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Abstract 1 
Machine Learning (ML) has become an essential asset for the life sciences and medicine. We 2 
selected 300 articles describing ML applications from 17 journals sampling 26 different fields 3 
between 2011 and 2018. Independent evaluation by two readers highlighted three results. 4 
First, only half of the articles shared software, 64% shared data, and 81% applied any kind of 5 
evaluation. Although these aspects are crucial to ensure validity and reliability of ML 6 
applications, they were met more by publications in lower-ranked journals. Second, the 7 
authors’ scientific background highly influenced how technical aspects were addressed: 8 
reproducibility and computational evaluation methods were more prominent with 9 
computational co-authors; experimental proofs more with experimentalists. Third, 73% of the 10 
ML applications resulted from interdisciplinary collaborations comprising authors from at least 11 
two of the three disciplines: computational sciences, experimental biology, medicine. 12 
_deleted_ The data suggested collaborations between computational and experimental 13 
scientists to generate more computationally sound and impactful work integrating knowledge. 14 
Furthermore, such collaborations provide opportunities to both sides: computational scientists 15 
are given access to novel and challenging real-world biological data increasing the scientific 16 
impact of their research, and experimentalists benefit from more in-depth computational 17 
analyses improving the technical correctness of work.  18 
 19 
Key words: machine learning, life sciences, medicine, open access, open data, 20 
interdisciplinary research, sustainable research, standardization 21 
 22 
Abbreviations used: AI, Artificial Intelligence; ML, Machine Learning; NAR, Nucleic Acids 23 
Research; NC, number of citations; NC/year: number of citations normalized by number of 24 
years since publication; NEJM, New England Journal of Medicine; PNAS, Proceedings of the 25 
National Academy of Sciences. 26 
 27 
NOTE editor & reviewers:   28 
Major changes in red font, major deletions marked as _DELETED_ 29 
 30 
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Introduction 1 
Growing importance of Machine Learning (ML). Large amounts of experimental data 2 
triggered by technological advances are increasing the interaction between biology, medicine 3 
and quantitative sciences1-3. For instance, the amount of genome sequencing data is growing 4 
exponentially while data storage capacity only grows linearly4. Numerous large databases in 5 
molecular biology and large clinical datasets increasing through electronic health records call 6 
for novel ways to interrogate, analyze, and process biological and biomedical data for gaining 7 
biological and medical insights5. 8 

Machine Learning (ML) automatically identifies patterns and regularities in existing data 9 
to accurately predict for unseen data6. Despite the complexity of the underlying mathematical 10 
concepts, ML has attracted broad attention even outside the research community: querying 11 
Google Trends7 with “machine learning” demonstrated an exponential increase over the last 12 
decade (01/2010-02/2019, data not shown). This general rise has been mirrored in many fields 13 
of biology and medicine, i.e. the life sciences8-11 although keeping track with the rapid evolution 14 
of artificial intelligence (AI) challenges even those applying ML 12. Typically, large biological or 15 
medical datasets enable the development of ML models that can be used to predict biological 16 
or clinical phenotypes through measurements from novel samples. 17 
 Quality and validity of ML models hinge upon two primary factors: (1) size, quality and 18 
universal validity of data, and (2) the correct development and assessment of the resulting 19 
methods5,13. Successful ML applications extract generic principles from today’s data, allowing 20 
the generalization, i.e. accurate prediction, for tomorrow’s data. This needs proper extraction 21 
and processing of data and features often requiring expert knowledge14-16. The development 22 
and application of ML models to the life sciences needs expertise from both computational and 23 
biological/medical fields. In contrast, ML applications to areas such as object and speech 24 
recognition or complex games (including chess and Go) for which task and success are more 25 
clearly defined and thus require mainly expertise in ML. 26 
 27 
Interdisciplinary research might have more impact. In many fields of science, 28 
interdisciplinarity has become crucial to produce groundbreaking results through the 29 
integration of approaches from different disciplines17,18. Several recent studies 17,19-24 have 30 
been investigating the role of interdisciplinarity by automatically extracting tens and hundreds 31 
of thousands of publications (e.g. from WoS 25 or PNAS). Toward this end, one definition of 32 
interdisciplinarity is through the field of the journal in which they are published compared to the 33 
journal in which they are cited (the US NSF 26 classifies journals into 14 different disciplines 34 
and 143 subdisciplines17,21; if published and cited in different fields or subfields, the article is 35 
deemed “interdisciplinary” 17,21,24). Other definitions19,20 focus on the author’s field and define 36 
interdisciplinary articles as work published by authors from different fields. So far this definition 37 
has been limited to Italian scientists for who there is a public directory mapping researcher and 38 
field19,20.  39 

