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Abstract

Matrix multiplication is essential for many numerical applications. Thus, efficient
multiplication kernels are necessary to reach optimal performance. Most efforts in this
direction are targeted towards x86 architectures, but recent developments have shown
promise when traditional x86 computing contexts are ported to Arm architectures. This
work analyses different approaches of generating highly optimized kernels for small
dense GEMM on Arm. Benchmarks of generated code are performed on ThunderX2
(NEON vector extension) and Fujitsu A64FX (Scalable Vector extension). While multiple
possible solutions to the DGEMM problem on Arm exist, a general solution that
performs best for all use cases could not be found. The largest deciding factor was the
vector extension implemented by the respective target CPU.
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1 Introduction

1.1 Motivation

The Arm CPU design is a RISC architecture that is used for various applications
from tiny, specialized microcontrollers and small, energy efficient smartphone chips to
high performance processors designed for supercomputing contexts. While Arm was
traditionally lacking in performance for larger workloads compared to x86 architectures,
rising energy demands of supercomputers and new, powerful Arm CPU designs have
brought interest towards the Arm architecture and its implementations for the use in
desktop CPUs and large scale supercomputers [39]. Modern Arm architectures have
shown promise that they can outperform comparable x86 architectures while being
more power efficient at the same time. In the context of supercomputing, an Arm
CPU made headlines in 2019 when the Fugaku supercomputer was declared the fastest
computer in the world [34]. Fugaku is built with the Fujitsu A64FX, an Arm CPU
that was designed specifically for use in large scale systems [40]. In general, Arm
architectures show a lot of promise for supercomputing workloads where performance
and energy efficiency are paramount. As Arm CPUs have just recently found their way
into the supercomputing market, many tools and solutions are either not available or not
optimised for this new architecture. Furthermore, Arm’s inner workings differ greatly
compared to the more widespread x86/x64 CPUs, at least in the field of supercomputing.
Due to these differences, considerable effort is required when porting or translating
existing optimisation solutions. This work presents and evaluates different existing
approaches for optimizing small matrix multiplication kernels, which are at the core of
many scientific workloads.

1.2 SeisSol

SeisSol is a high resolution simulator for seismic wave propagation developed by a
joint research team at Technical University Munich (TUM) and Ludwig-Maximilians
University Munich (LMU). Physical seismic processes are modelled using hyperbolic
Partial Differential Equation (PDE)s. Solving these PDEs is computationally challenging,
whereby higher performance hardware allows for more accurate simulations. High
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1 Introduction

resolution simulations over large areas allow SeisSol to be scaled to arbitrarily high
computing costs. An example for such a large simulation run is presented in [36]
by Uphoff et al. At the lowest level, these PDEs are solved by numerous (small)
matrix multiplications, either as dense × dense, dense × sparse or sparse × sparse.
Because sparsity patterns are known in advance, specifically tuned multiplication
kernels can be generated by SeisSol. Sparsity patterns are not relevant for dense
multiplications, which make up a large part of SeisSols workload. Generally, sparse and
dense calculations both need to be optimized, as focusing on one of each will inevitably
create bottlenecks at some point. To evaluate the optimal multiplication kernel, SeisSol
performs dry runs with a limited amount of iterations and selects the kernel with the
best performance. Even though other highly performant generalized solutions like
Intel’s MKL or OpenBLAS exist, SeisSol relies on self generating kernels via libxsmm
as generic solutions lose a small amount of performance due to their generality [7].
SeisSols simulation runs are performed on a variety of supercomputers with different
x86 architectures, where libxsmm can provide adequate performance. Because recent
developments made Arm processors more interesting for supercomputing workloads
and libxsmm not being available on Arm, another high performance General Matrix
Multiply (GEMM) kernel generator is needed.

1.3 Isambard & BEAST

Development and testing of the approaches presented in this work is performed on the
Isambard and BEAST (Bavarian Energy-, Architecture- and Software-Testbed) clusters.
Isambard was the first production ready Arm supercomputer in 2018. It uses over
20,000 ThunderX2 processors in Cray XC50 racks. Detailed information on this CPU
can be found in section 2.4. Isambard is a joint project of the GW4, a consortium
of four British universities. It was expanded in 2020, doubling its ThunderX2 nodes
and making it the largest Arm supercomputer in Europe. As part of that expansion,
multiple A64FX and ThunderX3 (when it is released) nodes will be added to the cluster.
As one of the only large production ready Arm supercomputers in Europe, Isambard
provides the necessary platform to benchmark the approaches shown in this work on
a real world, large scale system [18]. BEAST is a smaller test bench by the Leibniz
supercomputing centre. It contains multiple A64FX and Cavium ThunderX2 nodes
and is used as a primary development and testing platform, while also serving as the
testbed for runs on A64FX.
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2 Background

In this chapter, we introduce the RISC architecture in general, the Arm implementation
of RISC and the concrete Arm processors used for benchmarking. Furthermore, an
overview of the General Matrix Multiply (GEMM) algorithm is given.

2.1 General Matrix Multiplication

The basic operations of linear algebra are essential for a wide variety of scientific and
engineering fields and are therefore at the core of many numerical problems. Because
of this widespread use, a de-facto standard specification for these basic operations
was created, called Basic Linear Algebra Subsystem (BLAS) [23]. The operations are
grouped into levels according to their operands as displayed in table 2.1.

While the asymptotic complexity of the matrix-matrix product could be lowered
below O(n3), for example to O(n2.8074) with Strassen’s algorithm [33], in practice this
slightly lowered asymptotic complexity is only beneficial for very large matrices as for
small matrices, an optimized naive approach is more efficient as Strassen’s algorithm is
hard to optimize. Due to the abundant use of these basic operations, many applications
can benefit greatly from efficient implementations of these basic routines. There
typically exists an optimized implementation of the BLAS specification for every major
processor generation and, while these optimized and tuned implementations already
offer great performance, further improvements can be made when targeting specific
CPU architectures. Especially micro-optimization that leverages specialized features
of a concrete CPU are out of scope for BLAS implementations like OpenBLAS [38] or
GotoBLAS [16] which aim to provide good performance on a wide variety of systems

Level Structures Typical complexity Examples
1 Vectors O(n) Dot Product, Addition, Norm
2 Matrix-Vector O(n2) Matrix-Vector Product
3 Matrix-Matrix O(n3) Matrix Multiplication

Table 2.1: Overview of BLAS operations [5], n is the number of multiplications required
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2 Background

and use cases. Another approach is used by the ATLAS [1] BLAS implementation,
leveraging empirical auto tuning for optimization instead of the more manual approach
used in Goto/OpenBLAS. In this work, the only relevant part of BLAS is the level 3
routine General Matrix Multiply (GEMM), that computes the matrix-matrix product
of the form C = α ∗ A ∗ B + β ∗ C where A, B and C are matrices with dimensions
m ∗ n, n ∗ k and m ∗ k and α and β are scalars. Note that in this work the scalars α

and β are not included in the implemented GEMM algorithms and can therefore be
assumed to be fixed to values of α = 1 and β = 0. GEMM can be optimized for dense
or sparse input matrices and can be further subdivided into small or large matrices,
where small means (in this work) that each of the matrices A,B and C fit inside the
processors L1 cache of typically 32 KiB, resulting in maximum matrix dimensions of
about 100 rows/columns. Discriminating between these subsets of the GEMM problem
is required to reach maximum performance, considering the implementation details
differ greatly when comparing, for example, dense GEMM with its sparse counterpart.

