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Prüfende der Dissertation:
1. Prof. Dr. Oliver Junge
2. Prof. Dr. Carsten Hartmann
3. Prof. Dr. Péter Koltai
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Abstract

A wide number of physical systems have been observed to contain Lagrangian
structures at large scales that resist (diffusive) transport or mixing. However,
a precise characterization of these structures that is amenable to both analysis
and computation is elusive. In this cumulative dissertation, we describe some
progress made in [55, 56, 57, 42] towards the question of characterization and
efficient computation of Lagrangian coherent structures in time-dependent flows.
This involves the analysis of connections between different methods in the lit-
erature for the computation of Lagrangian coherent structures from the view-
point of the advection-diffusion equation; in particular the ‘geometry’ of the low-
diffusivity limit (see [40]) of this equation is investigated in some detail. Asymp-
totic quantities relating to this limit are derived. We strengthen and/or provide
new proofs for results already existing in the literature. We also provide proofs
of hitherto unproven statements. In connection to this and other research, the
CoherentStructures.jl Julia package was written in collaboration with others
which aims to provide a high-quality implementation of methods for the compu-
tation of Lagrangian coherent structures.
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Zusammenfassung

In einer großen Anzahl von physikalischen Systemen werden Lagrange’sche Struk-
turen beobachtet, die auf großen Skalen (diffusivem) Transport bzw Mischung
widerstehen. Jedoch ist eine präzise Charakterisierung dieser Strukturen, welche
sowohl analytischen als auch rechnerischen Methoden zugänglich ist, schwer fass-
bar. In dieser kumulativen Dissertation wird Fortschritt aus [55, 56, 57, 42]
in diese Richtung beschrieben. Insbesondere werden Lagrange’sche kohärente
Strukturen in zeitabhängigen Flüssen betrachtet. Verbindungen zwischen un-
terschiedlichen Methoden aus der Literatur werden untersucht, dies geschieht
mit Hilfe der Advektions-Diffusions-Gleichung und deren ‘Geometrie’ (siehe auch
[40]) im kleindiffusiven Limes. Asymptotische Eigenschaften von diesem Limes
werden hergeleitet. Es werden neue und/oder stärkere Beweise für aus der Lite-
ratur bekannte Resultate geführt, und bisher unbekannte Resultate bewiesen. In
Verbindung mit dieser und anderer Forschung wurde das CoherentStructures.jl
Julia Softwarepaket in Zusammenarbeit mit anderen geschrieben; dieses hat das
Ziel, hochwertige Implementierungen für Methoden für die Berechnung von La-
grange’schen kohärenten Strukturen bereitzustellen.
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1 Background and Motivation

This section aims to provide an introduction to the subject matter considered, as
well as looking at some methods used. Following a non-technical overview of the
subject matter, I will use this section to describe the mathematical underpinnings
of a few popular characterizations of “coherent structures”. A contribution of this
thesis has been to elucidate connections between some of these, and to answer
some natural questions that have come up. The aim of this section is also to set
the stage for the mathematical description of results of the papers submitted with
this document.
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1 Background and Motivation

1.1 Non-technical overview

Very informally, coherent structures can be defined as “interesting” regions of
phase space that “stay together” when exposed to some underlying dynamics.
An illustrative example is the case where the underlying dynamics is defined
by advection by ocean surface velocities which we obtain by interpolating data
from Copernicus Marine Environment Monitoring Service1. Figure 1.1 shows
boundaries of two coherent sets (computed using the method described in [36, 41]),
together with their images under the dynamics, on the left hand side. The same
sets, when shifted by a small amount – displayed on the right – are no longer
coherent but are extremely filamented.

Figure 1.1: Sets on the left hand side (initial position red, advected position orange)
are thought of as being coherent, in contrast to a set of the same shapes
shifted by a small amount to the right (initial position blue, advected
position green). Translucent lines show intermediate positions.

Defining coherent sets simply as those that “stay together“ under the flow has
the benefit of including the wide range of objects in the literature subsumed by
the umbrella term “coherent structures”, but an obvious drawback is that it is
very vague. A large body of work exists trying to find precise, mathematical, char-
acterizations of coherent structures. Much work has also been done to discover
how these objects can then be computed.

1The velocity fields are publicly available at https://resources.marine.copernicus.

eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_

OBSERVATIONS_008_047 and were interpolated using the OceanTools.jl package [54]
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1 Background and Motivation

When several methods give similar results, it is natural to wonder if any struc-
tural connections between the methods exist. In [40], a geometric framework –
the geometry of mixing – was introduced that suggested some connections of this
form. In this framework, the Lagrangian point of view – in particular related to
the advection-diffusion equation – was emphasized.
One contribution of my thesis has been to clarify a number of questions con-
nected to coherent structures and the geometry of mixing. Firstly, in [42], we
answered some open questions from [40] relating to the low-diffusivity behavior of
the advection-diffusion equation. There, we then investigated the weighted area
form induced by the geometry of mixing which had previously not been studied in
this detail2. We were able to show precisely how this area form is closely related
to both the methods in [16, 21] as well as those in [36, 37].

Previous works on coherent structures had often considered the action of the
advection-diffusion equation, or other closely related mathematical operators, on
smooth functions. However, when looking at coherent sets (as suggested by the
general approach present already in [15, 23], see also [26]), the natural objects
to investigate are not smooth functions, but indicator functions. My results in
[55] and [57] can be seen as working on this idea. The result in [57] is a precise
characterization — based on the area form in the geometry of mixing — of certain
small-diffusion asymptotics related to indicator functions.

A significant portion of my time during in the past years was devoted to pro-
gramming. Together with my colleagues, we developed the
CoherentStructures.jl package, which currently contains some of the fastest
and most efficient implementations of algorithms for computing coherent struc-
tures. Moreover, I wrote the OceanTools.jl package for dealing with large
oceanographic datasets. A number of publications have used the
CoherentStructures.jl such as [40, 37, 1] and possibly [58]), my master’s thesis
[41] (which also used OceanTools.jl), and [56] which is included here. In [56], we
looked at a specific family of methods implemented in the CoherentStructures.jl
package based on the work in [18] and investigated both theoretical and practical
properties.

2This weighted area form does however appear in the published version of [40], which references
[42], and the area form was eluded to in previous preprints of [40] also.
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1 Background and Motivation

1.2 Flow Maps and Transfer Operators

Let us recap some basic definitions and concepts. References for the material here
(section 1.2) include [45, 6, 2, 40].

Nonautonomous flows: The mathematical setting in which coherent structures
can be found starts with the ordinary differential equation

x′ = V (t, x), (1.1)

defined by a smooth time-dependent vector field V on a smooth manifold M .
In this work, we are interested in finite time behavior, i.e. we may take without
loss t ∈ [0, 1]. We will implicitly assume that all further objects are smooth
whenever this is possible and take M to be compact unless stated otherwise to
avoid sensitive technical issues related to well-definedness. There is a flow map
associated to eq. (1.1) which we denote by Φt

t0
for t0, t ∈ [0, 1]. This flow map can

be thought of as being a smooth function

(t, x) 7→ Φt
0(x) , (1.2)

moreover Φt
0 : M →M is a diffeomorphism for every t ∈ [0, 1].

Lagrangian coherent structures: A coherent set/structure3 is a space-time
subset S ⊂ [0, 1] ×M that is in some way distinguished with regards to the un-
derlying dynamics defined by eq. (1.2) - the precise details will depend on which
definition is used [33, 16, 5, 34]. For such a set S, we denote the time-t slice by
St ⊂M , that is {t}×St = S ∩ ({t}×M). A large family of definitions for coher-
ent structures have in common that they a priori restrict the space of Lagrangian
subsets. Such definitions are the focus of this work. We call a set S ⊂ [0, 1]×M
Lagrangian (or material, both terms are frequently used in the continuum dy-
namics literature), if it is invariant under the flow Φt

t0
, i.e. if St = Φt

0(S0) for all
t ∈ [0, 1]. Clearly, a Lagrangian set is uniquely specified by any time-t slice. We
will in this context make the identification of the whole (space-time) Lagrangian
set S ⊂ [0, 1] × M with its time-0 slice S0 ⊂ M . Given that Lagrangian sets
are naturally in bijective correspondence with subsets of M , the restriction to
Lagrangian sets still leaves a very large number of sets, and is not alone sufficient
as a useful definition of coherent structures (see also [40, 34]).

3We treat the terms ‘coherent sets’ and ‘coherent structures’ as synonyms in this work, this is
not always done in the literature.
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1 Background and Motivation

1.2.1 The transfer operator

After fixing the initial time, eq. (1.2) induces a one-parameter family of linear
operators (Pt)t∈[0,1] on differential forms by the formula

Pt(f) := (Φt
0)∗f , (1.3)

where (Φt
0)∗ is the differential geometric pushforward acting on k-forms f ∈

Γ(∧kT ∗M) =: Ωk(M) for each value of k = 0, . . . , n := dim(M). In the case
that f is a function (i.e k = 0), the pushforward satisfies (Φt

0)∗f = f ◦ (Φt
0)−1,

and the resulting operator Pt : C∞(M) → C∞(M) is called the Koopman op-
erator for (Φt

0)−1. For top-level (volume) forms, Pt is called the transfer (or
Frobenius-Perron) operator. This somewhat unconventional (though appearing
in the literature in various forms) characterization of the transfer operator, has
the advantage that it is mathematically very simple, we will now proceed to show
the connection with the more common definition. In what follows, (Φt

0)∗ denotes
the pullback, which is the inverse to (Φt

0)∗ because Φt
0 is a diffeomorphism. When

f ∈ Ωn(M) and h ∈ C∞(M), then fh = f ∧ h. As pullbacks commute with the
wedge product,

∫

M

h ∧ (Φt
0)∗f =

∫

M

(Φt
0)∗(Φ

t
0)∗h ∧ (Φt

0)∗f

=

∫

M

(Φt
0)∗
(
(Φt

0)∗h ∧ f
)

=

∫

M

(Φt
0)∗h ∧ f , (1.4)

where we used in the last step that Φt
0 : M → M is a diffeomorphism and so

Φt
0(M) = M . We will require a distinguished nondegenerate volume-form ω in

order to now define a transfer operator on functions. The correspondence f ↔ f ω
gives a bijection between smooth functions and volume forms4, both directions of
which we denote by ∗. For t ∈ [0, 1], an operator Tt – which we call the ‘transfer
operator on functions’ – is defined by the commutative diagram

Ωn(M) Ωn(M)

C∞(M) C∞(M) .

Pt

∗ ∗
Tt

which is equivalent to requiring that Tt(f)ω = Pt(f ω). Writing f̃ := ∗f , Equa-
tion (1.4) yields

∫

M

h Ttf̃ ω =

∫

M

(h ◦ Φt
0) f̃ ω ,

4When ω is the volume form of a Riemannian metric, then this bijection is well-known as the
Hodge-∗ operator [45, chap. X(§4)].
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1 Background and Motivation

showing that Tt agrees with the conventional definition of the transfer operator
[6, chapter 4]. As Tt is Pt : Ωn(M)→ Ωn(M), modulo a bijection, we may think
of either of these operators as the transfer operator. In some sense, Pt is the
more ‘natural’ choice as no distinguished volume form is required. There is of
course also the well-known generalization from volume-forms to pushforwards on
measures, which is the same idea but in measure-theoretic language [6].

The dynamics defined by the transfer operator in function space (or, more
generally, by eq. (1.3)) are linear even if the dynamical system Φt

0 is not. As
there is a large body of work related to discretisations of linear systems, this is
convenient from the standpoint of numerical analysis.

A particularly interesting and well-known special case is the volume-preserving
case, i.e. when Pt ω = ω. Here, it is straightforward to verify that Tt1M = 1M ,
and the transfer operator Tt agrees with the differential geometric pushforward
Pt on the space of functions.

Generalization to arbitrary diffeomorphisms: All of the preceding argu-
ments make sense even if (Φt

0)t∈[0,1] is just some one-parameter family of dif-
feomorphisms, there is no requirement for it to be a flow induced by an ODE.
Similarly, Φt

0 is not required to be a diffeomorphism from a space to itself, the
generalization Φt

0 : M0 → Mt with M0 6= Mt (as featured, for example, in [16];
see also [21]) just requires that each manifold in (Mt)t∈[0,1] be equipped with
some nondegenerate volume-form ωt ∈ Ωn(Mt) for t ∈ [0, 1]. The generaliza-
tion of volume-preservation, i.e. Tt1M0 = 1Mt is readily seen to be equivalent
to ωt = (Φt

0)∗ ω0. This is called mass-preservation (see [37, 40, 21] and the ref-
erences therein) to highlight that the volume-forms (ωt)t∈[0,1] in general are not
preserved (even when Φt

0(M) = M), but there are close conceptual connections
to the volume-preserving case as again Tt = Pt on functions. Any system can be
made into a mass-preserving one by choosing (ωt)t∈[0,1] appropriately.

1.2.2 The advection equation

Writing u(t, x) = (Ptu0)(x), differentiating eq. (1.3) immediately shows that

∂tu = −LV u (1.5)

where LV denotes the Lie derivative. This gives a PDE-theoretic approach related
to the operators (Pt)t∈[0,1] which is well-known in the literature.

1.2.3 Lagrangian coordinates

Given that we are interested in Lagrangian sets, we wish to adopt a point of view
in which the Lagrangian sets are constant over time. In differential geometric lan-
guage, this means that we choose Φt

0 as our (time-dependent) coordinate charts,

6



1 Background and Motivation

which is equivalent to pulling back any objects at time t by the diffeomorphism
Φt

0. These coordinate charts are called Lagrangian coordinates and are well-known
in the literature. By an abuse of notation, we will use the same symbols for the
pulled back objects in Lagrangian coordinates as we did previously, i.e. we will
write “u in Lagrangian coordinates” to refer to the object (Φt

0)∗u.
Consistently with the continuum-mechanical convention, we call other non-

time-dependent coordinates Eulerian. In Eulerian coordinates, the u appearing
in eq. (1.5) is in general not constant with time. However, in Lagrangian coordi-
nates it is - indeed, taking the PDE-theoretic perspective, using [45, Chapter V,
Prop. 5.2] one sees that eq. (1.5) in Lagrangian coordinates becomes

∂tu = 0 . (1.6)

We will adopt a similar notation for a number of objects whenever it makes
sense to do so. Thus if, for example, S ′ = Φ1

0(S) for some subset S ⊂M , then we
may say that “S ′ is S in Lagrangian coordinates” as implicitly S ′ is an object in
the codomain of Φ1

0 and S in its domain. Likewise, the set Φ1
0(S) may be called “S

at time 1 in Eulerian coordinates”. Typically, however, we will use this notation
for functions that are explicitly defined on the space [0, 1] ×M or operators on
such functions. As we did previously with sets, we can also identify a function
f : M → R with the function f : [0, 1] ×M → R defined via (t, x) 7→ Φt

0(x) in
Eulerian coordinates, in Lagrangian coordinates this is the function (t, x) 7→ f(x).
The preceding example shows also that the pushforward operator is the identity in
Lagrangian coordinates; indeed this is exactly how Lagrangian coordinates were
defined. More precisely, for f : M → R, the function f 7→ (t, Ptf) in Eulerian
coordinates is the function f 7→ (t, f) in Lagrangian coordinates. Typically the
parameter t will be implicit and clear from the context and may therefore be
omitted in what follows.
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1 Background and Motivation

1.3 Transfer operator-based methods

Properties of discretizations of the linear operators (Tt)t∈(0,1] have a long history
of use for the computation of ‘dynamically interesting’ features in phase space like
coherent structures. This was initially done in the autonomous, non-Lagrangian
case, i.e. when the vector field V in eq. (1.1) does not depend on time. In the
volume-preserving case, each (Tt)t∈[0,1] is unitary [6, chapter 4], so its spectrum
is contained in the unit circle. In practice, however, discretizations of Tt are
typically not unitary, and “dynamically interesting” features can be found by
looking at eigenvectors corresponding to largest-magnitude eigenvalues of the op-
erator. Recognizing this, a common approach in the literature for analyzing such
discretizations is to look at perturbations of transfer operators [11, 19, 15, 23].
In the sequel, we will look at some specific perturbations of transfer operators
more closely. In some cases in the literature, the exact perturbation is not al-
ways made explicit and it is sometimes assumed that the numerical scheme used
introduces sufficient “numerical diffusion” precluding the necessity of an explicit
perturbation; cf. [19, 15].

An early example of this kind of transfer operator based approach is [11], which
describes a Galerkin numerical method (a generalization of “Ulam’s method” in-
troduced in [63, Chapter VI.4]) based on box coverings for discretizing trans-
fer operators of stochastic systems. In this case5, the SRB-measures of suitable
stochastically perturbed systems converge to the SRB-measure of the unperturbed
system; moreover the discretisation yields a measure converging to the SRB-
measure when applied to each of the stochastic systems[11]. Their definition of
an almost-invariant set can be (conceptually) thought of as being the autonomous
precursor to coherent structures; or conversely we may define coherent sets to be
almost-invariant sets of a suitable perturbation in Lagrangian coordinates [40].
The connection between almost invariant sets and eigenvectors of the transfer
operator (for suitably perturbed systems) was also made in [11].

A different approach to perturbation appears in [19]. Here, in the volume-
preserving setting, eq. (1.5) in Euclidean space is perturbed to the advection-
diffusion equation

∂tu = −LV u+ ε∆u,

and, as we are in the autonomous setting, the (unbounded) operator −LV u+ε∆u
generates a semi-group of compact operators when ε > 0. This generator can be
discretized, leading to computational methods in [15] for almost-invariant sets
based on the eigenvectors and eigenvalues of this discretisation.

Similar issues arise when considering nonautonomous systems where eigen-
values/vectors must be replaced by singular values/vectors with respect to some
Hilbert-spaces. Without a perturbation, the only singular value (on L2(M,ω))

5The details are subject to some underlying assumptions as described in section 4 of [11].
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1 Background and Motivation

in a mass-preserving system is 1. However, after a suitable perturbation, sin-
gular values/vectors again result in interesting quantities. This is the approach
explored in [23], see also [22, 15]. In that work, adapted and here to our setting
and notation, a quantity we refer to here (the same terminology appears in [58]
for this quantity; see also the discussion in [5, 12]) as the coherence ratio (for a
perturbation Lε of the transfer operator) induced by function Φ1

0 : M0 →M1 with
ω0, ω1 being volume-forms on M0,M1 respectively) of two sets S, S ′ is defined in
Eulerian coordinates as

ρε(S, S
′) :=

〈Lε1S,1S′〉L2(M1,ω1)

ω0(S)
+
〈Lε1M0\S,1M1\S′〉L2(M1,ω1)

ω0(M0 \ S)
, (1.7)

where we recall that in the mass-preserving setting, ω1 = (Φ1
0)∗ ω0. Maximizers

of this ratio are known as coherent pairs (cf. also the discussion in [5, 23]; the
idea is that coherent pairs formalize the idea of a coherent (space-time) set which
does not lose much mass from the diffusion). Though typically this is not done in
the transfer-operator literature, one may restrict to the Lagrangian case in which
S and S ′ as the time-0 and time-1 slices respectively of a single Lagrangian space-
time set, i.e. S ′ = Φ1

0(S). This is also a particularly natural point of view as the
coherence ratio for S without diffusion, i.e. ρ0(S, ·), is maximized by this choice
of S ′. This suggests the Lagrangian coherence ratio[57] , ρ(S,Φ1

0(S)), which can
in the mass-preserving setting be written in Lagrangian coordinates as

ρ̃ε(S) :=
〈Lε1S,1S〉L2(M, ω)

ω(S)
+
〈Lε1M\S,1M\S〉L2(M,ω)

ω(M \ S)
, (1.8)

andM := M0, ω := ω0 as an appropriate object to study in the Lagrangian setting.
We remind the reader that eq. (1.8) is simply a special case of eq. (1.7), but our
notation in Lagrangian coordinates identifies M0,M1 using Φ1

0 and therefore only
one manifold appears in eq. (1.8). In Eulerian coordinates, Lε : M0 →M1, which
corresponds in Lagrangian coordinates to Lε : M → M (recall that we defined
M = M0).

9



1 Background and Motivation

1.4 Some perturbations of transfer operators

The previous chapter has described ways in which perturbations of transfer oper-
ators are important. We include below some details of some particularly natural
perturbations that can be found in the literature and were studied in greater
detail in my work.

1.4.1 The advection-diffusion equation

In Eulerian coordinates, a singular perturbation of eq. (1.5) is the advection-
diffusion equation

∂tu = −LV u+ ε∆u , (1.9)

where ∆ is a Laplace operator acting on differential forms. We have mentioned
this equation above in the autonomous case, but the equation remains well-defined
when the vector-field V is time-dependent and/or the Laplacian in eq. (1.9) de-
pends on time.

In Lagrangian coordinates, with some differential geometry [45, Chapter V,
Prop. 5.2] one sees that eq. (1.9) becomes

∂tu = ε[(Φt
0)∗∆]u , (1.10)

which is a time-dependent heat equation; the advection-diffusion equation in La-
grangian coordinates is studied in [62]. Recall that the operator Pt is the time-t
solution operator to eq. (1.5). Likewise, there is a time-t solution operator asso-
ciated to eq. (1.9), which we write as Pt,ε. In Lagrangian coordinates, Pt is the
identity; this is in marked contrast to Pt,ε for positive t, ε – these are well-known
to be compact operators on L2(M,ω).

This PDE-theoretic point of view is particularly rich for the transfer operator
on functions in the volume preserving setting. We also assume that ∆ takes the
form ∆ = divω ◦∇ – here the divergence divω is defined via (divωW )ω = LW ω
for smooth vector fields W , and ∇u is the Riemannian gradient induced by some
metric. Then, eq. (1.10) (still in Lagrangian coordinates) becomes

∂tu = ε divω∇tu = ε divω g
−1
t du , (1.11)

where∇t is a Riemannian gradient for a time-dependent metric6 (gt)t∈[0,1] obtained
by pulling back the metric of the Laplacian in eq. (1.9) by Φt

0 [40]. We have also
used that∇tu = g−1

t du and d is the exterior derivative; the notation g−1
s appearing

in eq. (1.11) should be understood as the well-known identification of the metric
tensor with an isomorphism from tangent to cotangent space, see e.g. [45]. Even

6With time-dependent metric we simply mean a one-parameter family of metrics indexed by
the time parameter.
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1 Background and Motivation

if the Laplacian in eq. (1.9) does not depend on time, changing to Lagrangian
coordinates will (in general) result in a time-dependent metric as featured in
eq. (1.10).

This reasoning extends in a straightforward way to the mass-preserving case,
for further details on this and on the steps outlined above, see [40, 42].

Averaging and the dynamic Laplacian, the geometry of mixing: In [40]
it was suggested to (in Lagrangian coordinates) replace eq. (1.11) by the much
simpler equation

∂tu = ε divω

(∫ 1

0

g−1
s ds

)
du , (1.12)

which is the heat equation on a weighted Riemannian manifold (see [50, 30, 4];
we have collected some basic differential geometric definitions and results also
in the appendix of [42]), whose Laplace operator is the dynamic Laplacian from
[16]. The time-t solution operator for this equation, denoted here (in Lagrangian
coordinates) by P t,ε = exp(tε∆) is also a perturbation of Pt. A marked advantage
of P t,ε over Pt,ε is that the former is self-adjoint in Lagrangian coordinates [40, 53],
whereas the latter is not, in general.

The weighted Riemannian manifold (M, g, ω) with Laplace operator ∆ was
dubbed the geometry of mixing in [40]. The Riemannian metric of this manifold

is readily seen to be given by g =
(∫ 1

0
g−1
t dt

)−1

and the volume-form is the mass-

form conserved by the advection/diffusion equation. In [42], which is included
here, we look at the geometry of mixing – in particular its induced area form
(cf. [51, section 18.1]) – in more detail. We are unaware of conceptually prior
study of this area form in the literature; though there is some further discussion
on the approach used in [42] in [40] and the (unweighted) area in (M, g) had been
previously mentioned in [42] also.

1.4.2 Averaging over geodesic balls

Another perturbation of the transfer operator can be found in works like [15],
the idea is to (pre/post) compose the transfer operator with a convolution-like
operator. A possible choice of this form is averaging over geodesic balls, i.e. the
operator

(Ig,ω,εf)(x) :=
1

ω(Bg(x, ε))

∫

Bg(x,ε)

f(y)dω(y) , (1.13)

where ω is some (finite) measure/volume-form and Bg(x, ε) is the geodesic ball of
radius ε centered at x defined using the metric g on the smooth complete (but not
necessarily compact) Riemannian manifold M . We have identified the volume-
form ω with its induced measure in the equation above. The operators Ig,ω,ε,

11



1 Background and Motivation

being of Hilbert-Schmidt-type [44], are compact on L2(M,ω). In the literature,
more general convolutions of the transfer operator are also present, but this is an
interesting special case.

In order to understand this operator better, we present an amalgam of ideas
from [46, 29, 61], see also [16, 21]. This interesting Fourier/functional analytic
point of view has not been prominently featured in the coherent structures liter-
ature, so I present it here in more detail. This will become relevant in the sequel
where we sketch how methods used in [55] are applicable not only to the heat
flow, but also to Ig,ω,ε.

As noted in [46], the operator Ig,ω,ε can be written as function of
√
−∆ when

(M, g) and ω come from the flat torus, the same reasoning works for n-dimensional
Euclidean space. To see this, observe that Ig,ω,ε is convolution with (the scaled
indicator function of) a ball

Fε(x) = 1B(0,1)(ε
−1x)/ ω(B(0, ε)) .

Writing cn as the volume of the n-dimensional unit ball, we calculate that in
Fourier-space,

F̂1(ξ) =
2(2π)−n/2

cn

∫ 1

0

cn−1 cos(|ξ|t)
(
1− t2

)n−1
2 dt

F̂ε(ξ) = F̂1(εξ) .

We know that convolution corresponds to (suitably scaled) multiplication in
Fourier space. It thus follows directly via the functional calculus that

Ig,ω,ε =
2cn−1

cn

∫ 1

0

cos(t
√
−ε2∆)(1− t2)

n−1
2 dt . (1.14)

This is because the spectrum of the Euclidean Laplacian ∆ is the negative real line,
and eigenfunctions of eigenvalue −|k|2 are trigonometrical functions of frequency
k, convolution operators with radial functions (which correspond to multiplication
by a radial function in Fourier-space) can be expressed in terms of functions of
∆; see [61, Eq. 3.5.26]. By Taylor-expanding the cosine in the equation above,
well-known results on the beta function [61, Eq. 3.A.24] yield (at least formally,
see also [46] (in particular Eq. 1.6 and 1.14 there) which is in the same vein and
goes on to prove much stronger results), that

Ig,ω,ε = Id +
ε2

2(n+ 2)
∆ +O(ε4) ; (1.15)

this result – including its generalization to Riemannian manifolds – has already
been mentioned in the coherent structures context in [40]. By explicitly looking

12



1 Background and Motivation

at the remainder in the Taylor expansion we can say even more about the con-
vergence of eq. (1.15). To do so, let us write cos(x) = 1− x2

2
+ x4r(x) where r(x)

is a bounded function. Thus, evidently

Ig,ω,εf = f +
ε2

2(n+ 2)
∆f +

∫ 1

0

(t
√
−ε2∆)4r(t

√
−ε2∆)(1− t2)

n−1
2 fdt

︸ ︷︷ ︸
:=Rf (ε)

.

Denoting the Fourier-transform of the function Rf (ε) by R̂f (ε), observe that
directly from the definition of Rf (ε)

R̂f (ε)(ξ) = ε4

∫ 1

0

t4|ξ|4r(tε|ξ|)(1− t2)
n−1
2 f̂(ξ)dt ,

and as a consequence,

|R̂f (ε)(ξ)| ≤ Cε4|ξ|4|f̂(ξ)| (1.16)

for suitable C > 0. Indeed, recall that the Sobolev spaces Hk(Rn) can be defined
using growth rates of the Fourier-transform at infinity [61, chapter 4], and thus
eq. (1.16) can be used to bound weak derivatives of the remainder Rf (ε) in terms
of weak derivatives of f . More precisely, this shows that if f has k ≥ 4 weak
derivatives in L2 (i.e. f ∈ Hk), then the convergence in eq. (1.15) is in the
Sobolev space Hk−4; this also locally gives uniform convergence of all derivatives
for sufficiently smooth f by the Sobolev embedding theorems.

Though we do not make us of this fact yet, we mention that cos(t
√
−∆) is the

solution-operator for the wave-equation [61] which means eq. (1.14) can also be
interpreted as an integral over the solution to an appropriate wave equation.

Unfortunately, eq. (1.14) no longer holds exactly on general Riemannian man-
ifolds, but results relating to eq. (1.15) including certain spectral results are ob-
tained in [46]. The ideas used in [29, chap. 11] on a similar quantity offer a
simpler way of seeing why eq. (1.15) holds, and we will use them to make a slight
generalization to the weighted manifold setting in what follows. For a point p
in a complete smooth (not necessarily compact) Riemannian manifold (M, g), we
follow [29, chap. 11] and pull the Euclidean metric on Rn to M via the geodesic
normal coordinates at p, and write g̃ for this metric. By construction, the g̃-
geodesic-normal-coordinates centered at p agree with those for g. The associated
Laplace operator and volume-form to the Riemannian manifold (M, g̃) are de-
noted by ∆̃ and ω̃ respectively. To reduce clutter we omit the dependence on
p in the notation. It is well-known that ∆̃ = ∆ at p, here ∆ refers to the
Laplace operator on the Riemannian manifold (M, g). If we write θ̃ω̃ = ω, then
Ig,ω,εf = Ig̃,ω̃,ε(f θ̃)/Ig̃,ω̃,ε(θ̃) and applying eq. (1.15) to denominator and numera-
tor together with the quotient rule for derivatives yields

Ig,ω,εf = f +
ε2

2(n+ 2)

(
∆f +

2∇f · ∇θ̃
θ̃

)
+ o(ε2) . (1.17)
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1 Background and Motivation

We would like to replace θ̃ with θ in the formula above. To see that this can
be done, observe that g agrees with g̃ near p up to a second-order error in the
geodesic normal coordinate representation [29, Corollary 9.8]; for g̃ this is trivial
as it has been defined to have coordinate representation equal to the identity. If %
is the Riemannian volume of g, then the coordinate representation of % will agree
with ω̃ with the same asymptotic error [29, Corollary 9.9]. Writing ω = θ%, the
same may be said of θ̃ and θ. Thus we may replace θ̃ with θ in eq. (1.17), which
leads to the somewhat surprising7 conclusion that on smooth functions,

Ig,
√
θ%,ε = Id +

ε2

2(n+ 2)
∆ω,g + o(ε2),

where ∆ω,g = divω ◦∇g. A more explicit examination of this setup shows that
the locally uniform convergence of any derivatives carries over from the Euclidean
setting to the general weighted manifold case given sufficient smoothness.

7This is surprising as
√
θ appears in the left hand side instead of θ, see also the connection to

[30, Equation (2.4)].
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1 Background and Motivation

1.5 Dynamic isoperimetry and the dynamic Laplace

As described in section 1.3, the introduction of a perturbation of the transfer
operator has the advantage of sidestepping certain technical difficulties. However,
a marked disadvantage is the fact that one introduces a new parameter ε to
control the strength of the perturbation. It is not clear what value of ε > 0
should be chosen, so a natural approach when lacking a clear physical model
for the perturbation is to consider the limit ε → 0. Such limits are present –
sometimes more explicitly and sometimes less explicitly – in a number of places
in the coherent structures literature[16, 5, 36].

When choosing a perturbation like that of pre/post-averaging over suitably
scaled ε-geodesic balls, this perturbation is closely related to a Laplace-type op-
erator (see previous chapter). In [16], similar questions are investigated for the
perturbation of the time-1 transfer operator T1 defined in Eulerian coordinates
(with our notation) by

Lε = I(Φ1
0)∗g1,dg,ε T1 Ig,dg,ε (1.18)

where g, g1 are flat metrics in the domain and codomain respectively of a volume-
preserving flow Φ1

0 and the volume form induced by g is denoted by dg. Consistent
with the asymptotics described in section 1.4.2, they find that (for sufficiently
smooth functions f),

L∗εLεf =

(
Id + Cε2

(
∆ + (Φ1

0)∗∆

2

))
f + o(ε2)

pointwise as ε → 0, here C is a constant depending only on the dimension. The
setup in [16] is slightly more general and includes other convolutional operators.
Extensions to non-flat manifolds are in [21]; though their approach appears to
use a slightly different generalization to the one considered here. The operator
1
2

(∆ + (Φ1
0)∗∆) was coined the dynamic Laplacian for Φ1

0, with natural extensions
to multiple time-steps and/or the setting of continuous time which has already
been mentioned. Being similar to the usual Laplace operator, a number of inter-
esting results make it possible to prove statements related to dynamical systems
with this object.