The scientific impact of an article is usually measured by the number of citations for 40 
this article17,24. To correct for field- and journal-specific effects that number is often normalized 41 
by taking average citation rates and a journal’s impact factor into account23,24. Since the impact 42 
factor is calculated from the number of citations of articles published in this journal27, articles 43 
from higher-ranked journals are expected to have higher citation counts. 44 

All those automated studies allowed the assessment of many articles while being 45 
limited to the extraction of only particular type of information. The studies disagree in their 46 
findings regarding the importance of interdisciplinary collaborations: one 24 finds no consistent 47 
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correlation between impact and interdisciplinarity sampling over 750k publications: for some 1 
disciplines interdisciplinarity were proportional to citations, for others the relation was reversed 2 
xxbr: where is physics in this? Important for next sentence. Another work, focusing on 3 
xxbr_number publications from physics23 found interdisciplinary was proportional to citation 4 
rates but only when published in journals with citation rates below average. Yet other studies 5 
xxbr_number 17 and xxbr_number publications 20 agreed that interdisciplinary creates higher 6 
impact than non-interdisciplinary work. Also, specific collaborations between scientists from 7 
related fields leads to higher-impact publications than generic collaborations between 8 
scientists from very different fields20. Clearly, there is no simple red line leading through all 9 
those findings. However, what made us re-open the can and begin our analysis were three 10 
other reasons: (1) the focus on the life sciences, not explicitly covered by others, (2) the aim 11 
of separating the analysis of scientific quality (soundness) and of impact, and (3) the 12 
introduction of a more rigorous definition of interdisciplinarity: instead of proxying by the 13 
number of disciplines citing a work, we require experts from different disciplines to co-author 14 
a work (incidentally, the same sort of definition was used for the analysis of Italian authors 15 
19,20).  16 
 17 
Focus of this work.  Here, we assessed several aspects of ML applications in the life 18 
sciences. We started with the selection of 17 journals representing computational/experimental 19 
biology and medicine (Materials & Methods: Supporting Online Material, SOM). Amongst all 20 
papers published in those 17 journals in the years 2011-2016, keyword searches (Table S1) 21 
matched in 4,306 articles, about 2,100 of those were deemed correct hits after a quick expert 22 
analysis. From those, initially 250 were randomly selected (Materials & Methods SOM; 23 
complete list in additional file paper_table.csv, list of identified falsely extracted articles is 24 
provided in additional file false_articles.csv). Subsequently, we applied the same selection 25 
process and chose another 50 papers from 2018 to verify that the major findings have not 26 
changed through the most recent advent of deep learning (xxbr: cite review here). In contrast 27 
to previous studies 17,19-24, our assessment focused on ML applications in the life sciences and 28 
all information we analyzed was manually extracted from the articles. This allowed, for 29 
instance, to correct the 50% false positives from the keyword searches, and also allowed to 30 
define interdisciplinarity through the author’s background for non-Italians (simply by reading 31 
partial CVs for all 1,918 authors of the 250 papers). Each article was classified independently 32 
by two of us. These investments limited the number of papers analyzed but allowed a more 33 
fine-grained assessment not accessible to automatic extraction. Our focus had several 34 
implications, including that all papers reported applications of machine learning to the life 35 
sciences, as opposed to more theoretical treatments. In some sense the application of ML 36 
(computational sciences) to the life sciences is by definition interdisciplinary. However, we 37 
sharpened the perspective by distinguishing expertise from three different disciplines: 38 
computational sciences, experimental biology and medicine (expertise of author verified 39 
through CV, not through affiliation). Thus, papers could maximally be co-authored by authors 40 
from three disciplines, and minimally by one. To simplify, we loosely referred to the case of 41 
N=1 as to “non-interdisciplinary” and the case of N>1 as to “interdisciplinary”. For some results, 42 
we also showed differences between N=2 and N=3.  43 
 44 

