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Biobased chiral semi-crystalline or amorphous
high-performance polyamides and their scalable
stereoselective synthesis
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The use of renewable feedstock is one of the twelve key principles of sustainable chemistry.

Unfortunately, bio-based compounds often suffer from high production cost and low per-

formance. To fully tap the potential of natural compounds it is important to utilize their

functionalities that could make them superior compared to fossil-based resources. Here we

show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams

from which polyamides. The lactams are selectively prepared in two diastereomeric config-

urations, leading to semi-crystalline or amorphous, transparent polymers that can compete

with the thermal properties of commercial high-performance polyamides. Copolyamides with

caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared

to the homopolyamides, potentially broadening the scope of standard polyamides. A four-

step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxi-

dation step, is established. The great potential of the polyamides is outlined.
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Polyamides (PA) are an important class of high-performance
polymers and have been used in various industries (auto-
motive, textile, medical, etc.) since the first industrial

polyamide PA-6.6 was developed by Carothers in 1936 (refs. 1,2).
They are either produced by condensation of diacids with dia-
mines, leading to AABB-type polymers, or amino acids for the
AB-type, respectively. This type can alternatively be produced by
ring-opening polymerization (ROP) of lactams. The most famous
example for a lactam used as a monomer is ɛ-caprolactam, a
seven-membered cyclic amide which was first polymerized to PA-
6 by Schlack in 1938 (ref. 3). It is usually produced from fossil oil-
based cyclohexane after the oxidation to cyclohexanone, oxime
formation, and subsequent Beckmann rearrangement. Recently,
bio-based ways to synthesize caprolactam starting from glucose
and fructose via hydroxymethylfurfural (HMF) have been
described4,5. Due to the increasing awareness of dwindling fossil
resources and environmental problems that arise using fossil oil
as basis for plastics, alternative monomer resources for polymers
in general and for polyamides specifically have become a major
focus of research6–19. Sustainable monomer sources can be ser-
ious alternatives to fossil oil, as demonstrated by the commer-
cially available bio-based polyamides PA1010, PA11, or PA410.
These examples are linear, non-chiral condensation polyamides
composed of diacids or amino acids derived from castor oil. In
this context, we consider especially monoterpenes from renewable
feedstocks to be a promising source for biogenic polymers.
Monoterpenes such as limonene, camphor, menthone, α- and β-
pinene, or 3-carene provide valuable carbon structures such as
aliphatic rings and can be isolated from waste streams of biomass-
utilizing processes in high volumes20. The latter three are the
main components of turpentine oil with a combined annual pro-
duction volume of about 350 kt per year, primarily isolated from
the kraft pulping process (sulfate turpentine, 200 kt) or by dis-
tillation of resins extracted from conifers (gum turpentine, 100 kt).
The composition highly depends on the species and origin of
the utilized conifers. In Southeast USA, α-pinene (60–75%) and
β-pinene (20–25%) are more common, whereas turpentine from
Scandinavia and Russia contains considerable amounts of (+)-3-
carene (40%)21. Chemically functionalized terpenes used for poly-
olefins, polyesters, polycarbonates, polyacrylates, and others with
promising properties have been reported, underlining their enor-
mous potential for bio-polymers22–37. However, terpene-based
polyamides are still rare. The first terpene-based bio-polyamide was
synthesized by Hall38 in 1963 via the cationic ROP of a β-pinene
based lactam. Recently, Winnacker et al.39,40 reproduced, investi-
gated, and optimized the synthesis and polymerization and tested
the application of the new polyamide in cell growth control.
Another approach by the same group was the oligomerization of
a menthone-derived lactam41,42. For both the commercial
polyamides, such as PA6, PA11, PA12, and the lactam-based bio-
polyamides, factors limiting broader fields of application
remain: relatively low glass transition temperatures (Tg) and
melting temperatures (Tm) or low molecular weights (Mn and Mw)
in addition to a costly or unscalable synthesis. However, the
terpene-based polyamides possess thermal properties in the range
of high-performance polymers. We recently described the synthesis
of 3R-caranlactam from (+)-3-carene and its polymerization to
poly-3R-caranamide43. This new polyamide has interesting thermal
properties and a molecular weight in the range of commercial PA6
and PA12, but the monomer synthesis was challenging and
involved toxic and expensive chemicals.

