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Abstract

Tighter integration of technology in our everyday life is an omnipresent phenomenon.

Consequentially, operators of industrial systems also adopt the possibilities of new

technology. To enable many of the emerging use case, it is often necessary to adapt

the usage of involved cyber-physical systems (CPS) far beyond their original design.

Thereby, the ever-increasing number of connections between these systems and to the

Internet make them vulnerable because of an increased attack surface. Due to the

coupling with the physical world, detecting security incidents especially in CPS too late

can lead to severe damages. Here, anomaly and intrusion detection to discover these

incidents is an important prerequisite enabling early incident response. Hence, we show

how to transfer and adapt existing detection systems into the industrial domain.

Though, the lacking data basis in industrial applications often inhibits the use of

existing detection systems as these are usually required. Therefore, we investigate which

data is useful and provide two CPS-specific methods to acquire needed information for

current intrusion detection solutions. To ease the direct capturing of real-world data,

we suggest a lightweight and efficient compression mechanism dedicated to industrial

network data. As direct capturing is not possible in all use cases, we demonstrate the

derivation of suitable datasets from simulations of the underlying processes.

For the actual anomaly detection, we provide a new method able to cope better

with the environment found in CPSs. Using deep learning, we construct a method for

high-performance feature learning and anomaly detection suitable for various industrial

fieldbus protocols. Although not requiring any information on the encoding of data in

the protocols, we can achieve detection rates for specific attack types of up to 99%.

Building on these basic blocks, we analyze the behavior of distributed detection

solutions in CPS. Our method based on simulations of complex CPS networks allows

for evaluating specific setups as well as for optimizing them. By this, we are able to

derive optimized setups for shortest times until detection or highest detection rates

under ressource constraints.

Overall, this yields fundamental insights in the application of anomaly and intrusion

detection system in the industrial domain. Applying these in real-world setups allows

iii



Abstract

for an earlier detection by operators and can, therefore, limit possible high damages

due to security incidents by early incident response.
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Zusammenfassung

Die engere Integration von Technologie in unser Alltagsleben ist ein allgegenwärtiges

Phänomen. Entsprechend wenden auch Betreiber industrieller Systeme die Möglichkeiten

dieser neuen Technologien an. Um viele der dabei enstehenden Anwendungsszenarien

umzusetzen, ist es oft notwendig die Verwendung involvierter cyber-physischer Systeme

(CPS) weit über die usprüngliche Designidee der Systeme hinaus anzupassen. Hierbei

macht sie die ansteigende Anzahl von Verbindungen zwischen den Systemen und zum

Internet durch eine immer größere Angriffsfläche verwundbar. Zu spät erkannte Sicher-

heitsvorfälle können dabei insbesondere bei CPS durch die Kopplung mit der realen

Welt oft zu hohen Schäden führen. Dabei ist Anomalie- und Angriffserkennung zur

Entdeckung von diesen Vorfällen eine wichtige Voraussetzung, um frühzeitiges Han-

deln zu ermöglichen. Daher stellen wir da, wie existierende Erkennungssysteme in das

industrielle Umfeld übertragen und angepasst werden können.

Eine im industriellen Umfeld unzureichende Datenbasis verhindert jedoch den Ein-

satz bestehender Erkennungssysteme, die eine solche in der Regel voraussetzen. Wir

untersuchen daher, welche Daten nützlich sind, und stellen zwei für CPS spezifische Me-

thoden vor, um benötigte Informationen für aktuelle Erkennungssysteme zu sammeln.

Um die Aufzeichnung von realen Daten zu vereinfachen, schlagen wir ein leichtgewich-

tiges und effizientes Kompressionsverfahren speziell für industrielle Netzwerkdaten vor.

Da die Aufzeichnung nicht in allen Anwendungen möglich ist, zeigen wir die Ableitung

von passenden Datensätzen aus Simulationen der zugrundeliegenden Prozesse.

Zur eigentlichen Anomalieerkennung liefern wir eine neue Methode, die auf die Umge-

bung von CPS spezialisiert ist. Durch die Nutzung von Deep Learning konstruieren wir

ein Verfahren zu hochperfomantem Feature-Lernen und Anomalieerkennung angepasst

für diverse industrielle Feldbusprotokolle. Obwohl das Verfahren ohne Informationen

über die Kodierung von Daten innerhalb der Protokolle auskommt, können wir für

bestimmte Angriffstypen Erkennungsraten von bis zu 99% erreichen.

Aufbauend auf diesen elementaren Teilen analysieren wir das Verhalten von verteilten

Detektionslösungen für CPS. Unsere Methode basierend auf Simulationen komplexer

CPS Netzwerke erlaubt die Auswertung und Optimierung spezifischer Konfiguratio-
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nen. Dadurch können wir auf die Zeit zur Erkennung oder eine hohe Erkennungsrate

optimierte Konfigurationen unter Ressourceneinschränkungen ermitteln.

Insgesamt liefert dies grundlegende Einsichten in die Anwendung von Anomalie- und

Angriffserkennung im industriellen Umfeld. Die Anwendung dieser in realen Systemen

ermöglicht den Betreibern eine frühere Erkennung von Angriffen und Störfällen und

kann daher den möglicherweise hohen Schaden infolge eines Sicherheitsvorfalls durch

frühzeitiges Handeln beschränken.
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1 Introduction

In the beginning of this thesis, we describe the motivation and major challenges tackled.

From this, we then derive our research questions and list the contributions.

1.1 Motivation

The emerging trend to interconnect field devices and control hardware through to office What are CPS?

IT infrastructure, sometimes referred to as the fourth industrial revolution, leads to the

creation of complex Cyber-physical Systems (CPSs) [1]. These systems steer real-word

physical processes based on sensor measurements and input data. As the basic principle

of cyber-physical systems is the orchestrated operation of software, hardware, actuators,

and sensors, they combine the characteristics of algorithms and data with the physics

of the controlled processes.

So far, CPSs were used in dedicated and isolated environments. With the develop- Security in CPS

ment of the fourth industrial revolution and the field of Industrial Internet of Things

(IIoT), operators remove these air-gaps resulting in complex systems connected not

only in local networks but even worldwide across country and company borders. Thus,

these systems now experience the same risks as all other internet-connected devices

do [2]. However, often lacking suitable security controls, they are still not prepared for

the internet threat landscape.

Often, companies cannot fix existing security problems by updates. While security Poor

upgradabilityupdates are already problematic in business IT, long life cycles and expensive safety

certifications inhibit fast-paced software updates even more for CPSs. In addition, CPS

life-cycles of up to decades further increase the problem in the absence of updates.

Hence, we find these systems with outdated security posture accessible on the Internet.

Unfortunately, even implementing currently available security controls in CPSs could

not prevent all attacks. In the past, several major attacks have been reported, such Recent attacks

on CPSas the Stuxnet attack [3] on an Iranian nuclear reactor, the uncontrolled shutdown

of a blast furnace in Germany, and the power grid attack in Ukraine [4]. As these

applications represent part of the backbone of our society, already small disturbances
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in their operation may result in severe impacts for large groups of people. These attacks

were tailored to specifically target systems with high damage potentials. An analysis of

the Stuxnet attack [5] revealed that it even used the manipulation of application-specific

project files to spread throughout the system. A modification of used programming

libraries then finally led to the manipulation of the physical process.

Such attacks, also referred to as programmable logic controller (PLC) exploitation,

manipulate the behavior of part of the CPS so that reactions of its communication

partners are steered into the desired direction. While CPSs definitely also face the

same threats as business IT, the high possible damage resulting from targeted attacks

makes them more important to be act upon.

Recent research on security measures for CPS focuses on transferring the lessons-Securing CPS

learned from classical business IT to the industrial domain. They include the adaptation

of CPS-specific protocols, filtering traffic with firewalls, as well as deploying intrusion

detection systems [6]. We already showed that due to problematic update procedures

and long life-cycles we must still expect attacks even when current security measures

are implemented. Therefore, it is very important to at least limit the impact of these

attacks by enabling an early incident response. Hence, there is a need for accurate

and fast detection of security and operation anomalies for CPS. An ideal system is

able to provide details to the severity of an incident, to its reason and to the question

whether a safe operation is still possible — not just for a single controller but for

a complete distributed setup of a CPS. However, current signature-based intrusion

detection systems are limited in their effectiveness. Thus, developing systems striving

to distinguish anomalies from the normal behavior of a system became a fundamental

task [7].

Current anomaly detection mainly focuses either on the analysis of known attacks orDifferences in

IDS for CPS on the analysis of metadata. In industrial settings, these approaches are either inap-

plicable or only use a subset of available information. The metadata in these systems

is often static, can easily be analyzed, and correspondingly manipulated. On the other

hand, neglecting the coupling with the physical worlds in CPS ignores half of the sys-

tem’s process. Usually, the parameters of the physical process will only be available

in the application logic or the payload of network packets. With most commercial-off-

the-shelf (COTS) Intrusion Detection System (IDS) focusing on metadata and network

packet headers, this information is often completely ignored in detection systems. This

way, cyber-physical systems differ from daily business IT, which does not directly in-

teract with the physical reality. Therefore, they also require new methods to secure

2
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their operation. While yet unknown attacks are linked to severe risks, the analysis of

only known attacks does not provide methods for detecting new variants.

One approach to ameliorate the detection of such previously unknown and newly

emerging attacks are anomaly detection systems based on multiple data sources or

learning algorithms.

Although, researchers continually propose new detection algorithms, they are so far State-of-the-art

not optimized for operation in cyber-physical systems. Typically, low-power sensors and

actuators used in CPS lack the resources to execute current anomaly detection methods.

Further, the added characteristics of the physical world are usually not considered

although they resemble part of the system. This situation suggests using multiple

heterogeneous data sources to improve the detection quality. While in traditional office

IT the processes are often independent of external influences, a cyber-physical system

may behave differently given external parameters as temperature, humidity, time, or

power. There are four main challenges to ameliorate that situation: Challenges

First, there are so far only a few comprehensive datasets to develop and test anomaly 1. Datasets

detection systems on cyber-physical systems. However, these are strong requirements

to evaluate new ideas and to compare the performance and effectiveness of different

approaches.

Second, we need a comprehensive framework for the whole anomaly detection process. 2. Framework

As common business IT frameworks do not interact with the physical world, they

usually lack providing corresponding characteristics and sensor data to the detection

system.

Third, the detection algorithms themselves need to be optimized for their specific 3. Detection

Methodapplication. As cyber-physical systems are typically unique, an approach to building

such adapted detection systems is needed to be applicable for real-world scenarios.

Fourth, anomaly detection systems based on one single data acquisition point give 4. Staged

Attacksonly local insights. As described before, recent attacks on CPS use multiple different

attack stages and chain them for the final exploit. However, the most likely causes of

single anomalies in cyber-physical systems, e. g. degradation of hardware, bad param-

eters, and physical uncertainties, are not relevant or even existent in business IT. For a

proper distinction of actual intrusions among all process anomalies, the cause estima-

tion should be rethought. A reliable method for identifying cause–effect relationships

in CPS also yields additional insights for other problems like performance optimization,

predictive maintenance, and big data analytics. Therefore in the end, such a method

enhances our understanding of ongoing and future attack waves against current CPSs.
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1.2 Research Questions

Nowadays, anomaly detection systems in industrial settings suffer from missing input

data. As these systems build models out of provided input data, this data directly

influences their detection rates. Hence, effective research is only possible if suitable

data is available. Thus, many aspects like developing advanced detection systems and

analysis of ongoing attack strategies have not been much explored so far. Therefore,

the four previously stated challenges lead to the following major research questions:

• What is required to build an applicable intrusion detection framework for indus-

trial settings?

• How can suitable training and testing data for anomaly detection systems in

industrial settings be gathered?

• How can we use characteristic properties of industrial processes to enhance anomaly

detection?

• How can we understand the course of ongoing attack strategies?

In order to find answers to these questions, several building blocks are needed. WhileBuilding blocks

each of them solves a different portion of the problem, a later integration into a complete

framework yields a comprehensive anomaly detection solution appropriate for industrial

settings.

As it is challenging to acquire data from real-world cyber-physical systems, appropri-Data generation

ate simulations can generate data needed for this thesis. Additionally, this allows for

developing anomaly detection systems for facilities not yet built but just being planned.

Furthermore, a simulation allows for deriving data from attack scenarios without the

need to put expensive setups at risk.

To answer the third and fourth question, a suitable method for anomaly detectionDetection

needs to be found which, on the one hand, can operate on the available data, and, on

the other hand, enables insights about the causes and the development of attacks.

1.3 Contributions

This thesis strives to understand the needs of anomaly detection in cyber-physical

systems. Every IDS is developed around three integral parts: the data analyzed, the

method used, and the architecture or framework used for processing. These three items,

however, are only building blocks for efficient anomaly detection in industrial use cases.

Thus, we need to link them and understand their interplay as shown in Figure 1.1.
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Architecture

Data

Relation-
ships

Method

Figure 1.1: A high-level view of the contributions in this thesis.

As outlined in the previous section, every one of these cornerstones lacks suitable

solutions for industrial systems. Throughout researching the individual building blocks,

seven peer-reviewed publications [8, 9, 10, 11, 12, 13, 14] emerged.

Contribution 1 (C1) sums up how to transfer anomaly detection architectures into

industrial use cases. C2, then tackles the problem of missing experimental data for

advancing the field of intrusion detection in cyber-physical systems while C3 adds a

new high-performance method for anomaly detection.

Finally, we link all these cornerstones by analyzing the relationships between data,

methods, and architecture. Thereby, in C4, we derive recommendations for the next

generation of distributed anomaly detection systems.

C1: Architecture for Anomaly Detection in CPS Until nowadays, deriving correct and

meaningful anomaly detection rules is a tedious manual task. While several archi-

tectures for detection of specific threats exist, there is no comprehensive guidance

on which to use when and how. Therefore, we describe a method for deriving

monitoring measures from the outcome of a security and risk assessment. Using

a catalog of detection and monitoring techniques, we then derive needed data

sources, preprocessing techniques and propose an architecture for aggregating

this data. This process leads to a framework of merging different monitoring

techniques and, thus, addresses the second posed challenge.

C2: Circumventing the Missing Data Problem One major problem for the develop-

ment of new anomaly detection systems in industrial use cases is the lack of

suitable training and testing data. While nearly all currently existing approaches

rely on training data, only a limited set of publicly accessible data is available.
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Towards solving this problem of missing industrial datasets, i. e. the first chal-

lenge, we provide two new methods for testing new industrial intrusion detection

systems and introduce few already existing datasets.

2.1 We describe an architecture for directly capturing industrial data using

Fieldbus testbeds. This architecture also allows the integration of real hard-

ware in the loop as well as virtualized devices. We then extend this architec-

ture to large scale applications using advanced compression techniques. We

evaluate the de-duplication-based compression method on several industrial

network traffic datasets. With this method, we achieve a reduction of data

to be transferred of up to 64%.

2.2 We present a workflow and framework for simulating industrial network traf-

fic. Therein, we exemplary show how to integrate attacks into the simulation

model. We evaluate and investigate the usability of the generated data with

state-of-the-art anomaly detection methods.

C3: High-Performance Anomaly Detection in CPS Current network anomaly detec-

tion methods focus on metadata analysis. Recent attacks, however, succeeded

by stealthily manipulating the network packets’ payloads. Hence, the actual

manipulation is undetectable for them. On the other hand, current classical

IT anomaly detection methods considering also packet payloads lack the needed

performance for the ever-increasing network traffic in cyber-physical systems. Ad-

dressing the third challenge, we introduce a high-performance processing frame-

work and method for industrial network anomaly detection. The framework is

based on automated feature-learning for network packets independent of compo-

nents and topology using stacked denoising auto-encoders. Our evaluation on two

datasets using different Fieldbus network protocols yields f1-scores of over 99%.

Additionally, we provide an approach for semi-automated labeling of unlabeled

network traffic datasets.

C4: Understanding Cause–Effect Relationships Critic on the usage of machine-learning

based anomaly detection systems rises from their often unexplainable results. For

more understandable results and addressing the fourth challenge, we show how

to aggregate information from several alert log types and formats throughout

a distributed anomaly detection setup. Given an architecture for aggregating

this information and a simulation framework, we can better understand the in-

terplay of the different system parameters. An analysis of different parameter

configurations allows for deriving best-practices and recommendations for future
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installations of distributed anomaly detection systems. Thereby, we derive design

rules for future distributed anomaly detection systems. Based on this informa-

tion, we present methods for optimizing the placement of intrusion detection

systems throughout a network. Thereby, we consider the specific situation by

integrating the IDS’ performance, the assumed attacker model, the local network

architecture, and the resulting costs. This enables a reproducible way to estimate

and handle the trade-offs when configuring IDS.

1.4 Structure

This thesis is structured as follows:

Background In Chapter 2, we provide definitions and background knowledge on rel-

evant topics such as anomaly detection and cyber-physical systems. Relevant related

work to the topics addressed in this thesis and how we expand on it is summarized

in Section 2.4. Additionally, we differentiate anomalies from intrusions and give short

explanations of machine-learning techniques used in this thesis.

The following chapters outline the process of anomaly detection for cyber-physical

systems and deepen specific parts of it.

Anomaly Detection Process First, we give a high-level overview of a process for

anomaly detection in cyber-physical systems in Chapter 3. Based on a security and

risk assessment, we derive suitable monitoring measures for industrial systems. For

each combination of a security objective (confidentiality, integrity, availability) and an

asset (function, connection, data, component) we match suitable monitoring measures.

Furthermore, we discuss how each of these measures can be implemented. We start by

indexing possible data sources, give hints on possibly needed transformations of this

data, and describe which source suits which measure.

The following chapters deepen the single steps of the previously described process.

Data Acquisition In Chapter 4, we present two new approaches for data acquisition

to train and execute anomaly detection systems in cyber-physical systems.

First, we present an approach to scale this technique to larger networks incorporating

advanced network traffic compression techniques in Section 4.1. Here, we describe an

architecture for direct data capturing as well as a method for high-performance data

transport of industrial network captures.
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Second, we describe a method based on co-simulation for generating necessary training

and testing data in absence of real systems in Section 4.2.

Model-based Anomaly Detection Chapter 5, then introduces a method for anomaly

detection in cyber-physical system networks independent of the involved network pro-

tocols. Additionally, we provide a semi-automatic way for labeling training data and

incorporate the detection method in a high-performance framework able coping with

modern cyber-physical system installations.

Understanding Cause–Effect Relationships in Attack Campaigns In Chapter 6, we

build a model for understanding cause–effect relationships in attack campaigns in larger

networks. Using this model, we provide best practices for the deployment of intrusion

detection systems.

Conclusion The last Chapter 7 adds final remarks to each of the previous summaries

and points out future research possibilities.
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In this chapter, we introduce several concepts, definitions, and methods used through-

out this thesis. As this work focuses on anomaly detection for cyber-physical systems,

we start with definitions and details of these two concepts. After that, other methods

used at various points in this thesis are explained.

2.1 Anomaly Detection

While detecting something is a familiar concept for most people, the term anomaly Term

decompositiondetection depends on the meaning of normal and anomalous. Hence, for an under-

standing of the term anomaly detection, we decompose it into its foundational parts.

In the field of IT security, a system operating as expected is usually considered being in

the normal state. Once parts of the system deviate from their expected behavior, we

face an anomalous state. The definition of expected system behavior is always specific

to a certain use case and assumes some kind of reference model to which we compare

actual behavior. There are many reasons why a system may behave anomalously. For

example, possible reasons include:

• degradation of system parts Examples for

anomalies• missed edge cases of normal operation during the design phase

• changes in a system’s environment

– changes in temperature, humidity, and electromagnetic or physical impacts

(e.g., vibrations)

– limited or no power supply

• unintended interactions by human users or other systems

• use cases of the system for purposes other those envisioned during their design

phase

Other researchers [15, 16, 17], often consider intrusion detection being the overall Other

definitionstopic. Here, they distinguish between signature-based and anomaly-based detection.
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The signatures then usually refer to manually or semi-automatically derived rules for

the detection of attacks, whereas anomaly-based methods incorporate some kind of

machine learning. As basing a decision for a state being not normal based on man-

ual or semi-automatically created rules still poses an anomaly, this distinction is not

well-defined. To avoid this confusion of different meanings of the terms anomaly and

intrusion, we clarify our usage of those in the next sections.

2.1.1 Anomalies vs Intrusion

In IT security, the terms anomaly detection and intrusion detection are often used

interchangeably. However, there are differences between anomalies and intrusions, for

sure.

While an

Anomaly is something not normal.

an

Intrusion is the result of an attacker tampering with the system.

These two definitions depend on the meaning of normal. In the previous section,

we already introduced exemplary reasons for anomalies. Intrusions may, however, also

result from problems corresponding to normal behavior. E.g.,

• system crashes induced by an attackExamples for

intrusions • misuse by authorized people
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Anomaly
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new
use cases
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environmental
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unintended

interactionsmisuse
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crash

Figure 2.1: Exemplary clustering of different reasons for anomalies and intrusions.

In the illustration in Figure 2.1, we see that intrusions and anomalies represent two Relationships

between themdifferent sets with a probably non-empty intersection [18].

For example, the crash of a system corresponds to normal behavior. In the case of

corrupted input data, the system is supposed to crash and generate a corresponding

log entry. However, an attacker may specifically craft input data to destroy a sys-

tem’s availability by continuously forcing it to crash. Some people declare a system

crash as an anomaly. In real-world systems, we see system crashes from time to time

during normal operation. Hence in this thesis, we consider system crashes as normal.

Nonetheless, they can be the result of an intrusion.

This example explains why we prefer seeing anomaly and intrusion detection rather as

two different tasks on the same abstraction level than subtasks of each other. Whether

either of these tasks is solved using a method from the machine-learning domain, that

does not change its purpose.

2.1.2 Detection

When we talk about detection methods in this thesis, we consider a decision function What is

detection

fdeci : X → Y (2.1)

where X represents the state space of the system, and Y represents the decision space

for the detections.
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However, the involved or used characteristics in a state x ∈ X depend on the actual

method used while the actual types of decision y ∈ Y may be different as well.

The previous discussion of anomalies and intrusions already reveals that these two

terms refer to decision functions operating with different output spaces Y . In both

cases, there are two commonly distinguished variants: network-based and host-based

detection methods.

In network-based intrusion detection, the method uses data concerning the networkNetwork-based

detection as the input state x. Many business IT methods rely on using metadata of network

packets, like MAC/IP addresses, TCP options, TCP sequence, and acknowledgment

numbers. Then, x may look like

~x =



mac

ip

seq

ack

synflag

ackflag
...


(2.2)

Other methods look at communication patterns, like average package sizes, commu-

nication partners, or the length of communication flows. In this case, ~x has different

components correspondingly. Further, using deep packet inspection, specialized meth-

ods include features derived from the payload of the network packets.

In host-based intrusion detection, data is gathered not on the network but from allHost-based

detection information available at a single or multiple hosts. There we encounter, for example,

information regarding running applications and their internal states.

Sometimes, researchers refer to application-level intrusion detection as a separate

technology. During this thesis, we consider application-level IDS as host-based methods

since they usually rely on information directly available at a single host. Apart from

being highly specialized in just one application, they share the same properties as

host-based systems.

Finally, we can now understand what the distinction between methods based onNature of fdeci

signatures or machine-learning refers to. These describe the nature of fdeci, once we

have settled for the two spaces X and Y . Machine-learning based methods, thus,

usually yield us approximations of the decision function f̂deci ∼ fdeci.
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2.2 Cyber-Physical Systems

2.1.3 Differences to other Security Measures

Anomaly and intrusion detection are by their definition non-preventing security mea- Detection,

no preventionsures. This means that they cannot prevent any attack on their own. Some IDS solu-

tions come with an accompanying Intrusion Prevention System (IPS). These use iden-

tified anomalies to, e.g., subsequently block requests from identified malicious sources.

In the domain of CPS, operators from industry usually fear the automatic interaction

of active measures with their systems. As the availability of a CPS is usually considered

being the top-most goal, a misclassification of an IPS may lead to even worse damages

than a potential attack if the intervention is not specifically adapted to this use case.

Still, the earlier a security incident is detected the more time remains for operators to

actually react upon them and prevent possible large damages.

Additionally, if an IDS is based on machine-learning, it does not derive exact deci- Approximations

of fdecisions but probabilities or confidence values for a specific decision. This fact is usually

overlooked but nonetheless real for all learning-based systems. The only instance we

might be 100% sure about a decision is if the current state has been encountered exactly

the same during the learning phase. Otherwise, we always apply an approximation of

the decision function to values we have not tested before.

2.2 Cyber-Physical Systems

While the previous explanations of anomalies and intrusion are general and not specific What are CPS

to a particular domain, we now introduce cyber-physical systems and how anomaly

detection for these differs.

In this work, we follow the common definition of cyber-physical systems as a com-

pound system where the physical word interacts with computation environments [1,

19, 20, 21]. Hence, a CPS is a mixture of both worlds characterized by interactions

and influences along its interfaces. As stated by Lee [1], usually these interactions form

feedback loops.

With this definition, we can give some examples of cyber-physical systems illustrating Examples for

CPSthe generality of this definition and an idea of different domains this is applicable to.

Water Treatment Plants are facilities handling wastewater to clean it up again. In

these systems, as representatives of the physical world, we find water and chem-

icals, the properties of the chemical cleaning process, and the environment itself

as these plants are usually operated outdoors. In addition, pumps and valves, i.e.,

actuators, manipulate the ongoing process steered by control systems based on
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respective sensor measurements. This describes an interaction through interfaces

with computational methods.

Manufacturing Systems use manipulators (interfaces) to alter materials (physical)

into the final product. With the developments of Industrial IoT, the whole process

is supervised by sensors and then finally controlled (computation).

Power Plants similarly use IT-controlled processes to transform different types of en-

ergy into each other.

Home Automation controls the behavior of lights and window blinds based on respec-

tive sensors.

Automotive and Aerial Systems like autonomous cars and drones also represent a

CPS according to this definition. These also present a controlled behavior based

on sensor measurements.

While some of the examples are only small CPS, they still share the same properties

of the examples described in more detail. The aim of these examples is not to be an

exhaustive list but to go beyond the classic examples for CPS making aware that the

methods presented in this thesis might be interesting for even more domains.

2.2.1 Differences to business IT

Anomaly and intrusion detection for CPS must answer the same decision function asAssumptions

about IDS in the business IT domain. The main difference to general business IT methods resides

in the characteristics of our input space X. IDS deployed for business IT security rely

on several assumptions. The well-known Network Intrusion Detection System (NIDS)

snort [22], bro [23], and suricata [24] all rely on parsing network packets of known

network protocols. Additionally, they incorporate off-site analysis of the network traffic

encountered as the processing is resource-intensive. The same is true for the Host

Intrusion Detection System (HIDS) OSSEC [25] and wazuh [26] which require access to

local files on the hosts and an off-site analysis systems. If such capabilities are not

already presented in a particular device, it is obviously needed to change the system

to allow the execution of these IDS. Hence, in IDS for business IT, we have specific

assumptions about X. For network-based systems, we assume:

A1 We generally see open and known network protocols as they must be understand-

able for a heterogeneous set of clients.
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A2 Hence, the network packets and their payloads are easily parseable.

A3 Network speeds are fast to allow for easy transmission to off-site analysis systems.

A4 We can change network infrastructure to enable data acquisition for anomaly

detection.

For host-based systems:

A5 We can easily access data residing on the hosts.

A6 We may change systems to acquire information.

All of these assumptions cannot be hold up in CPS. At least to some degree, existing Violated

assumptions in

CPS

constraints prevent the application of those assumptions. CPS networks usually face

closed-source and vendor-specific network protocols that cannot be parsed except for

specialized clients (A1, A2) [27]. While some CPS networks deploy similar technolo-

gies as business IT networks, especially Fieldbus networks have way lower bandwidths.

Therefore, the amount of transferable data is constrained and usually cannot be in-

creased for non-functional purposes (A3) [27]. Restrictions like power and processing

limitations, safety certifications, and closed-source components prevent many needed

changes to incorporate security-specific sensors or systems (A4) [7]. This also usually

prevents us from adding information gathering components into existing host systems

(A6) [7]. Being closed-source systems, even the access to already existing information

is often not documented and thus not possible (A5) [27].

2.3 Machine Learning

For the purpose of anomaly and intrusion detection methods, we will rely on a few Classification

vs. regressiongeneral concepts from the machine learning domain. In general, we divide machine

learning methods into classification and regression methods [28]. Referring to our

decision function (Equation 2.1), classification regards Y as a discrete set of values,

e.g. normal and malicious, whereas regression rather resembles a continuous space Y ,

e.g. (0, 1).

Further, we can distinguish different machine learning methods regarding their learn- Supervised vs

unsuperviseding strategy. There are supervised and unsupervised methods [29]. While a supervised

method requires exemplary points of our decision function fdeci, unsupervised ones only

require a set of points of the input space X. Hence, a supervised method requires us to

answer the decision function for some examples in advance before applying our actual
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method. These well-known examples are generally referred to as ground truth. In the

case of machine learning methods for IT security, we usually do not have a ground

truth as data from real attacks is not public, or has uncertainties attached. Thus in

this thesis, we will mainly stick to unsupervised classification methods. In particular,

we will use a variant of deep learning approaches called stacked denoising autoencoders.