2.2 RISC and Arm

The Reduced Instruction Set Computer (RISC) processor architecture is a competing
design philosophy to the more common and current de-facto standard Complex In-
struction Set Computer (CISC) architecture for desktop and supercomputing use cases.
RISC processors offer different advantages compared to CISC architectures, the most
impactful ones are presented below. The fundamental difference between Reduced
Instruction Set Computer and Complex Instruction Set Computer is already revealed
by their respective names. RISC architectures try to reduce the amount and complexity
of available instructions to a minimum while CISC architectures generally have many
specialized instructions. The RISC design actually involves more than this obvious
difference in instruction set size. The discussion here follows [27].

Pipelining

Figure 2.1: Classic RISC Pipeline by
Eberle [9]

RISC CPUs introduced pipelining to com-
puter processors. The five execution
stages Instruction Fetch, Instruction De-
code, Execute, Memory Access and Write-
back are working in parallel, each execut-
ing one instruction per clock cycle. Fig-
ure 2.1 shows how the different stages
are working next to each other, providing
their results to the stage after them and
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2 Background

accepting the result of the stage before them. While pipelining is nowadays also
available on CISC, due to varying instruction sizes it is harder to make full use of
it. These design strategies are not exclusive to RISC though. Over time, RISC and
CISC incorporated beneficial developments of each other into their designs but keeping
mostly true to their roots. For example, RISC architectures usually also have vector
extensions where some operations do take longer than one cycle to complete. The full
instruction set is still much smaller than on a typical CISC implementation though.

Larger amount of registers

RISC architectures incorporate a larger amount of registers compared to CISC. The goal
is to avoid memory accesses that only store temporary data and instead leave as much
data as possible inside registers. The benefit here is the much faster speeds at which
registers can be accessed compared to memory. Also, blocking as little memory traffic
as possible with temporary data leaves more bandwidth for new data to be streamed
in.

Low Number of Clock Cycles per Instruction

The amount of CPU cycles that are needed to decode an instruction is an important
metric when looking into computing speed. The more complex a instruction is, the
more cycles pass until the processor knows what that concrete instruction actually
means. The decoding of an instruction is done by the CPU’s control unit, which is
responsible for translating instructions into so called µOPs or microoperations. Because
CISC uses variable length instructions, the process of decoding is much more complex
and time consuming. Consider the x86 assembly instruction that increments an integer
value stored in a register:

//Add 10 to the value stored at the memory location in register EAX + 10.

ADD [EAX+16],10

Before the CPU can now start decoding this instruction into microcode, it first needs to
figure out which opcode corresponds to the ADD instruction. ADD can work on registers,
memory addresses and immediates (constant integer values) which all can be of varying
size (BYTE, WORD, DWORD), resulting in different opcodes for, at first glance, the
same instruction. After the opcode is known, the decoder starts breaking the instruction
down into microcode. In our case, this might look like this:

Load value in register 'EAX' and add 16 to it

Do memory lookup at the address that was computed

Load that value from memory into temporary register
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2 Background

Pass temporary register and immediate to the ALU

Fetch result from ALU

Write result to memory location at 'EAX + 16'

Each of these microinstructions requires at least one cycle of the CPU clock to complete,
resulting in multiple CPU cycles for one instruction. Comparing this instruction to its
respective ARM assembler, it might look something like this:

ldr r2, [r0, #10] // Load value at address r0+10 into r2

add r1,r2,10 // r1 = r2 + 10

str r1,[r0, #10] // Store r1 into memory at address r0+10

RISC architectures require us to explicitly load and store our values, resulting in more
verbose assembly code. In addition, each instruction has a fixed size, typically 32 or
64 bits. A fixed instruction length makes it easier to map assembly instructions to
opcodes which in turn reduces the complexity of the CPUs instruction decoder. This
decoder can thus be implemented on a smaller physical footprint, leaving more space
for transistors and other circuitry. While RISC programs are typically up to 50% longer
than an equivalent CISC program [27], most RISC instructions can be completed in a
single CPU cycle. Nowadays though, a complex assembly output is less of a problem
because it is typically generated by compilers rather than being written by hand.

Load-Store Architecture

Reduced Instruction Set Computers are defined by their Load-Store architecture. This
means that there is a clear distinction between instructions that can access memory
and those that operate exclusively on registers and perform calculations. In fact, only
two instructions are allowed to access memory. Those are ldr(load) and str(store)

with subcommands for different register sizes. Vector or floating point extensions
add additional load/store instructions for their respective use cases. All other major
instructions (add, sub, mul, etc.) can only operate on registers filled by load/store
beforehand [2].

The Arm RISC architecture

The Advanced RISC Machines (Arm) Holdings Company designs a popular RISC
architecture that sees widespread use in the domain of microcontrollers, smartphone or
other integrated SoCs and, recently, in desktops and supercomputers. Arm designs can
be licensed from them and then be implemented by a hardware manufacturer, Arm
themselves do not produce any chips. The Arm architecture specification includes,
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2 Background

among others, the Instruction Set Architecture (ISA), CPU modes and register layouts.
All architectures published by Arm include the following RISC features [31]:

• Load/Store Architecture

• fixed instruction width

• (mostly) single clock cycle execution

The latest Arm standard is v8, released in 2011. Over the years, it was extended
continuously and the most recent version is called Arm v8.6-A. The Arm standard also
includes the vector (SIMD) extensions NEON (also known as Advanced SIMD) and
Scalable Vector extension (SVE). NEON was initially intended for media acceleration
but grew larger and more capable over the years and is now used as a general purpose
SIMD extension [32]. SVE is the more modern of the two with a focus on scientific and
high performance computing. It introduces features that are novel to vector extensions.
First off, SVE is vector length agnostic meaning that the vector length is not fixed to
a particular value like in NEON or x86 SIMD extensions but can be freely chosen (in
steps of 128 bits) by the hardware manufacturer, up to a maximum of 2048 bit. SVE
instructions themselves are also not fixed to a specific vector size, making programs
instantly compatible with CPUs that implement different SVE vector lengths [2]. No
rewriting or recompiliation is necessary when moving from a, for example, CPU with
256 bit SVE to a CPU with 2048 bit. Another novelty are the predicate registers. These
registers are used exclusively to control SVE instructions and allow a dynamic selection
of vector lanes. One bit of a predicate register is mapped to one byte of a SVE register,
allowing granular access in 8 bit chunks. Predicate registers can also be used to control
loop iterations, eliminating loop overhead and enabling vector length agnostic loop
bodies.