The correct application of ML requires expertise from those familiar with ML and those 45 
familiar with the life sciences, i.e. different disciplines. Thus, we hypothesized articles written 46 
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by research teams from different disciplines to be more likely to report the necessary 1 
evaluation methods ensuring proper implementation of ML methods, to make their data 2 
publicly available so others could validate their results, and subsequently, to be accepted in 3 
higher-ranked journals and have more citations.  4 
 5 
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Results and Discussion 1 
Coverage of machine learning varies between journals and fields.  58% of the chosen 2 
250 papers (Material & Methods in Supporting Online Material – SOM – for more details on 3 
how these articles were selected) appeared in only four of the 17 journals (by occurrence: 4 
Bioinformatics, PNAS, PLOS Computational Biology and BMC Bioinformatics), i.e. were 2.5–5 
fold over-represented (xxbr: can we compute the surprise, simplest model: 0.58/(4/17) – but I 6 
am sure you ladies might come up with something more intelligent;). Most articles were cited 7 
fewer than 100 times, and the number of citations was proportional to time passed since 8 
publication (Spearman correlation coefficient r=-0.22, p-value = 0.03; Fig. 1, Fig. S1). The 9 
average number of citations for articles from Nature and Science (2011-2016) showed the 10 
same trend as that for all 250 articles (Fig. S1). Since the time-dependency obfuscated inter-11 
year comparisons, we normalized by the number of years (SOM Material & Methods). As the 12 
number of citations correlated with the journal impact factor28,29 (r=0.52, p-value<0.001, Fig. 13 
1), all aspects correlating with the impact factor trivially correlated with the number of citations. 14 
Normalizing by year and impact factor, removed this correlation. We continued also using the 15 
impact factor to assess the visibility of an article as publications in higher-ranked journals tend 16 
to be downloaded more often from bioRxiv30. Xxbr: do we really need this addition in red? I for 17 
one cannot immediately see what exactly you are aiming at, and adding more than one 18 
sentence seems a lot. Do you mean that number of citations (btw. should we introduce “names” 19 
NC/NCperanno/NCcorrected?) reflect deflection by bioRxiv more than else)? 20 

 >>> Fig. 1 <<< 21 
 22 
The number of articles differed highly between fields: the top five (molecular biology 23 

26%, genetics 24%, medicine 14%, oncology 10% and neuroscience 9%) accounted for 76% 24 
of the 250 articles (Table S2, Fig. S2). Numbers varied even more by disciplines (author 25 
expertise): (xxbr: make sure we are NOT confusing discipline=1,2,3 interdisciplinary and 26 
field=previous sentence; whatever we settle on: we HAVE to stick to it to avoid further 27 
complications): Computational scientists co-authored 88% of all articles, and 95% of those 28 
from genetics (Fig. S3). Experimental biologists co-authored 70% of all and 59% in medicine. 29 
Physicians were primarily involved in articles from medicine and oncology (Fig. S3). Numbers 30 
of citations were largely similar for all fields (Fig. S4) but articles focusing on medicine, 31 
neuroscience, and oncology tended to be published in higher impact journals (Fig. S4). While 32 
the disciplines experimental biologist and physician correlated positively with impact factor 33 
(r=0.30/p-value<0.001, r=0.26/p-value<0.001, respectively), computational science 34 
correlated negatively (r=-0.30/p-value<0.001; Fig. 1). Computational scientists might focus 35 
more on methods, experimental biologists and physicians more on new data that tend to be 36 
highly cited in the life sciences.  37 