The details for that method are outlined in Chapter 5.1.2.

2.4 Related Work

As we have discussed the needed background for this work, we now introduce related

work concerning our contributions.

2.4.1 Attack Landscape for Cyber-physical Systems

Bridging the gap between virtual and physical worlds, CPSs introduce several new at-

tack vectors. Antón et al. [2] give a summary of current exploits and trends in attacks

on CPS. Particularly, they state that exploitation of industrial equipment like Pro-

grammable Logic Controllers (PLCs) is becoming more relevant while many CPSs still

do not implement basic security principles. Anomaly and intrusion detection systems

try to find security incidents as early as possible to enable fast recovery. This is even

more important with the high damage potential of CPS. Therefore, we pay particular

attention to such attacks. Recent attacks such as Stuxnet and Duqu [30] showed dam-

age potentials ranging from theft of intellectual property to physical damage. These

attacks have been analyzed in detail in the past [3, 31]. The reports show that attackers

should be assumed to be very knowledgeable about the attacked systems. Attackers

effectively manipulated application logic of Supervisory Control and Data Acquisition

(SCADA) systems, which developers believe to be too specialized to be understood

by someone not involved in its creation. Other analyses of similar attacks like Duqu,

Flame, and the attack on the Ukrainian power grid came to the same conclusion [4, 5].

Therefore, although CPS face the same threats as other systems, there are also yet

unknown and targeted attacks for specific systems.

Turner et al. [32] showed that among mechanical engineering students the awareness

of such problems is low. The students were not able to link problems with the quality

of the resulting products to security-related problems.

Possible reasons for this increase in attacks on CPSs can be found in [7]. In the study,

Fernandes et al. [7] conclude that CPSs have specific properties differentiating them

from classical business IT. Among others, they mention limited resources, communica-
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tion protocol diversity and repurposing of known technologies in unforeseen ways. They

conclude that, hence, some of the established security measures cannot be transferred

directly to CPSs. Other security practices, however, may benefit from the well-defined

behavior of a CPS which should ease the learning of system models, eg. for anomaly

detection.

Fernandes et al. [7], only mention one approach based on fingerprinting. In our

approach, we take advantage of that well-defined behavior to train a stacked denoising

autoencoder enabling anomaly detection in even unknown protocols.

After these considerations of attacks with high damage potential on CPS, we assume

to face an attacker as outlined in the Dolev-Yao model [33]. However, we are aiming

for an early detection of attacks not the actually prevention of them. Therefore, we

need more details on what types of attack we can detect than on whether an attacker

is able to execute them. We give such details along with the described methods in the

following chapters.

2.4.2 Data Acquisition for Anomaly Detection in CPS

To apply anomaly detection to any use case scenario, it is a pre-requisite to obtain

suitable data. There are basically three different possibilities to acquire such data:

direct acquisition, generation, or use of published data.

2.4.2.1 Direct Acquisition

While network capturing is a well-established technique, published datasets (cf. Ta-

ble 4.1 and Section 5.2.3) show that anomaly detection in industrial settings may see

large amounts of data. For a bandwidth-friendly acquisition of this data, reduction and

compression techniques such as the Deflate algorithm of the Zlib library [34] can be

used. However, common compression algorithms like LZ77 [35] in Zlib only use a fixed

window size in which data is replaced. Redundancies that occur on a lower frequency

than this fixed capture window cannot be eliminated. Additionally, as this algorithm

uses a relative referencing approach instead of a direct referencing, it is required that

the data is decompressed in the same order as it was compressed.

The approach which we present in Chapter 4.1, instead, relies on the fact that network

traffic in CPSs may repeat with arbitrary frequencies. Also, we allow for decompression

of the data in an arbitrary order. This effectively enables parallelization and offloading

to multiple worker nodes after the data acquisition as is described and utilized in

Section 5.1.3.
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2.4.2.2 Generation

Generating data for anomaly detection in industrial settings has previously been done

for the creation of fixed data sets. However, as the goal was to produce a fixed data

set, the methods used usually do not allow for easy adaptation to new use cases.

Later, Lemay and Fernandez [36] introduced a first Modbus dataset that originates

from simulations. Their system is based on self-developed programs to generate the

data. For their dataset, they simulated a power grid system and used that data in a

fixed topology to derive a Modbus dataset.

Instead of using a real scenario, [15] describes a simulation framework to verify theCurrent

simulations security state of a networked water level control system. To measure the performance

of their detection approach [37] use a custom simulation testbed which is not described

in detail. By using a handcrafted feature set they detect intrusions in Modbus traffic.

However, all these approaches are specific to each use cases and cannot directly be

applied to others.

Existing simulations which allow for easier adaptation have been presented by [38,

39]. Antonioli and Tippenhauer [39] present a toolkit which can be used to reimplement

the networking parts of CPS installations. Their tool MiniCPS is able to recreate differ-

ent network topologies and specific industrial network protocols. However, their toolkit

does not include means to recreate realistic data to be transmitted over the network.

They assume that meaningful values are already available. In contrast, Chabukswar

et al. [38] also simulate the physical layer but as their network simulation relies on the

OMNET++ framework it lacks the possibility of simulating more complex protocols.

Our approach in Section 4.2 will combine the two ideas, simulating the network as well

as the physical layer while still allowing adaptation in both layers.

2.4.2.3 Datasets and Testbeds

A viable source of recorded and documented network intrusion test data gathered from

enterprise networks are the DARPA challenge datasets from 1998 to 2000 [40]. They

contain conventional office IT traffic as well as some well-described attacks but no

CPS-specific communication.

There are few datasets that can be used to compare the performance of intrusion

detection systems on industrial network data. A more recent, CPS-specific Modbus

dataset, including attacks and labels, is provided by [41]. These have been generated

by a simulated control system, but are still interesting for first analysis. Another

dataset covers the traffic of an industrial test lab for hands-on testing captured during
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the 4SICS conference in Sweden [42]. Although it is quite big, this dataset does not

contain any labels or information about possibly included attacks.

In [43], about 30 Industrial Control System (ICS) testbeds have been reviewed. How- Surveys

ever, the authors found that less than half of them actually tried to verify the acquired

data. Candell Jr. et al. [44] show one example of an ICS testbed where the authors

evaluate different processes. As they rebuild the actual network infrastructure of their

specific application, their approach is not directly transferable to other use cases.

McLaughlin et al. [45] found that while ICS testbeds usually address vulnerabilities

in one layer, e.g., the field devices, attacks most often target several layers. Therefore,

they argue that multilayered ICS testbeds are needed to analyze the vulnerabilities and

develop countermeasures effectively.

Our framework provides such a multilayered approach by merging two existing frame-

works into one (cf. Section 4.2). Further, we do not restrict our framework to one

specific application but rather describe how operators of CPSs can use the framework

to model their own use case.

2.4.3 Anomaly Detection in CPS

At the moment, current research is investigating two different approaches to anomaly

detection in industrial settings. The first tries to adapt business network anomaly

detection to the Fieldbus protocols used in the industry. The second approach includes

more domain-specific knowledge into the detection methods to find anomalies based on

an altered behavior of the industrial process.

The authors of [46] use discrete-time Markov chains to detect alterations in sequences Metadata-based

detectionof network communication of a CPS. As they tested their approach on real-world data

of a real plant, the effectiveness of their approach cannot be directly compared to

other solutions. Often, telemetry analysis is used to detect anomalies in industrial

network traffic [37, 47]. However, it has been shown that detection purely based on

metadata is not sufficient for industrial contexts. [48, 49, 50] were able to demonstrate

successful manipulations of process logic which are undetectable by metadata-based

anomaly detection methods.

Proposing a clustering approach on the actual process data, the authors of [51] chose Process-based

detectiona different method to detect anomalies in industrial process data with an accuracy of

up to 98%. Several articles already concluded that the integration of process data into

intrusion detection systems leads to an increase in accuracy. According to Turner et al.

[32] and Pasqualetti et al. [52], neglecting these properties results in inferior attack

detection.
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Additionally, further approaches use a thorough analysis of the CPS to judge the

behavior using either mathematical models [53] or simulated data [54]. While Haller

and Genge [53] construct a mathematical model of the underlying process and exercise

it on a chemical process, Potluri et al. [54] use simulated data from a robot arm to

detect data injections. With the digitization of industrial processes, companies also

start to build complete digital twins for the system, processes, and their interactions.

In [55], such a digitalized twin of the system allow for comparing current real states with

expected ones. Also, the input and output to processes and algorithms in industrial

automation scenarios allows for detecting anomalous states [56].

While applying machine learning to network anomaly detection is not a new idea,Machine-Learning

based detection current methods do not take advantage of the characteristic properties of CPSs men-

tioned before.

Beaver et al. [57] evaluated different anomaly detection methods based on Support

Vector Machines, Decision Trees, Random Forests, and Nearest Neighbors for CPSs.

Despite good performance, they conclude there is still a need for improved features as

input. In contrast to our approach in Chapter 5, they extracted protocol-specific fields

of the network packet payloads to analyze the traffic. Hence, their method is bound to

a specific protocol and may suffer performance problems as described in Chapter 4.1.2.

An application of an ensemble of autoencoders for network anomaly detection was

presented with the Kitsune framework [58]. While the authors use autoencoders for

traffic classification, the framework includes a separated feature extraction step, which

requires at least a basic understanding of the involved network protocols. In their

framework, Mirsky et al. [58] also focus on an efficient online application on low resource

devices by using a Raspberry Pi. However, compared to control equipment in CPSs,

also a Raspberry Pi may be considered a powerful device.

Feature learning, however, has already been applied in the domain of image recogni-

tion [59].

Apart from methods analyzing the network traffic, there are scenario-adapted anomaly

detection approaches that require the modeling and understanding of the underlying

CPS [53]. Similarly, Potluri et al. [54] use data from a simulation to detect false data

injection attacks in a production setting. Instead of assuming that identifying sensor

and actuator values from network packets is achievable, we provide a feature learning

approach that extracts the required information automatically from network packets

captured in the CPS.
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2.4.4 Performance Evaluation of IDS

While many anomaly detection methods have been proposed, there is less research on

the usefulness of their outputs and how their benefit can be maximized.

2.4.4.1 Alert and Log Aggregation

While data and log aggregation are in widespread use for big data applications, the se-

curity community currently adopts using Security Information and Event Management

(SIEM) as well as logging systems. An overview of existing systems is given in [60]. In

contrast to these systems, our framework extends to a semi-automatic acquisition of

information. Additionally, we provide a method based on the collected data to assist

the understanding of attack steps and their current progress. Research suggests that

understanding the lateral movement of threats throughout a network is inevitable for

its mitigation [61]. Additionally, concepts for network data aggregation are already

available. Sadighian et al. [62] propose a model for an ontology-based alert fusion

similar to ours. While they integrate several network intrusion detection sensors, they

do not consider missed alerts and tracing the attacks throughout the network. For

low resource anomaly detection under constraints, Sedjelmaci et al. [63] show a game-

theoretic model and simulation to derive theoretical characteristics.

In all cases, task-specific data is vital for the effectiveness of the solutions. While data

from different abstraction layers have proven to be efficient for anomaly detection [10],

even in their absence, simulations represent a reliable source for information retrieval

and data acquisition, as shown in Chapter 4. Additionally, we now see more distributed

attacks [64] requiring us to join local IDS into more capable distributed setups.

Recently, the industry adopts distributed and highly connected network setups [65,

66, 67, 68]. While distributed anomaly detection is well studied for classical business

IT [69, 70], there is yet little information for CPS [71]. Karimi et al. [69] use an

Apache Spark cluster and the Hadoop Distributed File System (HDFS) for aggregating

network traffic and a consolidated analysis. Igbe et al. [70], instead, analyze the traffic

independently on each system and use the results of other systems as input for their

own analysis. However, for CPSs with their decentralized setups, different aggregation

mechanisms are needed. Thus in Chapter 6, we show how to aggregate information

from distributed anomaly detection systems in CPSs.
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2.4.4.2 Optimization

Furthermore, an optimized placement of available IDSs nodes may increase the overall

system performance.

Chen et al. [72] present a first technique to optimize IDS sensor placements with ge-

netic algorithms and suggesting suitable and intuitive resulting places for the IDS. More

formal approaches use attack graphs and model the question as a minimum set cover

problem, which is known to be NP-hard [73]. For safety sensors, Isovitsch and Van-

Briesen [74] investigated optimal quality sensor placement using geographic information

and statistical correlation features. However, they focus on physical manipulations of

the water quality instead of IT security attacks.

In contrast, we define a simulation model enabling the search for optimal placements

of arbitrary anomaly detection systems in different network architectures even under

placement constraints (cf. Section 6.2).
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Currently, available standards for IT security in industrial use cases like IEC62443 [75] From SRA to

Requirementsusually start the process of securing systems by identifying the highest risks. For this

purpose, they consult Security and Risk Assessment (SRA), e.g., [12, 76], to derive

security requirements that need to be met by the system. A SRA assesses the dam-

age potential of violated security goals of every asset in a system. In combination

with threats and their corresponding attack potential, risks for the system can be de-

termined. For the mitigation of these risks, security controls are introduced. Often, Requirements to

Anomaly

Detection

security concepts for industrial use cases cannot utilize the same security controls as

in business IT for the respective requirements. Long life-cycles of used machines and

expensive safety certifications may impair the deployment of specific security measures.

A less invasive approach to address regulatory compliance is often to deploy anomaly

detection allowing for at least being aware of possible attacks [60]. For this purpose,

we need specialized IDS able to work on the already available data to avoid the de-

scribed restrictions. As this is usually the first point of contact for CPS operators with

anomaly and intrusion detection, we start this thesis by analyzing different security re-

quirements and transferring them to anomaly detection. While some security measures

directly refer to an anomaly detection approach, for others, only their fulfillment can

be monitored. Although monitoring is often regarded as a security measure itself, we

use it in this chapter as a trigger for anomaly detection. In fact, a monitoring system

reporting the non-fulfillment of a requirement is itself a form of anomaly detection.

This analysis shall also deepen the understanding of the various forms anomaly and Contribution of

Chapterintrusion detection can appear as. Finally, we bring all these different aspects together

and introduce a modular architecture able to integrate all the aspects and allowing for

a use-case specific adaptation.

Parts of this chapter have previously been published in “Deriving Impact-driven

Security Requirements and Monitoring Measure for Industrial IoT” by Gerhard Hansch,

Peter Schneider, and Gerd Brost [12].

This chapter first presents a security toolbox in the form of a catalog for the deriva- Structure of

chaptertion of intrusion detection and system monitoring requirements based on SRAs tailored
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for the IIoT and CPS domain. By mapping different security measures to respective

requirements, it allows for deriving rules for current anomaly and intrusion detection

solutions. Enabled by this mapping, the catalog supports the often laborious defini-

tion and prioritization of monitoring rules by an SRA-based automated approach. By

connecting the catalog with an SRA, we provide a framework that dynamically derives

recommendations and requirements from a variety of protection and monitoring mea-

sures and techniques. Thereby, we provide a general methodology that helps operators

to identify, justify, and implement suitable measures in order to strengthen the overall

security of their systems.

3.1 Protection and Validation

With security and risk assessments, we derive security requirements based on securityModel for

requirements objectives and different asset classes. For IIoT and CPS, relevant security objectives

are confidentiality, integrity, authenticity, and availability. On an abstract level, assets

can be grouped into system components carrying out a function which operates on or

generates data. Communication between functions and components is possible by data

transmission over connections. These two concepts allow for categorization of assets in

these classes and an attachment of the required security objectives. Tables 3.1 and 3.2

then provide a catalog for protective security measures and monitoring and intrusion

detection solutions.

Objective Function Component Connection Data

Confidentiality Obfuscation,
Runtime pro-
tection

Access con-
trol, Storage
encryption

Encryption Encryption

Integrity Runtime pro-
tection

Trusted/Secure
boot, Runtime
protection

Authentication,
Firewall

Cryptographic
Hash

Authenticity Signature Digital iden-
tity

Access control Signature

Availability Error han-
dling, Redun-
dancy

Redundancy Redundancy,
Error handling

Fallback val-
ues

Table 3.1: Protection measures per security objective and class.
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Objective Function Component Connection Data

Confidentiality Memory and
output analy-
sis

— Cryptanalysis Cryptanalysis

Integrity Software test,
Comparison

Comparison,
Trusted/Se-
cure boot

Traffic analy-
sis

Comparison

Authenticity Functional
test

Trusted boot Second chan-
nel compari-
son

Signature
check

Availability Heartbeat,
Timeout

Link detection Link detection File access

Table 3.2: Validation measures per security objective and class.

There are many methods for SRA already available [12, 77, 78, 79]. They all provide

a way of identifying most relevant security problems and derive further requirements

to lower remaining risks. For each requirement defined in such a SRA, a suitable Mapping to

protection and

monitoring

protection measure is available. Depending on the modeled asset category and the

security objective to be protected, Table 3.1 provides a mapping for applicable security

measures. For each of them, the following paragraphs give details on how they increase

the security posture. Additionally, we suggest measures to validate the fulfillment of

these measures automatically. By this, monitoring the effectiveness of security measures

can become a form of anomaly detection. However, as our summary in Table 3.2

shows, this is not yet possible for all the security measures. Especially in the case of

availability of assets, a violation of the security objective can have other reasons than a

direct attack. Therefore, the following paragraphs give short explanations for available

protection measures and how their fulfillment can be validated regarding a use as an

indicator for anomalies.

3.1.1 Cryptographic Hashes

A cryptographic hash uses a one-way function to calculate a unique identification hash

for a given byte sequence. Relying on robust functions, they can be used to generate

identifiers which do not allow to derive the original byte sequence based on the hash
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result. Thus, they can be used as a unique identification of data without revealing their

contents.

Validation Assuming that the content of some data artifact is known, hashes can be

calculated on both sides. A comparison of the resulting hash is enough to check

the validity of a huge amount of data. However, it is worth noting that so far

some earlier hash functions have already been shown to cause collisions and, thus,

should not be used anymore [80].

3.1.2 Signatures and Digital Identities

While cryptographic signatures are a great tool to provide authenticity for informa-

tion, they usually require the setup of a Public Key Infrastructure (PKI) in IIoT use

cases [81]. If we face a requirement indicating the need for signatures, it is, thus, needed

anyway, that all affected components have access to methods to verify the signature.

Validation The same method can then be used by a validation system. If the method

is not available, not able to verify a signature, or there is no signature for the

required data or function available, an alert must be logged.

For data, there is an alternative validation method based on the idea of digital

twins. Data transported in IIoT use cases is consumed or produced by some

function. Thus, data relates to general input and output in software engineering.

A possible solution for monitoring the validity of such inputs and outputs is,

therefore, applying the same measures. Recent work [56] showed the effectiveness

of checking the input validity to functions in industrial use cases. However, these

methods must be adapted to each data type and function.

3.1.3 Runtime Protection

McLaughlin et al. [45] suggest several software mitigation strategies specific for em-

bedded and Cyber-Physical Systems. Among these are control flow integrity and code

randomization aiming to provide a secure execution. Specific architectures like Intel’s

Trusted Execution Technology (TXT) and ARM’s TrustZone represent a suitable mea-

sure to execute code in a restricted enclave, effectively sandboxing it from other code

on the same processor. Thus, the restriction of shared hardware resources and infor-

mation transfers prevents many side-channel attacks. The restricted access ensured

by corporate production environments similarly yields a physical runtime protection in

IIoT scenarios.
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Validation We can only verify the integrity of proprietary and vendor-specific sand-

boxes if a suitable checking mechanism is provided. Regular penetration tests

and security audits may reveal possible vulnerabilities. However, manipulations

may still occur even in air-gapped systems, e.g., by social engineering attacks.

3.1.4 Trusted Boot

Among others, trusted boot can be implemented with Trusted Platform Modules

(TPMs). These measure the executed code in a physically secured environment. By

implementing trusted boot, a TPM can provide hashes of executed software beginning

with the boot phase up to software executed in userspace. Any modification to the ini-

tial setup of a component can, thus, be detected. Apart from this component integrity

measurement, TPMs also provide capabilities for storing identification material such

as private key material of certificates in a physically secured space.

Validation The measured hashes during the boot phase can be used to verify the

running software. In a trusted boot strategy, the next software component verifies

the measured hashes with predefined ones. Thus, a trusted boot mechanism

already validates itself.

3.1.5 Encryption

In industrial network protocols, there are only limited encryption capabilities. However,

recent research developed new methods for different protocols [81, 82, 83, 84]. Those

are usually based on wrapping the Fieldbus communication in TLS tunnels or slight

modifications of the protocol itself.

Validation Using cryptanalysis methods, weak encryption ciphers can be identified.

As these methods try to break the encryption without the proper key material,

they can only identify non-working setups. Thus, the lack of a corresponding

method does not validate the efficiency of an encryption method. Hence, we rely

on heuristics to validate the encryption’s efficiency (see Section 3.2.4).

3.1.6 Redundancy

Using redundant systems, the availability of components and connections can be se-

cured. In the case of industrial field buses, like CAN [85], this can be achieved with

redundant physical connections.
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Validation The redundant components and connections can be validated by using ex-

plicitly specific ones. Custom test cases for this check can be developed.

3.1.7 Firewall

Firewalls act as a gateway for ingoing and outgoing data at a specific point. The

definition of predefined rules for metadata, content, or connection state enables fine-

grained control. However, a detailed configuration quickly gets rather complex. By

filtering the data flow, a firewall, as proposed in [86], enhances the integrity of all

passing connections.

Validation By systematic sending of forbidden data or along constrained connections,

we can validate the firewall rules and test their effectiveness. This is essentially

analog to unit testing the firewall rules. Therefore, specific tests must be devel-

oped for every deployed setup.

3.2 Continuous Monitoring the System

Using a lightweight security analysis, we derive a set of requirements. These security

requirements and their corresponding protection measures can now be translated au-

tomatically into rules for a continuous monitoring system. For each rule, we define

an alert level which defines the severity of its violation. Here, the damage potential

of the violation of any security goal can define this alert level. While the methods

presented so far are diverse, they all build upon the same technical requirements as

they tackle a decision function — measure fulfilled or not (Eq. 2.1)— in different ways.

A suitable monitoring and detection system therefore includes: data acquisition, data

preprocessing, data forwarding, data analysis, and data reporting.

Identifying suitable solutions for data acquisition and preprocessing, additionally,

requires an understanding of the different available data types which are relevant in

IIoT scenarios.

3.2.1 Data Categorization

In the field of IIoT, there are several data sources that can be monitored. Table 3.3

lists examples for data sources. These data sources can be categorized according to

their location where the data can be recorded, its data type, and the place where

its analysis should take place. Most data are best recorded locally at each machineLocal data

participating in the system. Recording locally ensures later analyses are based on
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the actual data as it arrived or has been measured reducing the risk of intermittent

modification. However, as the evaluation of measured data requires significant resources Remote data

and may depend on other data, remote systems provide interfaces for analysis. While

some intrusion detection frameworks already incorporate such distributed setups, a

more generic approach for distributed data acquisition in the case of network traffic

is given in [8]. In stages before the final deployment of the system, the output of Alternatives

simulations such as described in Chapter 4.2 gives a basis for the implementation and

test of suitable analysis mechanisms.

Data source Location Data type Analysis

executed software local measurement remote
application data local parse-able format local
log data local text format remote
network architecture global metadata information remote
network behavior local measurement remote
network traffic local measurement remote
system behavior global measurement remote

Table 3.3: Data sources relevant in IIoT settings and corresponding monitoring techniques.

3.2.2 Data Acquisition and Preprocessing

As pointed out previously, most data available in IIoT scenarios is best measured locally

but analyzed at a remote location. Since these scenarios incorporate a lot of different

components, an efficient strategy for preprocessing data is required. Considering the

different data types available, a set of different processing methods is required. While Preprocessing

system log files can be transmitted directly, network traffic may be compressed and

forwarded using secured connections as described in Section 4.1.

In an ideal system, application data which is directly involved in the IIoT process

should be subject to an input and output validation [56]. Logs produced by this vali-

dation procedure should also be forwarded to an offsite analysis system. The executed

software on each system can be measured using cryptographic hashes. Further, using

a hardware trust-anchor and measured boot concepts on the systems, these hashes are

protected from manipulation. As the network architecture and system behavior are Recording

global properties of the systems, no preprocessing can be done on them but instead the

measurement should be considered.
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3.2.3 Data Analysis and Reporting

After preprocessing the data, we can transmit it to an offsite analysis system usingForwarding

secured connections, e.g., by the use of mutual TLS. To ensure a trusted communication,

TLS with client and server authentication is required. Depending on the complexity

of the network, pre-shared device-specific keys may be used for the authentication.

In networks with higher system complexity or dynamics, the use of client and server

certificates should be considered.

The analysis system is in charge of checking all defined validation methods or rulesAnalysis and

reporting against the data provided by the participating systems. Violated rules lead to an

alert and are signaled to the system operator in a SIEM system. Additionally, the

SIEM allows for manual checks of all provided data. Suitable filtering and correlation

techniques may be used for advanced manual analyses.

The core of the detection of anomalies and intrusions is, thus, the definition of suitable

rules for the data provided.

3.2.4 Monitoring Rules

Table 3.4 lists monitoring measures to supervise the fulfillment of the derived secu-

rity requirement implementations as well as validate ingoing and outgoing data. In

the following, for each of these measures, details and examples are given to derive

corresponding monitoring rules automatically.

Objective Function Component Connection Data

Confidentiality Runtime mon-
itoring

Tamper detec-
tion

IDS Entropy
checks

Integrity Integrity mon-
itoring

Tamper detec-
tion

Network moni-
toring

Plausibility
checks

Authenticity Fingerprinting Identity val-
idation with
HSM

Network moni-
toring

Availability Runtime mon-
itoring

System moni-
toring

Network moni-
toring

Table 3.4: Exemplary Monitoring measures per security objective and class.
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1 <syscheck>
2 <d i r e c t o r i e s r epor t change s=” yes ”
3 r ea l t ime=” yes ” c h e c k a l l=” yes ”>
4 /path/ to / f o l d e r / or / f i l e
5 </ d i r e c t o r i e s>
6 </ syscheck>

Listing 3.1: Declaration of integrity scans for files and folders in the free IDSs OSSEC [25]
and wazuh [26].

1 INSERT INTO f i l e s ( f i l e , md5sum)
2 VALUES ( ’ /path/ to / f i l e ’ , ’ 22 ee5cebb5bddfad5490633dab7d1afc ’ ) ;

Listing 3.2: Whitelisting known hashes of files for integrity scans using OSSEC.

Tamper Detection Checking the file integrity on affected components guarantees the

detection on any unintended changes. A rule for state-of-the-art host-based intrusion

detection systems to check the integrity of a specific file or folder, e.g., a software

artifact, or some data asset, is shown in Listing 3.1.

Such a configuration is used locally to derive a list of files and folders to compute

hashes on a regular basis or upon changes. As many systems in IIoT scenarios are

based on the Linux operating system, a real-time monitoring can be deployed using the

inotify-subsystem [87]. A whitelisting approach of specific hashes allows for trusted Reducing false

positiveschanges in the measured files. Whitelisting hashes of known and trusted files can be

done by adding them to a database (cf. Listing 3.2). With wazuh [26] and OSSEC [25],

there are two host-based detection frameworks available with inbuilt whitelist support.

While these systems monitor file changes using md5 and sha1 hashes, the whitelists

only support md5 hashes, which may be considered too weak [80]. Therefore, custom

implementations of such logic shall use state-of-the-art cryptographic hash functions.

By comparing new hashes against those stored in a whitelist database, the offsite

analysis system can suppress false positive alerts for intended file changes. A corre-

sponding configuration option for OSSEC/wazuh is shown in Listing 3.3.

Network Monitoring The huge amount of network traffic arising in IIoT scenarios

may either be analyzed locally or remotely. In case the device has enough resources,

local processing using state-of-the-art NIDS, e.g., snort [22] or suricata [88], ensures

immediate detection of threats. However, most IIoT scenarios are built upon low-
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1 <g l o b a l>
2 <md5db>/path/ to /md5 . db</md5db>
3 </ g l o b a l>

Listing 3.3: Defining a whitelist database for integrity scans using OSSEC.

resource devices which profit from a remote analysis. In that case, local acquisition,

lightweight compression, and forwarding, as shown in [8], minimize the impact of the

monitoring as much as possible. After transmission, state-of-the-art NIDS perform the

analysis on batches of the recorded data.

We define the network behavior for each device as the set of all services and listeningService

enumeration ports and addresses of it. Most operating systems provide a suitable mechanism to

derive such a list using onboard tools. For Linux, such a list may be derived as in

Listing 3.4.

1 s s −t l p

Listing 3.4: Listing all processes for TCP connections with their ports on a Linux machine.

The output of these tools should be logged locally and reported to the offsite analysis

system.

The analysis system must, additionally, monitor the network for its architecture. ThisGlobal view

includes details about communication partners and paths. As IIoT use cases always

incorporate physical sensors and actuators to some degree, a feedback loop between

the physical world and its digital counterparts is given. This feedback is at least in

parts shared over the network for digital control of the underlying physical processes.

