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Abstract
We estimate CO2 emissions from the Nile Delta region of Egypt, using over five years of
column-averaged CO2 dry air mole fraction (XCO2) data from the NASA’s OCO-2 satellite. The
Nile Delta has significant anthropogenic emissions of CO2 from urban areas and irrigated farming.
It is surrounded by the Sahara desert and the Mediterranean Sea, minimizing the confounding
influence of CO2 sources in surrounding areas. We compiled the observed spatial and temporal
variations of XCO2 in the Nile Delta region (XCO2,del), and found that values for XCO2,del were on
average 1.1 ppm higher than XCO2,des (mean XCO2 in desert area). We modelled the expected
enhancements of XCO2 over the Nile Delta based on two global CO2 emission inventories, EDGAR
and ODIAC. Modelled XCO2 enhancements were much lower, indicating underestimation of CO2

emissions in the Nile Delta region by mean factors of 4.5 and 3.4 for EDGAR and ODIAC,
respectively. Furthermore, we captured a seasonal pattern of XCO2 enhancement (∆XCO2), with
significantly lower∆XCO2 during the summer agriculture season in comparison to other seasons.
Additionally, we used solar-induced fluorescence (SIF) measurement from OCO-2 to understand
how the CO2 emissions are related to agricultural activities. Finally, we estimated an average
emission of CO2 from the Nile Delta from 2014–2019 of 470 Mt CO2/year, about 1% of global
anthropogenic emissions, which is significantly more than estimated hitherto.

1. Introduction

Our planet Earth has witnessed about 40% increase
in atmospheric CO2 concentrations since the pre-
industrial age. This increase is attributed to anthro-
pogenic activities (IPCC 2013), primarily from
combustion of fossil fuels. Agricultural activities are
important sources of CO2 associated with combus-
tion of fossil fuels by farm machinery, biomass burn-
ing, and emissions from soil. Soil emissions can be
especially high from intensively farmed, irrigated
carbon rich soils in river deltas (Telmer and Veizer
1999, Hannam et al 2019).

Most global estimates of CO2 emissions are
provided by state-of-the-art emissions inventories

which employ ‘bottom-up’methods to quantify emis-
sions, using human activity data and emission factors
(Oda and Maksyutov 2011, Janssens–Maenhout et al
2019, Peylin et al 2013, Boden et al 2017, Oda et
al 2018) as per the directions of IPCC (Intergov-
ernmental Panel on Climate Change). These mod-
els have not been extensively tested for intensively
farmed areas, like river deltas. Bottom-up methods
use energy consumption data sets, such as fossil fuel
consumption along with fuel purity, mix, efficiency,
etc (see Boden et al 2017, Quéré et al 2018). There
are discrepancies and uncertainties in the reported
datasets on national scales (Miller et al 2013, Hutyra
et al 2014, Liu et al 2015), especially for developing
countries (Xue and Ren 2012). These discrepancies
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can result in ∼40% to ∼100% uncertainty in emis-
sion estimations at the country and the local scales,
respectively (Peylin et al 2013, Wang et al 2013).

Effective monitoring of greenhouse gas emissions
is also essential to keep track of humanities long-
term emission reduction goals for keeping the global
warming below 2 ◦C compared to pre-industrial
levels, as defined in the Paris agreement. Ground-
based or airborne monitoring of these emissions can
be a tedious and expensive task because of the spa-
tial distribution of various anthropogenic emission
sources (Mckain et al 2012, Chang et al 2014, Linden-
maier et al 2014, Chen et al 2016, 2020, Viatte et al
2017, Luther et al 2019). The most promising way
to monitor these emissions with consistent precision
at different spatial scales is the use of satellite-based
measurements (Wang et al 2018).