Definition of coherent structures: Coherent structures, in the dynamic Laplace
approach of [16], come from minimizing the functional

F (Γ) :=
hypearea(Γ) + hyperarea(Φ1

0(Γ))

2 min{vol(M1), vol(M2)}
over smooth surfaces Γ that partition M into submanifolds M1,M2. It is typi-
cally not feasible to compute a minimizer exactly, but the minimal value can be
bounded using the first nontrivial eigenvalue of the dynamic Laplacian, this is
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1 Background and Motivation

the dynamic Cheeger Inequality of [16, 21] which states that the leading nonzero
eigenvalue λ2 of the dynamic Laplacian satisfies

min
Γ
F (Γ) ≤ 2

√
−λ2 ,

where Γ takes the form described above. We provide a different proof of the
dynamic Cheeger inequality in [42], which yields a slightly stronger result than
the one present in [24, 21]. This is done by a reduction to the Cheeger inequality
on weighted manifolds by making use of the area-form in the geometry of mixing.

Eigenfunctions of the dynamic Laplacian are again computationally tractable
[16, 17, 18], and these are used (sometimes in conjunction with other methods
like [25]) when computing coherent structures (see also [58]).

As observed in [40], the dynamic Laplacian is the Laplace-operator on a weighted
Riemannian manifold, and the connection to the classical Laplace-operator also
(as again observed in [40]) means that results such as [10], which may be relevant
to extending ideas like the dynamical Cheeger inequality to n-partitions, can be
applied.

In terms of computation, discretization of the dynamic Laplace operator is in
some sense easier than of the transfer-operator. This is because the dynamic
Laplacian is an uniformly-elliptic second-order differential operator, for which
finite element methods are well-suited [13]. Methods based on finite-elements
have been used in [18], but there are also approaches to discretization based on
radial basis functions [17]; there is also a trajectory-based method with close
connections to the dynamic Laplacian in [5]. The publication [56] included here
looks at the discretizations from [18] in more detail. There, we go beyond [18] by
looking at higher-order finite-element methods for this problem and by proving
convergence for some methods that were previously not known to converge.
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1.6 Material barriers/Black-hole vortices

The geodesic vortex methods at first glance appear to be completely unrelated to
other methods for computing coherent structures. Our presentation here takes
an abstract point of view (as already partially present in [41]) summarizing some
aspects of methods appearing in [35, 59, 36, 37]. The bottom line of this family of
approaches is that there are a number of variational problems in two dimensions8

whose solutions correspond to curves of constant “strain”. Such curves can be
computed efficiently, and on very large domains [39, 41].

The first source of such variational problems arises from the fact that if a time-
independent Lagrangian L only depends on the direction of the velocity compo-
nent (i.e. L(γ, γ′) = L(γ, cγ′) for all c > 0), then Noether’s theorem immediately
yields that L is a conserved quantity along stationary points γ : [a, b]→M of the
action functional

L0(γ) :=

∫ b

a

L(γ(t), γ′(t))dt . (1.19)

Such an L may be constructed, for example, from a pair of covariant sym-
metric rank-2 tensor-fields (i.e. sections of ⊗2T ∗M) T0 and T with L(γ, γ′) :=
f(T(γ′, γ′)/T0(γ′, γ′)) for some invertible smooth function f , provided that T0

is Riemannian. We have left the dependence of T(γ′, γ′) and T0(γ′, γ′) on γ(t)
implicit in the notation. As L is conserved, the (T, T0)-strain, defined as

√
T(γ′, γ′)/T0(γ′, γ′)

, is also conserved by stationary points of eq. (1.19), for more details related to
specific constructions of this form see the reasoning in [35, 59].

Another source of such variational problems, again given Riemannian metric
T0 and T as above, is the functional

L1(γ) :=

∫
γ
T(γ′, γ′)/T0(γ′, γ′)dA∫

γ
dA

(1.20)

where dA is the Riemannian area from T0. As observed in [36], stationary points
γ with λ := L1(γ)) are stationary points of

L2(γ) :=

∫

γ

(T(γ′, γ′)/T0(γ′, γ′)− λ) dA , (1.21)

but applying Noether’s theorem to the time-invariance of the Lagrangian in L3

does not yield a non-trivial conserved quantity. Incidentally, this is not entirely

8Some of the theory, such as that in [36] can be extended to higher dimensions, but there are
hitherto unsolved challenges related to proving existence of minimizers and their computa-
tion.
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surprising given the reparametrisation invariance of the Lagragian (see [27]), this
is an example of gauge-symmetry as defined in [3]. However, it is shown in [36] for
Riemannian T that T(γ′, γ′)/T0(γ′, γ′) is nevertheless a conserved quantity along
stationary points of the functional. This general approach is taken in [36, 37] to
define coherent structures.

Definition of coherent structures: Closed9 curves γ that are stationary points
of eq. (1.19), are conceptually seen as boundaries of coherent structures. The
tensor-field T0 is typically the standard Euclidean metric in some choice of coor-
dinates, and curves of constant (T, T0)-strain can be computed using an eigende-
composition of the coordinate representation of T in the T0 Euclidean standard
basis [35, 39, 41].

A specific choice of T is of particular relevance here. In [36], where M ⊂ Rn,
an expression was derived for the leading-order term of the Lagrangian diffusive
transport through a hypersurface Γ in the volume-preserving advection-diffusion
equation for sufficiently smooth initial conditions. If u is the solution to the
advection-diffusion equation eq. (1.10) then this diffusive transport out of the
Lagrangian set S can be written (in Lagrangian coordinates) as

T (u0, ε, S) :=

∫ 1

0

∫

∂S

∇u(t, x) · (Tt
0(x)ν(x))dA(x)dt , (1.22)

Here dA is the Euclidean area, ν is unit-normal to ∂S and Tt
0 are some tensors.

Choosing T =
∫ 1

0
Tt

0dt, it is shown in [36] (we are summarizing here to make
the connections to other methods clearer, they prove a slightly stronger and more
general claim, see there also for technical assumptions needed) that this quantity
is given by

T (u0, ε, S) = ε

∫

∂S

∇u(0, x) · (T(x)ν(x))dA(x) + o(ε). (1.23)

This quantity naturally depends on the initial condition u(0, ·). In [36], nor-
malizing by the length of this gradient (at initial time), by taking u(0, ·) to be
a function with a uniform length gradient in the metric at initial time yields a
leading-order term usable for the numerator in L1 even if the length of this gra-
dient is arbitrarily large. The geodesic vortices for this case are called material
barriers (to diffusive transport), extensions to the non-volume-preserving case are
given in [37]. We describe a new connection between eq. (1.23) and the dynamic
Laplace operator/geometry of mixing in [40].

9The curve γ : [a, b]→M is closed if γ(a) = γ(b).
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1.7 Relaxation to (smooth) functions

Though conceptually one is typically interested in sets, a common approach,
shared by the methods described above, is to formulate an approach based on
(often smooth) functions, which in some cases can be seen as a relaxation step
[12, 15]. For example, the reasoning in [36] described in the previous section can
be read as investigating the diffusive outflow of a set using a smooth functions
with arbitrarily larger gradient; which is calls to mind the idea of a function with
discontinuity at the boundary of the set. Similarly, [16] looks at the dynamic
Laplace, which is only defined classically on sufficiently smooth functions, while
mentioning “mass lost through the boundary [...] via continually-present small-
scale-diffusion”[16, p. 2], which suggests that the advection-diffusion equation,
with an indicator function as the initial condition is relevant to questions related
to coherent sets.

The mathematical analysis of properties of indicator functions under the kinds
of perturbed transfer operators we have seen so far is much more difficult as in-
dicator functions are not smooth. In the case that there is no advection, the
advection-diffusion equation reduces to the heat-equation on a Riemannian man-
ifold. The diffusive outflow from a set can then be calculated; a generalization
of this quantity is referred to the heat content out of a manifold by [65] who use
methods using pseudodifferential operators and invariance theory, to investigate
this quantity, see also [49]. There is also a large literature on a different kind of
heat content – which looks at the action of the heat equation with constant initial
condition on a manifold with boundary [64].

In [55], which is included here, we present a different proof for some small-time
asymptotic quantities related to a form of the heat content out of a manifold.
Though [55] is less general than [65] in some ways, more general manifolds are
considered there as the results apply to any complete Riemannian manifold. It
also states its results for a more general class of functions k(

√
−t∆) and not only

the heat flow; though it should be noted that these generalizations are in some
sense straightforward once one takes into account the well-known relationship
between the heat– and wave– equations (as featured for example in [9, 61]).

In [57] we derive leading-order asymptotics (in the low-diffusivity limit) of a
form of the heat-flow in time-dependent heat flows. To the best of our knowledge,
this has hitherto not been done in the literature. This also yields new asymptotics
for the diffusive transport out of a material set in the setting that the initial
condition is an indicator function.

Our approach in [57] makes use of stochastic analysis. Indeed, via the well-
known Kolmogorov backwards equation [14] it becomes possible to reason about
certain partial differential equations using stochastic differential equations (and
vice versa). On the other hand, the classical result from [7] allows for stochastic
differential equations to be approximated by other (simpler) stochastic differential
equations in certain settings. This kind of reasoning (being well-known in the
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literature), makes it possible to use stochastic differential equations to reason
about partial differential equations. In [57], we use it to reduce the leading-order
behavior of the diffusive outflow from a material set to the diffusive outflow from
the same material set in the heat flow of the geometry of mixing. This, in turn,
is known from [65, 55] to be equivalent to the short-time diffusive outflow from a
set. For more details on the specific methods used there, we refer to [57].

1.8 Other methods

For the sake of completeness, we mention that there is a plethora of further
methods sometimes included under the umbrella term “coherent structures”. A
comparison of a large number of methods can be found in [32]. There are also
a number of methods that work directly on trajectories (see e.g. [5]), which we
have not looked at here further.
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Before describing the publications included in more detail, recall the earlier adap-
tion of the coherence ratio appearing in [23] to the Lagrangian setting. With Lε
being a perturbation of T1, the expression from eq. (1.7) in Lagrangian coordinates
is

ρ̃ε(S) :=
〈Lε1S,1S〉
ω(S)

+
〈Lε1M\S,1M\S〉

ω(M \ S)
, (2.1)

where 〈·, ·〉 is the L2(M,ω) inner product. Naturally, the asymptotics of ρ̃, as
ε→ 0, depend on which perturbation of the transfer-operator T1 (or, equivalently,
the identity in Lagrangian coordinates) is chosen. We restrict ourselves here and
in what follows to the mass-preserving case, i.e. ω := ω0 and ωt = Pt ω0.

As is done in the literature, relaxing the numerator of the first term from sets
(i.e. indicator functions) to smooth functions readily yields the term 〈Lεf, f〉 (in
Eulerian coordinates this would be 〈Lεf, T1f〉L2(M1,ω1)). We now turn to looking
at specific choices for the perturbation Lε:

1. Let us define (depending on a metric g and the volume-form ω) the op-
erators Jg,ω,ε := exp(ε∆g,ω). In Eulerian coordinates, Lε = Jg,ω1,ε ◦ T1

is a perturbation of the transfer operator, in Lagrangian coordinates this
perturbation reads Lε = J(Φ1

0)∗g,ω,ε. For a time-independent metric g, defin-

ing g1 := (Φ1
0)∗g, the ε → 0 asymptotics are readily found by Taylor ex-

pansion of the heat-flow Jg1,ω,ε at ε = 0, so the leading-order behavior is
Id+ε∆g1,ω +O(ε2), i.e. this case is nothing but applying well-known results
on the heat flow.

2. The averaging-over-geodesic-balls operator Ig,ω,ε also has a ε → 0 Taylor-
expansion on smooth functions which we described in a previous section
(see also the references given there). Replacing Jg1,ω,ε with Ig1,ω,ε in item 1.
is thus also straightforward.

In both cases, the leading-order deviation from the identity depends on a Lapla-
cian. We are thus firmly in the classical theory when it comes to minimizers of
the ε → 0 limit of suitably relaxed expressions like eq. (2.1) over smooth func-
tions. The same reasoning extends also to the setting where we both pre- and
post-compose (as opposed to merely post-composing) a suitable perturbation by
applying a Taylor-expansion to each; the resulting operator in the ε2 coefficient
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will be the dynamic Laplace operator. In case of item 1. above, the permissibility
of doing so follows from the fact that for sufficiently smooth f , the error term
implicit in the O(ε2) notation is smooth and sufficiently many derivatives can be
uniformly bounded as ε → 0 using standard methods from the theory of heat
flow. This result appears for flat manifolds in [21]. The permissibility for the
analogous modification in point 2. can be derived from the machinery outlined in
section 1.4.2 in the general case of Riemannian manifolds. It is possible that the
methods in [21] can also be applied to this question, though it appears that the
averaging operator there is of a slightly different form than the one used here.
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2.1 Summary of [42]

We have already mentioned that an alternative to the perturbations considered in
1.–2. above is given by choosing Lε to be the time-1 solution operator P1,ε of the
mass-preserving advection-diffusion equation. In Lagrangian coordinates, this is
the time-1 solution operator to the time-dependent heat equation

∂tu = ε∆tu ,

where ∆t := (Φt
0)∗∆ takes the form ∆t = divω g

−1
t for a time-dependent family of

metrics (gt)t∈[0,1].
We considered the ε → 0 behavior of eq. (2.1) relaxed to smooth functions.

Using the methods from a very similar proof in the literature, we show in [42]
that for sufficiently smooth f , subject to some technical conditions,

P1,εf = f + ∆f +O(ε2) . (2.2)

Here ∆u := divω

(∫ 1

0
g−1
s ds du

)
is the dynamic Laplacian. This is the same

asymptotic behavior as that of P 1,ε := exp(ε∆), for which the ε→ 0 behavior is
well-known from semi-group theory [53].

As P 1,ε comes from a semi-group generated by the dynamic Laplacian, the
spectral mapping theorem for semi-groups (see [53]) applies and can be used to
yield statements about the singular values of P 1,ε based on those of ∆. This
is not true for P1,ε. We are able to nevertheless show in [42] that the leading
singular values of P1,ε obey ε → 0 asymptotics similar to those of P 1,ε, with
the corresponding singular vectors converging (as ε → 0) to eigenvectors of the
dynamic Laplacian. This is done using some PDE-theoretic arguments that rely
on a periodisation approach like the one employed in [20] and a proof using ideas
similar to the well-known direct method from the calculus of variations.

As conjectured in [40], the geometry of mixing thus is intimately connected
to the small-ε asymptotics of P1,ε via the dynamic Laplacian. As a (weighted)
geometry, there exist further geometrical structures apart from the Laplacian.
Looking in particular at the (hyper)area-form defined by this geometry, which we
write as dA, is shown in [42] to be a fruitful endeavor. From an expression for
this object, we are able to recover (and even strengthen) the dynamic Cheeger
inequality of [16, 21] directly from the classical one on weighted manifolds.

We are also able to prove a result on the diffusive outflow from a set (in La-
grangian coordinates) in the advection-diffusion equation, which was proven orig-
inally in [36] and which was mentioned above as eq. (1.23). The diffusive outflow
out of a set S may be defined as T (f, ε, S) = 〈P1,εf,1M\S〉−〈f,1M\S〉, so applying
eq. (2.2) yields

T (f, ε, S) = −ε
∫

S

∆dω+O(ε2) = ε

∫

∂S

ν(df)dA+O(ε2)
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where g is the metric in the geometry of mixing and ν is g-unit normal to ∂S.
The last step is the divergence theorem. This shows deep connections between
the material-barriers of [36] and the dynamic Laplacian of [16, 21]. Indeed, the
expression in the numerator of the functional in [36] is

∫

∂S

〈ν, ν0〉g dA ,

where ν0 is g0-unit normal to ∂S.
Clarification of contributions: The work [42] was written jointly with

Daniel Karrasch. Daniel Karrasch had suggested in [40] that the results of [43]
could be relevant to the averaging result, the details were worked out by me; I
would like to thank Alvaro de Diego for frequent discussions about this subject
matter; Oliver Junge also contributed some helpful suggestions. The generaliza-
tion to eigenvectors/eigenvalues has also been worked out by me. The relevance
of the classical Cheeger inequality on weighted manifolds to the dynamic Cheeger
inequality was conjectured by Daniel Karrasch, I worked out the details but not
as clearly as they are now in the paper. The formulation of section 2.1 and 2.2
was initially that of Daniel Karrasch. Together with Daniel Karrasch we then
revised all sections of the paper (some even multiple times), so it is impossible to
clearly specify individual responsibilities with respect to the presentation.
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2.2 Summary of [55]

So far, we have looked at small-ε behavior of the perturbed transfer-operators in
the relaxed setting of smooth functions. However, the relaxation step is some-
what unsatisfying as it is not clear how to recover sets from a smooth function.
Therefore I looked at quantities related to Lε1S and eq. (2.1) for various choices
of Lε.

If there is no advection, and Lε = Jg,ω,ε(= exp(ε∆g,ω)), then asymptotics of the
diffusive outflow 〈Jg,ω,ε1S,1Sc〉 have been derived in [65] using methods from the
theory of pseudodifferential operators and invariance theory to obtain asymptotics
of the more general heat content. In [55], I showed how to recover asymptotics of
a form of the heat content with different (and arguably simpler) methods in the
general setting of complete Riemannian manifolds. The idea used there was that
if k : R→ R is sufficiently regular, f is smooth and Lε = k(

√
−ε∆), then

〈Lε(f1S),1S〉 =

∫ ∞

0

k̂(s)〈cos
(
s
√
−ε∆

)
(f1S),1S〉ds (2.3)

for a suitable choice of k̂. This follows from the functional calculus and is well-
known (see [9, 61]). Now the operator cos(

√
−t∆) is a solution-operator for

the wave-equation, which has finite propagation speed, and can be approximated
using geometrical optics (see [61, Sect. 6.6]) near ∂S. This yields the small-ε
asymptotics of 〈cos(

√
−t∆)1S,1S〉, and thus also of 〈Lε1S,1S〉.

The leading-order asymptotics (though the proof extends to higher orders also)

obtained are of order ε
1
2 , with the constant being proportional to the (hyper)-

area of ∂S in the weighted geometry (M, g, ω) which we denote by dA(∂S). To
be more precise, when Lε = Jg,ω,ε, then

〈Lε1S,1S〉 = ω(S)−
√
ε

π
dA(∂S) +O(ε).

As mentioned above, similar results extend to other values of k also. For
example (and we have corrected a typo appearing in the published version in
what follows), when k(x) = exp(−x2m), m ∈ N≥2, then as t→ 0+,

〈exp(−(−t∆)m)(f1S),1S〉 =

∫

S

fdV −
(
π−1Γ

(
2m− 1

2m

)∫

∂S

fdA

)√
t+ o(t),

where dV is the Riemannian volume, and 〈·, ·〉 is the L2 inner product with respect
to this volume.

Though not noticed in [55], the case Lε = Ig,dg,ε can also be treated using
methods used in that work. In the Euclidean case, the formula eq. (1.14), i.e.

Ig,ω,ε =
2cn−1

cn

∫ 1

0

cos(t
√
−ε2∆)(1− t2)

n−1
2 dt , (2.4)
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was derived in section 1.4.2 (see references there, recall that cn is the volume
of the n-dimensional unit ball with n being the dimension of M), which (up to
various scalings) means that 〈Ig,ω,ε1S,1S〉 can be brought into the form eq. (2.3)
. Thus applying calculations like in [55], it follows that for smooth f ,

〈Lε(f1S),1S〉 =

∫

S

fdx+ ε
cn−1

cn(n+ 1)

∫

∂S

fdA+ o(ε) , (2.5)

where dx and dA are Euclidean volume and (hyper)area respectively. With some
work, this generalizes to the case that (M, g, ω) is a weighted Riemannian mani-
fold:
Proof of eq. (2.5) in weighted Riemannian manifolds: To see this, start
with the claim (whose proof we postpone briefly) that Ig,ω,ε1S = Ig̃,ω,ε1S + O(ε)
uniformly locally, where g̃ is the Euclidean metric in Fermi coordinates [29,
chap. 2] of ∂S near ∂S; that is a coordinate system where the n-th coordinate is
a unit normal field orthogonal to ∂S. Since both Ig̃,dg̃,ε1S and Ig̃,ω,ε1S disappear
on M \ S outside of an O(ε)-neighborhood of ∂S, from the claim we conclude
that 〈Ig,ω,ε1S,1M\S〉L2(M,ω) = 〈Ig̃,dg̃,ε1S,1M\S〉L2(M,ω + o(ε). Moreover, Ig̃,dg̃,ε is
self-adjoint with respect to L2(M, dg̃), where we have assumed without loss of
generality1 that the coordinates cover the entire manifold. We write θdg̃ = ω,
and dÃ as the (hyper)area induced by g̃, with dA denoting the area form in the
weighted geometry (M, g, ω). Then by self-adjointness, and using the expansion
eq. (2.5),

〈Ig̃,dg̃,ε1M\S,1S〉L2(M,ω) = 〈1S, Ig̃,dg̃,ε(θ1M\S)〉L2(M,dg̃)

=
cn−1

cn(n+ 1)
ε

∫

∂(M\S)

θdÃ+ o(ε)

= Cε dA(∂S) + o(ε)

as the g̃ and g-unit normals at ∂S agree. This generalizes eq. (2.4) to weighted
manifolds. It remains to prove the claim we assumed, which we only sketch. For
x ∈ M \ S, denote by πx the orthogonal projection (in Fermi-coordinates) to ∂S
of x. Given that we may restrict ourselves to a sufficiently small neighborhood of
∂S, this is always possible. Clearly,

Ig,ω,ε(1Sf)(x) = f(πx)

∫
B(x,ε)∩S dω
∫
B(x,ε)

dω
+O(ε) (2.6)

by Taylor-expansion of f . Likewise, we may choose dg̃ in place of ω in the integrals
by Taylor-expansion of a coordinate representation of ω without making an error
larger than O(ε).

1All of the operations involved can be suitably localized for sufficiently small ε, so this is
permissible.
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With the n-dimensional Lebesgue measure λn, define

c(ε, r) := λn({x;xn ≥ r ∧ ‖x‖2 ≤ ε)})/λn({x; ‖x‖2 ≤ ε})

as the volume of the intersection of a ε-ball with a (shifted) half-space. We claim
that

∫
B(x,ε)∩S dω
∫
B

(x, ε)dω
= c(ε, dist(x, ∂S)) +O(ε), (2.7)

regardless of whether g or g̃ is used to measure metric balls and distances in
eq. (2.7). To see this, let Hx be the half-space not containing x whose boundary
is tangent to ∂S at πx in geodesic normal coordinates. By Gauss’ lemma, we may
choose these coordinates so that the n-th coordinate is orthogonal to ∂S and Hx

is orthogonal to the geodesic from x to πx. We can replace S with Hx on the left
hand side of eq. (2.7) and incur only a O(ε) error as ∂Hx is tangent to ∂S at x, this
can be seen by writing ∂S as a graph over ∂Hx near πx. Likewise, we may replace
ω with the Euclidean volume form in these geodesic normal coordinates and only
incur an O(ε) error, leaving us with c(ε, dist(x, πx)) which proves eq. (2.7). All
constant implicit in the O(ε) notation depend only on quantities like the curvature
of ∂S and the curvature of g and g̃, and can therefore be chosen uniformly in x.
Together with eq. (2.6) this proves the claim.

Clarification of contributions: The paper [55] was completely written by
me, though I benefited from feedback of Oliver Junge and Daniel Karrasch with
regards to the presentation. The anonymous reviewer at the Journal of Geometric
Analysis (where [55] appeared) also helped to improve the argument.
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2.3 Summary of [57]

We return to the setting of the mass-preserving advection-diffusion equation on
a manifold M with mass ω in Lagrangian coordinates; as before 〈·, ·〉 denotes the
L2(M,ω) inner product. In the previous section, we looked at [55] in which the
quantity 〈Lε1S,1S〉 was analyzed in the setting of no advection. We now turn
to the case where advection is present; i.e. the metric in Lagrangian coordinates
depends on time.

Choosing, Lε = P1,ε as the solution-operator to the advection-diffusion equa-
tion, we obtain in [57] a formula in Lagrangian coordinates for 〈Lε1S,1S〉.

Equivalently, in Eulerian coordinates this quantity is given by 〈Lε1S,1Φ1
0(S)〉

and may be seen to represent the diffusive outflow out of a material set. In
contrast to some of the other perturbations considered here, even though only a
single application of the flow map Φ1

0 is considered, the fact that the diffusion in
the advection-diffusion equation does not take place only at a single instant means
that all times t ∈ [0, 1] contribute to this quantity. By crafting a suitable time-
dependent metric, the methods there may be seen to also apply to perturbations
like Lε = Jg1,ω,εJg0,ω,ε in Lagrangian coordinates, where g0, g1 are different metrics;
such perturbations represent pre and post-composition of the transfer-operator by
different heat flows.

Our main result – letting dA denote the (weighted) area form in the geometry
of mixing – is that

〈Lε1S,1S〉 = ω(S)−
√
ε

π
dA(∂S) + o(ε

1
2 )

like in [55]; except that here also time-dependent metrics are permitted. The proof
is mostly via stochastic methods to reduce the problem to the case discussed in
[55]. This is done with the help of the well-known Kolmogorov backwards equation
and a classical approximation result for stochastic differential equations from [7].

We also observe that when looking at the coherence ratio without relaxing to
smooth functions, we can nevertheless connect to classical theory by looking at
(weighted) area forms. Stationary points of such weighted area forms with respect
to various perturbations are well-known to be closely connected to surfaces of a
generalized constant mean curvature; see [31, Section 9.4E].

Clarification of contributions: I was responsible for the proof in [57] ini-
tially. Daniel Karrasch and Oliver Junge were strongly involved with improving
the clarity of the paper and to overhaul it into a better form. In particular, the
presentation of section 4 is that of a rewrite attributable in large part to Daniel
Karrasch.
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2.4 Summary of [56]

As mentioned in previous chapters, discretizations of the dynamical Laplace can
be used to compute coherent sets. In [56], we looked at theoretical and practical
properties of various generalizations of some discretizations described in [18].

I consider the main contribution of this work in clarifying the role of the weak-
form of various discretizations from [18]. In [18], the construction of the dis-
cretized dynamic Laplace was presented in terms of a Galerkin-type approach
involving point-masses. In [56], we we introduce the idea that computations of
eigenvalues with the “TO approach” schema of [18] is equivalent to computing
minimizers of bilinear forms

ah(u, v) =
N∑

i=1

ai(Ih,iu, Ih,iv) (2.8)

where Ih,i is an interpolation operator defined on (some subset of) weakly differ-
entiable functions and h is a mesh-parameter related to the mesh width. Viewed
this way, it becomes possible to reason about minimizers of these bilinear forms
using tools from the theory of partial differential equations. We prove convergence
results under appropriate hypotheses using a proof based on the well-known di-
rect method in the calculus of variations (see [28] for an introduction). The
convergence theory for the standard Galerkin discretization of the weak-form of
the dynamic Laplacian is a special case of the well-known general theory; see for
example[13, 60]. Using this fact we obtain one of the bounds in the converge
proof for the “TO approach”; the other direction requires the fact that the sum
in eq. (2.8) is finite and therefore does not generalize in a straightforward way to
non-finite sums. For the case that the Ih,i operators mentioned earlier are nodal
interpolation operators on a suitably regular mesh, we adapt a proof from [8] in
order to bound certain operator norms required in the proof.

In [56], we also investigate whether or not the use of higher-order (P 2-Lagrange
as opposed to P 1-Lagrange) finite elements yield better results numerically. This
is done by numerical experiments. Our experiments, using an implementation
from the CoherentStructures.jl package, suggest that while this is the case
for the straightforward finite-element weak-form of the dynamic Laplacian, no
evidence is found that suggests that it remains true for the “non-adaptive TO”
discretization introduced in [18].

Clarification of contributions: In [56], I contributed the convergence proofs
as well as the numerical experiments. Throughout this, I was in frequent discus-
sions with Oliver Junge and Gary Froyland (who formulated the research topic)
about the results and how to formulate the resulting form of the paper, including
the Introduction. I would also like to thank Christian Ludwig for pointing me to
a paper that was crucial for an important case of the convergence result.
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2.5 Software packages

I am a co-author of the CoherentStructures.jl software package, to which
I contributed a lot of code during the past years. This software package con-
tains state of the art Julia implementations of various methods for computing
coherent structures, together with an extensive documentation. I also wrote the
OceanTools.jl package, both packages are available on github, both packages
were also used in my master’s thesis.

Figure 2.1: A method from [18] implemented in CoherentStructures.jl applied to
a time-dependent 3D velocity field obtained from direct numerical simu-
lation of Rayleigh-Bénard convection obtained from the authors of [52].
The yellow blobs are images of computed coherent sets under the flow; the
blue ones are some non coherent sets displayed as a comparison.
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A number of interesting questions related to those explored above remain. We
sketch here one direction that I was not able to explore in more detail.

Recall that the pushforward operators (Pt)t∈[0,1] are defined not only for func-
tions, but also for differential forms of higher orders. The advection-diffusion
equation in Lagrangian coordinates,

∂tu = ε∆tu (3.1)

remains similarly well-defined, with ∆t = (Φt
0)∗∆ if ∆ = dd∗+ d∗d is a de Rham-

Laplacian, possibly on a weighted Riemannian manifold. We may still average to
define a generalized dynamic Laplacian ∆ =

∫ 1

0
∆tdt. Are spectral properties of

this operator of relevance to the computation of coherent structures? Is this the
‘natural’ de Rham-Laplacian of some (generalized) geometry? Are its spectral
properties relevant to the study of sets in this geometry? I conjecture that we
will need to generalize here from weighted manifolds to the superconnections as
featured in [48].

If M = Ma ] Mb is the disjoint union of two connected components, the
0-eigenspace of of the Laplacian on functions (with Neumann boundary) is 2-
dimensional. Now if M is “almost” the sum of two such connected components
(in the sense that there is cut of small area that separates M into two parts of
somewhat balanced volume), then there are two eigenvalues close to zero (includ-
ing the zero-eigenvalue) – this is the Cheeger inequality[47]; see also the extension
to multiple eigenvalues in [10]; see also also [38]. As zero eigenvalues of the Lapla-
cian on functions are well-known to correspond to the 0th cohomology on M , we
may informally think of the existence of such a cut as resulting in the manifold
“almost” having 2-dimensional 0th (de Rham) cohomology. The connection to
dynamical systems is via the geometry of mixing.

But what about other cohomology groups, i.e. those of higher degree? If
M = Ma]Mb andMa is homeomorphic to S1×D2 (where S1 is the one-dimensional
sphere, and D2 is the unit ball/disk in two dimensions) and Mb to a [0, 1]×D2, then
the 1-cohomology of M is 1-dimensional, and the Hodge Laplacian on 1-forms has
1-dimensional kernel. Does this mean that if M is in some sense “almost” such
a disjoint union, that the Hodge Laplacian has a 1-dimensional eigenspace corre-
sponding to an almost-zero eigenvalue? If so, it is possible that small eigenvalues
of the (generalized) dynamic Laplace on 1-forms yield information about S1×D2-
shaped Lagrangian coherent structures like smoke-rings in 3 dimensions. This is
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particularly interesting from a physical perspective, given that smoke-ring-shaped
Lagrangian coherent structures are known to exist in turbulent 3d flows. I would
also like to thank David Hien for interesting discussions on such ideas.
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HIGHER-ORDER FINITE ELEMENT APPROXIMATION OF THE DYNAMIC

LAPLACIAN

Nathanael Schilling1,*, Gary Froyland2 and Oliver Junge1

Abstract. The dynamic Laplace operator arises from extending problems of isoperimetry from fixed
manifolds to manifolds evolved by general nonlinear dynamics. Eigenfunctions of this operator are used
to identify and track finite-time coherent sets, which physically manifest in fluid flows as jets, vortices,
and more complicated structures. Two robust and efficient finite-element discretisation schemes for
numerically computing the dynamic Laplacian were proposed in Froyland and Junge [SIAM J. Appl.
Dyn. Syst. 17 (2018) 1891–1924]. In this work we consider higher-order versions of these two numerical
schemes and analyse them experimentally. We also prove the numerically computed eigenvalues and
eigenvectors converge to the true objects for both schemes under certain assumptions. We provide an
efficient implementation of the higher-order element schemes in an accompanying Julia package.
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1. Introduction

The dynamic Laplacian is a second-order partial differential operator underlying a range of methods for
computing finite-time coherent sets in finite-time non-autonomous dynamical systems. It was introduced in [12]
in the context of defining sets that remain coherent in a Lagrangian sense via dynamic isoperimetry. Coherent
sets are time-dependent families of sets whose boundaries remain small relative to the volume of the set as the
family evolves according to the nonlinear dynamics; extensions to weighted, curved manifolds and non-volume-
preserving dynamics were made in [15]. Coherent sets are captured by the eigenvectors of the dynamic Laplacian
corresponding to the leading eigenvalues (i.e. those closest to 0). In particular, level sets of the eigenvector cor-
responding to the first nontrivial eigenvalue can be used to partition the domain into two coherent sets. A
dynamic Cheeger inequality [12, 15] links this eigenvalue to the ratio of boundary size to volume. Moreover,
if 𝑛 eigenvalues are close to zero followed by a spectral gap, this forces the eigenvectors to be close to linear
combinations of indicator functions on an 𝑛-partition [6]. We note that the dynamic Laplacian is the Laplace–
Beltrami operator of a weighted manifold [20] and therefore can be used as the time-independent generator of
a diffusion process approximating the given (time-dependent) advection-diffusion process. Eigenvectors corre-
sponding to small eigenvalues decay slowest under this diffusion process and yield almost-invariant sets in the

Keywords and phrases. Dynamic Laplacian, finite-time coherent sets, finite elements, transfer operator.