Therefore, a suitable system for tracking and analyzing the system behavior is needed.

Such systems have been previously described in [10, 46, 52, 53, 54, 89].

Link Detection The availability and configuration of network interfaces can be de-

tected using onboard tools on almost all common operating systems.

On Linux available and configured network interfaces may be retrieved as in List-

ing 3.5.

1 ip addr | grep ” s t a t e UP”

Listing 3.5: Listing all active network interfaces on a Linux machine.
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Heartbeat/Timeout If a specific service is up and running can be checked locally as

shown in Listing 3.6.

1 s s −tup | grep LISTEN

Listing 3.6: Listing all local services on a Linux machine.

From remote systems, testing the availability of a service is best done by a connection

attempt. A failed connection attempt indicates an unresponsive or unreachable service

and must be logged. For this we can use port scanners like nmap (cf. Listing 3.7).

1 nmap −sS 1 9 2 . 1 6 8 . 1 7 8 . 1

Listing 3.7: Listing available services from remote.

Functional Testing If a function must be treated as a black box, testing the behavior

of the function indicates whether it is working as intended or not. Such a functional

testing can be implemented with comparatively low effort using unit tests from software

testing. However, specifically tailored tests may produce even more accurate results.

Entropy of Encrypted Storage and Data While the encryption of transferred data

and storage affects two different classes in the previously described catalog, the measure

to protect their confidentiality is the same. As encryption of data and storage essentially

provides a Binary Large Object (Blob) that cannot be checked for its validity, it is hard

to monitor if such a requirement is met. However, we can measure the entropy in the

binary blob by reading the file or storage medium and calculating the entropy given as

E = −
∑
α∈B

pα log2(pα) (3.1)

whereas B denotes the set of all possible byte values, i.e., B = {0x00, 0x01, . . . , 0xff}
and pα represents the frequency of occurrence of α in the investigated storage medium.

Assuming data is encrypted using state-of-the-art algorithms, the frequency of occur-

rence from different bytes must be almost identical. If this was not the case, then the

encryption algorithm either did not manage to hide the information, which would allow

for attacks, or the data was not encrypted at all. Assuming a proper encryption has

taken place, for every α, β ∈ B the frequency should be similar, i.e., pα ≈ pβ.
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1 ps aux

Listing 3.8: Listing all running processes on a Linux machine.

Hence, for a theoretical correct encryption Equation 3.1 simplifies to

Eenc = log2 (|B|) (3.2)

whereas in all other cases, the entropy E will be less than Eenc.

Thus, the measurement of entropy in a file or storage medium yields indicators for

how well encryption has been implemented and applied to it.

A simple implementation of this entropy check can be obtained using compression

methods. Similarly to the compression method outlined in Chapter 4.1, after capturing

and compressing network traffic, the compression rate gives an estimate on how much a

data stream is encrypted. We show that unencrypted industrial network traffic can be

compressed up to 64%. This means it carries much redundant information that relates

to low entropy.

Fingerprinting Similarly to the whitelisting of known executables and files discussed

before, we can calculate fingerprints of important files. Using hash-functions, we obtain

a fingerprint of the current state of every file. A simple monitoring procedure can now

check whether any of the monitored files were ever modified by recalculating hashes

and comparing them to the history.

3.2.5 System Monitoring

Continuous logging of all running processes enables the identification of newly spawned

processes (cf. Listing 3.8).

3.3 Monitoring Architecture

Finally, the described process of data acquisition, preprocessing, analysis, and report-

ing requires a flexible architecture, as shown in Figure 3.1. There is no need to require

a particular network topology as long as each component may reach the offsite analysis

system. In Figure 3.1, we demonstrate how such a continuous monitoring system can

be implemented. The processing starts from a set of data sources, src1src2, . . . , srcn
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in an input layer. From there, acquired data can be directly forwarded to the pre-

processing stage. To enable the acquisition from large CPSs, compression methods as

described in Section 4.1 can be used. The preprocessing stage then transforms the data

into the filtered representations rep1, rep2, . . . , repm. Afterward, the different moni-

toring mechanisms outlined in Section 3.2, M1,M2, . . . ,Mo, use each a subset of the

representations generating alerts at corresponding alert levels at the earliest moment

possible. A scheduler uses already available alerts and supplementary data represen-

tations to issue further investigations in dedicated systems. This includes comparing

data to expected data from digitally twinned systems [55], checking identified system

invariants [53], or issuing a manual analysis request to a system operator.

3.3.1 Preprocessing Stage

Data source Preprocessing

executed software hashes of binaries
application data data validation logs
log data whole log files
network architecture not applicable
network behavior listening addresses/ports and associated processes
network traffic compression and forwarding
system behavior not applicable

Table 3.5: Local preprocessing of data sources to facilitate and streamline the detection ap-
proaches.

In the preprocessing stage, data for each element of the CPS must be collected and

converted to a suitable representation (cf. Table 3.5). In Table 3.3, we already listed

possible data sources. For an actual implementation, however, we need to distinguish

classical IT systems and interfaces to the physical world: IT systems can deliver a

lot of data such as executed software, application and log data, and network traffic.

As sensors and actuators, i.e., interfaces, are small embedded and highly purposed

devices, they do not directly deliver data. However, firmware updates sent via the

network, as well as control and measurement signals transmitted may be used as input

data. Accessing data from the physical world is hardest as we can only rely on dedicated

sensors. An analysis of the system behavior gives insights on what process values to

observe. A data historian, as used in some SCADA systems, also offers a wealth of

sensor, actuator, and process data.
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Figure 3.1: Architecture for holistic monitoring and intrusion detection.
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3.3.2 Monitoring Stage

In the monitoring stage, we can now use a collection of the derived monitoring measures

as well as latest anomaly detection methods. While our method from Chapter 5 can

work on network data from a large set of protocols, we are aware that specific scenarios

might already have more accurate methods available. Therefore, we assume to have a

set of methods to be applied in the monitoring stage. While using different algorithms,

all these methods use data as described before to generate alerts. Applying them in

a streaming pipeline leads to the association of new signals with already known data

points. By that, they have fast detection performance with varying accuracy. Making

the root cause of any detection transparent to a CPS operator, however, requires further

processing.

3.3.3 Reasoning Stage

A scheduler forwards generated alerts to either reasoning-based systems or a manual

analysis by an expert for that CPS. Currently, there are two possible reasoning-based

methodologies: the use of complete digital twins of a CPS to identify inconsistencies

with reality [55] or a rigorous mathematical or logical analysis of the system [53, 56].

Further, the alerts can be forwarded to systems relating the information into attack

campaigns as described in Section 6.3.

3.4 Summary

In this chapter, we illustrated how CPS operators can identify possibilities for the de- Contributions

ployment of anomaly and intrusion detection systems. By providing a catalog matching

security requirements with appropriate monitoring and intrusion detection measures,

we assist in the cumbersome choice of IDSs and their configuration. After identifica-

tion, all the different IDS are joined into one coherent architecture (cf. Figure 3.1).

Referring to C1, introduced in Chapter 1.3, we derived an architecture for aggregating

needed input data and a framework combining all the methods. The combination of

an SRA, derived security requirements, and finally our mapping from security require-

ments to monitoring and anomaly detection measures brings us towards a methodical

approach for the integration of IDS in current CPS security concepts. This eases the

tedious manual task of identifying suitable monitoring and detection measures as well

as their correct configuration. As outlined before, the following chapters shall deepen

parts of the described process and architecture. All presented monitoring or anomaly
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detection systems initially require input data to work on. Hence, we present differ-

ent methods for its acquisition in the following Chapter 4. Further in Chapter 5, we

present a CPS-specific and protocol-agnostic high-performance approach for anomaly

detection. With Chapter 6, we then develop guidance for a better understanding of the

results of the deployed IDS as well as optimization strategies when going to distributed

intrusion detection applications.

38



4 Data Acquisition

Revisiting the general idea of anomaly and intrusion detection, we need to differentiate

normal and anomalous states of a system. Independent of the corresponding state

representation, a scientific evaluation of any new method is only possible by application.

For this, we need test input to confirm the concept versus reality. Additionally, most

machine-learning methods already need training data for the actual development.

There are, however, several challenges resulting in only a small number of published Difficulties in

obtaining datadatasets. First, CPS security is still a young topic with only a short research history.

Hence, not too much work on data acquisition has yet been done. Second, while new

projects for securing CPS flourish, these are usually under non-disclosure agreements

impeding the publication of involved data. Due to a feeling of uncertainty of CPS

operators, fear of unintended intellectual property release is always involved. This

leads to a situation where new intrusion detection methods get developed while the

data used for training or even evaluation is not public. For high-quality research,

however, we must be able to re-assess previous methods to evaluate the current progress.

Third, the few published datasets often lack the needed depth. As we will see in

Chapter 5, accurate anomaly detection for CPS requires more than just evaluating

network packet headers. However, most of the existing datasets focus on exactly this

scheme. Additionally, building up testbeds of bigger CPS installations is costly.

In this chapter, we introduce two different methods for the acquisition of data. Different kinds

of dataWe start with a concept allowing for capturing data in a network. At first glance,

acquiring data from production systems may seem trivial. However, during projects

with several industrial companies we noticed that operators still often lack knowledge of

appropriate mechanisms. The main reason is usually the vast amount of data available

and its transmission from complex CPS networks to an off-site analysis system. Hence,

our method is designed to overcome general challenges we may face in complex CPS.

The high amount of network data usually must be transferred to an off-site analysis

system (also cf. Figure 3.1). Additionally, often the network link to an off-site system

has a lower bandwidth compared to the CPS network. For the transport of data over
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slower network links, we, thus, present a minimalist compression method keeping the

additional load as small as possible.

While the use of genuine production data for the development and testing of new

anomaly detection methods promises the most realistic and effective results, we cannot

always rely on this method. Access to production CPS may be restricted or the publica-

tion of its associated research prohibited. Further, current standards like IEC62443 [75]

call for a security-by-design approach. This encourages us to develop and integrate ap-

propriate security measures not after the launch of a new CPS but already during its

design phase. Hence, we develop another method for the generation of the required

training and testing data. Using a co-simulation approach, we ensure having realistic

network as well as process data. This data then reflects the actual physical process

happening later in the production phase while also incorporating the effects of the

underlying network infrastructure. For validation of the generated dataset, we use a

simple, yet well-known anomaly detection scheme based on a fully connected neural

network. While the realistic reference of the data is guaranteed by the simulation

design, this way, we also assure that the dataset meets the requirements of current

anomaly detection systems.

4.1 Packet-wise Compression and Forwarding of Industrial

Network Captures

The previously outlined challenge can be considered a dilemma for the development

of anomaly detection algorithms and machine-learning approaches. Therefore, reliable

mechanisms for data probing and preprocessing are required. Parts of this chapter have

previously been published in “Packet-wise compression and forwarding of industrial

network captures” by Gerhard Hansch, Peter Schneider, and Sven Plaga [8].

4.1.1 Data De-duplication

In our approach for data reduction during transmission, we replace frequent occurring

byte sequences using a look-up table. This look-up table can be constructed over time

requiring no initial setup. Still, it allows for a decrease in network traffic over time.

For this, we identified variable and mostly static regions in TCP packets in industrialConcept

networks. For the byte sequence of the static part, we attach an ID to every new one

encountered. Every new combination of ID and byte sequence is then transmitted once

to the offsite system. We then use the ID as a key and the byte sequence as the value in
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our look-up table. On later occurrences, only the ID will be sent as the corresponding

byte sequence to replace is already known.

Internally, a prefix tree (also referred to as trie) is used to store sequences of the Look-up table

packets. Each node in the trie may carry an ID, which is used to replace the data

sequence in a message during transmission. By using a prefix tree instead of the

usual hash map for lookup-tables, the memory footprint of the table can be reduced

significantly while not harming the performance. The performance advantage originates

from the fact that many byte sequences only differ in few positions yielding substantial

overlaps to other sequences. An example of four shortened paths in the trie is shown

in Figure 4.1. The paths resemble four different network packets:

• id=1: 0x45000030

• id=2: 0x45000028

• id=3: 0x45000034

• id=4: 0x450004a8

Using a plain list for the storage, the memory footprint of these four short sequences

is 16 bytes. By removing the overlap of these sequences with the trie only 8 bytes are

needed to represent the same data.

Fields that are never substituted are located in the packet headers. In the IPv4

header, these fields are the total length, the identification number and the header

checksum, while in the TCP header the sequence and acknowledgment number, the data

offset, flags, and checksum fields are excluded. As the previously described datasets

mainly consist of IP/TCP communication, other protocols were excluded from de-

duplication.

In the case of encrypted data a small amount of data de-duplication is still possible,

as TCP header and payload are substituted separately from the IP header. Since en-

cryption takes place on higher network layers, the de-duplication of IP headers redeems

the overhead of transmitting IDs for the TCP header and the encrypted payload over

time.

4.1.2 Evaluation

Test Data and Implementation To evaluate the proposed method we implemented

a demonstration based on Python3, scapy [90], and Google’s protobuf [91], which we

applied to the following datasets:

• simulated MODBUS traffic [41]
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0x45

0x00

0x00

0x28
id=2
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id=4

Figure 4.1: Prefix tree (trie) used for de-duplication.

• ICS/SCADA hands-on testlab [42]

• DARPA challenge datasets [40]

• Recorded data from a production robot

Our evaluation reads and iteratively processes packets from each source file. To

determine the efficiency of the approach, different packet captures in the pcap format

were used. Each packet is analyzed by scapy to detect the protocols and get access to

the individual header fields.

According to the message format provided in Listing 4.1, the fields that are always

transmitted are concatenated into a single byte sequence, which is called static. The

remaining fields are split into two separate byte sequences. The first one contains all

remaining fields of the IPv4 header and is called ipv4 remainder, while the second

sequence, the remainder of the TCP header and its payload, is called tcp remainder.

These are passed to separate prefix trees, which generate a new ID for the byte sequences

or return the already known one if it is present. In the case that the byte sequences

are new in the tree, they are transmitted in the corresponding value field shown in

Listing 4.1 along with their new ID in the id field. Once the sequences start repeating,

only the ID is transmitted, thus omitting the redundant parts as shown in Figure 4.2.

Compression Efficiency For testing, we used our implementation to process and for-

ward the described network captures.

Table 4.1 shows a performance comparison of data de-duplication versus the well-

known Zlib compression algorithm [34]. The table indicates the original size and re-

maining size ratio for three different approaches, i.e., the smaller the numbers the more

effective the approach.
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Dataset number
of pack-
ets

original
size
in bytes

zlib
ratio

de-
duplication
ratio

combined

Modbus [41]
run8 72186 5008499 0.96 0.88 0.86
channel 2d 3s 383312 17449820 1.17 0.71 0.90
run11 72498 4955264 0.96 0.87 0.87
run1 3rtu 2s 305932 15870003 1.05 0.69 0.81

4SICS - S7 [42]
4SICS-GeekLounge-151020 246137 18000708 0.91 0.36 0.46
4SICS-GeekLounge-151021 1253100 101191303 0.85 0.55 0.53
4SICS-GeekLounge-151022 2274747 139975880 1.02 0.71 0.78

Self Recorded Robot
lab 10120 3227398 0.39 0.95 0.36

Office Network
KDD’99 Day 1 [40] 1362869 280299459 0.81 0.93 0.76

Table 4.1: Data reduction efficiency. The most efficient approach for each dataset is high-
lighted by bold printing.

1 syntax = ” proto3 ” ;
2
3 message Packet {
4 bytes s t a t i c = 5 ;
5 u int32 ipv4remainder id = 9 ;
6 bytes ipv4remainder va lue = 1 ;
7 uint32 tcpremainder id = 3 ;
8 bytes tcpremainder va lue = 2 ;
9 }

Listing 4.1: Protobuf specification of the message format.
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Figure 4.2: Example of the de-duplication effect on an FTP packet captured in an industrial
context. The upper part resembles the original packet while the bottom part
displays the de-duplicated packet. The colors highlight the substituted parts of
the packets.

The first approach, called zlib, uses packet-wise Zlib compression. As can be seen

from the indicated ratios for the different datasets, the efficiency is varying severely

and can even lead to an increase of data in some cases. The self-recorded dataset from

a robot running in a laboratory yielded a very low compressed size of only 39% of its

original size. As Zlib compresses bytes inside a fixed search window, local redundancies

can be removed more efficiently. However, for the remaining datasets the packet-wise

Zlib compression reduced the data size only in a few cases while in some the resulting

packets even increased. This is caused by the fact that especially the industrial network

packets like Modbus and S7 communication tend to be quite short. For these short

packets, an effective compression using stateless Zlib is simply not possible.

The results of the proposed de-duplication method using a lookup-table is shown in

the next two columns of Table 4.1. Except for two cases, our method achieves smaller

packets and therefore a higher compression ratio than the previously described Zlib

approach. It is worth noting that although our method still involves some overhead

and theoretically can lead to an increase in the data volume, in practice, none of our

test datasets shows such an increase.

Finally, chaining both approaches was tested by first de-duplicating the data as

described foremost and then using the Zlib compression on top of the remaining packets.

As can be seen by the results, this combined approach is always more efficient than just

using plain Zlib alone. However, in many cases using Zlib on top of the de-duplicated
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Figure 4.3: Compression ratio over packet count. The dataset contains generated modbus
traffic with 3 remote terminal units by [41].

packets even increases the size again. It is assumed that this is caused by the fact that

for very small packets the Zlib compression does not work as good as expected.

Whereas Table 4.1 shows the average compression ratio for each dataset, we also

studied the time needed for our method until efficient compression starts. In the begin-

ning, the compression method includes an overhead. As on every first occurrence of a

new byte sequence an ID is added to the packet, the overall transmitted data is slightly

increased. Figure 4.3 shows for every batch of 10000 packets the actual compressed size

of these packets in one of the captures in the Modbus dataset. After just 10000 network

packets we already see a decrease of the overall data to be transmitted. This indicates

that the previous assumption about frequent repetitions in industrial network packets

holds up. It takes only about 80000 network packets to settle at a compression level

of about 65%. Looking into the respective actual network capture, this corresponds

to about 932 seconds (≈ 15 minutes) of network traffic in this setup. After this, the

compression level of further batches of packets stays almost constant.
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4.2 Realistic Data Generation for Anomaly Detection in

Industrial Settings using Simulations

While the previous approach of data compression is useful once CPSs have been de-

ployed, it cannot be used to construct datasets of yet undeployed systems. As described

earlier, industrial standards like IEC62443 [75] emphasize the early integration of secu-

rity measures. As CPSs are highly specific to their use case, we cannot always rely on

training anomaly and intrusion detection systems on data of other systems. Therefore,

we present a more general approach for deriving suitable datasets in this chapter. By

basing our method on system models which may be available in early development

stages and also before actual deployment of a CPS, we enable training of detection sys-

tems already adapted to the later use case. In addition, this approach for generating

reproducible and shareable datasets is also beneficial to anomaly detection research in

general.

Parts of this chapter have been published in “Realistic Data Generation for Anomaly

Detection in Industrial Settings using Simulations” by Peter Schneider and Alexander

Giehl [9].

Therefore, relying on signatures of the attack vectors seems inappropriate. As theseAnomaly

detection as a

solution

fingerprinting-based techniques are inferior in this scenario, machine-learning based

anomaly detection is a viable solution for security in industrial settings. These systems

rely on a model of normal system operation. Attacks are assumed to change the system

behavior and can, therefore, be detected.

One major problem in developing anomaly detection systems for this setting is theLack of data

lack of suitable training data. Nearly all existing approaches do need a lot of data

to derive a model of normal operation or even distinguish between normal behavior

and anomalies. However, there is only a limited set of data available since almost

all companies having such data fear to expose their intellectual property with it—

maybe even unknowingly. Hence, most of the current research uses either private,

handcrafted, or inadequate datasets to evaluate their approach [43]. Additionally, only

a few of them are publicly available. This results in state-of-the-art intrusion detection

systems which cannot be compared by their performance. Therefore, there is a need

for suitable training data for detecting anomalies in industrial networks and enabling

big data approaches for IT security in this domain.

In this section, we present an approach to develop meaningful but reproducibleData generation

using

simulations

datasets which are suitable for process- and network-based anomaly detection. By

the use of process-based simulations, special network data is crafted that can represent
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data in real-world CPS. Our approach is not only capable of generating cyber-physical

process data but also of simulating attacks on the underlying processes. Having control

over the simulation configuration, all the data is labeled in the end and is, therefore,

usable for state-of-the-art anomaly detection systems.

In summary, we make the following contributions:

• We present a workflow to generate cyber-physical process data for anomaly de-

tection systems on a large scale.

• We evaluate that data and investigate its usability for the detection of anomalies.

• We show how to include attacks in the simulation and how to detect them in the

data using state-of-the-art methods.

4.2.1 Simulation Framework

The simulation framework proposed consists of three elements. At first, a process sim- Framework

conceptulation generates sequences of process parameters based on realistic system models.

The foundation for this process simulation is a process model describing the available

components and their interaction. The simulation calculates the different process pa-

rameters based on mathematical and physical models. Thereby, the process parameters

are sampled at specific time intervals. Afterwards, the physical process model is split

into parts and mapped to virtual devices resembling the network components moni-

tored. As process simulations often also use object-oriented programming paradigms,

their definitions also use inheritance and abstractions. For our framework, we assume

that every single object in the process model represents a single networked device in

the real world. The abstractions introduced by inheritance in the process model result

in a reasonable amount of devices. At the same time, the capsulation of part of the

process in classes hides some of the internal process parameters, which in reality are

not communicated over the network.

Furthermore, without loss of generality, we assume that those devices are connected Network

Architecturein a bus topology, as this mode of operation is currently being adopted in industry con-

nectivity [66]. The extracted components become the networking nodes in the network

simulation. There, we use one application for each network node sending and receiving

the process data between these components. The generated process parameters are

embedded in a suitable Fieldbus protocol. In fact, for the Fieldbus protocol, it is pos-

sible to choose one according to the needs of the dataset to be generated. Figure 4.4

shows the general workflow for this sequential simulation framework. The process model

together with its input parameters are used in the process simulation framework to de-
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Figure 4.4: Simulation framework workflow.

rive process values as a result. This result is a list of several process values for every

time step. Every such value is then assigned using a parameter-network mapping to

its network node. The available network nodes are defined in the network infrastruc-

ture model. After this, the network simulation framework can produce network traffic

corresponding to the simulated networked process.

If the effects of the networking onto the process itself, e.g., latency or jamming, need

to be simulated, a co-simulation is required instead of the sequential approach outlined

before. In a co-simulation, as shown in Figure 4.4, communication between the two

simulation frameworks also uses the dashed line. Here, the simulation stops after each

time interval to include the feedback of each other simulation. Both simulations are

executed alternating while an adapter transfers the states between the simulations [92].

In the end, this yields realistic network data very similar to captures in a production

site with real data.

So, in summary, an operator of a CPS can derive a realistic dataset by following

these steps:

• Obtain or create a model of the physical process in the modelica language (see

Section 4.2.1.1).

• Apply the automatic infrastructure derivation to generate a network mapping

(see Section 4.2.1.4).

• Define a prototype application in NS-3 for the fieldbus to use and execute the

network simulation (see Section 4.2.1.2).
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If desired, the steps can be repeated with a modified version of the initial process

model after applying model modifications as introduced in Section 4.2.1.5.

4.2.1.1 Industrial Process Simulation using Modelica

Modelica is a popular object-oriented programming language used in a variety of process

simulation frameworks. It is designed to model physical processes and control loops

easily. OpenModelica [93] is an open source implementation of that language providing

a graphical modeling toolkit as well as interfaces for interaction with the simulations.

Physical processes are modeled in the Modelica language using a variety of build- Building blocks

ing blocks. Unavailable functionality can be added through the addition of external

libraries.

The modeled process is then compiled to an executable that generates corresponding Relation to

real-world

systems

time-series data to given initial values. The data generated by OpenModelica using

free models has already been reviewed [94, 95] and found to be useful for analysis of

real-world systems. Building on these findings, OpenModelica provides the industrial

process simulation to the framework.

As Modelica is an object-oriented language, the definition of this simulation starts Introduction to

Modelicawith its parent element followed by the constituent components. Each of the listed com-

ponents corresponds to a separate Modelica language model definition. They resemble

building blocks as the physical and mathematical model is encapsulated in them. Due

to this encapsulation, Modelica uses a layered system description. The blocks shown

in Listing 4.2 (l. 3–6) constitute the top-most layer of this system description. To

model the system behavior, the components are connected through equations. In the

top-most simulation description, like the one shown in Listing 4.2, the only equations

are connections from output to input values (l. 9–13).

1 model ClosedLoopSimulator ” Plant s imu la t i on [ . . ] ”

2 extends Model ica . Icons .Example ;

3 Models.HRBPlant Plant ( [ . . ] ) annotat ion ( [ . . ] ) ;

4 Mode l i c a .B l o ck s .Sou r c e s . S t ep ValveOpening ( [ . . ] ) ;

5 Mode l i ca .B locks .Cont inuous .PI TempController ( [ . . ] ) [ . . ] ;

6 Model ica .Blocks .Math.Feedback Feedback1 [ . . ] ;

7 Mode l i c a .B l o ck s .Sou r c e s . S t ep TWOutSetPoint ( [ . . ] ) [ . . ] ;

8 inner System system annotat ion ( [ . . ] ) ;

9 equat ion

10 connect ( ValveOpening.y , Plant.ValveOpening [ . . ] ) ;

11 connect ( TempControl ler.y , Plant.GasFlowRate ) [ . . ] ;

12 connect ( Feedback1.y , TempControl ler .u ) [ . . ] ;
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13 connect ( Plant.WaterOut T , Feedback1.u2 ) [ . . ] ;

14 connect ( TWOutSetPoint.y , Feedback1.u1 ) [ . . ] ;

15 end ClosedLoopSimulator ;

Listing 4.2: Excerpt of an HRB plant model written in the Modelica language [95]. The

regions indicated by [..] have been shortened.

Additionally, OpenModelica provides means for interfacing with the simulation also

allowing the implementation of a co-simulation framework.

4.2.1.2 Network Simulation using NS-3

For the purpose of simulating the underlying network infrastructure, NS-3’s python in-

terface is used [96]. It provides the necessary simulation of the physical communication

channels as well as the lowest network layers up to TCP. The industrial network data is

generated using a custom application layer protocol that is common in proprietary in-

dustrial settings. Using this protocol the application simply sends messages containing

the parameter name and value to the destination component at regular intervals. That

is the same methodology as in common industrial Fieldbus protocols. While CAN uses

CAN-identifiers transferred along with the actual data values, the high-level CANopen

protocol uses a known dictionary, the CANopen Object Dictionary (COD), to map

bytes into the transferred Process Data Objects (PDOs) [85]. In the end, both meth-

ods define a static mean to look up the meaning and interpretation of every data byte

transmitted, effectively yielding name-value pairs. The same is true for the widespread

Modbus protocol, which uses function codes transmitted along with the actual data

[97].

4.2.1.3 Sequential Simulation

To derive a multilayered dataset with realistic process data on the one hand and a

realistic embedding in industrial network traffic, on the other hand, we need to combine

these two simulation frameworks as shown in Figure 4.4.

Using this combined approach we assume that prepared anomaly detection algo-

rithms will be able to generate alarms more accurately and to detect attacks originating

from network manipulation or the manipulation of involved processes.

For this, the cyber-physical process under test needs to be modeled in the Modelica

programming language. As such models often are part of the engineering and develop-

ment process, we assume that such a model is detailed enough to allow analyzing the

main functionality. For research, there are also several thoroughly tested open source
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models available which can be used for comparison of IDS performances [94, 95, 98].

Each of these models requires a stable initial state. This state is not required to be

an equilibrium state for the industrial process, but it should not be a state which

causes the system to diverge. Using the model and its initial state, it is possible to

run a simulation with OpenModelica resulting in all process parameters at given time

intervals.

4.2.1.4 Automatic Infrastructure Derivation

Deriving network data from the generated process parameters requires a network in-

frastructure model corresponding to the cyber-physical model. The framework relies

on the assumption that every building block in the Modelica description of the indus-

trial process at the top-most level represents a single network node, i.e., a discrete

device. This allows for more realistic modeling of real-world scenarios where parts of

the functionality of the system are encapsulated within one single complex device. Not

all simulated connections from the OpenModelica simulation will show up in the final

network trace as in real-world scenarios where the system is only partially visible to an

IDS. As the Modelica model also describes the interconnection of blocks, the accom-

panying data exchange between these follows directly from the model. A typical block

to block connection is expressed as shown in Listing 4.3.

1 connect ( TWOutSetPoint.y , Feedback1.u1 ) annotat ion (

2 Line ( po in t s = {{−69 , 10} , {−46 , 10}} ,

3 c o l o r = { 0 , 0 , 127} ) )

Listing 4.3: Modelica description of a block to block connection.

Algorithm 1 automatically splits the Modelica model at its topmost level into blocks

and returns a list of the connections between these blocks. With the use of regular

expressions, it is possible to parse the model description without implementing an

interpreter for the Modelica language. The expressions \s*model m (l. 5–7) and the

\s*end m (l. 13–15) find the start and corresponding end of the description of model

m. Using two capture groups every pair of two connected components and also the

direction of the connection can be retrieved with connect\(([^,]*), ([^)]*)\) (l.