2.3 Fujitsu A64FX

The A64FX is a superscalar 64-bit Arm processor designed for high performance
computing unveiled by Fujitsu in 2018. It is used in the currently fastest supercomputer
"Fugaku" at the RIKEN Center for Computational Science in Kobe, Japan. [34] It
features 48 compute cores and 4 assistant cores, high bandwidth memory with a
peak bandwidth of 1024 GB/s and peak performance of over 2.8 TFLOPS while also
being comparatively energy efficient, ranking 9th on the Green 500 in GFLOP/s per
watt of power consumed [34]. The full spec sheet can be found in table 2.2. The CPU
implements the Arm v8.2 instruction set including NEON and Scalable Vector extension
(SVE).
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While the A64FX has high theoretical peak performance, special optimisations are
necessary to reach optimal performance because of the CPUs relatively large instruction
latencies for vector instructions. The FMLA instruction (fused multiply add) has
a latency of 9 µOps, even though the instruction itself only takes a single µOP to
complete [2]. Therefore, optimizing programs so that results from FPU calculations are
not reused immediately is necessary. The A64FX’s cores are organized into four Core
Memory Group (CMG)s with 12 compute cores and one assistant core each. These
CMGs share a layer 2 cache and a high bandwidth memory controller. Inter-CMG
communication is handled by a routing controller on the chip. Figure 2.2 shows the
block diagram of the A64FX processor and how the internal CPU components are
connected.

Figure 2.2: A64FX Block diagram, based
on [11]

Layer 1 cache is available on a per core
basis and therefore not shown in this fig-
ure as it is not shared between cores and
can be considered to be part of a compute
core. Because the A64FX is designed for
high performance computing specifically,
it contains a TofuD Controller that enables
the usage of a high data rate mesh net-
work (26 Gb/s) between compute nodes.
High bandwidth extensions via PCIe are
also possible [11]. The A64FX is the first
CPU to implement the new Arm SIMD
Scalable Vector extension. A64FX’s max-
imum vector length is 512 bit, four times
larger than the 128 bits that are available
using NEON [12].

2.4 Marvell ThunderX2

Marvell ThunderX2 is an Arm CPU designed for high performance computing, released
in early 2018. It is designed as a System-on-a-Chip (SoC) and produced by Cavium.
Naturally for a supercomputer CPU is the high degree of parallelization with 128
threads running on 32 cores. Each core has two floating point units (FPU) with a vector
size of 128 bit. Note that the ThunderX2 comes in different configurations, differing
mainly in clock speed and core count. The version available to us is the CN9980 clocked
at 2.2 GHz [37]. Specific and low level documentation for the ThunderX2 is hard to
find as the Marvell does not provide detailed documentation to the public. Especially
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ThunderX2 A64FX

ISA Arm v8.1 + NEON Arm v8.2 + SVE

Cores 32 48 + 4

Threads 128 48

Clock Speed 2.0 - 2.5 GHz 1.8 GHz

SIMD width 128 bit 512 bit

L1 Cache 1 MiB / 32 KiB per core 3 MiB / 64 KiB per core

L2 Cache 8 MiB / 256 KiB per core 32 MiB / 8 MiB per CMG

Transistor technology 16 nm CMOS FinFET 7 nm CMOS FinFET

Memory bandwidth 160 GB/s 1024GB/s

Table 2.2: Comparison of A64FX and ThunderX2 [8, 12]

an overview of instruction latencies as provided by Fujitsu for the A64FX would have
been of great use for benchmarking and optimising. For the full specifications of the
chip, refer to Table 2.2.
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3 Implementation

In this chapter, we explore two existing approaches for optimizing matrix multiplication
kernels. These range from attempting to be as general as possible and targeting a wide
range of CPUs or even whole architectures, to a highly specialized code generator that
targets a specific CPU, making use of a certain feature set. Both approaches optimize
GEMM using the outer product approach for general matrix multiplication. To keep
the scope of this work bounded, we introduce the following constraints:

• Matrices are dense, meaning all entries are stored explicitly.

• Matrices are small, meaning m, n, k ∈ [2; 100].

• Matrices are stored as a flattened one-dimensional array in column-major format.

• Algorithms make use of vector instructions but are otherwise not optimized for
parallel execution. No optimization is performed to ensure efficient multithread-
ing. We target single core performance exclusively.

Additionally, the variables introduced in table 3.1 always retain their meaning through-
out this work.

Variables

A, B input matrices of doubles

C result matrix of doubles

m, n, k constant integers

n×m size of A

m× k size of B

n× k size of C

Table 3.1: Recurring variables/constants throughout this work
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3 Implementation

3.1 Outer Product Matrix Multiplication

The outer product approach decomposes the given matrices A and B into their respective
columns and rows. Then, the multiplication AB can be formulated as a series of vector-
vector multiplications, yielding multiple matrices that can be merged into the result
matrix

C =
N

∑
i=1

Ci =
N

∑
i=1

aibi, (3.1)

with ai and bi forming the ith column/row of A and B respectively. Intermediate results
are stored inside the matrix denoted by Ci. To be able to leverage performance benefits
provided by vector instructions and to optimize memory access, this formula can be
rewritten (simplified for square matrices of size n× n) after Pal et al. [25] as

C =
n

∑
i=1

C + ai ⊗ bi, (3.2)

with

x⊗ y = x · yT =

x1
...

xn

 · (y1 . . . yn
)
=

x1y1 . . . x1yn
...

. . .
...

xny1 . . . xnyn

 (3.3)

Immediately accumulating the intermediate results into C eliminates the need for
caching n matrices consisting of n2 double values. This is only possible because of the
constrained matrix sizes. With bigger matrices, caching all three matrices A, B and
C is not feasible due to cache size limitations. With the outer product approach, the
only floating point instruction that has to be calculated is of the form a = a + b · c,
which is implemented in hardware on modern x86 and Arm CPUs. This operation is
usually encoded as fma or fmla (Fused Multiply and Add). The advantage of FMLA
is that, due to dedicated and specialized circuitry, it allows the FPU to compute a
normally two instruction operation (one multiplication and one addition) in a single
one. Also, because there is no need to store the interim result of the multiplication,
rounding errors are reduced [29]. Finally, before discussing different optimization
options, we examine the pseudocode of the outer product approach in algorithm 1.
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Algorithm 1: GEMM using Outer Product

// C should be zeroed

Input: A,B,C,n,m,k
Result: C
for i in 0..n do

a = i-th row of A
for j in 0..k do

b = j-th column of B
for l in 0..m do

C[i,j] = C[i,j] + a[l] * b[j] // 2 FLOP

end
end

end

We have a single Fused Multiply-Add Instruction surrounded by setup code that
loads the rows and columns into memory. Because all matrices A, B and C are small
enough to fit into L1 cache, only n ·m + m · k floating point numbers have to be loaded
and n · k have to be stored back into memory. Every FMLA instruction consists of 2
FLOPs, resulting in a total of n · m · k · 2 FLOPs . Starting with this base algorithm,
various loop optimizations can be applied. An overview of loop optimization techniques
is given in section 3.2. While some optimizations are already performed by a modern
compiler, specific CPUs offer more performance when algorithms are specifically tuned
for them [4]. Since this work deals with small matrices exclusively, an approach
that aims to keep as much data in the CPUs vector registers as possible is the most
promising [24].

3.2 General Loop Optimization Techniques

In the case of the outer product formulation for matrix multiplication, two possible
optimization targets exist, which are the nesting of the three loops and the computation
inside them. To ensure that loop transformations are valid, i.e do not change a programs
semantics, dependency analysis is necessary. Inspecting the outer product formulation
in algorithm 1, we can see that the two outer loops indexed by i and j are independent
of each other. Rearranging the ordering of these outer loops would only impact how
the input matrices A and B are accessed. The inner loop and its contained computation
depends on both outer loops. This is illustrated in the dependency graph in figure 3.1.