1 Center for Mathematics, Technical University of Munich, Garching 85747, Germany.
2 School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia.
*Corresponding author: schillna@ma.tum.de

Article published by EDP Sciences c○ EDP Sciences, SMAI 2020



1778 N. SCHILLING ET AL.

sense of [7]. Algorithmically, coherent sets can be extracted from the eigenvectors of the dynamic Laplacian
via, e.g. clustering techniques [11], optimising eigenbasis separation [8], optimising sublevel sets [16], or sparse
eigenbasis approximation [18].

In most cases, the dynamic Laplacian eigenproblem must be solved numerically. To this end, a scheme based
on radial basis functions had been proposed [13], which showed high order of convergence, but suffered from a
number of drawbacks like high sensitivity with respect to the radius parameter, a non-real spectrum and non-
sparseness of the discretized operator. In [14], two finite element schemes were proposed (the “Cauchy-Green”
(CG) and the “Transfer Operator” (TO) approach), which eliminated each of these drawbacks.

Experimentally, only piecewise linear elements were considered in [14]. In this paper, we consider higher-order
(and in particular quadratic) elements and analyse convergence properties both theoretically and experimentally.
We provide an efficient implementation in the Julia package CoherentStructures.jl. We find that using 𝑃 2

elements can give a higher asymptotic order of convergence compared to 𝑃 1 elements in the “CG” approach. For
the “CG” approach, classical theory concerning eigenproblems in FEM applies. We also provide some test cases
where using 𝑃 2 elements can greatly reduce the amount of information needed to calculate partitions of the
domain that show important dynamical features. The question of convergence in the “TO” approaches is more
subtle. We prove convergence of eigenvalues and eigenvectors for a family of TO approaches with 𝑃 1 elements,
but the proof does not give any insight into the convergence rates that should be expected. For 𝑃 2 elements we
do not observe asymptotically higher orders of convergence even for the simple example of a one-dimensional
shift-map on the torus. This suggests that using 𝑃 2 elements does not have substantial benefits when using
the “TO” approach and that one should use the simpler and well-performing linear 𝑃 1 elements in the “TO”
schemes.

This paper is organized as follows. In Section 2 we recall the definition of the dynamic Laplacian. In Section 3
we look at convergence rates for the “CG” approach which follow directly from the standard FEM theory for
eigenproblems. Section 4 deals with convergence of the “TO” approach, with some of the proofs relegated to
Appendix A.

2. The dynamic Laplacian

Let ℐ ⊂ R denote a finite subset of time and consider a finite family (Ω𝑡)𝑡∈ℐ of open bounded subsets of R𝑑

with Lipschitz boundary. For each 𝑡 ∈ ℐ let 𝑇𝑡 : Ω0 → Ω𝑡 be a volume-preserving diffeomorphism. We assume
that 𝑇𝑡 is sufficiently regular so that 𝑇𝑡 and 𝑇−1

𝑡 can be smoothly extended to the boundary, and that 0 ∈ ℐ
with 𝑇0 being the identity. A typical setting in which these conditions apply are 𝑇𝑡 taken to be time-𝑡 flow maps
of a divergence-free vector-field.

Denote the Laplace operator on Ω𝑡 by ∆𝑡 for each 𝑡 ∈ ℐ. Then the dynamic Laplacian (an operator on Ω0)
is given by

∆dyn :=
1

|ℐ|
∑︁

𝑡∈ℐ
𝑇 *
𝑡 ∆𝑡𝑇𝑡,*

where 𝑇 *
𝑡 : 𝐿2 (Ω𝑡) → 𝐿2 (Ω0) denotes the pullback by 𝑇𝑡 defined by 𝑇 *

𝑡 𝑓 = 𝑓 ∘ 𝑇𝑡, and 𝑇𝑡,* : 𝐿2 (Ω0) → 𝐿2 (Ω𝑡)
is the pushforward defined by 𝑇𝑡,*𝑓 = 𝑓 ∘ 𝑇−1

𝑡 .
Standard PDE-theoretic arguments can be used to show that ∆dyn is a uniformly elliptic second-order partial-

differential operator [10,12], with weak form [14]

𝑎(𝑢, 𝑣) :=
1

|ℐ|
∑︁

𝑡∈ℐ

∫︁

Ω

∇𝑢 · [𝐷𝑇𝑡]
−1
(︁

[𝐷𝑇𝑡]
−1
)︁𝑇

∇𝑣 dℓ𝑑, (2.1)

where ℓ𝑑 is the 𝑑-dimensional Lebesgue measure. The time set ℐ can also be a compact interval, and the dynamic
Laplacian can be defined by means of an integral over ℐ [12, 15]

∆dyn :=
1

|ℐ|

∫︁

ℐ
𝑇 *
𝑡 ∆𝑡𝑇𝑡,* d𝑡,
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where |ℐ| now denotes the length of the interval ℐ, we do not consider this generalization further here.
The uniform ellipticity of the dynamic Laplacian ensures that the bilinear form in (2.1) is coercive un-

der suitable boundary conditions. These are determined by the choice of the underlying space 𝑆 on which
(2.1) acts. For natural (Neumann) boundary conditions, we look at 𝑎 on 𝐻1 × 𝐻1, where 𝐻̂1 = 𝐻̂1 (Ω0) :={︀
𝑣 ∈ 𝐻1 (Ω0) :

∫︀
𝑓 dℓ𝑑 = 0

}︀
is the space of mean-free 𝐻1 functions. For homogeneous Dirichlet boundary con-

ditions, 𝑎 must be taken to act on 𝐻1
0 ×𝐻1

0 . With either choice of boundary conditions, the variational form of
the eigenproblem ∆dyn𝑢 = 𝜆𝑢 becomes

𝑎(𝑢, 𝑣) = 𝜆⟨𝑢, 𝑣⟩𝐿2 for all 𝑣 ∈ 𝑆. (2.2)

In both cases, ellipticity ensures that there exists a countable sequence of pairwise orthogonal eigenvectors
𝑢0, 𝑢1, . . . corresponding to real eigenvalues 0 ≥ 𝜆0 ≥ 𝜆1 ≥ · · · . Furthermore, the span of the eigenvectors is
dense in 𝐿2 (Dirichlet) and mean-free 𝐿2 functions (Neumann) [10,12].

2.1. Discretisation with finite elements

A natural discretisation of the eigenproblem (2.2) is by using a finite element method (FEM) [14]. In the
standard Galerkin discretization of (2.2), 𝑆′ ⊂ 𝑆 is taken to be a finite dimensional approximation space spanned
by some basis (𝜙1, . . . , 𝜙𝑛). We now find approximate solutions 𝑢 ∈ 𝑆′, 𝜆 ∈ R, that satisfy (2.2) with 𝑆′ taking
the place of 𝑆. In matrix form, the coefficients u = (u1, . . . ,u𝑛) of 𝑢 with respect to the basis (𝜙1, . . . , 𝜙𝑛) are
found by solving the generalized eigenvalue problem

𝐷u = 𝜆𝑀u. (2.3)

Here, 𝐷 = (𝐷𝑖,𝑗) = 𝑎 (𝜙𝑖, 𝜙𝑗) is referred to as the stiffness matrix and 𝑀 = (𝑀𝑖,𝑗) = ⟨𝜙𝑖, 𝜙𝑗⟩𝐿2 as the mass
matrix. We use 𝑃 𝑘 Lagrange nodal basis functions on some (triangular or simplicial) mesh for 𝜙1, . . . , 𝜙𝑛, but
other choices are also possible in general (see [9]).

Using a finite element method for approximating ∆dyn has a number of advantages: The matrix formula-
tion (2.3) inherits self-adjointness from the continuous problem and thus the computed eigenpairs are always
real. With a suitably localized basis, 𝐷 and 𝑀 are both sparse. Sparse Hermitian generalized eigenproblems
are well known in the literature, and a number of algorithms exist for efficiently solving them [1]. Also, finite
element methods have been widely studied, and there are a range of theoretical results regarding convergence
(cf. [9]) that are applicable to some solution approaches.

While the entries of the mass matrix can be computed exactly, the integrand in (2.1) in the entries of the
stiffness matrix can be of extremely high variation locally, making an accurate computation possibly expensive.
Several approaches for approximating 𝐷 were suggested in [14], which we investigate further in the following
sections.

3. Convergence for the CG approach

In the “CG approach” of [14], a quadrature formula is used to approximate (2.1). This is the standard way
of solving elliptic eigenproblems with finite elements.

We work on 𝑃 𝑘-Lagrange finite element spaces for a family of quasi-uniform3 triangulations (in 2 or 3

dimensions)
{︀
𝒯 0
ℎ

}︀
ℎ>0

of Ω0, where the family parameter ℎ is related to the mesh size. Let 𝜙1
ℎ, . . . , 𝜙

𝑁(ℎ)
ℎ be the

associated nodal basis, 𝑆0
ℎ := span

{︁
𝜙1
ℎ, . . . , 𝜙

𝑁(ℎ)
ℎ

}︁
the finite element approximation space, and 𝑆0

ℎ := 𝐻̂1∩𝑆0
ℎ.

Moreover, let 𝜆𝑖,ℎ be the Ritz-values with corresponding Ritz-vectors 𝑣𝑖,ℎ in 𝑆0
ℎ, i.e. 𝜆𝑖,ℎ is the minimum

3A family {𝒯ℎ}ℎ>0 of meshes is quasi-uniform, if it is shape-regular and there exists a constant 𝑐 > 0 so that for any ℎ > 0
and any element 𝐾 ∈ 𝒯ℎ one has that ℎ𝐾 ≥ 𝑐ℎ, where ℎ𝐾 is the diameter of the element 𝐾. Shape regularity means that there

is a constant 𝜎0 so that uniformly for all 𝐾 it holds that 𝜎 = ℎ𝐾
𝜌𝐾

≤ 𝜎0. Here 𝜌𝐾 is the diameter of the largest ball that can be

inscribed in 𝐾 [9].
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value of 𝑎(𝑣, 𝑣) over the set
{︁
𝑣 ∈ 𝑆0

ℎ; ‖𝑣‖𝐿2 = 1, ⟨𝑣, 𝑣𝑗⟩ = 0 for 𝑗 = 1, · · · , (𝑖− 1)
}︁

and 𝑣𝑖,ℎ is the corresponding

minimizer.
Under the assumption that the eigenvectors of 𝑎 : 𝐻̂1 × 𝐻̂1 → R are in 𝐻𝑘+1, classical results from FEM

theory [9, 25] give that (where 𝐶 stands for a generic constant):

𝜆𝑖,ℎ − 𝜆𝑖
𝜆𝑖

≤ 𝐶ℎ2𝑘 (ℎ→ 0). (3.1)

Moreover, it holds for simple (and 𝐿2-normalised) eigenvectors that

‖𝑣𝑖 − 𝑣𝑖,ℎ‖𝐻1 ≤ 𝐶ℎ𝑘 (ℎ→ 0). (3.2)

In the case that the problem (2.1) satisfies the technical assumption of being regularizing [9] (i.e. ‖𝑃𝑢‖𝐻2 ≤
𝐶‖𝑢‖𝐿2), the “Aubin–Nitsche trick” gives

‖𝑣𝑖 − 𝑣𝑖,ℎ‖𝐿2 ≤ 𝐶ℎ𝑘+1 (ℎ→ 0). (3.3)

Note that not all elliptic problems are regularizing. We thus cannot expect (3.3) to hold in general.
If the entries of the stiffness and the mass matrix are approximated with a quadrature rule of order 2𝑘 − 1,

the convergence orders are unaffected, provided that the quadrature points contain a 𝒫𝑘 unisolvent set [2].
Moreover, the results generalize to non-simple eigenspaces and Kato’s subspace distance used for the error [2].

3.1. Numerical experiments

We now aim at reproducing the predicted convergence rates in numerical experiments. As a reference, we
compute (𝐿2 normalized) eigenpairs (𝜆𝑖, 𝑣𝑖) on a very fine mesh and estimate the error in the eigenvector 𝑣𝑖,ℎ
by computing the 𝐿2-distance of 𝑣𝑖,ℎ to the closest reference eigenvector, given by the expression

𝑒𝑖,ℎ :=
√︁

1 − |⟨𝑣𝑖, 𝑣𝑖,ℎ⟩𝐿2 |2. (3.4)

The 𝐿2 inner-product is approximated by first interpolating to the fine grid, and then calculating the inner
product there using quadrature.

To generalize this to higher-dimensional eigenspaces, let 𝑉 and 𝑉 be two 𝑚-dimensional subspaces of 𝐿2

with orthonormal bases given by {𝑣1, . . . , 𝑣𝑚} and {𝑣1, . . . , 𝑣𝑚}. Let 𝑃 , 𝑃 be orthogonal projections onto 𝑉 and
𝑉 respectively. As a measure of the subspace error [21], we maximize ‖𝑣 − 𝑃𝑣‖𝐿2 over 𝑣 ∈ 𝑉 with ‖𝑣‖𝐿2 = 1.

This is equivalent to maximizing

√︁
1 − ‖𝑃𝑣‖2, which has maximum given by

√︀
1 − 𝜌min(𝑃 )2 where 𝜌min is the

smallest singular value of 𝑃 on 𝑉 which is also that of the matrix (⟨𝑣𝑖, 𝑣𝑗⟩𝐿2)
𝑚
𝑖,𝑗=1.

In general, one is not directly interested in the eigenvectors themselves, but in a partition of the domain
obtained by a suitable post-processing of the eigenvectors (e.g. as mentioned, thresholding, clustering or sparse
eigenbases). This motivates us making a qualitative comparison of such partitions based on eigenvectors for
different approximation spaces. Here, we focus in particular on the question of how well Lagrangian coherent
sets can be found with as little information about the flow as possible. Evidently, in this low data case some
features may not be accurately resolved even if the eigenvectors clearly give some indication of their existence.
We therefore also look at how coarse the grid can be made without affecting the topology of such a partition in
some test cases.

In the sequel, mesh sizes of the form 𝑛×𝑚 refer to a regular triangular mesh with 𝑛×𝑚 (non-inner) nodes
in each direction. For all time-integration done in this work we used a relative and absolute tolerance of 10−8

and the DifferentialEquations.jl Julia package [23] with the BS5() solver [3]. Derivatives of flow maps were
approximated with second order central finite differences. The stiffness matrix was calculated by approximating
the integral in (2.1) on each element with nodal basis functions for 𝑢 and 𝑣 using quadrature. The results from
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Figure 1. Standard map: errors in the first nontrivial eigenvalue (left) and 2-dimensional
eigenspace corresponding to the two smallest nontrivial eigenvalues (right) of the dynamic
Laplacian with the CG approach. The slopes of the corresponding lines are given in brackets
in the legends.

this were then summed over all elements in the support of a basis function to give the corresponding entry in the
stiffness matrix. Similarly, the integral in the mass matrix was also calculated element-wise and then additively
combined to give the full mass matrix. The CoherentStructures.jl package internally uses the JuAFEM.jl

package [5].

3.1.1. Standard map

As a simple first example, we consider two iterations of the standard map

𝑇 (𝑥, 𝑦) = (𝑥+ 𝑦 + 𝑎 sin(𝑥), 𝑦 + 𝑎 sin(𝑥))

on the 2-torus S1 × S1 with parameter 𝑎 = 0.971635. This is the first example considered in [13] and is a
weakly nonlinear map. Figure 1 shows the eigenvalue and eigenspace errors in dependence of the mesh width
for triangular 𝑃 1 and 𝑃 2 Lagrange elements.

The reference solution was computed with 𝑃 2 elements on a regular 1025×1025 grid with quadrature order 5.
In this case, the experimentally observed rates almost perfectly agree with the predictions (3.1) and (3.3) even
for quadrature order 2 in the computation of the entries of stiffness- and mass-matrix. Improvements in errors
ranged between one and two orders of magnitude when moving from 𝑃 1 to 𝑃 2 elements. To be able to directly
compare these results with the corresponding plots for TO methods in Figure 5, we used a two-dimensional
eigenspace in Figure 1.

3.1.2. Cylinder flow

As a second example, we consider the cylinder flow map used in [13] based on [17]. This is a time-dependent
flow on the cylinder S1 × [0, 𝜋] defined by the non-autonomous ordinary differential equation

𝑥̇(𝑡) = 𝑐−𝐴(𝑡) sin (𝑥− 𝜈𝑡) cos(𝑦) + 𝜀𝐺 (𝑔(𝑥, 𝑦, 𝑡)) sin(𝑡/2)

𝑦̇(𝑡) = 𝐴(𝑡) cos (𝑥− 𝜈𝑡) sin(𝑦)

where 𝐴(𝑡) = 1 + 0.125 sin
(︀
2
√

5𝑡
)︀
, 𝐺(𝜓) = 1/

(︀
𝜓2 + 1

)︀2
and 𝑔(𝑥, 𝑦, 𝑡) = sin(𝑥− 𝜈𝑡) sin(𝑦) + 𝑦/2−𝜋/4. Here the

parameters 𝑐 = 0.5, 𝜈 = 0.5, 𝜀 = 0.25 were used, the time-interval was [0, 40].
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The reference solution was computed on a regular mesh on 1025 × 1025 nodes with triangular 𝑃 2-Lagrange
elements and quadrature order 8. We used quadrature order 5 for the numerical experiments (since we did not
observe the same rates for smaller orders). The results for this numerical experiment are shown in Figure 6.

The orders of convergence observed in Figure 3 for the eigenvalue and eigenvector errors is surprisingly low;
the experimental values are almost exactly half of the orders predicted in (3.1), (3.2) or (3.3). The observed
order of the eigenvector errors for 𝑃 1 elements is particularly poor. We also note that the slopes shown in the
figure do not remain consistent when varying the quadrature order.

For this flow (and other highly stretching and highly nonlinear systems), the mean diffusion tensor 𝐴 =

[𝐷𝑇𝑡]
−1
(︁

[𝐷𝑇𝑡]
−1
)︁𝑇

used in the weak formulation of the dynamic Laplacian (2.1) has extremely high variation

locally (cf. Fig. 3). We suspect that even the reference grid of 1025 × 1025 nodes is not sufficiently resolved to
be in a regime where the convergence orders predicted by the theory can be observed.

3.1.3. Bickley jet

The Bickley jet flow is a well-known test case first introduced in [24]. The flow is defined by a stream-function

𝜓(𝑥, 𝑦, 𝑡) = −𝑈0𝐿 tanℎ (𝑦/𝐿0) +
3∑︁

𝑖=1

𝐴𝑖𝑈0𝐿 secℎ2(𝑦/𝐿) cos (𝑘𝑖 (𝑥− 𝑐𝑖𝑡)) (3.5)

with constants 𝑈0, 𝐿0, 𝐴𝑖, 𝑘𝑖, 𝑐𝑖 on a cylindrical domain (see [24]). We considered the flow for a timespan of 40
days. 8-partitions were computed by 𝑘-means clustering on 200 × 60 values of the leading eigenvectors of the
FEM approximation. The mesh widths in Figure 4 below are the lowest (at the aspect ratio 10 : 3) for which the
topology of the clustering result does not change. It is possible to obtain the same result (topologically) with
𝑃 2 elements at significantly reduced cost (in terms of the number of quadrature point used) to 𝑃 1 elements.
In many cases, the computation requiring the most runtime (apart from the clustering) is the computation of
diffusion tensors by time-integration at the quadrature points. As shown in Figure 4, in this case this is reduced
by a factor of 25 by using 𝑃 2 elements.

4. Convergence for the TO approach

The CG approach has the disadvantage of requiring the numerical approximation of the derivative 𝐷𝑇 𝑡 and
a subsequent quadrature which might be challenging if 𝐷𝑇 𝑡 has high variation locally.

An alternative approach [14] is to rewrite the weak form (2.1) of the dynamic Laplacian operator using the
transfer operator 𝑇𝑡. In the sequel we discuss the case 𝑡 ∈ ℐ := {0, 1}, although the results hold for general
finite ℐ. Letting 𝑎𝑡 be the weak-form of the Laplacian on Ω𝑡, we have (for 𝑢, 𝑣 ∈ 𝐻1 (Ω0))

𝑎(𝑢, 𝑣) =
1

2

(︀
𝑎0(𝑢, 𝑣) + 𝑎1(𝑇𝑢, 𝑇𝑣)

)︀

where we write 𝑇 := 𝑇1, and for brevity overload this notation so that 𝑇 acts on elements of Ω0 in the usual way
and acts on functions in 𝐿2 (Ω0) as 𝑇𝑢 := 𝑇1,*𝑢. In the transfer operator (TO) approach, we approximate 𝑇 on
a suitable subspace of 𝐻1 by an operator of the form 𝐼ℎ𝑇 , where 𝐼ℎ is some projection operator. Let

{︀
𝒯 1
ℎ

}︀
ℎ>0

be

a quasi-uniform family of triangulations on Ω1, 𝑆1
ℎ the approximation space with Lagrange 𝑃 𝑘′

finite elements

and 𝑆1
ℎ := 𝑆1

ℎ ∩ 𝐻̂1 (Ω1). Note that in general, the collection
{︀
𝒯 0
ℎ

}︀
ℎ>0

(introduced at the beginning of Sect. 3)

and
{︀
𝒯 1
ℎ

}︀
ℎ>0

are unrelated. We consider the following options for 𝐼ℎ in the sequel:

(1) the 𝐿2-orthogonal projection onto 𝑆1
ℎ (𝐿2-Galerkin),

(2) the 𝐻1-orthogonal projection onto 𝑆1
ℎ (𝐻1-Galerkin),

(3) the (Lagrange 𝑃 𝑘) nodal interpolation on 𝑆1
ℎ (collocation).
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Case 3 corresponds to the “TO approach” from [14], with the difference between the adaptive and non-adaptive
approaches being the choice of the mesh

{︀
𝒯 1
ℎ

}︀
ℎ>0

.
We now define the (ℎ-dependent) symmetric bilinear form

𝑎̃ℎ(𝑢, 𝑣) :=
1

2

(︀
𝑎0(𝑢, 𝑣) + 𝑎1 (𝐼ℎ𝑇𝑢, 𝐼ℎ𝑇𝑣)

)︀
. (4.1)

As in [14], eigenpairs are numerically approximated by calculating generalized eigenpairs of (𝐷̃ℎ,𝑀ℎ) given by

(︁
𝐷̃ℎ

)︁
𝑖𝑗

:= 𝑎̃ℎ

(︁
𝜙𝑖
ℎ, 𝜙

𝑗
ℎ

)︁

(𝑀ℎ)𝑖𝑗 = ⟨𝜙𝑖
ℎ, 𝜙

𝑗
ℎ⟩𝐿2 .

As 𝑎0 is elliptic on 𝐻̂1 (Ω0) and 𝑎1 is non-negative, it follows immediately from (4.1) that 𝑎̃ℎ is elliptic
uniformly in ℎ on 𝑆0

ℎ, with a lower bound of the ellipticity constant being half the ellipticity constant of 𝑎0.

Hypotheses on 𝐼ℎ and the setup. In order to investigate the convergence of the numerically calculated
eigenpairs to those of the dynamic Laplacian, we will require a regularity assumption on the meshes used:

(A0)
{︀
𝒯 0
ℎ

}︀
ℎ>0

and
{︀
𝒯 1
ℎ

}︀
ℎ>0

are families of quasi-uniform triangulations of Ω0 and Ω1 respectively that are
nested in the sense that 𝑆ℎ′ ⊂ 𝑆ℎ for ℎ < ℎ′.

We will need to consider the following conditions for 𝐼ℎ𝑇 acting on 𝑆0
ℎ:

(A1) exactness for constant functions: 𝐼ℎ𝑇𝜒Ω0
= 𝜒Ω1

,
(A2) 𝐻1-convergence: lim

ℎ→0
‖𝐼ℎ𝑇𝑓 − 𝑇𝑓‖𝐻1 = 0 for any 𝑓 ∈ ∪ℎ𝑆

0
ℎ,

(A3) 𝐿2-stability: For all ℎ′ > 0 it holds that supℎ<ℎ′ ‖𝐼ℎ𝑇 |𝑆0
ℎ′‖𝐿2→𝐿2 ≤ 𝐶, where 𝐶 > 0 is independent of ℎ′.

We now consider whether the conditions (A1)–(A3) are satisfied by the three variants of 𝐼ℎ:

(i) It is easy to see that condition (A1) is satisfied for all three variants, by the fact that 𝑇 := 𝑇1 is volume-
preserving and 𝐼ℎ is exact on constant functions.

(ii) Condition (A2) is satisfied by the 𝐻1-Galerkin approach. For the 𝐿2-Galerkin approach, (A0) implies
(A2) [9].

(iii) Condition (A3) is trivially satisfied by the 𝐿2-Galerkin approach.

We will show (A2) and (A3) for the case that 𝐼ℎ comes from the collocation approach. In Appendix A, we give
proofs of the following two lemmata for 𝑃 1-triangular elements under assumption (A0).

Lemma 4.1 (𝐿2-stability (A3) of 𝑃 1-nodal interpolation). Let 𝐼ℎ : 𝐶
(︀
Ω1

)︀
→ 𝑆1

ℎ be the 𝑃 1-Lagrange nodal
interpolation operator corresponding to

{︀
𝒯 1
ℎ

}︀
ℎ>0

. If (A0) holds, then there exists a constant 𝐶 > 0 so that

‖𝐼ℎ𝑇𝑣‖𝐿2 ≤ 𝐶‖𝑣‖𝐿2 for all 𝑣 ∈ 𝑆0
ℎ′ and all ℎ < ℎ′.

Lemma 4.2 (𝐻1-convergence (A2) of 𝑃 1-nodal interpolation). Let 𝐼ℎ : 𝐶
(︀
Ω1

)︀
→ 𝑆1

ℎ be the 𝑃 1-Lagrange nodal
interpolation operator corresponding to

{︀
𝒯 1
ℎ

}︀
ℎ>0

. If (A0) holds, and if 𝑣 is piecewise 𝐶∞ on Ω1 then

‖𝐼ℎ𝑣 − 𝑣‖𝐻1 → 0 as ℎ→ 0.

Convergence for homogeneous Neumann Boundary. Let 𝑟(𝑣) = 𝑎(𝑣, 𝑣)/⟨𝑣, 𝑣⟩𝐿2 and 𝑟ℎ(𝑣) =
𝑎̃ℎ(𝑣, 𝑣)/⟨𝑣, 𝑣⟩𝐿2 be the Rayleigh quotients for 𝑎 and 𝑎̃ℎ respectively. Assuming (A0), we know that both 𝑟(𝑣)
and 𝑟ℎ(𝑣) are trivially minimized by a constant function. Going to mean-free functions, we therefore define 𝜆1
and 𝜆̃ℎ,1 to be the corresponding smallest Ritz values on 𝐻̂1 and 𝑆0

ℎ, respectively and 𝑣, 𝑣ℎ the corresponding
Ritz vectors (normalized to have unit 𝐿2-norm).

We now derive a convergence result for 𝑣ℎ to 𝑣 in two parts:
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Theorem 4.3. Provided that (A0) holds and 𝐼ℎ satisfies the assumptions (A1) and (A2), then

lim sup
ℎ→0

𝜆̃ℎ,1 ≤ 𝜆1.

Proof. Pick any sequence ℎ𝑛 with ℎ𝑛 → 0. For arbitrary 𝑤 ∈ 𝑆0
ℎ𝑛

, have

lim sup
𝑛→∞

𝜆̃ℎ𝑛,1 = lim sup
𝑛→∞

𝑟ℎ𝑛
(𝑣ℎ𝑛

) (definition of 𝑣ℎ𝑛
)

≤ lim sup
𝑛→∞

𝑟ℎ𝑛(𝑤) (Ritz-values minimize the Rayleigh-quotient).

Now for arbitrary 𝜖 > 0, pick4 some 𝑤 ∈ 𝑆0
ℎ′ where ℎ′ = ℎ′(𝜖) with ‖𝑤‖𝐿2 = 1 so that 𝑟(𝑤) < 𝜆1 + 𝜖. Then by

the assumption that our meshes are nested, 𝑤 is in the domain of 𝑎̃ℎ𝑛
for sufficiently large 𝑛 and we have:

lim sup
𝑛→∞

𝜆̃ℎ𝑛,1 ≤ lim sup
𝑛→∞

𝑟ℎ𝑛
(𝑤)

= lim sup
𝑛→∞

𝑎̃ℎ𝑛
(𝑤,𝑤) (definition of Rayleigh Quotient)

= lim sup
𝑛→∞

(𝑎(𝑤,𝑤) + 𝑎̃ℎ𝑛
(𝑤,𝑤) − 𝑎(𝑤,𝑤))

≤ lim sup
𝑛→∞

(︀
𝜆1 + 𝜖+ 𝑎1 (𝐼ℎ𝑛

𝑇𝑤, 𝐼ℎ𝑛
𝑇𝑤) − 𝑎1(𝑇𝑤, 𝑇𝑤)

)︀
.

For this fixed 𝑣 we know that 𝑎1 (𝐼ℎ𝑛
𝑇𝑤, 𝐼ℎ𝑛

𝑇𝑤) − 𝑎1(𝑇𝑤, 𝑇𝑤) → 0 by the 𝐻1 convergence assumption, and
by 𝐻1-continuity of 𝑎1. This gives the result. �

Theorem 4.4. Provided that (A0) holds and 𝐼ℎ satisfies (A1) and (A3), then

lim inf
ℎ→0

𝜆̃ℎ,1 ≥ 𝜆1.

Proof. We use an approach reminiscent of the direct method in the calculus of variations (cf. [19]). Assume that
𝐼ℎ satisfies both properties, but (for the sake of contradiction) that there exists a sequence ℎ𝑛 → 0 monotonically
with 𝜆̃ℎ𝑛,1 → 𝛽 < 𝜆1. Note that by positivity of 𝑎̃ℎ the sequence cannot diverge to −∞, and by Theorem 4.3 it

cannot diverge to +∞. Hence, using coercivity of 𝑎0 on 𝐻̂1 we get that |𝑣ℎ𝑛
|𝐻1 ≤ 𝐶 for some 𝐶 > 0, otherwise

the 𝑎0 term would go to infinity. Here and below, 𝐶 represents a generic constant independent of ℎ𝑛. The
Poincaré-Friedrichs inequality (cf. [9], Lem. B.66) for mean-free functions states that the 𝐿2 norm is uniformly
bounded by a constant times the 𝐻1 seminorm, thus it follows that

‖𝑣ℎ𝑛
‖𝐻1 ≤ 𝐶. (4.2)

Recall that the Banach–Alaoglu theorem states that the closed unit ball in 𝐻1 is weakly sequentially compact,
while the Rellich–Kondrachev theorem asserts that norm-bounded 𝐻1 sets are 𝐿2-precompact. Hence we can
assume that (going to a subsequence) 𝑣ℎ𝑛

⇀ 𝑣 in 𝐻1 and 𝑣ℎ𝑛
→ 𝑣 in 𝐿2 for some 𝑣 ∈ 𝐻1. Note that the two

limits are indeed the same since · ↦→ ⟨·, 𝑣⟩𝐿2 is a continuous linear functional on 𝐻1 for all 𝑣 ∈ 𝐿2.
As 𝑣ℎ𝑛

∈ 𝐻̂1, it follows that 𝑣 ∈ 𝐻̂1, the 𝐿2-convergence gives us further that ‖𝑣‖𝐿2 = 1.
Without loss of generality, assume that ℓ𝑑 (Ω1) = 1 and define 𝐽𝑛 : Ω0 → R as the constant function taking

the value
∫︀
Ω1
𝐼ℎ𝑛𝑇𝑣ℎ𝑛dℓ𝑑, and observe that

𝑎1 (𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

, 𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

) = 𝑎1 (𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

− 𝐽𝑛, 𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

− 𝐽𝑛) . (4.3)

4That we can do this follows the classical theory of density of finite-element spaces in Sobolev spaces ([9], Cor. 1.110), or from
convergence of eigenvalues of the Galerkin approximation such as equation (3.1) in the case that the eigenvectors are sufficiently
smooth at the boundary.
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We know from the positivity of 𝑎0 that 𝑎1 (𝑇𝐼ℎ𝑛
𝑣ℎ𝑛

, 𝑇 𝐼ℎ𝑛
𝑣ℎ𝑛

) ≤ 𝑟ℎ𝑛
(𝑣ℎ𝑛

) and as the right hand side con-
verges, the left hand side is bounded by a constant that does not depend on 𝑛. Hence, by coercivity of 𝑎1 on mean-
free 𝐻1 functions, it follows from (4.3) and the Poincaré–Friedrichs inequality that ‖𝐼ℎ𝑛𝑇𝑣ℎ𝑛 − 𝐽𝑛‖𝐻1 < 𝐶,
yielding that 𝐼ℎ𝑛

𝑇𝑣ℎ𝑛
is 𝐻1-bounded as long as 𝐽𝑛 is – which is the case by 𝐿2-stability, the 𝐿2–𝐿2 continuity

of 𝑇 , and the fact that ‖𝑣ℎ𝑛‖𝐿2 = 1. Hence 𝐼ℎ𝑛𝑇𝑣ℎ𝑛 is (uniformly in 𝑛) 𝐻1-bounded. Going to a subsequence,
it is therefore weakly 𝐻1- and strongly 𝐿2-convergent (as above). As the weak-𝐻1 and 𝐿2-limits coincide, to
show that the sequence converges to 𝑇𝑣 weakly in 𝐻1, it is enough to show 𝐿2-convergence.