9).

The referenced function match takes a pattern and a string that is searched for the

pattern. Concerning the regular expressions, the *-modifier is assumed to be greedy
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Algorithm 1: ModelSplitting

Input: Modelica model file M
Input: model name m
Output: List of top-level connections L

1 Let L be a list;
2 startFound = endFound = False;
3 foreach line l in M do
4 pattern = ”\s*model ” +m;
5 if match(pattern, l) then
6 startFound = True;
7 end
8 if startFound ∧ ¬endFound then
9 pattern = ”connect\(([^,]*), ([^)]*)\)”;

10 res = match(pattern, l);
11 if res 6= None then
12 append(L, group(res, 1), group(res, 2));
13 end

14 end
15 pattern = ”\s*end ” +m;
16 if match(pattern,l) then
17 endFound = True
18 end

19 end
20 return L;

and the function group(res, i) returns the content of the i-th capture group in the

matching result res (l. 10–12).

The execution of this algorithm on the model given in Listing 4.2 with the model

name ClosedLoopSimulator returns the list of connected component pairs as

L = {(V alveOpening.y, P lant.V alveOpening),

(TempController.y, P lant.GasF lowRate),

(Feedback1.y, T empController.u),

(Plant.WaterOut T, Feedback1.u2),

(TWOutSetPoint.y, Feedback1.u1)}
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Based on the block names of each connected component, i.e., the part up to the dot,

there are five nodes for the network simulation: ValveOpening, Plant, Feedback1,

TempController, and TWOutSetPoint.

Data exchange between the network nodes can be modeled either by push or pull

paradigms. From our experience, both methods are actually used so that we decided

to push the data to the next node as most field buses (e.g., CAN or ProfiNet) are

typically used like this. A mapping component splits the simulation results into the

desired parts, which generates a list of data packets, their destinations, and timestamps

for each identified node. These lists are then passed to a custom application for the NS-

3 network simulation, which sends out the corresponding network packets at the right

time. Being an NS-3 application, the simulated network stack handles the underlying

protocols, i.e., TCP handshakes and responses, while on the application layer the data

is not used any further. By instructing NS-3 to capture the network traffic on each

virtual device into packet capture files, simulated network traffic traces are generated.

Based on the integration with the process simulation and the custom application, this

data is backed with realistic data from an industrial process as it might have been

recorded in an actual facility.

4.2.1.5 Sensor Manipulation Attacks

For the creation of suitable test data for anomaly detection systems, it is indispensable

to also have malicious examples, i.e., data corresponding to the attacked system state.

Therefore, the framework provides a generic algorithm to manipulate the simulation

model. Algorithm 2 replaces one connection in the model with a time-triggered switch

to model a manipulated sensor or actuator. The given connection between the output

value c1 and input value c2 gets replaced by a connection from c1 to the first input of

the switch s1 and the output of that switch sy to c2 (l. 11-12). The value n used for

replacement during the manipulation is connected to the second input of the switch s2

(l. 13). Using an integer step function is, the inputs get switched at a specific point in

time t2 (l. 14).

is =

1, for t ≤ t2
2, for t > t2

.

Therefore, the input value of c2 equals to
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Algorithm 2: Automatic Modelica model manipulation for inclusion of attacks.
Input: Modelica model file M
Input: model name m
Input: attacked connection c1, c2
Input: manipulation node n

1 startFound = endFound = False;
2 foreach line l in M do
3 if match(”\s*model ” + m, l) then
4 startFound = True;
5 end
6 if startFound ∧ ¬endFound then
7 if match(”\s* equation”, l) then
8 insertBlock(integerStep);
9 insertBlock(extractor);

10 print(l);
11 connect(c1.y, extractor.u[1]);
12 connect(extractor.y, c2.i);
13 connect(n.y, extractor.u[2]);
14 connect(integerStep.y, extractor.i);

15 else
16 res = match(”.*connect\(c1, c2\).*”, l);
17 if res == None then
18 print(l);
19 end

20 end

21 end
22 if match(”\s*end ” + m,l) then
23 endFound = True;
24 end

25 end

c2 =

c1, for t ≤ t2
n, for t > t2

.

Applying this algorithm to an existing Modelica model yields a similar model repre-

senting an attacked version of the system starting from the time t2. An example of the

application is shown in Section 4.2.2.1.

4.2.2 Data Usability Validation

The usability of the generated data from such simulations for the purpose of anomaly

detection was analyzed by generating a test dataset and training a deep learning net-

work with it. The systems analyzed for validation are a heat recovery boiler (HRB)

plant [95] from the ThermoPower library (with 1367 simulated equations), a velocity

control system for a drive [98] from the IndustrialControlSystems library (258 equa-
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tions) and a complex wastewater treatment system [94] from the WasteWater library

(3066 equations). In the following, a more in-depth look is given on the HRB plant,

while similar observations and results can be obtained for all tested models.

Figure 4.5 shows the ClosedLoopSimulator for the HRB plant. The system consists of

an HRB plant (P), a temperature controller (TempController) and the input values for

the setpoint temperature, i.e., the temperature the water leaving the plant shall have,

and the valve opening, i.e., a parameter steering how fast the water is running through

the boiler.

Figure 4.5: Original system of a HRB plant in Modelica. [95].

The building block of the plant encapsulates the whole process of incoming gas and

water to the boiler, the heat transfer between these two, and the water flow rate.

However, the actual control of this process, i.e., the regulation of the heating based on

the desired water flow rate and water temperature, is placed outside the plant. This

process is steered by the mentioned inputs and the sensor values.

This process is comparable to many industrial applications where a user controls a

machine via its interface over the network. Our simulation of the system from [95] using

OpenModelica yields the temperature curve for the outgoing water shown in Figure 4.6.

The blue curve shows the desired temperature (in Kelvin), i.e., the input signal over

the network, while the red one shows how the simulated boiler control system reacts.

At the time t1 = 50s, the valve is closed a bit to test the response of the controller to

disturbances in the process. The water temperature gets back to the setpoint after a

short time.

Then, at time t2 = 200s, the setpoint value for the water temperature is changed

causing the HRB plant to heat the water up. This leads to the increasing water tem-

perature (red curve) later settling at the desired temperature.
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Figure 4.6: Temperature curve of original simulation.

4.2.2.1 Introducing simulated attacks

To show the feasibility of the integration of attacks into our simulation framework,

we implement a manipulated sensor attack. For this, we altered the initial model to

simulate a manipulated sensor device firmware. Starting from the time t2 = 205s,

we exchange the real output temperature of the plant with the actual temperature

setpoint. This directly resembles an attack on the temperature sensor of the boiler.

For example, a specially crafted malware which forces the sensor to report wrong val-

ues might trigger this scenario. This attack can be modeled with the Modelica lan-

guage by exchanging the input to the feedback unit f1.u1 from the water temperature

P.WaterOutT to the actual setpoint temperature TWOutSetPoint. The application

of the generic Algorithm 2 yields the modified part of the model shown in Figure 4.7. A

switch (extractor1) is used to choose one of the two incoming signals. The real sensor

value is assigned to the first input, the setpoint temperature to the second. The choice

of the output is derived from an integer step function yielding the input to the feedback

unit as

f1.u1 =

P.WaterOutT , for t ≤ t2 = 205s

TWOutSetPoint, for t > t2 = 205s
.

The simulated temperature curve of this modified model is depicted in Figure 4.8. As

expected, the water temperature now settles at 333K instead of the desired setpoint

of 340K. Starting from t2 = 205s, the closed-loop controller gets the signal that the

desired temperature is already reached and therefore stops further heating. In this case,
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Figure 4.7: Faked sensor data model.

this leads to an early stop of the heating. If the sensor incorrectly reports a temperature

below the setpoint, this results in a diverging system where the temperature controller

never stopped heating.

4.2.2.2 Anomaly Detection on Simulated Data

For the development of models based on machine-learning, there are requirements to

generated datasets to be met. At first, the amount of available data to train a model

hugely impacts the possible results. Then, there is a need for diversity in the data as

using redundant examples cannot improve a model’s reliability [99]. To test whether

the generated data is not just plausible but also suitable for machine-learning, we used

a neural network to predict the next parameter values given the current ones.

In general, the workflow for training and evaluating anomaly detection systems on

the generated data is shown in Figure 4.9. At first, normal operation data is generated

using the framework explained in Section 4.2.1.3. In the next step, it is required to

extract meaningful features from the generated data. In the case of analyzing the

network traffic, this includes parsing the protocols and identifying suitable data fields

for the detection approach. Thereafter, one generated dataset is used to train the

anomaly detection approach. The approach’s performance can then be evaluated with

a second generated dataset.
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Figure 4.8: Temperature curve of attack simulation.

Figure 4.9: Workflow for anomaly detection using simulated data.

From the 1169 process parameters available after the simulation of the HRB plant

in OpenModelica, we only use a small subset that may be directly available in network

traffic, i.e., the input and output connections of the plant and the two controllable

inputs, the setpoint temperature and the valve opening. These parameters are listed

in Table 4.2. To automate this, we split the Modelica model using Algorithm 1 at its

topmost level into building blocks, i.e., the blocks shown in Figure 4.5. The connections

between these blocks are interpreted as network communication.

In fact, this is the same split as for the mapping of process data to network devices

described in Section 4.2.1.4. As we do not include network metadata in this analysis,

the wrapping of the data into network traffic only leads to a different representation of

the same data. That is the reason it can be omitted here.
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Parameter Meaning

ValveOpening.y User-defined opening of the plant’s valve
TempController.y Output value of the temperature controller steering the gas

flow rate of the plant
Plant.WaterOut_T The sensor reading for the water temperature leaving the boiler
TWOutSetPoint.y User-defined temperature of the water

Table 4.2: Derived parameters and their meaning.

Figure 4.10: Neural network architecture.

The anomaly detection approach for validation is based on a Deep Neural Network

(DNN) architecture shown in Figure 4.10. The network is used to predict the values of

the process parameters at one time step ahead. By observing the difference between

the real and predicted values, the state of the industrial process can then be monitored.

The DNN uses linear regression layers to predict the values of the process parameters

in the future.

A normal regression layer uses the formula

y = X ·W + b,

whereas X is the input vector, i.e., the current process parameters values, W a weight

matrix and b some constant vector. As the process is designed to lead to a stable
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Figure 4.11: Relative prediction errors for the normal and attacked dataset of the water out-
flow temperature.

system, often the input and output values remain almost constant. To ensure the

model does not rely on these values being constant, an additional constraint was added

to the model with b = 0 for all times. Apart from this modification, the neural network

is constructed as usual for multi-dimensional regression tasks.

Our neural network consists of one input, one output, and two hidden layers. The

input layer has the size of two times the number of parameters being predicted in

the output layer. The size of the hidden layers is adapted to each evaluated model

as the more complex models require predicting more parameters and therefore require

the network to cover more information. In addition to the original definition of the

system model, some normal distributed noise was introduced on the valve opening

input. This leads to a continuous fluctuation in the water outflow of the plant simulating

imperfections in the implementation which were missing in the original system model.

The variations are introduced in the data this way to facilitate the use of machine

learning algorithms. Without these variations, effective learning is not possible as

misleading assumptions could be derived due to overfitting. With the data from the

unmodified operating HRB plant, the network is trained to predict the values of the

input connections at the next time step, t1, based on the previous, t−1, and the cur-

rent, t0, values. So, the network is learning the normal system behavior without the

knowledge of how an attack might look like.

After training using the gradient descent method, a comparison of the predicted

and real behavior results in the blue relative error curve for the out-flowing water

temperature in Figure 4.11. The error of the training dataset remains in a constrained

band. The only exception is the short peak starting at time step 20000(= 200s). This
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setting training data test data

initial setpoint temperature 330K 320K
t1, time for setpoint change 200s 190s
t2, time for attack − 205s
final setpoint temperature 340K 350K

Table 4.3: Simulation setup for the generation of datasets.

is when in the unmodified version of the model the setpoint temperature is altered.

Therefore, it is correct to interpret this spike as an anomaly. The interpretation,

whether this anomaly is actually related to an attack, is outside of the scope of this

data usability validation.

4.2.2.3 Attack Detection using Simulated Data

We also investigated whether simulated attacks can actually be detected while the

model has been trained only with normal data.

Therefore in a second run, we simulated the manipulated sensor model depicted in

Figure 4.7. Additionally, we changed the initial setpoint temperature, the time when

the setpoint change occurs, and the amount of change. Therefore, if the model was

overfitted, the relative error should increase already before the manipulation starts

because the initial and final setpoint temperatures are different. The configurations of

the test and training simulations are shown in Table 4.3.

The previously trained model was then used to predict the parameters’ values at

each next timestep. The red curve in Figure 4.11 illustrates the relative difference in

predicted and real values. For the first part, the error is of the same order as for the

unattacked (blue) dataset. This verifies that the learned model is actually portable

to similar situations as the attack is only carried out after t2 = 205s, i.e., time step

20500. The spike at time step 19000(= 190s) corresponds to the change of the setpoint

temperature. As expected, the peak on the test dataset occurs earlier than in the

training dataset. This indicates that a configuration change of the plant does not alter

the prediction capability of the learned model.

While with the unattacked dataset the model comes back to an error near to zero,

with the attacked dataset the relative error levels at an about ten times higher relative

error caused by the manipulated sensor. From the time t2 = 205s, the water outflow

temperature sensor starts maliciously reporting that it measures the setpoint temper-

ature. Thus, the heating stops too early and the outflow temperature has a significant
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Figure 4.12: Relative prediction errors for the normal and attacked dataset of the speed sensor
in the IndustrialControlSystems VelocityDrive simulation.

difference to its actual setpoint. This difference can now also be seen in the right half

of the red curve in Figure 4.11.

To derive a suitable anomaly detection approach, an error threshold can be estimated

either by experimental evaluation or by appropriate machine learning strategies. This

is possible since, given the simulation setup, each time step in the data is labeled.

Similar results can also be obtained for other models. Figures 4.12-4.13 show the

relative error curve of one of the parameters in the VelocityDrive and WasteWater

simulations. The simulation configuration for the training and test datasets has been

altered in a similar way as shown in Table 4.3 to verify the model portability.

During about the first half of the test datasets, only already available constraints

have been altered to test model portability while towards the end of the simulation an

attack is introduced using the Algorithm 2. As in the HRB example explained before,

the blue curve always represents the relative error on the training data, i.e., with no

manipulation, while the red curve shows the error of the test data introduced by model

configuration changes and attacks. Also in these two more complex simulations, a

sensor manipulation can be detected while the neural network has only been trained

on normal operation data.

For all the models tested, a suitable size for the hidden layers in the DNN was

chosen by experiments. As the focus of this analysis lies on the validation of the

usability of data generated by process simulations, these values are not fine-tuned for

best performance.

Table 4.4 lists the number of simulated equations per model, the parameters extracted

for prediction in the DNN, and the size of the hidden layers used.
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Figure 4.13: Relative prediction errors for the normal and attacked dataset of a pump inflow
in the WasteWater ComplexPlant simulation.

model simulated equa-
tions

parameters for
DNN

size of hidden lay-
ers

HRB plant 1367 5 5
VelocityDrive 258 20 17
WasteWater 3066 21 15

Table 4.4: Simulation complexity for the validated models.

4.2.3 Conclusion

In this chapter, we presented a framework and workflow to generate usable industrial

anomaly detection data. By using a combination of modeling, simulation, and an in-

frastructure mapping we can create industrial network traffic that reflects the physics of

the network transfer as well as those of the cyber-physical process. Being a simulation,

our approach does not require costly specialized hardware.

Additionally, we showed that the integration of attacks in the simulation results in

labeled data suitable for machine learning. In contrast to solutions that use hardware

or hardware-in-the-loop, we can model an arbitrary complex system while still having

a scalable system. Also, simulation of attacks on the cyber-physical system can be
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carried out without interference with production environments or danger of physical

impact.

In our evaluation, we additionally showed that it is actually possible to train anomaly

detection systems to predict cyber-physical systems behavior. Given that, new possi-

bilities emerge by the integration of this knowledge into existing intrusion detection

systems.

Previous approaches designed the anomaly detection to be suited for the use case,

i.e., the approach has been adapted to the domain’s constraints and specific problems.

Instead of that, we used off-the-shelf approaches to detect anomalies in the data. There-

fore, for the anomaly detection itself, there is no need for a deep understanding of the

underlying cyber-physical process.

4.3 Summary

In this chapter, we detailed two methods for the acquisition of industrial network data.Contributions

Thereby, we focus on achieving realistic and meaningful datasets. As the best option to

approach always is to use data from real-world CPS installations directly, we introduced

a compression method in Chapter 4.1 facilitating the handling of large amounts of that

data.

Real-world projects, however, often require the CPS operators to develop security

measures early during development phases where actual CPS may still be lacking. For

this situation, we present a framework of building-blocks to construct a co-simulation

of the CPS under development. The incorporation of physical models, a possible IT

infrastructure, and the corresponding process and IT network simulations yields a com-

prehensive solution for the creation of realistic dataset generation. Additionally, we also

show how attacks can be introduced allowing for a detailed study of the process data

during an ongoing attack. As we base our systems on simulation, we can carry out

even advanced attacks without putting real systems to risk.

Recalling the promised contribution C2 in Chapter 1.3, these two methods and the

identified datasets shall provide a common basis for future analyses on new methods for

anomaly detection in cyber-physical systems. By the use of our proposed simulation

framework, we also allow for studying new attack schemes that have not yet been

captured in real installations. Further, formulating a framework for the creation of the

dataset enables others to reproduce the same dataset or expand on them to advance

the whole research field.

With a common data basis at our hand, we now continue the journey of IDS deploy-Relation to

next chapter
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ment in CPS by investigating suitable anomaly detection methods. In the following

Chapter 5, we, thus, present a new anomaly detection method focusing on extending

the two points already supported by our data acquisition methods. First, we focus on

a high-performance approach to utilize the generated benefit of the packet-wise com-

pression scheme. Second, we switch our interest to network packet payloads instead of

their metadata to emphasize the relation between physical and real-world data.
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As presented in Chapter 2, there are different types of anomaly detection currently Network- vs.

host-based

detection

known. Mainly researchers distinguish between network-based and host-based de-

tection methods. Their names refer to the main data source used for the detection

method. For host-based anomaly detection, the state of a system is usually derived

from data recorded at one specific IT system. Instead, network-based methods uti-

lize data captured on associated network links. Since the internal design of CPS is

usually non-public, little information on augmenting or orchestrating their operating

systems is available. Further, expensive certification requirements limit the possibilities

of adding information extraction capabilities to the hosts themselves. Therefore, we see

the larger impact for network-based anomaly detection in industrial use cases. Also,

network monitoring is often already in place allowing for easy extraction of required

data.

Another widespread paradigm in anomaly detection is the use of signatures of known Signatures

malicious code fragments or network packets. Changes from one attack wave to the next

and so far unseen attack codes make it effectively impossible to create such signatures.

For the current situation, adapted anomaly detection methods, hence, should not rely

too much on the signatures. In the case of network-based anomaly detection, this

means we cannot rely on pure whitelisting approaches.

Parts of this chapter have already been published in “High-Performance Unsuper-

vised Anomaly Detection for Cyber-Physical System Networks” by Peter Schneider and

Konstantin Böttinger [10].

Challenge 3 mentioned in Section 1.1 also relates to the use of uncommon and pro-

prietary protocols in CPS. As each manufacturer of devices may choose out of a variety

of industrial network protocols, the inspection of network packets requires a thorough

understanding of the used protocols and compatible processing strategies for each of

them.

To address this challenge, we propose a framework making use of feature-learning, Contributions

unsupervised training, and parallelization techniques. We use a stacked denoising au-

toencoder to model an underlying distribution for industrial network packets. Given
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the optimization goal of autoencoders to learn the identity function, we can train the

framework without requiring to have anomalous network traffic at hand. Anomaly

detection is then possible by applying thresholds to the reconstruction error of net-

work packets processed by the autoencoder. We emphasize keeping the approach as

lean and fast as possible to allow real-time processing of large amounts of industrial

network traffic. Finally, we test the framework on two datasets using the Modbus and

the EtherNet/IP protocols. As one of the datasets is only partly labeled, we propose a

method for semi-automated labeling of such data to derive suitable quality measures.

In summary, we make the following contributions:

• We propose a high-performance processing framework for industrial network anomaly

detection.

• We present a method for automated feature-learning for network packets inde-

pendent of components and topology.

• We provide an approach for semi-automated labeling of unlabeled network traffic

datasets.

5.1 Concept

Before developing a concept for anomaly detection, we describe the environment in

which we aim to detect attacks and analyze how attacks might look like.

Current CPS are still static systems with a well-defined network architecture. While

the application logic, i.e., which machine produces what, may change frequently, the

physical and logical connections, i.e., which device acts as a master and which as a

slave, do usually not change during production. Thus, the communication paths inside

such a network are known in advance. Telemetry analysis can, therefore, be made

as simple as enforcing the design specification of the system under test. The same is

true for used protocols and the communication frequency between the machines. In

contrast, the payload content of the network packets is directly linked to the physical

process involved and is dynamic. While operators have the required insights to decode

the transferred data, the interpretation of data as being good or bad is hard [32]. Most

of the involved machines use proprietary or custom-developed protocols making deep

packet inspection a hard problem.

An attacker might specifically look for causing damage to the machines, for disrupting

the service, or for degrading the production quality of the CPS. Damage to or disruption

of a service is easily achieved given physical access to the CPS by physically destroying

components of it. The ever-increasing connections between machines and to Internet

68



5.1 Concept

or cloud services, however, make them vulnerable for remote attacks interfering with

the system’s availability, e.g., by distributed denial of service attacks.

Attacks targeting the behavior of the CPS already require a deep understanding of

the used network protocols as a manipulation of the system without interfering with

its availability needs to be compliant to the existing but closed system behavior [4].

Hence, we can assume that if an attacker is able to degrade the production quality of

the system, he is also able to implement the network protocol correctly. Given these

considerations, anomaly detection in this setting should focus on detecting changes in

process-relevant control parameters, control timings, and relevant software behavior.

State-of-the-art anomaly detection systems need to be manually adapted to each

CPS under evaluation to detect the described threats. The abundance of protocols,

vendor-specific modifications, and requirements requires the support of CPS operators

to acquire the needed system knowledge. To address this challenge, we describe a

fully unsupervised learning-based processing pipeline. As we can apply our framework

without in-depth knowledge and understanding of the relevant cyber-physical process, it

is applicable to multiple threat scenarios, protocols, and environments without scenario-

specific adaptations.

5.1.1 Anomaly Detection as a Classification Problem

Applying machine-learning to anomaly detection requires to model the task as a classi-

fication problem. We classify each network packet as either being benign, i.e., normal

network traffic, or malicious, i.e., packets constituting an attack or being the result

of an attack. After classification, we refer to malicious packets as positive and be-

nign packets as negative. Each network packet p consists of np ≤ MTU bytes where

MTU is the connection-specific maximum transmission unit, which equals 1500 bytes

for Ethernet [100].

5.1.1.1 Padding

Let pi be the i-th byte of the network packet p. As our later machine-learning method

requires the inputs to be of equal length, we choose a maximum investigation size

MIS ≤ MTU . Packets shorter than MIS get padded by zeros while packets longer

than MIS get cut off after MIS bytes. Using this approach allows for a trade-off

between extracted information from the packet and the amount of data processed.

However, MIS should be larger than the length of most of the network packets under

test. The headers of network packets usually do not extend beyond the first 100 bytes
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Figure 5.1: Schematic drawing of a single autoencoder layer.

and are contained in the sample as long as MIS is large enough. As most of the packets

in industrial traffic are significantly shorter than the MTU , they more often get padded

with zeros than cut off. This results in most of the information being used for the later

anomaly detection. Thus, our input vector p∗ equals to

p∗ =


(p1, . . . , pn, 0, . . . , 0︸ ︷︷ ︸

MIS−n

) if n < MIS

(p1, . . . , pMIS) if n ≥MIS

(5.1)

5.1.2 Deep Autoencoders for unified feature learning and classification

As described in Section 5.1.1, the network packets are trimmed or padded to a specified

input size. This enables fast preprocessing while omitting any feature extraction. We

replace the usual step of feature extraction for machine learning applications by a

feature learning approach based on current deep learning schemes. For this purpose,

we consider each byte of a network packet being one value of the input vector p to an

autoencoder network.

70



5.1 Concept

An autoencoder is a fully-connected neural network trained for replicating the input

values as its output [101]. The network consists of three layers: one input, one output,

and one hidden layer. While the input and output layers need to be of the same size,

the size of the hidden layer can be adapted to the use case, cf. Figure 5.1. When

denoting the values in each node of a layer as a vector, the values of the hidden layer

can be written as

h = a(Wep+ be) (5.2)

where We is a matrix containing weights for each link between every input and hidden

node in the encoding stage, be is a bias vector, and a is a non-liner activation func-

tion wrapping the linear part inside. As we focus on constructing a high-performance

pipeline, we use hidden layers with fewer nodes as in the input layer. This reduces the

memory and processing requirements as fewer weights need to be stored and optimized.

Thus, this encoding stage of the autoencoder maps the input to a smaller representa-

tion in the hidden layer. Using a decoding stage, the hidden representation is then

transferred back to the original vector size with

y = a(Wdh+ bd) (5.3)

Assuming y is similar to p, the hidden representation contains a lossy compression of the

input p as it can be reconstructed using Equation 5.3 from the smaller representation

h.

To achieve this state, we optimize the weight matrices and bias vectors during a

training phase. Using the squared error of the current state se and a suitable amount

of training examples, optimization techniques like gradient descent can then be used

to obtain the weight matrices and bias vectors.

se = |p− y|2 (5.4)

After this training phase, it holds true that y ' p and h contains a smaller representa-

tion of the input layer.

Figure 5.2 illustrates the inputs (left side) and output (right side) of a perfectly

trained autoencoder supplied with an example of 5 bytes. Whereas the bytes i1, i2, i3

and i5 are reconstructed correct from the hidden representation, we suspect that a

manipulated byte will cause the hidden layer being unable to reconstruct it. Hence,

byte i4 differs from o4 and the reconstruction error rises.
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i1

i2

i3

i4

i5

h1

h2

h3

o2

o1

o3

o4

o5

0x45

0xce

0xff

0xff

0x27

0x45

0xce

0xff

0x18

0x27

seo1 = 0

seo2 = 0

seo3 = 0

seo4 = 231

seo5 = 0

Figure 5.2: Example of inputs and outputs of an autoencoder.

Given this architecture and optimization goal of autoencoders, they are trained for

deriving a low-dimensional representation of their inputs while compressing all infor-

mation. Reusing the output of one hidden layer as a new feature vector for a second

autoencoder results in an efficient feature learning mechanism. A separate feature

extraction preprocessing step is not needed in this case. The introduction of stacked

autoencoder layers is also referred to as deep neural networks [102]. Using the additional

weight matrices and bias vectors, the model is capable of storing more information of

the training data to reconstruct the input values.

In our anomaly detection framework, we stack two autoencoders, whereas each of

them has a different number of hidden units, which is lower than the input vector size.

The resulting architecture is shown in Figure 5.3.

The reconstruction error of a packet under this stacked autoencoder can then be

written as

rmse(p∗) =

√
(p∗ − f(p∗))2 (5.5)

with f(p∗) being the output of the autoencoder network.

Training a deep network like this results in learning a lossy compression scheme for

the trained packets. As the stacked autoencoder is trained to reproduce the identity

function, we assume that the reconstruction error, rmse, between the input and output

vectors will be low if the packet under test is similar to the training packets and high

otherwise. Putting limits on the reconstruction error then gives a classification method
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Figure 5.3: SDA architecture for anomaly detection on network packets.

in benign and malicious packets. Using the upper and lower thresholds tup, tlow a single

network packet p is classified by

p is

negative if tlow < rmse(p∗) < tup

positive else
(5.6)

During a cross-validation phase, we optimize the thresholds for the specific use case.

The limits should be near to the minimum and maximum of the rmse in the training

data.

Like all deep neural network architectures, the application of stacked autoencoders

may suffer from overfitting the training data. To minimize overfitting, we multiply the

input bytes in p∗ with random values of a normal distribution giving a modified input

vector p̃∗ with some noise. During the training phase, we use p̃∗ as the input while we

still compute the error and the training updates with the output vector of the Stacked

Denoising Autoencoder (SDA) and the original vector p∗. This is a common approach

for avoiding overfitting in stacked denoising autoencoders [103].
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Figure 5.4: Parallelized processing using pipelining.

For later testing purposes, the original packet vector p∗ without any randomized

distortions can be used as the input vector.

This concept yields a feature learning and a classification method for industrial net-

work packets in a single step.

5.1.3 Parallel Processing using Pipelining

As the processing of data in autoencoders can take up some time, we propose a parallel

pipelining approach for faster processing. One technique for parallelizing the processing

pipeline for big data analysis is the map-reduce approach [104]. A management system

distributes tasks to worker nodes in a map operation and merges the results in the

reduce operation. However, due to the focus on distributed processing, this approach

is inapplicable in the context of confidential internal network traffic.

