g.,
j0…0þþ0…0−−−0…i. These are annihilated by all
terms, since Sþn S−nþ1j��i ¼ 0. We conclude that any
configuration where charges always occur in blocks of
at least two consecutive sites are zero energy (midspec-
trum) eigenstates of H3. It is clear from the construction
that their number is exponentially large in system size.
Wecan followPauling [82,83] to estimate the total number

of frozen states. To do so, we map the spin chain of lengthN
to a triangular ladder with spins placed on the vertices as
shown in the inset in Fig. 2(a). Treating the constraints on
each triangle as independent and using that there are N − 2
triangles and 19 frozen states per triangle, we estimate their
total number to be 3N × ð19=27ÞN−2 ≈ 2.02 × 2.11N . In
Fig. 2(a), we numerically verify that the estimate is quite
close to the actual number of frozen states, as obtained by
exact diagonalization. The numerical results, together with
an explicit computation for small system sizes, suggest that
this estimate gives a lower bound of the actual number of
frozen states.However,wedonot havea proof of this general

statement. Nevertheless, in Sec. IV B, we provide an
analytical lower bound for arbitrary finite-range dipole-
conserving Hamiltonians.

2. Larger-dimensional sectors

Above, we see that blocks of two or more consecutive
charges of equal sign are annihilated by the local terms in
H3 that act on them. Let us now consider the empty region
(j00…0i) between two such frozen blocks and fill it with a
random configuration of charges. These charges can now
move around and potentially destroy the blocks on the two
sides. However, we argue that there are initial configura-
tions where this process cannot happen: When the sign of
the rightmost charge within the region matches the charge
of the frozen block to its right, then this block remains inert
at all times. The same holds for the frozen block on the left
when its charge is of the same sign as the leftmost charge
within the region. When the charges match on both sides,
then both blocks are stable, and the charges in the middle
bounce back and forth between them, disconnected from
the rest of the chain. This result appears as a direct
consequence of the general rule: For a region surrounded
by empty sites, the signs of the left- and rightmost charges
are invariant under the dynamics generated by H3.
The simplest example where we can observe this

behavior is as a two-level system shown in Fig. 2(b),
defined by the states jþþ0þ 0þþi and jþþþ−þþþi.
We can check that these two states can only evolve to each
other under H3, defining a small invariant subspace. More
generally, we can consider states of the form
jþþ0…0þ 0…0þþi: an isolated fracton surrounded by
two “walls” of positive charge. Acting on this state withH3

maps the configuration 00þ 00 in the middle to 0þ−þ0,
showing that the (þ) fracton can move by emitting a dipole
þ− (or −þ) in the opposite direction [54,71]. The fracton
can then move forward by emitting further dipoles, until it
reaches one of the walls. However, when it eventually hits
the wall, we end up with the configuration þþþ, which is
annihilated byH3; the wall therefore remains intact, and the
fracton bounces back harmlessly. Consequently, if the
fractons on both sides of a þþ block have positive charge,
the chain is cut into two disconnected halves, as shown in
Fig. 2(c). To destroy the wall, we would need to flip the
charge of the isolated fracton to get a (−) fracton: The
resulting −þþ configuration can then peel off a freely
moving −þ dipole, eventually melting the walls that
surround it as shown in Fig. 2(d).
A similar situation occurs for the initial configuration

j−−0…0−þ0…0þþi. In this case, the walls on the two
sides have opposite charges, and a single dipole is placed
between them. For a single dipole surrounded by empty
sites, the Hamiltonian H3 acts as a free hopping term,
moving the dipole from site n to n� 1 [84]. Eventually, it
reaches one of the surrounding walls, but, since the charges
in the dipole are aligned with those of the walls, it always

(a) (b)

(c) (d)

FIG. 2. Fragmentation of the Hilbert space into smaller sub-
spaces. (a) Exponential scaling of frozen states, which correspond
to invariant subspaces of dimension D ¼ 1, and comparison to
the Pauling estimate. (b) Example of higher-dimensional sectors,
in the form of spatially separated two-level “bubbles.” (c),(d)
Time-evolved charge density hSznðtÞi for the two initial states
indicated under each figure. (c) The þþ block in the middle cuts
the system in half when (þ) fractons are placed on each side.
(d) When they are replaced by (−) fractons, the block melts and
the two halves become connected.
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bounces back, effectively defining a single-particle hopping
problem on a finite region. If, on the other hand, the initial
dipole in the middle is of the form þ−, it could again peel
off charges from the two walls, eventually melting them.
The previously stated general rule, together with the fact

that blocks with a given charge are frozen, allows us to
construct more general spatially disconnected regions in the
chain: Take an arbitrary configuration in some finite interval
and surround it with walls that have the same charge as the
one closest to them on the inside. One can then cover the
entire chain with such regions, each of which has its own
conserved charge and dipole moment, giving rise to many
invariant subspaces within each global (q; p) symmetry
sector. The resulting eigenstates clearly break translation
invariance and have small amounts of entanglement, limited
by the size of the largest connected spatial region.
These constructions highlight the intertwined relation

between dipole conservation, spatial translations, and
locality. After the dipole quantum number is fixed, trans-
lation or inversion symmetry is generically broken, which
allows us to derive conservation laws within different
spatially disconnected regions. Our construction also shows
that, in order to determine to which invariant subspace a
given initial configuration belongs, one has to consider it on
the entire chain: Even if a certain region looks initially
frozen, it can eventually be melted by additional charges
coming from the outside. This result indicates that it might
not be possible to systematically label all invariant sub-
spaces in terms of quantum numbers of local conserved
quantities.

3. Distribution of dimensions of invariant subspaces

Above, we explicitly construct invariant subspaces ofH3

of various dimensions within given (q; p) symmetry sectors.
The distribution of these invariant subspaces can be studied
by numerically identifying the connected components of the
Hamiltonian written in the Sz basis. The resulting distribu-
tion is plotted in Fig. 3(a), showing exponentially many
sectors with a broad distribution.We point out that, since the
sectors are obtained in the local z basis, they remain invariant

under any perturbation that is diagonal in this basis.
However, such diagonal perturbations would have the effect
of changing the energy of the different frozen states, moving
them away from zero energy, and distributing them through-
out the entire spectrum.
Based on the constructions in the previous section, we

infer that the existence of these invariant subspaces is a
consequence of the interplay between the conservation of
the dipole moment (which fails to commute with translation
and inversion) and the locality of interactions. In particular,
in Sec. IV B, we prove that exponentially many invariant
subspaces exist for any extension of the model that involves
only dipole-conserving interactions with a finite range.
We close this section by noting that, apart from the

overall fragmented structure of the Hilbert space, which is
our main concern in this paper, there is also the possibility
of interesting dynamics within certain connected compo-
nents. For example, as we show in Appendix D, there are
particular subspaces where the Hamiltonian H3 maps
exactly to the so-called PXP Hamiltonian [73], studied
in the context of quantum many-body scars [41,42].
A similar mapping has been uncovered in a spin-1=2
version of this model in a recent preprint [88].