Let 𝐶1 be the stability constant from the 𝐿2-stability condition. We know that as 𝑣ℎ𝑛 → 𝑣 in 𝐿2, it holds
that 𝑇𝑣ℎ𝑛

→ 𝑇𝑣. Therefore given 𝜀 > 0, pick 𝑚 so that ‖𝑇𝑣ℎ𝑚
− 𝑇𝑣‖𝐿2 ≤ 𝜀/3 and and 𝐶1‖𝑣ℎ𝑛

− 𝑣ℎ𝑚
‖𝐿2 ≤ 𝜀/3

for all 𝑛 ≥ 𝑚. Also, by the nesting property of the meshes 𝑣ℎ𝑛
− 𝑣ℎ𝑚

∈ 𝑆0
ℎ𝑛

and hence

‖𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

− 𝑇𝑣‖𝐿2 ≤ ‖𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

− 𝐼ℎ𝑛
𝑇𝑣ℎ𝑚

‖𝐿2 + ‖𝐼ℎ𝑛
𝑇𝑣ℎ𝑚

− 𝑇𝑣ℎ𝑚
‖𝐿2 + ‖𝑇𝑣ℎ𝑚

− 𝑇𝑣‖𝐿2

≤ 𝐶1‖𝑣ℎ𝑛 − 𝑣ℎ𝑚‖𝐿2 + ‖𝐼ℎ𝑛𝑇𝑣ℎ𝑚 − 𝑇𝑣ℎ𝑚‖𝐿2 + ‖𝑇𝑣ℎ𝑚 − 𝑇𝑣‖𝐿2

≤ 2𝜀/3 + ‖𝐼ℎ𝑛
𝑇𝑣ℎ𝑚

− 𝑇𝑣ℎ𝑚
‖𝐿2 .

Now using the 𝐻1-convergence property, pick 𝑛0 ≥ 𝑚 so that for 𝑛 ≥ 𝑛0, we have

‖𝐼ℎ𝑛
𝑇𝑣ℎ𝑚

− 𝑇𝑣ℎ𝑚
‖𝐿2 ≤ 𝜀/3.

It follows that for all 𝑛 ≥ 𝑛0
‖𝐼ℎ𝑛

𝑇𝑣ℎ𝑛
− 𝑇𝑣‖𝐿2 ≤ 𝜖.

Summarizing, we now have proved that

(1) 𝑣ℎ𝑛
⇀ 𝑣 in 𝐻1,

(2) 𝐼ℎ𝑛𝑇𝑣ℎ𝑛 ⇀ 𝑇𝑣 in 𝐻1, and
(3) 𝑣 ∈ 𝐻̂1 with ‖𝑣‖𝐿2 = 1.

The functions 𝑢 ↦→
√︀
𝑎0(𝑢, 𝑢) and 𝑢 ↦→

√︀
𝑎1(𝑢, 𝑢) are norms that are equivalent to the 𝐻̂1-norm by the Poincaré–

Friedrichs inequality5. By the Banach–Steinhaus theorem, norms are weakly sequentially lower-semicontinuous.
The 𝐿2 convergence of 𝐼ℎ𝑛

𝑇𝑣ℎ𝑛
also gives that 𝐽𝑛 → 0 in 𝐿2, and therefore also in 𝐻1 as 𝐽𝑛 is constant). Thus

we have:

𝑎0 (𝑣, 𝑣) ≤ lim inf
𝑛→∞

𝑎0 (𝑣ℎ𝑛
, 𝑣ℎ𝑛

)

𝑎1 (𝑇𝑣, 𝑇𝑣) ≤ lim inf
𝑛→∞

𝑎1 (𝐼ℎ𝑛𝑇𝑣ℎ𝑛 − 𝐽𝑛, 𝐼ℎ𝑛𝑇𝑣ℎ𝑛 − 𝐽𝑛)

= lim inf
𝑛→∞

𝑎1 (𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

, 𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

)

yielding

𝑎 (𝑣, 𝑣) = 𝑎0 (𝑣, 𝑣) + 𝑎1 (𝑇𝑣, 𝑇𝑣)

≤ lim inf
𝑛→∞

(︀
𝑎0 (𝑣ℎ𝑛

, 𝑣ℎ𝑛
) + 𝑎1 (𝐼ℎ𝑛

𝑇𝑣ℎ𝑛
, 𝐼ℎ𝑛

𝑇𝑣ℎ𝑛
)
)︀

= lim inf
𝑛→∞

𝑟ℎ𝑛
(𝑣ℎ𝑛

)

= lim
𝑛→∞

𝜆̃ℎ𝑛,1 = 𝛽 < 𝜆1.

This is a contradiction to the definition of 𝜆1, which requires that 𝑎 (𝑣, 𝑣) ≥ 𝜆1 and thus the claim is
proved. �

5The weak topologies also coincide, as for any 𝑓 ∈ 𝐻̂1, the Riesz representation theorem gives a 𝑓 ∈ 𝐻̂1 so that ⟨·, 𝑓⟩𝐻1 = 𝑎0(·, 𝑓).
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Theorem 4.5. The conclusion of the previous theorem also holds if (A0) is satisfied and 𝐼ℎ comes from the
𝐻1-Galerkin approach.

Proof. The previous proof required the 𝐿2-stability only in two places. The first was in bounding 𝐽𝑛, this is
trivially bounded as ‖𝐼ℎ‖𝐻1→𝐻1 = 1 and 𝑣ℎ𝑛

is 𝐻1-bounded. The second was in showing that 𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

⇀ 𝑇𝑣.
But this follows from the fact that for 𝑓 ∈ 𝐻1:

⟨𝐼ℎ𝑛
𝑇𝑣ℎ𝑛

, 𝑓⟩𝐻1 = ⟨𝑇𝑣ℎ𝑛
, 𝐼ℎ𝑛

𝑓⟩𝐻1 .

As 𝐼ℎ𝑓 → 𝑓 in 𝐻1 and 𝑇𝑣ℎ𝑛
⇀ 𝑇𝑣, this gives the claim. �

Theorem 4.6 (Eigenvector convergence). Assume that (A0)–(A3) hold, and that the eigenspace corresponding
to 𝜆1 is one-dimensional. Then |⟨𝑣ℎ, 𝑣⟩𝐿2 | → 1 for ℎ→ 0.

Proof. The proof of Theorem 4.4 shows that for any monotone sequence ℎ𝑛 → 0 for which 𝜆ℎ𝑛
converges to 𝜆1,

every in 𝐿2 convergent subsequence of 𝑣ℎ𝑛 converges to some 𝑣 ∈ 𝐻1 with 𝑟 (𝑣) = 𝜆1. Theorems 4.4 and 4.3
show that 𝜆ℎ𝑛

→ 𝜆1 for any ℎ𝑛 → 0. As 𝑣ℎ𝑛
is bounded in 𝐻1 and therefore pre-compact in 𝐿2, this means

that 𝑣ℎ𝑛
→ 𝑣 in 𝐿2 with 𝑟(𝑣) = 𝜆1, from which it follows that 𝑣 = ±𝑣, giving the result for a subsequence. We

get the final result by noting that if 𝑣ℎ𝑛 has a subsequence 𝑣ℎ𝑛𝑘
for which |⟨𝑣ℎ𝑛𝑘

, 𝑣⟩| → 𝑐 ̸= 1, by the above it
must have a (further) subsequence that converges to a different value, a contradiction. �

Theorem 4.7 (Higher eigenpairs). Assuming (A0)–(A3), the results of the previous theorems generalize to the
𝑚-th eigenpair for 𝑚 > 1.

Proof. The generalization of Theorem 4.3 can be proven by the same method as the case 𝑚 = 1: instead of
choosing a 𝑤 with 𝑟(𝑤) < 𝜆1 + 𝜖, choose a series of pairwise-orthogonal (𝑤𝑖)𝑖=1...𝑚 ∈ 𝑆0

ℎ with the property that
𝑟 (𝑤𝑖) ≤ 𝜆𝑖 + 𝜖.

The proof of Theorem 4.4 must only be modified to show that the limit point 𝑣𝑚 is 𝐿2-orthogonal to the
previous eigenvectors span {𝑣1, . . . , 𝑣𝑚−1}. Writing 𝑣𝑚,ℎ for the 𝑚-th Ritz-vector of 𝑎̃ℎ on 𝑆1

ℎ, this readily follows
(by induction) from the fact that 𝑣𝑚,ℎ𝑛 ⊥ span {𝑣1,ℎ𝑛 , . . . , 𝑣𝑚−1,ℎ𝑛} and thus also ⟨𝑣𝑖,ℎ𝑛 , 𝑇 𝑣𝑖⟩ → 0 in 𝐿2 for
𝑖 = 1, . . . ,𝑚− 1.

The proof of the generalization of Theorem 4.6 then follows from the generalization of Theorem 4.4. �

Convergence for homogeneous Dirichlet boundary. For the case of a homogeneous Dirichlet boundary,
we must replace 𝐻̂1 with 𝐻1

0 . Here we require the additional condition:

(A1′) Boundary preservation: for 𝑣 ∈ 𝐻1
0 (Ω1) ∩ 𝑆0

ℎ we have that 𝐼ℎ𝑇𝑣 ∈ 𝐻1
0 (Ω1) .

We note that the 𝐼ℎ from collocation and 𝐻1-Galerkin have this property.

Theorem 4.8. The convergence results of Theorems 4.3, 4.4 and 4.6 hold also for the Ritz-values for homo-
geneous Dirichlet boundary conditions, provided that (A0) holds and 𝐼ℎ satisfies (A1′) in addition to satisfying
(A2) and (A3).

Proof. Same as the proofs for the Neumann case, except that coercivity of the bilinear forms involved on 𝐻̂1

is replaced with that on 𝐻1
0 . The boundary preservation property ensures we do not need 𝐽𝑛 in the proof of

Theorem 4.4, the proof otherwise goes on exactly the same lines. �
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4.1. Numerical experiments

The three TO approaches yield a stiffness-matrix 𝐷 of the form

𝐷 = 𝐷0 +𝐴𝑇𝐷1𝐴

where 𝐴 is the representation matrix of 𝐼ℎ𝑇 and 𝐷0, 𝐷1 result from the bilinear form of the static Laplacian.
In the case of the 𝐿2- or 𝐻1-Galerkin approach, the matrix 𝐴 has the form

𝐴 = 𝐺−1𝐴,

where 𝐴 = ⟨𝜙𝑖, 𝑇𝜙𝑗⟩ and 𝐺𝑖,𝑗 = ⟨𝜙𝑖, 𝜙𝑗⟩. Note that sparsity of 𝐺 and 𝐴 does not necessarily imply sparsity
of 𝐴. A naive calculation of the full matrix 𝐴 therefore renders the computation of (some) eigenvalues of 𝐷
too expensive for larger problems. We therefore do not include the Galerkin–TO approaches in the numerical
experiments below, further work is needed to determine if the Galerkin–TO methods can be modified to overcome
this issue.

All TO results shown below are therefore the collocation-based ones. For the “non-adaptive TO” experi-
ments, we used identical regular meshes for the initial and final triangulations 𝒯 0

ℎ and 𝒯 1
ℎ . For the “adaptive

TO” experiments, the initial mesh was regular but the final mesh was a Delaunay-triangulation (with the
VoronoiDelaunay.jl package [22]) of the images of the initial mesh points under the flow map 𝑇 . The theory
outlined above requires (i) nested meshes, and (ii) uniform bounds on shape-regularity and quasi-uniformity
constants of the meshes as they are refined; each of these properties is difficult to guarantee in general for the
image triangulations. We nevertheless include the adaptive TO in the plots for comparison.

We note that the finest grid used for the TO experiments is 257 × 257. This is not as fine as the finest grid
used in the CG approach (513 × 513). The reason for this is that the stiffness matrix 𝐷 from the TO approach
does not have the same banded structure as that coming from the CG approach, making a solution of the
eigenproblem more expensive (for the example of the cylinder flow: 1 h 28 min for the non-adaptive TO using a
𝑃 1 513 × 513 mesh vs. 14 min for the CG approach with 𝑃 2 elements on a 1025 × 1025 mesh). The reference
solution here is the same as that used for the CG experiments.

Our numerical experiments appear to be consistent with our theoretical results proven above.

4.1.1. Standard map

We investigate the convergence of collocation-based TO approaches on the Standard map test case.
The results for this numerical experiment are shown in Figure 2. We see an improvement by a full order

of magnitude in the errors in both the eigenvalues and the eigenspaces for 𝑃 2 elements over 𝑃 1 elements.
Concerning the convergence order, this experiment suggests that the order for 𝑃 2 elements is not higher than
for 𝑃 1 elements in the TO approach, which match those obtained for eigenvectors based on 𝑃 1 elements in the
CG approach.

4.1.2. Cylinder flow

We observe a smaller error reduction in the eigenvalue and eigenvector errors for 𝑃 2 vs. 𝑃 1 elements for the
cylinder flow (Fig. 6) compared to the standard map example. The reduction in convergence orders compared
to the standard map (i.e. comparing Fig. 6 to Fig. 5) mirrors the reductions observed in the corresponding
CG experiments (i.e. comparing Fig. 2 to Fig. 1), where the orders are around half those seen for the standard
map. Similarly to the standard map results, the 𝑃 2 elements did not perform asymptotically better than 𝑃 1

elements.

4.1.3. Bickley jet

We repeat the experiment from Section 3.1.3 with the (non-adaptive) TO approach, see Figure 7. Here we
note that this experiment falls outside of the theory described so far as the computational domain is not exactly
mapped to itself by the flow, but our attempts to work around this (by e.g. having a larger mesh at the final
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Figure 2. Cylinder flow: errors in the first nontrivial eigenvalue (left) and corresponding 1-
dimensional eigenspace (right) of the dynamic Laplacian discretized with CG approach. The
slopes of the corresponding lines are given in brackets in the legends.

Figure 3. Cylinder flow: log of the trace of the mean diffusion tensor, log10 tr (𝐴(𝑥)).

time) did not significantly affect the topology of the clustering result in the low data cases we looked at. We note
that on even finer meshes, we also saw clusterings different to those in Figure 7, such as those where the central
jet was a separate cluster. We did not concern ourselves with these further as our aim was merely to compare
the different discretisations in the low data limit, and it is not clear what the “correct” clustering should be.

As in Section 3.1.3, the mesh widths in Figure 7 below are the lowest at that aspect ratio for which the
topology of the clustering result does not change; nodes at the boundaries that are identified due to the periodic
boundary conditions are counted twice. Here, the majority of the computational cost (apart from the clustering)
is given by the evaluation of the (inverse) flow map, which has to be evaluated once for each basis function of
the finite element space. Note that there are three basis functions per element for 𝑃 1 and six per element for 𝑃 2

elements. While for 𝑃 2 elements, a coarser mesh was sufficient, the number of basis functions was comparable
(even a little larger) than for the 𝑃 1 case – which is in contrast to the corresponding CG experiment.
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Figure 4. Bickley jet: comparison of coherent sets obtained by the CG approach with 𝑃 1 vs.
𝑃 2 elements. (a) 𝑃 1 elements on 101× 31 mesh (18 000 quadrature points, 6000 triangles). (b)
𝑃 2 elements on 21 × 7 mesh (720 quadrature points, 240 triangles).

Figure 5. Standard map: errors in the first nontrivial eigenvalue (left) and 2-dimensional
eigenspace spanned by the smallest eigenvectors (right) of the dynamic Laplacian discretized
with the TO approach. The slopes of the corresponding lines are given in brackets in the legends.
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Figure 6. Cylinder flow: errors in the first nontrivial eigenvalue (left) and corresponding
eigenspace (right) of the dynamic Laplacian for the TO approaches. The slopes of the cor-
responding lines are given in brackets in the legends.

Figure 7. Bickley jet: comparison of TO method with 𝑃 1 and 𝑃 2 elements. (a) 𝑃 1 elements
on 71 × 22 mesh (1540 nodes). (b) 𝑃 2 elements on 41 × 13 mesh (2000 nodes).
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Figure 8. 1D shift map: errors in the first calculated eigenvalue. The slope of the corresponding
line is given in brackets in the legend.

4.2. TO convergence rates

Determining the theoretical convergence orders of the TO-methods is an outstanding task. In order to in-
vestigate whether we can expect higher-order convergence, we consider the collocation-based non-adaptive TO
approach on a simple example in one dimension. In this example we can largely isolate the dynamics from the
errors to focus on errors arising from translations of the basis functions.

The only volume-preserving diffeomorphisms of the circle S1 = R/Z to itself are rigid rotations. Let
𝑇 : S1 → S1 be given by 𝑇 (𝑥) = (𝑥 + 𝛼) mod 1. Rigid rotations commute with the Laplace operator; thus
∆dyn = (∆ + 𝑇 *

1 ∆𝑇1,*) /2 = ∆, and the dynamic Laplacian is equal to the static Laplacian. The first nontrivial
eigenspace of the dynamic Laplacian is therefore spanned by 𝑣(𝑥) =

√
2 sin(2𝜋𝑥) and 𝑢(𝑥) =

√
2 cos(2𝜋𝑥) which

are orthonormal eigenvectors for the eigenvalue 𝜆1 = 4𝜋2.
Any errors in the corresponding discrete bilinear form

𝑎̃ℎ(𝑢, 𝑣) =
1

2
(𝑎(𝑢, 𝑣) + 𝑎 (𝐼ℎ𝑇𝑢, 𝐼ℎ𝑇𝑣))

therefore arise solely from discretisation errors related to the rotation of the 𝜙𝑖 by 𝛼. In our experiments, we
consider 𝛼 = 0.15. For the non-adaptive collocation TO approach, denote the leading nontrivial eigenvalue of

∆dyn by 𝜆̃ℎ,1. We now look at the order of convergence for the error
|𝜆̃ℎ,1−𝜆1|

𝜆1
as ℎ→ 0.

The convergence rates in Figure 8 are identical to those found for the standard map in Figure 5. The CG
approach in this example is simply computing the eigenvectors and eigenvectors of the standard Laplace operator
and therefore unsurprisingly one recovers the theoretical orders of convergence. These numerical results suggest
that when using the non-adaptive TO method, we cannot expect an asymptotically higher convergence rate for
𝑃 2 elements in comparison to 𝑃 1-elements even for very simple flow maps.

5. Conclusion

We compared the use of 𝑃 1 and 𝑃 2 elements in collocation-based CG and TO approximations of the dynamic
Laplacian. In the CG approach applied to weakly nonlinear dynamics, 𝑃 2 elements can significantly reduce the
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computational cost by providing an asymptotically higher order of convergence. A benefit of 𝑃 1 elements for
the CG approach is that a first-order method of quadrature can be used in the discretization, whereas using
first-order quadrature for 𝑃 2 elements results in a singular mass matrix. This does not affect the asymptotic
order of convergence, but nevertheless introduces a constant factor which may be relevant in some low-data
cases. It seems promising to investigate how to locally adapt the element order and/or the element diameter (in
the spirit of 𝑝- or ℎ𝑝-adaptive finite element methods).

In the non-adaptive TO approach, there seems to be little benefit gained by using 𝑃 2 as opposed to 𝑃 1

elements. The adaptive TO is inherently 𝑃 1-based, and thus does not benefit from a 𝑃 2 discretization either.
In general, numerical experiments suggest that collocation-based TO approaches have equal (or in some cases
better) rates of convergence compared to the 𝑃 1 CG discretisation.

The 𝑃 2 CG discretisation generally had a higher order of convergence, though the numerically observed
convergence rates varied significantly when the quadrature order was changed or when applied to more nonlinear
and hyperbolic dynamics. It is difficult to compare the CG and TO approaches in general as the former relies
on being able to calculate derivatives of the flow map, whereas the latter is purely data based. This makes the
TO approach applicable to some cases where the CG approach cannot be used.

A hindrance to using the TO approach for finely resolved meshes is the fact that here the call to eigs takes
much longer compared to when one uses the CG discretisation on the same mesh. We suspect that this is due
to the fact that unlike in the TO approach, the CG discretisation preserves the banded structure of the stiffness
matrix. More work is needed to determine how the eigenproblem can be solved efficiently in this case, or whether
it is possible to avoid the eigenproblem completely but still be able to compute coherent sets. More work is
also needed to determine the true rates of convergence of eigenvalues and eigenvectors. We proved that they
do converge for the non-adaptive TO approach, but were only able to conjecture what the true rates are based
on numerical experiments. It also remains to be seen whether Galerkin TO approaches can be modified to be
computationally efficient.

Appendix A. Proofs

Throughout all proofs, 𝐶 refers to a constant depending only on the mesh and dimension.

A.1. Proof of Lemma 4.1

The following proof of Lemma 4.1 uses ideas from the proof of Lemma 2.1 from [4]. We start with a helper
lemma:

Lemma A.1. Let
{︀
𝒯 0
ℎ′
}︀
ℎ′>0

and
{︀
𝒯 1
ℎ

}︀
ℎ>0

be quasi-uniform meshes on 𝑑-dimensional open sets Ω0 and Ω1

respectively. Let 𝐹 : Ω0 → Ω1 be smooth on Ω0 with smooth extension to the boundary. Then there exists 𝐶 > 0
so that for all ℎ, ℎ′ > 0 and 𝜏 ′ ∈ 𝒯 0

ℎ′ it holds that:

𝒩 (𝜏 ′) := |
{︀
𝜏 ∈ 𝒯 1

ℎ : 𝐹 (𝜏 ′) ∩ 𝜏 ̸= ∅
}︀
| ≤ 𝐶

(︂
ℎ′ + ℎ

ℎ

)︂𝑑

·

Proof. By quasi-uniformity of the meshes, we can find positive constants 𝑎′, 𝐴′ so that for any triangle 𝜏 ′ ∈ 𝒯 0
ℎ′

there is a point 𝜏 ′𝑥 so that:

𝐵 (𝜏 ′𝑥, 𝑎
′ℎ′) ⊂ 𝜏 ⊂ 𝐵 (𝜏 ′𝑥, 𝐴

′ℎ′) , (A.1)

where 𝐵(𝑥, 𝑟) is the open ball of radius 𝑟 centered at 𝑥. This gives that where 𝑦 := 𝐹 (𝜏 ′𝑥):

𝐹 (𝜏 ′) ⊂ 𝐹 (𝐵 (𝜏 ′𝑥, 𝐴
′ℎ′)) ⊂ 𝐵

⎛
⎜⎝𝑦, ‖𝐷𝐹‖∞𝐴′

⏟  ⏞  
:=𝐸

ℎ′

⎞
⎟⎠ (A.2)
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where the last inclusion follows from the mean-value theorem, and ‖𝐷𝐹‖∞ exists as 𝐹 is smoothly extensible
to the boundary.

Now write 𝑎,𝐴 for the shape-regularity/quasi-uniformity constants of
{︀
𝒯 1
ℎ

}︀
ℎ>0

, so that a formula like (A.1)

holds for
{︀
𝒯 1
ℎ

}︀
ℎ>0

also.

Then if 𝜏 ∈ 𝒯 1
ℎ intersects 𝐵 (𝑦,𝐸ℎ′), it must hold that 𝐵 (𝜏𝑥, 𝑎ℎ) ⊂ 𝐵 (𝜏𝑥, 𝐴ℎ) ⊂ 𝐵 (𝑦,𝐸ℎ′ + 2𝐴ℎ) ⊂

𝐵 (𝑦, 𝑐 (ℎ′ + ℎ)) with 𝑐 := max {𝐸, 2𝐴}. As for different 𝜏 , the sets 𝐵 (𝜏𝑥, 𝑎ℎ) are disjoint, we get

𝒩 (𝜏 ′) ≤
(︂
𝑐(ℎ′ + ℎ)

𝑎ℎ

)︂𝑑

which gives the claim. �

Lemma A.2. Let {𝒯ℎ}ℎ>0 be a family of quasi-uniform meshes on an open subset of 𝑑-dimensional space. Let
𝑆ℎ be the space of functions representable by 𝑃 𝑘-Lagrange elements on the mesh. Then there exist 𝐶,𝐶 ′ > 0 so
that for all 𝑣 ∈ 𝑆ℎ:

𝐶1‖𝑣‖2𝐿2 ≤ ℎ𝑑
∑︁

𝑝

|𝑣(𝑝)|2 ≤ 𝐶2‖𝑣‖2𝐿2

where 𝑝 ranges over the nodes of the triangulation.

Proof. This follows directly from well-known results about the spectrum of mass-matrices, see p. 386 of [9] �

Proof of Lemma 4.1. Throughout the proof, 𝐶 refers to a constant that does not depend on ℎ or ℎ′ and whose
exact value can change from line to line. Let ℎ′ > ℎ > 0 and 𝑣 ∈ 𝑆0

ℎ′ . Then by Lemma A.2, and as 𝐹 is
volume-preserving,

‖𝐼ℎ𝑇𝑣‖2𝐿2 ≤ 𝐶ℎ𝑑
∑︁

𝑝

|𝑣
(︀
𝐹−1(𝑝)

)︀
|2 =: (*)

where 𝑝 ranges over the nodes of 𝒯 1
ℎ . Using Lemma A.1, we know that for any triangle 𝜏 ′ ∈ 𝒯 0

ℎ , at most

𝐶
(︁

ℎ′+ℎ
ℎ

)︁𝑑
triangles from 𝒯 1

ℎ′ can intersect with 𝐹 (𝜏 ′); up to a constant factor this therefore bounds the number

of vertices 𝑝 in 𝒯 1
ℎ for which 𝐹−1(𝑝) lies in a given triangle. Moreover, as we are using 𝑃 1-Lagrange elements,

|𝑣
(︀
𝐹−1(𝑝)

)︀
| is bounded by |𝑣(𝑝′)| for some vertex 𝑝′ of the triangle that contains 𝐹−1(𝑝). This gives, using

Lemma A.2 and the fact that ℎ′ > ℎ, that:

(*) ≤ 𝐶ℎ𝑑
(︂
ℎ′ + ℎ

ℎ

)︂𝑑∑︁

𝑝′

|𝑣(𝑝′)|2

≤ 𝐶(ℎ′)𝑑
∑︁

𝑝′

|𝑣(𝑝′)|2

≤ 𝐶‖𝑣‖2𝐿2

where 𝑝′ ranges over the nodes of 𝒯 0
ℎ′ . �

A.2. Proof of Lemma 4.2

Proof. Without loss of generality, look at triangles in dimension 2; similar arguments apply to higher-dimensional
meshes. Since ‖𝐼ℎ𝑣 − 𝑣‖𝐿2 ≤ 𝐶‖𝐼ℎ𝑣 − 𝑣‖𝐿∞ and 𝑣 is uniformly continuous, we have that

‖𝐼ℎ𝑣 − 𝑣‖𝐿2 → 0 as ℎ→ 0.

What remains to be shown is ‖∇ (𝐼ℎ𝑣 − 𝑣) ‖𝐿2 → 0.
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We first show that ‖∇𝐼ℎ𝑣‖𝐿∞ ≤ 𝐶‖∇𝑣‖𝐿∞ (where 𝐶 does not depend on ℎ). It is enough to prove this for
any triangle 𝜏 in the mesh 𝒯 1

ℎ . Assume first that the triangle 𝜏 has vertices 0, 𝑒1 and 𝑒2, where 𝑒1, 𝑒2 are the

canonical unit vectors in R2. Without loss of generality also 𝑣(0) = 0. Then ∇𝐼ℎ𝑣 = (𝑣 (𝑒1) , 𝑣 (𝑒2))
𝑇

.
By a mean value inequality6, max {|𝑣 (𝑒1) |, |𝑣 (𝑒2) |} ≤ ‖∇𝑣‖𝐿∞(𝜏). Thus ‖∇𝐼ℎ𝑣‖𝐿∞(𝜏) ≤ ‖∇𝑣‖𝐿∞(𝜏). Shape

regularity immediately gives ‖∇𝐼ℎ𝑣‖𝐿∞(𝜏) ≤ 𝐶‖∇𝑣‖𝐿∞(𝜏) for general triangles, taking suprema over all triangles
gives the claim.

By assumption 𝑣 is 𝐶2 except for on a nowhere dense set of measure zero. By standard FEM the-
ory, ‖∇ (𝐼ℎ𝑣 − 𝑣) ‖𝐿2(Ω′) → 0 on all sub-meshes Ω′ on which 𝑣 is 𝐶∞, and with ℎ → 0 we can choose

Ω′ so that ℓ𝑑 (Ω′) → ℓ𝑑(Ω), recalling that ℓ𝑑 was the notation used for 𝑑-dimensional Lebesgue measure.
Moreover, |∇𝐼ℎ𝑣| < 𝐶 almost everywhere, and hence discontinuities do not cause problems. It follows that
‖∇ (𝐼ℎ𝑣 − 𝑣) ‖𝐿2 → 0. �
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Abstract
In this short paper, we derive an alternative proof for some known (van den Berg &
Gilkey 2015) short-time asymptotics of the heat content in a compact full-dimensional
submanifolds S with smooth boundary. This includes formulae like

∫
S
exp(t�)( f 1S) dV =

∫
S
f dV −

√
t

π

∫
∂S

f dA + o(
√
t), t → 0+,

and explicit expressions for similar expansions involving other powers of
√
t . By

the same method, we also obtain short-time asymptotics of
∫
S exp(t

m�m)( f 1S) dV ,
m ∈ N, and more generally for one-parameter families of operators t �→ k(

√−t�)

defined by an even Schwartz function k.

Keywords Heat equation · Heat content · Riemannian manifolds · Geometrical optics

1 Introduction

Let (M, g) be a complete, boundaryless,1 oriented Riemannian manifold with
Laplace–Beltrami operator �, and volume dV . On a codimension-1 submanifold
of M , we write dA for the induced surface (hyper)-area form. The heat semi-group
Tt := exp(t�) acting on L2(M, dV ) is well defined (� is essentially self-adjoint
on C∞

c (M) [2]) and its behaviour as t → 0+ has been extensively investigated
in the literature. Specifically, for a set S ⊂ M , the heat content of the form

1 We assume that M has no boundary for the sake of simplicity, and the method presented here can be
adapted to more general manifolds with boundary provided that S is compactly contained in the interior
of M . If this is not the case, such as in the classical heat content setting as in [13], it should be possible to
obtain similar results by modifying the geometrical optics construction used.

B Nathanael Schilling
schillna@ma.tum.de

1 Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei
München, Germany
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Short-Time Heat Content Asymptotics via the Wave and Eikonal Equations 2173

�S, f (t) := ∫
S Tt ( f 1S) dV , f ∈ C∞(M), has recently received much attention;

see, for instance, [7,11,12] and the references therein.
Let us briefly recall some known results. On Rn , sets S of finite perimeter P(S) are

characterized by [7, Thm. 3.3 ]

lim
t→0+

√
π

t

(
�S,1M (0) − �S,1M (t)

)
= P(S). (1)

Extensions of this idea to abstract metric spaces are given in [6]. In the setting of
compact manifolds M (or M = Rn) and S a full-dimensional submanifold with
smooth boundary ∂S, the authors of [12] show that

�S, f (t) =
∞∑
j=0

β j t
j
2 , t → 0+, (2)

where the coefficients β j depend on S, f and the geometry of M . The setting of [12]
is more general, amongst other things it includes f which have singularities. Some of
the coefficients obtained in [12, corollary 1.7] are

β0 =
∫
S
f dV , β1 = − 1√

π

∫
∂S

f dA, β2 = 1

2

∫
S
� f dV .

Extensions to some non-compact manifolds M and certain non-compact S are in [11].
Both Eqs. (1) and (2) are proven with significant technical effort, yielding strong

results. For example, in [7], explicit knowledge of the fundamental solution of the heat
equation is used to obtain Eq. (1) for C1,1-smooth ∂S, after which geometric measure
theory is used. Similarly, [12] requires pseudo-differential calculus and invariance
theory.

Our aim is to show that slightly weaker results can be obtained by considerably
lower technical effort. In contrast to [7], we treat only compact S with smooth bound-
ary, and do not allow f to have singularities like [12] does. On the other hand, we
put no further restrictions than completeness on M . The proof presented here is sim-
ple, comparatively short, and provides an alternative differential geometric/functional
analytic point of view to questions regarding heat content. Moreover, this approach
is readily extended to some other PDEs including the semi-group generated by �m .
Observe that T (t) = k(

√−t�) with k(x) = exp(−x2). We allow k to be an arbitrary
even Schwarz function, with �S, f (t) = ∫

S k(
√−t�)( f 1S) dV and will prove:

Theorem 1 Let M be a complete Riemannian manifold with Laplace–Beltrami oper-
ator �, Riemannian volume dV and induced (hyper) area form dA. Let S ⊂ M be a
compact full-dimensional submanifold with smooth boundary. For f ∈ C∞(M) and
N ∈ N,

�S, f (t) =
N∑
j=0

β j t
j
2 + o(t

N
2 ), t → 0+,
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2174 N. Schilling

for constants (β j )
N
j=0 described further in the next theorem.