Since the usual training algorithms applied in deep learning frameworks work sequen-

tially, parallelization can only occur between independent processing steps. In general,

there are three processing steps required. First, network packets must be acquired

either by reading packet capture files or by sniffing on network interfaces. To assure
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that no packet is missed, especially when live capturing from interfaces, this task is

wrapped in an own thread, as shown in Figure 5.4 (Thread #0). Second, the padding

and length cut-off is part of the data preparation in Thread #1. Buffering packets

and forwarding them in batches to the final processing stage allows for compensat-

ing the processing time needed by the autoencoder. As state-of-the-art deep learning

frameworks most efficiently run on Graphical Processing Units (GPUs) [105], they al-

ways require transferring the data into specific memory on the GPU (Thread #2). To

minimize these transfers and to maximize the processing efficiency, batch training is a

common paradigm in these applications. Even after training, for testing new packets,

batching is an advantage as it averages the scores over time and yields more stable

results. Hence, we later use the rmse of a batch of packets B defined as

rmse(B) =
1

|B|
∑
p∈B

√
(f(p∗)− p∗)2 (5.7)

5.1.4 Semi-Automated Label Estimation

A common problem in the development of anomaly detection systems is the unavail-

ability of suitable training data. For industrial settings, this is especially true since the

communicated data is always considered confidential and its leakage might threaten the

competitiveness of its owners. If data is shared, it often contains unlabeled data since

adequate detection and forensic tools are still unavailable making a correct labeling

impossible. One of these datasets is the Secure Water Treatment dataset [68]. It is

currently the largest industrial network traffic capture. However, it lacks the assign-

ment of labels for the recorded network packets. Instead, we are provided with several

packet captures for which we know whether they contain any attack or not per file.

While the application of the presented anomaly detection concept is possible without

a packet-wise labeling, the method can only be tested regarding its detection perfor-

mance with a ground truth available. Hence, to verify the concept’s usability, we need

a packet-wise labeling.

Figure 5.5 outlines a semi-automatic approach for deriving labels for a subset of the

available network packets. In a first step, we apply our anomaly detection method

to the data available, i.e., we train the described stacked denoising autoencoder un-

supervised on the unlabeled training data. This yields a trained model that can be

applied to new data (training phase). For each new batch of packets of the dataset to

be labeled, we can now derive the reconstruction error rmse given the Equations 5.1

to 5.7 (rmse calculation). Sorting the batches based on their respective reconstruc-
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Figure 5.5: Semi-automatic estimation of traffic labels.

tion error gives a prioritization possibility for manual analysis of the highest anomaly

candidates. We assume that by manual investigation of the batches with the highest

reconstruction error and their communication contexts we can identify their class as

being normal or anomalous traffic manually. For this purpose, network analysis tools,

like Wireshark [106] or scapy [90], can be used (prioritized analysis). Once anomalous

traffic has been found, specific filters or indicators for this type of anomaly can be cre-

ated. Applying these filters to the whole testing dataset derives labels for the affected

packets (filter derivation).

Using this approach, it is possible to label a portion of the dataset as being anoma-

lous, i.e., all packets matching the derived filter are labeled. These generated labels

allow for verifying how accurately a specific type of anomaly can be detected. Since all

packets related to the attack type are labeled using the derived filter, we can match the

detections from the framework with the corresponding network packets. This enables

the derivation of the recall metric for this type of anomaly (cf. Section 5.2.1).

As only the most promising packets already indicated by the classification method

will be analyzed, this cannot be an exhaustive labeling regarding further, less frequent

attack classes available in the dataset. The calculated precision scores, therefore, repre-

sent a lower bound. If the dataset holds further attack classes not labeled by the filters,
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these might increase the estimated false positive rate. A detection by the framework

might be considered being a false positive because the packet is not labeled as anoma-

lous due to a missing filter for the attack type. As the precision score (cf. Section 5.2.1)

describes the ratio of true anomalies to the number of packets indicated anomalous by

the framework, a too high estimate of the false positive rate results in a lower bound

for the precision score. In scenarios with unlabeled datasets, the labels generated, thus,

allow for validating the framework on part of the data regarding the precision and recall

metrics.

The validation should be restricted to the attack classes derived using the approach

outlined. As it is unknown whether there are further attack classes, the calculation

of quality measures for the whole dataset is error-prone. Additional but not identi-

fied attack classes would lower the global recall values while they might increase the

global precision values. As we should expect that not all attacks have been discovered,

the lower recall values do not allow for a conclusive argumentation on the detection

performance of the framework in general.

5.2 Implementation and Evaluation

We implemented the proposed framework in python using the TensorFlow frame-

work [107] for processing. While we could have relied on data generated by our methods

in Section 4.1 and 4.2, we decided to use two of the already published datasets [36, 68]

to avoid being biased and benefit from the fact that Goh et al. [68] used a real-word

system to gather a huge dataset. As we focused on implementing a real-time capable

processing pipeline, we evaluated three network packet acquisition methods. Although

packet parsing influences the processing time for each network packet negatively, it

is included in most off-the-shelf tools for network forensics like python’s scapy [90]

module or the Wireshark [106] wrapper pyshark [108]. Comparing processing times

for different amounts of packets (c.f. Table 5.1 and Figure 5.6) shows that the time in-

creases approximately linearly to the number of packets processed. While the methods

employing packet parsing, i.e., scapy and pyshark, need a similar amount of process-

ing time, the pcap module [109] is up to 100 times faster. Since the first two methods

extract specific flags out of the headers to disassemble the packets and rearrange them

in object or JavaScript Object Notation (JSON) structures, they introduce an overhead

for each processed packet. The pcap module, instead, directly forwards a sequence of

bytes. In our evaluation datasets, using the packet parsing-based methods makes real-

time processing almost impossible. For example, the recently published Secure Water
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Figure 5.6: Performance of different packet acquisition libraries.

Treatment (SWaT) S3 dataset [68] contains network traffic with a rate of approximately

11M packets per hour. Given an ideal setup where the parallelized parts of the method

do not influence the packet acquisition itself, this requires an acquisition rate of about

3056 packets per second. Such a high throughput is only achievable when omitting the

packet parsing as the pcap module does.

In real-world applications, context switches and Random Access Memory (RAM)

limitations may further decrease the performance especially for long-running captures.

Further, common business network traffic consists mainly of the packet payloads (e.g.,

HTTP/S, FTP traffic) whereas the headers are much shorter than the actual payload.

In industrial settings, operators try to enforce the shortest payloads possible resulting

in many more individual packets when looking at the same network utilization. Con-

sidering a bandwidth of 100Mbit/s and assuming an average packet length of 100bytes,

a single captured network may see up to 131072 network packets per second. While

using the plain pcap acquisition module the processing time can be expected to be less

than 0.1s, the parsing libraries will need more than half a minute.

As the framework itself does not rely on external packet parsing but instead infers

required features by leveraging information in the hidden layers of the SDA, choosing

the basic pcap module gives a significant speedup for the whole framework.

To restrict the requirements of working memory, we define the two autoencoders to

use 20 (first stage) and 10 (second stage) hidden units with tanh as the activation

function a and use a MIS of 1000 bytes.
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# packets scapy pyshark pcap

1000 0.38s 0.63s < 0.01s
3000 1.17s 1.19s < 0.01s

10000 3.99s 3.15s < 0.01s
50000 20.14s 13.79s 0.02s

Table 5.1: Processing times for different amount of network packets in common network packet
acquisition libraries. The times have been averaged over 10 repetitions on the same
packets on an i7-4600U Linux machine @3.3GHz and 8GB RAM.

After the training phase, the SDA can be run in a distributed setting using multiple

worker nodes each one calculating the rmse for one batch. Thus, the runtime perfor-

mance of this stage is not as crucial as for the packet acquisition that needs to acquire

and forward the packets sequentially and in time.

5.2.1 Deriving qualitative measures

Considering the definitions of positive and negative given in Section 5.1.1, the well-

known precision, recall, and f1-scores can be used as qualitative performance measures.

For this purpose, a positive classification result, i.e., the reconstruction error lies below

the lower or above the upper threshold, is considered to be a true positive (tp) if the

packet batch contained more than nsig = 2 packets which constituted an attack or can

be explained by an attack. Otherwise, the packet is considered originally being benign

and the result is a false positive (fp), i.e., a packet which is benign was classified as

being positive.

Correspondingly, true negative (tn) packets are correctly classified as being benign

whereas false negative (fn) packets are classified benign while being related to malicious

activity.

Precision denotes the ratio of packets being correctly classified as positive out of

all reported positive detections. Thus, an anomaly detection framework with a high

precision rate only raises an alarm if there really is an anomaly happening. Recall

describes the ratio of anomalies detected out of all available anomalies. For a combined

view of the performance, the harmonic mean of precision and recall, the f1-score, can

be used. The described qualitative scores can be derived as

precision =
tp

tp+ fp
(5.8)
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trace name precision recall f1-score

run1 3rtu 2s 100.0% 100.0% 100.0%
exploit ms08 netapi modbus 6RTU with operate 100.0% 87.5% 93.3%
moving two files modbus 6RTU 100.0% 0.0% 0.0%
run1 6rtu 0.0% 100.0% 0.0%
CnC uploading exe modbus 6RTU with operate 100.0% 66.7% 80.0%

Table 5.2: Quality measures for the Modbus dataset according to the labels by [36] when
applying thresholds tup = 2000, tlow = 500.

recall =
tp

tp+ fn
(5.9)

f1 = 2
precision · recall
precision+ recall

(5.10)

5.2.2 Modbus data

In a first experiment, we used the proposed method to detect anomalies in a dataset

of Modbus network packets, which have been acquired in a simulation of a power grid

control system [36]. The public dataset consists of 11 network traces which are all

labeled. We used the run1 3rtu 2s trace to train the proposed SDA method as it is

the largest packet capture available in the dataset that does not contain any attacks.

For evaluating the detection approach, we tested all other traces that include attacks.

The summary of quality measures in Table 5.2 shows mixed results. Basically, the

approach either precisely detected the anomalies or not at all. To understand this

behavior, we investigated the resulting rmse from the SDA and the labels attached to

the packets. The crosses in Figure 5.7 show the rmse for batches of 200 packets in

the run1 3rtu 2s trace, i.e., the rmse on the training data, despite of a scaling factor.

Figure 5.8 represents the error on the exploit ms08 netapi 6RTU with operate trace

during testing. The red shaded areas indicate where, according to the labels by [36],

attacks happened. The color of the crosses refers to the resulting classification of the

batch of packets. Batches shown as blue crosses lie between tlow and tup whereas red

ones have a rmse of either less than tlow or greater than tup. While the labels are

available for every single packet, each cross represents a batch of 200 packets, i.e., all
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Figure 5.7: RMSE on the run1 3rtu 2s trace used for training on the Modbus dataset by
[36].

packets starting directly after the previous cross up to the cross itself have the same

error value.

The rmse during training (c.f. Figure 5.7) remains in a constrained band between

≈ 500 and ≈ 1000. To allow some outliers, we chose an upper threshold for anomaly

detection of tup = 2000 while we assume that the lower threshold can be chosen more

strictly, e.g., tlow = 500. In Figure 5.8, it can be seen that the rmse rises, once the

attacks started. The first data point still has a low rmse as in this batch only a minor

portion of the packets is related to an attack. For the following seven batches, the rmse

rises significantly over the threshold marking the corresponding batches as anomalies

(red crosses). Considering the portion of anomalous-labeled packets in these batches

which are indicated by the red shaded area, this behavior appears to be correct. With

the last batch, the rmse then decreases again as there are no attacks in there. Using

an upper threshold of tup = 1300, attacks could be detected reliably in this trace.

Figure 5.9 shows the corresponding errors of packets of another trace. While in that

case the rmse rises slightly after the attack times, the duration of the attacks is too

short so that averaging in the batches keeps the error too low to detect anomalies

reliably. Hence, the corresponding line in Table 5.2 shows a f1-score of 0%. We can,

thus, conclude that there is a minimum duration required for attacks to be correctly

detected using this approach.
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Figure 5.8: RMSE on the exploit ms08 netapi modbus 6RTU with operate trace.

In Figure 5.10 showing the rmse of the run1 6rtu trace, it seems like there are false

positive detections yielding a precision score of 0%. Looking into the packet capture

revealed unknown HTTP traffic at this time which was not present in the training data

and which has been labeled as being benign by [36]. As the kind of traffic associated

with HTTP connections is missing in the training data and the trained model, it is

detected as an anomaly. Reconsidering these batches as being true positive detections,

this trace would also come up to 100% precision and f1-scores.

5.2.3 Secure Water Treatment dataset

As the evaluation using the Modbus dataset showed that the approach suffers from

too few data, our second test dataset consists of about 300GB of data collected dur-

ing several days in the Secure Water Treatment (SWaT) S3 event [110]. The SWaT

environment consists of several machines, programmable logic controllers (PLC), and

computers, as well as 51 sensors and actuators which mainly use the Common Indus-

trial Protocol (CIP) over EtherNet/IP (EN/IP) [68]. The data is split into two parts,

one which does not contain any attacks and another one which does include attacks.

However, as that data was collected during the S3 Capture-the-Flag (CTF) events, it

is not labeled packet-wise and it is unclear what attacks have been carried out.

The first part of the dataset consists of 50 network traces, each including a roughly

one-hour long capture with a size of about 6GB. For the training phase, we use the
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Figure 5.9: RMSE on the moving two files modbus 6RTU trace.

packet 00019 20170614105105.cap capture, which contains 256, 339 batches of 200

packets. As the underlying CPS is more complex, the portability and long-time appli-

cability of the trained model is an interesting parameter to study using this dataset.

We, therefore, tested the trained model against all available (not attack-containing)

datasets available from the SWaT dataset. This includes data captured up to seven

days later than the initial training capture trace whereas each trace itself is at least

one-hour long. Figure 5.11 shows on the left side the rmse during the training phase.

On the right side, the resulting rmse for all validation packet batches is shown, i.e.,

for 12, 202, 651 batches of 200 packets starting at 2017-06-14 11:51:05 up to 2017-06-22

16:04:08. Comparing the two figures shows that while the rmse is higher during the

validation phase, it does not rise significantly. Thus, the model was able to capture

enough information during training on one hour of traffic to perform similarly over

several days. As the validation dataset is more than 47 times larger than the training

set, we can assume that the model is not overfitted to the training data.

To test the detection capabilities of our model, we need to evaluate a dataset con-

taining attacks and to apply the quality measures introduced in Section 5.2.1. For this

validation, we use another trace from the later S3 event on the SWaT system, i.e., the

second yet untouched portion of the dataset. This part comprises two network traces

with a total size of 104GB. The s3171 trace starts at 2017-06-08 02:52:31, i.e., almost

one year after the training traffic had been captured. For our anomaly detection eval-

uation, we use the first 200 million network packets of this trace resulting in 995727
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Figure 5.10: RMSE on the run1 6rtu trace.

Figure 5.11: Root mean squared error during training and on validation data from SWaT.

packet batches. While we know this trace does contain attacks, it is unknown which

packet should be considered benign or malicious as a packet-wise labeling is missing.

Nonetheless, we can process the trace and derive the corresponding rmse values for

each packet batch. As shown in Figure 5.12, in contrast to the training and validation

datasets (cf. Figure 5.11), the rmse occasionally exceeds the value of 1500 which had

been an upper limit throughout the whole validation set.

5.2.3.1 Estimating Labels for Unlabeled Datasets

To derive labels for the second part of the SWaT dataset, we apply our labeling ap-

proach outlined in Section 5.1.4. This enables us to identify main root causes for

84



5.2 Implementation and Evaluation

Figure 5.12: RMSE on the s3171 trace.

anomalies appearing in the network traffic in the attack-containing part of the SWaT

dataset. Our analysis revealed the following five major causes:

TCP Retransmissions of several packets indicate spurious network behavior. As re-

transmissions are used for lost TCP segments, there could be numerous causes.

Frequent retransmissions might occur due to lost physical or logical connectivity

or stalled services. Filtering those packets (retransmit) can be done with a scan

on packet captures and identifying repeated TCP packets on a connection. In

our implementation, we use the following Wireshark filter to identify this set of

packets as being anomalous:

tcp.analysis.retransmission or

tcp.analysis.fast_retransmission

Duplicate Acknowledgments are similar to TCP retransmissions, since they also in-

dicate lost TCP segments. In contrast to the retransmissions, duplicate acknowl-

edgments are triggered by the recipient to indicate the last seen segment. Testing

whether a TCP packet has been acknowledged more than once can be done us-

ing state-of-the-art traffic inspection tools (dupack). In our implementation we

use, thus, the following Wireshark filter to identify this set of packets as being

anomalous:

tcp.analysis.duplicate_ack

TCP Resets are used to invalidate an ongoing TCP connection or to reject connections.

These can be intentionally reused to interrupt services or to hijack connections.

Thus, TCP resets may be part of real-world attacks. As such a reset is signaled
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Line dupack retransmit unknownproto-tls
p n

∑
p n

∑
p n

∑
1 t 3 974024 974027 1 973998 973999 2 973574 973576
2 f 44 73 117 44 99 143 44 523 567
3

∑
47 974097 974144 45 974097 974142 46 974097 974143

4 pr 6.38% 2.22% 4.35%
5 re 3.95% 1.00% 0.38%
6 f1 4.88% 1.38% 0.70%

Table 5.3: Anomaly detection performance as pr, precision, and re, recall, in problematic
scenarios.

by a flag in the TCP header, filtering these packets is straightforward (tcpreset).

In our implementation we use, thus, the following Wireshark filter to identify this

set of packets as being anomalous:

tcp.flags.reset==1

Syn Flood Attacks are a method to disrupt the connectivity to a device by con-

stantly sending handshake requests to arbitrary port numbers. Using our ranking

method, we found several such attacks in the dataset and used a filter for TCP

Syn packets which are not followed by a complete handshake (synflood) indicating

connection attempts to dead endpoints. In our work, we implemented this with

the following Wireshark filter to mark packets as being anomalous:

transum.status=="Response missing" and

tcp.connection.syn

Unknown Protocols (TLS) in the network traffic are a strong indicator of anomalous

actions going on. In CPSs, all required protocols are known in advance and can be

included during the training phase. Thus, any newly occurring protocol may be

part of an ongoing attack or other anomalous system behaviors (unknownproto-

tls). In our implementation, we scan the training network traffic for all occurring

protocols and use this list to compare any tested network packet. As this approach

will list an abundance of protocols in the test dataset, we restrict this filter to

only label packets as being malicious when containing a TLS layer. There is no

TLS communication in the training dataset.

Using these five described filters, we derived labels for a portion of the network traffic.

These labels can then be used for the calculation of quality measures.
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Line tcpreset synflood
p n

∑
p n

∑
1 t 21528 974047 995575 21566 974094 995660
2 f 44 50 94 44 3 47
3

∑
21572 974097 995669 21610 974097 995707

4 pr 99.80% 99.80%
5 re 99.77% 99.99%
6 f1 99.78% 99.89%

Table 5.4: Anomaly detection performance as pr, precision, and re, recall, in well-working
scenarios.

Evaluating the derived rmse for each batch of 200 network packets against the thresh-

olds tlow = 900, tup = 1500 resulted in the observations listed in Tables 5.3 and 5.4.

The first three lines show the distribution of packet batches being true or false and

positive or negative. Lines four to six then list the resulting qualitative measures. For

each label-filter, we count a true positive detection if the batch is positive and more

than 2 packets in the batch matched the specific filter. A false positive detection is

counted when the batch is positive but none of the label-filters matched. Hence, the

number of false positives is equal across all filters. These are packets that we could not

assign a clear root cause using our proposed labeling method. It may either be there

are various smaller causes for these anomalies which require an understanding of the

actual network traffic content or these are false positive detections by our framework.

However, the other scores vary between the different anomaly sources outlined before.

Table 5.3 shows the quality measures for the detection of duplicate acknowledgments

(dupack), TCP retransmission (retransmit), and unknown protocols (unknownproto-

tls). The number of packets labeled as being anomalous can be derived as tp + fn.

Looking at this value and the ratio of filter-labeled packets in the whole tested dataset,

we can conclude that these anomalies are not frequent enough to be detected using the

proposed method. While the unknownproto-tls filter matched 525 packet batches, this

only represents 0.05% of the whole network traffic and is a too small portion of the

network traffic. The other two filters matched even fewer batches. Remembering the

findings from the Modbus dataset (cf. Figure 5.9 and explanation), this might also be

a consequence of our batching method.

Considering the results of the more frequent anomalies shown in Table 5.4 further

confirms this assumption. The ratio of filtered packets in tcpreset and synflood equals

2.15% and 2.17%. With the increased occurrence of anomalous network packets, the
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detection performance rises to over 99% considering precision and recall in both traf-

fic filters. This suggests that the proposed framework is a good solution to detect

prominent network anomalies.

Another important finding can be seen in Figure 5.12. In the mid of the dataset,

the rmse drops significantly below the average value. According to our assumption,

anomalies should increase the rmse. A manual inspection of these packets revealed

that, in this case, there are syn flood attacks going on. The corresponding network

packets mainly consist of their headers and no payload. Therefore, they can easily and

precisely be reconstructed by the SDA as TCP SYN packets are part of regular network

traffic. Due to the increased relative amount of SYN packets to other network traffic,

the rmse drops significantly. Thus, lower thresholds, as outlined in Section 5.1.2, can

also be used to detect such shifts in network behavior.

5.2.3.2 Comparison against naive classifiers

Given the Equations 5.1 to 5.7, training a SDA for anomaly detection may lead to

a naive classifier. As we pad shorter network packets with zeros, the corresponding

input values for the SDA are 0. If, during training, most of the network packets are

shorter than MIS, the weights of the connections from the last nodes in the input

layer will not be trained at all, as they always evaluate to 0 regardless of the weights

and biases chosen. Attacks utilizing longer packets than the average network packets

during training, however, trigger these connections and may lead to an increased rmse.

To test whether the SDA is nothing else than a packet length classifier, we use the

same processing strategy but replace the SDA with a naive approach. During training,

we calculate the average packet length avgp over the whole dataset. When testing a

batch of network packets Bi we use the average packet length of the batch avgBi and

calculate the error e as

e = |avgp − avgBi | (5.11)

Using this error estimate, we can now use the same thresholding as a decision bound-

ary. As during the training phase of the SWaT dataset, the error e remains strictly

below 450, we use tup = 500 for this test. Table 5.5 shows the results of this naive

method for scenarios where the SDA-based method performed well. In these scenarios,

the SDA-based method achieved precision and recall values of over 99% whereas the

naive approach did not get one correct positive detection. This leads to an inferior per-

formance compared to our proposed method. While using more statistical values the
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Line tcpreset synflood
p n

∑
p n

∑
1 t 0 976754 976754 0 976772 976772
2 f 1638 21588 23226 1638 21570 23208
3

∑
1638 998342 999980 1638 998342 999980

4 pr 0.00% 0.00%
5 re 0.00% 0.00%
6 f1 0.00% 0.00%

Table 5.5: Anomaly detection performance as pr, precision, and re, recall, using a naive ap-
proach.

naive approach might be enhanced, the choice of those is restricted to easily acquirable

information. Since parsing the packets requires too much time for real-time processing

(cf. Figure 5.6 and Table 5.1), features like IP or MAC addresses cannot be used in a

naive approach for the same setting.

Our evaluation showed that the framework is able to detect frequent and longer-

lasting network attacks and outperforms more naive approaches. Considering the types

of attacks we found during our analysis in the SWaT dataset, one might argue that

there are easier and more reliable options to detect TCP resets or SYN flood attacks.

However, we note that the framework achieves precision and recall values of over 99%

without any information on the protocols during training. To correctly detect TCP

resets, the reset flag (1 bit) in the TCP header can be read out. This information is

not part of the training data or the model. Instead, the feature learning stage inside the

SDA is able to capture enough information during training to detect these attacks. For

SYN floods, one possible approach would be, for each machine, to mask packets going

to ports, which are unused during training. While this information can be gathered in

an application-specific adaptation phase, it is also not part of the training data.

We showed that the framework can be applied to different Fieldbus protocols with-

out modification or adaptation despite the choice of problem-suitable upper and lower

thresholds for detection.

The evaluation on test datasets obtained almost one year after the training data

promises long-term applicability of a trained model as long as the overall system and

network behavior does not change.
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5.3 Conclusion

We present a method and framework for efficient and effective anomaly detection in

CPS networks. During experiments, we show that our implementation of the framework

is capable of achieving a throughput matching the requirements of industrial commu-

nication. By the omission of common network packet parsing, we achieve a packet

acquisition speedup of up to 100 times. We overcome the resulting loss of interpretable

features by applying a combined feature learning and anomaly detection method based

on stacked denoising autoencoders. Finally, the evaluation showed that our presented

method is capable of classifying typical anomaly indicators of high quality without ini-

tial information on the network or system behavior itself. Whereas we detect frequent

and longer-lasting attacks with precision and recall rates of over 99%, shorter attack

sequences may be filtered out by our batching approach. This suggests that with more

advanced training and less batching, the detection performance may even be increased.

Using the proposed method, we detected anomalies regardless of the specific industrial

Fieldbus protocol. Without adaptation of the framework anomalies in the Modbus

dataset [36] as well as in the Secure Water Treatment dataset [68] can be found. The

ability to construct anomaly detection systems independent of the analyzed protocols

enables broad applications in the currently evolving IIoT and CPSs. With our focus

on processing vectors of raw bytes, the framework does not need to incorporate any

parsing or information-byte mapping logic, making it suitable even for applications

where such information is limited or restricted.

5.4 Summary

With the presented anomaly detection method, we present several advances in anomalyContributions

detection method design. By objecting to deep packet inspection, we achieve a fast

processing pipeline capable of handling also the latest CPS installations. Addition-

ally, this frees us from protocol-specific restrictions, which may differ from scenario

to scenario. By leveraging advances in machine-learning methods, we derive an unsu-

pervised detection method from stacked denoising autoencoders. While this approach

breaks with several common assumptions, we still manage to detect anomalies with

very high confidence of over 99%. We even find further applications for our method in

the semi-automated labeling of unlabeled datasets. This once again supports further

research on future anomaly detection systems.

Referring to C3, we presented a high-performance method for unsupervised anomaly

detection. This method bridges the gap between the accumulation of data from Chap-
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1 [ ∗ ∗ ] [ 1 4 4 : 1 : 1 ] ( spp modbus ) : Length in Modbus MBAP header does not
match the l ength needed f o r the g iven Modbus func t i on . [ ∗ ∗ ]

2 [ C l a s s i f i c a t i o n : Generic Protoco l Command Decode ] [ P r i o r i t y : 3 ]
3 02/24 −18:10:30.634900 1 9 2 . 1 6 8 . 1 . 1 0 4 : 5 0 2 −> 1 9 2 . 1 6 8 . 1 . 1 0 0 : 4 3 8 6
4 TCP TTL:128 TOS: 0 x0 ID :38534 IpLen :20 DgmLen:57 DF
5 ∗∗∗A∗∗∗F Seq : 0xBF6CC890 Ack : 0xCF15D076 Win : 0xFADF TcpLen : 20

Listing 5.1: Snort alert entry of a detected malformed Modbus network packet.

ter 4 to the following chapter, where we will further investigate the results of anomaly

detection systems.

Anomaly detection systems are often criticized for unintuitive resulting alerts. While Relation to

next chapterthe main goal of an anomaly detection system is to characterize the current system’s

state as either normal or not, IDS usually do not provide insights in the reasons for

their decisions.

Alerts as the one from snort, a well-known business IT IDS, shown in Listing 5.1 only

carry information on the state itself but not on the reasoning behind a decision as being

anomalous. In addition, CPS operators are usually less interested in a single system’s

state but more in the overall CPS installations’ state. Their main concern is to answer

the question: “Can we still let our production systems running? Shall we intervene?

What is the problem and how and where can we fix it?”. To guide towards answers to

these questions, the next chapter gives guidelines in IDS design to aid tracing of root

causes and maximizing the overall benefit of IDS deployments in CPS.
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Relationships in Attack Campaigns

Any security measure deployed should enable the system to strengthen its standing Purpose of IDS

against future attacks. However, anomaly detection methods cannot prevent attacks

themselves. The idea of anomalous state detection, instead, is to assist CPS operators

and analysts throughout multiple stages of the security life cycle. Overall, detection

systems are deployed to enable operators to understand the actual behavior of their

CPS better as well as accelerating fixes for identified security problems before attackers

may reach to critical systems. Most critical systems are not directly connected to the

Internet but are protected by different security zones [75]. However, attackers may use

vulnerabilities in less protected systems with remote connections.

Hence, the goal of this chapter is to identify root causes of detected anomalies to Goals

trace them back to their initial point of entry. Such an analysis allows for focusing

protection measures to the locations where they are required the most. That identi-

fication eases further steps as locating the actual vulnerability and fixing it. Another

common problem is the lack of understandability of the internal processes in modern

intrusion detection systems. Hence, other security research domains already started

investigating the relations of output alerts to their recipients’ actions [111]. The next

chapter introduces a formal model of distributed anomaly detection intending to make

the interactions of complex installations more understandable.