 38 
Three levels of interdisciplinarity.  By definition, all the papers analyzed applied methods 39 
from computational fields to the life sciences, i.e. were intrinsically interdisciplinary. Most likely 40 
all 300 papers analyzed would have been considered “interdisciplinary” by automated 41 
analyses checking from which field/discipline the article was quoted. To generate a more 42 
detailed lens, we distinguished three disciplines (computational scientists, experimental 43 
biologists, and physicians) and introduced interdisciplinarity as a number ranging from 1-3 44 
depending on how many disciplines were represented by the authors of the work. Most of the 45 
250 papers were co-authored by two disciplines (one: 27%, two: 53%, three: 20%). Given 46 
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these levels, we could classify all papers according to their level of interdisciplinarity and 1 
differentially analyze the key indicators: validity (evaluation and sharing) and impact (NC: 2 
number of citations, NC/year, NC/year*journal impact factor).  3 
 4 
Scientific validity higher with experts participating in collaboration.  We proxied the 5 
validity of papers describing the application of machine learning (ML) methods to biology & 6 
medicine (the life sciences) through six different indicators. The first four relate to whether or 7 
not the method was assessed in ways needed to ascertain that it works as promised (or at all). 8 
We asked: did the authors use cross-validation (V1: binary value), more than one single 9 
measure for performance (V2: integer), additional test sets (V3: binary value), and additional 10 
experimental verification (V4: binary value). While method evaluation might correctly estimate 11 
performance for unseen data without V4, it appears impossible to accomplish this simple 12 
objective without V1-V3. The second two indicators related to sharing methods and results. 13 
These were sharing data (V5), programs and codes (V6) through publicly available sites. 14 
Typically, reviewing ML applications by journal reviewers and the public at large requires 15 
availability of data and programs in a form beyond what is available through what can be 16 
squeezed into writing. In ML it is almost impossible to imagine the development of the best 17 
possible method without any assessment (V1-V3). What if someone might have decided not 18 
to publish that assessment? On top, should the aspects of sharing (V5, V6) better be termed 19 
“reproducibility” than “validity”. Given the rules of proper scientific conduct, we answer both 20 
questions in the negative arguing that without making the evaluation available or making the 21 
content of a publication reproducible, the work should either not be published as an application 22 
of ML or should be considered as invalid.  23 

Evaluation methods (e.g. cross-validation), usage of independent test sets, and/or 24 
independent experimental proofs reduce the chance of overfitting and enhance the 25 
applicability of the model to future data. Indeed, 80% of the articles with only computational 26 
authors, applied some evaluation methods or independent tests; compared to 41% of those 27 
written by “experimentalists” (experimental biologists & physicians; Fig. 4). However, most 28 
articles written solely by experimentalists provided independent experimental proof (55%), so 29 
did 16% of those from only computational co-authors (Fig. 4). The corresponding numbers for 30 
interdisciplinary collaborations between computational and experimental scientists (level of 31 
interdisciplinarity≥2) were between these two extremes: 67% evaluated their methods, 43% 32 
provided independent experimental proof, suggesting that such collaborations facilitate 33 
experimental and computational validation. On the flip side: 19% of all articles did not provide 34 
any evaluation; this number rose as high as 34% without computational co-authors (Fig. 4). To 35 
put this most clearly: 19-34% of the papers should have never been accepted, because 36 
applications of ML without evaluation resemble “experiments” with no output and/or no 37 
measurement.  38 

>>> Fig. 4 <<< 39 
 40 
 Several evaluation metrics are required to assess the performance of ML applications 41 
(e.g. precision, recall, accuracy or confusion matrices). 6% of all articles used no evaluation 42 
metric, 53% used one or two, and 6% used over five (Fig. S7). Although, more metrics do not 43 
necessarily imply better assessment, even for binary predictions (separation of two 44 
classes/classifications), we have to consider the predictive power of the model for both classes 45 
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separately, i.e. minimally need two evaluation metrics. More complex problems require more 1 
evaluation metrics. Typically, clearly more than two metrics are needed to show different 2 
strengths and weaknesses of a prediction method. To put the number five metrics (6% used 3 

≥5), none of the ML applications with >400 citations published by the most senior co-author of 4 
this manuscript used fewer than eight different metrics.  5 

Slightly more than half (52%) of the articles compared their method to others; this again 6 
dropped to 21% without computational co-authors (p-value = 0.001; Fig. 2). Although method 7 
comparisons are crucial for validation, they might add complications leading to acceptance in 8 
lower-ranked journals (Fig. 3C) and possibly to lower impact (Fig. 3A; although adjusting also 9 
by impact factor suggested a slight pay-off from method comparisons: Fig. 3B).  10 