Satellites like SCIAMACHY (Scanning Imaging
Absorption Spectrometer for Atmospheric Carto-
graphy) and GOSAT (Greenhouse Gases Observing
Satellite) have been previously used to detect and
analyze anthropogenic CO2 signatures (Yokota et al
2009, Kort et al 2012, Schneising et al 2013, Janard-
anan et al 2016). These studies generally suggested
use of satellite-based observations with better spa-
tial resolution to improve the detection of anthropo-
genic CO2 emissions as the enhancement of CO2mix-
ing ratio due to localized sources are a small fraction
of the background values, thus making it a challen-
ging task for low spatial resolution sensors to detect
(Bovensmann et al 2010).

Here we use the observations from NASA’s OCO-
2 (Orbiting Carbon Observatory-2) satellite as a
primary monitoring tool to assess the CO2 emissions
in the Nile Delta, one of the most important, intens-
ively farmed regions in the world. The OCO-2 meas-
ures column-averaged dry air mole fraction of CO2

(XCO2) with high spatial resolution (∼3 km2) (Crisp
et al 2017) and precision (∼1 ppm). The megacity
Cairo lies just to the south of the Delta. Both are sur-
rounded by desert in three directions, except for the
narrowNile valley leading southward, with theMedi-
terranean in the north. OCO-2 tracks are situated
over and nearby this area making it an excellent tar-
get for quantifying emissions using OCO-2 data. Our
work builds on previous studies to detect localized
emission sources (Yokota et al 2009, de Gouw et al
2014, Hakkarainen et al 2016, 2019, Kuze et al 2016,
Nassar et al 2017, Schwandner et al 2017, Ye et al 2017,
Wang et al 2018, Labzovskii et al 2019, Reuter et al
2019, Zheng et al 2019) using OCO-2 data.

We examine the spatiotemporal gradients of
XCO2 between the Nile Delta and surrounding desert
over a 5 year period, and compared the observed
enhancements to values modeled using global emis-
sion inventories. We find that the two investigated
inventories underestimate CO2 emission rates in the
region by large factors with significant seasonality
during the winter and summer agriculture season.We

conclude that intensively-farmed deltaic areas may be
significantlymore important in global CO2 emissions
than appreciated hitherto.

2. Data andmethods

2.1. Study area
The Nile Delta is considered to be one of the old-
est cultivated areas in the world, having been con-
tinuously cultivated since 3000 B.C. (Negm et al
2017). It is a triangular shaped, tide-dominated delta
(figure 1(a)) occupying about 2.5% of Egypt’s area
(∼25 000 km2) and giving shelter to about 60%
of its population (Zeydan 2005, Negm et al 2017).
Moreover, 96% of Egypt’s population is concentrated
around Nile Delta (north of Cairo) along with Nile
valley (south of Cairo) (Abd El-Kawy et al 2011).
Since the construction of Aswan High Dam in 1970,
the Nile Delta has received less input of nutrients and
sediments from the river floods. This shift has resulted
in intensive use of fertilizers for agriculture, thereby
degrading the soil quality and potentially leading
to loss of soil organic matter (Negm et al 2017).
Furthermore, about 75 000 ha of fertile agricultural
land was lost to urbanization within the Nile Delta
between 1992 and 2015 (Radwan et al 2019). Never-
theless, the Nile Delta produces two-thirds of Egyp-
tian crops (FAOSTAT 2019, www.fao.org/faostat/en/)
with its still rich and fertile soil allowing two or
more crops over the year (Osama et al 2017). Two
main growing season in Nile Delta is the winter
growing season (peak in January/February) and sum-
mer season (peak in July/August). Important winter
crops are wheat, vegetable and clover crops, whereas
in summer—maize, rice and cotton are extensively
grown (El-Beheiry et al 2015). The Nile Delta today
is mostly characterized by artificially irrigated agri-
culture and spreaded urban settlements (figure 1(a)),
with minimal natural sources or sinks of CO2.