The inner loop can thus be optimized as long as it is wrapped inside the two outer
loops [4]. The two outer loops can be run in any order, no performance benefits can be
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Figure 3.1: Dependency graph illustrating loop dependencies of the outer product

expected from reordering these loops though. To illustrate the different optimization
techniques, a simple vector copy loop is used as an example.

//Unoptimized

for(int i=0;i<n;i++){

a[i]=b[i]; //Vector copy

}

Loop Tiling

Loop tiling (also called loop blocking) partitions a single loop into smaller chunks of
a fixed size. By doing this, one can ensure that data remains inside the CPUs cache,
improving data locality and eliminating cache misses. This is especially crucial for
dense matrix-matrix multiplications [4]. The tiling size is hard to pin down as it is
dependent on the CPUs cache size and the data access layout of the algorithm at hand.
In this example, the tile size is chosen arbitrarily. Tiling would provide no benefit in
the sample presented here, as a vector copy does not reuse data.

//Tiled

assert(n%4 == 0);

for(int i=0;i<n;i+=4){

for (int j=i;j<tileSize;j++){

a[j]=b[j]

}

}

13
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Loop Unrolling

Unrolling a loop is done by replacing a part of the iteration space by explicit instructions.
Note that unrolling requires the loop to be tiled beforehand, or alternatively loops have
to be fully unrolled. Usually, the tile size matches the unroll factor.

//Unrolled

assert(n%4 == 0);

for(int i=0;i<n;i+=4){

a[i]=b[i];

a[i+1]=b[i+1];

a[i+2]=b[i+2];

a[i+3]=b[i+3];

}

Loop overhead from tiling the loop is eliminated by unrolling. Instead of n iterations
(and therefore n conditional jumps), only a quarter of these conditional jumps is
necessary now. Loops can also be fully unrolled, eliminating all jumps from the
program. While this results in large assembly files and longer compile times, it will also
provide better performance as long as the loop body still fits into the CPUs instruction
cache. If this is not the case, a smaller unroll factor might actually provide better
performance since it avoids frequent cache misses. An unrolled loop is also easier to
vectorize for the compiler, as multiple consecutive calculations can easily be gathered
into a single vector instruction. In summary, loop unrolling aims to eliminate loop
overhead and enables the usage of vector/SIMD instructions.

Vector/SIMD instructions

Single instruction, multiple data (SIMD) instructions make it possible to load, store and
modify a data vector instead of a single data point [26]. In our example, the four data
loads of arrays a and b and the subsequent reassignment in each loop iteration could
be done in one SIMD instruction. This is an example of instruction level parallelism.

assert(n%4 == 0);

for(int i=0;i<n;i+=4){

//Actual ASM is ISA dependent

a[i:i+3]=b[i:i+3];

}

Four loads/stores are replaced by a single vector load/store. The maximum vector
width and the resulting assembly depend on the specific CPU. Writing vectorized
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assembly by hand is difficult, time consuming and error prone. Therefore it is beneficial
to leave these optimizations to the compiler where possible.

3.3 Loopy

Loopy is a code generator for array based code, mainly for parallel computing languages
like CUDA and OpenCL [22]. It can also target generic C-Code that is architecture
agnostic and can be compiled for Arm. It aims to provide a high level interface for loop
optimizations that would otherwise be hard or tedious to produce by hand.

3.3.1 Loopy in general

Loopy takes the input, two strings called the loop domain and the loop instructions
and produces an intermediate loop represented as a Python object. This object can be
modified further and optimized by the user using the convenience of Pythons high level
language features. Note though that loopy generates plain C code, requiring a compiler
that can make use of processor specifics to achieve the best possible performance. A
simple loopy kernel that takes an array and performs element wise addition might look
like this:

#The loopy Library is imported as lp.

knl = lp.make_kernel(

"{ [i] : 0 <= i < n}", # Domain

"out[i] = out[i] + a[i]", # Instructions

target=lp.CTarget(),assumptions="n>0 and n mod 4 = 0")

Now, loopy allows the user to perform optimizations on that kernel:

knl = lp.split_iname(knl,"i",4) # Tile with tilesize = 4

knl = lp.tag_inames(knl,dict(i_inner="unr")) # Unroll inner loop

To avoid checks on the size of n, loopy can be told to assume that n is a multiple of
4. This means that our loop can always be fully unrolled and giving the wrapping
program the responsibility to check that only valid inputs are fed into loopys generated
code. When specifying the C language as loopys target, the generated code is first split
into two loops with the specified tile size and afterwards the inner loop is unrolled.
Loopy also inserts the __restrict__ keyword for pointers passed to the function. This
keyword tells the compiler that these pointers will have no memory overlap and allows
it to produce better optimized code.
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#include <stdint.h>

void loopy_kernel(double const *__restrict__ a, int const n, double *

__restrict__ out)

{

for (int i_outer = 0; i_outer <= ((-4 + n) / 4); ++i_outer)

{

out[4 * i_outer] = out[4 * i_outer] + a[4 * i_outer];

out[4 * i_outer + 1] = out[4 * i_outer + 1] + a[4 * i_outer + 1];

out[4 * i_outer + 2] = out[4 * i_outer + 2] + a[4 * i_outer + 2];

out[4 * i_outer + 3] = out[4 * i_outer + 3] + a[4 * i_outer + 3];

}

}

3.3.2 Outer Product Loopy Kernel

To generate the outer product kernel using loopy, we again need to specify the loop
domain and instructions. First, we declare our loop domains and the statements that
should be performed in the loop body. Then, we tell loopy what the data types of our
parameters are and what loopy can assume to be always true. In our case, we know
that our loop variables m,n and k will never be negative. This allows loopy to eliminate
checks on these variables. Another option is fixing the variables to constant values as
we will do later.

outer_knl = lp.make_kernel(

"{ [i,j,l] : 0 <= i < m and 0<= j < k and 0<= l < n }",

"C[i,j] = C[i,j] + A[i,l]*B[l,j]",

target=lp.CTarget(),assumptions="m>=0 and n>=0 and k>=0")

outer_knl = lp.add_and_infer_dtypes(outer_knl,{"A,B,C":np.float64,"m,n,k":

knl.index_dtype}) #Data types of the variables

Now we need to instruct loopy to perform prefetching. Prefetching in this context
means that our kernel streams in rows and columns of our input matrices before
performing calculations with them, as shown in algorithm 1. To get loopy to prefetch
rows and columns of the input A and B into arrays before they are accessed and to
redirect accesses to the now prefetched arrays, loopy can be told to add_prefetch on a
per array basis.

outer_knl = lp.add_prefetch(outer_knl,"A[:,l]")
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outer_knl = lp.add_prefetch(outer_knl,"B[l,:]")

This is all that is needed to generate an unoptimized outer product kernel with our
matrix dimensions m, n, k as loop variables and the matrices A, B, C as input data. Tiling
and unrolling this kernel is performed by modifying it with:

outer_knl = lp.split_iname(outer_knl,"i",4) # tilesize 4

outer_knl = lp.tag_inames(outer_knl,dict(i_inner="unr"))