C. Saturation value of Cz
0ðtÞ

Equipped with the knowledge of the fragmented Hilbert
space structure, we are now able to explain the long-time
value of the autocorrelation function observed in Fig. 1(a).
To this end, let us define Pi as the projection onto the
connected subspacesHi. These projectors form an orthogo-
nal set of conserved quantities (PiPj ¼ δijPi), such that
one can use Mazur’s inequality [89–91] to lower bound the
infinite time average of the charge autocorrelator as

lim
T→∞

1

T

Z
T

0

dthSz0ðtÞSz0ð0Þi ≥
X
i

½trðZiÞ�2
3NDi

≡ Cz
0ð∞Þ; ð4Þ

where Zi ≡ PiS
z
0Pi ¼ PiS

z
0 is the projection of S

z
0 ontoHi

and Di ¼ trðPiÞ is the dimension of the subspace. The
bound Cz

0ð∞Þ is shown in Fig. 1(a) for N ¼ 15 by the
dashed horizontal line; we observe that it is close to being
tight, indicating that the main cause of the lack of
ergodicity is indeed the fragmentation of the Hilbert space.
We compute the estimated value for Cz

0ð∞Þ − 2=ð3NÞ for a
variety of different system sizes and find that the result
appears to remain finite in the thermodynamic limit, even
increasing slightly with N for the system sizes available in
our numerics (blue dots in Fig. 4).
Since the Hi’s are invariant and disjoint subspaces, the

weight of the operator Sz0 within a given sector, trðZ2
i Þ,

remains constant under time evolution. Therefore, we intro-
duce the operator weightWD ≡P

Di¼D trðZ2
i Þ=tr½ðSz0Þ2� as a

function of the sector size D for all invariant subspaces Hi.
This function defines a probability distribution, shown in

(a) (b)

FIG. 3. Sector size and weight distributions. (a) Distribution of
invariant subspaces of sizeD and (b) operator weightWD (see the
text for its definition) of the operator Sz0 in each invariant subspace
Hi of dimension D in the full Hilbert space. The vertical dashed
lines indicate the averaged sector size of the distribution, which is
exponentially smaller than the largest sector.
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Fig. 3(b).We find a wide distribution with significant weight
on small sectors. While the number of frozen states scales as
approximately 2.2N, the size of the largest sector in the entire
Hilbert space scales as approximately 1.9N, both much
smaller than the total dimension 3N . This result suggests
that sectors of all sizes have significant contributions to the
evolution of Sz0ðtÞ, even in the thermodynamic limit. We also
confirm the same behavior when considering only the largest
symmetry sector ðq; pÞ ¼ ð0; 0Þ (see Appendices A and B);
this result emphasizes the relevance of the fragmentation
within each (q; p) sector.

IV. COMBINED HAMILTONIAN H3 +H4

So far, we have considered only the “minimal model,”
defined by the Hamiltonian H3 in Eq. (1). We now
investigate to what extent the features found above are
robust against local perturbations that preserve the sym-
metries Q and P.

A. Thermalization for H3 +H4

In the following, we add the four-site terms defined in
Eq. (2) and consider the combined Hamiltonian H3 þH4.
We find that, while this Hamiltonian shares certain features
with H3—in particular, it has exponentially many invariant
subspaces—it nevertheless thermalizes at an infinite tem-
perature. Indeed, the autocorrelation function Cz

0ðtÞ for the
Hamiltonian H3 þH4 decays to zero at long times, in
contrast to the dynamics governed by H3 alone; see Fig. 1
for a comparison. This decay is accompanied by the
spatially resolved correlation function hSznðtÞSz0ð0Þi becom-
ing approximately homogeneous at long times, as shown in

Fig. 1(c). The remaining small peak is due to finite-size
effects, as we show in Appendix B. Moreover, as we
discuss in Appendix C, for a random product state evolving
under H3 þH4, the entanglement entropy approaches its
thermal value at long times, providing an additional
indication that the system thermalizes.
This qualitative difference suggests that the Hilbert space

structure uncovered in Sec. III B should also be modified
by adding H4 to the Hamiltonian. Figure 5(a) compares the
distribution of sector sizes D for H3 þH4 (blue stars) with
the minimal Hamiltonian H3 (red dots). While exponen-
tially many invariant subspaces still exist, their total
number is drastically reduced, as many previously dis-
connected sectors are coupled to each other by the
perturbation H4. Thus, the number of sectors of small
dimension D decreases, and there are new larger blocks
appearing; in fact, the largest global symmetry sector,
q ¼ p ¼ 0, becomes almost (but not exactly) fully con-
nected, as we discuss in Sec. IV C. This effect is even more
apparent in the distribution of the operator weight WD
(defined in Sec. III C) for the operator Sz0, which we show in
Fig. 5(b). Most of the weight is now concentrated around
the largest sector, similarly to the case of a single global
U(1) symmetry. Thus, even though invariant subspaces
within symmetry sectors still exist, they do not appear
to be sufficiently relevant to make the system nonergodic.
This result is also reflected in the long-time value of the
autocorrelation function as predicted in Eq. (4): Plugging in
the invariant subspaces of H3 þH4, we find that Cz

0ð∞Þ
approaches the thermal value 2=ð3NÞ exponentially in the
thermodynamic limit, as shown in Fig. 4.
From these results, we infer that including longer-range

interactions makes the system sufficiently ergodic to
thermalize. One possible reason for this qualitative differ-
ence is that the four-site terms break the rule stated at the
beginning of Sec. III B 2, thus allowing for the destruction
of blocks of charges that would be inert under the dynamics
of H3. A different path to break the nonergodicity of H3

would be to increase the local Hilbert space dimension,
making the dynamics less constrained. Consequently, we
expect that, for a larger spin, even a three-site Hamiltonian
of the form (1) would lead to thermalization. Indeed,

FIG. 4. Saturation value of the autocorrelator. Finite-size study
of the lower bound in Eq. (4) for the time-averaged correlation
function Cz

0ðtÞ as a function of the system size. We have
substracted the thermal value Cz

th ≡ ð1=NÞtr½ðSz0Þ2�=½ð2Sþ 1ÞN �
for a general spin S and a chain of lengthN. For theminimal spin-1
model H3 (blue dots), the lower bound is slightly increasing with
the system size. On the other hand, it decays to zero exponentially
for the combined Hamiltonian H3 þH4 (blue squares). For
comparison, we also show results for other local spin S: The
larger the on-site Hilbert space dimension, the easier it is for the
system to thermalize [92].