2.2. OCO-2 satellite data
We used five years of XCO2 data fromNASA’s OCO-2
satellite. The OCO-2 satellite was designed to accur-
ately measure XCO2 at kilometer-scale spatial resolu-
tion around 13:30 local timewith a repeat cycle of 16 d
(Crisp 2015) and 10 km swath (Bhattacharjee and
Chen 2020). The satellite uses the Atmospheric CO2

Observations from Space (ACOS) algorithm (Wunch
et al 2011a, 2011b, Crisp et al 2012, O’Dell et al 2012).
We used the high quality measurement soundings of
the latest version of the OCO-2 Level 2 Version 9 Lite
product from September 2014 to July 2019 provided
by the NASA’s Jet Propulsion Laboratory website
(https://co2.jpl.nasa.gov/build/?dataset=OCO2L2Std
v8&product=FULL#download). The measurement
soundings are obtained using an improved bias-
correction approach and are pre- and post-filtered
for potentially unreliably measurements (O’Dell
et al 2018). The downloaded measurement data
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Figure 1. Study area (triangular Nile Delta and Nile valley) with land use map and OCO-2 measurement (with 10 km swath) on
2016/02/15 with five different receptor locations (in solid circular shape) considered for forward modeling of XCO2

enhancements. The locations are 10, 15, 20, 25 and 30 km within the delta in the direction of OCO-2 trajectory. Center location
of background section in the desert is shown as black solid-circle. The land-use map is based on the ESA-CCI (European space
agency-climate change initiative) land cover map of 2015 with a spatial resolution of 300 m (Hollmann et al 2013).

also contain surface wind velocity information
at each measurement sounding taken from the
NASA’s GEOS5-FP-IT (Goddard Earth Observing
System Version 5-Forward Processing for Instrument
Teams). Each trajectory of OCO-2measurement cov-
ers both the delta and desert area (figure S1 (available
online at stacks.iop.org/ERL/15/095010/mmedia)),
which enables us to quantify the spatial (delta-desert)
XCO2 gradient.

In addition to XCO2 data, we also employed
OCO-2’s SIF (Solar-induced fluorescence) data. SIF is
a signal emitted from plants/crops during photosyn-
thesis, thus indicating photosynthetic activities (Sun
et al 2017, Shekhar et al 2019, Castro et al 2020).
OCO-2measures SIF at twowavelengths, 757 nm and
771 nm (Frankenberg et al 2014, 2015), based on the
infilling of the Fraunhofer lines (Frankenberg et al
2011). We used SIF (measured at 757 nm) to help
understand how the CO2 emissions from the Nile
Delta were related to agricultural activities.

2.3. Emission inventories
We computed the expected values of XCO2 over the
Delta, compared to surrounding desert areas, using
two CO2 emission inventories, EDGAR (Emissions
Database for Global Atmospheric Research) and
ODIAC (Open-source Data Inventory for Anthro-
pogenic CO2). Both are constructed based on the

IPCC methodology. The latest version of EDGAR
v5.0 (Crippa et al 2020)was recentlymade available. It
provides global annual CO2 emissions at 0.1◦ × 0.1◦

spatial resolution until 2018. EDGAR emissions are
calculated using a bottom-up methodology: the
inventory scales activity data, which is based on
international annual statistics with the best-available
emission factors. Then, it uses the monthly share and
spatial proxies such as population and road dens-
ity to downscale the national or state-level data to a
finer spatial resolution.We used the CO2_excl_short-
cycle_org_C variable of the EDGAR v5.0 which
includes total CO2 emissions (in kgCO2 (m2 s)−1)
from the considered fossil fuel sources such as fossil
fuel combustion, various non-metallic mineral pro-
cesses like cement production, various metallic and
chemical production processes, urea productions
and agricultural liming processes. The EDGAR v5.0
dataset was downloaded from the European Com-
mission’s Joint Research Centre-EDGAR website
(https://edgar.jrc.ec.europa.eu/overview.php?v=50_
GHG). Mean EDGAR emissions over the Nile Delta
from 2014–2018 was 108 Mt CO2/year.

The latest ODIAC v2019 provides monthly
CO2 emissions (in tons of Carbon/(km2-month))
from fossil fuel combustions at a much higher
spatial resolution of 1 km × 1 km (GeoTIFF file
format) till the end of 2018 (Oda et al 2018).
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A hybrid approach is implemented to construct
the ODIAC emission inventory, which integ-
rates national emission estimates produced by
CDIAC (Carbon Dioxide Information Analysis
Center, Andres et al 1996) and nightlight data
with individual power plant emissions/location
profiles (Oda and Maksyutov 2011). The ODIAC
v2019 dataset was downloaded from the CGER-
NIES (Center for Global Environmental Research,
National Institute for Environmental Studies) website
(http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2
019.html).