With the j th derivative k( j) (for j ∈ N0), let r j := (−1) j/2k( j)(0) for j even

and r j := (−1)( j−1)/2
∫ ∞
0

2k j (s)
−πs ds for j odd. Let ϕ locally be the signed distance

function (see also [8, Sect. 3.2.2]) to ∂S with S = ϕ−1([0,∞)), and denote by ∇ and
· the gradient and (metric) inner product, respectively. The vector field ν := −∇ϕ is
outer unit normal at ∂S.

Theorem 2 The coefficients of Theorem 1 satisfy β0 = r0
∫
S f dV and β1 =

− 1
2r1

∫
∂S f dA. For even j ∈ N≥2,

β j = r j
j !

∫
S

1

2
� j/2 f dV .

Moreover, given the Lie-derivative Lν with respect to ν,

β3 = r3
2 · 3!

∫
∂S

Lν(−Lν + 1

2
�ϕ) f − 1

2
� f + 1

2
(−Lν + 1

2
�ϕ)2 f dA,

similar expression can be found also for larger odd values of j (see Sect. 3).

The properties of the signed distance function ϕ may be used to express terms
appearing in Theorem 2 using other quantities. For example, its Hessian ∇2ϕ is the
second fundamental form on the tangent space of ∂S [3, Chap. 3], and thus 1

2�ϕ is
the mean curvature.

Our approach to prove Theorems 1 and 2 is to combine 3 well-known facts:

(A) The short-time behaviour of the heat flow is related to the short-time behaviour
of the wave equation (cf. [1]).

(B) The short-time behaviour of the wave equation with discontinuous initial data
is related to the short-time behaviour of the eikonal equation (cf. ‘geometrical
optics’ and the progressing wave expansion [10]).

(C) The short-time behaviour of the wave and eikonal equations with initial data f 1S

is directly related to the geometry of M near ∂S.

Though points (A)-(C) are well known in the literature, they have (to the best of our
knowledge) not been applied to the study of heat content so far.

A significant portion of (C) will rest on an application of the Reynolds transport
theorem. Here, denote by 	s the time-s flow of the vector field ν = −∇ϕ. For small
s, the (half) tubular neighbourhood

S−s := {x ∈ M \ S : dist(x, ∂S) ≤ s} (3)

satisfies S ∪ S−s = 	s(S). For a ∈ C∞((−ε, ε) × M), by [5, Chap. V, Prop. 5.2],

d

ds

∫
S−s

a(s, ·) dV
∣∣∣∣
s=0

= d

ds

(∫
S−s∪S

a(s, ·) dV −
∫
S
a(s, ·) dV

)∣∣∣∣
s=0

=
∫
S
Lν̃[a(0, ·) dV ] =

∫
∂S

a(0, ·) dA. (4)
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The last equation is a consequence of Cartan’s magic formula and Stokes’ theorem,
where we use that dV (ν, ·) = dA(·) on ∂S.

2 Proof forˇ0,ˇ1

By Fourier theory (for non-Gaussian k, the formulae must be adapted),

k(t) = exp(−t2) =
∫ ∞

0
k̂(s) cos(ts) ds with k̂(s) := 1√

π
exp

(−s2

4

)
.

On the operator level, this yields the well-known formula [10, Sect. 6.2]

Tt = exp(t�) =
∫ ∞

0
k̂(s) cos(s

√−t�) ds. (5)

The operatorWs := cos(s
√−�) is the time-s solution operator for the wave equation

with zero initial velocity, in particular u(s, x) := (Ws f 1S)(x) (weakly) satisfies
(∂2t − �)u = 0. Let 〈·, ·〉 denote the L2(M, dV ) inner product. Using Eq. (5),

〈Tt f 1S,1S〉 =
∫ ∞

0
k̂(s)〈Ws

√
t f 1S,1S〉 ds.

Similar reasoning has been used to great effect in [1] to derive heat-kernel bounds
by making use of the finite propagation speed of the wave equation. As in [1], finite
propagation speed yields for s ≥ 0 that 〈Ws f 1S,1M\S〉 = 〈Ws f 1Ss ,1S−s 〉, where
Ss := (M \ S)−s is defined like Eq. (3). Even if 1M\S /∈ L2(M, dV ), we have just
seen that the inner product 〈Ws f 1S,1M\S〉 is nevertheless well defined. In [1], it is
further observed that ‖Ws‖ ≤ 1. Using the Cauchy–Schwarz inequality and assuming
f = 1M , Eq. (4) yields

h(s) := 〈Ws f 1Ss ,1S−s 〉 ≤ ‖1Ss‖2‖1S−s‖2 ≤ s
∫

∂S
dA + o(s), s → 0+. (6)

In addition, |〈Ws f 1S,1S〉| ≤ ‖ f 1S‖2‖1S‖2 for all s ≥ 0, in particular as s → ∞.
We conclude with some calculations (cf. Lemma 3), that

〈Tt1S,1S〉 =
∫ ∞

0
k̂(s)

(
〈Ws

√
t1S,1M 〉 − 〈Ws

√
t1S,1M\S〉

)
ds

= 〈1S,1M 〉 −
∫ ∞

0
k̂(s)h(s

√
t) ds (7)

≥
∫
S
dV − 2

√
t

π

∫
∂S

dA + o(
√
t), t → 0+.

This is weaker than the desired estimate, and restricts to f = 1M . The problem is
that the estimates in Eq. (6) are too crude. To improve them, we instead approximate
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2176 N. Schilling

the solution u to the wave equation with geometrical optics, using the “progressing
wave” construction described in [10, Sect. 6.6], some details of which we recall here.
The basic idea is that u is in general discontinuous, with an outward—and an inward—
moving discontinuity given by the zero level-set of functions ϕ+ and ϕ−, respectively.
The functions ϕ± satisfy the eikonal equation ∂tϕ = ±|∇ϕ±| with initial value
ϕ±(0, ·) = ϕ(·). Equivalently, using the (nonlinear) operator Ew := (∂tw)2 −|∇w|2,
the functions ϕ± satisfy E(ϕ±) = 0. Our analysis is greatly simplified by choosing
the initial ϕ to (locally) be the signed distance function to ∂S. The eikonal equation is
then ∂tϕ

± = ±|∇ϕ| = ±| − ν| = ±1, i.e. ϕ±(x, t) = ϕ(x) ± t .
The progressing wave construction further makes use of two (locally existing

and smooth) solutions a±
0 to the first-order transport equations ±∂t a

±
0 (t, ·) + ν ·

∇a±
0 (t, x) = 1

2a
±
0 �ϕ±. Observe that with the Heaviside function θ : R → R, and

� := ∂2t − �, the expression �(a±
0 θ(ϕ±)) is given by

(θ ′′(ϕ±)Eϕ± + �ϕ±θ ′(ϕ±))a±
0 + 2

(
∂t a

±
0 ∂tϕ

± − ∇a±
0 · ∇ϕ±)

θ ′(ϕ±) + �a±
0 θ(ϕ±).

The functions ϕ± and a±
0 have been chosen so the above simplifies to

�(a±
0 θ(ϕ±)) = 2

(
±∂t a

±
0 + ∇a±

0 · ν − 1

2
�ϕa±

0

)
θ ′(ϕ±) + �a±

0 θ(ϕ±)

= �a±
0 θ(ϕ±). (8)

Thus �(a±
0 θ(ϕ±)) is as smooth as θ is. We use

ũ(t, x) := a+
0 (t, x)θ(ϕ+(t, x)) + a−

0 (t, x)θ(ϕ−(t, x))

as an approximation to the discontinuity of the solution u to the wave equation. To
maintain consistencywith the initial values of u, the initial values of the approximation
ũ are chosen to coincide with those of u at t = 0, this is achieved by setting a±

0 (0, ·) =
1
2 f so that (at least formally) ∂t ũ(0, ·) = 0 and also ũ(0, ·) = 1S f .

The function ũ approximates the discontinuous solution u of thewave equationwell
enough that the function (s, x) �→ u(s, x) − ũ(s, x) is continuous on [−T , T ] × M ,
see [10, Sect. 6.6, eq. 6.35]. By construction, ũ(0, ·) = u(0, ·). Hence |(u(s, x) −
ũ(s, x)| = o(1) as s → 0+, which implies

|〈u(s, ·),1S−s 〉 − 〈ũ(s, ·),1S−s 〉| = o(s) s → 0+. (9)

As ∇ϕ = −ν, for sufficiently small t the sets {x ∈ M : ϕ+(t, x) = 0} (resp.
{x : ϕ−(t, x) = 0}) are level sets of ϕ on the outside (resp. inside) of S (see also [10,
Sect. 6.6]). By construction, θ(ϕ−) vanishes outside of S for t > 0. Consequently,
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using Eq. (4), we see that as s → 0+,

〈ũ(s, ·),1S−s 〉 =
∫
S−s

a+
0 (s, x)1{ϕ+(s,·)≥0} + a−

0 (s, x)1{ϕ−(s,x)≥0} dV (x)

= s
∫

∂S
a+
0 (0, x) dA(x) + o(s) = s

2

∫
∂S

f dA + o(s). (10)

Combining Eqs. (9) and (10),

h(s) = 〈Ws f 1S,1S−s 〉 = 〈u(s, ·),1S−s 〉 = s

2

∫
∂S

f dA + o(s), s → 0+.

Calculations along the lines of Lemma 3 and Eq. (7) yield

〈Tt f 1S,1S〉 =
∫
S
f dV −

√
t

π

∫
∂S

f dA + o(
√
t), t → 0+,

as claimed.

Lemma 3 Let j ∈ N and γ : R≥0 → R. Let γ (s) = s j + o(s j ) for s → 0 and
γ (s) = O(1) for s → ∞. Then for t → 0+,

∫ ∞

0
γ (s

√
t)k̂(s) ds = t

j
2

{
(−1)

j
2 k( j)(0) j even

(−1)
j−1
2

∫ ∞
0

2 k( j)(s)
−πs ds j odd

+ o
(
t
j
2

)
. (11)

With k(s) = exp(−s2) and h(s) = c0 + c1s + c2s2 + o(s2), this implies

∫ ∞

0
h(s

√
t)k̂(s) ds = c0 + 2c1√

π

√
t + 2c2t + o(t). (12)

Proof For even j , we obtain Eq. (11) by the Fourier-transform formula for j th deriva-
tives. If j is odd, we also need to multiply by the sign function in frequency space,
and then use that the inverse Fourier-transform (unnormalized) of the sign function is
given by the principal value p.v.

( 2i
x

)
[10, Sect. 4], see also [9, Chap. 7]. Equation 11

holds more generally, e.g. if k is an even Schwarz function. Equation 12 may also be
verified directly without Eq. (11). ��

3 Proof forˇ2,ˇ3, . . .

We now turn to calculating β j for j ≥ 2. We use the N th order progressing wave
construction with sufficiently large N � j . For the sake of simplicity, we write
O(t∞) for quantities that can be made O(tk) for any k ∈ N by choosing sufficiently
large N . As in the previous section, the construction is from [10, Sect. 6.6]. With
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θ0 := θ , and θi (t) := ∫ t
−∞ θi−1(s)ds we write

ũ±(t, x) :=
N∑
i=0

a±
i (t, x)θi (ϕ

±(t, x)).

Here the functions a±
0 are defined as before, and for i ≥ 1 the i th order transport

equations ±∂t a
±
i = −ν · ∇a±

i + 1
2a

±
i �ϕ± − 1

2�a±
i−1 define a

±
i together with initial

data a±
i (0, ·) = − 1

2 (∂t a
+
i−1(0, ·) + ∂t a

−
i−1(0, ·)). As in Eq. (8), one may verify that

�ũ± = �aiθN (ϕ±). Writing ũ = ũ+ + ũ− and

u(t, x) = ũ+(t, x) + ũ−(t, x) + RN (t, x),

the remainder satisfies RN ∈ C (N ,1)([−T , T ] × M) and RN (t, ·) vanishes at t = 0,
see [10, Sect. 6.6, eq. 6.35]. Moreover, RN is supported on {(x, t) : dist(x, S) ≤ |t |},
all of this implies that, as t → 0+,

h(t) =
∫
M\S

u(t, x) dV (x) =
∫
M\S

ũ+(t, x) dV (x) + O(t∞) (13)

and moreover h ∈ C∞([0, T ]). The structure of RN implies that �ũ+(t, x) = O(t∞)

on M \ S, provided that this expression is interpreted in a sufficiently weak sense.
Formally, therefore

∂2t

∫
M\S

ũ+(·, t) dV =
∫
M\S

�ũ+(·, t) dV + O(t∞)

= −
∫

∂S
∇ũ+(·, t) · ν dA + O(t∞), (14)

where the last step is the divergence theorem. One may verify Eq. (14) rigorously by
either doing the above steps in the sense of distributions, or by a (somewhat tedious)
manual computation. Combining this with Eq. (13),

h′′(t) = −
∫

∂S
∇ũ+(·, t) · ν dA + O(t∞). (15)

The quantity h( j)(0)may thus be seen to depend ũ+(0, ·) at ∂S, which in turn depends
on a±

i at t = 0. Defining Si := a+
i +a−

i andDi := a+
i −a−

i for i = 0, 1, . . . , let L be
the (spatial) differential operator defined forw ∈ C∞(M) by Lw := 1

2�ϕw−ν ·∇w.
For i ∈ N0, the transport equations imply

∂tS0 = LD0, ∂tD0 = LS0, (16)

∂tSi+1 = LDi+1 − 1

2
�Di , ∂tDi+1 = LSi+1 − 1

2
�Si for i ≥ 0, (17)
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with initial values satisfying

a+
0 (0, ·) = 1

2
S0(0, ·) = 1

2
f (·), D0(0, ·) = 0, (18)

a+
i+1(0, ·) = 1

2
Di+1(0, ·) = −1

2
∂tSi (0, ·), Si+1(0, ·) = 0. (19)

Lemma 4 For i, n ∈ N0 it holds that ∂2nt Di (0, ·) = 0 (note that as a consequence,
also ai+1(0, ·), LDi (0, ·), and �nDi (0, ·) are zero).

Proof We will proceed by induction over i and use the identities Eqs. (16)–(19). For
i = 0, D0(0, ·) = 0 is trivially satisfied. Moreover, ∂2nt D0 = RnD0, which is zero at
t = 0. For i = 1, observe that a+

1 (0, ·) = − 1
2∂tS0(0, ·) = − 1

2 LD0(0, ·) = 0, and thus
D1(0, ·) = 0. Likewise, ∂2t D1 = ∂t (LS1 − 1

2�S0) = L(LD1 − 1
2�D0) − 1

2�LD0.
As the operator L commutes with ∂2t , this expression vanishes at t = 0. Induction
over n proves the remainder of the statement for i = 1. For the general case, we
assume the induction hypothesis for i and i + 1 and start by noting that Di+2(0, ·) =
2a+

i+2(0, ·) = −∂tSi+1(0, ·) = − (
LDi+1(0, ·) − 1

2�Di (0, ·)
) = 0. Moreover,

∂2t Di+2 = ∂t (LSi+2 − 1
2�Si+1) = L(LDi+2 − 1

2�Di+1) − 1
2�

(
LDi+1 − 1

2�Di
)
,

which again vanishes at t = 0; the case n > 1 may again be proven by induction over
n. ��

Corollary 5 For even j ∈ N≥2, the j th derivative of h satisfies

h( j)(0) = −1

2

∫
S
� j/2 f dV .

Proof Lemma 4 shows that for i ≥ 1, a+
i (0, x) = 0. Together with Eq. (15), thus

h′′(0) = − ∫
∂S ∇a+

0 (0, ·) · ν dA = − 1
2

∫
∂S ∇ f · ν dA. This is the case j = 2. More

generally, for j = 2kwith k ∈ N≥2,weuse that (for x ∈ ∂S), ũ+ satisfies ∂2t ũ
+(t, x) =

�ũ+(t, x) + O(t∞). Equation 15 ensures that as t → 0+,

h(2k)(t) =
∫

∂S
∇(�k−1ũ+(t, ·)) · ν dA + O(t∞).

As for the case k = 1, it follows that h(2k)(0) = − ∫
∂S ∇(�k−1a+

0 ) · ν dA, the
divergence theorem yields the claim. ��

The odd coefficients are trickier, we only compute the case j = 3. We start with
the observation that for x ∈ ∂S, ϕ+(t, x) = t and therefore

ũ+(t, x) =
N∑
i=0

1

i ! t
i a+

i (t, x) for t ≥ 0, x ∈ ∂S.
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Recall that the Lie-derivative acts on functions w ∈ C∞(M) by Lνw = ∇w · ν. Thus
Lνθi+1(ϕ

+(t, x)) = −θi (ϕ
+(t, x)), so for x ∈ ∂S,

Lν ũ
+(t, x) =

N−1∑
i=0

t i

i ! (Lνa
+
i (t, x) − ai+1(t, x)) + O(t∞).

Therefore ∂tLν ũ+(0, x) = ∂t (Lνa
+
0 (0, x) − a+

1 (t, x)) + (Lνa
+
1 (0, x) − a+

2 (0, x)),
but the second term is zero as a+

1 and a+
2 vanish at t = 0 by Lemma 4. Substitut-

ing the transport equations and removing further zero terms leaves ∂tLν ũ+(0, x) =
LνLa

+
0 (0, x)+ 1

2�a0(0, x) = 1
2

(
LνL f (x) − 1

2� f (x) + 1
2 L

2 f (x)
)
. Thus (recall that

L = −Lν + 1
2�ϕ) directly from Eq. (15),

h(3)(0) = −1

2

∫
∂S

LνL f (x) − 1

2
� f (x) + 1

2
L2 f (x) dA(x).

The formula

�S, f (t) =
∫ ∞

0
k̂(s)

(∫
S
f dV − h(s

√
t)

)
ds (20)

established in the previous section, together with Lemma 3, yields the asymptotic
behaviour of �S, f (t) by taking the Taylor expansion of h using Corollary 5. This
gives the remainder of the claims of theorem 2.

4 Discussion

The above-said is not specific to the heat equation. Taking k(x) = exp(−x2m),m ∈ N,
we may, for example, study the one-parameter operator family exp(−tm�m). The
wave equation estimates needed are the same. For m ≥ 2, a brief calculation yields
the explicit t → 0+ asymptotics

〈exp(tm�m) f 1S,1S〉 =
∫
S
f dV −

(
π−1


(
2m − 1

2m

) ∫
∂S

f dA

) √
t + o(t).

We conclude with the observation that the generalization of this paper to weighted
Riemannian manifolds (cf. [4]) is straightforward.
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1 Introduction

We begin by sketching the outlines of this paper, a more comprehensive
introduction with more detailed references is given in section 2. We are
concerned with the problem of transport and mixing in nonautonomous ad-
vection-diffusion processes in the vanishing-diffusivity limit. Such processes
are, in the simplest case, described by the advection-diffusion equation,

∂tuε(x, t) + div(uε(x, t)V (x, t)) = ε∆uε(x, t) , (1)

where V is a time-dependent, smooth velocity field, uε the density of a weakly
diffusive passive scalar, and ε > 0 is referred to as the (strength of) diffusivity.
We sometimes omit the explicit ε in our notation when referring to uε for
the sake of clarity. In this work, we are interested in the finite-time setting,
i.e., without loss t ∈ I = [0, 1].

Lagrangian coordinates can be obtained from the advection-only version
of eq. (1) with ε = 0. With p denoting an arbitrary point in these coordinates,
it is known that eq. (1) takes the form of a time-dependent diffusion (or heat)
equation

∂tuε(p, t) = ε∆tuε(p, t) . (2)

The smoothly varying family of operators (∆t)t∈I may be viewed as Laplace
operators on a suitably defined time-dependent family of weighted manifolds.
We want to compare the solution uε of eq. (2) to the solution uε of the time-
averaged equation

∂tuε(p, t) = ε∆uε(p, t) , ∆ :=

∫ 1

0

∆t dt , (3)

as ε→ 0 at the final time t = 1. To the best of our knowledge, an averaging
approach like this has been first taken in [35], albeit in an infinite-time setting.
The operator ∆ has also been introduced by Froyland in his recent work on
dynamic isoperimetry [10]. Consistently with his work, we will refer to ∆ as
the dynamic Laplacian.

In the present work, we prove two results in the spirit of averaging the-
ory, whose precise formulation we defer to section 3. First, for fixed initial
condition u0 the final density uε(1, ·) (of eq. (2)) is uniformly approximated
by uε(1, ·) (of eq. (3)) in leading order as ε → 0; see proposition 3.1. This
result follows directly from prior work by Krol [24] on the averaging method
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applied to time-periodic advection-diffusion equations, in which, by the way,
the transformation to standard averaging form is what is known as the trans-
formation from Eulerian to Lagrangian coordinates in continuum mechanics.
Second, we show that the largest (nontrivial) singular value/vector of the
time-1 solution operator converge in a suitable sense to the largest (non-
trivial) eigenvalue/eigenfunction of the averaged heat semigroup defined by
eq. (3); see theorem 3.5.

In section 4, we work towards a geometric interpretation of our averag-
ing results within the framework of the geometry of mixing, as introduced
in [22]. This leads to a strengthened version of Froyland’s dynamic Cheeger
inequality [10]; we also draw a connection to the notion of material barriers
to diffusive transport as developed in [19, 20]. A by-product of our averaging
result is an alternative and simplified proof of a low-diffusivity approxima-
tion result for the diffusive transport across boundaries of full-dimensional
material subsets; see eq. (6) of [19] and corollary 4.2. Diffusive flux or mate-
rial leakage has long been implicit in different approaches in finding so-called
Lagrangian coherent structures (LCSs); see, for instance, [18, 10, 16] and [17]
for a general review. It has been identified as the potentially unifying per-
spective on LCSs as diffusion barriers in [22], and finally became the central
object in the variational approach to material barriers to diffusive transport
in [19, 20].

Our main motivation stems from transport and mixing problems as stud-
ied in physical oceanography and the atmospheric sciences. There, a typical
problem is that presumably purely advective transport processes are observed
only up to some finite scale. The effect of unresolved (small) scales is then
often modelled via a weak diffusion with spatiotemporal inhomogeneity; see,
for instance, [44]. To address such problems, we treat advection-diffusion pro-
cesses on (compact) smooth manifolds, and include general time-dependent,
spatially inhomogeneous and anisotropic diffusion.

We would like to emphasize that we are interested in the details of spatial
inhomogeneity of mixing, that would allow to explain significant differences
in the mixing ability of different flow regions (transport/diffusion barriers
vs. enhancers). This is in contrast to asymptotic or statistical information,
like decay rates to equilibrium or spatially homogeneous effective diffusion
tensors, typically obtained in homogenization theory; see, for instance, [8, 33].

The advection-diffusion equation (2) has been extensively studied in the
literature. The time-periodic case has been investigated in the low-diffusivity
limit by Krol [24], cf. also [39, 45]. Time-periodic advection-diffusion prob-
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lems have also been studied by Liu & Haller [30] from the Eulerian per-
spective. They developed mathematical theory for observed time-periodic
patterns, strange eigenmodes, in periodically driven advection-diffusion pro-
cesses. The time-periodic setting is closely related to this work, as one may
construct a time-periodic advection-diffusion process from the finite-time set-
ting by appending its ajoint equation (which is again of advection-diffusion
type) and time-periodic extension. This resulting equation is then periodic
with continuous coefficients. Such a time-periodic extension procedure has
been employed recently by Froyland et al. [11] to the Fokker–Planck equation
associated to a stochastic differential equation, in order to find approxima-
tions to Eulerian, spatiotemporal sets with small exponential escape rates of
stochastic trajectories.

In the autonomous case—where V in eq. (2) does not depend on time—
semi-group theory may be applied, and many results have been obtained in
this case. For instance, Kifer [23, Chapter III] studies asymptotics of spectra
in the low-diffusivity limit; see also [9, Chapter 6.7]. Further autonomous,
non-finite-time results were obtained in [3, 6].

2 Diffusion-induced Lagrangian geometries

This section is meant to be both a motivation and a gentle recall of the
geometric interpretation of advection-diffusion processes, as developed in [22,
19]. For a recall of fundamental differential geometry concepts and notation
used, we refer to appendix A.

2.1 Advection processes

We recall some basic properties of advection processes that preserve mass;
see also [20]. These generalize the notion of volume-preservation to vector
fields whose flows do not preserve volume; this is done by constructing a
time-dependent volume-form %, the (fluid) mass form, that has precisely the
property that it is preserved by the flow of a time-dependent velocity field
V . Readers who are only interested in volume-preserving flows (with respect
to a volume ω, such as the usual Euclidean volume) may set %(t, x) ≡ ω(x)
everywhere below.

Recall that, in a fixed spatial frame, the evolution of the passively ad-
vected mass-form %, with initial value ω, is given by the advection equa-
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tion/conservation law

∂t% = −LV % (4)

%(0, ·) = ω . (5)

Here, V is the sufficiently regular time-dependent fluid (bulk) velocity. We
consider eq. (4) on an orientable smooth manifold M , potentially with a
sufficiently regular boundary, over a (finite subset of the) finite time interval
I ⊂ R. For notational simplicity, we assume w.l.o.g. that I = [0, 1].

Equation (4) is well-known as a hyperbolic partial differential equation
(PDE) that can be solved by the method of lines/characteristics. That is,
consider the associated ordinary differential equation (ODE)

ẋ = v(t, x), x(0) = x0 ∈M, (6)

on I. Let φ denote the flow map associated to eq. (6), i.e., t 7→ φt0(x0) is
the unique solution of eq. (6) satisfying the initial condition φ0

0(x0) = x0.
The solutions of eq. (6) are then known as the characteristics of eq. (4), and
each characteristic is also referred to as the trajectory of a (fluid) particle.
Now, with the formula for time-derivatives along trajectories, [27, Chapter
V, Prop. 5.2], eq. (4) becomes

(τ 7→ (φτ0)∗%)′ (t) = (φt0)∗(LV %) + (φt0)∗∂tρ = 0 ,

where (φt0)∗ is the pullback by φt0. For its push-forward (φt0)∗ this implies

ρ(t, ·) = (φt0)∗ ω . (7)

In particular, the mass-form along a trajectory is uniquely determined by its
value anywhere on the trajectory.

In addition to the mass form %, we would like to model the evolution of a
passive tracer that is advected by the fluid. This passive tracer is described
by a (time-dependent) function/density u such that the volume form u%,
integrated against any (measurable) S ⊂M , returns the total amount of the
tracer in S. Here,

∂tu = −du(V ) = −LV u , u(0, ·) = u0 . (8)

As above, along characteristics we obtain

d

dt

(
(φt0)∗u

)
= (φt0)∗(LV u) + (φt0)∗∂tu = 0 ,
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therefore u is constant along characteristics.
One important consequence is the following intimate relation between the

PDE formulation of transport, eqs. (4) and (8), and its ODE formulation,
eq. (6). For any (measurable) set S ⊂M and any (measurable) initial scalar
density u0 one has ∫

S

u0 ω =

∫

φt0(S)

u(t, ·)%(t, ·) . (9)

Note that eq. (9) contains both the densities % and u and the flow map φ,
which otherwise do not occur simultaneously in eqs. (4), (6) and (8).

Next, assume the scalar is confined to some set S ⊂ M , e.g., u0 = 1S.
Then, as a direct consequence of eq. (9), we have

∫

φt0(S)c
u(t, ·)%(t, ·) = 0 , (10)

where Ac denotes the complement of A (in M). In other words, none of
u leaks out of the spatiotemporal tube

⋃
t∈[0,1] φ

t
0(S). For later reference

and in accordance with continuum mechanics, we call any flow-invariant spa-
tiotemporal set S =

⋃
t∈[0,1] φ

t
0(S0) a material set. So far, all considerations

were relative to some spatial or, synonymously, some Eulerian frame. Be-
sides different spatial frames, however, which can be related to different ob-
servers of the physical transport process, there exists the Lagrangian frame
that is related only to the characteristics/particles of the underlying process.
Changing from some Eulerian to the Lagrangian frame is essentially applying
the method of lines, where one additionally declares the initial conditions of
eq. (6), i.e., the particles, as coordinates, and represents all physical equations
w.r.t. those.

Briefly, in Lagrangian coordinates that are co-moving with the trajecto-
ries, eq. (4) becomes

∂t% = 0 , ∂tu = 0 ;

eq. (6) reads as
ẋ = 0 , (11)

and, as a consequence, the “flow map” is the identity map for all times.
Equation (10) then states that no scalar mass leaks out of any material
set into the respective complementary material set; likewise the Lagrangian
advective transport through any material surface vanishes.
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2.2 Advection-diffusion processes

In the following, we will consider advection-diffusion processes and re-inspect
our above considerations in this framework in order to summarize the con-
struction appearing in [22].

Recall that, in a fixed spatial frame, the evolution of a weakly diffusive
scalar, given by its density u, passively advected by a (possibly compressible)
fluid described with mass form % is given by the advection-diffusion equation
[25, 42]

∂tu = −LV u+ ε div%(D du) , (12a)

∂t% = −LV % . (12b)

Here, ε > 0 is the diffusivity (or the inverse Péclet number in non-dimen-
sionalized units), which is assumed to be small, and D : T ∗M → TM is a
(possibly time-dependent) bundle morphism satisfying the following prop-
erty: for given (t, x) ∈ I ×M identify D with a bilinear form g̃−1

t on T ∗M ,
then this bilinear form is symmetric and positive-definite. In particular, D
gives rise to a dual metric, inducing a Riemannian metric g̃t on M . Viewed
in this sense, D is a diffusion tensor field, modeling possibly (spatially and
temporally) inhomogeneous, anisotropic diffusion; for further details on the
aforementioned steps, see also [22]. It is also necessary to impose suitable
boundary conditions in the case that the manifold M has nonempty bound-
ary ∂M . We will focus on homogeneous boundary conditions of Dirichlet–,
and for only some of our results, Neumann form.

Taking a closer look at eq. (12a), we directly recognize D du as the gra-
dient of u w.r.t. the metric g̃. As a consequence, the diffusion term can then
be elegantly represented via the Laplace operators on the family of weighted
manifolds (M, g̃t, θ),

∂tu = −LV u+ ε∆θ̃t,g̃t
u , (13a)

∂t% = −LV % , (13b)

where θ̃t is the density of % w.r.t. dg̃t, i.e., θ̃t dg̃t = %(t, ·).
In stark contrast to the advection equations, eqs. (4), (12b) and (13b),

the advection-diffusion equation, eq. (13a), is not amenable to the method
of characteristics, and, therefore does not introduce a concept of determin-
istic particles, trajectories, or Lagrangian coordinates for the scalar u. On
the other hand, it is a singular perturbation of a hyperbolic PDE: namely
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eq. (13a) with ε = 0 as considered before. Hence, we may introduce La-
grangian coordinates based on the characteristics of its singular limit (cf. [42]),
or, equivalently, based on eq. (13b). In these Lagrangian coordinates, the
advective terms in eq. (13) vanish as in section 2.1, and we obtain from the
well-known pullback transformation rules

∂tu = ε∆θt,gtu = ε divω(g−1
t du) , (14)

which is an evolution equation on the material manifold M . Here, gt :=
(φt0)∗g̃t is the diffusion-adapted pullback metric on M and θt = (φt0)∗θ. As
a consequence of mass preservation, the volume form ω—w.r.t. which we
compute the divergence—does not depend on time. Henceforth, we write
div without a subscript whenever we refer to divω. Moreover, let ∆t :=
div(g−1

t du), then with this notation eq. (14) simplifies to

∂tu = ε∆tu . (15)

The lack of characteristics for the advection-diffusion equation has an-
other, crucial consequence: given a (proper) material subset S ⊂ M , the
amount of u is in general no longer constant over time, or, equivalently

T t0(S, u0) :=

∫

S

u0 ω−
∫

φt0(S)

u(t, ·) %(t, ·) 6= 0 . (16)

In simple words, there is leakage of u out of or into material sets. For given
scalar fields and material subsets, the associated scalar leakage is an non-
trivial and interesting quantity when regarded as a function of material sets
S, see [19, 20].

In Lagrangian coordinates, eq. (16) reads as

T t0(S, u0) =

∫

S

(u0 − u(t, ·)) ω . (17)

Furthermore, assuming for the moment that all involved functions are suffi-
ciently smooth, differentiating with respect to t and applying the fundamen-
tal theorem of calculus yields

T t0(S, u0) = −ε
∫ t

0

(∫

S

∆τu(τ, ·) ω
)

dτ . (18)
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Heuristically, for very small ε we have u ≈ u0 which suggests that

T t0(S, u0)

ε
≈ −

∫ t

0

∫

S

∆τu0 ω dτ =: T
t

0(S, u0) . (19)

Indeed, it was shown in [19, 20] for the case that M ⊂ Rn and homogeneous
Neumann boundary condition that

T t0(S, u0) = εT
t

0(S, u0) + o(ε), ε→ 0 . (20)

In section 3, we develop an alternative proof of eq. (20) on compact manifolds
with Dirichlet boundary; see corollary 3.4.