>>> Fig. 3 <<< 11 
 12 

 Reproducibility is a major pillar of science31-33 partially relying on making data and 13 
methods publicly available. It is particularly critical for ML applications because many minor 14 
technical details may invalidate results27. Overall, 64% of the articles shared their data (V5; 15 
with large variation between journals: from NAR=89% to NEJM=8%, Fig. S5) reflecting the 16 
general trend that articles from medicine shared data the least (Fig. S6). We could not establish 17 
whether or not this related to sensitive patient data. While all journals encourage data sharing, 18 
many do not enforce it.  19 

Overall, 68 % of the articles with computational scientists shared data, opposed to 31% 20 
without (p-value < 0.001; Fig. 2 _deleted_). 57% of the articles relied on data extracted from 21 
public resources or previous articles. However, 22% of those who did, did not publish their 22 
data. Data sharing was highest for collaborations with computer scientists (xxbr: as discussed: 23 
have not quite seen this plot, we should look separately at data sharing -ds- for computer 24 
scientists CS, exp biol EB, clinicians/physicians CP, and interdisciplinary=2 (EB+CP vs EB+CS 25 
+ CP+CS), and interdisciplinary=3 (all), here I argue that we see interdisciplinary+CS always 26 
best, if not: we’ll have to refine the statement).  27 

>>> Fig. 2 <<< 28 
 29 
Collaborations of scientists with different expertise somehow cited more often. 30 
Interdisciplinary collaborations of researchers from different fields seem increasingly important 31 
to generate new ideas and results34,35. The higher the level of interdisciplinarity, the higher the 32 
NC/year (number of citations divided by number of years since publication; r=0.22, p-33 
value=0.02; Fig. 1, Fig. S8A) and the higher the impact factor (r=0.24, p-value=0.002; Fig. 1, 34 
Fig. S8C). When adjusting the number of citations also by impact factor, the correlation was 35 
no longer significant (Fig. 1, Fig. S8B) suggesting that interdisciplinary articles were cited more 36 
mainly because they were published in higher-ranked journals (Fig. S8C). The correlation 37 
between impact factor and level of interdisciplinarity (Fig. S8C) suggested that authors profit 38 
from collaborations.  39 

>>> Fig. 5 <<< 40 
 41 

Closer analysis of the correlation between interdisciplinarity and impact refined the 42 
message: distinguishing just two groups (computational and experimental), revealed NC to be 43 
higher for research teams of only experimental scientists (Fig. 5A), and this outcome was 44 
largely caused by physicians (xxbr: point to a figure that makes that point or keep it out?). The 45 
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results for impact factor and NC adjusted by impact factor suggested that the higher NC 1 
originated essentially from physicians publishing in higher-ranked journals (Fig. 5B and C).  2 

Did scientific validity (evaluation and sharing) correlate with impact? Computational 3 
evaluations correlated negatively with the impact factor (r=-0.31, p-value<0.001); using no 4 
evaluation method correlated positively with the impact factor (r=0.23, p-value=0.004), but we 5 
could not detect a significant relationship between impact factor and experimental proof (Fig. 6 
1). Since all articles analyzed here focus on applications, the absence of proper evaluation - 7 
independent of the focus of a paper - clearly contradicts good scientific conduct. 8 

Data sharing was not rewarded by increases in NC or NC/year (Fig. 3A), although 9 
adjusting also by impact factor hinted at a tendency that sharing leads to more citations (Fig. 10 
3B). Thus, although data sharing is crucial to ascertain validity and reproducibility, it is not 11 
incentivized by increased visibility. In fact, there was no significant difference in the impact 12 
factor (Fig. 3C).  13 