Since neither the EDGAR nor the ODIAC data-
set was fully available for the time period of this study
(September 2014–July 2019), we used the latest avail-
able data point for each inventory for the remaining
time period, i.e. the EDGAR and ODIAC estimates of
2018 were used for the year of 2019. It is important
to note that neither of these two emission inventories
include CO2 emission from agricultural soil degrada-
tion. Both EDGAR and ODIAC emission datasets are
widely used by the international carbon cycle research
community (Quéré et al 2018). Mean ODIAC emis-
sions over the Nile Delta from September 2014–July
2019 was 136.5 Mt CO2/year. Figure S3 shows the
CO2 emission map for Nile Delta as per EDGAR and
ODIAC.

2.4. Modelling methods
To simulate the enhancement of XCO2 values from
the local CO2 emissions sources we employed a for-
wardmodel based on the emission inventories and an
atmospheric transport model.

For any location, the XCO2 can bemodelled as the
sum of the initial background concentration and the
enhancement due to the upstream sources and sinks
(Gerbig et al 2003, Hu et al 2018a). Equations (1) and
(2) describe our calculations:

XCO2.fm = XCO2.bkg +XCO2.enh (1)

XCO2,enh =

Nx∑
i=1

Ny∑
j=1

[
footprint

(
xi,yj

)
×emission

(
xi,yj

)]
(2)

where, XCO2,fm is the forward modelled concentra-
tion for any location, XCO2,bkg is an initial back-
ground XCO2 value and XCO2,enh is the enhance-
ment due to upstream CO2 emission sources. The
‘footprint’ is obtained from an atmospheric trans-
port model and the ‘emission’ data are obtained from
the emission inventories (more information below).
Therefore, XCO2,enh is the summation of the enhance-
ments caused by all locations (xi,yj): i = 1,2…Nx;
j= 1,2…Ny., in the study domain containing the Nile
Delta and valley (Latitude:[26, 32]; Longitude:[29,
33]). For the case of simplicity here, we have neg-
lected the effect of sinks on XCO2,enh as the Nile Delta

is characterized by minimal or no natural vegetation,
and net emissions are plainly positive. To study the
XCO2 enhancement in the Nile Delta we applied
a local regression smoothing (LOESS, Jacoby 2000)
with loess parameter (span) of 0.15 to the XCO2

concentrations along the OCO-2 trajectory (latitude-
wise) for each measurement day, and these locally
regressed XCO2 (XCO2,O) values were used for fur-
ther calculation.

Since OCO-2 measures XCO2 along a narrow
swath of 10 km (figure 1), selection of background
concentration (XCO2,bkg) can be tedious. In this
study, we leveraged the wind data from ECMWF’s
ERA5 dataset (Copernicus Climate Change Service
(C3S) 2017) to select a particular section of one
degree latitude range (background section) of XCO2

values in the desert that did not pass over the Nile
Delta as XCO2,bkg. The selection of ‘background sec-
tion’ was semi-automated for all the 32 dates. The
semi-automated process involved visual inspection
and automated selection of the background section.
The detailed procedure is given in supplementary sec-
tion S1. Figure 2 illustrates the background section for
few dates. For example on 2014-09-23, the wind dir-
ection is north, contaminating the proximate obser-
vations with CO2 from the Delta, so we selected the
lower section of OCO-2 measurements (shown in
green box in figure 2), where the wind was com-
ing from the east side. Similarly, for 2015-05-19, the
selected section does not have any influence fromNile
Delta andminimal influence from theNile valley. The
mean of the locally smoothed XCO2 values within
this section was taken as a XCO2,bkg for each day. The
selected background section for all the other dates is
shown in figure S3.