By Fubini’s theorem, we have that

T
t

0(S, u0) = −
∫

S

∫ t

0

∆τu0 dτ ω = −
∫

S

∫ t

0

∆τ dτ u0 ω .

For t = 1, this suggests the definition

∆ :=

∫ 1

0

∆t dt . (21)

This operator was recently introduced in [10, 12] and coined dynamic Lapla-
cian. With this notation, eq. (20) reads as

T 1
0 (S, u0) = −ε

∫

S

∆u0 ω+o(ε) ,

and combines mathematical tools from recent work on material surfaces that
extremize diffusive flux [19, 20] on the one hand, and dynamic isoperime-
try [10, 12] on the other hand. A goal of this work is to investigate these
connections rigorously; see corollary 4.2.

2.3 The geometry of mixing and diffusive permeability

Our study is centered around the geometry of mixing as induced by ∆ and
introduced in [22]. There, it was observed that ∆ is the Laplace operator of
a specific weighted (Riemannian) manifold. With the above notation, let us
define

g =

(∫

I
g−1
t dt

)−1

. (22)
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Lemma 2.1 ([22, Prop. 3]). The dynamic Laplacian ∆ is the Laplace oper-
ator associated to the weighted manifold (M, g, θ), where θ dg = ω.

As in [22], we refer to the material manifold M , equipped with the metric
g and density θ as the geometry of mixing. This, together with appendix A,
shows that the geometry of mixing is constructed to have the following elegant
properties: (i) volume/fluid mass is given by ω, the differential form preserved
by the flow, and (ii) diffusion is given by averaged pullback diffusion tensors
as featured in the dynamic Laplacian. It was further observed in [22] that

∂tu = ε∆u, u(0, ·) = u0 , (23)

is an averaged (cf. [38, 33]) form of eq. (15). It was conjectured that eq. (23)
approximates eq. (15) in the vanishing diffusivity limit, leaving open the
concrete nature of the approximation and the required assumptions. We
prove this in section 3 building on a similar result in the classic, i.e., time-
periodic, averaging context [24]. A by-product of our averaging result is a new
proof of eq. (20), as mentioned above. We also prove that the convergence
extends to singular values/vectors, addressing an open question from [22].

To summarize the previous sections: eq. (20) shows that in leading order
as ε→ 0, the diffusive transport out of a material set is determined by

T
1

0(S, u0) = −
∫

S

∆u0 ω .

By the divergence theorem, we have

T
1

0(S, u0) = −
∫

∂S

du0(ν) dA , (24)

where ν is the outward-pointing g-unit normal vector field on ∂S and dA =
θdAg is the induced area form on ∂S in the geometry of mixing.

Of course, T
1

0(S, u0) could be represented similarly in other weighted ge-

ometries on M : choose any metric g̃, compute the density θ̃ of the fluid mass
relative to the induced volume dg, denote the induced area form and the
g̃-unit normal vector field on ∂S by dÃ and ν̃, respectively, then one obtains
analogously to eq. (24)

T
1

0(S, u0) = −
∫

∂S

du0(Hν̃) dÃ , (25)
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where H = g−1g̃ is a tangent space isomorphism; cf. also section 4.1 below

and references [19, 20], in which T
1

0(S, u0) is represented in the usual Eu-
clidean/physical geometry, and H is coined the transport tensor (denoted by
Tt1
t0 there). It is exactly the absence of any additional tensor in eq. (24) that

makes arguably the geometry of mixing the “best-adapted” or “most natu-
ral” geometry in which to look at leading-order diffusive flux in Lagrangian
coordinates.

Equation (24) emphasizes that, in leading order, the diffusive transport
T 1

0 (S, u0) out of a material set S depends on (i) the differential/gradient
of the initial concentration u0 along ∂S, and (ii) properties of the geome-
try of mixing via the surface measure dA and unit normal vector field ν.
As argued in [22], dA is particularly interesting as an intrinsic measure of
the “diffusive permeability” of the material boundary ∂S. In many physi-
cal applications, it is of great interest to diagnose the mixing structure of
an advection-dominated transport process independent of any specific scalar
quantity; cf. the discussion in [19].

3 Finite-time averaging of the advection-dif-

fusion equation

We now show that in the setting of the advection-diffusion equation, the dif-
fusion process induced by the dynamic Laplacian approximates the diffusion
of the advection-diffusion equation in Lagrangian coordinates, in the limit of
vanishing diffusivity.

In this section, we restrict to those M that are compact manifolds whose
boundary, if it is nonempty, is smooth. The proof can be extended to other
classes of manifolds also, provided there is a suitable maximum principle.

3.1 Uniform convergence

Let uε : M × [0, 1]→ R solve the advection-diffusion equation in Lagrangian
coordinates for diffusivity ε with initial condition u0 : M → R with—if there
is a boundary—homogeneous Dirichlet or Neumann1 boundary conditions.

1Given a metric for each time t ∈ [0, 1], we also have a gt unit-normal vector νt field on
∂M for each t ∈ [0, 1]. The natural homogeneous Neumann condition is thus duε(t, ·)(νt) =
0 for each t ∈ [0, 1] on ∂M .
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Thus, in the interior of M , uε satisfies

∂tuε = ε∆tuε . (26)

Similarly, let uε : M × [0, 1] → R be the solution of the heat flow generated
by the dynamic Laplacian ∆, with initial condition u0 and diffusivity ε, i.e.,

∂tuε = ε∆uε (27)

and—if there is a boundary—homogeneous Dirichlet or Neumann2 boundary
conditions of the corresponding type. We will focus mainly on the case of
Dirichlet boundary, and refer to appendix D for a recall of results regarding
existence, uniqueness and regularity of solutions. We expect analogous ex-
istence, uniqueness and regularity results to hold in the Neumann case on
manifolds, but could not find a reference.

Definition. Depending on the boundary condition used, we call an initial
value u0 ∈ C∞(M) admissible if (i) u0 is compactly supported in the interior
of M (Dirichlet case), (ii) if u0 is constant in a neighborhood of the spatial
boundary ∂M (Neumann case).

This definition is motivated by the fact that the time-dependent parabolic
eqs. (26) and (27) may not be smooth at t = 0 if the initial value u0 does
not satisfy certain compatibility conditions at the boundary; see [7, Sect. 7.1,
Thm. 6]; cf. also [24]. These may differ between eq. (26) and eq. (27). Our
definition of admissibility guarantees that the compatibility conditions of
both the time-dependent and the averaged equations are satisfied simultane-
ously.

Proposition 3.1. With uε and uε as above, let u0 be an admissible initial
value. Then

uε(1, x) = uε(1, x) +O(ε2) , ε→ 0, (28)

uniformly in x.

Proof. The proof is a simplification of the one given in [24]. Let

ũε = u0 + ε

∫ t

0

∆τu0 dτ .

2Here, we require duε(t, ·)(ν) = 0 independent of t, where ν is unit normal field for g
on ∂M .
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We start with the Dirichlet boundary condition case. Let Lε := ∂t− ε∆t and
observe that Lεũε = −ε2

∫ t
0

∆t∆su0 ds. As u0 is smooth and M compact,

C := sup
t∈[0,1]

∥∥∥∥
(∫ t

0

∆t∆τu0 dτ

)∥∥∥∥
L∞(M)

<∞ .

By definition, Lεuε = 0. Thus, Lε(ũε − uε − Cε2t) ≤ 0; uε and ũε agree at
t = 0; and (by the admissibility of the initial value) both satisfy Dirichlet
boundary conditions. The weak maximum principle (lemma D.4) therefore
yields that

max
[0,1]×M

(ũε − uε − Cε2t) = max
[0,1]×∂M∪{0}×M

(−Cε2t) ≤ 0 .

As a consequence, we have max[0,1]×M(ũε − uε) ≤ Cε2.
One may prove (uε − ũε) ≤ Cε2 along the same lines. Thus, ‖uε −

ũε‖L∞([0,1]×M) = O(ε2). For t = 1, this implies the uniform expansion

uε(1, ·) = ũε(1, ·) +O(ε2) = u0 + ε∆u0 +O(ε2) . (29)

The right-hand side coincides up to second order with the expansion of
uε(1, ·)(= exp(ε∆)u0) which yields the claim.

For Neumann boundary conditions, the proof goes along the same lines,
where the weak maximum principle must be augmented with the parabolic
Hopf boundary point lemma (see [36, Chapter 3, Thm. 6]) to ensure that a
strict maximum cannot be achieved at positive time.

We restate eq. (29) for further reference, and also observe that it can be
interpreted as the time-continuous generalization of [10, Thm. 5.1].

Corollary 3.2. Under the assumptions of proposition 3.1,

uε(1, x) = u0(x) + ε∆u0(x) +O(ε2) , (30)

uniformly in x.

Corollary 3.3. Under the assumptions of proposition 3.1,

uε(1, ·) = u0 + ε∆u0 +O(ε2) ,

in Lp(M,ω) for all p ∈ [1,∞].
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Proof. For p = ∞, our claim corresponds to corollary 3.2. For p ∈ [1,∞),
the natural injection L∞(M,ω) ↪→ Lp(M,ω) is well-defined and continuous
since ω(M) is finite, which yields the claim.

Corollary 3.4. Under the assumptions of proposition 3.1,

T 1
0 (S, u0) =

∫

S

u0(x) ω−
∫

S

uε(x, 1) ω = −ε
∫

S

∆u0 ω+O(ε2) . (31)

Proof. This follows by integrating eq. (29) over S.

3.2 Convergence of singular values

We denote by P ε
t and P

ε

t the time-t solution operators of eqs. (26) and (27),
respectively, i.e., uε(t, ·) = P ε

t u0 and uε(t, ·) = P
ε
u0. To reduce notational

clutter, we write P ε := P ε
1 and P

ε
:= P

ε

1. We only treat homogeneous
Dirichlet boundary in this section.

The previous section dealt with the relationship of P ε and P
ε

in the limit
ε→ 0. In particular, proposition 3.1, with this notation, is

‖(P ε − P ε
)u0‖L∞(M) = O(ε2) for all u0 ∈ C∞c (M̊) . (32)

Recall that as P ε is compact (cf. appendix D), the first singular value of P ε

is given by the operator norm of P ε : L2(M,ω)→ L2(M,ω). By lemma C.2,
P ε is a contraction on L2(M,ω), hence ‖P ε‖ ≤ 1.

If M is boundaryless, then P ε1M = 1M , and, as a consequence, ‖P ε‖ = 1
for any ε > 0. Since the subspace of constant functions is a trivial invariant
subspace, we restrict the domain of P ε to its orthogonal complement, the
space of mean-free functions. If M has a boundary, we consider P ε with its
domain the entire L2(M,ω).

With these preparations, we denote the largest nontrivial singular value
by σε, and a corresponding (normalized) left singular vector by vε, i.e.,

‖vε‖L2(M,ω) = 1, ‖P ε‖ = ‖P εvε‖L2(M,ω) = σε .

For the sake of brevity, let ‖·‖0 := ‖·‖L2(M,ω) and 〈·, ·〉0 = 〈·, ·〉L2(M,ω). Equa-
tion (32) suggests the conjecture that

|‖P ε‖ − ‖P ε‖| = o(ε) , (33)
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where the norm is the operator norm. By the spectral mapping theorem (see,
for instance, [34, Sect. 1, Thm. 2.4(c)]),

‖P ε‖ = eελ = 1 + ελ+ o(ε) ,

where λ < 0 is the largest, i.e., smallest in absolute value, nontrivial eigen-
value of the dynamic Laplacian. Thus, eq. (33) is equivalent to

‖P ε‖ = 1 + ελ+ o(ε) . (34)

It can be interpreted as an expansion of the first singular value of P ε in ε,
in analogy to the expansion obtained in corollary 3.2. We will prove the
following equivalent statement.

Theorem 3.5. With the above notation and assuming a Dirichlet boundary,
one has

lim
ε→0

σε − 1

ε
= λ . (35)

Proof. We split the proof into several steps.
Step 1: We start by proving the lower bound

lim inf
ε→0

σε − 1

ε
≥ λ . (36)

To this end, the operator-norm definition of σε shows that σε ≥ ‖P εu‖0

for all u ∈ C∞c (M̊) in the domain of P ε which have ‖u‖0 = 1. Applying
corollary 3.3 to such u yields P εu = u+ ε∆u+ o(ε) in L2(M,ω). Therefore,
we also have ‖P εu‖2

0 = ‖u‖2
0 + 2ε〈u,∆u〉 + o(ε). Since ‖u‖0 = 1, we obtain

lim inf
ε→0

(σε)2−1
ε
≥ 2〈u,∆u〉. The right hand side can be made arbitrarily close

to 2λ, which shows

lim inf
ε→0

(σε)2 − 1

ε
≥ 2λ . (37)

From lemma C.2 it follows that 0 ≤ σε ≤ 1. Thus σε → 1 for ε→ 0. Finally,
as (σε)2 − 1 = (σε − 1)(σε + 1), we deduce eq. (36) from eq. (37).

Step 2: We now prove the upper bound,

lim sup
ε→0

σε − 1

ε
≤ λ , (38)

15



which is somewhat more involved. It is based on the identity:

(σε − 1)(σε + 1)

ε
=
‖P εvε‖2

0 − ‖vε‖2
0

ε
= 2

∫ 1

0

〈vε(t),∆tv
ε(t)〉0 dt , (39)

where the first equality is satisfied as vε is first non-trivial singular vector,
vε(t) := P ε

t (vε), and the second equality is a direct consequence of the fun-
damental theorem of calculus applied to f ε(t) := 〈vε(t), vε(t)〉0. To connect
eq. (39) to the theory of elliptic partial differential equations, in analogy to
[7] we introduce the bilinear form

at(u,w) := −〈u,∆tw〉 ,

defined (by unique continuous extension) for u,w ∈ H1
0 (M, g, ω), where g is

an arbitrary fixed metric (e.g. g0) used to measure lengths and angles. The
Sobolev space H1

0 (M, g, ω) ⊂ L2(M,ω) is defined as the Hilbert space with
norm ‖·‖2

1 := ‖·‖2
0 + | · |21, here | · |1 is induced by the bilinear form

〈u, v〉1 :=

∫

M

g(gradg u, gradg v) ω (40)

using the metric g and volume-form ω. This norm is equivalent to the usual
H1(M, g, dg) Sobolev norm since ω is smooth and nonvanishing on the com-
pact manifold M . As usual, H1

0 (M, g, ω) is defined as the completion of
C∞c (M̊) w.r.t. the norm ‖·‖1. We have shown in Step 1 that σε → 1 for
ε→ 0. As a consequence, eq. (39) is equivalent to

β := lim inf
ε→0

1− σε
ε

= lim inf
ε→0

∫ 1

0

at(v
ε(t), vε(t)) dt . (41)

Equation (41) is the negative of the left hand side of eq. (38). The bilinear
form at(·, ·) onH1

0 (M, g, ω) is positive, continuous and coercive (cf. lemma C.1),
and thus induces a norm ‖·‖atthat is equivalent to | · |1. In particular, ‖·‖at-
continuous functionals are | · |1-continuous functionals and vice versa. There-
fore, the weak topologies for these norms coincide. The Banach-Steinhaus
theorem, with the norm ‖·‖at , thus states that if un → u weakly inH1

0 (M, g, ω),
then

at(u, u) ≤ lim inf
n→0

at(un, un) . (42)
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We are now in a position to prove eq. (35) by contradiction. To do so, we
will employ a construction similar to the “direct method” from the calculus
of variations; cf. [14]. To this end, we take a null sequence (εn)n∈N for which∫ 1

0
at(v

εn(t), vεn(t)) dt converges to β. Assume, for the sake of contradiction,
that

β = lim
n→∞

∫ 1

0

at(v
εn(t), vεn(t)) < −λ . (43)

We will use a claim whose proof we defer:

Claim. There exist v ∈ H1
0 (M, g, ω) with ‖v‖0 = 1 and a subsequence of

(εn)n, for simplicity again denoted by (εn)n, for which the sequences (vεn(t))n
converge weakly in H1

0 (M, g, ω) to v for every t ∈ [0, 1].

For this specific v, Fatou’s lemma and eq. (42) imply that

∫ 1

0

at(v, v) dt ≤ lim inf
n→∞

∫ 1

0

at(v
εn(t), vεn(t)) dt = β < −λ . (44)

The left hand side, in a weak sense, is equal to −〈v,∆v〉0, the bilinear form
associated to the weak form of the dynamic Laplacian. It is well-known
that the Rayleigh quotient v 7→ −〈v,∆v〉0/〈v, v〉0 is minimized by −λ on
H1

0 (M, g, ω); see, for instance, [7, Sect. 6.5, Thm. 2]. With ‖v‖0 = 1, eq. (44)
states that v’s Rayleigh quotient is strictly lower, hence a contradiction.

It follows that β ≥ −λ, we conclude using eq. (41) that

lim inf
ε→0

1− σε
ε
≥ −λ ,

which proves Step 2.
Step 3, proof of claim: Our proof requires that there exists ε0 > 0 such

that C := sup0≤ε<ε0,t∈[0,1]|vε(t)|1 is finite, this part is done in appendix C.
Assuming that C is finite, the Rellich-Kondrachev theorem [41, Sect. 4,

Prop. 3.4], states that vεn(0) → v in L2(M,ω) (up to passing to a sub-
sequence if necessary), and therefore ‖v‖0 = 1. After again passing to a
subsequence if necessary, we may assume vεn(0) → v ∈ H1

0 (M, g, ω) weakly
in H1(M, g, ω) by the (sequential) Banach-Alaoglu theorem; see, for instance,
[5, Thm. 3.2.1].

17



To show that this limit is attained by vε(t) also for t 6= 0 as ε → 0, we
differentiate hε(t) := ‖vε(t)− vε(0)‖2

0, and apply the fundamental theorem of
calculus to yield

‖vε(t)− vε(0)‖2
0 = 2ε

∣∣∣∣
∫ t

0

aτ (v
ε(τ), vε(τ)− vε) dτ

∣∣∣∣ ≤ 4εC2C ′ ,

where
C ′ := sup

t∈[0,1], u,w∈H1
0 (M,g,ω)

|at(u,w)|/(|u|1|w|1) <∞ ;

see lemma C.1. We may apply the fundamental theorem of calculus due
to the absolute continouity ensured by [7, Sect. 5.9, Thm. 3], see also ap-
pendix D. As vεn(0) → v, it follows that vεn(t) → v in L2(M,ω) for all
t ∈ [0, 1]. In particular, v is the only L2(M, g, ω) accumulation point in the
set F := {vεn(t)}n∈N,t∈[0,1], therefore also the only weak H1(M, g, ω) accu-
mulation point. The sequential Banach-Alaoglu theorem guarantees that the
set F is weakly sequentially compact in H1(M, g, ω). Combining this with
the fact that v is its only accumulation point yields weak convergence of
vε(t)→ v in H1(M, g, ω) for all t ∈ [0, 1].

This finishes the proof of theorem 3.5.

3.2.1 Convergence of eigenvectors

The proof of theorem 3.5 also shows that the corresponding eigenvectors must
converge in L2 (in fact, even weakly in H1). Since, in general, the singular
vectors of P ε satisfy different compatibility conditions at the boundary to
those of P

ε
, this is somewhat surprising.

4 Diffusive transport and surface area

In this section, we look at properties of the surface area form dA in the
geometry of mixing, and how it relates to other, similar, area forms obtained
from different types of averaging.

In the setting of the advection-diffusion equation, we have assumed that
the time set I is the unit interval equipped with the Lebesgue measure. For
the purpose of this section (only), we may weaken this assumption towards
(I, dt) being a probability space, such as a finite set of numbers equipped with
the normalized counting measure, or a compact interval equipped with the
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Lebesgue measure normalized by the interval’s length. By the term surface,
we refer to a smooth, oriented, embedded (codimension-1) submanifold.

4.1 Surface area in the geometry of mixing

Let g be any metric on the material manifold M , we call g the “reference
metric”. This could be, for instance, some “universal” spatial metric (the
way we measure lengths and volume), defined on M , or any of the diffusion-
adapted metrics from (gt)t∈I . The choice of g is in analogy to the choice
of local coordinates in differential geometry – we will derive expressions for
various quantities in terms of g. The metric g is in no way required to be
related to the physical transport process under consideration. In particular,
if g is the Euclidean metric in some coordinate chart, we obtain coordinate
representations in that chart.

As before, define a mass-induced surface area form dA on any surface
Γ ⊂M via ιν ω, where ν is the g-unit normal vector field3

With this notation, C := g−1g and Ct := g−1
t g are tangent bundle isomor-

phisms, i.e., C,Ct : TM → TM . Then

C =

(∫

I
g−1
t dt

)
g =

∫

I
Ct dt .

For v ∈ TxM ⊂ TM , we have that

∥∥Cv
∥∥2

g
= g

(
Cv,Cv

)
=
[
g
(
Cv
)] (

Cv
)

=
[
g g−1gv

] (
Cv
)

= g(v)
(
Cv
)

= g
(
v, Cv

)
.

Denote by νt, t ∈ [0, 1], and ν the unit normal vector fields w.r.t. gt and g on
Γ. As with the reference metric, we define

dAt := ινt ω , dA := ιν ω . (45)

In other words, corresponding to the three types of metrics—reference g,
time-dependent (gt)t and time-averaged g—we derive three area forms (dA,
dAt, and dA) from the mass form.

We now show how to relate to each other area form that are induced by
the mass form via different metrics on a surface Γ.

3If Γ is the boundary of a full-dimensional submanifold, we take the outward-pointing
unit normal
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Lemma 4.1. Let g, g̃ be metrics on M . Let Γ be a surface in M , C̃ := g̃−1g,
and ν and ν̃ their respective (consistently oriented) unit normal vector fields
on Γ. Then

ιν̃ ω = g(ν, ν̃) ιν ω = g
(
ν, C̃ν

)1/2

ιν ω .

Proof. The first equality is trivial, because we may represent ν̃ as the linear
combination of g(ν, ν̃)ν and its projection onto TpΓ. But the latter does not
contribute to the result. It remains to show g(ν, ν̃) = g(ν, C̃ν)1/2. To this
end, we show that ν̃ = g(ν, C̃ν)−1/2 C̃ν. First, observe that C̃ν is g̃-normal
to TpΓ, since for any v ∈ TpΓ we have

g̃(C̃ν, v) = (g̃g̃−1gν)(v) = g(ν, v) = 0 .

Now, ‖C̃ν‖2
g̃ = g̃

(
C̃ν, C̃ν

)
= g

(
ν, C̃ν

)
, which means that g(ν, C̃ν)−1/2 C̃ν

is also g̃-normalized. Finally, g(ν, C̃ν)−1/2 C̃ν = ν̃ necessarily as they share
the same orientation: g(ν, ν̃) = g̃(C̃ν, C̃ν) > 0.

Applying lemma 4.1 to the metrics g and gt, we obtain

dAt =
√
g(ν, Ctν) dA , (46)

and for g and g,

dA =
√
g
(
ν, Cν

)
dA . (47)

By combining lemma 4.1 with corollary 3.4, we obtain the approximation
result for accumulated diffusive flux through boundaries of full-dimensional
material submanifolds.

Corollary 4.2 ([19, eq. (6)]4). Let S ⊂M be a full-dimensional submanifold
with smooth boundary, and u0 an admissible initial condition. Then

T 1
0 (S, u0) = −ε

∫ 1

0

∫

∂S

du0(Ctν) dA dt+O(ε2) .

4Recall that Ct = g−1
t g, where g is here the Euclidean metric on the flat state space,

and corresponds to the transport tensor in [19, 20]; and ν is the outward-pointing g-unit
normal vector field on ∂S. In [19], material surfaces are considered that are not necessarily
the boundary of a full-dimensional set. In case they are, [19, Eq. (6)] measures the influx,
which explains the opposite sign to ours. They also require weaker technical assumptions
and obtain a slightly weaker result than that O(ε2) error appearing here.
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Proof. We calculate with lemma 4.1

ε

∫ 1

0

∫

∂S

du0(Ctν) dA dt = ε

∫ 1

0

∫

∂S

du0(νt) g(ν, Ctν)1/2 dA dt,

= ε

∫ 1

0

∫

∂S

du0(νt) dAt dt ,

and conclude with the divergence theorem and Fubini’s theorem

= ε

∫ 1

0

∫

S

∆tu0 ω dt = ε

∫

S

∆u0 ω .

The claim now follows from corollary 3.4.

Using the transformation rules for normal vectors and surface forms from
lemma 4.1 we can find the representation of (the negative of) the leading-
order total diffusive transport through a material boundary w.r.t. an arbi-
trary weighted manifold structure on the material manifold (M, g̃, ω

dg̃
):

− lim
ε→0

1
ε
T 1

0 (S, u0) = −T 1

0(S, u0) =

∫ 1

0

∫

∂S

du0(Ctν) dA dt =
∫

∂S

du0(Cν) dA =

∫

∂S

du0(CC̃−1ν̃) dÃ =
∫

∂S

du0(Hν̃) dÃ =

∫

∂S

g̃(gradg̃ u0, Hν̃) dÃ , (48)

where H = g−1g̃ as claimed in eq. (25).

4.2 Relations to other dynamic surface areas

On a surface Γ ⊂M with g-unit normal vector field ν, we compute

dA =
√
g
(
ν, Cν

)
dA =

= g

(
ν,

(∫

I
Ct dt

)
ν

)1/2

dA =

(∫

I
g(ν, Ctν) dt

)1/2

dA .

Plugging in eq. (46) gives:

dA =

(∫

I

(
dAt
dA

)2

dt

)1/2

dA .
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This shows that the density of the surface element in the geometry of mixing
w.r.t. dA is an L2-average of the densities of the time-t surface elements.
Relating this with the interpretation in terms of diffusive transport, this is
consistent with the observation made in [13, Sect. III.A], “that the rate of
mass transport from an element of a material interface is related to the square
of the relative change of the surface area”.

Proposition 4.3 (Comparison to averages of surface areas). Let Γ be a
compact surface, and dA(Γ) and dAt(Γ) be its surface area as measured by
dA and dAt, respectively; i.e.,

dA(Γ) =

∫

Γ

dA, dAt(Γ) =

∫

Γ

dAt.

Then

dA(Γ) ≥
(∫

I
dAt(Γ)2 dt

) 1
2

≥
∫

I
dAt(Γ) dt =: dAt(Γ) .

Proof. For convenience, we denote ξ(t, p) = dAt

dA
(p) and compute

dA(Γ) =

∫

Γ

(∫

I
ξ(t, p)2 dt

)1/2

dA(p) =

∫

Γ

‖ξ(·, p)‖L2(I) dA(p)

≥ ‖
∫

Γ

ξ(·, p) dA(p)‖L2(I) (49)

=

(∫

I

(∫

Γ

ξ(t, p) dA(p)

)2

dt

)1/2

=

(∫

I
dAt(Γ)2 dt

)1/2

,

where eq. (49) is the triangle inequality for Banach-space valued maps (e.g.
for the Bochner integral see [26, Sect. VI]). The second claimed inequality
is a direct consequence of Jensen’s inequality applied to the expression in
eq. (49).

Notably, dAt(Γ) appears in the definition of the dynamic Cheeger constant
in [10, Eq. (4)]. Moreover, by means of the Cheeger inequality for weighted
manifolds, proposition B.1 in appendix B, we may strengthen the dynamic
Cheeger inequality [10, Thm. 3.2], where it was shown that

inf
Γ

dAt(Γ))

min{ω(M1), ω(M2)} ≤ 2
√
−λ2 ,
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for the case that ω = dgt for all t ∈ I. In this case, dAt is the gt-Riemannian
area. Flat Riemannian manifolds were considered in [10], an extension to
more general geometries was made in [12].

Corollary 4.4 (Strong dynamic Cheeger inequality). It holds

inf
Γ

dAt(Γ))

min{ω(M1), ω(M2)} ≤ inf
Γ

dA(Γ)

min{ω(M1), ω(M2)} ≤ 2
√
−λ2 ,

where infΓ denotes the infimum over all dividing surfaces Γ that split M into
two sets M1 and M2, and λ2 < 0 is the first non-trivial eigenvalue of ∆.

Proof. The first estimate follows from proposition 4.3, the second from propo-
sition B.1, since dA(Γ)/min{ω(M1), ω(M2)} is the Cheeger constant for the
geometry of mixing.

4.3 Relation to total Lagrangian diffusive transport

The authors of [19] establish the approximation of the total diffusive flux
as in corollary 3.4 in order to define a measure of diffusive permeability
for a generic material surface Γ. Here, the (“diffusive transport”) response

T
1

0(Γ, u0) to a “diffusion stress” given by some virtual initial condition u0—of
which Γ is supposed to be a level set—is computed. As a consequence, the
gradient of u0 along Γ is normal to Γ.

To make this construction comparable among different surfaces, they re-
quire that the norm is uniformly constant along the entire Γ, which speci-
fies u0 in a neighborhood of Γ to first order. It remains to choose a norm
w.r.t. which to measure the gradient and thereby require constancy. Since
the response depends linearly on this constant in the stress, one may take
this constant to be equal to 1 without loss of generality. The requirement on
u0 then reads as gradg u0 = ν, with ν the g-unit normal along Γ. We set

T
1

0(Γ; g) := −
∫

Γ

g(ν, Cν) dA , (50)

where, notationally, we replace the dependence of T
1

0 on u0 by a dependence
on the metric g which determines (i) the gradient of u0; (ii) the unit normal
vector; and (iii) the area element dA. By corollary 4.2, the previous definition
equals the leading-order coefficient of T 1

0 (S, u0) in the case that ∂S = Γ and
u0 is chosen as described above.
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In [19], the reference metric g is chosen as the one induced by the initial
spatial configuration of the fluid. For this choice, the norm of the gradient of
u0 is constant as measured in the spatial metric. This choice suggests itself,
but is by no means natural. For instance, if at the initial time instance the
diffusion is not spatially homogeneous (along Γ), a u0 chosen with constant
gradient measured w.r.t. g may have non-constant gradient w.r.t. g0, the
initial, diffusion-adapted metric. As a consequence, it will have non-constant
instantaneous diffusive flux, which puts different diffusion stress on different
subsets of Γ, and hence makes them incomparable.

Alternatively, one could argue that the gradient should be measured in the
“effective” diffusion-adapted norm g, the norm in the geometry of mixing,
and request uniform constancy w.r.t. this norm; i.e. gradg u0 = ν . The
diffusive transport represented in the geometry of mixing (g = g), where H
is the identity (see eq. (48)), reduces to

T
1

0(Γ; g) = −
∫

Γ

g(ν, ν) dA = −
∫

Γ

dA , (51)

the (negative of the) surface area of Γ in the geometry of mixing. For com-
parison, we represent the surface area in the the geometry of the initial
configuration using lemma 4.1, and obtain

T
1

0(Γ; g) = −
∫

Γ

√
g(ν, Cν) dA . (52)

and find that the different uniformization choices for (the gradient of) u0 lead
to integrands that are the square and square root of each other, respectively.

Noticeably, within the T
1

0(Γ; g) setting, the problem of finding closed
material surfaces that minimize leading-order diffusive transport normalized
by the enclosed fluid mass is exactly the isoperimetric problem posed in the
geometry of mixing; cf. [10, 12] for a related but different approach (recall
also corollary 4.4, and the surrounding discussion).

5 Conclusions

In the above, we have investigated the O(ε) asymptotics of finite-time, time-
dependent heat flow on manifolds as the diffusivity ε goes to zero. Such
time-dependent heat flows arise naturally when studying (possibly time-
dependent) advection-diffusion equations in Lagrangian coordinates. When
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the initial concentration u0 is smooth with support compactly contained in
M , the behaviour of the advection-diffusion equation in leading order is de-
scribed by the time-averaged heat equation or, equivalently, the heat flow in
the geometry of mixing.

The advection-diffusion equation remains well-defined even with non-
smooth initial data u0. In particular, it seems natural to investigate T 1

0 (S,1S),
the diffusive transport out of a material set S when the initial density is uni-
formly distributed on S. The theory developed in this work does not apply
to this quantity. Here, the leading order asymptotics is no longer of order
ε, as even in the autonomous heat flow context T 1

0 (S,1S) is of order ε1/2;
see, e.g., [43, 40]. There, the leading-order coefficient is proportional to the
surface area of the boundary of S. In the time-dependent, finite-time heat
flow case, a similar result can be shown, where the relevant surface area is
the one in the geometry of mixing. This will be published in forthcoming
work.
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A Differential geometric preliminaries

In this section, we briefly recall some fundamental concepts from differential
geometry and fix our notation. General references include [29, 15]. Through-
out, let M be a smooth, oriented, compact manifold of dimension dimM = n,
possibly with smooth boundary.