Software sharing also did not correlate with NC/year (Fig. 3A; the trend changed toward 14 
more cited when adjusting NC by impact factor: Fig. 3B). On the contrary, not sharing software 15 
seemed to lead to acceptance of articles in higher-ranked journals, but again the difference 16 
was not significant (Fig. 3C). Certainly, method sharing is crucial for reproducibility and for the 17 
impact of a method on science. Therefore, we were surprised that program sharing appeared 18 
neither crucial for visibility nor acceptance in the research community as proxied by citations 19 
and journal rank. Ultimately, this might shed light on the limitations of such measures to 20 
evaluate scientific impact. 21 
 22 
More computational scientists involved in 2018.  Artificial intelligence (AI) and ML are so 23 
rapidly evolving that papers published from 2011-2016 might simply not be up-to-date enough 24 
to capture the newest trends. We attempted to address this worry by analyzing another 50 25 
articles describing ML applications to the life sciences published in 2018 (selected and 26 
analyzed largely by the same criteria as the other 250, Material & Methods in SOM for details). 27 
The major differences were: fewer publications without computational scientists (6% 2018 vs. 28 
12% 2011-2016), and program sharing rose (70% vs. 50%). Although data sharing did not 29 
change significantly (68% vs. 64%), those papers that shared data were cited more often and 30 
accepted to higher-ranked journals, we could not detect a significant difference (Fig. S9). T 31 
Other aspects did not change significantly, neither program sharing, nor the fact that papers 32 
sharing programs tended to be published in lower-ranked journals (Fig. S9), nor the proxies 33 
for impact (e.g. NC, NC/year, impact factor, NC normalized by impact factor). Overall, the most 34 
substantial change was that computational scientists contributed more often in 2018. This 35 
might reflect the increasing complexity of realizing ever more popular deep learning-type 36 
solutions of ML.  37 
 38 
Limitations. Although our analysis revealed interesting insights, some issues remain to be 39 
addressed in the future. First of all, thoroughly analyzing more than 300 articles will render the 40 
conclusions more valid. The problem might be one between the Scylla of two few papers and 41 
Charybdis of too unreliable analysis. Our solution fell victim of the first, while other solutions 42 
xxbr quote-may be NOT incl. the Italians here fell victim of the later. Secondly, we proxied 43 
impact and visibility through number of citations and the impact factor. However, other factors 44 
are also influencing the number of citations that can seem superficial and can be controlled by 45 
the authors36 and it is hard to compensate for these factors. Using the impact factor for 46 
measuring scientific impact has been criticized in the literature and the increasing use of social 47 
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media might increase the visibility of research independent of the journals impact factor37,38. 1 
Thirdly, the scope of a journal might influence the description of ML applications. Journals 2 
focusing on methodologies are more likely to require certain standards in ML, those focusing 3 
on biological and medical relevant novelties are less likely to specifically ask for methodological 4 
details. Xxbr: remove (argument: this is peer-reviewed; put up or shut up!) Also, the 5 
assumption that articles not reporting evaluations did not evaluate is over-simplified.  6 
_DELETED_ Fourthly, we considered any publicly available information to assign author fields, 7 
but could not account for paid statisticians not listed as authors. A variety of medical scientists 8 
from pathologists to clinicians were all simplified as physician ignoring large differences in 9 
scientific training. These simplifications might lead to under-estimate computational expertise 10 
in publications. Furthermore, we considered data and program availability as stated in the 11 
articles, but did not attempt to contact authors to obtain those if not available. Finally, since 12 
several aspects in our analysis correlated with the impact factor and they also correlated with 13 
each other, confounding factors might influence the results and these interrelationships are 14 
difficult to separate.  15 

 16 
Xxbr: the following I suggest to remove, NOT because I don’t like it, but because (1) it 17 

doesn’t really fit here and I do not know how to replace it, and (2) too long anyway. Reason to 18 
keep: is simple and some of it is bla & others like more bla than I!  For research teams with 19 
only computational expertise, contributions from physicians or colleagues with expertise in wet 20 
lab experiments can help to add new data, find biologically relevant applications and 21 
interpretations of the results, and increase the relevance of ML applications leading to more 22 
visibility of conducted research because it might be accepted in higher-ranked journals. 23 
Involving computational scientists in their work does not increase the visibility of research for 24 
physicians or experimental biologists because this work is rather accepted in lower-ranked 25 
journals. However, they might benefit from colleagues with knowledge in computer science to 26 
add evaluation methods, bring a greater variety of tools, and help with the interpretation of the 27 
scientific and statistical significance of results. Therefore, the results focus more on technical 28 
aspects making it possibly less intuitive for a broader research community but increasing its 29 
scientific value by achieving more technical correctness. 30 

Most likely, with the introduction of new high-dimensional datasets and high-throughput 31 
technologies, the need for collaborations will increasingly grow. As the enforcement of data 32 
and program transparency will increase, ML methods in biology and medicine will have to be 33 
implemented more carefully. While using the impact factor to measure the success of a 34 
scientific article currently does not show an advantage of collaborations for experimental 35 
scientists (Fig. 5C), we suggest that these collaborations will become more frequent and 36 
impactful in the near future. 37 