Calculation of XCO2,enh requires footprint
information from the atmospheric transport model,
and local emission data. The geographic distribu-
tions of emissions were adopted from EDGAR and
ODIAC (section 2.2). Here, we simulated the foot-
prints using the STILT (Stochastic Time-Inverted
Lagrangian Transport) model that is based on HYS-
PLIT model (Lin et al 2003, Fasoli et al 2018, Wu et
al 2018). The STILT model simulates convective and
diffusive air transport patterns by releasing a certain
amount of particles (N) from a receptor (i.e. an obser-
vation location in this case) and tracking the particles
backwards in time (Hu et al 2018b). Thus, the STILT
footprints are equivalent to the sensitivity of XCO2

(unit of ppm·m2·s·µmol−1) at the receptor location
with respect to changes in surface flux (Gerbig et al
2003).

Our STILT simulation was based on ERA5 met-
eorological data and we chose a backward time of
32 h and N = 500 particles and 11 vertical levels for
each receptor location. Figure 3 shows column aver-
aged STILT footprints for 2014-09-23 and 2016-02-15
at 13:30 (local overpass time of OCO-2). Finally for
each OCO-2 trajectory we chose 5 receptor locations

4

http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2019.html
http://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2019.html


Environ. Res. Lett. 15 (2020) 095010 A Shekhar et al

Figure 2. Demonstration of background values selection for selected dates. The section of OCO-2 measurement used as a
background (background section) is shown in green box. The wind data is obtained from the ECMWF’s ERA5 dataset.
Background section of all the dates is shown in figure S3.

within the Nile Delta at a distance of 10, 15, 20, 25
and 30 km along the OCO-2 trajectory to calculate
XCO2,fm (in ppm), which is the accumulated CO2

enhancement occurring over the 32 h back trajectory
at the receptor location due to emissions from the

upstream sources. Figure 1 shows the receptor loca-
tions along the delta and within the background sec-
tion for OCO-2 measurements on 2016-02-15. It is
also evident from figure 3 that the footprints of the
background receptor are not influenced by the Nile
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Figure 3. STILT column-averaged footprints (unit of ppm·m2·s·µmol−1) for a location about 10 km (plus shape) and 30 km
(cross shape) within the Nile Delta at 13:30 on 2014-09-23 (left) and 2016-02-15 (right). Footprints for the centroid location
within the background section (circle shape) are also shown. The footprints (spatial resolution of is 1 km× 1 km) indicate the
transport of air for the past 32 h and the upstream source locations which influence the XCO2 values at the receptor location.

Delta area. Ultimately we compared the XCO2,fm with
the LOESS smoothed OCO-2’s XCO2 value at the
receptor locations (XCO2,O) for each OCO-2 traject-
ory over study period (2014–2019) to estimate CO2

emissions based on the two inventory data.

3. Results and discussions

3.1. Spatiotemporal variation of XCO2 and SIF
We studied 62 d of OCO-2 measurements over the
Nile Delta and desert area spanning five years of
observations. We observed the expected steady sea-
sonal cycle in XCO2 concentration over the delta
(XCO2,del) and the desert (XCO2,des) from 2014 to
2019 (figure 4). About 80% of the measurements
showed a mean XCO2,del of 1.11 (0.83,1.21) (95%
confidence interval) ppm higher than mean XCO2,des

with a maximum ∆XCO2 (XCO2,del—XCO2,des), of
2.2 ppm. Expectedly, consistent higher SIF values
in the Nile Delta indicated the agricultural produc-
tion (figure S4), with high SIF values during the
months of peak of winter growing season (DJF) and
summer growing season (JJA), but the latter season
showed significantly lower ∆XCO2 values (figure 5).
This seasonal pattern of ∆XCO2 can be attributed
to the river flow dynamics and crops grown in the
winter and summer season. The delta receives sedi-
ment and carbon-rich water during the winter season
from the Aswan high dam (El Gamal and Zaki 2017),
which is recycled and also used in the summer season.
The emissions from newly arrived carbon-rich soil
(carbon source) could result in high ∆XCO2. How-
ever in summer, high photosynthetic activity of well-
irrigated maize and rice during the mid-day could be

a significant carbon sink (Rana et al 2016, She et al
2017) with reduced CO2 emission from soil, thereby
resulting in lower XCO2 values in the delta. A detailed
study combined with cropping pattern and river flow
dynamics could give insight that is more accurate.
On average higher SIF values correlated with higher
XCO2, which might not be expected for forest, but
because of all the fossil fuel and soil CO2 emissions
associated with the farming and irrigation in the Nile
Delta (figure 5 and S5).