In this work, we report the synthesis of the new diastereomeric
3S-caranlactam and an optimized synthesis for 3R-caranlactam. 3S-
caranlactam is a methyl group diastereoisomer of 3R-caranlactam
with considerable different properties and polymerizability.
The isomers are selectively prepared by an epoxide-ketone

rearrangement and a suitable kinetic or thermodynamic control
of the intermediates. A facile and straightforward one-vessel
synthesis of 3S-caranlactam in a 4.0 L reactor is presented. Over
four steps, an overall yield of 25% is reached. The monomers are
polymerized to poly-3R-caranamide and poly-3S-caranamide, and
the co-polymerization of 3S-caranlactam with caprolactam (CL)
and laurolactam (LL) is also performed. The polymerizations are
investigated regarding reaction time, temperature, and other fac-
tors. A crucial effect of the amount of applied activator is detected,
which is in accordance with polymerization theory. Thermal
properties of the homo- and co-polyamides are characterized by
differential scanning calorimetry (DSC). Bio-based semi-crystalline
or amorphous polyamides and co-polyamides with unique high-
performance thermal properties are obtained. The amorphicity of
poly-3R-caranmide and several co-polyamides is underlined by
the preparation of transparent, sonlvent-cast films. A crystal
structure of the semi-crystalline poly-3S-caranamide is also
presented. As a conclusion, the great potential of these polyamides
is shortly outlined.

Results
Monomer synthesis. Compared to reported literature, the initial
oxidation of the double bond of (+)-3-carene (1) is achieved by an
epoxidation instead of the challenging alcohol synthesis by
hydroboration45,46. In pathway A (Fig. 1), application of immo-
bilized Cal-B lipase, an industrial enzyme from Candida antarctica,
or buffered diluted peracetic acid exclusively leads to epoxide 2-3S
(where “S” is the configuration of the stereo-centre of C3)47–49.
The metal free enzymatic method generates epoxides in high
yields under mild conditions, can be conducted in green solvents
such as ethyl acetate, and prevents the potentially dangerous
aggregation of peracetic acid. In both cases, the epoxidation—
which is rather uncommon—was only little exothermic and
therefore easily controlled. The yield after distillation was over
80%. As a next step, the rearrangement of the epoxide to a ketone
was performed. A literature protocol using high amounts of
ZnBr2 in EtOAc resulted in 59% yield, consisting of a mixture of
the diastereoisomeric ketones 3-3S and 3-3R, which can be
identified by Gas chromatography mass spectrometry (GCMS),
(Supplementary Methods, Supplementary Fig. 1, Supplementary
Table 1)50. A diastereoselective rearrangement has not been
reported to date. As a mixture of stereoisomers would eventually
result in an atactic polyamide, we were interested in a stereo-
selective catalysis which would enable the synthesis of the pure
isomers—but complex51,52 and costly53–56 catalysts should be
avoided. We assumed that a concerted mechanism leads to
inversion of the methyl group, whereas an ionic two-step
mechanism results in a mixture53,57–59. After screening for
optimized reaction conditions (Supplementary Tables 2–8) with
respect to solvent polarity, concentrations of reactants, and
temperatures, we identified several trends: (I) with decreasing
polarity of the solvent, inversion of the methyl group to isomer 3-
3S is preferred; (II) increasing substrate concentration leads to
formation of high-boiling molecules, presumably oligomers; (III)
oligomer formation decreases at higher temperatures; (IV) var-
ious side products are formed under aqueous acidic conditions;
and (V) very acidic conditions under exclusion of water are most
promising.