 38 
 39 
 40 
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Conclusions 1 
We analyzed 250 articles describing ML applications to the life sciences published 2011-2016 2 
and another 50 published in 2018 in 17 journals from 26 different biological/medical fields 3 
(SOM). This diversity of fields was mirrored by the diversity of how machine learning was 4 
applied. Reproducibility and correct evaluation of results are crucial to ascertain validity and 5 
reliability of ML applications. Surprisingly, many articles did not focus on these aspects: 50% 6 
shared no software, 36% shared no data, and 19% applied no evaluation. In fact, an entire 7 
third (34%) of the articles only written by experimentalists described no evaluation. While we 8 
hypothesized that ensuring validity of ML applications would be necessary to achieve high 9 
visibility of the research, we found the opposite: more valid work was often published in lower-10 
ranked journals attracting fewer citations (Fig. 1, Fig. 3). 11 

In general, how these technical aspects were addressed was highly influenced by the 12 
authors’ scientific background: Reproducibility and evaluation were more prominent with 13 
computational scientists as co-authors (Fig. 2, Fig. 4 _deleted_), while articles co-authored by 14 
experimentalists more frequently provided independent experimental proof (Fig. 4). Thus, 15 
collaborations of authors from different disciplines provided more opportunity for higher quality 16 
results integrating knowledge from various fields of expertise.  17 

We hypothesized that collaborative research should also be cited more often and be 18 
accepted in higher-ranked journals. However, this was only true for computational scientists 19 
who profited from collaborating with experimentalists, in particular physicians, by getting 20 
accepted in higher impact factor journals (Fig. 5C). 21 

One of the most substantial challenges for AI and ML is a comprehensive, adequate 22 
evaluation; incorrect application of such tools can lead to drawing false conclusions or to 23 
overestimating the predictive power of a method. Collaborations between computational and 24 
experimental scientists substantially increased the correctness of evaluations and the 25 
likelihood of reproducibility. Thus, increased the scientific validity of published research, a good 26 
incentive to focus on such collaborations to improve ML applications that will advance the life 27 
sciences in the future. 28 
 29 
   30 
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Figure legends 1 
Xxbr: I might want to go over the following captions in the next round…. 2 
 3 
Fig. 1: Spearman correlation coefficients for numeric and binary variables. We assessed 4 
the correlation between the different criteria using the Spearman correlation and tested the 5 
significance at a level of 0.05. Significant p-values are displayed using * for p-value < 0.05, ** 6 
for p-value < 0.01 and *** for p-value <0.001 after adjusting for multiple testing using the 7 
Benjamin-Hochberg procedure. Blank squares denote that the correlation is non-significant. 8 
Citations adj. (Year + Imp. Fct.) denote the citations adjusted by year and impact factor. 9 
 10 
Fig. 2: More sharing and method comparison with computational scientists. The 11 
involvement of a computational scientist was highly correlated with _DELETED_ sharing the 12 
data, _DELETED_ making the program available, or _DELETED_ performing a comparison with 13 
other methods. Percentage of articles with data or program available or performance of a 14 
comparison with other methods with 95% percentile bootstrap confidence intervals split by 15 
whether a computational scientist was involved.  16 
 17 
Fig. 3: Sharing and method comparison hardly impact citations. A. Number of citations 18 
adjusted by year were not influenced by data or program availability. Comparing the developed 19 
method to others led to a small, decrease in the number of citations. B. Adjusting also by 20 
impact factor showed a small trend towards higher citations when data or program were 21 
available, or a comparison to other methods was performed. C. The impact factor was higher 22 
for articles that did not make data or program available, or compared their method to others. 23 
 24 
Fig. 4: Method testing depends on author expertise. _DELETED_ Articles involving a 25 
computational scientist applied a computational evaluation method more often than articles 26 
with only an experimentalist (physician or biologist). _DELETED_ Articles co-authored by an 27 
experimentalist provided experimental proof more often than without such a co-author. 28 
_DELETED_ Providing no evaluation method was more common among articles written solely 29 
by experimentalists. Percentage of articles with computational evaluation methods, 30 
experimental proof or no evaluation methods are shown with 95% percentile bootstrap 31 
confidence intervals split by author background. 32 
 33 
Fig. 5: Adjusted number of citations and impact factor for different collaborations. A. 34 
The number of citations adjusted by year is slightly higher for articles solely written by 35 
experimentalists compared to articles involving computational scientists. B. Adjusting also by 36 
impact factor removes this difference. This suggests that the higher number of citations for 37 
experimentalists was mainly caused by the fact that their work got accepted in higher-ranked 38 
journals. C. _DELETED_ Impact factor was higher for articles only published by 39 
experimentalists (biologists and/or physicians) than for articles involving also computational 40 
scientists. 41 
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Fig. 1: Spearman correlation coefficients for numeric and binary variables 
 