(a) (b)

FIG. 5. Comparison of the Hilbert space connectivity. (a) Sector
size distribution for H3 (red dots) and H3 þH4 (blue stars).
(b) The operator weight WD distribution for Sz0 is qualitatively
different, dominated by large sectors in the latter case.
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computing the lower bound Cz
0ð∞Þ for the charge auto-

correlator using Eq. (4) for H3 acting on a spin-2 chain, we
find that it decays to zero in the thermodynamic limit, as
shown in Fig. 4. Similarly, if we consider spin-1=2 chains,
the shortest range nontrivial model is H4, which appears to
be nonergodic, while adding five-site interactions restores
ergodicity.

B. Constructing frozen states

While the combined Hamiltonian H3 þH4 appears
thermalizing at an infinite temperature, it nonetheless
violates the strong version of the eigenstate thermalization
hypothesis [10–13]. In particular, certain frozen states
continue to exist not only for H3 þH4, but even in the
presence of longer-range local interactions. In fact, as we
now prove, for a spin-1 chain that conserves the charge and
dipole and involves only local terms with range at most l,
there exist at least 2 × 5N=l frozen states. While for l ¼ 3
this lower bound is not as tight as the Pauling estimate
discussed in Sec. III B 1, it provides useful insight into
generic longer-range Hamiltonians and can be generalized
to any spin representation.
We begin our construction by considering the configu-

ration shown in Fig. 6(a), with a center site surrounded by a
block of l − 1 (þ) fractons on one side and l − 1 (−)
fractons on the other. We now prove that this configuration
is an eigenstate of any dipole-conserving term with a range
at most l, where without the loss of generality we can
measure the dipole moment relative to the center site. It is
sufficient to consider off-diagonal terms (in the z basis),
consisting of spin-raising and -lowering operators. Because
of the way we constructed the state, the only such terms that
do not annihilate it are those that have only S− on one side
and Sþ on the other. However, any such term would lead to
a change in the dipole moment and is thus prohibited.
Terms acting only on the center site do not change P, but
they are also excluded due to charge conservation. We
conclude that this configuration is frozen, independently of
the state of the center spin, as promised.
Next, we consider a similar configuration, but one where

the center spin is surrounded by blocks of the same, rather

than opposite, charges, as shown in Fig. 6(b). Let these
blocks be made out of (þ) fractons. Then the only off-
diagonal operators that can act on them are powers of S−,
decreasing the total charge Q. One has to compensate for
these charges by adding additional charges on the center
site. Therefore, the only allowed terms that could change
this configuration are of the form S−−nðSþ0 Þ2S−n , and only
when the central spin is occupied by a (−) fracton. When it
is either 0 or þ, the state is frozen.
One can combine these two types of “frozen patches”

we construct above to cover the entire 1D chain, resulting in
a globally frozen state. These states are made up by blocks
of þ or − charges, with a single site between any two
consecutive blocks, as shown in Fig. 6(c). As we show
above, these sites host flippable spins: The ones separating
blocks of equal charge can take two values (e.g., þ or 0
between blocks of þ charge), while those that separate
blocks of opposite charge can be in any of the three possible
spin states. This construction then results in exponentially
many frozen states, coming both from the possible arrange-
ments of � blocks and from flipping the spins between
blocks within a given arrangement.
We can count the total number of frozen states resulting

from this construction iteratively, starting from the left edge
of the system (assuming open boundaries). We cut the
systems into blocks of l sites, consisting of a wall of l − 1
positive or negative charges, followed by a flippable spin.
Let F�

k denote the number of different such configurations
to the left of the kth wall (but before the flippable spin),
ending in a (�) block. Then, the considerations outlined
above lead to the following recursion formula:
�
Fþ
kþ1

F−
kþ1

�
¼
�
2 3

3 2

��
Fþ
k

F−
k

�
¼
�
2 3

3 2

�k�1

1

�
¼ 5k

�
1

1

�
;

ð5Þ
where we use that Fþ

1 ¼ F−
1 ¼ 1. Since each step k →

kþ 1 corresponds to a shift by l sites, we conclude that the
number of frozen states we construct scales as 2 × 5N=l.
This result is only a lower bound on the total number of
frozen states, which can include other configurations not
captured by this construction. In particular, one could
systematically improve the bound by allowing blocks to
be separated by more then one site.
We compare the lower bound of approximately 5N=l to

the numerical results on the number of frozen states for
Hamiltonians with interactions of range at most l ¼ 3, 4, 5
in Fig. 7, where we extract the asymptotic scaling. The
comparison to numerical data in Fig. 7 shows that the
scaling is relatively close to approximately 10N=l [93]:
10.73N=3 (l ¼ 3), 9.94N=4 (l ¼ 4), and 10.79N=5 (l ¼ 5).
Thus, the lower bound is not tight, but it proves the
exponential scaling of frozen states.
We conclude this section with some comments about

the construction we present. First, while above we do not

(a) (b)

(c)

FIG. 6. Constructing frozen states for arbitrary finite-range
interactions. For interactions of maximal range l, one can create
frozen patches of 2l − 1 sites with a flippable spin surrounded by
domains of (a) opposite or (b) the same charges (shown here for
l ¼ 4, relevant for H3 þH4). These can then be combined to
cover the entire chain, resulting in exponentially many frozen
states, such as the one in (c).
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distinguish between different overall (q; p) sectors, one
could similarly construct frozen states with a given q and p.
For example, one can apply the construction on only the left
half of the chain and for each state repeat the same
configuration on the right half to obtain a state with
p ¼ 0. Second, the bound can be easily extended to chains
with local spin S > 1. For example, one can consider blocks
that have maximal positive or negative charge; repeating the
same arguments then gives a scaling [94] ð2Sþ 3ÞN=l. Last,
we note that in the limit l → ∞ the lower bound tends to
one, consistent with the fact that for all possible charge- and
dipole-conserving infinite-range interactions every (q; p)
sector becomes completely connected.

C. Strong vs weak fragmentation

As the previous section shows, the combination of dipole
conservation and strictly local interactions is sufficient to
lead to an emergence of exponentially many dynamically
disconnected sectors in the many-body Hilbert space, even
after fixing q and p. While we show this rigorously only for
the case of one-dimensional sectors, we find numerically
that others with larger dimension also exist (see Fig. 5).
While both H3 and H3 þH4 share this feature, their
behavior with respect to thermalization appears to be quite
different, as we already observe in Fig. 1. This difference
motivates us to distinguish two cases, dubbed weak and
strong fragmentation, which violate the strong and weak
ETH, respectively.
Let us first make precise what we mean by violation of

the ETH. In defining the ETH, we consider expectation
values of few-body observables for all eigenstates of the
Hamiltonian within a fixed global (q; p) symmetry sector
(we do not consider off-diagonal matrix elements here).
By the strong ETH, we then mean the statement that the