A (Riemannian) metric g on M is a symmetric, positive-definite, con-
travariant tensor field of rank 2, i.e., g : TM × TM → R. For any tangent
vector v ∈ TxM , a metric g induces a linear form gx(v, ·) on TxM . Corre-
spondingly, for any vector field v, the metric g induces a one-form on M .
With the contraction operation/interior multiplication on forms, denoted by
ι, i.e.,

(ιFα)(v1, . . . , vk−1) = α(F, v1, . . . , vk−1) ,

for any k-form α, the induced one-form can be written as w = ιvg. Hence-
forth, we identify a metric g with its interpretation as the linear transforma-
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tion gx : TxM → T ∗xM , v 7→ ιvgx, often referred to as the canonical/musical
isomorphism between TxM and T ∗xM . Moreover, we will often suppress the
subscript x and regard g as a vector-bundle morphism g : TM → T ∗M ; cf.,
for instance, [27].

Non-degeneracy of g implies its invertibility, and we may interpret its in-
verse g−1 : T ∗M → TM by a similar identification as above with a symmetric,
positive-definite, covariant tensor field of rank 2, i.e., g−1 : T ∗M×T ∗M → R.
This can be interpreted as an inner product on one-forms, and is known in
the literature as the dual metric (to g).

With this notation, the gradient (induced by g) gradg f is defined as the
vector field (a section of TM) obtained from transforming the one-form df
by g−1 : T ∗M → TM ,

gradg f = g−1 df . (53)

For any volume form ω on M , the induced divergence divω of a smooth
vector field F : M → TM is defined via

(divω F )ω := d(ιFω) = LV ω,

where divω F ∈ C∞(M), and L is the Lie-derivative.
The induced (Riemannian) volume element is the unique volume form,

denoted by dg (the d here does not refer to the exterior derivative we used
before), that returns 1 when applied to an oriented, orthonormal set of tan-
gent vectors v1, . . . , vn ∈ TxM . It holds that divdg is the usual Riemannian
divergence.

Next, let Γ be an oriented codimension-1 surface in M . Then the metric
g induces a surface element dAg on Γ via the volume element on M as
follows. For given, oriented linearly independent v1, . . . vn−1 ∈ TpΓ, let νg ⊥g
span{v1, . . . , vn−1} with ‖νg‖g = 1 be such that (νg, v1, . . . , vn−1) is positively
oriented in M . We call such ν the unit normal vector to Γ at p. Then the
action of the surface element is given by

dAg(v1, . . . , vn−1) = dg(ν, v1, . . . , vn−1), v1, . . . , vn−1 ∈ TpΓ . (54)

Intuitively, (v1, . . . , vn−1) span a parallelepiped of area 1 if, when expanded
by the unit normal ν, the resulting parallelepiped has volume 1. By con-
struction, a surface Γ has non-negative surface area

dAg(Γ) :=

∫

Γ

dAg .
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The surface element dAg is a top-degree form on Γ and can be hence regarded
as the volume element there.

A natural differential operator on Riemannian manifolds is the Laplace-
Beltrami operator ∆g defined as

∆g := divdg ◦ gradg .

It will turn out that for an elegant description and study of a suitably gen-
eral class of advection-diffusion processes, weighted manifolds (also known as
manifolds with density [31]) are very helpful. A weighted manifold (M, g, θ)
is a Riemannian manifold (M, g), on which the volume form and—as a
consequence—the induced surface area forms are weighted by a (strictly)
positive smooth function θ : M → R w.r.t. the canonical volume dg or sur-
face area dAg forms [32, Sect. 18.1]. For the induced surface area the same
intuition and formalism applies: measure the volume of a higher-dimensional
parallelepiped as obtained by expansion with a suitably oriented unit normal
vector, and the result is the area of the base parallelepiped.

On a weighted manifold (M, g, θ), the Laplace operator ∆θ,g is defined
analogously to the classic Riemannian case by composition of the associated
divergence and gradient,

∆θ,g := divθ dg ◦ gradg .

B Cheeger inequality on weighted manifolds

Proposition B.1 (Cheeger inequality for weighted manifolds). Let (M, g, θ)
be a compact weighted manifold with Laplace operator ∆. We denote the
(weighted) volume form by ω := θdg, the (weighted) surface measure by dA,
and the first nontrivial eigenvalue of ∆ by λ. Furthermore grad := gradg,
and ‖·‖ := ‖·‖g. Then the Cheeger inequality holds:

h := inf
Γ disconnects M into M1,M2

dA(Γ)

min{ω(M1), ω(M2)} ≤ 2
√
−λ . (55)

Proof. The proof of the classical Cheeger inequality given in [28] applies—
with obvious modifications—to the weighted manifold case.
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C Spectral convergence

Recall that we used the notation 〈·, ·〉0 for the L2(M,ω) scalar product and
〈·, ·〉1 for the H1(M, g, ω) scalar product; furthermore, we introduced g as
some reference metric on M and grad = gradg. For later reference, we first
prove estimates on solutions.

Lemma C.1 (Uniform parabolicity). There exist constants C1, C2 > 0 in-
dependent of t so that C1|u|21 ≤ −〈u,∆tu〉0 ≤ C2|u|21 for all u ∈ H1

0 (M, g, ω).
Moreover, for u1, u2 ∈ H1

0 (M, g, ω) it holds that 〈u1,∆tu2〉 ≤ C2|u1|1|u2|1.

Proof. This is well-known to follow directly from uniform ellipticity of the
smooth, t-dependent family of operators ∆t, defined on the compact [0, 1],
which are in divergence form w.r.t. the volume form ω.

For reference, we state the following well-known result/proof.

Lemma C.2 (L2 contractivity; [7, Sect. 7.1, Thm. 2]). Let u0 ∈ L2(M,ω).
Then ‖P ε

t u0‖0 ≤ ‖u0‖0.

Proof. To see this, note that

∂t‖P ε
t u‖2

0 = 2ε〈P ε
t u,∆tP

ε
t u〉0 ≤ 0 ,

since ∆t is non-positive. Absolute continuity of t 7→ ‖P ε
t u‖2

0 is established in
lemma D.1, appendix D.

Lemma C.3 (Uniform H1 boundedness; cf. [30, Prop. 2(iii)]). For t ∈ [0, 1]
and u0 ∈ H1

0 , we have |P ε
t u0|1 ≤ C3|u0|1 for some constant C3 that does not

depend on u0, t or ε.

Proof. Our proof conceptually closely follows [30, App. B], which is given in
Eulerian coordinates, and therefore takes a seemingly different form because
of the presence of the advection term in the evolution PDE.

We start with the case that u0 is in the domain of ∆0. By uniform
parabolicity it suffices to find bounds on f ε(t) := −〈uε(t),∆tuε(t)〉0. Using
lemma D.2, see see that f ε(t) is absolutely continuous, and moreover

∂t〈uε(t),∆tuε(t)〉0 = 2ε〈∆tuε(t),∆tuε(t)〉0 + 〈uε(t), ∂t(∆t)uε(t)〉0
≥ 〈uε(t), ∂t(∆t)uε(t)〉0 .
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The operator ∂t(∆t) is given via its action on u ∈ C∞(M) as

∂t(∆t)u = divω(∂t(g
−1
t )du) ,

recalling that ∆tu = divω(g−1
t du) is the action of ∆t. Hence, ∂t(∆t) is a well-

defined second-order partial differential operator with smooth coefficients.
Arguments as in the proof of lemma C.1 yield that

C := sup
u∈H1

0 (M,ω,g)

|〈∂t(∆t)u, u〉0|/|u|21 <∞ .

Therefore

−∂t〈uε(t),∆tuε(t)〉0 ≤ C|uε(t)|21 .

Due to uniform parabolicity we have that |uε(t)|21 ≤ C−1
1 f ε(t). Hence by

Grönwall’s lemma ([7, Appendix B.2]), f ε(t) ≤ eCC
−1
1 f ε(0), which finishes

the proof. Since the domain of ∆0 is dense in H1
0 , the general result is a

consequence of this special case (using the results in appendix D).

Recall the well-known fact that the L2-adjoint of P ε is the time-1 solution
operator associated to the Lagrangian advection-diffusion equation with the
same Dirichlet boundary conditions, but with reversed time5, i.e.,

∂tu(t, x) = ε∆(1−t)u(t, x) . (56)

The range of (P ε)∗ is a subset of H1
0 (M, g, ω); see appendix D. Therefore,

the left singular vectors of P ε, or equivalently the eigenvectors of (P ε)∗P ε,
are in H1

0 (M, g, ω). Recall that the constant C3 from lemma C.3 depends (i)
on the uniform parabolicity bounds C1 and C2 from lemma C.1, and (ii) on
bounds on ∂t(∆t). All of these bounds equally apply to eq. (56). Therefore,
we conclude with lemma C.3 that

|P ∗u|1 ≤ C3|u|1 , (57)

for u ∈ H1
0 (M, g, ω). Furthermore, the same estimate

|Pt,1u|1 ≤ C3|u|1 , (58)

5See, for example, the proof of [1, Prop. 2.9] and appendix D
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applies to the solution operator (from time t to time 1) of the Lagrangian
advection-diffusion equation, considered on the time interval [t, 1]. By con-
struction,

P ε
1 = P ε

t,1P
ε
t

for any t ∈ (0, 1).

Lemma C.4. There exists C4 > 0, independent from ε, satisfying

|vε|1 ≤ max
t∈[0,1]

|vε(t)|1 ≤ C4 min
t∈[0,1]

|vε(t)|1 ≤ C4|vε|1

for sufficiently small ε and the singular vector vε. Recall that vε(t) := P ε
t v

ε.

Proof. The rightmost and leftmost inequalities are trivial. For the middle
inequality, by lemma C.3 we have

max
t∈[0,1]

|vε(t)|1 ≤ C3|vε|1 . (59)

Thus it is enough to show

|vε|1 ≤ C|vε(t)|1 (60)

for all t ∈ [0, 1], with some C > 0 independent from t or ε. Since the square
of singular values of P ε are eigenvalues of (P ε)∗P ε, we have

(σε)2vε(0) = (P ε)∗P ε
1 v

ε(0) = (P ε)∗vε(1) . (61)

Applying eq. (58) to vε(1) = P ε
t,1v

ε(t) yields |vε(1)|1 ≤ C3|vε(t)|1. Equa-
tions (57) and (61) yield that (σε)2|vε|1 ≤ C3|vε(1)|1. Combining these in-
equalities, we obtain |vε(0)|1 ≤ (σε)−2C2

3 |vε(t)|1. We know that (step 1 of
theorem 3.5) σε → 1 for ε → 0, and is thus bounded away from zero for
sufficiently small ε. This proves eq. (60), and the claim is shown.

Lemma C.5 (H1 bound on singular vectors). There exists a constant C >
0, independent of ε and t, for which |vε(t)|1 ≤ C holds for t ∈ [0, 1] and
sufficiently small ε.
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Proof. With eq. (39) and lemmas C.1 and C.4 we obtain for any t ∈ (0, 1]
and sufficiently small ε that:

(1− (σε)2)

2ε
= −

∫ 1

0

〈vε(t),∆tv
ε(t)〉0 dt

≥ min
t∈[0,1]

−〈vε(t),∆tv
ε(t)〉0

≥ C1 min
t∈[0,1]

|vε(t)|21
≥ C1C

−1
4 |vε(0)|21 .

In eq. (37) we have already shown that the limit superior of the left hand side
is less than or equal to −λ, and, therefore, it may be bounded from above by,
say, −2λ for sufficiently small ε. This shows that |vε|21 ≤ −2λC4C

−1
1 , proving

the claim for t = 0. The case t 6= 0 is now a consequence of lemma C.3.

D Parabolic PDEs on compact manifolds with

boundary

We briefly collect some properties of second-order parabolic PDEs on com-
pact and orientable smooth Riemannian manifolds with (potentially empty)
C2 boundary. These properties are well known when the domain is an open
subset of Rn [7, 37] and the straightforward extension to compact manifolds
seems to be folklore knowledge , though rarely explicitly treated; see [2]. We
describe below some properties of the the Galerkin-approach described in
[7][37, Chapter 11.1] with straightforward modification to the time-dependent
mass-preserving setting on a compact manifold; the reasoning below is in-
cluded only in order to (a) demonstrate that well-known results on Rn indeed
extend to compact manifolds in a straightforward way because we could not
find a reference and (b) collect some technical results arising directly in the
standard Galerkin approach that we require elsewhere.

Let ω be a smooth, nonvanishing volume-form on M . For convenience,
we will use a metric g such that dg = ω. The metric may be constructed
by any metric on M after suitable rescaling. We need this metric only for
defining a norm on H1(M, g), given by

‖u‖2
H1(M,g) :=

∫

M

g(gradu, gradu)ω+

∫

M

|u|2 ω ,
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where gradu is interpreted in a suitably weak sense. Since M is compact,
the specific choice of g will not affect the topology of H1(M, g). The space
H1

0 (M, g) is defined as the completion of C∞c (M̊) w.r.t. ‖·‖H1(M,g) [15, 21].
We will describe the parabolic PDE theory needed for the equation

∂tu = divω(D(t)du) , (62)

with D : [0, 1]× T ∗M → TM a smooth—including at the boundary—family
of nonvanishing bundle morphisms that are symmetric in the sense that
D(t, u)(v) = D(t, v)(u) for t ∈ [0, 1] and all vector fields u and v. Let
L(t)v := divω(D(t)du). The tensor field D is bounded—due to its smooth-
ness and compactness of M—and nonvanishing, hence the operator ∂t−L is
uniformly parabolic, i.e., there exists α > 0 such that for any v ∈ H1

0 (M, g)

α−1‖gradg v‖2
L2(M,ω) ≤ −〈v, L(t)v〉L2(M,ω) ≤ α‖gradg v‖2

L2(M,ω) . (63)

For what follows, we require the well-known theory of vector-valued So-
bolev spaces, and our notation essentially follows [37]; see also [4, Appendix
A] for proofs of fundamental results. For a Hilbert space X, we write X∗ for
its dual, and H−1(M, g) := H1

0 (M, g)∗.
As in [37], to each t ∈ [0, 1] we associate an operator L(t) : H1

0 (ω) 7→
H−1(M, g), defined by

(L(t)u)v = 〈du,D(t)dv〉L2(M,ω) =

∫

M

du(D(t)dv) ω .

The space L2(M,ω) embeds continuously into H−1 by the identification of a
function f ∈ L2(M,ω) with the functional 〈f, ·〉L2(M,ω). By a slight abuse of
notation, for f ∈ H−1(M, g) and g ∈ H1

0 (M, g) we will write 〈f, g〉L2(M,ω) :=
f(g), even if f is not contained in the image of the embedding.

Lemma D.1. Equation (62) has a unique weak solution

u ∈ C([0, 1];L2(M,ω)) ∩ L2((0, 1);H1
0 (M, g)),

given an initial value u(0, ·) ∈ L2(M,ω). Moreover, the function t 7→ ‖u(t, ·)‖2
L2(U)

is absolutely continuous, with

d

dt
‖u(t)‖2

L2(M,ω) = 2〈L(t)u(t), u(t)〉L2(M,ω) (64)

for almost all t, where the right hand side must be interpreted in a weak
sense.
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Proof. The L2-Galerkin approach described in [7, Sect. 7.1, Thms. 3 & 4]
yields existence and uniqueness for the compact manifold case just like for
M ⊂ Rn compact. Theorem 3 in [7, Sect. 5.9] proves the remaining claims.

These arguments show that for t ∈ [0, 1], the time-t solution operator to
eq. (62) is well-defined when viewed as an operator Pt : L

2 → L2. Arguments
as in lemma C.2 establish its continuity.

Let the domain of L(t) be the collection of f ∈ H1
0 (M, g) ⊂ L2(M,ω)

satisfying L(t)f ∈ L2(M,ω). As a consequence of elliptic regularity theory
and the fact that we are working with homogeneous Dirichlet boundary (see
[7, Chapters 6.3 & 7.4]), this function space does not depend on t. By
arguments as in [34, Chapter 7], one sees that for t ∈ (0, 1], the image of the
time-t solution operator Pt is in the domain of L(t). Hence, the image of Pt is
in H1

0 (M, g) for all t ∈ (0, 1]. Thus, the operator Pt : L
2(M,ω) → H1

0 (M, g)
is well-defined, and by the closed graph theorem it is continuous. By the
Rellich-Kondrachev theorem, Pt is therefore compact when viewed as an
operator from L2(M,ω) to itself.

Lemma D.2. Provided that the initial value u0 is in the domain of L(0), the
solution from lemma D.1 is sufficiently regular such that

(i) u ∈ H1 ((0, 1);H1
0 (M, g)),

(ii) L(t)u ∈ H1 ((0, 1);H−1(M, g)), and

(iii) L(t)u ∈ C ([0, 1];L2(M,ω)).

The function 〈u, L(t)u〉L2(M,ω) is absolutely continuous with

d

dt
〈u(t), L(t)u(t)〉L2(M,ω) =

2〈L(t)u(t), L(t)u(t)〉L2(M,ω) + 〈L′(t)u(t), u(t)〉L2(M,ω) (65)

for almost all t ∈ [0, 1].

Proof. Proceed as in [37, Sect. 11.1.4], for the last statement a result like [4,
Cor. A.4] is required.

Lemma D.3. If u0 ∈ C∞c (M̊), then the solution u from lemma D.1 is in
C∞([0, 1]×M).
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Proof. Certainly u0 is in the domain of all powers of L(t). Iterating the con-
struction of [37, Sect. 11.1.4] together with Sobolev embedding and elliptic-
regularity results yields the claim. See also [7, Sect. 7.1, Thm. 7] for a proof
of the nonautonomous case on open subsets of Rn.

We conclude with a well-known property of smooth solutions to parabolic
equations.

Lemma D.4 (Weak maximum principle on manifolds; [21, Thm. A.3.1] or
[7, Sect. 7.1, Thm. 8]). Let u ∈ C1,2([0, 1]×M)∩C([0, 1]×M). If Lεu ≤ 0 on
[0, 1]× int(M), then for the “parabolic boundary” B := [0, 1]×∂M ∪{0}×M
one has

max
[0,1]×M

u = max
B

u . (66)
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[39] T. Schäfer, A. C. Poje, and J. Vukadinovic. Averaged dynamics of time-
periodic advection diffusion equations in the limit of small diffusivity.
Physica D, 238(3):233–240, 2009. doi:10.1016/j.physd.2008.10.015.

[40] N. Schilling. Short-time heat content asymptotics via the wave and
eikonal equations. The Journal of Geometric Analysis, 31(2):2172–2181,
2021. doi:10.1007/s12220-020-00416-z.

[41] M. E. Taylor. Partial Differential Equations I, volume 115 of Applied
Mathematical Sciences. Springer New York, 2nd edition, 2011. doi:

10.1007/978-1-4419-7055-8.

[42] J.-L. Thiffeault. Advection–diffusion in Lagrangian coordinates. Physics
Letters A, 309(5–6):415 – 422, 2003. doi:10.1016/S0375-9601(03)

00244-5.

[43] M. van den Berg and P. Gilkey. Heat flow out of a compact manifold.
The Journal of Geometric Analysis, 25:1576–1601, 2015.

[44] E. van Sebille, S. M. Griffies, R. Abernathey, T. P. Adams, P. Berloff,
A. Biastoch, B. Blanke, E. P. Chassignet, Y. Cheng, C. J. Cotter,
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Heat-content and diffusive leakage
from material sets in the

low-diffusivity limit∗

Nathanael Schilling† Daniel Karrasch‡ Oliver Junge§

September 13, 2021

We generalize leading-order asymptotics of a form of the heat content of a
submanifold (van den Berg & Gilkey 2015) to the setting of time-dependent
diffusion processes in the limit of vanishing diffusivity. Such diffusion pro-
cesses arise naturally when advection-diffusion processes are viewed in La-
grangian coordinates. We prove that as diffusivity ε goes to zero, the diffusive
transport out of a material set S under the time-dependent, mass-preserving
advection-diffusion equation with initial condition given by the characteris-
tic function 1S, is

√
ε/π dA(∂S) + o(

√
ε). The surface measure dA is that

of the so-called geometry of mixing, as introduced in (Karrasch & Keller
2020). We apply our result to the characterisation of coherent structures in
time-dependent dynamical systems.

MSC: 35B25, 60G07, 58J32, 58J35

1. Motivation

Consider the advection-diffusion process of a passive scalar u by a sufficiently regular,
possibly time-dependent, volume-preserving vector field V as described by the advection-
diffusion equation

∂tu = − div(uV ) + ε∆u , (1)
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and some initial condition u(0, ·) = u0. Let Φt
0 denote the flow map (from time 0 to time

t) induced by V . For ε = 0, there is only advection and the time-t solution operator
mapping u(0, ·) to u(t, ·) under eq. (1) is given by a coordinate change by the flow map
of V , i.e., u(t,Φt

0(x)) = u0(x). The coordinates induced by the flow map Φt
0 are well

known as Lagrangian coordinates. We refer to flow-invariant space-time sets as material
sets.
For any non-negative ε, we are interested in the leakage of u = uε from a full-

dimensional material set S with smooth boundary over the time interval [0, t] under
eq. (1). Let us denote this material outflow by

T t0(S, u0, ε) :=

∫

S

u0 dx−
∫

Φt0(S)

uε(t, x) dx .

In the advection-only case, flow-invariance directly implies

T t0(S, u0, 0) = 0 , (2)

regardless of the initial condition u0 and set S. In simple terms, no mass can leak out
of a material set if there is no diffusion.
For ε > 0, however, the situation is different: In general, T t0(S, u0, ε) does not van-

ish, and the asymptotics of T t0(S, u0, ε) as ε → 0 are nontrivial and of both scientific
and practical interest. In [15], leading-order asymptotics of T t0(S, u0, ε) for smooth u0

compactly supported in the interior of the domain were derived, and in [20] they were
additionally studied from a geometric point of view. In this work, we further expand
the theory towards the natural case u0 = 1S.
Let ũε denote uε in Lagrangian coordinates, i.e., ũε(t, ·) = uε(t, ·) ◦ Φt

0. Then eq. (1)
reads as

∂tũε = ε∆tũε , (3)

where ∆t is the differential geometrical pullback of the Laplace operator by Φt
0; see, for

instance, [22, 27, 19]. With a common, slight abuse of notation, we will omit the tilde
in eq. (3) henceforth as we work in Lagrangian coordinates exclusively. Here,

T t0(S,1S, ε) =

∫

S

dx−
∫

S

uε(t, x) dx =

∫

M\S
uε(t, x) dx ,

since
∫
M
uε(t, x) dx =

∫
M
u0(x) dx =

∫
S

dx for all t ∈ [0, 1] by mass preservation. If
eq. (3) were the classical autonomous heat equation, then the leading-order coefficient
(of order

√
ε) in T 1

0 (S,1S, ε) is proportional to the surface area of ∂S; see [28]. For a
generalization to the nonautonomous case as in eq. (3), it is a priori unclear whether one
should again expect some kind of surface measure of ∂S in the leading-order coefficient:
in the Lagrangian pullback geometry, ∂S has—in general—a different surface area at
each time instance t. Recently, [19] proposed a (weighted) geometry—the geometry of
mixing to be recalled below—which was developed to specifically analyze advection-
diffusion processes on finite-time intervals. This geometry, which has the mathematical
structure of a weighted (Riemannian) manifold [19, 20], admits an area form dA about
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which we show in this work that it, indeed, determines the leading-order asymptotics of
material leakage out of material sets, namely

T 1
0 (S,1S, ε) =

√
ε

π

∫

∂S

dA+ o
(√

ε
)
.

In our proof, we will work with a generalized form of the time-dependent Lagrangian
heat equation eq. (3), and do not assume that it is necessarily given as some advection-
diffusion equation in Lagrangian coordinates.

2. Mathematical setting

Let M be a smooth compact manifold (possibly with smooth boundary), and ω a non-
vanishing volume form on M . Recall that ω naturally defines a divergence operator,
acting on vector fields V ∈ Γ(TM), by (divω V )ω = LV ω. Here, Γ(TM) denotes smooth
sections of the tangent bundle and L is the Lie derivative. If (gt)t∈[0,1] is a smoothly-
varying one-parameter family of Riemannian metrics onM , a weighted Laplace operator
(cf. [13]), acting on smooth functions f ∈ C∞(M), is defined for each t with the formula

∆tf := divω g
−1
t df .

The notation g−1
t shall be interpreted using the well-known natural identification of

gt with a vector bundle morphism mapping a tangent vector v to the cotangent vector
gt(v, ·). As gt is positive definite at each point, this is in fact a vector bundle isomorphism
and g−1

t is well-defined. Indeed, f 7→ g−1
t df is the gradient induced by the metric gt.

As mentioned earlier, our object of study is the time-dependent heat equation with
diffusivity ε > 0 and initial value u0 ∈ L2(M,ω),

∂tuε = ε∆tuε , uε(0, ·) = u0 , (4)

which is a generalization of the classical heat equation on M for which gt is independent
from t and ω is the Riemannian volume form. We will look at eq. (4) with boundary
conditions given by either (i) ∂M = ∅, (ii) homogeneous Dirichlet boundary or (iii)
homogeneous Neumann boundary. Of course, (i) is a special case of both (ii) and (iii).

3. The geometry of mixing

We write P ε
t for the the time-t solution operator of eq. (4), and denote by 〈·, ·〉0 the

L2(M,ω) inner product. Throughout, we will identify the volume form ω with its induced
measure. A (time) averaged version of eq. (4) describes the leading-order behaviour of
P ε

1 as ε→ 0. Indeed, defining1

g :=

(∫ 1

0

g−1
t dt

)−1

, ∆ := divω g
−1 df , and P

ε

t := exp(εt∆) ,

1The imposed boundary condition type in the definition of the semigroup exp(εt∆) corresponds to the
one (homogeneous Dirichlet/Neumann) imposed in eq. (4), see also [20].
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it is true [20], see also [21, 15], that for u0 ∈ C∞c (M), i.e., u0 ∈ C∞(M) with compact
support in M̊ , ∥∥P ε

1u0 − P ε

1u0

∥∥
L∞(M)

= O(ε2), ε→ 0 . (5)

The operator ∆ was called the dynamic Laplacian in [9], and is the natural Laplace op-
erator of the weighted manifold (M, g, ω). This weighted manifold was coined geometry
of mixing in [19]. On the surface ∂S oriented by the g-unit outer normal vector field ν,
the geometry of mixing has a natural area form given by dA(·) := ω(ν, ·); see [19, 20].
For non-smooth u0, such as u0 = 1S, it is not clear whether we can expect a result like

eq. (5): even in the special case of the time-independent heat equation on the weighted
manifold (M, g, ω), there are now terms of order ε

1
2 and its powers (which is in stark

contrast to the case of smooth initial values). It is known, for example, that

〈
P
ε

11S,1M\S
〉

=

√
ε

π

∫

∂S

dA+ o(
√
ε) , ε→ 0 ; (6)

see [28, 23]. In this paper, we show that eq. (6) remains true if P ε

1 is replaced by P ε
1 , i.e.

the following theorem which we prove in section 5.

Theorem 1. Let S be a compact, full-dimensional submanifold ofM with smooth bound-
ary, contained in the interior of M , and let Sc := M \ S. Then

〈P ε
11S,1Sc〉0 =

√
ε

π

∫

∂S

dA+ o(
√
ε) , ε→ 0 . (7)

4. Eulerian coherent pairs and Lagrangian coherent
sets

In [10], the following concept of coherence has been introduced. Consider two spatial
sets S (at time 0) and S ′ (at time 1), Lε a small perturbation of the transfer operator,
i.e., the solution operator for eq. (1) with ε = 0, where the perturbation strength scales
with ε > 0. Then [10] proposed a coherence ratio

ρε(S, S
′) :=

〈Lε1S,1S′〉0
ω(S)

+

〈
Lε1M\S,1M\S′

〉
0

ω(M \ S ′) , (8)

as a measure of coherence of the pair (S, S ′). Verbally, this measures how much of S is
carried to S ′ and how much of M \ S is carried to M \ S ′ by the “perturbed flow”. In
yet other words, coherent pairs (see also [2]) S and S ′ are pairs of spatial sets such that
there is little leakage under the action of Lε.
Of course, choosing S ′ = Φ1

0(S) results in no leakage (or, equivalently, coherence ratio
equal to 1) in the non-diffusive case, notably for any choice of S, see eq. (2). While, in
that limit case, the problem of seeking “maximally coherent pairs” becomes meaningless,
one would expect that S ′ = Φ1

0(S) is the right condition to perturb from when bringing
weak diffusion into consideration.
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We thus define the Lagrangian coherence ratio as

ρ̃ε(S) := ρε(S,Φ
1
0(S)) .

Seemingly trivial, this has conceptually deep implications. First, it removes one degree of
freedom, the choice of S ′. As a consequence, it changes the focus from Eulerian coherent
pairs (of sets) to individual Lagrangian coherent sets. Moreover, it is clear that, for given
S, the Lagrangian coherence ratio depends only on the type and the strength of the
perturbation of the transfer operator. One implementation of a perturbation, as done in
[10], is to convolve densities both before and after the purely advective transport with an
explicitly-defined kernel, whose support is bounded by ε away from 0. Another popular
approach is to omit any explicit perturbation, and rely on “numerical diffusion” (e.g., via
box discretizations) instead; see [11]. The choice Lε = P ε

1 , i.e., the solution operator to
the Lagrangian advection-diffusion equation eq. (3) was suggested in [19]—see [5] for the
analogous Eulerian approach—as a physically natural perturbation candidate, that can
also be given a stochastic interpretation. With this definition of Lε, we can work with
indicator functions directly when maximizing coherence measures like eq. (8), instead of
applying a two-step relaxation procedure as is sometimes done; see [17, 10, 4].
By Theorem 1, if ∂S is smooth and ∂M = ∅ (or with homogeneous Neumann bound-

ary), then as ε→ 0,

ρε(S,Φ
1
0(S)) =

ω(S)−√ ε
π

∫
∂S

dA

ω(S)
+
ω(M \ S)−√ ε

π

∫
∂S

dA

ω(M \ S)
+ o(
√
ε) .

In other words, if we fix ω(S), the coherence ratio depends in leading order as ε → 0
only on (a constant times) the area of ∂S in the geometry of mixing. Smooth local mini-
mizers of the area functional in a (weighted) manifold with respect to volume-preserving
variations are well-known to be surfaces of constant generalized mean curvature; see [14,
Sect. 9.4E]. The above considerations hence suggest that sets bounded by such a mini-
mizing surface be viewed as Lagrangian coherent sets in the low-diffusivity limit. This
connection between the concept of coherent sets and that of the (generalized) isoperi-
metric problem is closely related to the connection described in [9]. At the same time,
it has close ties to the studies of diffusive transport across material surfaces performed
in [19, 15, 16].

5. Proof of the main theorem

5.1. Overview

Our proof consists of a reduction of eq. (7) to the time-independent setting so that we
can apply eq. (6). In a first step, we perform this reduction for the case M = Rn in
section 5.2 using stochastic methods. This avoids technical complications arising from
dealing with manifold-valued stochastic processes. We then treat the general case where
M is an arbitrary compact manifold in a second step (section 5.3).

5



∂tuε = ε∆tuε ∂tuε = ε∆uε

dXε
t = εb(1− t,Xε

t ) dt+
√
εσ(1− t,Xε

t ) dWt

dY ε
t =
√
εσ(1− t,X0) dWt

Kolmogorov backwards equation

Second-order approximation

dX
ε
t = εb(X

ε
t ) dt+

√
εσ(X

ε
t ) dWt

dY
ε

t =
√
εσ(X0) dWt

Identical law

Figure 1: Schematic visualization of the structure of the proof of Theorem 1 on Rn.

The structure of the first step is sketched in Fig. 1. On the top right hand side we
depict the averaged, i.e., time-independent, advection-diffusion equation for which we
know (eq. (6)) the asymptotic behaviour of 〈P ε

11S,1Sc〉0 as ε→ 0. On the top left there
is the time-dependent advection-diffusion equation which is the subject of Theorem 1.
Each arrow represents a reduction or approximation step in the proof:

(i) The upper two arrows (blue) connect a stochastic differential equation (SDE) to
its Kolmogorov backward PDE above it; see section 5.2.1.

(ii) Central arrows (olive): Each SDE is approximated by another SDE, inheriting the
leading-order asymptotics we are interested in, see section 5.2.4. The use of this
kind of SDE approximation to obtain PDE approximations is well known in the
literature, see, e.g., [7, Section 2.3].

(iii) The lower arrow (black) highlights the fact that Y ε
t and Y ε

t have the same law, and,
as a consequence, they share the same the leading-order asymptotics of interest.

The reduction as a whole may be conceptualised as going along the arrows from the top
right of Fig. 1 to the top left.

Technical issues caused by non-compactness

As Rn is not compact, it may be that 1Rn /∈ L2(Rn, ω). This means that the 〈·, ·〉0
notation appearing in eq. (7) must be clarified: we abuse notation by writing 〈f, g〉0 :=∫
M
f(x)g(x)ω whenever fg ∈ L1(Rn, ω). Similar issues also play a role in the non-

compact case. Since in Theorem 1 we assume the set S to be compact anyway, in order
to avoid unncessary technical complications, we state the following simplifiying
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Assumption A. There exists a bounded set B (containing S in its interior) so that
both gt and ω are equal to the Euclidean metric and its volume form respectively outside
of B for all t ∈ [0, 1].