 

 
Fig. 1: Spearman correlation coefficients for numeric and binary variables. We assessed 
the correlation between the different criteria using the Spearman correlation and tested the 
significance at a level of 0.05. Significant p-values are displayed using * for p-value < 0.05, ** 
for p-value < 0.01 and *** for p-value <0.001 after adjusting for multiple testing using the 
Benjamin-Hochberg procedure. Blank squares denote that the correlation is non-significant. 
Citations adj. (Year + Imp. Fct.) denote the citations adjusted by year and impact factor. 
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Fig. 2: Method validation depends on author expertise 

 
 
Fig. 2: Method validation depends on author expertise. _DELETED_ Articles involving a 
computational scientist applied a computational evaluation method more often than articles 
with only an experimentalist (physician or experimental biologist). _DELETED_ Articles co-
authored by experimentalists provided experimental proof more often than those without. 
_DELETED_ Providing no evaluation method was more common among articles written solely 
by experimentalists. Percentage of articles with computational evaluation methods, 
experimental proof or no evaluation methods are shown with 95% percentile bootstrap 
confidence intervals split by author background. 

 
Xxbr: may be join Fig. 2+3 into one with two panels (assuming you can compress the 
two to fit together onto a page, i.e. each being a column wide (7.5 cm) 
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Fig. 3: More sharing and method comparison with computational scientists 
 

 
Xxbr: we really ought to optimize this figure: it will be totally fine as a one-column (column=7.5 
cm including legends and all); if I shrank it down to that size, we’d loose the font: too small, 
and there is way too much white space: make thicker lines, bigger dots, less wide bars for 
errors, points closer to each other in x-axis. Coloring: 1 be careful to use color consistently 
between figures, already inconsistent between 2 and 3; may be full black line (yes) and dashed 
gray: no; you could use the same scheme in Fig. 2 but would have to come up with a new one 
(blue?) for “both”. Btw. Fig. 5 ought to follow that concept and Fig. 4 should NOT interfere – 
which might speak against blue for both in Fig. 2… 
 
Fig. 3: More sharing and method comparison with computational scientists. The 
involvement of a computational scientist was highly correlated with _DELETED_ sharing the 
data, _DELETED_ making the program available, or _DELETED_ performing a comparison 
with other methods. Percentage of articles with data or program available or performance of a 
comparison with other methods with 95% percentile bootstrap confidence intervals split by 
whether a computational scientist was involved.  
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Fig. 4: NC and impact factor not consistently higher for collaborations 
 

 
 
Xxbr: I assume that this will be either one figure spanning two columns (then have them all 3 
on one, guess that might work), or 3 under each other as one column. 
 
Fig. 4: NC and impact factor not consistently higher for collaborations. A. The number 
of citations adjusted by year was slightly higher for articles solely written by experimentalists 
compared to articles involving computational scientists. B. Adjusting also by impact factor 
removed this difference. This suggests that the higher number of citations for experimentalists 
was mainly caused by the fact that their work got accepted in higher-ranked journals. C. 
_DELETED_ Impact factor was higher for articles only published by experimentalists 
(biologists and/or physicians) than for articles with computational scientists. 
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Fig. 5: Sharing and method comparison hardly impact citations 

 
 

A. Number of citations adjusted by year were not influenced by data or program availability. 
Comparing the developed method to others led to a small, decrease in the number of citations. 
B. Adjusting also by impact factor showed a small trend towards higher citations when data or 
program were available, or a comparison to other methods was performed. C. The impact 
factor was higher for articles that did not make data or program available, or compared their 
method to others. 
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