The solvent polarity is crucial for the regioselectivity and the
stereoselectivity. Hydrocarbons are most suited, whereas applica-
tion of polar ethers, such as THF, and nucleophilic alcohols
drastically reduce the yield (Supplementary Table 2). The role of
the anion is also important, as the reaction was comparably
unsuccessful with other iron salts (FeCl3·6H2O: 22% ketone
selectivity, Supplementary Table 3, entry 9; Fe(OAc)2: no
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conversion, Supplementary Table 4, entry 4). Zn(OTf)2 also gave
satisfying results (Supplementary Table 4, entry 2); however, the
reaction time was long even at comparably high catalyst
concentration. A control reaction with NH4(ClO4) showed no
conversion. Alternatively, sulfonic acids in cyclohexane or toluene
are suitable (Supplementary Table 5). The combination of non-
polar solvents and very strong acids can also be applied for the
stereoselective rearrangement of other epoxides and will be
investigated in more detail in the future. For the synthesis of 3-
3R, 2-3R was synthesized via the bromohydrine and base-induced
epoxide formation, following an adjusted protocol of limonene
epoxide production11. Application of the Fe(ClO4)2·H2O/cyclo-
hexane system gave isomer 3-3R in excellent selectivity (de 95%).
However, the work-up by distillation led to isomerization and 18%
of 3-3S were formed. As 3-3S is the kinetic product, whereas
isomer 3-3R is thermodynamically favoured, an isomerization
under protic acidic conditions (Supplementary Table 9) is possible
and the equilibrium is 80:20 in favour of 3-3R45,60. An allyl
alcohol was identified as intermediate by GCMS (Supplementary
Fig. 1). The synthesis of the oximes 4-3S and 4-3R was realized by
conversion with hydroxylamine hydrochloride in over 80% yield.
In both cases, the trans-oxime was the major isomer. Surprisingly,
the reaction time was considerably longer for 3-3R than for the S-
isomer. We used that observation to produce 3-3R from the 3R-
enriched equilibrium mixture—thereby making the use of NBS
obsolete—with an isomeric purity of over 97%: Addition of small
amounts of hydroxylamine hydrochloride led to selective conver-
sion of 3-3S to 4-3S in the presence of 3-3R, which was then
separated by distillation (Supplementary Fig. 2). The overall yield
starting from (+)-3-carene (1) was 47%. Initial experiments
indicated that the formation of acetals by the reaction of 3-3S with
alcohols such as glycerol could be used accordingly. The last step
of the synthesis was the Beckmann reaction of 4-3S and 4-3R to
the corresponding lactams 3S-caranlactam (5-3S) and 3R-
caranlactam (3-3R). The yield was over 70% in both cases. As
reported before for 5-3R43, the selectivity with respect to the
nitrogen insertion was over 90%, and crystallization from EtOAc
afforded pure 5-3S or 3-3R, respectively. Surprisingly—as other
Lewis acids were proven unsuitable43—some of the perchlorate
Lewis acids showed potential for a catalytic Beckmann rearrange-
ment of 4-3S, with the optimum reaction conditions being
investigated at the moment.

We then scaled the reaction to 2.50 mol—or 1.25 mol for the
enzymatic epoxidation—of 1 in a 4.0 L reactor and conducted the

synthesis as a one-vessel process (Fig. 2, Supplementary Methods,
Supplementary Figs. 3 and 4). As only washing steps and solvent
changes were required, all intermediates remained in the reactor
throughout the whole process. The crystallization was partly
achieved in the reactor at 15 °C (approximately 50%), and the
formed crystals could be filtered effortlessly. The remaining
product was then isolated by crystallization at −20 °C separately.
The crystallization protocol was not optimized so far, and a
complete crystallization within the reactor might well be possible.
In general, the crystallization of 5-3S was not affected by the
accumulated side products (e.g. cymene and unidentified high-
boiling aliphatic compounds). The yield after recrystallization was
24% over four reaction steps. 5-3S was synthesized accordingly
with 20% overall yield; the enriched 3-3R had to be purified
separately by vacuum distillation and was then re-transferred to
the reactor for the oximation. The process will be upscaled to the
100 L reactor shortly.

Although the synthesis is not fully optimized, several sustainable
aspects are worth mentioning. The presented process requires only
moderate reaction conditions and no elaborate reaction equipment.
Only little amounts of metal are used during the process. In
addition—as no low-boiling, interfering side products are formed—
cyclohexane is retrieved during the process and can be reused;
EtOAc and MeCN can also be recovered from the mother liquor by
distillation after product crystallization. Finally, the product purity
that is required for polymerization is reached by crystallization,
avoiding material- or energy-consuming methods. However, for a
fully sustainable synthesis, the amount of washing solutions—which
were used in great excess so far—must be reduced, a catalytic
method for the Beckmann rearrangement needs to be implemented,
and an increase of the overall yield is required.

Preparation and investigation of the homopolyamides. As
mentioned before, 5-3R polymerizes by anionic ROP under
application of NaH as initiator and in situ generated N-acetylated
5-3R to poly-3R-caranamide (poly5-3R), reaching an average
molecular weight number (Mn) over 30 kDa43. The addition of
Ac2O during this process is challenging to control and to
reproduce due to reaction temperatures reaching values above the
boiling point of Ac2O and monomer sublimation. Therefore, we
used N-benzoyl-3R-caranlactam (Bz5-3R) and N-benzoyl-3S-
caranlactam (Bz5-3S,) as solid, high-boiling activators (Fig. 3).
Gel permeation chromatography (GPC, Supplementary Methods,
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Fig. 1 Monomer synthesis overview. Synthesis pathway with yields and diastereomeric excess (de) of intermediates for the production of the lactam
isomers 5-3S and 5-3R (yields refer to the small-scale experiments from purified starting material). The labelling of the stereo-centre C3 at all
intermediates follows the recommendation for terpene carbon skeleton numbering of M. W. Grafflin, which suggest that the initial carbon labels of (+)-3-
carene are fixed also in case of functionalization44.
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Supplementary Fig. 5, Supplementary Table 10) was chosen for
determination of the molecular weight as measurements of poly5-
3R and poly5-3S with MALDI-TOF did show the characteristic
peak distance of 167m/z, but only oligomers up to 6.5 kDa could
be detected (Supplementary Fig. 6). This is a known phenomenon
for polyamides39,61. The initial polymerization reactions of lac-
tam 5-3S were carried out in an evacuated glass vial equipped
with a metal screw cap with a rubber septum, a magnetic stir bar,
NaH on paraffin wax as an initiator, and Bz5-3S as an activator
(Polymerization method A, Fig. 4, Supplementary Fig. 7). The