5.2. Step 1: The case M = Rn

On M = Rn, the initial value problem eq. (4) takes the form

∂tuε = ε

(
n∑

i=1

bi∂iuε +
1

2

n∑

i,j=1

ai,j∂ijuε

)
, uε(0, ·) = u0 . (9)

Here, the space-time-dependent, real-valued functions aij and bi depend on the met-
rics (gt)t∈[0,1] and the volume form ω. There are no coefficients of lower order because
∆t1Rn = 0 for all t ∈ [0, 1]. Assumption A yields that on the complement of B, ai,j = δij
and bi = 0 in Cartesian coordinates. We have collected some results from the literature
on parabolic PDEs in appendix C adapted to our setting which we will use in the sequel.

5.2.1. The Kolmogorov backwards equation

The time-1 solution operator of eq. (9) is closely linked to the stochastic process governed
by the SDE

dXε
t = εb(1− t,Xε

t ) dt+
√
εσ(1− t,Xε

t ) dWt , (10)
with

(
σ(t, x)σ>(t, x)

)
ij

= aij(t, x) and initial value Xε
t0

= Xt0 independently of ε. It is
well known that for a given n-dimensional Brownian motion (Wt)t∈[0,1], for t0 ∈ [0, 1]
a unique strong solution to eq. (10), starting at time t0, exists provided that Xt0 is
independent of (Wt)t∈[t0,1] and that b and σ satisfy Lipschitz and growth conditions
(cf. also section 5.2.4). A direct consequence of smoothness and Assumption A is that
the Lipschitz and growth conditions are satisfied, as it is well known that σ may be
chosen to be smooth. To explicitly include the dependence of the process (Xε

t )t∈[t0,1] on
the random variable Xt0 , we will write Et0,x[·] (given x ∈ Rn) for the expected value
under the assumption that Xt0 = x almost surely; in this case X0 has law given by the
Dirac delta measure centered at x. The Kolmogorov backwards-equation associated to
eq. (10) is a partial differential equation (PDE) for the function

wε(t, x) = Et,x[u0(Xε
1)] ,

provided that u0 is sufficiently smooth, see [8, Thm. 6.1]. This PDE reads

∂twε(t, x) = −ε
(

n∑

i=1

bi(1− t, x)∂iwε(t, x) +
1

2

n∑

i,j=1

aij(1− t, x)∂ijwε(t, x)

)
,

and moreover wε(t, x) → u0(x) as t → 1. Thus, uε(t, x) = wε(1 − t, x), as both sides
satisfy eq. (9) and solutions to parabolic PDEs are unique. As a consequence,

(P ε
1u0)(x) = uε(1, x) = wε(0, x) = E0,x[u0(Xε

1)] . (11)

This equation provides a probabilistic interpretation of the time-1 solution operator of
eq. (9) in terms of the SDE defined by eq. (10).
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5.2.2. Probabilistic interpretation of the heat content in a manifold

In eq. (11) we assume the process Xε
t to start at the constant x almost surely, i.e.,

we choose the initial value X0 to have law equal to the point measure at x. We may,
however, also treat the case in which the initial value X0 of eq. (10) is no longer a
constant random variable.
Let h : M → R≥0 be a measurable function so that hω is a probability measure.

We denote by Eh[·] the expected value in a probability space where X0 has law hω
independent of the Brownian motion (Wt)t∈[0,1]. One may verify that2

〈x 7→ E0,x[u0(Xε
1))], h〉0 = Eh[u0(Xε

1)]

holds in the case u0 = 1A, the extension to all u0 ∈ L∞(Rn) follows from linearity and
monotone convergence. Using eq. (11) and Theorem 12, it follows that

〈P εu0, h〉0 = 〈x 7→ Ex,0[u0(Xε
1)], h〉0 = Eh[u0(Xε

1)] . (12)

We summarize that eq. (12) proves a probabilistic interpretation of inner products of the
form 〈P ε

1u0, h〉0 provided that (i) u0 ∈ L∞(Rn), and (ii) h ∈ L1(Rn, ω) is nonnegative.
The inner product appearing in eq. (7) is not of the form just discussed as 1Sc is not in
general in L1(Rn, ω). Observe, however, that for compact S,

〈P ε1S,1Sc〉0 = 〈1S, P ε1Sc〉0 ,

which is proven in Theorem 14 in appendix B. As a consequence of this and eq. (12),
the left hand side of eq. (7) may be re-written as

〈P ε1S,1Sc〉0 = E1S [1Sc(X
ε
1))] , (13)

provided that ω(S) = 1, which can be assumed without loss of generality.

5.2.3. Probabilistic interpretation of heat content in the averaged setting

The steps above correspond to the left blue arrow in Fig. 1. The right blue arrow
corresponds to repeating the same construction for the averaged equation ∂tuε = ε∆uε.
Here, the PDE of uε is given in coordinates by

∂tuε = ε

(
n∑

i=1

bi∂iuε +
1

2

n∑

i,j=1

ai,j∂ijuε

)
,

2To see this, we first observe that the Markov property of SDEs [1, Thm. 9.2.3] yields a time-1
transition function pε satisfying pε(x,A) = Ex,0[1A(Xε

1)] for x ∈ Rn and measurable A ⊂ Rn. The
definition of the inner product 〈·, ·〉0 yields

〈x 7→ E0,x[1A(Xε
1))], h〉0 =

∫

Rn

pε(·, A)h(·)ω = Eh[1A(Xε
1)].
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with bi(x) =
∫ 1

0
b(t, x) dt and ai,j(x) =

∫ 1

0
ai,j(t, x) dt. The associated stochastic process

is defined by the SDE

dX
ε

t = εb(X
ε

t) dt+
√
εσ(X

ε

t) dWt , (14)

with σσ> = a. Given initial value Xε

0 = X0, we see that analogously to eq. (12),
〈
P
ε
u0, h

〉
0

= Eh[u0(X
ε

1)]

holds when u0 ∈ L∞(M,ω) and hω is a probability measure. Our aim is now to show
that

E1S [1Sc(X
ε
1)] = E1S [1Sc(X

ε

1)] + o(
√
ε) , ε→ 0 , (15)

corresponding to h = 1S. In fact, we generalize to positive

h ∈ C∞S (M) := {f1S; f ∈ C∞(M)} ,

so that hω is a probability measure, and will look at the quantity Eh[1Sc(X
ε
1)] =

〈P ε1Sc , h〉0 with the aim of showing

Eh[1Sc(X
ε
1)] = Eh[1Sc(X

ε

1)] + o(
√
ε) , ε→ 0 . (16)

Writing h = f1S, we know from [28, 23], that

Eh[1Sc(X
ε

1)] =
〈
P
ε
1Sc , f1S

〉
0

=

√
ε

π

∫

∂S

f dA+ o(
√
ε) , ε→ 0 , (17)

which yields the asymptotic behaviour of the right hand side of eq. (16). Our aim in the
next steps will be to prove eq. (16).

5.2.4. Approximation of stochastic processes

We continue with the middle (green) arrows in Fig. 1, starting with the left one. Here,
we will construct a family of stochastic processes (Y ε

t )t∈[0,1] so that

E
[
|Xε

t − Y ε
t |2
]
≤ Kε2 (18)

for some K > 0 and all t ∈ [0, 1] for sufficiently small ε. In light of the arguments around
eq. (16), we will use this approximation to show that:

Proposition 2. If (Y ε
t )t∈[0,1] satisfies eq. (18), then for h ∈ C∞S (M),

Eh[1Sc(X
ε
1)] = Eh[1Sc(Y

ε
1 )] + o(

√
ε). (19)

Analogously, corresponding to the the right hand side of Fig. 1, if the family of processes
(Y

ε

t)t∈[0,1] satisfies an inequality like eq. (18) but with Xε

t in place of Xε
t , then

Eh[1Sc(X
ε

1)] = Eh[1Sc(Y
ε

1)] + o(
√
ε) . (20)
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The processes Y ε
1 and Y ε

1 will have the same law (this is the bottom arrow in Fig. 1),
after we have proven this we may conclude that Eh[1Sc(Y ε

1 )] = Eh[1Sc(Y
ε

1)], which yields
eq. (16), which together with eqs. (19) and (20) shows (here h = 1Sf), that

Eh[1Sc(X
ε
1)] = Eh[1Sc(X

ε

1)] + o(
√
ε) =

√
ε

π

∫

∂S

f dA+ o(
√
ε) .

Before proving Theorem 2, we will state a lemma needed in the proof. Let A be a
(Borel) measurable subset of Rn. We denote by d(x,A) = infa∈A |x− a| the Euclidean
distance between a point x ∈ Rn and the setA. Let furtherAδ := {x ∈ Rn; d(x, ∂A) ≤ δ}
be the δ-neighborhood of the boundary of A.

Lemma 3. Let (Ω,A,Pr) be some probability space and let E[X] denote the expectation
of some random variable X on Ω with respect to Pr. For ε ∈ [0, 1], let Aε and Bε be
(Rn,B)-valued random variables with E[|Aε −Bε|2] ≤ C2

0ε
2 for some C0 > 0. Let R ∈ B

and assume that Pr(Aε ∈ Rδ) ≤ C1δ for sufficiently small δ > 0 and some C1 > 0.
Then,

|E[1R(Aε)]− E[1R(Bε)]| = o(
√
ε) ε→ 0.

Proof. The proof is given in appendix B, and is essentially an application of the Markov
inequality.

Proof of Theorem 2. We will apply Theorem 3 twice with R = Sc. For the first appli-
cation, with Aε = Xε

1 (corresponding to eq. (19)), we will need to check that Pr[Xε
1 ∈

(Sc)δ] ≤ C1δ for some constant C1 > 0. To see this is indeed the case, observe that
(Sc)δ = Sδ, and furthermore Pr(Xε

1 ∈ Sδ) = E[1Sδ(X
ε
1)]. In the case that X0 has law

f1S ω, this is equal to Ef1S [1Sδ(X
ε
1)]. Thus, if X0 has law f1S ω we have

Pr(Xε
1 ∈ (Sc)δ) = 〈P ε1Sδ , f〉0

≤ ‖P ε1Sδ‖L1(M,ω) ‖f‖∞ (by Hölder’s inequality)

≤ ω(Sδ) ‖f‖∞ (by mass preservation of P ε)
≤ C1δ ,

for some C1 > 0, proving the claim. The proof required for the second application (with
A = X1, i.e., eq. (20)) that Pr(X

ε

1 ∈ Sδ) = O(δ) proceeds along the same lines.

5.2.5. Approximation by a Gaussian process

We now construct the processes required by Theorem 2 satisfying eq. (18). To this end,
let (Y ε

t )t∈[0,1] be defined by

dY ε
t =
√
εσ(1− t,X0) dWt , Y ε

0 = X0 ,

where X0 is independent of the Wiener process and bounded. Likewise, let (Y
ε

t)t∈[0,1] be
defined by

dY
ε

t =
√
εσ(X0) dWt , Y

ε

0 = X0 .
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Proposition 4 ([3]). Let (Xε
t )t∈[0,1] be the stochastic process satisfying eq. (10). The

process (Y ε
t )t∈[0,1] approximates (Xε

t )t∈[0,1] in the sense that

E
[
|Xε

t − Y ε
t |2
]
≤ Kε2 , for all t ∈ [0, 1].

Similarly, let (X
ε

t)t∈[0,1] by the solution of eq. (14), then (Y
ε

t)t∈[0,1] approximates (X
ε

t)t∈[0,1]

in the sense that

E
[∣∣Xε

t − Y
ε

t

∣∣2
]
≤ Kε2 , for all t ∈ [0, 1] .

In both cases, K > 0 is a constant independent of ε and t.

Proof. This is a special case of the result in [3]. We have adapted the proof of this
special case in appendix A.

The processes (Y ε
t )t∈[0,1] and (Y

ε

t)t∈[0,1] may be thought of as being second-order ap-
proximations to the processes (Xε

t )t∈[0,1] and (X
ε

t)t∈[0,1] respectively. With Theorem 2,
we conclude the following.

Proposition 5. With Xε
1 , Y

ε
1 , X

ε

1, Y
ε

1 as defined above and h ∈ C∞S (M),

|Eh[1Sc(Xε
1)]− Eh[1Sc(Y ε

1 )]| = o(
√
ε) ,∣∣Eh[1Sc(Xε

1)]− Eh[1Sc(Y ε

1)]
∣∣ = o(

√
ε) .

While these second-order approximations may differ pointwise, their laws are the same,
this is the black arrow in Fig. 1 and the subject of the following lemma.

Lemma 6. The random variables Y ε
1 −X0 and Y ε

1−X0 have the same law, namely that
of
√
εσ(X0)W1.

Proof. Recall that a(x) :=
∫ 1

0
a(t, x) dt, b(x) :=

∫ 1

0
b(t, x) dt, and σσ> = a. As Y0 = X0,

we see that Y ε
1 − X0 =

√
ε
∫ 1

0
σ(1 − t,X0) dWt. If X0 = x then by [1, Cor. 4.5.6], the

random variable Y ε
1 − X0 is a normal random variable with zero mean and covariance

matrix ε
∫ 1

0
σ(t, x)σ(t, x)> ds = εa(x), which is (by the same argument) also the law of

Y
ε −X0. The random variable

√
εσ(X0)W1 is a normal random variable with the same

mean and covariance matrix, proving the claim for constant X0. The processes (Y ε
t )t∈[0,1]

and (Y
ε

t)t∈[0,1] are not memoryless as the right hand side depends on the initial value
of the process. This can be worked around by suitably augmenting the state space, the
claim of the lemma for nonconstant X0 follows by making use of the Markov property
for SDEs in this augmented state space.

Corollary 7. For h ∈ C∞S (M), one has that

Eh [1Sc(Y
ε

1 )] = Eh
[
1Sc(Y

ε

1)
]
.

Proof. This is a direct result of Theorem 6.
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To summarize the reasoning so far: combining Theorem 7 with Theorem 5 yields for
h ∈ C∞S (M), that

Eh[1Sc(X
ε
1)] = Eh[1Sc(X

ε

1)] + o(
√
ε) , ε→ 0 .

We know that 〈P ε1Sc , h〉0 = Eh[1Sc(X
ε
1)]. Writing h = 1Sf , together with eq. (17), we

may see that

〈P ε1Sc , h〉0 =

√
ε

π

∫

∂S

f dA+ o(
√
ε) , ε→ 0 . (21)

With f ≡ 1, applying Theorem 14 completes the proof of Theorem 1 on Rn in the setting
of Assumption A.

5.3. Step 2: Restriction to local data and geometry

In this section, we write P ε = P ε
1 and P ε

= P
ε

1.

5.3.1. Only local data is asymptotically important

Let U be a compact, full-dimensional submanifold ofM with smooth boundary and with
S ⊂ Ů . The inner product appearing on the left hand side of eq. (7) may be written as

〈P ε1S,1Sc〉0 =
〈
P ε1S,1U\S

〉
0

+ 〈P ε1S,1Uc〉 .

We start by showing that discarding the second term yields an error of o(ε).

Lemma 8. Let either M be compact, or M = Rn (together with Assumption A) and
S, U as above. Let f ∈ L∞(M,ω) with supp(f) ⊂ Ů . Then

|〈P εf,1Uc〉0| = o(ε) , ε→ 0 .

Proof. Without loss of generality, assume f ≥ 0. Pick some h ∈ C∞c (M̊) with f ≤ h
and supp(h) ⊂ Ů . We compute:

0 ≤ 〈P εf,1Uc〉0 ≤ 〈P εh,1Uc〉0 (22)
= 〈P εh,1M〉0 − 〈P εh,1U〉0 .

IfM is compact we are already done at eq. (22), as by Theorem 13, P εh = h+ε∆h+O(ε2)
and 1Uc ∈ L2(M,ω). If M = Rn, we observe that 〈P εh,1M〉0 = 〈h,1M〉0 = 〈h,1U〉0.
Using Theorem 13, 〈P εh,1U〉0 =

〈
h+ ε∆h+ o(ε),1U

〉
0
. Given that h is compactly

supported in the interior of U , the term
〈
ε∆h,1U

〉
0
vanishes by the divergence theorem.

We conclude that 〈P εh,1U〉0 = 〈h,1U〉0 + o(ε) which yields the claim.
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5.3.2. Only local geometry is asymptotically important

Similarly, only local geometry affects the asymptotic behaviour of 〈P ε1S,1Sc〉0.

Lemma 9. LetM be either compact (with homogeneous Neumann or Dirichlet boundary
conditions) or equal to Rn (together with Assumption A). Let U ⊂M be a compact, full-
dimensional submanifold. Let f ∈ L∞(M,ω) with supp(f) ⊂ Ů . Let P̃ ε be defined the
same way as P ε via eq. (4) but on U with homogeneous Dirichlet boundary, i.e., P̃ ε

t is
the time-t solution operator to the time-dependent diffusion problem eq. (4) on U with
Dirichlet boundary, and P̃ ε := P̃ ε

1 . Then,
∥∥∥(P ε − P̃ ε)f

∥∥∥
L∞(U)

= o(ε) , ε→ 0 .

Proof. Let eε(t) = (P ε
t − P̃ ε

t )h for a generic positive h ∈ C∞c (Ů). The function eε(t)
satisfies the time-dependent heat equation ∂teε = ε∆teε on U , with nonhomogeneous
Dirichlet boundary eε

∣∣
∂U

= P ε
t h
∣∣
∂U
≥ 0. By construction (and reasoning like the fol-

lowing is well known in the literature, cf. [12]), eε(0, ·) = 0, and the weak maximum
principle [18, Thm. A.3.1] applied to −eε(t) yields that on U and t ∈ [0, 1],

(P ε
t − P̃ ε

t )h ≥ 0 . (23)

By a continuity argument, eq. (23) extends to positive h ∈ L∞(M,ω) with supp(h) ⊂ U ,
including f . Going back to the case of a smooth h, we may pick h so that h ≥ f , and
for this particular choice we get

0 ≤ (P ε
t − P̃ ε

t )f ≤ (P ε
t − P̃ ε

t )h = eε(t) ,

where both inequalities are a consequence of eq. (23). We conclude for eε, once more
with the maximum principle, that

0 ≤ ‖eε‖L∞([0,1]×U) ≤ ‖P ε
t h‖L∞([0,1]×∂U) . (24)

With Theorem 13, we see that
∥∥∥P ε

t h− h̃ε
∥∥∥
L∞([0,1]×M)

= o(ε), where h̃ε(t, ·) := h +

ε
∫ t

0
∆sh ds. In particular, this L∞ bound holds also on [0, 1] × ∂U as required in

eq. (24) (by construction, ũε vanishes on ∂U). This shows that ‖eε‖L∞([0,1]×U) = o(ε),
proving the lemma.

5.3.3. Remaining steps

The statement of Theorem 1 is thus reduced to one about

〈1S, P ε1Sc〉0 ,

regardless of what manifold P ε is defined on, as long as this manifold is isometric to the
original one on a neighborhood of S. By taking a smooth partition of unity (fi)

N
i=1 so
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that
∑N

i=1 fi = 1 on S and each fi is supported in a single coordinate chart it is (by
linearity) enough to prove that

〈fi1S, P ε1Sc〉0 =

√
ε

π

∫

∂S

fi dA+ o(
√
ε) ,

for each i = 1, . . . , N . As each fi is supported in a single coordinate chart, we may pick
a local isometry into Rn and prove the expression there. This is precisely the end result
of what was proven in step 1, i.e., eq. (21), so we are done.

A. Approximation of stochastic processes

Let (Ω,F ,Pr) be a probability space supporting a classical Wiener process Wt : Ω→ Rn

for t ∈ [0, 1]. Let b : [0, 1]×Rn → Rn and σ : [0, 1]×Rn → Rn×n be measurable functions.
Consider the stochastic initial value problem

dXε
t = εb(t,Xε

t ) dt+
√
εσ(t,Xε

t ) dWt , Xε
0 = X0 , (25)

with initial value X0 ∈ L2(Pr). If there is K > 0 such that

|b(t,X)− b(t, Y )|+ |σ(t,X)− σ(t, Y )| ≤ K |X − Y | ,

and
|b(t,X)|+ |σ(t,X)| ≤ K

√
1 + |X|2 ,

for all t ∈ [0, 1], then the initial value problem eq. (25) has a Pr-almost surely unique
continuous solution [1, Theorem (6.2.2)].
The following result is a special case of [3], we follow the proof there and track the

dependence of constants involved on other values more explicitly. The precise value of
C, however, may change from line to line.

Theorem 10. Let Xε
t be the unique solution of eq. (25) and Y ε

t the unique solution of
the stochastic initial value problem

dY ε
t =
√
εσ(t,X0) dWt , Y ε

0 = X0 .

Then there exists C > 0 such that for ε ≤ 1:

E

[
sup

0≤t≤1
|Xε

t − Y ε
t |2
]
≤ Cε2 . (26)

Proof. For t ∈ [0, 1], let

γ(t, ε) :=
Xε
t − Y ε

t

ε
, ψ(t, ε) := E

(
sup

0≤s≤t
|γ(s, ε)|2

)
.
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In order to prove eq. (26), it must be shown that that ψ(1, ε) ≤ C. By the definition of
γ,

εγ(t, ε) = ε

∫ t

0

b(s,Xε
s ) ds

︸ ︷︷ ︸
:=a1(t,ε)

+
√
ε

∫ t

0

σ(s,Xε
s )− σ(s,X0) dWs

︸ ︷︷ ︸
:=a2(t,ε)

,

and furthermore

a1(t, ε) = ε

(∫ t

0

b(s,Xε
s )− b(s, Y ε

s ) ds+

∫ t

0

b(s, Y ε
s ) ds

)
,

|a1(t, ε)| ≤ εK

(∫ t

0

ε |γ(s, ε)| ds+

∫ t

0

√
1 + |Y ε

s |2 ds

)
.

Now, as t ≤ 1, Jensen’s inequality (and (a+ b)2 ≤ 2(a2 + b2) twice) yields

|a1(t, ε)|2 ≤ 2ε2K2

(
ε2

(∫ t

0

|γ(s, ε)| ds
)2

+

(∫ t

0

√
1 + |Y ε

s |2 ds

)2
)

≤ 2ε2K2

(
ε2

∫ t

0

|γ(s, ε)|2 ds+ 1 + 2 |X0|2 + 2ε

∫ t

0

∣∣∣∣
Y ε
s −X0√

ε

∣∣∣∣
2

ds

)
.

By monotonicity of the Lebesgue integral,

sup
0≤s≤t

|a1(s, ε)|2 ≤ 4ε2K2

(
ε2

∫ t

0

sup
0≤u≤s

|γ(u, ε)|2 ds+ 1+

+ |X0|2 + ε

∫ t

0

sup
0≤u≤s

∣∣∣∣
Y ε
u −X0√

ε

∣∣∣∣
2

ds

)
.

Consequently,

E

(
sup

0≤s≤t
|a1(s, ε)|2

)
≤ 4K2ε2

(
ε2

∫ t

0

ψ(s, ε) ds+ 1+

+E(|X0|2) + εE

(∫ t

0

sup
0≤u≤s

∣∣∣∣
Y ε
u −X0√

ε

∣∣∣∣
2

ds

))
. (27)
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To deal with the a2 term, we use the Itô isometry:

E(|a2(t, ε)|2) = ε

∫ t

0

E
(
|σ(s,Xε

s )− σ(s,X0)|2
)

ds

≤ ε

∫ t

0

K2E
(
|Xε

s −X0|2
)

ds

≤ K2ε

∫ t

0

E
(
|Y ε
s −X0 + εγ(s, ε)|2

)
ds

≤ K2ε2

∫ t

0

E

(∣∣∣∣
Y ε
s −X0√

ε
+
√
εγ(s, ε)

∣∣∣∣
2
)

ds

≤ 2K2ε2

(∫ t

0

E

(∣∣∣∣
Y ε
s −X0√

ε

∣∣∣∣
2
)

ds+ ε

∫ t

0

E(|γ(s, ε)|2) ds

)

≤ 2K2ε2

(∫ t

0

E

(∣∣∣∣
Y ε
s −X0√

ε

∣∣∣∣
2
)

ds+ ε

∫ t

0

ψ(s, ε) ds

)
.

As a2(t, ε) is a martingale, Doob’s maximal inequality for p = 2 shows that

E

(
sup

0≤s≤t
|a2(s, ε)|2

)
≤ 4E(|a2(t, ε)|2)

≤ 8K2ε2

(∫ t

0

E

(∣∣∣∣
Y ε
s −X0√

ε

∣∣∣∣
2
)

ds+ ε

∫ t

0

ψ(s, ε) ds

)
. (28)

Let Zε
t =

Y εt −X0√
ε

. One may readily verify that Zε
t satisfies

Zε
t =

∫ t

0

σ(t,X0) dWt ,

and hence in particular Zε
t does not depend on ε, so we may write Zt without the

superscript ε. Moreover, Zt is an L2-martingale. Thus, Doob’s inequality ensures that

K1 := 4E[Z2
1 ] satisfies E

(
sup

0≤t≤1
|Zt|2

)
≤ K1. Combining eq. (27) with eq. (28) and

(a+ b)2 ≤ 2(a2 + b2), we obtain

ε2ψ(t, ε) ≤ 8K2ε2

(
ε2

∫ t

0

ψ(s, ε) ds+ 1 + E(|X0|2) + εE

(∫ t

0

sup
0≤u≤s

|Zu|2 ds

))

+ 16K2ε2

(∫ t

0

E(|Zt|2) ds+ ε

∫ t

0

ψ(s, ε) ds

)

≤ 16K2ε2

(
(ε+ ε2)

∫ t

0

ψ(s, ε) ds+ 1 + E(|X0|2) + (1 + ε)

∫ t

0

E( sup
0≤u≤s

|Zu|2)

)
.

Writing E(|X0|2) = K2 <∞ we see that for suitable D > 0,

ψ(t, ε) ≤ D

∫ t

0

ψ(s, ε) ds+ 1 + 2K1 +K2 ,
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assuming ε ≤ 1. Grönwall’s lemma3, yields that ψ(1, ε) is uniformly bounded, proving
the claim.

B. Miscellaneous proofs

Lemma 11. Let (Ω,A,Pr) be some probability space and let E[X] denote the expectation
of some random variable X on Ω. For ε ∈ [0, 1], let Aε and Bε be (Rn,B)-valued random
variables with E

[
|Aε −Bε|2

]
≤ C2

0ε
2 for some C0 > 0. Let R ∈ B and assume that

Pr(Aε ∈ Rδ) ≤ C1δ for sufficiently small δ > 0 and some C1 > 0. Then:

|E[1R(Aε)]− E[1R(Bε)]| = o(
√
ε) , ε→ 0 .

Proof. Note that for ω ∈ Ω, the condition

(Aε(ω) ∈ R and Bε(ω) ∈ R) or (Aε(ω) /∈ R and Bε(ω) /∈ R)

implies 1R(Aε(ω)) = 1R(Bε(ω)). We thus may see that for any δ > 0

|E[1R(Aε)]− E[1R(Bε)]| ≤ Pr(Aε ∈ R andBε /∈ R)

+ Pr(Aε /∈ R andBε ∈ R)

≤ 2 Pr(Aε ∈ Rδ or |Aε −Bε| ≥ δ)

≤ 2
(
Pr(Aε ∈ Rδ) + Pr(|Aε −Bε| ≥ δ)

)
.

Now note that by the Markov inequality

Pr(|Aε −Bε| ≥ δ) ≤ E
[
|Aε −Bε|2

]

δ2
≤ C2

0ε
2

δ2
.

By assumption, we therefore get for sufficiently small δ that

|E(1R(Aε)− E(1R(Bε)))| ≤ 2
(
C1δ + C2

0ε
2/δ2

)
.

Choosing δ = ε0.6 makes the first term o(
√
ε). The second term is then proportional to

ε2/δ2 = ε0.8 = o(
√
ε), which proves the claim.

C. Parabolic PDEs

We collect here some useful technical facts about parabolic PDE of the form

∂tu = ε∆tu , u(0, ·) = u0(·) , (29)

3Observe that t 7→ ψ(t, ε) is monotone (and hence measurable) and finite (cf. [8, Ch. 5, Cor. 1.2]). By
the monotone convergence theorem, if tn → t from below, then ψ(tn, ε)→ ψ(t, ε). In particular, the
almost-everywhere (in t) bound from the integral form of Grönwall’s lemma (see [6, app B.2]) holds
everywhere.
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where ∆tu := divωg
−1
t du is a Laplace-like operator on a manifold M for every t ∈ [0, 1],

and (gt)t∈[0,1] is a smoothly varying nonvanishing family of Riemannian metrics. We
write P ε

t for the time-t solution operator, i.e., u(·, t) = P ε
t u0. In the case that M is a

compact Riemannian manifold (possibly with Dirichlet boundary), we have summarized
some well-known existence and uniqueness results for u0 ∈ L2(M,ω) in Appendix D of
[20]. If M = Rn, we use in this document the assumption (Assumption A) that there
exists a bounded set B (containing S in its interior) so that both gt and ω are equal to the
Euclidean metric and its volume form respectively outside of B for all t ∈ [0, 1]. Under
this restriction, it is well-known that the time-t solution operator P ε

t is well-defined for
u0 ∈ Cb(Rn), and a maximum principle for initial values in C0(Rn) (continuous functions
vanishing on infinity) holds. The solution uε(t, x) := P ε

t u0 satisfies eq. (29) everywhere
on (0, 1] × Rn if u0 has compact support. Moreover, P ε

t is of the form (P ε
t u0)(x) =∫

Rn
pε(0, x, t, y)u0(y)ω. We have here taken the somewhat unconventional step of using

ω instead of the Lebesgue measure for the definition of the fundamental solution as
this is the natural measure for problems like eq. (29), recall that ω is equivalent to
the n-dimensional Lebesgue measure `n under Assumption A . As a reference for these
statements, see for instance [8, Ch. 3–4], [25, Ch. 3] and [24].

Remark 12. The measure pε(0, x, t, ·)ω is a probability measure, so we may extend P ε
t

to act on u0 ∈ L∞(Rn). Moreoever, if un ↑ u pointwise everywhere for a sequence of
functions un ∈ L∞(Rn), then the monotone convergence theorem yields that P ε

t un ↑ P εu.

For positive initial data, the time-dependent heat equation preserves the integral with
respect to ω. This may be seen by adapting the proof of [8, Sec. 6, Thm. 4.7], but
using the L2(Rn, ω) adjoint (as opposed to the L2(Rn, d`d) adjoint considered there) of
M := ε∆t − ∂t which is given by M∗ = ε∆t + ∂t. The fundamental solution for M∗

(adapted to ω instead of the Lebesgue measure as before), denoted by p∗(x, t, y, τ) sat-
isfiesM∗p∗(·, ·, y, τ) = 0 and (by mirroring the aformentioned proof) also p∗(x, t, y, τ) =
p(y, τ, x, t). As a consequence,

∫
(P ε

t u0)(x, t)ω(x) =

∫ ∫
p(x, t, y, 0)u0(y)ω(y)ω(x)

=

∫ ∫
p∗(y, 0, x, t)u0(y)ω(y)ω(x)

=

∫ ∫
p∗(y, 0, x, t)ω(x)u0(y)ω(y)

=

∫
u0 ω ,

as p∗(y, 0, ·, t)ω is a probability measure. Of course, all of the arguments above may also
be applied to P ε. In addition, here it is known that ∆ generates an analytic semigroup
on Lp(Rn) for p ∈ [1,∞) [26, Sect. 5.4, Thm. 5.6], and on C0(Rn) [24].
We will make use of the following approximation result.
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Proposition 13 ([21, 20]). If M is compact (possibly with smooth homogeneous Dirich-
let/Neumann boundary) and u0 ∈ C∞c (M̊) then

(P ε
t u0)(x) = u0 + ε

∫ t

0

∆τu0(x) dτ +O(ε2)

uniformly in (t, x) ∈ [0, 1]×M as ε→ 0.

By adapting the proof in [20], this result can be extended to the case that M = Rn

assuming that the boundedness condition mentioned earlier holds. In fact, the case
M = Rn is close to the original setting of [21] on which the proof in [20] is based.
We conclude with the following useful property of P ε

1 .

Lemma 14. Let S ⊂ Rn be compact and measurable. Then

〈P ε1S,1Sc〉0 = 〈1S, P ε1Sc〉0 .

Note that P ε
1 is generally not self-adjoint.

Proof. Using the properties of P ε
1 mentioned above, we compute

〈P ε1S,1Sc〉0 = 〈(P ε(1Rn − 1Sc))(1Rn − 1S),1Rn〉0
= 〈(P ε1Sc)1S + (1Rn − P ε1Sc − 1S),1Rn〉0
= 〈(P ε1Sc)1S + (P ε1S − 1S),1Rn〉0
= 〈P ε1Sc ,1S〉0 + 0 .
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