expectation values are the same for all eigenstates at the
same energy density in the thermodynamic limit. The weak
ETH, on the other hand, means that this statement holds up
only to a small number of outlying states, where “small”
means here “measure zero in the thermodynamic limit.”
Here, we take the point of view of fixing only local
symmetries, as nonlocal ones usually do not lead to distinct
distributions for the diagonal matrix elements [95–97]. In
our case, this approach means fixing Q and P but not the
additional symmetries that correspond to the invariant
subspaces, since we expect these to be nonlocal [98].
Our construction in the previous section then proves that

any dipole-conserving, strictly local Hamiltonian has weak
fragmentation in the above sense; i.e., nonthermal eigen-
states are present in the middle of the spectrum. Apart from
the aforementioned frozen states, these also include
other low-entanglement eigenstates, stemming from small
invariant subspaces, analogous to the ones discussed in
Sec. III B 2. Generically, however, their ratio compared to
thermal ones is vanishingly small within any energy shell in
the thermodynamic limit; such is the case ofH3 þH4 as we
argue below. Thus, the weak version of the ETH [31–33] is
still obeyed, and the system thermalizes for typical initial
states, provided they have narrow energy distributions.
On the other hand, we argue that the Hamiltonian H3,
discussed in Sec. III, has strong fragmentation in the sense
that at least a finite fraction of the eigenstates is nonthermal,
leading to the manifestly nonthermalizing behavior we
observe.
The difference is illustrated in Figs. 8(a) and 8(b), which

show the expectation value of a simple observable [ðSz0Þ2,
where 0 is the central spin] for all energy eigenstates within
the q ¼ p ¼ 0 symmetry sector, for H3 and H3 þH4. For
the combined Hamiltonian H3 þH4, the majority of
eigenstates, which all belong to the same invariant sub-
space, behave as predicted by the ETH: hðSz0Þ2i takes
similar values for states within a narrow energy shell, with
the width of its distribution decreasing with the system
size. Nevertheless, we also observe outlying eigenstates,
stemming from small invariant subspaces, that do not
approach this line, violating the strong ETH. The minimal
Hamiltonian H3, on the other hand, violates even the weak
version of the ETH: The distribution of hðSz0Þ2i does not
become narrower with increasing N, as shown in Fig. 8(a).
This result is in contradiction with the ETH, which predicts
a vanishing width in the thermodynamic limit. Similar
behavior occurs in the half-chain entanglement entropy of
the eigenstates, shown in Fig. 8(c): The nonthermalizing
nature of H3 is reflected by the fact that the entropies of its
eigenstates do not fall on a line when plotted as a function
of the energy, instead being distributed over values much
smaller than what is predicted at an infinite temperature, as
realized by a random state in the (0, 0) sector.
The above discussion suggests that the difference

between strong and weak fragmentation can be diagnosed

FIG. 7. Scaling of the number of frozen states for Hamiltonians
with at most range l terms. We consider Hamiltonians with all
possible combinations of charge- and dipole-conserving terms,
quartic in spin operators of a range at most l, for l ¼ 3, 4, 5. The
number of frozen states grows exponentially with system size N,
with an exponent that decreases with l, but is larger than the
analytical lower bound 2 × 5N=l.
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by considering the sizes of the connected subspaces, in
comparison with the size of the global (q; p) symmetry
sector they belong to. In the strongly fragmented case ofH3

studied above, for a typical (q; p) symmetry sector, the
dimension of the largest connected subspace is exponen-
tially smaller than the dimension of the full symmetry
sector, i.e., max½Di

ðq;pÞ�=Dðq;pÞ∝expð−αNÞ for some α > 0.

In Fig. 9, we verify that such is indeed the case for the
largest symmetry sector (0, 0) of H3. We propose that this
decay indicates strong fragmentation, naturally leading to
the absence of thermalization for physical observables such
as the autocorrelation function considered above.
In the weakly fragmented case, the symmetry sectors can

still split into many subspaces. However, the largest of
these spans almost the entire (q; p) sector: max½Di

ðq;pÞ�≈
Dðq;pÞ, with the ratio approaching 1 in the thermodynamic
limit. Figure 9 shows that such is the case for H3 þH4.
Consequently, the vast majority of eigenstates within any
energy shell in a given (q; p) symmetry sector belong to the
same large invariant subspace and look thermal as a
consequence. Thus, while weakly fragmented systems
violate the strong ETH—due to outlying nonthermal

eigenstates—they nevertheless thermalize for typical (but
not all) initial states. This weak fragmentation is reminis-
cent to what is observed in other models in the context of
many-body quantum scars: Although the majority of the
eigenstates obey the ETH, nonthermal eigenstates exist
even in the bulk of the spectrum [33–35,41,42]. However,
while the number of these “scarred” states is usuallyOðNÞ,
in our case we find exponentially many such states. Note
that the nonthermal eigenstates belonging to low-
dimensional invariant sectors in our system have a finite
overlap with simple product states which can potentially be
prepared in experimental settings. This overlap implies that
a lack of thermalization up to infinite times could be
observed, even in the weakly fragmented case, for appro-
priately chosen initial states.
In the above, we observe that the ratio max½Di

ðq;pÞ�=Dðq;pÞ
either decays (exponentially) to zero or approaches unity. It
is an interesting and open question whether systems with
intermediate behavior—with either slower than exponential
decay or convergence to a finite fraction—can exist and
whether they exhibit strong or weak fragmentation.

V. COMPARISON TO RANDOM
UNITARY CIRCUITS

We now argue that our findings are not specific to the
Hamiltonians we consider so far and generalize to arbitrary
systems with the same global symmetries and a fixed
range of interactions. In particular, we compare with
random unitary circuits of the form originally introduced
in Ref. [71]. These define a discrete time evolution, the
building blocks of which are unitary gates acting on l sites,
each of which is required to be block diagonal in Q and P
but is otherwise chosen randomly (i.e., every block is
independently Haar random). In Ref. [71], it is argued that
such circuits always lead to localized behavior. Here, we
argue that this constraint is, in fact, only the case for gates

(a) (b)

(c)

FIG. 8. Ergodicity breaking due to strong and weak fragmen-
tation. Expectation value of the local operator ðSz0Þ2 for eigen-
states within the ðq; pÞ ¼ ð0; 0Þ sector as a function of the energy
for different system sizes. (a) Strong fragmentation: For the
minimal Hamiltonian H3, the width of the distribution does not
decrease with N, violating the eigenstate thermalization hypoth-
esis. (b) Weak fragmentation: For H3 þH4, most eigenstates
appear thermal, and the bulk of the distribution narrows with N,
but outliers remain, showing that the system obeys the weak, but
not strong, ETH. (c) Half-chain entanglement entropy of the
eigenstates for H3 (red dots) and H3 þH4 (blue stars), for
N ¼ 13, leads to the same conclusion. The black dashed line
shows the entanglement entropy of a random state in the ðq; pÞ ¼
ð0; 0Þ sector.