activator concentration was varied, and the effect of the reaction
temperature was evaluated at 180 and 220 °C.

At 180 °C, an Mn of over 10 kDa and an Mw over 16 kDa are
observed, whereas at 220 °C the values do not exceed 7.5 kDa. For
both temperatures, the decreasing amount of Bz5-3S results in an
increasing molecular weight, as expected. However, this effect is
stronger at 180 °C andMn increases over 70%; at 220 °C, only 35%
average chain growth is observed. At a starting monomer/activator
ratio (ratioA/M start) of approximately 50, the rise of the molecular
weights attenuates considerably in both cases. The polydispersity
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index (PDI) is between 1.2 and 1.6 for all ratioA/M start, being a
typical value for ROP which usually yields polymers with a narrow
mass distribution62. DSC revealed Tgs of 111–115 °C and Tms of
245–285 °C (Supplementary Fig. 10, Supplementary Tables 11 and
12) for a reaction temperature of 180 °C, whereas the melting
onset was as low as 230 °C for a reaction temperature of 220 °C.
To remove the residual monomers and oligomers, the polyamides
were grinded to powders and stirred in a water/ethanol solution
for several hours (Polymer work-up method A). Though this
process was successful, it became clear that the conversion of 5-3S
could not be calculated from the isolated polymer yield, as
uncontrolled polymer losses during the process (filtering, grinding,
etc.) are unavoidable. The yield of isolated poly-3S-caranamide
(poly5-3S) was 60–80%. In addition, sublimation of the monomer
during the polymerization was detected particularly at long
reaction times, which distorts the monomer/activator ratio.
Similar challenges were observed during the polymerization of
lactam 5-3R.

Therefore, we changed the polymerization set up and used a
heating block covered with an aluminium foil to guarantee
homogeneous temperature inside the polymerization vial and used
nitrogen instead of vacuum for inert reaction conditions—this
prevented sublimation almost completely (polymerization method
B, Supplementary Fig. 17). To determine the conversion without the
described drawbacks, poly5-3S and poly5-3R were dissolved in
hexafluoro-2-isopropanol (HFIP) in the polymerization vial directly
after the reaction. After complete dissolution of the polymer,
samples of the homogeneous solution were analysed by GPC and
NMR to measure the ratio of unreacted and incorporated monomer
(Fig. 5). In both cases, the NMR and GPC analysis were in good
agreement. NMR revealed that no isomerisation of the methyl
group or side reactions of the three-membered ring occurred
(Supplementary Figs. 18 and 19). This is worth mentioning, as the
defined relative (and absolute) configuration gives rise—as indicated
by chemical logic and demonstrated for other chiral lactams39—to
chiral polyamides. Poly5-3R was formed more readily and at lower
activator concentrations than poly5-3S; 0.3 mol% activator was
enough to surpass 80% conversion of 5-3R, whereas 2.5mol%
were required for 5-3S. The lactams reached a conversion of almost
90%, which is surprisingly high for substituted lactams, especially
as aliphatic side-chains are attached at the β- and γ-position63.
Substituents in these positions usually set the Gibbs energy to less
negative values and lead to ring closure, therefore lowering the
reactivity. Consequently, aliphatic substituents such as methyl- or
propyl groups in the γ-position lead to an unfavourable polymer–
monomer equilibrium and decreased conversion10,63,64. However,
although several examples have been published, detailed predictions
about the polymerizability and polymer–monomer equilibrium of
bicyclic lactams are challenging65–67. For lactam 5-3S, no significant

conversion was observed beneath a ratioA/M start of approximately
1:100, whereas even a ratioA/M start as small as 1:1200 (<0.1%)
lead to a conversion of over 40% within 1 h for the stereoisomeric
lactam 5-3R. If 1% activator was applied, the polymerization was
completed in seconds. The Mn of poly5-3R and, at high conversion
levels, the Mn of poly5-3S increased at decreasing amounts of the
activator. However, below a certain activator concentration and
conversion, the observed molecular weights are low for poly5-3S
(Fig. 6).