The first instruction tiles our loop indexed by i into two loops i_inner and i_outer

with the given tile size. The second instruction takes this tiled loop and unrolls the
inner one. The chosen tile size of 4 is for brevity of the generated output. In practice, a
tile size equal to the matrix dimensions should give the best performance as it allows
the loops to be fully unrolled. Keep in mind that while fully unrolled code is faster
in theory, in practice the CPU will eventually run out of resources like registers or
instruction cache space. Therefore, fine tuning is necessary to ensure that unrolling is
only performed to a degree that is actually beneficial for the hardware at hand. Note
that right now, our kernel is not fixed to static values of m, n and k. To achieve this, we
use:

outer_knl = lp.fix_parameters(outer_knl,m=8,n=8,k=8)

Fixing parameters to static values allows loopy to eliminate checks on the matrix size
and makes the generated kernel much more concise. After parameters are fixed, we
can continue unrolling the code. When the middle loop (indexed by j) and the outer
loop (indexed by l) are tiled and fully unrolled, all loops have been eliminated and
what remains are plain data accesses and calculations that a modern and optimized
compiler should be able to vectorize.

void loopy_kernel(double const *__restrict__ A, double const *__restrict__

B, double *__restrict__ C)

{

double A_fetch[8];

double B_fetch[8];

B_fetch[0] = B[0];

B_fetch[1] = B[1];

//...

A_fetch[0] = A[0];

A_fetch[1] = A[8];

//...
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C[0] = C[0] + A_fetch[0] * B_fetch[0];

C[8] = C[8] + A_fetch[1] * B_fetch[0];

//...

C[1] = C[1] + A_fetch[0] * B_fetch[1];

C[9] = C[9] + A_fetch[1] * B_fetch[1];

//...

Listing 3.1: Shortened fully unrolled outer product generated by loopy

Keep in mind that fully unrolling all of the involved loops for a outer product with
m = n = k generates n4 statements. While this is unproblematic for small matrix
sizes, code generation for n > 30 becomes very slow. Furthermore, compiling these
large source files with GCC is very time intensive and probably not beneficial to
performance. Extremely large source files will result in frequent instruction cache
misses as for example, loop bodies get too large to fit into instruction cache. To alleviate
this problem, we do not unroll the outermost loop fully for m = n = k > 50 and
instead leave the outer loop intact, reducing the total amount of statements from n4

to n3. For even larger input sizes of 50 < n < 100 we stop unrolling the middle loop
fully and instead tile it to a fixed size and unroll with the chosen tile size. For those
larger input sizes, the occasional jump/loop is unlikely to impact performance by an
noticeable amount. To find a good balance between optimization and practicality, we
ran different benchmarks with varying degrees of optimizations, fine tuning which
loops got unrolled and to which degree. The generated code is now ready to be linked
and compiled into a wrapper executable like SeisSol or other programs. Note that this
code is still fully portable and the final assembly depends on the used compiler and
preferred target architecture. After compilation, we can inspect the resulting assembly
generated by GCC to see which optimizations the compiler applies to our already
optimized programs. First off, GCC is able to optimize for NEON and SVE alike,
meaning our compiled programs for A64FX and ThunderX2 differ in the usage of the
respective vector instructions. We can see that GCC is able to fully utilize SVE features
on A64FX. This requires the usage of GCC’s newest version, 11 [14], which has not yet
been released officially but is available as a feature complete beta (bugs may still occur
as of the writing of this thesis, none were encountered during experiments though) [15].
Previous versions of GCC already support SVE but lack auto vectorization features and
are generally not able to make full use of the new vector extension. Naturally, GCC is
able to utilize NEON features on ThunderX2. A comparison of a FMLA calculation is
shown in Table 3.2. Note the lower amount of floating point operations performed by
SVE-optimized code. The insr instruction is used in SVE for moving general purpose
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1 str d8, [sp, 136]

2 ldr d8, [sp, 128]

3 fmadd d8, d18, d4, d8

4 str d8, [sp, 128]

5 ldr d8, [sp, 120]

6 fmadd d8, d18, d3, d8

ThunderX2 with NEON

insr z0.d, d6

insr z0.d, d7

insr z0.d, d16

insr z0.d, d14

insr z0.d, d20

fmla z10.d, p0/m, z0.d, z1.d

A64FX with SVE

Table 3.2: Comparison of resulting NEON and SVE assembly after compilation

registers into SVE vector registers.

3.4 PSpaMM

PSpaMM is an assembly code generator for sparse matrix multiplication kernels. It
was specifically created for SeisSol. It generates a C-function with inline assembly
optimized for Knights Landing (KNL), an x86 architecture designed by Intel for high
performance computing [6] and was later expanded to support the newer Skylake
architecture. Even though PSpaMM is designed for sparse matrix multiplication, it can
also be used for dense × sparse or even dense × dense matrix multiplication. While
PSpaMM produces highly specialized assembly, the PSpaMM executable itself is very
portable as it is written in Python. PSpaMM offers a simple command line interface
where matrix dimensions m, n, k, leading dimensions lda, ldb, ldc as well as constant
factors α and β have to be provided as arguments. The leading dimension of a matrix is
the amount of either rows or columns of the matrix, depending on weather the matrix is
stored in column or row major format. This leading dimension is necessary to calculate
indices of matrix entries when the 2D matrix is stored inside a flattened 1D array. The
index of the element at (i,j) of a column-major matrix with leading dimension lda

would then be calculated with i + j ∗ lda. As we store matrices in column-major format,
lda, ldb and ldc are equal to the number of columns of the respective matrix.

//pspamm.py m n k lda ldb ldc alpha beta

> ./pspamm.py 8 8 8 8 8 8 1 0 --arch arm

Listing 3.2: Example PSpaMM call
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While PSpaMM mainly targets KNL and therefore x86, it can also output Arm NEON
assembly. Listing 3.3 is a shortened example output of Arm inline assembly generated
by PSpaMM. The complete output can get very large as PSpaMM tries to fully tile
and unroll loops wherever possible. It also makes use of Arm NEON instructions like
fused multiply add on vector registers or vector load/store. While PSpaMM produces
specialized code that should yield adequate performance, it is not very flexible. Its
intended target architecture is KNL and there is no easy way to adjust parameters for a
new architecture like Arm. For example, PSpaMM is tuned for instruction and data
cache sizes as they would be available on KNL CPUs. Fortunately, KNL and ThunderX2
have the same cache sizes of 32 KiB for instructions and data each. More performance
could be gained by optimizing PSpaMM for the A64FX, as its 64 KiB cache and 512
bit wide SIMD (128 bit on the ThunderX2) should lead to higher performance when
utilized correctly. Nevertheless, PSpaMM manages to perform most of the standard
optimizations (tiling, unrolling) which provide a performance boost no matter the
specific architecture. When using PSpaMM for dense matrices (as it is the case for
this work), its output is identical to the outer product formulation as presented in
Algorithm 1. PSpaMM emits its output directly to standard out or alternatively to the
file specified as an command line argument. This file can then be linked into a C/C++
program and compiled as usual.
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//Called with: > python3 pspamm.py 4 4 4 4 4 4 1 0

void dgemm (const double* A, const double* B, double* C, double alpha,

double beta, const double* prefetch) {{

__asm__ __volatile__(

//Loading args into registers

//prefetch is unused

"ldr x0, %0\n\t" //*A

"ldr x1, %1\n\t" //*B

//...