FIG. 9. Diagnosing strong and weak fragmentation. Ratio be-
tween the dimension of the largest invariant subspaceHi within the
(0, 0) symmetry sector and the total dimension of the (0 ,0) sector
Dð0;0Þ. ForH3 (red dots), this ratio vanishes exponentially fast with
the system size, while it approaches one for H3 þH4 (blue stars).
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with l ¼ 3, where the circuit exhibits exactly the same
Hilbert space structure as the HamiltonianH3 above, and is
therefore indeed similarly localized. When introducing
larger gates of size l ¼ 4, we find that the system thermal-
izes, also in complete agreement with our results on the
Hamiltonian H3 þH4.
The two circuit geometries, with gates of size l ¼ 3 and

4, are shown in Fig. 10. In both cases, we compute
the connectivity of the Hilbert space. Instead of the
Hamiltonian, we consider the unitary operator defined
by the first l layers of the circuit. This matrix has random
entries, but its connected components are independent of
the particular realizations. We find numerically that the
connected components for l ¼ 3 (l ¼ 4) coincide exactly
with those of the Hamiltonians H3 (H3 þH4), shown
previously in Fig. 5. This result follows from the fact that
the allowed local transitions are the same in the
Hamiltonian and the random unitary circuit. The fact that
the invariant subspaces coincide supports the idea that
the additional invariant subspaces are a consequence of
dipole conservation and locality alone and do not depend
on any additional structure that might be present in the
Hamiltonian case. Based on our previous analysis, we
therefore expect that the three-site circuit does not thermal-
ize, but the four-site circuit does. This result is confirmed
by calculating the autocorrelator Cz

0ðtÞ, which (after
subtracting its thermal value) goes to a constant in the
former case, while it decays to zero in the latter, as shown
in Fig. 10. In Appendix E, we also consider the spatial
spreading of an initial Szn operator and similarly find
that for l ¼ 4 the operator is delocalized at long times.

We therefore conclude that the localized behavior
observed in Ref. [71] is particular to the case of the circuit
with three-site gates, contrary to what is suggested there.
The fact that the Hilbert space fragmentation coincides

exactly between the random circuit and Hamiltonian cases
also means that the conclusions we draw regarding non-
thermal eigenstates in Sec. IV C also generalize to time-
periodic (Floquet) models built out of similar local gates. In
particular, this fact implies the presence of exponentially
many frozen eigenstates for such models, especially for the
l ¼ 3 case where we predict that the majority of eigenstates
should be nonthermal.

VI. SUMMARY AND OUTLOOK

In this work, we studied the out-of-equilibrium dynamics
of spin chains conserving a charge and its associated dipole
moment. For the minimal spin-1 Hamiltonian which is
restricted to only three-site interactions, we found non-
ergodic behavior in the charge-charge autocorrelation func-
tion. We explained this finding in terms of a strong
fragmentation of the Hilbert space into exponentially many
disconnected sectorswhich all contribute significantly to the
dynamics even at an infinite temperature. We found that a
weaker form of fragmentation survives for more general,
longer-range Hamiltonians, and, while it is no longer
sufficient to make the infinite-temperature dynamics non-
ergodic, it nevertheless results in exponentially many non-
thermal eigenstates. Furthermore, we showed numerically
that the fragmentation of the Hilbert space exactly matches
that of random circuit dynamics with the same range of
interactions, giving rise to similar dynamical behavior.
The observed fragmentation lies in between the known

cases of systems with a few global symmetries and that of
integrable or many-body localized systems. The former
have at most polynomially many symmetry sectors—most
of which are exponentially large—while the latter have
approximatelyN independent local conserved quantities. In
our case, however, sectors of all sizes coexist, and in the
case of strong fragmentation they all are relevant for the
dynamics, even at an infinite temperature. Understanding
how these different sectors can be consistently labeled and
what the corresponding conserved operators look like is an
interesting open problem.
Another interesting problem for future work is to

investigate the equilibrium properties and dynamics of
the system at a finite or zero temperature, both within
the whole Hilbert space and within individual subspaces, as
well as to clarify the requirements for strong and weak
fragmentation. It would be also worth investigating the
relationship between the phenomenon of Hilbert space
fragmentation and the concept of reducibility in classical
constrained models [99]. Moreover, the extension of the
current analysis to higher spatial dimensions seems prom-
ising, where disconnected sectors also appear but different
roads to thermalization can be present. It is also worth

(a) (b)

(c) (d)

FIG. 10. Thermalization in charge- and dipole-conserving
random circuit models. The two versions of the circuit, with
(a) three-site and (b) four-site gates resemble the Hamiltonians
H3 and H3 þH4, respectively. Consequently, (c) the autocorre-
lator obtained for the three-site circuit has a finite long-time
value, while (d) in the four-site circuit it slowly decays to zero.
The curves correspond to the infinite temperature correlator,
averaged over 50 random state and circuit realizations for N ≤ 13
and 20 realizations of N ¼ 15.
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exploring further the connections to many-body localiza-
tion [22,100], quantum scars [34,41], and gauged formu-
lations of the considered systems [55,101], as well as Stark
localization [29,30]. The latter also provides a potential
experimental platform for realizing dipole-conserving
Hamiltonians of the type studied here in the limit of strong
electric fields [102], which perturbatively lead to the kind
of terms we have considered above. Finally, it would be
interesting to search for connections between the models
discussed in this work and type I fracton models [48,50], as
well as for the possible connection between the discussed
fragmentation of the Hilbert space and the emergence of
superselection rules in the cubic code model [103].
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APPENDIX A: SYMMETRIES OF THE
“MINIMAL” HAMILTONIAN H3

Here, we discuss some additional symmetries possessed
by the minimal model represented by the Hamiltonian H3

in Eq. (1). One of these is the sublattice parity symmetry
Πz

odd. However, one can easily prove that this quantity is
fixed by the dipole moment as

Πz
odd ¼ exp

�
iπ
X
nodd

Szn

�
¼ exp

�
iπ
X
n

nSzn

�
¼ expðiπPÞ;

ðA1Þ

where in the second step we use that, for spin 1, a 2π
rotation is equal to the identity. From this result, it is clear
that the total parity Πz ¼ expðiπPn S

z
nÞ is obtained as

Πz ¼ Πz
oddΠz

even and is related to the total charge as
Πz ¼ expðiπQÞ. In general, the terms in H3 are also
invariant under the parity transformations given by Πx ¼
expðiπPn S

x
nÞ and Πy ¼ expðiπPn S

y
nÞ, which map

Sþn1S
−
n2S

−
n3S

þ
n4 ↔

Πx;Πy

S−n1S
þ
n2S

þ
n3S

−
n4 ðA2Þ

for all n1, n2, n3, n4. Note that Πx and Πy do not commute
with Q or P.
Moreover, as stated in the main text, there exists an

operator C ¼ Q
n e

iπðSz
4nþSz

4nþ1
Þ which anticommutes with

H3. Since C commutes withQ and P, the spectrum ofH3 is
symmetric around zero in every (q; p) sector. However,
when additional terms diagonal in the Sz basis are con-
sidered, which by construction do not change the frag-
mentation of the Hilbert space as we discuss in the main
text, C does not anticommute anymore with the resulting
Hamiltonian. There is also at least one additional anti-
commuting operator C̃ ¼ Q

n e
iπðSz

4nþ2
þSz

4nþ3
Þ, but, since

CC̃ ¼ Πz, they are not independent. Note that, since C
commutes rather than anticommutes with H4, the spectrum
of H3 þH4 is no longer symmetric as can be seen, e.g., in
Fig. 8. Nevertheless, there also exists a separate anticom-
muting operator for H4 (2) taking the form C4 ¼