Further, we combine this model with a simulation framework to derive recommen-

dations for future detection installations in Section 6.1. This assists in cumbersome

tasks like resource-constrained deployment and optimization to maximize the utility of

distributed IDS setups, in Section 6.2.

With this understanding of distributed IDS setups, in Section 6.3 we finally provide

a first concept for integrating multiple sources and methods into one coherent system.

This system enables us to identify the current progress of an attack as well as its origin.

Parts of this chapter have previously been published in “Do’s and Dont’s of Dis-

tributed Intrusion Detection in Industrial Networks” by Peter Schneider [14]. The chap-

ter “Optimization of IDS Deployments” is under review for publication and the chapter
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“Understanding Advanced Attack Procedures in CPS from Heterogeneous Logs” is in

preparation.

6.1 Simulation of IDS Deployments

With increasing system complexity and ever-rising new threat scenarios, researchers de-

veloped numerous tools and methods to derive anomaly and intrusion detection systems

(IDS). Companies now implement these as steamroller tactics against yet unknown ad-

vanced attack scenarios. In case of detected attacks, anomaly and intrusion detection

systems generate alert notifications. While the systems carry the potential of detecting

new and complex threats, they are also prone to misinterpreting the current system

state and consequently raising false alarms. The ratio between the detection of novel

attacks and false alarms generated is usually a trade-off in the method design [112, 113].

However, many methods do not provide a guideline on how to choose this trade-off;

instead, developers often employ experiments on real systems or parameter guessing.

As experiments incur costs, they are usually limited in the explored parameter space.

Hence, the derived parameters may be inadequate or sub-optimal. In consequence, op-

erators face a significant amount of manual post-processing of final alerts if they desire

high detection rates.

Often, the alerts are represented as entries in dedicated alert logs. Operators aggre-

gate these files into knowledge databases using security information and event manage-

ment systems (SIEM) and forensic tools. The entirety of the aggregated information

contains valuable insights into ongoing attack strategies, present vulnerabilities, as well

as indicators for future threat mitigation. The development of suitable countermea-

sures requires understanding the exact course of an attack strategy. Therefore, SIEM

systems are often also used in forensic analyses and to recover from past attacks.

For such forensic analysis, it is fundamental to identify correlations and cause–effect

relationships. Tracking down a sequence of them throughout a company network allows

for a thorough analysis of the attack strategy and, especially, helps in finding the initial

entry point of an attacker.

In practice, however, operators usually face a heterogeneous collection of alert log

types, formats, and information gain making such an understanding time and resource-

intensive. In their essence, all these log files represent a list of unsynchronized entries

whereas the only commonality is the presence of a timestamp. Any further information

in each entry is application-specific. The alerts may comprise a specific vocabulary or
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even a technical encoding requiring dedicated knowledge to understand them. Forensic

analysis of these files, hence, requires much manual investigation.

In this chapter, we provide a model for understanding cause–effect relationships be-

tween log files generated by intrusion detection systems in a compound system network.

We show the interaction of these during an attack analysis and derive estimates on per-

formance requirements for each detection system. Using a simulation, we are able to

analyze the interplay of the systems and their joint performance in understanding on-

going advanced attack strategies. This allows us to set the detection and false alarm

rates of an IDS into the context of the attack propagation speed and the underlying net-

work topology. Finally, this analysis supports reasonable decisions on the parameters

defining a detection method’s trade-offs.

In summary, in this chapter we demonstrate

• how to aggregate information from different intrusion detection alert logs in Sec-

tion 6.1.1,

• a simulation framework for understanding the interplay of different system pa-

rameters and resulting alerts in Section 6.1.2,

• and an analysis of different parameter configurations in Section 6.1.3.

6.1.1 Modeling Distributed Anomaly Detection

We start by providing a model for distributed anomaly detection on different abstrac-

tion levels. With this, we do not aim to provide a new anomaly detection method but

rather to understand the general characteristics of existing and future methods. Sec-

ond, we outline a simple mechanism to identify attack paths in a network of systems.

Together, the anomaly detection model and the attack tracing mechanism allow for a

study of the interplay of both concepts in Section 6.1.3.

Before detailing the actual model, a thorough definition of the used terms shall

confine the scope of the method.

System A system may represent different parts of software in one device, different

devices in a network, or even functions spread across different locations or organizations

(see the following section). One system always corresponds to a single entity and can

have multiple connections.

Anomaly Detection Method We understand an anomaly detection method as a

function which, given a system state at a specific time, may detect anomalies. This
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alert is either raised because the corresponding system is in an anomalous state or as

a result of a false-positive detection.

Distributed Anomaly Detection We call a deployment of anomaly detection meth-

ods distributed if there are multiple systems involved. Further, the deployed methods

may be heterogeneous or homogeneous. Thus, we do not require the same method for

every system. However, we assume that all deployed methods are capable of detecting

the same set of anomalies.

6.1.1.1 System and Connection Model

The term system and their corresponding connections can have several interpretations.

In the remainder of this chapter, we only refer to these terms while the results and

methods are applicable to all notions equally.

While a system resembles a single entity in our network, they interact via connec-

tions. This abstract definition allows us to apply our model and analysis to different

abstraction levels. Systems can represent a dedicated host, physical device, or a ma-

chine in an IT network. These, then, may connect via Ethernet, WiFi, or the Internet.

The only requirement for any link to be considered a connection is its capability of

allowing an attacker to abuse it. Hence, this can also be extended towards USB de-

vices used on several systems, or other forms of information transfer like the same user

operating different machines.

Further, a system may also represent different parts of software on a single ma-

chine. A connection, again, is available if different software parts may exchange data.

This may occur by accessing the same files, by using the same random access memory

(RAM), by local communication on loopback devices, or by inter-process communica-

tion.

In a more abstract sense, we can also define a system to be any function carried

out throughout a process or a whole organization. In this case, the definition of a

connection becomes more difficult as there are various possibilities for information to

be exchanged. However, the following methods would still apply provided our basic

assumptions concerning attackers, their goal, and their methods still hold (cf. next

section).

A similar concept is known as attack graphs. These describe an attacker’s possibilities

to tinker with assets. While our model is also graph-based, we do not consider these

vulnerabilities directly. Whereas attack graphs are usually used during risk analyses to

identify and later fix a system’s weaknesses, we focus on choosing the right detection
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measures with the right configuration. In contrast to attack graphs, we do not model

system vulnerabilities but their behavior once a multi-stage attack started.

6.1.1.2 Attacker Model

Based on recent large-scale attack campaigns hitting Internet of Things (IoT) devices,

like the Mirai botnet [64], we assume that an attacker wants to spread his attack to as

many reachable devices as possible. Apart from this, gathering information about all

reachable devices is usually part of the reconnaissance stage of cyber kill-chains [114].

Analyses by [3, 5] showed the presence of these in recent attacks on CPSs. Further,

we assume that every device has suitable vulnerabilities for an attacker to access or

manipulate it because systems used in Operational Technology (OT) for CPS usually

do not provide security measures.

Concerning the whole network of systems, we envision a single attacker uses only

one entry point to the overall system network. In reality, other systems may also be

exploitable remotely. However, we assume an attacker aims for the probably easier

attack propagation from systems already inside the target network.

In practice, multiple attacks from different attackers may spread simultaneously

throughout a network. However, we assume that different attacks do not interact

and, thus, do not alter a single attacker’s behavior. Hence, without loss of generality,

we only model a single attacker at all times.

In the following, we detail two exemplary use cases of our modeling framework. First,

we use local alert log files on one host to understand the traversal of attacks throughout

that host. Hence, we call this intra-host attack propagation and tracing. Second, we

extend this concept to attacks targeting networks of computers.

6.1.1.3 Intra-host Anomaly Detection

Considering a single host, several types of logs provide information for anomaly de-

tection. Application layer logs may carry information on anomalous events concerning

respective functions. General system logs indicate the overall system status and allow

for the identification of low-level anomalies and attacks. Additionally, each commu-

nication interface may be equipped with a logging or detection layer informing about

anomalous network activity. Figure 6.1 illustrates this setup for two hosts. Regarding

one of the hosts, there are three possible categories of attack propagation paths:

First, a remote attacker uses a vulnerability in the application logic to manipulate

the application behavior. Hence, the application log records an anomaly. This manipu-
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System

Node 1

App 1.1

Log 1.1.1

App 1.2

Node 2

App 2.1

Log 2.1.1 Log 2.1.2

syslogcomm
log

Log 1.2.1

Figure 6.1: Localization of available alert log files and their relations to each other.

lation then possibly allows for further attacks on the underlying system. The attacker,

hence, may influence the system state and extend its privileges to propagate to other

hosts using available communication interfaces. The IDS on the communication inter-

face, then, detects the anomalous network traffic.

application→ (system)→ communication

Second, an external network attack, like a man-in-the-middle packet manipulation

or a physical attack on the network, targets the communication layer. This, in turn,

influences the system’s processing of the communication and leads to a manipulated

system. After that, all applications on this system are subject to further manipulations

of their application logic.

communication→ (system)→ application

Third, a direct attack on the system hardware or other local attacks may directly

influence the system state. With a compromised system, an attack can further be

propagated to an application or to other systems using the communication layers.

system→ application|communication

In the context of anomaly detection, it is important to note that attack propagation

is possible without transferring the underlying system into an anomalous state. This

can be done, for example, by crafting malicious network packets that comply with the
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specifications but carry malicious payloads. Hence, logs for the system state may be

less important for detection.

While we described these intra-host paths on an abstract level, they build the basis for

every attack on any system. Studies like [3, 4, 5, 115] showed that real-world attackers

chain these paths to multi-stage attacks. To detect such attack chains, we assume

that subsequent detections on neighboring model parts correspond to the source and

destination of an attack propagation. As they form cause–effect relationships, the order

of detections in the different associated alert log files in the outlined attack propagation

paths suggests their corresponding attack category.

6.1.1.4 Inter-host Anomaly Detection

In contrast to our simple setup in Figure 6.1, real-world network systems usually have

much more independent hosts in different topologies. Therefore, we also need to inves-

tigate attack propagation characteristics in larger networks.

For the analysis of distributed installations of anomaly detection systems in larger

networks, we consider an architecture G = (V,E) comprised of systems V and connec-

tions E. Each system v ∈ V is considered as a node of an undirected graph whereas a

connection between vi and vj corresponds to an edge ei,j = (vi, vj) in that graph.

When modeling real-world systems, a connection may include systems on the same

network, systems that are used by the same persons or which are physically close to each

other. This way, we can also model attacks crossing air-gaps, like USB attacks [115],

as well as attack vectors using social engineering.

The state of the system vi is described by the two events attacked, Ai,t, and detected,

Di,t, at time t. Further, every system in the network may have an anomaly detection

system ai = (di, fi). This detection system is characterized by its detection and false

alarm rates di, fi. The detection rate indicates the probability that the system detects

an ongoing attack at the system so that

di = P (Di,t+1|Ai,t) (6.1)

Accordingly, the false alarm rate is the probability of a reported attack while there is

currently none so that

fi = P (Di,t|¬Ai,t) (6.2)
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Additionally, we define the set of systems with reported detections at time tk as Dk.
Given these definitions, we classify the detection of each anomaly detection systems as

a

• true positive, tp, if Di,t1 ∧Ai,t0
• true negative, tn, if ¬Di,t1 ∧ ¬Ai,t0
• false positive, fp, if Di,t1 ∧ ¬Ai,t0
• false negative, fn, if ¬Di,t1 ∧Ai,t0

Using the sums of the detection classifications of all systems in the network, we can

establish a general performance evaluation of the anomaly detection systems deployed

in the network using the precision and recall metrics as

precision =
tp

tp+ fp
(6.3)

recall =
tp

tp+ fn
(6.4)

As these metrics refer to the average performance of the nodes’ anomaly detection

system, we refer to it as the node precision and node recall.

To model the propagation of attacks through the network, we assume that a com-

promised system si propagates attacks to adjacent systems, adj(si), with the attack

propagation probability ii in two subsequent units of time.

ii = P (Aj,k|Ai,k−p) (6.5)

with p > 0, ∀sj ∈ adj(si)

P (Aj,k) =
∑

si∈adj(sj)

k−1∑
t=0

ii · P (Ai,t) (6.6)

Formulating this attack propagation reveals that the probability of a system being

compromised rises with its exposure to other compromised systems. This exposure

rises over time as well as with the system’s degree in the graph. The degree k of a node

n in a graph is defined as k = |adj(n)|. Hence, networks with higher connectivity, i.e.,

a higher average degree, should see faster attack propagation.

With this model and based on the previous cause–effect relationship assumption

(cf. Section 6.1.1.3), it is possible to identify a likely path from newly attacked systems

back to any previously affected system. A method for such a tracing procedure based

on dynamic programming is shown in Algorithm 3. For each newly attacked system v
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Algorithm 3: Tracing back new attacks in the network based on cause–effect
relationships.

Input: Log L, System graph G
Output: Set D of attacked systems

1 k ← 0;
2 D ← ∅;
3 foreach t, e ∈ L do
4 if t > k then
5 Dk ← D;
6 k ← k + 1;

7 end
8 if isDetection(e) then
9 v ← getSystem(e);

10 D ← D ∪ {v};
11 P ← shortestPathToSet(v,G,Dk−1);
12 D ← D ∪ P ;

13 end

14 end
15 return D;

at time k, we search for the shortest path P in G starting at a node a ∈ Dk−1, i.e., a

node which was already attacked at a previous point.

Based on the cause–effect assumption (cf. Section 6.1.1.3), the cause of a detected

attack should be one of its neighboring nodes. If, however, no neighboring node detected

the attack, we assume that the nearest node with a detection is the real cause. While

more sophisticated attack path tracing methods are possible, we use the shortest path

criterion as an example of how a tracing mechanism, in general, influences the overall

system detection capabilities in Section 6.1.3.

Using weights on the edges of the graph, we can extend our model to include a

specific propagation probability along each edge. As prerequisites, we need three special

methods for each utilized detection system.

First, isDetection returns true if the provided log entry resembles a detected

anomaly.

Second, the method getSystem must return one node of the graph at which the

current anomaly was detected. For this, we can refer to Figure 6.1, which localizes

different types of alert log files in the overall system. In case of communication logs,

we define the corresponding system as the one at which communication endpoint the

log was captured.
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s1 s2 s3

s4 s5

detection new detectionassumed

Figure 6.2: Illustration of assumed detections on shortest paths.

Third, the algorithm shortestPathToSet is a modified version of the Dijkstra algo-

rithm [116]. The Dijkstra algorithm computes the shortest path from one starting node

to all possible other nodes in the graph. In our adaptation, this set of nodes and path

lengths is matched against the given set, i.e., Dk−1. The shortest path from this subset

represents the most likely path of attack propagation. We note that intermittent nodes

on this path did not detect the attack themselves.

Consider the path s1 → s2 → s3 describing the shortest path of a new attack on node

n3. As we only consider paths starting at already attacked nodes, s1 must be attacked.

If s2 was attacked, however, the path s2 → s3 is shorter as it is a subsequence of

the first path. Hence, the path would already end at s2’s position. Therefore, we

label all intermittent nodes on these paths as assumed detections. Figure 6.2 visualizes

our concept of assumed detections on shortest paths. Without further knowledge it

is also possible that the attacker actually used the longer path s1 → s4 → s5 → s3.

However, if we choose the required effort for an attacker as a distance measure between

nodes, it is at least more likely that the shorter path has been taken. Such efforts can

for example be derived in SRAs. The differentiation between assumed detections and

other detections ensures that we do not alter the estimated attack paths on subsequent

runs of Algorithm 3.

6.1.2 Implementation

In the previous section, we developed a model for aggregating and understanding in-

formation in different alert log files as well as tracing identified attacks through hosts

and a system of those. Based on this model of information aggregation and attack

tracing, we build a simulation allowing for a more controlled study of the influence of

the different parameters.

While aggregating information is already part of deployed SIEM systems, it is yet

unclear what the benefits of this aggregation are. Since the influences of different

configuration parameters in a specific setup are still unknown, we need to understand

the interplay of distributed information collection and centralized evaluation. Hence,

102



6.1 Simulation of IDS Deployments

Attack random node

Detect attack

repeat until reaching
specified attacked ratio

Propagate attack

Traceback attack
path

Evaluate
performance

Detect attack

Figure 6.3: Process during simulations.

using the attack propagation and system network model proposed in Section 6.1.1.4,

we implement a simulation tool allowing detailed experiments.

For this, we follow the process shown in Figure 6.3. We supply our simulation with a

network model in the dot language of graphviz [117]. This allows for easy customization

of the process to different network topologies and maps to our model of a system

network as a graph. Each simulation run starts with an attack on one random node

of the network. The rest of the simulation is based on a number of rounds: For each

already attacked system and each of its connections, we now propagate the attack while

respecting the attack propagation probability ii. After the attack propagation through

all systems, each of them uses its anomaly detection system and changes its detection

state according to its detection rate, di, and its false alarm rate, fi. A simulation round

ends by incrementing the time counter by one and checking the ratio of so far attacked

systems to the total system count. We repeat as many rounds until we reach a specified

attack propagation ratio. After these rounds, we execute the traceback Algorithm 3

and derive the performance metrics (cf. Equations 6.3–6.4).

6.1.3 Experimental Results

In the following experiments, we use different sets of parameters to study their different

effects. As we use Monte Carlo simulations in the simulation framework, we repeat

every simulation setup with specific parameters for 100 trials. The Figures 6.7–6.14,

therefore, always show the mean values of 100 trials. Aside from the parameters and

their influence on the system behavior, we also test the influence of different network

topologies on the performance. Hence, we test several network topologies relevant for

current CPSs as well as industrial networks.
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Figure 6.4: Hierarchical topology representing current networked CPS.

6.1.3.1 Topologies

As different network topologies may influence the performance of distributed attack

detection, we choose three major network setups that may be encountered in current

industrial and CPS installations. Ring topologies are often used in CPSs and the auto-

motive industry. Our ring consists of 21 nodes and allows bi-directional communication

(cf. Figure 6.5). Especially in distributed sensor networks, however, we often face star

bus systems that use a central node for communication with several satellite systems

connected to the central one (cf. Figure 6.6). In this setup, we have one central node

and 20 satellite nodes. Recently, as part of the horizontal and vertical integration of

CPSs, we move towards hierarchical setups, as shown in our example in Figure 6.4.

Also, the implementation of security standards, like IEC62443 [75], encourages the

movement towards hierarchical setups. They are characterized by several zones which

are connected using gateways. Figure 6.4 shows the setup we used in our hierarchical

simulations.

6.1.3.2 Parameter Experiments

In the following Figures 6.7-6.14, we show average precision and recall values for all

nodes and the overall tracing precision and recall. For the latter, we define a true

positive detection of an attack propagation edge if once an attack was propagated along

this edge in the detected direction. However, we do not consider whether Algorithm 3

made this detection at the right time. A true negative indicates that the algorithm did

not output this edge and it was never part of an attack propagation. A false negative

indicates that an edge used during attack propagation was not detected by any run of

Algorithm 3. False positives indicate that Algorithm 3 once included an edge that was

never part of an attack propagation step or was used in the opposite direction. By this
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Figure 6.5: A classical ringbus topology.

Figure 6.6: Star bus topology.
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Detection in precision recall

SCADA communication [57] >75% >75%
plant data of a robot arm [54] 99.7% 100%
power system data [17] 88% -
communication profile [118] 95% 97%
parsed network packets [119] 99.6% 99.6%
sensor values [120] 91.2% 86.1%
health sensor data [121] 95.7% 93.7%
SCADA network data (Section 5.2.3) 99% 99%

Table 6.1: Precision and recall values of recent anomaly detection methods for different data
types derived from the indicated publications.

definition, it is possible to derive precision and recall metrics according to the definition

in Equations 6.3-6.4. Analogously, we call these trace precision and trace recall.

For comparison, Table 6.1 lists precision and recall values of some recent CPS

anomaly detection methods. When comparing with the following analysis, however,

we need to remember that these methods are optimized for detection in specific ap-

plication data. Our simulation, instead, is data-agnostic and studies the relationships

between these parameters independent of their application domain.

Detection Rates In this experiment, we run the simulation with a false alarm rate

of ai = 0%, an attack propagation probability ii = 70%, and a final attack propagation

ratio of 70% while all systems have an anomaly detection system. Figures 6.7–6.8 il-

lustrate the impact of the detection rate on the overall node and tracing performance.

In the first figure, the graph shows the mean precision and recall values for nodes. The

differently colored crosses demonstrate that the mean node precision is almost inde-

pendent of the detection rate. With a false alarm rate of 0%, every detection from an

anomaly detection system must be a real detection. However, the graph also shows val-

ues slightly below the 100% precision value. Those are due to possibly wrong detections

based on the traceback algorithm. As noted in Section 6.1.1.4, we label intermittent

nodes as assumed detections. For calculating the performance measures, these are in-

cluded in the same way as the detections from the anomaly detection systems. Hence,

wrong decisions in the traceback algorithm concerning the attack paths may introduce

false detections for single nodes.

In contrast to the crosses, the triangles show a dependency between the detection

rate and the ratio of attacked nodes detected. First, we note that higher detection rates

always yield higher recall values. Second, we now see a difference in the performance of
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Figure 6.7: Impact of detection rates on node performance.
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Figure 6.8: Impact of detection rates on trace performance.

the different topologies. In general, recall values for the ring topology are higher than

for the star while the hierarchical topology is placed between them. With a detection

rate of only 30%, the recall values for the ring topology are even twice as high compared

to the star topology. With an increasing average path length, the tracing algorithm is

capable of identifying more assumed detections. Hence, attacked nodes are identified

earlier. The second figure shows similar results for the detection of attack paths.

False Alarm Rates Figures 6.9–6.10 illustrate the impact of the false alarm rate

on the overall tracing performance. For this experiment, we run the simulation with

a detection rate of di = 90%, an attack propagation probability ii = 70%, and a final

attack propagation ratio of 70% while all systems have an anomaly detection system.
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Figure 6.9: Impact of false alarm rates on node performance.
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Figure 6.10: Impact of false alarm rates on trace performance.

The mean node performance can be described without differentiating the topologies.

A higher false alarm rate leads to less precision in the average node detection perfor-

mance. For the ring topology, while longer average paths helped in detecting attacks

in the previous experiment, introducing more false alarms leads to worse performance.

However, simultaneously the recall values slightly increase. With higher false alarm

rates, the chance of every single node to signal a detection rises. Hence, finally every

node signals a detection and, thus, also every attacked node does so. Therefore, we

reach recall values of up to 100%.

For the attack paths, we see a similar drop in average precision. In contrast to

the average node recall, the tracing recall does not necessarily increase. In the case
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of the ring and hierarchical topologies, the recall values decrease almost in the same

way as the precision values. The tracing Algorithm 3 heavily relies on the correct

order of detections. If two detections are exchanged in their order, the resulting attack

path has the wrong direction and will be considered a false positive in the performance

evaluation. Once again, this effect is more pronounced with longer average path lengths.

Additionally, for a star topology, this even yields increased recall values for the same

reason as the node recall values increase.
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Figure 6.11: Impact of attack propagation probability on node performance.
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Figure 6.12: Impact of attack propagation probability on trace performance.

Attack Propagation Probability Testing the effects of the attack propagation prob-

ability, i.e., ii, on the performance, in general, we see no significant difference between
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the average node and tracing performance. For this experiment, we run the simulation

with a detection rate of di = 90%, a false alarm rate ai = 1%, and a final attack propa-

gation ratio of 70% while all systems have an anomaly detection system. The precision

increases with higher attack propagation probability (cf. Figures 6.11–6.12). With a

lower attack propagation probability, the time for reaching the final attack propagation

ratio increases. This, further, allows more false detections as a result of the false alarm

rate. Hence, the faster the attack propagation the more accurate the detection, i.e.,

the higher precision values. The recall performance values change only slightly with

different attack propagation probabilities. They do, however, show a slight decrease

with increased attack propagation probability. This is caused by the same time window

of detection opportunities as stated before. With a higher attack propagation rate, the

time to detect an attack gets shorter and might be missed by an anomaly detection

system. Only due to the high detection rate in this experiment, the decrease is small.
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Figure 6.13: Impact of attack propagation ratio on node performance.

Attack Propagation Ratio For this experiment, we run the simulation with a de-

tection rate of di = 90%, a false alarm rate ai = 1%, and an attack propagation

probability of ii = 70% while all systems have an anomaly detection system. We al-

ter the attack propagation ratio, i.e., the point when the simulation stops based on

the ratio of already attacked systems. After the last simulation round, we still run

one detection-only round to give every node the opportunity to detect possible attacks

from the very last round. The recall values in Figures 6.13–6.14 do not significantly

change during this experiment neither for the mean node nor for the mean tracing per-

formance. However, for the hierarchical and the ring topology, we see an increase in the
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Figure 6.14: Impact of attack propagation ratio on trace performance.

precision with increased attack propagation ratios. Those two topologies have longer

average path lengths. Therefore, they are also more prone to false assumed detections

in consequence of the traceback algorithm. These may reduce the precision, especially

when the tracing is done earlier, i.e., with lower attack propagation ratios. For higher

attack propagation ratios, there is simply no false detection possible as almost all nodes

have been attacked already.

IDS Distribution Ratio For this experiment, we run the simulation with a detection

rate of di = 90%, a false alarm rate ai = 1%, an attack propagation probability of

ii = 70%, and a final attack propagation ratio of 70%. The results are almost the

same as for the detection rates (cf. Figures 6.7–6.8). Like for the detection rates, with

a decreased ratio of anomaly detection systems available the average probability for a

node to detect an attack is reduced. Hence, we see the same behavior as with lower

detection rates.

6.1.3.3 Parameter Effects

The goal of a parameter optimization is to reduce the false alarm rate, i.e., increasing

the precision while achieving the highest possible attack detection coverage, i.e., the

highest recall. Hence, the previous discussion of different simulation results leads us

to the following recommendations for the deployment of distributed anomaly detection

setups:

[Do 1] More IDS sensors for compact networks. The experiment on detection

rates showed that longer average path lengths in a network might compensate for
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lower detection rates. With the same detection rate, a ringbus or hierarchical network

structure has a higher detection recall. Longer paths, however, increase the risk of

misinterpreting attack paths and, in consequence, also lead to higher false alarm rates.

[Do 2] Better detection rates for fast-spreading attack strategies. While the

attack propagation probability is a fixed parameter in real-world scenarios, it shows a

direct link to the detection rate. Assuming we see fast attack propagation in a specific

scenario, we, thus, should focus more on higher detection rates than on lower false

alarm rates. Due to a decrease in the window of opportunity for detection, the effective

detection and false alarm rates decrease. In our experiments, with attack propagation

probabilities above 40%, the precision is almost identical to the detection rate. With

faster propagation, the impact of false alarms is, therefore, negligible.

[Do 3] During forensics, use large lookback windows. The experiment on

attack propagation ratios shows that the node and trace precision resulting from the

traceback algorithm increases linearly with the attack propagation ratio. As using a

large lookback window includes most previous attack steps and uses them as part of

the path reconstruction, the tracing is more reliable. Another option is to fine-tune the

traceback algorithm by restricting the maximum path length considered or by requiring

a minimum amount of attacked nodes before execution.

[Don’t 1] High recall values caused by high false-alarm rates. The experi-

ment on false alarm rates clarifies that high recall values may well be caused by false

alarms instead of detection capabilities. An IDS must, thus, always be judged com-

paring precision and recall values. For the methods based on machine-learning, this is

usually done using the F1 score, the harmonic mean of precision and recall.

f1 = 2
precision · recall
precision+ recall

(6.7)

[Don’t 2] Confuse low false alarm rates with fast attack propagation. As

shown in the experiment on the attack propagation probability, low false alarm rates

correlate with a fast attack propagation. If we face attack strategies spreading quickly

throughout a network, the time window for false alarms becomes shorter. Hence, the

false alarm rate tends to decrease. In reality, however, advanced attacks like Stuxnet [3]

penetrated systems slowly. Thus, in this case, the same IDS system would trigger more

false alarms as expected.

[Don’t 3] Misinterpret high detection capabilities under worst-case sce-

narios. When facing scenarios of distributed anomaly detection where almost all par-

ticipating systems are compromised, we must expect high detection rates. In this case,
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every alarm raised by an IDS is a valid one as every node is already compromised.

Hence, the false alarm rate decreases to 0% and the detection rates approach 100%.

When comparing the capabilities of different IDS, worst-case scenarios are therefore

less suitable.

6.1.4 Conclusion

In the previous sections, we outline a model for log file classification, anomalous event

information extraction, and event tracing. Within this model, we localize different log

file types and formats. Further, we develop a graph-based model of distributed anomaly

detection systems. We use a simulation of this distributed system for an anomaly detec-

tion parameter analysis. In our analysis, we study the impacts of various configuration

changes during simulations. While the recall performance in ring topologies profits

from higher detection rates and higher attack propagation as well as IDS distribution

ratios, the precision suffers from high false alarm rates and attack propagation proba-

bilities. Star topologies, however, do not show a different network behavior compared

to the single node performance. Both, precision and recall, profit from high detection

rates and suffer from high false alarm rates. They are almost unaffected by the attack

propagation probability and ratios as well as the IDS distribution ratios. Hierarchi-

cal topologies form a mixture between ring and star topologies. Hence, they show a

combination of their results.