The OCO-2 clearly captured the latitudinal vari-
ation of XCO2 concentrations along its trajectory as
depicted in figure 6. Transportation of CO2 plumes
from emission sources in the delta region including
Cairo city andNile valley by thewind resulted in com-
paratively high XCO2 values in the downwind desert
area. For example, on 2015-05-19 the CO2 emissions
from Cairo results in as much as 3 ppm higher XCO2

values in the downwind desert area compared to the
southern desert, with minimum influence from the
Nile Delta or valley (figure 6). Furthermore, emis-
sions from the Nile valley clearly resulted in elev-
ated XCO2 values in the downwind desert area, for
example on 2018-11-03 (figure 6, latitude: ∼26.5
deg.). Such wind transport of CO2 plume resulted in
highXCO2 values in the desert region. Thus, OCO-2’s
XCO2 measurement clearly demonstrates the capab-
ility to measure local enhancement in XCO2 values.

3.2. Forwardmodeling of emission inventories
Out of the 62 d of OCO-2 measurements, many days
had sparse measurements over the Nile Delta and
desert area, making it difficult to select background
XCO2 values. Therefore, before performing the
forwardmodeling of emission inventories to calculate
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Figure 4. Variation of XCO2 from OCO-2 over the Nile Delta and desert from September 2014 to July 2019 with 62 d of
measurement. The triangular/circular point and error lines shows mean and 95% CI of mean for the XCO2 measurements over
the Nile Delta/desert. The observed∆XCO2 in the secondary axis shows the difference between XCO2 from delta and desert
(XCO2,del—XCO2,des). The OCO-2 soundings for Nile Delta and desert were selected based on the ESA-CCI land-cover map
(figure 1). The∆XCO2 data showed deviation from the normality at the higher and lower end of its quartiles as shown in the q-q
plot.

XCO2,m, we applied a threshold criteria of minimum
100 and 200 measurements over the Nile Delta and
desert area, respectively. Finally, 32 d satisfied the
above criteria. Correspondingly, we performed for-
ward modeling calculations on 5 locations at 32 dif-
ferent dates from2014 to 2019. Two out of 32 d (2017-
06-09 and 2018-07-07) showed consistently higher
measurement values in the desert area resulting in
higher XCO2,bkg values compared to the XCO2,O val-
ues at the receptor locations. These two dates occur
during the peak of summer growing season andmight
indicate the agricultural crops grown (e.g. maize) in
summer as a CO2 sink.

For all 32 dates at 5 locations (total 160 receptor
locations), the observed enhancements (XCO2,O—
XCO2,bkg) averaged 1.21 (1.05,1.36) ppm. The
calculated enhancements were much lower, 0.27
(0.23,0.32) ppm and 0.36 (0.31,0.43) ppm based on
EDGAR and ODIAC, respectively (figure 7). Very
prominent enhancements of as high as 1.7 ppm
and 4 ppm by EDGAR and ODIAC, respectively
were obtained for receptor location in the Cairo city
(figure 7).

Over the 32 d of study, 23 d showed underes-
timation of modelled enhancement (figure 8), which
indicates high underestimation of CO2 emission by
the emission inventories. Our calculations indicate an
underestimation by a mean emission factor (MEF)
(95% confidence interval) of 4.53 (4.34, 4.68) and
3.36 (3.19, 3.45) (calculated as a ratio of the mean
observed enhancement over all the days, divided by
the mean modelled enhancement for all days, and
bootstrapped) for EDGAR and ODIAC, respectively.
Based on these calculatedMEFs we also estimated the
CO2 emissions from the Nile Delta based on scal-
ing up the two emission inventories. Our estimates
of mean CO2 emission are about 489 Mt CO2/year
and 457 Mt CO2/year based on EDGAR and ODIAC
inventory over the study period (September 2014–
July 2019).