Q
n e

πSz
4n ,

which does not anticommute with H3.
In Fig. 11(a), we show the density of states ρðEÞ of H3

for a chain of length N ¼ 13, which has a divergent delta
peak at zero energy. This peak contains all the frozen states
described in the main text, among other zero energy
eigenstates that arise as a consequence of the aforemen-
tioned anticommuting symmetry. One could remove the
peak at zero energy by adding, e.g., a finite mass term of the
form m

P
nðSznÞ2 to H3, which breaks the anticommuting

symmetry. This term also has the effect of shifting the
energy of the frozen states to finite values and distributing
them throughout the spectrum.
In Fig. 11(b), we show the size of the symmetry sectors

with different global quantum numbers q and p. Note that
this distribution is independent of the specific Hamiltonian
under study. Each curve corresponds to a fixed value of the
charge quantum number q. The dimension Dðq;pÞ decreases
with an increasing absolute value of the charge. The
distributions for þq and −q coincide due to time reversal
invariance, the way we choose the reference site n0, and
labeling the sites in the chain. A different labeling of sites
would simply shift the mean value of both distributions
symmetrically with respect to p ¼ 0. We also observe that
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the distribution attains a maximum at the (0, 0) sector, as
claimed in the main text. In addition, we obtain symmetric
distributions, because P changes sign under inversion,
while Q is invariant.
Finally, we show the sector size and the operator weight

distributions with WD≡P
Di¼D trðZ2

i Þ=½
P

D

P
Di¼D trðZ2

i Þ�
for invariant subspaces within the largest (q; p) sector,
q ¼ p ¼ 0. Figure 12(a) shows qualitatively the same sector
size distribution as in Fig. 2(c) in the full Hilbert space.
Figure 12(b) also reflects the main properties of the operator
weight distribution, featuring a wide distribution with
significant weight on small sectors.

APPENDIX B: FINITE-SIZE SCALING
OF THE AUTOCORRELATOR

In this section, we present in more detail the finite-size
scaling of the autocorrelation function and its lower bound.
First, we discuss the scaling of the autocorrelation

function hSz0ðtÞSz0i at an infinite temperature in the full
Hilbert space in Fig. 13 for both the minimal model H3 in
Eq. (1) and the combined Hamiltonian H3 þH4. On the
one hand, the minimal model realizes a finite saturation
value at long times which slightly grows with the system
size, as can be seen in Fig. 13(a). On the other hand,
when the combined Hamiltonian H3 þH4 is considered,
the autocorrelation decays to zero with the system size.

This result agrees with the discussion in the main text,
where it is argued that, for longer-range Hamiltonians, the
system thermalizes and the correlation decays to zero at
long times in the thermodynamic limit.
Moreover, as we discuss in the main text, not only the

autocorrelation function in the full Hilbert space shows a
nonthermal (thermal) behavior for H3 (H3 þH4). We can
also realize this behavior within a specific restricted
symmetry sector. In Fig. 14(a), we show the behavior of
the autocorrelation function hSz0ðtÞSz0ið0;0Þ in the largest
(q; p)-symmetry sector, q ¼ p ¼ 0, and size N ¼ 15
showing the same qualitative behavior: a finite saturation
value at long times for H3 [Fig. 14(a)] and thermalization
for the combined Hamiltonian H3 þH4 [Fig. 14(b)]. Note
that, since charge is conserved and we evaluate the
correlation within the q ¼ 0 sector,

P
nhSznðtÞSz0ð0Þi ¼ 0

at all times, and, thus, the surface under the peak must add
up to zero.

(a) (b)

FIG. 11. (a) Density of states (DOS) for the Hamiltonian H3 in
Eq. (1) for system size N ¼ 13. (b) Distribution of dimensions
Dðq;pÞ for theHðq;pÞ invariant subspaces. Each curve corresponds
to a subspace with fixed charge q.

(a) (b)

FIG. 12. (a) Distribution of sector sizes D with Hi ⊂ Hð0;0Þ for
the Hamiltonian H3. (b) Operator weight distribution WD. Both
plots are similar to the full distributions shown in the main text.
The vertical dashed lines in (b) indicate the average sector size,
which grows exponentially in system size but is nevertheless
exponentially smaller than the largest sector.

(a) (b)

FIG. 13. Finite-size scaling for the autocorrelation function
hSz0ðtÞSz0i at an infinite temperature in the full Hilbert space after
substracting the thermal value. (a) shows a finite value for the
autocorrelation under the evolution of H3 in Eq. (1). The dashed
lines show the lower bound in Eq. (B1). (b) The autocorrelation
function decays to zero with the system size once the longer-
range interaction H4 in Eq. (2) is added to H3.

(a)

(b) (c)

FIG. 14. (a) Autocorrelation function (upper) hSz0ðtÞSz0ið0;0Þ in
the symmetry sector q ¼ p ¼ 0 at an infinite temperature for H3

(red curve) and H3 þH4 (blue curve) for N ¼ 15. Spatially
resolved correlation functions for (b) H3 and (c) H3 þH4.
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Moreover, in Fig. 15, we show the persistence of the
nonthermalizing behavior for H3 at longer times t ¼ 1010

for smaller system size N ¼ 13 and within the (0, 0) sector.
The space-resolved correlation function is also shown in
the inset, showing the absence of thermalization even at
long-time scales.
In Fig. 16(a), we show the scaling of the lower bound

Cz
0ð∞Þ in Eq. (4) with system size N restricted to the (0, 0)

symmetry sector of H3. In this case, the lower bound takes
the form

lim
T→∞

1

T

Z
T

0

dthSz0ðtÞSz0ð0Þið0;0Þ ≥
1

Dð0;0Þ

X
Hi⊂Hðq;pÞ

1

Di
½trðZiÞ�2:

ðB1Þ

We observe that the value increases withN and realize an
even-odd dependence on N decreasing with the system
size. In addition, Figs. 16(b) and 16(c) show, respectively,
how the number of frozen states and the size of the largest
invariant subspace within the (0, 0) symmetry sector grow

with the system size. Since the largest sector does not
scale with the size of the entire Hilbert space, the lower-
dimensional sectors become thermodynamically important.
Compare, for example, with a spin-1=2 chain with charge
conservation only. The dimension of the full Hilbert
space is 2N , and the largest (zero charge) subspace scales
as

ffiffiffiffiffiffiffiffiffi
1=N

p
· 2N ; hence, the exponents are the same up to

logarithmic corrections.