"mov x12, #0\r\n"

"LOOP_TOP_0_%=:\r\n"

// zero registers

"fmov d24, xzr\r\n"

"fmov d25, xzr\r\n"

//...

// Block GEMM microkernel

// Load A register block @ (d=0,r=0)

"ldp q2, q3, [x0, 0]\r\n" // A [0,0] [0,0]

"ldr q4, [x1, 0]\r\n" // B[0,0][0,0]

"ldr q5, [x1, 32]\r\n" // B[0,0][0,1]

//...

"fmla v24.2d, v2.2d, v4.2d[0]\r\n" // C[0:2,0] += A[0:2,0]*B[0,0][0,0]

"fmla v26.2d, v2.2d, v5.2d[0]\r\n" // C[0:2,1] += A[0:2,0]*B[0,0][0,1]

//...

// Store C register block @ (d=0,r=0)

"stp q24, q25, [x2, 0]\r\n" // C [0,0] [0,0]

//....

"add x0, x0, #32\r\n" // Move A to (d=1,r=0)

//...

"cmp x12, #1\r\n"

"b.lo LOOP_TOP_0_%=\r\n"

: : "m"(A), "m"(B), "m"(C), "m"(alpha), "m"(beta) : "r0","r1" ...

}};

Listing 3.3: PSpaMM shortened example output of a 4x4x4 outer product
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PSpaMM had a minor bug when generating code for Ar architectures with larger
matrix sizes. Arm instructions are fixed to a 32 bit size resulting in issues when trying
to fit large immediates into these 32 bits. This can become problematic if one tries to
load immediates that are larger than 12 bits for the standard mov instruction. Assuming
a load of a 16 bit immediate into a register using the mov instruction, the operation will
fail because the 16 bit immediate cannot fit inside the 12 bits that mov has available
for immediates. In 64 bit Arm, large immediates have to be moved by splitting up the
immediate into 16 bit chunks, moving one chunk at a time into the destination register.
PSpaMM did originally not account for this resulting in the generator failing to generate
valid assembly for matrices with one dimension larger than 62. The splitting up of the
mov instruction is shown in Listing 3.4. movz and movk are 64 bit Arm instructions that
can move up to 16 bit immediates. Their 32 bit counterparts are movw and movt. movz
zeroes the remaining bits of the destination register while movk keeps the unaffected
bits unchanged. Additionally, a shift by 16, 32 or 48 bits can be specified to move
immediates into the upper regions of the destination register [3].

//Moving the 20 bit value 0xBEEEF

mov x0, #0xBEEEF //This will fail

//Replaced by

movz x0, #0xEEEF //Lower 16 bits

movk x0, #0xB, lsl #16 //Upper 16 bits, shifted to the left by 16

Listing 3.4: Loading large immediates on 64 bit Arm

3.5 Comparing loopy and PSpaMM

When comparing the loopy approach to PSpaMM, it is noticeable that both approach the
problem from a very different angle. Our loopy program aims to be easily modifiable,
portable and relies on compiler optimizations to leverage SIMD features. In contrast,
PSpaMM’s output is fully optimized after code generation and is therefore neither
portable nor easy to modify. It is also worth mentioning that loopy’s output can be
made to be agnostic towards matrix sizes whereby this requires more checks to make
sure no unsafe or out of bounds data accesses are made. Code generation is much faster
on PSpaMM, especially for larger matrices. In fact, loopy’s code generation is too slow
to generate fully unrolled code for large matrices in a reasonable amount of time. Inline
assembly is not optimized by the compiler used for this work (GCC) [13], therefore
PSpaMM will not benefit from further compiler optimizations. This should result in
PSpaMM being greatly outperformed on A64FX as SVE should perform better than
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NEON. For different or future use cases or even use on a new architecture, PSpaMM
would need to be modified considerably before it can be used, while Loopy only
requires compiler support for the respective architecture.
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In this chapter, we evaluate and interpret our results and assess which approach fits
which use case. Performance is measured via a wrapper program written in C++. It
initializes 50 matrices with random floating point coefficients and increasing dimensions
from 2x2 to 50x50. These matrices are then fed into our algorithms with execution time
being measured by likwid’s marker API and the likwid module likwid-bench. The
marker API can be used to declare certain code regions that likwid should measure
separately [30]. This enables us to run all four algorithms in one wrapper program while
also getting performance statistics for each of these regions. Furthermore, declaring
only the actual benchmarking loop to be measured eliminates set up overhead and
makes results reflect the actual performance Ṫo make results more consistent and to
eliminate random noise, this process is repeated multiple times. Listing 4.1 shows one
of four loops that make up the benchmarking suite. Note that in the case of PSpaMM
and loopy, we store function pointers to the tuned GEMM kernels inside a vector before
the benchmark begins. This is necessary as every input dimension requires an explicit
function implementation, resulting in 50 different functions that need to be called
individually.

current_mat_dim = 2;

LIKWID_MARKER_START("PSPAMM");

for (int j = 0; j < matrix_count; j++)

{

double c[current_mat_dim*current_mat_dim];

double *mat = pspamm_matrices[j];

pspamm_pointers[j](mat, mat, c, 1, 0, 0); //pspamm function pointers

current_mat_dim += 2;

}

LIKWID_MARKER_STOP("PSPAMM");

Listing 4.1: Benchmarking loop surrounded by calls to the likwid marker API

To get to our final result, we take the maximal FLOP/s that likwid-bench observed
over 10 runs and multiply it by the amount of cores the benchmarked CPU has. This
is done to obtain a realistic value for a distributed workload where the single core
calculations are distributed onto all available CPU cores. PSpaMM only supports dense
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matrices with dimensions divisible by 2 (matrices that are not divisible by 2 need to
be padded beforehand), matrices used are always square and dimensions increase in
steps of 2. Matrices larger than 100x100 appear very rarely in SeisSols computations
and are therefore not relevant for the case presented here. To evaluate our optimization
attempts from chapter 3, we also measure two other algorithms and use these results
as reference. These two algorithms are a naive GEMM implementation and the Eigen
library.

Inner product matrix multiplication (Naive GEMM)

The naive GEMM or inner product algorithm provides an absolute minimal baseline
performance. It is implemented completely unoptimized, relying on the compiler to
optimize where possible. We expect this algorithm to perform significantly worse
compared to both of our implementations, with more noticeable differences with
increasing matrix sizes. It follows the "by-hand" matrix multiplication where elements
cik of the result matrix C are calculated like

cik =
m

∑
j=1

aijbik. (4.1)

Implemented the standard way with three nested for loops and a single calculation in
the body, this algorithm is not automatically vectorized by compilers. After loading in
three values, ghcalculating the product and writing the result back into memory, a new
load is performed. This constant change of operations looses time while waiting for
memory accesses to finish, resulting in a slow algorithm.