The observations in our experiments allow for more fine-tuned distributed anomaly

detection setups. Taking into account different network topologies, we derive recom-

mendations for specific use cases. For future research, we summarize these findings

into seven design rules for distributed anomaly detection systems. While most anomaly

detection methods provide a trade-off parameter between higher detection rates and

allowing higher false alarm rates, a method for choosing this trade-off is often lack-

ing. Our approach using Monte Carlo simulations supports this choice by a thorough

analysis. With the provided model, choosing this trade-off evolves from guessing and

experimenting towards a reproducible decision.
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6.2 Optimization of IDS Deployments

With the presence of commercial-off-the-shelf (COTS) tools for the business IT sec-

tor, many operators search for deploying similar intrusion detection systems in their

CPSs. However, the characteristic features available in business IT do not reflect the

same information in CPS. In [32, 52], the authors explain that the inclusion of the

physical domain provides additional information that is not sufficiently represented in

the characteristics usually used in business IT IDSs. Therefore recently, new meth-

ods [10, 12, 37, 89, 118, 119, 122, 123] establish adapted intrusion detection schemes

for CPSs.

However, while the adapted IDSs provide more reliable detection for CPS, they

have similar resource requirements as business IT IDS. Equipping all nodes with an

effective IDS enables high confidence in attack detection, false alarm detection, and

attack vector identification. In contrast to the detection of known signatures, the

recognition of anomalies requires high computation performance. Instead, as CPSs

are often constrained by low resource requirements in terms of memory, computational

power, energy consumption, or network bandwidth [8], not every system may be capable

of deploying an IDS. Access- and organizational restrictions can further inhibit the use

and deployment of IDS in this domain. To protect against faults and tampering,

some devices are also locked down by their respective vendors. Although preventing

unintentional or malicious changes, this again hinders the usage of IDS for CPS. Others

may be restricted in terms of their computational or electrical power. Typically, the

primary functions completely utilize the limited resources of the minimalist sensor nodes

that are the basis of most CPS. Thus, there is no room for any additional anomaly

detection processing. Finally, specific safety or security certifications can inhibit the

inclusion of an IDS by requiring complete recertification due to the modification. Due

to these obstacles, full coverage of all parts of a CPS is not a practical option.

Dealing with restricted resource availabilities always demands proper planning and

distribution. For IT security, one measure for allocating the right capacities are security

and risk analyses pointing out the specific needs of a system [12]. However, they cannot

capture the interaction and interplay of several anomaly detection systems as it is

available from distributed anomaly detection [69, 70]. Hence, in this work, we analyze

the effectiveness of specific IDS deployments under constraints. Using this analysis, we

can then infer optimized IDS deployment locations. We suggest different optimization

goals and methods providing a framework for optimized IDS placements.
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To analyze the effectiveness of the different methods, we use an extended use case

model based on the Secure Water Treatment testbed [68].

To achieve a suitable level of protection despite of a reduced IDS quantity, their

optimal placement is necessary. To address this situation, we define models for the

considered attackers and the CPS under evaluation. Based on these models, we per-

form logical reasoning, and simulation using generic optimization, reinforced learning,

brute-force methods, and heuristic breadth-first greedy search to determine the optimal

placement. In summary, we make the following contributions:

• Definitions and models for CPS, attackers, and anomaly detection approaches

(cf. Section 6.2.1).

• Optimization strategies considering the delay of attack detection, and node cov-

erage (cf. Section 6.2.1.4).

• A simulation-based framework to determine the optimal IDS placement by dif-

ferent algorithms (cf. Section 6.2.2).

• An evaluation based on the assessment of the well-known SWaT [68] architecture

(cf. Section 6.2.3).

6.2.1 Model Refinement

For a detailed analysis of the efficiency of IDS deployments, we need a thorough un-

derstanding of distributed intrusion detection systems in CPSs. Hence, we model the

systems as graph structures and take note of configuration details of possible IDS in

the following subsections. This model provides a common basis for the framework for

IDS placement optimization in Section 6.2.2.

6.2.1.1 Cyber-physical Systems

At this point, we recall the definition of CPSs already mentioned in Section 2.2 and

extend it to allow for better modeling the individual components of a CPS. While

we use the same definition as before, we have a deeper look at the relations between

different classes of CPS components.

We define cyber-physical systems as compound systems consisting of at least one

element of each of the following three classes.

The cyber class C represents all elements of classical IT infrastructure. These are

computing devices H, networks N , functions F , and data D.

C = H ∪N ∪ F ∪D
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The physical class P consists of involved materials M , physical process properties Z,

and the physical environment E.

P = M ∪ Z ∪ E

Elements of C and P interact via interfaces S, consisting of sensors I and actuators

A.

S = I ∪A

We define a cyber-physical system cps now as an n-tuple cps = (i1, i2, . . . in) which

contains at least one element of each of the classes C,P, S. A given system tuple t is,

thus, a CPS if

(∃c ∈ C : c ∈ t) ∧ (∃p ∈ P : p ∈ t) ∧ (∃s ∈ S : s ∈ t)

By this definition, a CPS is a mixture of both worlds characterized by interactions and

influences along its interfaces. These interactions form feedback loops, as shown in

Figure 6.15. The IT systems (class C, blue) use actuators (class S, green) to influence

the physical world (class P , red). Then, the measurement of sensors (class S, green)

builds the basis for the decisions in the IT systems (class C, blue).
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Figure 6.15: Feedback loops in CPSs.

Thus, these feedback loops represent the fundamental behavior of the CPS.

Expanding on the previous definition, Figure 6.16 shows the classes and relations

between them and arranges them in a CPS meta-model. For this meta-model, we

define a Function (F) as an operation that consumes data and produces other data.

The function, which can be a sophisticated app, but also a simple media converter is

hosted on a device H. A device is defined as a (physical or virtual) instance that can

host functions and can be connected by networks N . The class data D encompasses

all types of information provided by sensors I, transmitted via networks and generated

or consumed by functions. An actuator A can be steered by a function to manipulate
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materials M , thus, influencing their common environment E. Properties of material are

measured by sensors I, which also monitor the environment. Finally, physical process

properties Z describe the interactions between materials and with the environment as

those influence each other.

M
material

Z
physical process properties

E
environment

A
actuator

I
sensor

F
function

D
data

H
device

N
network

Figure 6.16: Abstract model of a cyber-physical system.

6.2.1.2 Attacker Model

Considering the previously mentioned attacks, we must assume that the main goal of an

attacker is to manipulate the behavior of the CPS. Whichever component he is going to

attack, he must manipulate at least one inherent feedback loop of the CPS as it defines

its behavior. Being a feedback loop, the exact location of the attack is unimportant.

Through the feedback, an attack always affects all components of the loop in the end.

117



6 Understanding Cause–Effect Relationships in Attack Campaigns
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Figure 6.17: Possible manipulations in CPS feedback loops.

An attack, such as a malware infection, targeting classical IT devices may lead to

manipulated actuator commands, finally resulting in physical damage (cf. Figure 6.17,

left). An example of this attack sequence is the W32.Stuxnet attack. Brunner et al.

[5] describe an initial infection by removable drives, network shares and databases, and

service vulnerabilities. The infected computers, then, sent malicious control commands

to the PLCs effectively manipulating the actuators.

A similar effect is possible by local manipulations of an actuator or injection of

messages on the network. Measurement of the physical impact by the sensor, then,

leads to wrong decisions in the controlling cyber components (cf. Figure 6.17, middle).

Alternatively, an attacker may tamper with the physical environment—for example,

by replacing the material a machine is working with or altering environment conditions.

This may lead to sensors operating outside their recommended operating conditions.

Their measurements then again yield inadequate decisions in controlling components

(cf. Figure 6.17, right).

With this model, we can classify the four different attack sequences outlined before

using their first attack step:

Physical attacks on the materials or the environment directly involved in the process,

first, manifest in the elements of the classes M,E.

Sensor manipulations can either happen by manipulation of the device itself, e.g.,

by a manipulated firmware. That is a manipulation of elements of the class I.

Alternatively, these attacks could also be carried out by manipulating the network
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or Fieldbus traffic from or to the sensor. Hence, a manipulation of elements of

the class N is also possible [50].

Actuator manipulations can, similarly to the previous type, happen by manipulation

of network traffic, i.e., elements of the class N [50]. Additionally, in CPS, manip-

ulation of the actuator firmware is also possible in the elements of class A [124].

PLC logic manipulation can be achieved by manipulating other systems of class H

on the same network to gain access to usually insecure PLC interfaces or by the

network itself N . Once access is available, an attacker may dump, modify, and

reprogram the PLC’s logic [48, 49]. Stuxnet [3, 5] is a popular example of this

type of attack.

While an internal attacker may execute any of these four different attack classes, an

external attacker usually can only achieve PLC logic, sensor, and actuator manipula-

tions from the network.

6.2.1.3 Anomaly Detection

Given these considerations, an anomaly detection system must check the integrity of

all feedback loops in the CPS. Despite the formulation of appropriate rules, equations,

and invariants for each loop, we need to get data, i.e., inputs for our system to detect

all these attack vectors. The addition of new classes of devices, sensors, actuators, and

physical materials and environments, leads to plenty of information to process.

After that and by linking and correlating all the inputs with each other, we can build

a holistic model of the CPS. Figure 6.16 summarizes how components of the different

classes interact.

Concerning the deployment of anomaly detection systems, we cannot collect data

from every possible source in the network. On physical components, i.e., those in class

P = M ∪ Z ∪ E, there is no possibility to install an IDS or a corresponding data

acquisition unit (DAQ). Further, sensors, I, and actuators, A, usually do not have

the resource capabilities for an IDS or a corresponding DAQ deployment. Hence in

Figure 6.16, roughly only about half of the component classes can be equipped with an

IDS. Without the loss of generality, we use the term IDS in the following also for the

corresponding DAQ.

We represent the distribution of IDS in the overall system as a masking vector con-

taining indicators for the presence of an IDS at any system sj . The sum of all its

elements then represents the number of IDSs present in the overall system.
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i =


i0

i1
...

in

 (6.8)

ij =

1 if sj has an IDS

0 otherwise
(6.9)

‖i‖1 =
∑
j

ij (6.10)

For every system sj in the network we, further, define the events Aj,t0 and Dj,t0

corresponding to an attack and a detection at this system at time t0.

We model the connections between systems as an undirected graph G = (V,E)

whereas V is the set of systems and E a set of edges. For every physical or logical

connection between two systems, there is a corresponding edge in E. The connections

reflect the relationships already shown in the abstract class model in Figure 6.16. Hence,

there are edges for devices (H) on the same network (N) but also for data (D) stored

on a specific device (H) and also between data (D) used and produced by functions

(F ).

6.2.1.4 Optimal IDS Placement

In CPS installations, the placement of intrusion detection nodes is usually restricted to

a small subset. These systems include specialized equipment with power and computa-

tional constraints as well as safety certifications of devices with decade-long life-cycles.

These requirements prevent any modification of them. Further, small and medium-

sized economies often can not afford the installation of IDSs on every system in their

network. This leads to only a small amount of IDS to cover the whole network.

To derive an optimal placement of these IDSs throughout a complex system, we define

several notions of and restrictions for optimization. We distinguish between network-

and host-based intrusion detection systems (NIDS and HIDS). While a HIDS, like virus

scanners, may continuously check the host it is operating on, it can only detect local

manipulations. Instead, a NIDS may detect all attack propagations along network links

it is connected to. Thus, it may detect manipulations for several systems; however, it

can only detect them once during transmission. In [73], the authors showed that an
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optimal placement of NIDS in general reduces to the vertex cover problem from graph

theory shown to be NP − hard.

Therefore, we use approximation techniques to enable optimization also for setups

being too large for a theoretical solution. Additionally, literature sometimes refers to

application layer intrusion detection systems. In our model, these are special versions

of HIDSs with detection capabilities restricted to specific applications. Therefore, we

do not consider them separately.

There are several options for optimization goals. First, we want to detect attacks as

early as possible. By that, the possible impact on the overall system can be reduced

due to early intervention by operators. In our model, we can measure this goal as the

time difference between detection Di,t1 and attack Aj,t0 by

4t = arg min
t

Di,t − arg min
t

Aj,t (6.11)

Optimizing this goal, therefore, means minimizing 4t.

Second, optimizing for the highest possible node recall results in maximum coverage

in the network.

r =
|{i ∈ C|Di,tn ∧Ai,tm}|
|{i ∈ N |Ai,tm}|

, tn ≥ tm (6.12)

For both optimization goals, we can refine them by choosing a suitable attacker

model (cf. Chapter 6.2.1). While an attacker of the type insider may initially attack

any node in the network, an outsider can do so only for nodes accessible from outside.

We call these nodes vulnerable by outsiders as edge nodes and assume that they are

only loosely connected to the rest of the network, i.e., they have only one network link.

Usually, in CPS contexts, costs are another optimization factor. However, we include

costs as a restriction for optimization rather than a goal. This allows for reducing the

costs by restricting the number of IDSs nIDS available while optimizing for any of the

previous goals. Hence during our optimization, we always obey Equation 6.13.

‖i‖1 ≤ nIDS (6.13)
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Figure 6.18: The placement estimation framework.

6.2.2 Framework for Optimal Placement

The framework consists of three basic components: a simulation core, an environment,

and an optimizer.

The environment provides the attacker model and a topology. This information

is used to place nIDS IDSs throughout the network initially. Then, it initializes the

simulation with a random attack on one node an attacker of the current model has

access to.

Using the simulation core already presented in more detail in Section 6.1.1, we then

evaluate the propagation and detection throughout the network. Finally, the simulation

core provides the metrics described in Section 6.2.1.4.

A controller runs the simulation for several trials and averages the results to minimize

the impact of the random initial attack choice.

After that, one of the different optimizers modifies the current IDS distribution and

restarts the simulation.
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Figure 6.18 summarizes the overall framework and shows how the different compo-

nents interact. In the following, we describe the components in more detail.

6.2.2.1 Simulation Core

The simulation of a specific IDS placement uses several rounds, i.e., timesteps, to derive

the described metrics. Throughout the simulation for any system sj the event Dj,t0

represents a detection with the IDS of sj at time t0. Correspondingly, Aj,t0 corresponds

to an attack of that system.

For each timestep t, every system sj which has been attacked in the previous timestep

t0 uses its IDS to detect the attack with a specified detection rate

dj = P (Dj,t|Aj,t0) (6.14)

Additionally, every system sj which has not yet been attacked but has an IDS may rise

a false alarm with a specified false alarm rate

fj = P (Dj,t|¬Aj,t0) (6.15)

After that, for every neighbor si of an attacked node sj , the attacked node propagates

its attacked state with the attack propagation probability ij

ij = P (Ai,t|Aj,t0) (6.16)

The first two parameters, therefore, describe the capabilities of the considered IDS.

For our analysis, we assume that these parameters are the same for all used IDSs. The

model itself does not depend on them being static or global. Hence, every IDS can have

different and also changing detection and false alarm rates. This allows for modeling

online learning detection methods.

The third parameter, the attack propagation probability, concerns the attacker model.

With a high propagation probability an attack spreads quickly through a system net-

work leaving only little time to detect it. However, some attacks require user interaction

in their spreading or exploit process, e.g. by clicking a link or opening a file, or actively

defer their exploits to later points in time. These can be assigned with a lower propa-

gation probability.

Still, over time all attacks have the potential to spread throughout the whole network.

For every two nodes si, sj , which have an IDS and detected an attack, we consider all

other nodes on the shortest path from si to sj as reporting an assumed detection. This
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enables us to report detections even for nodes without a deployed IDS. An attacker

might not necessarily choose the shortest path to reach his attack goal. However,

we could include exploitation difficulty or probability for every link between nodes as

their distance. Then, the shortest path between two reported detections is also the

most likely one taken by an attacker. While our shortest path reasoning approach only

serves as an example, the overall framework for placement optimization applies to other

reasoning or heuristic methods as well.

During the simulation, once a specified ratio of nodes in the network is in its attacked

state or a specified number of time steps is reached, we execute a backtracking algorithm

to estimate which nodes got attacked but cannot detect their state due to a missing

IDS. For that, for every new detection we calculate the shortest path to any previous

detection in the whole network and label all intermediate nodes as assumed detections.

This heuristic serves to enable a restricted IDS distribution to cover larger networks.

With all that information, we then calculate the recall of found detections as well as

the time needed for the first detection to occur after the initial attack. We only label

detections with an attack in a previous time step as a true positive, all others as false

positive. Not detected attacks are labeled as false negative, while no detection and no

attack yield a true negative. Hence we can calculate the recall in the overall network

with

rec =
tp

tp+ fn
(6.17)

As we use Monte Carlo simulations for our method, we average the results over

several executions of the same setup.

6.2.2.2 Optimal Placements

We can now derive optimal solutions for specific system setups with the previously

outlined model and optimization goals.

For the first optimization goal, the shortest time to the first detection, let us first

assume that only one node has an IDS. The time it takes to detect the attack equals

at least the shortest distance from an attacker’s entry point to the node with the IDS.

The time cannot be shorter as there is no shorter path for the attack to spread to the

IDS. However, it can be larger if the attack did not spread along the shortest path. As

we use this theoretic optimum as a baseline for later approximations, a lower bound on

the time to the first detection is sufficient. If we now consider several nodes with IDSs,

the lower bound equals the shortest path from the entry point to the shortest path of
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any node with an IDS. Thus, we are looking for a set D∗ of IDSs nodes which gives

us the lowest sum of 4t to any possible entry point of attacks. We denote the set of

possible attack nodes as A∗.

min (4t) = 1 +
∑
Ai∈A∗

min (dist(Dj , Ai)|∀Dj ∈ D∗) (6.18)

To determine this lower bound in our model, we use a modified version of the Dijkstra

algorithm to calculate the shortest path between one node and a set of nodes. The

best distribution of any number of IDSs must then yield the lowest sum of all these

shortest distances. Algorithm 4 outlines how this search can be done. For each possible

combination of IDSs, it calculates the distances from one IDS node to all other nodes

(lines 3–8). The sum of the distances from every possible entry point to their closest

IDS corresponds to the minimum detection time with that specific setup (lines 9–17).

Finally, we can then identify the setup with the lowest sum as the one with the fastest

detection capability (lines 18–21).

For the second goal, the biggest coverage of nodes in the network, we need to recall

the model of assumed detections. As we label all nodes between two IDS nodes with

detections also as assumed detections, we reach biggest coverage, when these shortest

paths are long and do not overlap. Algorithm 5 outlines this search. For each pair of

IDS nodes, we calculate the shortest path between them (lines 3–6) and add all the

nodes on this path to a set (lines 7–12). Finally, the combination of IDS with the

largest covered set is the one with the biggest coverage in the network (lines 13–18).

6.2.2.3 Approximating the Optimum

The presented algorithms for both detection goals have a severe drawback. They are

slow for larger networks of systems. As they both involve testing every combination

of nIDS out of N systems and running the Dijkstra algorithm several times, they do

not scale. Hence, we also established three different optimization strategies that try to

lessen these computation costs.

Genetic Optimization In general, evolutionary algorithms first rank several possible

solutions, also called population, of the problem according to a metric. A specified

portion of the best solution candidates is then used for the next round of optimization.

Randomly recombining some of these best solutions creates new possible solution can-
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Algorithm 4: Determining combination with fastest detection.

Input: Number of IDS
Output: List of best nodes

1 minComb = none;
2 minSum = inf;
3 foreach combinationWithNNodes do
4 distSum = 0;
5 dists = [];
6 for n in combination do
7 dists.append(dijkstra(n));
8 end
9 foreach entryPoint do

10 minDist = inf;
11 for d in dists do
12 if d[entryPoint] ¡ minDist then
13 minDist = d[entryPoint];
14 end

15 end
16 distSum += minDist;

17 end
18 if distSum ¡ minSum then
19 minComb = combination;
20 minSum = distSum;

21 end

22 end
23 return minComb;

didates. With every round, we then assume that the better solutions evolve just like

in nature’s evolution.

In our simulation, we define a population as one distribution vector i (cf. Equa-

tion 6.8). The optimizer starts with a random mask respecting the simulation restric-

tions, i.e. no IDSs on nodes of classes in P or S. We use several runs of the simulation

with every population to eliminate the effects of the random entry point choice dur-

ing the simulation. Then, we use the average of the considered optimization goal and

determine the so far best distribution vector. We, then, randomly move n IDSs and

repeat this evolution for several generations. By executing multiple populations in par-

allel, we reduce the likelihood of getting stuck in local optima. Note, that we, finally,

return the best-encountered population and not necessarily the last one. As our fitness
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Algorithm 5: Determining combination with the biggest coverage.

Input: Number of IDS
Output: List of best nodes

1 maxComb = none;
2 maxSum = 0;
3 foreach combinationWithNNodes do
4 nodeSet = set();
5 foreach combinationOf2 do
6 distances, predecessors = dijkstra(pair[0]);
7 cur = predecessors[pair[1]];
8 while cur 6= predecessors[pair[0]] do
9 nodeSet.add(cur);

10 cur = predecessors[cur];

11 end

12 end
13 if length(nodeSet) ¿ maxSum then
14 maxSum = length(nodeSet);
15 maxComb = comb;

16 end

17 end
18 return maxComb;

calculation for the population already equals our optimization goal, we can directly

output the fittest one.

Compared to the evaluation of the real optima described before, this computation

does not depend on the network’s size . However, it is yet unclear how many generations

we need for meaningful results.

Reinforcement Learning To apply a reinforcement-learning based optimization, we

model the procedure of distributing IDSs as a game.

In current reinforcement-learning strategies, an agent is trained to choose an action

based on a current state. At some time, an action may lead to generating a reward

for the agent. This reward is then used in a back-propagation optimization method to

train the agent’s underlying neural network [125].

For our optimization, the learning agent can either place an IDS at its current loca-

tion, choose the next network link, or walk along the current network link. Thereby,

its current state is represented by the so far chosen IDSs, the current position of the

agent, and the current network link. The action next changes the next link state to the

next node from the adjacency list of the current node. At the end of the list, we simply
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repeat it from the beginning. With the walk action, the current node changes to the

one pointed by the next link state. Also, the next link state changes to the first entry

of the adjacency list of the new current node. The place action, sets an IDS at the

current node. The agent cannot undo this decision within the same game. If placing an

IDS results in the maximum number of IDSs reached, the game is over and rewards are

generated. For this, the simulation runs using the provided IDS distribution vector and

outputs the current metric as the reward for the reinforcement agent. Thus, the reward

for the last placement action equals the value of the chosen optimization goal. In the

case of optimization for time to the first detection, the reward for the last placement

action rn is the sum of shortest distances from any entry point to any from the agent

chosen IDS node. For all previous actions, rewards are calculated by an exponential

decay. The reward rt at time t is

rt = rn · γn−t ∀t < n (6.19)

If we let our learning agent play this game several times, we assume that it gets better

over time in choosing the right positions for IDSs. Similar to the previous method, it

is unclear, how many rounds we need to play. Figure 6.19 depicts the structure of

the used reinforcement agent for the optimization. The agent consists of a relu and a

softmax layer to decide for an action based on the input state.

To train the agent, we run successively 2000 games with our agent. At the beginning

of each game, we place the agent at the same node in the network, i.e., the game’s

initial state is always the same. After this, the agent takes turns by choosing a random

action whereas the probability of each action equals the output of the softmax layer

with the current state.

current
node

next
link

IDS1

. . .

IDSn

relu softmax next

place

walk

actionsstates

Figure 6.19: Example of a learning agent for optimization of two IDSs with the described
states and actions.
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Heuristic Breadth-first Greedy Search Finally, we use customized variants of the pre-

viously described optimal methods. In a heuristical approach, we start with a random

distribution vector respecting the simulation restrictions. If the current optimization

goal is enhanced by a distribution vector, we expand a breadth-search at each currently

chosen IDS for one more level. We add all new combinations to a list of the current

search and proceed with the next combination in it.

n0

n1

n2

n3 n4

Figure 6.20: Example of heuristic breadth-first greedy search.

In the example in Figure 6.20, assume (n0, n1) is currently the best solution for

the current optimization goal. Then the heuristic search will explore all the following

combinations (n0, n2), (n0, n3). In the next step, we will only expand to n4, if (n0, n3)

yields a better result then the previous (n0, n1).

We use this approach with the assumption that the optimization goal is enhanced

while virtually approaching the optimal placement. For the time to the first detection,

a move in the direction of typical attack entry points should yield a decrease in its

value. Similarly, a move towards nodes providing a large number of connections to

other nodes, e.g., a router, should increase the overall coverage.

6.2.3 Experimental Results

As an example system, we use the first stage of the Secure Water Treatment (SWaT)

architecture presented by [68]. Figure 6.21 shows part of the testbed modeled according

to our abstract CPS model. Every node is represented by one of the boxes with its

corresponding node class as a bold letter. The solid lines indicate connections between

nodes in the same layer, while connections to nodes in different layers are represented

with red dashed lines. The bottom and middle layers contain the components of the

first stage as presented in [68]. However, we added the top layer providing example use

cases for the architecture. We assume that the sensors in the architecture deliver sensor

data, which is stored in a historian and used for the process control. In addition, the

pumps themselves provide pump data referring to their current status. These are also

part of the data storage but may be used for performance evaluations of the pumps.
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This performance evaluation also uses the control commands generated by the process

control.

While the presence of data storage and process control functions is inspired by the

SWaT architecture itself—there is a historian and a programmable logic controller—we

added the pump performance evaluation to include a predictive maintenance scenario.
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Figure 6.21: Stage P1 of the SWaT architecture with extended use case scenarios modeled
with the provided CPS abstract model. The class of each component is provided
in bold print.

For our experiments, we restricted all sensors, actuators, as well as the physical

components not to have an IDS. All other nodes in Figure 6.21 may, thus, deploy

an IDS. During the simulation, we assume that all IDS have the same detection and
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insider outsider

2 3 4 2 3 4

Optimal 2.38 2.17 2.00 2.00 1.60 1.40
Random 3.07 2.71 2.47 3.20 2.80 2.51
Worst 4.29 3.83 3.47 5.40 5.00 5.00

Table 6.2: Baseline for time to first detection performances.

false alarm rates of 95% and 5%. While the framework allows specific values for every

IDS, this assumption eases the later interpretation and verification of the results. The

attacks propagate with a probability of 70% and a simulation run stops after 20 time

steps. The metrics are derived as the average of 200 runs of each configuration.

For a more fine-grained analysis, we distinguish two types of attacker models, i.e.,

insiders and outsiders. While insider attacks may initially occur on any node in the

network, outsider attacks are restricted to nodes with only one network link for the

very first attack step. In Figure 6.21, these are the following nodes: wireless clients

1 and 2, the touch panel, and the access points placed in the Plant Control Network

(PCN) and the Demilitarized Zone (DMZ).

Overall, for every optimization goal and method, we see a performance increase with

more IDSs. While we expect that behavior, it serves as a baseline test of the underlying

simulation.

6.2.3.1 Time to First Detection

In Tables 6.2–6.3, we show the times needed until first detection of an attack in different

scenarios. For each of the two attacker models, insider and outsider, we evaluate the

performance of 2, 3, and 4 IDS in the network.

As ground truth, we derived the best, worst, and average results over all allowed IDS

placements in the whole system. For this, we evaluate for each valid IDS placement

the shortest path between any node without an IDS to one with an IDS as described

in Chapter 6.2.2.2. This path’s length, then, relates to the time needed for an attack

from that node to spread until the first IDS may detect it. In the outsider attacker

model, we only evaluate the paths from one of the edge nodes. Finally, we need to

add one time step to the determined path length to account for the detection time

(cf. Equation 6.14). The best and the worst results we obtain with this method for

a specific IDS placement represent the optimal and worst solution in this setup. The
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insider outsider

2 3 4 2 3 4

Genetic 2.4 2.25 2.10 2.35 2.1 1.57
RL 2.49 2.28 2.16 2.41 2.1 2.00
Heuristic 2.77 2.57 2.16 3.01 2.38 2.32

Improvement 21.8% 17.0% 15.0% 26.6% 31.4% 39.0%

Table 6.3: Performance of different optimization methods for optimized time to the first de-
tection. Best performances for every setup in bold.

average over all placements is what we would reach without any optimization but by

choosing a placement randomly.

Table 6.2 shows that an increasing number of IDSs yields shorter times to the first

detection. Comparing the times to first detection, 4t, under the two attacker models,

we notice that all methods yield shorter detection times for outsider attacks than

for insiders. Looking at the random placements, we see that there is no significant

difference in the detection time between different attacker models. However, worst

placements are more dramatic if possible entry points for an attack are restricted to

a limited set, i.e. in the outsider attacker model. On the other hand, it is possible to

achieve better optimal results in the outsider model than in the insider model. That

means once we know where attacks are possibly coming from, we can optimize the

positioning of our IDSs accordingly. Since the set of nodes where an attacker may first

touch any of the available systems is limited in the outsider attacker model, placing

an IDS near this limited set of systems significantly decreases the time to the first

detection. However, as we define a minimum detection time of one time step in our

system model (cf. Equation 6.14), we cannot have faster detections than one time step.

For the optimization methods, Genetic, RL (reinforcement learning), and Heuristic,

still more IDSs yield shorter detection times. Overall, the Genetic method yields the

best results.