Our estimate compares relatively well with recent
CO2 emissions of about 1500 Mt CO2/year estim-
ated from Yangtze River Delta in 2013 based on
remote sensing (nighttime light) and statistical data
(socioeconomic indicators) by Zhou et al (2019)
as shown in table 1. The Yangtze River Delta is
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Figure 5. Seasonal decomposition of observed∆XCO2 with respect to SIF for chosen four seasons. DJF seasons comprises of
December, January, and February, and so on for other three seasons. The dashed vertical and horizontal lines represent the
corresponding mean values of∆XCO2 and SIF, respectively. The error bars are the 95% CI of the mean.

about 4 times larger than Nile Delta and is simil-
arly characterized by intense urbanization and agri-
cultural activity. However, our emissions estimates
are quite high as compared to values obtained for
the Pearl River Delta (table 1). Xu et al (2018) used
urbanization indicators (like land, population and
economic urbanization) to estimate carbon emis-
sions in Pearl River Delta and also highlighted uncer-
tainties in emission estimates due to selection of
indicators (Peng et al 2017). None of the above
studies included emissions from exploited/degrading
carbon-rich agriculture soils, whichmay be a signific-
ant source in Nile Delta.

Uncertainties in CO2 emission inventories have
been reported for developing countries, e.g. India
and China (Guan et al 2012, Xue and Ren 2012,
Janardanan et al 2016), and have mostly been attrib-
uted to uncertainties in the national level energy
statistics and human activity data used to construct
inventory data sets. Furthermore, the plot of∆XCO2

and SIF (indication of agriculture activity) in figures 5
and S5, clearly shows seasonal differences, especially
for the two main growing season (winter and sum-
mer) with lower XCO2 for the Delta during the sum-
mer growing season. We also calculated the seasonal
MEFs for each season and found that the factors for
the JJA season (MEF ∼ 1.05) was significantly lower
than MAM season (MEF ∼ 5–8), and SON season

(MEF ∼ 6–11) (see table S1). However, for DJF sea-
son, only two OCO-2 measurements dates have suffi-
cient observations over the Nile Delta and desert area
for the emission assessments (2015-02-15 and 2017-
02-03). There are very high differences betweenmod-
elled and observed XCO2 enhancements (>2 ppm in
figure 8), which resulted in very high MEF (∼30 to
50, see table S1), which may be biased due to less
measurement samples. Nevertheless, such strong sig-
nal of seasonal variation of XCO2 can be attributed
directly or indirectly to agricultural farming and irrig-
ation activities associatedwith the sediment-rich river
inflow that occurs during the winter season.

Direct agriculture emissions include tillage
enhanced soil respiration and crop residue burn-
ing, whereas indirect emission comes from fossil fuel
consumption by farm machineries for various inter-
cultural activities like tilling, weeding, harvesting etc,
and pumps for irrigation. In 2010, as per report from
EAS (2014), irrigation pumps (mostly diesel pumps)
were used in 75% of the cultivated area. El-Gafy and
El-Bably (2016) measured an average emission of
6.55 tCO2/ha from on-farm diesel pumps used for
irritation.

Apart from agricultural activities, anthropo-
genic emissions from transportation, industrial and
household use (combined energy statistics) of vari-
ous distributed cities in the Nile Delta might also
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Figure 6. Latitudinal variation of XCO2 in the Nile Delta and desert and wind direction at 13:30 for a few selected dates. Black
solid line is the local regression (loess) smoothed result with span= 0.15. The urban settlement in the lower end of the delta area
is the Cairo megacity. The arrows represent the wind direction at the OCO-2 measurement points.