Eigen Library

Eigen is a C++ Library for a wide range of linear algebra operations. Its implementation
of matrix multiplication aims to be efficient and at the same time being easy to use and
is dynamically optimized for the matrices at hand. While Eigen is auto vectorized for
most vector extensions and does support Arm NEON, it does not yet provide support
for Arm SVE [17]. Eigen compares quite well to other high performance matrix multi-
plication libraries like Intel MKL (x86 only), GOTOBLAS, OpenBLAS and ATLAS. It
can generally be considered one of the fastest general matrix multiplication libraries [10].

The full benchmarking suite is then run on both Arm architectures available to us.
As constrained at the beginning of chapter 3, all algorithms are single threaded and can
only be parallelized by instruction level parallelism if the respective algorithm makes it
possible to do so. Furthermore, all algorithms are compiled with:
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//A64FX

g++ -Ofast -mcpu=a64fx -std=c++17 -msve-vector-bits=512

//ThunderX2

g++ -Ofast -mcpu=thunderx2t99 -std=c++17

Using -mcpu instead of the x86 standard -mtune is recommended for Arm GCC, as
-mcpu allows the compiler to use standard Arm optimizations as well as CPU specific
microarchitecture optimizations. Arm GCC interprets flags differently from x86 GCC
where -mtune is almost always the preferred flag for highest performance [21]. The
-msve-vector-bits flag fixes SVE operations to the vector length specified. Without
it, the code would be compiled to be vector length agnostic. This would improve
portability but could potentially have a small impact on performance, therefore we
provide a fixed value for the vector length.

4.1 Upper performance limits

For theoretical peak performance of A64FX, we can refer to the data sheet provided
by the manufacturer. Fujitsu claims 2.8 TFLOP/s at 1.8 GHz for double precision
workloads [12]. In the case of ThunderX2 we have to calculate the theoretical peak
performance ourselves as the manufacturer does not provide performance statistics.
ThunderX2 has two FPUs that can perform one FMLA per clock cycle. The vector
length of 128 bit, clock frequency of 2.2 GHz and 32 cores result in a theoretical peak

2.2GHz · 32 · 8FLOP/cycle ≈ 540GFLOP/s (4.2)

of double precision performance or ≈ 1080 GFLOP/s of single precision performance
respectively. To verify performance figures for the A64FX, we use a benchmarking
tool provided by FAU University in Erlangen called likwid [35]. likwid is a command
line interface benchmarking tool with a focus on high performance computing. It
is available for x86 and Arm architectures. For ThunderX2, we do not provide own
benchmarks as this CPU has been benchmarked multiple times before, for example
by Calore et al [8]. Their tests confirm the theoretical calculations of 560 GFLOP/s
for double precision workloads with a peak bandwidth of about 120 GByte/s. For
A64FX, it was not possible to reproduce the claimed 2.8 TFLOP/s by Fujitsu. Running
a benchmark that limits memory access to the absolute minimum and putting the FPUs
under full load gave us, at best, 1.7 TFLOP/s. The benchmark loads a single value
into a SVE register and performs a large amount of fmla operations with this value.
The registers z0 and z2 to z15 are filled before the benchmark begins to keep memory
access to the absolute minimum possible. Listing 4.2 shows a short excerpt from this
benchmark. Likwid can then be used to run this benchmark multiple times. Results are
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gathered by reading the CPUs performance counters. These performance counters are
keeping track of a wide range of metrics on a modern CPU, from cache misses to cycle
exact execution time or memory read/write traffic. As they are completely separated
from the rest of the processor, gathering of these metrics does not impact performance
and yields accurate values [11].

//Setting up some data beforehand

.align 32

LOOP 8 //Benchmark begins here

ld1d z1.d, p0/z, [STR0,GPR1, LSL 3]//GPR1: General Purpose Register 1

fmla z0.d, p1/m, z0.d, z1.d

fmla z2.d, p1/m, z2.d, z1.d

fmla z3.d, p1/m, z3.d, z1.d

fmla z4.d, p1/m, z4.d, z1.d

fmla z5.d, p1/m, z5.d, z1.d

//10 more fmla instructions

//...

Listing 4.2: Shortened excerpt of the benchmark used to calculate peakflops on A64FX

The performance numbers are shown as a roofline plot in figure 4.1. We do not
expect our approaches to reach the full potential performance. The measurements were
performed with minimal memory access involved, resulting in very high operational
intensities, allowing the FPU to reach its absolute peak throughput. In reality, even
with the usage of the outer product, there will be delays where the FPU has to wait for
new data to be loaded in.

4.2 Benchmark results

It was not possible to find a general solution that performed the best in both environ-
ments and over all matrix sizes. Not surprisingly, the naive algorithm falls short on
both CPUs and for all matrix sizes except for the 2×2 matrix product. This is expected
as such a small input size leaves little to no room for optimizations. If one is looking
for a "good enough" performance solution, the Eigen Library is not only the easiest to
use, but also only slightly slower for most scenarios and faster than both optimized
approaches in some cases.
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Figure 4.1: Roofline chart of A64FX and ThunderX2
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Figure 4.2: Benchmark Results on ThunderX2

4.2.1 ThunderX2

The performance graph in Figure 4.2 for ThunderX2 shows multiple interesting results.
First off and unsurprisingly, the naive implementation can not keep up with the other
implementations. Its performance gets further behind the larger the input matrices get,
never achieving more than 15 GFLOP/s. The only size where the naive algorithm is
comparable, is for matrices of size 2×2. For such small matrices, optimizations barely
matter and therefore, there is little to no performance to be gained. For small matrices
up to dimensions of 18×18, PSpaMM and loopy are close together in performance.
PSpaMM experiences a large performance drop for dimensions from 20 to 26 while
loopy does not. PSpaMM’s performance becomes highly inconsistent from this point
onwards. This is probably caused by cache misses in the instruction cache as PSpaMM
functions get extremely large with 30,000 statements and more, causing the programs
to not fit into the instruction cache any longer. Also, for larger matrix sizes we can no
longer fit the whole problem set into vector registers, requiring values to be loaded
from memory into the cache. Eigen shows an almost constant performance gain
with increasing matrix sizes. Eigen’s overhead for smaller matrices is quite large in
comparison to the other approaches, but that overhead becomes negligible with larger
inputs. From dimensions 30 onwards, Eigen is clearly the fastest solution, increasing
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in performance while loopy and PSpaMM both get slower with increasing matrix size.
All approaches except the naive one achieve about 50% of theoretical peak double
performance of 540 GFLOP/s when extrapolated for all 32 cores. Only Eigen manages
to achieve more than 50%, topping out at about 300 GFLOP/s or 55% of possible peak
for larger matrices.