To compare our approximated placements to the optimal baseline, we use the im-

provement over the random choice. Overall, we reach improvements from 15% to 39%

(cf. Table 6.3). However, the improvements show different characteristics for the two

attacker types. For the insider attacks, an increase in IDSs results in less improvement.

As in this attacker model there are fewer restrictions on the entry point, the best po-

sition must support the detection of attacks from every other node equally. Hence,

with an increasing amount of IDSs in the network a random placement converges to
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insider outsider

2 3 4 2 3 4

Optimal 0.25 0.46 0.58 0.25 0.46 0.58
Random 0.16 0.26 0.35 0.16 0.26 0.35
Worst 0.08 0.13 0.17 0.08 0.13 0.17

Table 6.4: Baseline for optimized node coverage performances.

the optimal placement. Therefore, our relative improvement reduces the more IDSs we

use.

On the other hand, for the outsider attacks, an increase in IDSs also raises the

achievable improvement as we approach placing an IDS directly at every possible entry

point.

6.2.3.2 Node Coverage

In the node coverage test, we place nIDS IDSs throughout the network. As an example

for distributed anomaly detection with limited information gathering, we use the simple

heuristic approach described at the end of Chapter 6.2.2.1. Table 6.4 shows the achieved

ratio of all nodes in the system which can be covered with a specific setup.

We can calculate the optimal and worst case positions only easily when every system

is already in its attacked state. Then, however, the actual node coverage in the network

is independent of the attacker model as the source of this attacked state is not relevant

to the metric. Therefore, there is no difference in the theoretical best and worst case

placements.

Again, an increase of nIDS leads to higher node coverage. We reach the worst case

concerning the node coverage for every scenario when every deployed IDS only detects

attacks locally, as shown in Equation 6.20.

wc =
nIDS
|S|

(6.20)

We derive the optimal placement as described in Chapter 6.2.2.2. Intuitively, we obtain

this best case by maximizing the sum of the distances between any two deployed IDSs.

However, we actually need to maximize the number of distinct nodes on the shortest

path between any two deployed IDSs. The random placement equals the average of

node coverage of all possible IDS placements.
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insider outsider

2 3 4 2 3 4

Genetic 0.24 0.32 0.36 0.24 0.33 0.37
RL 0.23 0.28 0.31 0.23 0.28 0.33
Heuristic 0.23 0.28 0.35 0.23 0.30 0.40

Improvement 50.0% 23.1% 14.3% 50.0% 26.9% 14.3%

Table 6.5: Performance of different optimization methods for optimized node coverage. Best
performances for every setup in bold.

Comparing the different approximation methods, again reveals the Genetic method

as best performing. However, in this case the difference to the other methods is less

pronounced as they obtain almost identical results.

Comparing the optimal and worst placements to our approximated solutions, we can

reach improvements from 14% to 50% (cf. Table 6.5). While the best improvement

can be seen with only two IDSs, it decreases the more IDSs we use. The optimal

solution distributes the IDSs evenly over the network. In a fully connected network,

any combination would work the same. However, as most real-world networks are not

fully connected, an increase of nIDS only leads towards that even distribution and,

hence, the average placement converges to the optimal.

Overall, the approximated placements almost yield the same performance as an av-

erage placement with one additional IDS. Hence, by applying our method, we can

either work with one IDS less while almost maintaining the performance or extend our

performance to a level we cannot afford or achieve.

6.2.4 Conclusion

Within the previous sections, we present a comprehensive model for CPSs as well as

two different attacker schemes of interest for the Industry 4.0. Based on this model,

we develop assessment criteria for the performance of a distinct IDS placement in a

larger network. Using our simulation framework from Section 6.2.2.1, we then evaluate

that performance for different IDS placements. With three different methods, including

heuristics, reinforcement learning, and evolutionary algorithms, we are able to optimize

the placement of IDSs. In the extended use case example of the Secure Water Treatment

testbed, we analyze the placement according to the previously defined criteria. Thereby,

we achieve an optimization of the time to detection of up to 39% and an increase of

node coverage of up to 50%.
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While we use full exploration of all possible placements as a baseline for verification

of our results, the optimization methods each only evaluate a small portion of the

possible deployments. Where a full exploration of all possibilities is infeasible for larger

setups of CPSs, our optimization methods can still provide approximations to the best

solution.

For this, we need a network model of the CPS as described in Section 6.2.2.1. With-

out doubt, the creation of such a model requires some effort of a CPS operator. In

turn, however, our suggested methods deliver optimal IDS positions for smaller sys-

tems (cf. Section 6.2.2.2) or at least good approximations to these for all other systems

(cf. Section 6.2.2.3). In reality, it will always be the case that the amount of IDS

sensor nodes is restricted by budgets and resource constraints of the devices to mon-

itor. Knowing how to allocate the available resources wisely may boost the detection

performance.

Though we base our work on simulations and abstract assumptions on IDSs, we still

assist CPS operators in making design decisions for future IDS deployments. Using

simulations allows for analyzing different setups very early in the design phase of a

CPS. Whereas security architects previously made best-guess decisions of how many

IDS sensors to use and where to place them, we provide a method of quantifying the

benefits of particular placements. Applying one of the three optimization methods

even allows for deriving better placement decisions. Overall, this shall ease the usage

of intrusion detection systems in large and complex network scenarios.
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6.3 Understanding Advanced Attack Procedures in CPSs from

Heterogeneous Logs

A large group of researchers and CPS operators still criticize the use of machine learning

methods in the context of anomaly detection as being inscrutable black-boxes. Redmiles

[111] suggests that a lack of transparency in alert notifications reduces their efficacy.

In addition, different studies as well as industry practitioners report difficulties with

implementing IDSs. A large amount of cumbersome manual work is required, especially

in setting up rules for detecting actual threats in available data. For this, we provide

a semi-automated method for managing different data sources and evaluating them

without deeper IT security knowledge.

Thereby, we focus on two highly important goals for system operators:

• Closing the initial entry point of any attack ensures that attackers may not reuse

it for further attack attempts. Any efforts for regaining control over systems and

removing compromised or manipulated parts are pointless if the attacker may

just redo his steps to reach the same state again. Hence, methods automatically

narrowing down the probable entry points are of great help for operators and

analysts in charge.

• Additionally, after closing the entry point, the propagation throughout the own

network reveals which possibilities or even vulnerabilities attackers used to reach

restricted systems. Therefore, further tracking down the progression of attacks

allows for identification and later fixation of systematic problems in the own

network.

6.3.1 Concept

In the following subsections, we explain the different steps of our log aggregation,

classification, and understanding model. After identifying suitable logs and collecting

their information on a central point (Section 6.3.1.1), we automatically estimate the

relevance of every log file and their entries (Section 6.3.1.2). With additional input

of a system operator, these ratings may be enhanced for deployed intrusion detection

systems. This information then allows for identifying attacks (Section 6.3.1.3) as well

as understanding their progression throughout a company’s network (Section 6.3.1.4).
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System Type #log files est. running times

default archlinux install 1 1 day
default debian install 25 days
NAS server 16909 years
development machine 44221 years

Table 6.6: Number of files named “*.log” on different system types.

6.3.1.1 Log Aggregation

On ordinary workstations, data servers, and embedded devices, operators usually have

access to a vast number of log files. Often, these serve for debugging purposes.

During advanced cyber attacks, attackers use vulnerabilities in several software ar-

tifacts. While different installations come with different logs per default, the number

of log files present increases over time and depending on the software used. Table 6.6

lists examples for some systems and usage times.

All these log files grow continuously collecting information especially on unusual

system behaviors. In addition, since they contain important information for the identi-

fication of errors, they also constitute a valuable source for attack detection and forensic

analyses. Hence, to use this data during attack detection, we need to make it accessible

for analysis systems.

Depending on the resource capabilities available for a machine, we distinguish two

types of log and information aggregation:

Constrained systems allow a monitoring node to connect directly. This monitoring

node has direct access to log files. Additionally, the constrained system may provide

small status endpoints that return status information on request. Hence, the monitoring

node pulls available information from the constrained system. This system type also

corresponds to proprietary systems that have some built-in logging or status reporting

capabilities but do not allow the installation of additional software.

Powerful systems forward every new log entry directly to an offsite analysis system.

System operators may choose to deploy specific information aggregation procedures

enriching the information with data not written to logs. Hence, the system itself pushes

available information to the analysis system.

The monitoring system itself can gather information outside the scope of a single

machine. These are lists of connected devices and their network interaction statis-

tics. This setup results in centralizing the de-central information sources, as shown in

Figure 6.22.
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Figure 6.22: Data acquisition architecture.

6.3.1.2 Alert Log Classification

While the acquired log files can contain arbitrary data, they always have a timestamp

associated with their entries. Hence, we denote a log file as a sequence of log entries

L = {(t0, e0), (t1, e1), . . . , (tn, en)} (6.21)

with ei being the log message at time ti. We denote subsets of a log file up to the time

tk as

Lk = {(t0, e0), (t1, e1), . . . , (tk, ek)} (6.22)

Each log can be categorized according to its update interval, its information layer

and its information content. We call log files getting regular updates, like the output

of watchdogs, PULL logs as the regularity often originates in timer-based command

execution. We denote other log files as PUSH logs as, for those, new entries are

triggered by external events. Concerning the technological abstraction, log files contain

either technical or functional information. Technical information may include available

network links, open ports, or firewall logs. Functional logs contain information from

the corresponding application as web server logs or production machine log output.

Each log can either contain status information or event indicators. Status updates,

as we usually see in web server logs, are denoted as component logs. The output of an

anomaly detection system, however, contains only event notifications. Hence, we call

them indicator logs.
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Component Logs Indicator Logs

functional Plans
allowed/dynamic communication
allowed/dynamic services

application error logs

technical Services
open ports
Web interfaces
SW Endpoints

suricata
fail2ban
iptables

Table 6.7: Examples for log file classification.

By this definition, indicator logs are always PUSH logs, since their entries are trig-

gered by non-regularly occurring anomalous events. However, component logs with

regular updates containing information about a system’s status may be converted to

indicator logs by extracting the changes in subsequent entries, i.e., ei − ei−1. Consid-

ering the PULL log P , we derive a corresponding PUSH log LP as

LP = {(ti, ei − ei−1) | (ti, ei) , (ti−1, ei−1) ∈ P : ei 6= ei−1} (6.23)

Table 6.7 gives examples of log files or log file generators and categorizes them using

the provided terms.

Identifying status changes Current big data information aggregation systems usually

use semi-structured information based on JSON [126]. We adopt this mechanism to

store structured as well as unstructured logging data. While log files written to a local

hard disk usually use plaintext to describe their entries, status information is often

retrieved in structured formats. For example, a REST API of a service usually responds

with a JSON string. Thus, we also convert the plaintext entries into a structured

representation relying only on the definitions in Equation 6.21. Thus, we require a

small converter for every log type to extract the corresponding timestamp.

Having a uniform format (cf. Listing 6.1), we can now detect status changes in

subsequent entries in the same log. Listing 6.1 shows the same information as in

Listing 5.1 after the conversion to a JSON representation. In Algorithm 6, we use a

dynamic programming based approach to extract these changes. First, every log entry

is converted to its structured representation (l. 4). For every key in the new entry,

we record changes according to its last retrieval. To initialize this process, we do not

consider the first occurrence of a key as a status change. This allows for incorporating

services not responding with all status information on each request.
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1 {” timestamp ” : ”2019−02−24 18 : 10 : 30 . 634900” ,
2 ”message ” : ” [ ∗ ∗ ] [ 1 4 4 : 1 : 1 ] ( spp modbus ) : Length in Modbus MBAP header

does not match the l ength needed f o r the g iven Modbus func t i on .
[ ∗ ∗ ]

3 [ C l a s s i f i c a t i o n : Generic Protoco l Command Decode ] [ P r i o r i t y : 3 ]
4 02/24 −18:10:30.634900 1 9 2 . 1 6 8 . 1 . 1 0 4 : 5 0 2 −> 1 9 2 . 1 6 8 . 1 . 1 0 0 : 4 3 8 6
5 TCP TTL:128 TOS: 0 x0 ID :38534 IpLen :20 DgmLen:57 DF
6 ∗∗∗A∗∗∗F Seq : 0xBF6CC890 Ack : 0xCF15D076 Win : 0xFADF TcpLen : 20”
7 }

Listing 6.1: Snort alert entry in minimal structured format.

Algorithm 6: Detecting changes in subsequent status log entries.

Input: Log L
Output: Set C of changes

1 p← {}
2 C ← {}
3 foreach (t, e) ∈ L do
4 j ← getJsonRepresentation (e)
5 foreach key, value ∈ p do
6 if key ∈ j ∧ j[key] 6= value then
7 C[t][key]← (value, j[key])
8 end

9 end
10 foreach key, value ∈ j do
11 p[key]← value
12 end

13 end
14 return C

While these status changes may justify raising an alert, operators need to apply

thresholds to distinguish between expected and unexpected changes manually.

6.3.1.3 Attack Understanding

The initial point for our attack understanding process is an alert found in an indica-

tor log. Upon detection, we disassemble the corresponding alert message by Natural

Language Processing (NLP) techniques and search for the terms in other log files in a

short time window before and after the alert.

We separate the words of the message using two methods available in the python

spacy library [127]. First, we look for noun chunks. These are phrases, i.e., parts of the
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1 ( spp modbus
2 Length
3 Modbus MBAP header
4 the l ength
5 the g iven Modbus func t i on

Listing 6.2: Noun chunks in the snort alert message from Listing 6.1.

1 spp modbus
2 Length
3 Modbus
4 MBAP
5 header
6 l ength
7 Modbus
8 func t i on

Listing 6.3: (Proper) nouns in the snort alert message from Listing 6.1.

message, containing a noun as well as describing adjectives. Then, we search through

the other log files in the specified time window for the extracted phrases. If we find one

of these phrases, we assume a high relevance of the found log entry. Since noun chunks

usually consist of several words, it is rather unlikely to find the exact same sequence of

words in other logs if they are not related. Listing 6.2 shows the chunks derived from

the example in the previous section.

Additionally, we apply part-of-speech tagging to the alert message to identify nouns

and proper nouns. Searching for these in other log files may result in log entries having

information correlated to the reported event. As this may include unspecific terms

like header or length, we assume a lower relevance rating for the found log entries

(cf. Listing 6.3).

With this procedure, we automatically enrich every upcoming alert of deployed intru-

sion detection systems with possibly interesting information from other log files. This

enables operators to easier understand possible causes of the incident and additional

information on the possibly affected systems. We can further enhance this method by

including specific lookups. For example, we can extract IP addresses from the alert

message using a regular expression (regex). Also, a regex for URLs or domain names

in the alert may yield further interesting information.
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Figure 6.23: Mapping of log entry transitions into the cyber kill-chain for cyber-physical sys-
tems by [114].

Finally, this gives us a list of log entries throughout several log files, maybe even

from different systems, corresponding to one alert of an IDS.

6.3.1.4 Attack Tracing

Using the found log entries in the classified alert logs, tracing attacks throughout multi-

ple systems in a network is possible. For this we use the concept of cyber kill-chains as

described in [128]. In the cyber kill-chain different activities an attacker might execute

are aligned on a timeline to visualize their order and dependence on each other.

We start with alerts found in indicator log files. They report anomalies for differ-

ent systems and contain valuable information in their alerts. By separating individual

information in these alert entries and searching for them in component logs (cf. Sec-

tion 6.3.1.3), we discover earlier related information of an attack in other common log

files. These entries may be caused due to compromised user accounts, leaked creden-

tials, or insecure configuration of subsystems.

Let an be an alert at time n and em a related log entry at time m < n. We then call

the tuple tm,n = (em, an) a transition. Depending on the type classes of e and a, we,

thus, see two different types of transitions. For this, we adopt the cyber kill-chain for

CPSs as proposed by [114]. In general, it follows the well-known definition of attack

steps like: reconnaissance for information retrieval, weaponization for development

and acquisition of attack tools, delivery for the transfer of attack code to a target, and

execution for the finally targeted attack. For CPS, Hahn et al. [114] divide the execution

step on the three different layers (cyber, control, and physical) with the assumption

that the final objective of an attacker is a specific manipulation of the physical process.
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data type method type

executed software logstash command output pull
application data logstash command output pull
log data logstash log output push
local services logstash command output pull
remote services metricbeat HTTP query pull
system behavior metricbeat system info pull

Table 6.8: Implemented types of information sources in our demonstrator.

Also, they map the different steps of the cyber kill-chain to the respective layer in a

CPS.

In Figure 6.23, we visualize the following mapping of forensic log transitions into

the cyber kill-chain. The initial attack-preparing steps recon and weaponization are

unlikely to be detected by our framework at all. As attackers in this phase usually

access publicly available information and gather or develop needed tools, they do not

interact with our system in a way we could detect. Hence, in other research, these steps

are sometimes called passive scanning.

If the attack was first seen in a log classified as technical, we likely face a multi-

stage attack. Regarding cyber kill-chains for CPSs, this is probably part of the cyber

execution step as the actual target of an attacker is more likely to be found on the

application layer. Therefore, the primary goal of the attacker is not yet reached. Hence,

we should be aware that further manipulation may occur in other technical subsystems,

e.g., to escalate privileges, or in functional components allowing for deploying the actual

payloads.

This transition, from technical log files to functional layer log files, thus, indicates

a late stage of an attack as in the cyber kill-chain we are somewhere in the last steps

from cyber execution to physical objective.

In the case, we first see an entry in a functional log and later entries in technical

log files, we are probably in earlier attack stages. If an attacker tinkers with tech-

nical subsystems after exploiting an application layer component, we assume he just

gained access to the system and tries to expand his possibilities. This transition, then,

resembles the transitioning from deliver to cyber execution.

6.3.2 Implementation of Log Aggregation

We use a collection of different aggregators on multiple systems to obtain the required

data. While Table 6.8 lists some examples for these data sources along with their log
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Figure 6.24: Our implementation strategy for aggregating log information.

classification, a more detailed explanation of data gathering for automated risk and

anomaly detection and management can be found in Hansch et al. [12]. For this, we

use the following tools that are part of the ELK stack [129]: logstash, metricbeat,

elasticsearch, and kibana. We continuously list executed software by retrieving a list of

current processes on the system using logstash’s exec input module. In the same way, a

list of open ports and processes listening on them corresponds to running local services.

Also, application data could be fetched by querying respective applications. Locally

accessible logs are monitored using the file input module. As logstash has no direct

remote connectivity capabilities, we use smb, ssh, and nfs mounts to make respective

log files locally accessible. The data client metricbeat delivers general information on

the system state. Additionally, we configure its http module to periodically query

REST endpoints of low resource devices. These respond with their status information

in compatible JSON strings.

Figure 6.24, then, shows how we link the used tools of the ELK stack [129] in our

architecture. A data aggregation node hosts the elasticsearch database as well as the

kibana frontend for data queries and visualization dashboards. Other systems are

differentiated according to their resources. With enough computation and storage

resources, we directly run the logstash and metricbeat services to deliver local logs, the

output of local commands, and the current system state. We call these systems data

clients, as they act as worker nodes collecting their own and other systems’ information.
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Systems with lower resources or access restrictions are accessed by one of these data

clients using remote file access or query JSON endpoints returning status information.

Hence, for a working data aggregation setup we need at least one data client.

After this data acquisition step, we once need to classify the acquired logs. With this

information, analysts may execute the steps outlined in Sections 6.3.1.3 and 6.3.1.4 to

identify ongoing attacks and their current progress.

6.3.3 Conclusion

We present a framework for homogenization and aggregation of log files throughout

large and complex CPSs. With the proposed method, we support tracking attacks

throughout a network of systems without having complete coverage using IDSs. Fur-

ther, this enables the identification of possible attack paths an attacker used and de-

riving the attacker’s current progress. If early detections are found, we, thus, enable

operators to arm defensive mechanisms before an attacker reaches his goal. Finally,

this approach enhances forensic analyses by better understanding an attacker’s path

throughout a CPS network.

6.4 Summary

While the previous Chapters 4–5 introduced concrete methods, this chapter focuses on Contributions

a more abstract view of the larger problem of distributed anomaly detection setups.

The provided model of distributed IDSs allows for several more general analyses. In

particular, we outlined how specific setups can be analyzed for their performance and

which pitfalls may arise during the development and analysis of new detection methods.

Apart from abstract considerations, however, it also allows for a practical investigation

of current IDS setups and enables optimization of current deployments under scenario-

specific constraints. The final concept for the integration of heterogeneous systems

into a holistic framework provides first steps towards automated attack entry point

detection and consequently a reduced time to fix security vulnerabilities.

Referring to C4, we add depth to the often nebulous nature of IDS research. By com-

bining our abstract approach with simulations of real-world deployments and optimiza-

tion strategies for them, we can derive a much better understanding of the underlying

distributed IDS setups and their interplay.

Recalling the actual aim of this thesis, we wanted to understand the needs of anomaly Linkage of

previous

chapters

detection for CPSs, how to acquire needed data, identify suitable detection methods,

and how to link all these parts together in larger systems. We started with our analysis
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of the anomaly detection process and derived corresponding needs for data acquisition

and methods in Chapter 3. From there, we expanded on two different yet highly

practical data acquisition methods in Chapter 4. Further, our previous analysis revealed

that we need to put a strong focus on automated methods for the detection of yet

unknown attack vectors. The tools and methods presented in Chapter 5 yield two such

methods for the actual detection of anomalies. Finally, this chapter built upon the

idea of having working anomaly detection systems throughout a more complex CPS

installation to highlight their benefits and gaining an understanding of their interplay.

146



7 Conclusion

In this thesis, we went on a journey throughout the process of adopting, adapting, and

analyzing current business IT anomaly and intrusion detection systems in the area of

CPSs.

Initially, we postulated four major challenges that have been tackled in the previous

chapters (cf. Chapter 1.1).

For the missing data for research and development Chapter 4 presents one method for

real-world data acquisition in CPS and another one based on a co-simulation framework

in earlier design phases of the system. By this, we establish a framework and workflow to

generate meaningful training and test data for anomaly detection systems in industrial

settings. Using process-model based simulations, data can be generated on a large scale.

We evaluate the data in regard to its usability for state-of-the-art anomaly detection

systems. With adequate simulation configurations, it is even possible to simulate a

sensor manipulation attack on the model and to derive labeled data.

By this simulation of attacked components, we demonstrate the effectiveness of systems

trained on artificial data to detect previously unseen attacks.

A framework for holistic anomaly detection in CPS incorporating data acquisition,

method application, and final result handling is presented in Chapter 3. Further, we

integrate this framework with security and risk assessments. This makes the whole

anomaly detection system compatible with existing standards like IEC62443 [75].

With a specialized detection method shown in Chapter 5, we enhance detection capa-

bilities in CPS under consideration of their specific constraints as resource requirements

and used components. Existing frameworks focus on a single Fieldbus protocol or re-

quire more detailed knowledge of the CPS itself. Thus, we introduce a uniform method

and framework for applying anomaly detection to a variety of Fieldbus protocols. We

use stacked denoising autoencoders to derive a feature learning and packet classification

method in one step. As the approach is based on the raw byte stream of the network

traffic, neither specific protocols nor detailed knowledge of the application is needed.

Additionally, we pay attention to creating an efficient framework that can also handle

the increased amount of communication in CPSs. Our evaluation on a Secure Water
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Treatment dataset using EtherNet/IP and a Modbus dataset shows that we can acquire

network packets up to 100 times faster than packet parsing based methods. However,

we still achieve precision and recall metrics for longer-lasting attacks of over 99%.

For a better understanding of ongoing attack strategies we investigate the interplay

of distributed detection systems in Chapter 6. This provides insights into the overall

detection method’s system dynamics and allows for recommendations for future instal-

lations. As optimization of detection rates is often linked to an increase of false positive

rates, we analyze their impact regarding attack detection throughout networks. This

enables orchestrated distributed anomaly detection and better forensic analyses of at-

tack strategies. For this purpose, we propose a concept for information aggregation

enabling a compound analysis of the involved systems. Using simulations of different

configurations, we estimate the impact of detection rates, false positive rates, as well

as network topologies on the global system performance. By this study, we provide a

method for analyzing the detection capabilities of specific distributed detection system

setups allowing for the derivation of appropriate requirements before actual deploy-

ment.

7.1 Limitations

For sure, the approaches presented in this thesis come with their own limitations. While

we give detailed descriptions of those at the end of each chapter, we shortly summarize

the main points.

The process described for deriving anomaly and intrusion detection rules definitelyIncomplete

models depends on the initial system model. Aspects that have been missed throughout the

modeling phase cannot be caught later on. Also, while we derive rules to surveil the

system behavior, the checks may still be circumvented by specialized attacks.

While we describe a method for direct data acquisition in already running real-world

systems, we are aware that CPS operators may be reluctant to implement these into

their systems. Therefore, an alternative method based on the simulation of the physical

process is presented. The results of this simulation can only be as good as the simulationUnrealistic

simulation itself. For this, we assume that the design and development phase of the CPS already

required the implementation of a suitable process simulation. As this simulation must

be close enough to the final deployment that possible problems rise early, we assume

that the final CPS has only little differences to the simulation.

With our proposed anomaly and intrusion detection method, we focus specifically on

closed-source protocols that cannot be parsed efficiently in real-time applications. If,
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on the other hand, such a deep packet inspection was possible, other methods may be

more suitable for detection. While we evaluated our approach with the largest dataset Uncertainties

of MLcurrently existing to our knowledge, there is still the potential we were just lucky. As

described in Chapter 2, machine-learning based methods always only derive an approx-

imation of the desired decision function. Hence, the application of this approximation

outside of its scope, i.e., extrapolation, may yield unexpected results.

Finally, our analysis of distributed detection systems comes with many assumptions Environment

assumptionsalready described throughout the chapter. However, these were mainly taken to tighten

the scope of the analysis and allowing for an evaluation of the concept. Most assump-

tions, like the uniform spreading of attacks throughout a network or the uniformity

of the detection systems, can be extended and enhanced in future research. While we

provide a first concept for the identification of entry points in distributed setups, still

further research is needed to validate and evaluate this idea.

7.2 Future Research

Connecting to the previous paragraph, the analysis of overall anomaly and intrusion

detection systems carries much potential for extensions. By adding non-uniform spread- Refined

simulation

model

ing of attacks, we can include the difficulty of an attacker using a specific connection

in the system. Such information can, for example, be derived from a security and risk

analysis similar to the concept described in Chapter 3. Further, we can allow a mixture

of different detection systems with different properties. These could even be considered

changing over time. By adding an exponential decay in the detection rate over time,

an ongoing outdating of current attack signatures without updates may be simulated.

In the end, this can lead to an even more realistic detection simulation. Combined

with the already investigated optimization strategies, questions for optimal position-

ing of sensors, optimal update frequencies, or even a dynamic movement strategy for

detection sensors throughout the system can be tackled.

In a broader sense, this leads to a better understanding of the needs of anomaly

and intrusion detection for CPSs. In fact, every intrusion detection system is devel-

oped around three parts: the data analyzed, the method used, and the architecture or

framework used for processing. These three items are as described in Chapter 1.3 only

building blocks for efficient anomaly detection in industrial use cases.

To finally overcome cumbersome manual tasks and to ease the detection of yet un-

known attack schemes, we see two integral parts to be tackled in the near future: the
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automated development of normal behavior models as well as efforts for more human-

centric system designs.

For example, recent advances in natural language processing may enable us to de-Assistive

information rive lists of assets from concept and design documents automatically. Combining this

information with common system architecture schemes and a semantic understanding

of the design documents, the often tedious but central task of system modeling and

understanding can be assisted. This system model can then be combined with publicly

available information from news bulletins and Common Vulnerabilities and Exposuress

(CVEs) to generate a fast-forward pipeline introducing automated risk assessments and

corresponding security measure deduction even for small- and medium-sized economies.

Another often neglected realm is the missing integration or consideration of humans-Human-centric

design in-the-loop in anomaly detection systems. Between security analysts, much information

is currently shared on social media, e.g., twitter, on news feeds, and blogs as well by

CVEs and security alerts. However, only a few anomaly detection systems supply or

even consider this information during analysis. Overthinking the representation of the

generated alert messages may enable security analysts for a quicker understanding of

root causes and attack courses. This embedding of anomaly detection systems in its

operator’s world leads us towards a more human-centric detection system.

Throughout this thesis, we provided an in-depth look at the building blocks forOutcome

anomaly detection for cyber-physical systems. With contributions as the identification

of suitable IDSs, the intelligent acquisition of data in CPS contexts, a protocol-agnostic

detection method, and the understanding of complex IDS network characteristics, we

provide tools for an easier integration of IDSs into CPSs. In all these methods, we focus

on making existing solutions better suited for the specific environment and constraints

of CPSs. Doing so, we enable CPS operators to deploy IDSs quicker and more easily

as part of their security concepts.

In a constantly changing IT threat landscape, relying solely on one countermeasure

seems to be a safe route to trouble. IDSs can, therefore, always only be part of a larger

protection concept. Nonetheless, this thesis allows CPS operators and researchers to

integrate IDSs into this concept. Thereby, we add another layer of security to highly

vulnerable systems.
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