APPENDIX C: ENTANGLEMENT GROWTH
FROM RANDOM PRODUCT STATES

In this Appendix, we complement our results on auto-
correlations with a different measure of thermalization:
entanglement growth from a (random) product state. By
choosing the initial state Haar randomly on each site and
averaging, we ensure that the dynamics explores all (q; p)
symmetry sectors. For an ergodic system, the long-time
state is then expected to resemble a global random state in
the entire Hilbert space. In particular, the entanglement
between two halves of a bipartition is expected to be
given by the Page formula, which in our case (maximal
bipartition of a spin-1 chain with odd lengths) reads [104]
SPage ¼ ðN − 1=2Þ log 3 − 1

6
.

We evaluate the time evolution starting from the afore-
mentioned random product states exactly, for both the
minimal Hamiltonian H3 and the combined Hamiltonian
H3 þH4. In the former case, shown in Fig. 17(a), we find
that, while the entanglement quickly saturates to a volume
law, the associated entropy density is smaller than the
expected Page value, indicating a nonthermal state. This
result is consistent with our results on autocorrelation
functions in Fig. 1, as well the entanglement of eigenstates
in Fig. 8, all consistent with nonergodic behavior. The
entanglement growth for H3 þH4 is shown in Fig. 17(b),
where we observe that the entanglement saturates to a value
close to SPage. There is still a constant offset, which we
associate to the influence of the remaining nonthermal
eigenstates, but this offset does not affect the entropy
density in the thermodynamic limit.

FIG. 15. Evolution of the autocorrelation function hSz0ðtÞSz0ið0;0Þ
for the Hamiltonian H3 and system size N ¼ 13, where longer
timescales t ∼ 1010 can be numerically reached. We observe the
same qualitative behavior as in Fig. 1.

(a) (b) (c)

FIG. 16. Scaling within the q ¼ p ¼ 0 sector for Hamiltonian H3. (a) Scaling of the lower bound limT→∞1=T
R
T
0 dthSz0ðtÞSz0ð0Þið0;0Þ

with the system size. (b) Scaling of the number of frozen states. (c) Scaling of the largest sector dimension (blue dots) in comparison to
the dimension of the (0, 0) sector (green line).
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APPENDIX D: MAPPING TO THE PXP MODEL

In this Appendix, we explain the relation between the
dipole-conserving Hamiltonian H3 introduced in Eq. (1)
and the PXP model [73], that appears in the context of
quantum many-body scars [41–43,105]. Such a relation has
been already obtained in Ref. [88] in the spin-1=2 version
of the models we study (see, e.g., Fig. 4) in the context of
fractional quantum Hall. The PXP model describes a chain
of interacting Rydberg atoms [46], which in the limit of
strong nearest-neighbor interactions is effectively described
by the spin-1=2 Hamiltonian

HPXP ¼
XL
n¼1

Pn−1σ
x
nPnþ1; ðD1Þ

where the projectors Pn ≡ ð1 − σznÞ=2 ensure that no two
adjacent Rydberg atoms become simultaneously excited
into the j↑i state, a phenomenon known as Rydberg
blockade. Restricted to the lowest-energy subspace with
no adjacent excited states, the dimension of the constrained
Hilbert space can be shown to be [42] dL ¼ FLþ2 for open
(OBCs)—in the presence of additional boundary terms
[106]—and dL ¼ FL−1 þ FLþ1 for periodic boundary con-
ditions (PBCs), where Fn is the nth Fibonacci number.
Note that, in particular, this subspace contains the Néel
states jZ2i ¼ j↓↑↓↑…i and jZ0

2 >¼ j↑↓↑↓…i, whose
atypical real-time dynamics has been experimentally real-
ized [46] and has been identified as a probe of the existence
of quantum many-body scars [42].
In the following, we show that the dynamics of certain

connected subspaces Hi discussed in the main text are

governed by the PXP Hamiltonian in Eq. (D1) and identify
the analogs to the Néel states in the fractonic language. Let
us consider states of the form

ðD2Þ

with a jþi state on every fourth site separated by three
j−i’s. In the following, we fix the length of the chain to be a
multiple of 4, such that we contain an integer number of
unit cells. For OBCs, the dipole moment is given by
pðnþÞ ¼ L=2ð1 − L=2þ nþÞ, where nþ is the location
of the first jþi state starting from the left boundary. Thus,
the location nþ labels different symmetry sectors contain-
ing the same spin pattern. However, due to the periodicity
of the configuration, there exist only four different dipole
moments pðnþÞ containing such a configuration. When
considering PBCs, the dipole is defined modulo L.
Recalling that every local term hn in the Hamiltonian

H3 ¼
P

n hn takes the form

hn ≡ Sþn−1ðS−n Þ2Sþnþ1 þ H:c:; ðD3Þ

it is clear that the only nontrivial local actions of H3 on the
state jF2i are those contained within the blocks shown in
Eq. (D2). After applying two local terms hn centered
around the location of jþi states at sites n ¼ 2ðk� 1Þ,
jF2i becomes

ðD4Þ

(a) (b) (c)

FIG. 17. Half chain entanglement entropy (EE) growth for an initial random product state for different system sizes. The dashed line
signals the Page value [104]. (a) shows the behavior of the EE for the minimal model H3. The entanglement reaches a size-dependent
saturation value below the Page value. This result can be understood from the exponential fragmentation of the Hilbert space. However,
when the combined Hamiltonian H3 þH4 is considered in (b), the EE almost reaches the Page value. We associate the offset between
them to the existence of still exponentially many invariant subspaces. (c) Scaling of the time-averaged saturation value for EE reached at
long times. While forH3 the slope is different from that of the Page value, signaling a subthermal entropy density in the steady state, the
offset for the combined Hamiltonian appears to be constant.
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Now the action on the intermediate site 2k becomes nontrivial:

ðD5Þ

One can then realize that only terms h2k centered around
even sites generate nontrivial dynamics conditioned to the
states on odd near sites, such that the only allowed local
transition is j−þ−i ↔ j0 − 0i. Then, the restriction of the
Hamiltonian H3 to subspaces containing configurations of
the form given by Eq. (D2) becomes