4.2.2 A64FX

On A64FX, the picture looks quite different. In Figure 4.3 we can see that, once
again, the naive approach can not compete, providing extremely slow performance
throughout the benchmark. Eigen and PSpaMM are considerably better than the
naive approach and show a similar behaviour as on ThunderX2 with both providing
comparable performance. Up until 30×30 matrices, PSpaMM is faster than Eigen while
from there on, performance is almost identical with Eigen showing the same occasional
performance drops as on ThunderX2. What is interesting though, is that performance
for Eigen and PSpaMM is only about half as good as on ThunderX2, reaching ≈ 100
GFLOP/s on A64FX and over 200 GFLOP/s on ThunderX2. Loopy, on the other hand,
is much faster on A64FX than on ThunderX2, achieving twice the amount of GFLOP/s
on the newer CPU. Compared to ThunderX2, even the fastest measurement of loopy’s
outer product at 500 GFLOP/s is well short of the 2 TFLOP/s the A64FX is theoretically
capable of. Initially, loopy showed a large spike in performance at matrix size 32,
jumping ≈ 100 GFLOP/s to over 400 GFLOP/s. Reducing the degree of optimization
on the kernel and simply unrolling the innermost loop while leaving the rest of the
code completely plain resulted in much better performance on smaller matrices as
well. Having less code and trusting the compiler to vectorize the inner compute loop is
the driving factor behind execution speed on A64FX as eliminating loop overhead by
unrolling over all loops did not improve performance but rather hinder it considerably.
While the same phenomenon could be observed on ThunderX2, it was much more
pronounced on A64FX. For reference, we included both benchmarks in Figure 4.4 before
we stopped unrolling loopy fully, clearly showing the performance jump at matrix size
32.

4.3 Interpretation

The relative results of our benchmarks are, for the most part, as expected. A64FX
shows better performance than ThunderX2 as long as modern features of A64FX,
in particular vectorization with SVE, are used. What is unexpected though, is that
the implementations that are tuned for NEON (Eigen, PSpaMM) are faster on the
(theoretically) less capable ThunderX2. While a relative speed-up would have been less
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Figure 4.3: Benchmark results on A64FX

surprising, an absolute speed-up of over 100 GFLOP/s is intriguing. Inspecting relative
speed-ups as shown in Figure 4.5 shows a very clear picture. We were able to achieve
almost 50% of ThunderX2’s potential peak with all three optimized implementations
while we only reached ≈ 32% of A64FX measured peak using loopy, the only one with
access to SVE. Eigen and PSpaMM are much further behind and never achieve more
than 8% of possible peak. If we go by the claimed peak of A64FX (that we were not able
to verify in the first place), we only reached 25% of the maximum with loopy. Issues in
utilizing the full potential can be explained by the relative immatureness of the vector
extension SVE and the therefore lacking compiler support for it. On the other hand,
NEON has been around for some time now, is generally well understood and well
supported by compilers. What this also shows, is that there is little performance to
be gained by extensive targeted assembly optimizations on ThunderX2/NEON, as the
very generic Eigen library is only behind in performance for very small matrices and
much faster for larger ones, probably for the same reasons loopy became faster when
we optimized less instead of more. Utilization of SVE instructions is paramount for
exploiting the potential of the A64FX, as the large performance gap between loopy
and Eigen/PSpaMM shows. While we do not have information on instruction latency
figures for ThunderX2, we can assume that latencies are probably much lower than on
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4 Results

Figure 4.4: Benchmark results with a fully unrolled loopy for small matrix sizes. A64FX
left - ThunderX2 right

A64FX. Otherwise, a performance drop when going from a (theoretically) slower CPU
to a faster one is hard to explain. When Eigen will eventually be updated to enable
vectorization via SVE as it does using NEON already, a significant performance boost
is expected on A64FX. Also, compiler support for SVE in general will continue to be
improved and therefore result in better performance from more high level programs
like the ones generated by loopy. PSpaMM’s performance on ThunderX2 for the
smallest matrices with dimensions from 2 < n < 30 should be replicable on A64FX
when PSpaMM’s code generation is correctly ported to SVE, which might be a good
intermediate solution to get adequate performance out of A64FX until compiler support
catches up.
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4 Results

Figure 4.5: Performance measured as a percentage of possible peak
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5 Summary

In this chapter, we summarise our findings and provide inspiration for further work to
be done in this field. We show where research could continue or what other approaches
are available.

5.1 Future work

Multiple other approaches exist that have not been explored in this work. Other Code
generators or auto optimizers that work on Arm exist, for example Polly. Polly uses
so called polyhedral optimization on llvm-generated loop code to improve performance
while being completely hardware/architecture agnostic [28]. A combination of loopy
and Polly is also possible and might provide better performance than using one of
them exclusively. Libxsmm is another code generator to try out. It is currently already
used in the SeisSol project in conjunction with PSpaMM when generating code for x86
architectures. Libxsmm provides Arm support via generic code generation on non-Intel
architectures [20]. While this generic code will obviously never be as fast as code
generated for Intel (as that is libxsmm’s primary target platform), a speed up for certain
matrix sizes, e.g for sizes where PSpaMM fails to provide good performance, could still
be possible [19]. Also, small performance gains could probably be gained by improving
when and how loopy is used. In this work we applied a rather general approach with
loopy, unrolling until performance showed an obvious drop and reducing the tile
size and unroll factor when such a drop was observed. More delicate and targeted
modifications could provide a small but noticeable performance boost. Another target
would be PSpaMM and its non existent support for SVE. Porting PSpaMM to support
SVE instructions should yield, at least in the short term, the best results on A64FX.
While that approach is promising, it would also require major changes in the way
PSpaMM works right now. Simply exchanging instructions from NEON to SVE would
not work in the first place, as there is no one to one mapping from one instruction
set to the other. Furthermore, fully utilizing SVE probably requires a change in the
structure of the algorithm itself, as A64FX’s high instruction latencies, utilization of
predicate registers and usage of A64FX four operand FMLA require a more in depth
look into how PSpaMM generates code. Apart from porting PSpaMM to the new vector
extension, general improvements to its code generation routine could also be performed,
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5 Summary

especially for matrices with dimensions larger than 30. PSpaMM is intended for very
small matrix sizes and our benchmarks showed that performance becomes unstable
and spikes up and down when we venture past the intended use case of PSpaMM.

5.2 Closing remarks

Our results show that generating optimized code can be beneficial for performance, but
is not a guarantee. Especially when working with newly released hardware, exploiting
special aspects of it via manually optimized or generated code seem to be necessary to
get adequate performance, at least as long as it takes for auto tuning solutions to be
implemented and adjusted to new hardware. The comparison of the ThunderX2 and
its mature architecture and vector extension to the newly released A64FX showed that
general solutions like the Eigen library need some time to be adapted for new features
(in this case, the Scalable Vector extension). Once this happens though, one can usually
only expect slightly better performance by hand optimizing a code generator for a small
subset of use cases. When someone is interested in maximum performance on newer
hardware, loopy provided very good results. This is attributed to the fact that GCC
already supported auto vectorization via SVE, allowing us to generate optimized but
still readable C code and leaving the assembly optimizations to the compiler. Would
GCC or a comparable compiler not have supported SVE already, code generated by
loopy would probably have performed considerably worse on A64FX. If this is the
case but one still desires high performance, there seems to be no way around manual
optimizations in assembly. This could be achieved by a generator like PSpaMM, that
showed good results on NEON and should therefore also perform well when extending
it to SVE. While optimizations can and usually are beneficial to performance, they
do not have to be. Over-optimizing, which resulted in a large amount of statements
in source files, performed inconsistent and/or worse than less optimized code. Fine
tuning and regular benchmarking of small optimization steps are necessary to avoid
this.
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