Figure 7. Comparison of modelled/calculated XCO2 enhancements (XCO2,enh) using the EDGAR and the ODIAC emission
inventories with the observed enhancements (XCO2,O—XCO2,bkg) for receptor locations. Red dots represents receptor location in
Cairo megacity, whereas grey dots are for receptor locations at Nile Delta excluding Cairo megacity. The horizontal line inside the
box plots represent the median value.
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Table 1. Comparison of CO2 emissions from Nile Delta with other river delta.

Nile Delta Pearl River Delta Yangtze River Delta

Country Egypt China China
Area (km2) ∼25 000 ∼40 000 ∼110 000
Population (millions) 39 56 96
Year 2014–2019 2014 2013
Data OCO-2 XCO2 Urbanization indicators City Panel remote sensing

and statistical data
Emission estimate (Mt CO2/year) 473a 151 1450
Reference Present study Xu et al (2018) Zhou et al (2019)
aAverage of CO2 emission based on EDGAR and ODIAC data

Figure 8. Difference between observed and modelled enhancement. Only 4 dates of OCO-2 measurements passed through Cairo
city (marked in red color).

be under-reported in these global emission invent-
ories (Guan et al 2012). Gately and Hutyra (2017)
argued that global emission inventories (like ODIAC)
appear to deflect from spatial patterns in source
activity in comparison to national scale inventories,
and thus the former might not accurately represent
anthropogenic emissions at subnational or urban
scales. Our calculated delta emissions are based on
yearly (for EDGAR) and monthly (ODIAC) aver-
age of CO2 emissions, whereas the OCO-2 XCO2

measurements are instantaneous, at 13:30 local time.
This can result in under-/over-estimation of calcu-
lated enhancements as CO2 emissions vary diurnally,
weekly and seasonally, especially for urban areas.
Burri et al (2009) measured CO2 fluxes using the
eddy covariance method at the University of Cairo
and showed that the CO2 fluxes have a significant
diurnal and weekly variation, with peak CO2 flux
occurring between 14:00 and 16:00 and minimum
flux on Friday (rest day due to Muslim prayer day on
Friday). In our study, ODIAC performed a little bet-
ter compared to EDGAR, as the former gives monthly
average estimates and thus has the capability to cap-
ture the seasonal variability of CO2 emissions, which
cannot be implied for the latter.

4. Conclusions

Our study assessesCO2 emissions from theNileDelta,
which is particularly characterized by anthropogenic
activities such as agriculture and urbanization, using
the OCO-2 satellite observations of atmospheric CO2

concentrations. We found that emission inventory-
based modelled XCO2 values were significantly lower
than the satellite-based observed XCO2 values in the
Nile Delta (factor 4.53 [4.34, 4.68] for EDGAR and
3.36 [3.19, 3.45] for ODIAC), indicating underes-
timation of CO2 emissions reported in the emission
inventory. We combined XCO2 data with SIF to relate
CO2 emissions from agricultural production in the
Nile Delta. Our emission estimate for the Nile Delta
was about 1% of the global anthropogenic CO2 emis-
sion and was comparable to the scaled CO2 emis-
sions estimated for the Yangtze River Delta consid-
ering the differences in size. Our results are partic-
ularly important in the context of uncertainties in
national level reported energy/activity statistics for
developing nations, which results in underestimation
of their CO2 emissions by the state-of-the art emis-
sion inventories. Our study provides an approach
for verification of bottom-up emission inventories
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using satellite-based XCO2 measurement over con-
sistently emitting local and regional sources. The
latest OCO satellite, OCO-3 (launched in May 2019
and data available since January 2020), which also
measures XCO2 and SIF, captures data of larger area
(100 km× 100 km) in a snapshotmodewith the same
high spatial resolution, thus providing the opportun-
ity to assess spatial variability of carbon emissions
of larger area based on our approach. Based on the
findings of our study, we recommend eddy covari-
ance flux measurements in such a carbon-rich delta
to quantify the seasonality of CO2 emissions, which
could be used to improve the emission inventories.
Finally, we call for more research in estimating pos-
sible uncertainties and thereby improve the accuracy
of the emission inventories especially for countries
with intense agriculture activities.
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