H3jPXP ¼
XL=2
k¼1

h2k ¼ 4
XL=2
k¼1

j−þ2k−ih0−2k 0jþH:c: ðD6Þ

Note also that there are never two jþi states in adjacent
even sites; i.e., the local configuration jþi2kjþi2ðkþ1Þ is not
generated under the evolution of H3. This result effectively
implements the Rydberg blockade as imposed by the pro-
jectors in Eq. (D1). With these observations in mind, we can
construct a reversiblemap relating local spin-1 configurations
centered around even sites f2k − 1; 2k; 2kþ 1g to spin-1=2
configurations on even sites f2ðk − 1Þ; 2k; 2ðkþ 1Þg in the
PXP model via

j0−0i↔ j↓↓↓i; j−þ−i↔ j↓↑↓i; j0−−i↔ j↓↓↑i;
ðD7Þ

j−−0i ↔ j↑↓↓i; j−−−i ↔ j↑↓↑i; ðD8Þ

such that Eq. (D6) becomes

H3jPXP¼4
XL=2
k¼1

j↓↑↓ih↓↓↓jþH:c:

¼4
XL=2
k¼1

j↓ih↓j2ðk−1Þ⊗ j↑ih↓j2k⊗ j↓ih↓j2ðkþ1Þ þH:c:

¼4HPXP; ðD9Þ

i.e., the restriction of H3 into this family of connected
subspaces becomes equivalent to a PXP model on a chain
of length L=2 up to a factor of 4. Thus, there exist eight
different symmetry sectors [the other four subspaces are
obtained applying theΠx parity symmetry (see Appendix A)
to the configuration jF2i], whose evolution is governed by
the PXP Hamiltonian. This result explicitly shows that
quantum many-body scars appear in the dipole-conserving
Hamiltonian H3, similarly to Ref. [88].

APPENDIX E: OPERATOR SPREADING OF Sz0ðtÞ
Here, we consider another measure of localization, that

contains complementary information about the Heisenberg
picture evolution of the charge density operator Sz0ðtÞ
compared to its autocorrelation function. In particular,
we look at how Sz0 spreads out in the space of all possible
operators, becoming a complicated superposition of many
operators, and how its spatial support grows in time.
In order to do this measurement, we first need to

introduce a local basis in the space of operators acting
on a single site of the spin chain. For the spin-1 models we
consider, such a basis consists of nine linearly independent
operators that span the entire space of on-site operators.
A possible choice is given by the eight Gell-Mann matrices,
together with the identity 11. Let us denote these as λa for
a ¼ 0;…; 8, where λ0 ≡ 11. A basis of operators on the
entire chain is then given by products of such local basis
elements of the form λa⃗ ≡⨂N=2

n¼−N=2λ
an
n , labeled by a list of

N indices fang. These operator strings form an orthonor-
mal basis in the Hilbert space of operators with respect to
the Frobenius inner product hA;Bi≡ trðA†BÞ=3L, where A
and B are two arbitrary operators.
Given such a basis, one can always expand the time-

evolved operator as

Sz0ðtÞ ¼
X
a⃗

ca⃗ðtÞλa⃗: ðE1Þ

The coefficients ca⃗ðtÞ characterize how Sz0ðtÞ spreads out in
the space of all possible operators. In particular, focusing on
spatial spreading, it is useful to classify the basis strings λa⃗

according to their right end points (assuming open boundary
conditions), i.e., the rightmost site n such that λan ≠ 11 but
λam>n ¼ 11. Denoting this site by rhsða⃗Þ, we can define the
right end point density of Sz0 at time t as [107–109]

ρRðn; tÞ≡
X

rhsða⃗Þ¼n

jca⃗ðtÞj2: ðE2Þ

At time t ¼ 0, this density is a delta function at the initial
position of the operator, ρRðn; 0Þ ¼ δn0. During time evo-
lution, as the support of Sz0ðtÞ increases, ρRðn; tÞ moves to
the right, ballistically for generic clean systems. At the same
time, its value near the origin decays to zero, exponentially
when symmetries are not present [108] and as a power law
when the operator is a conserved density [110,111]. A
possible alternative measure of localized behavior is
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therefore to look at the spreading of the right end point
density and look for a finiteweight remaining near the origin
at infinite times, even in the thermodynamic limit.
We first consider the evolution of ρRðtÞ in random

circuits, first with three- and then with four-site gates. In
order to evaluate ρRðn; tÞ, we represent Sz0ðtÞ as a matrix
product operator [112] and apply the random gates to that
to evolve it in time. In order to simplify the calculations, we
consider slightly modified circuit geometries, which allow
us to use the well-known time-evolving block decimation
algorithm, after blocking pairs of sites together [113].
Our numerics allow us to access only small systems of

size N ¼ 6, 8, 10. To compute the spreading of ρRðn; tÞ, we
place an operator Sz on the third site from the left end of the
system and calculate ρRðn; tÞ at different positions and
times. For a circuit made out of three-site gates, we find a
persistent peak near the original position, whose size decays
only slightly with the system size [Figs. 18(a)–18(c)]. For
the circuitwith gate size l ¼ 4, on the other hand,weobserve
a much smaller peak, which keeps decreasing until finite-
size effects kick in, similar to the behavior observed for the
autocorrelator in the main text and consistent with the
prediction that in the thermodynamic limit the peak would
eventually disappear [Figs. 18(d)–18(f)]. We also observe a
larger peak at the rightmost site, where most of the operator
weight accumulates at long times.
The same difference in behavior between three-site and

four-site interactions is also present in the Hamiltonian
case. For H3, we find that the peak in ρRð0; tÞ is almost
independent of the system size, in agreement with the

nonergodic behavior observed in the autocorrelator in the
main text. This result is shown in the left panel in Fig. 19.
This behavior changes, however, once we add four-site
terms to the Hamiltonian. In particular, we consider the
perturbation

H0
4 ¼ −

X
n∈2Z

½Sþn S−nþ1S
−
nþ2S

þ
nþ3 þ H:c:�: ðE3Þ

This equation is the same as in Eq. (2), except that only
terms with even n are present, which is done in order to
simplify numerical calculations (making the Hamiltonian
nearest neighbor after blocking pairs of neighboring sites
together). We expect that if H3 þH0

4 does not exhibit a
persistent peak in ρR, then neither should H3 þH4; there-
fore, it is enough to show its absence in the former case.
This result is indeed what we find as shown in the right
panel in Fig. 19.

(a) (b) (c)

(d) (e) (f)

FIG. 18. Operator spreading of Sz0ðtÞ for random circuits with gate sizes l ¼ 3 and 4. (a),(d) show the circuit geometries, slightly
modified from the ones in the main text in order to ease numerical calculations. (b),(e) show the profile of right end point weights
ρRðn; tÞ at different times for a ten-site chain, for l ¼ 3 and l ¼ 4, respectively. Both have a peak near the origin, but in the former case it
is much larger and stops decaying after a few time steps, while in the latter case it keeps decaying to longer times. Finite-size flow of the
size of the peaks as a function of the time, shown in (c) and (f) indicates that while for l ¼ 3 the system saturates to a finite value, this is
not the case for l ¼ 4, where the long-time value scales to zero for large system sizes.

FIG. 19. Height of the peak in ρR of Sz0ðtÞ obtained for
Hamiltonians H3 (left) and H3 þH0

4 (right).
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