As the formation of poly-5S was considerably slower than of
poly-5R, we investigated the conversion at a given activator
concentration (3.3%) at different reaction times at 180 °C.

The conversion reached a maximum of 80% after 2 h; 94% of
that was completed after about 50min (Supplementary Fig. 20,
Supplementary Table 14). As reported by us previously, poly5-3R
did not possess a melting point in the DSC analysis (Supplemen-
tary Methods, Supplementary Table 15, Supplementary Fig. 21)43.
We presume that the high degree of aliphatic substitution prevents
the polymer chains to crystallize, even at long tempering times.
This has not been reported for terpene-based polyamides before,
but has been reported for other alkyl-chain-substituted short-chain
bio-polyamides10. DSC of poly5-3S revealed that the polyamide is
semi-crystalline with a comparably weak Tg at around 105 °C and a
Tm of up to 280 °C, surpassing the Tg and Tm of unsubstituted PA6
by 50 and 60 °C, respectively. The decomposition temperature
under nitrogen atmosphere was around 360 °C. The high Tgs are
caused by the three-membered ring in the polymer backbone and
the resulting reduction in one degree of rotational freedom in the
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polymer backbone. To rule out the possibility that the lower
molecular weight enables the, therefore, shorter polymer chains to
form crystals, a short-chain poly5-R (Mn= 10 kDa; Supplementary
Fig. 22) was synthesized and analysed by DSC—still, no melting
was observed. As no other differences in the monomer or the
polymer chain are present, this finding can directly be attributed to
the diastereomeric methyl group that, consequently, causes not
only a different ring structure in the lactam but also strong
structural changes in the polymer chain. To support these findings,
we investigated the monomers and both polyamides with XRD
(Supplementary Methods, Supplementary Notes 1 and 2).

Preparation and investigation of the co-polyamides. As the
three-membered ring of 5-3S might decrease the segmental chain
motion68, we hypothesized that the random inclusion of this
motif in the more regular chains of PA6 and PA12 could not only
result in an increased Tg but also in a decrease or even complete
loss of long-range order. Apart from that, the copolymerizability
of 5-3R and 5-3S was tested (Fig. 3b).

The co-polymerization was successful by applying similar
reaction conditions as for the homopolyamides and could be
verified by NMR. In all cases a complete consumption of 5-3S
was not achieved. If equimolar amounts of 5-3S, CL or LL were
used, the integration in the backbone was 96% (CL) and 89%
(LL). The Tg of the co-polyamides with CL and LL was shifted to
higher temperatures with increasing amount of 5-3S (Fig. 7). For
example, a built-in of 48% in the regular PA6 chain in copoly(5-
3S48%·CL52%) resulted in a Tg of 88 °C, whereas the Tg of copoly

(5-3S41%·LL59%) is shifted to 55 °C (Supplementary Table 16,
entries E10 and E7). In both cases, no melting point was observed
in DSC and the polymers were clear, yellow blocks. If only 18%
of 5-3S were integrated in the PA6-backbone, a broad melting
area between 160 and 190 °C caused by cold crystallization
(110–150 °C, Supplementary Fig. 26 i) was observed, indicating
that this amount is not enough to completely suppress the
establishment of a long-range order. Copoly(5-3S83%·LL17%) has
a Tg of 82 °C and a melting range of 220–250 °C. The broad
melting ranges suggest that 5-3S is not regularly distributed in the
polymer chain and that the different reaction kinetics of the
monomers lead to a gradual increase of the slow-reacting lactam
in the growing chain throughout the polymerization reaction. As
only one melting range is observed, the parallel formation of the
homopolyamides PA6/12 and poly5-3S can be excluded69. It is
worth mentioning that the Tg seems to increase in a linear
manner in a certain incorporation-range of 5-3S, approximately
between 25% and 80%. We hypothesize that outside of this range,
effects arising from crystallinity affect the Tg. As the crystallinity
is drastically reduced within the range, the increasing Tg can be
directly attributed to the amount of 5-3S in the polymer
backbone.

Investigation of the co-polymerization of 1:1 mixtures of
5-3S and CL/LL revealed that the monomers were consumed at
different rates (Supplementary Figs. 28 and 29, Supplementary
Table 17). The co-polymerization of 3-5S and CL almost
exclusively starts with the conversion of CL before 3-5S is also
incorporated. Some examples for intermediate poly(5-3S·CL)
were: poly(5-3S18%·CL72%) at 60 s (6.7% total conversion),
poly(5-3S37%·CL63%) at 240 s (41% total conversion) and poly
(5-3S49%·CL51%) at 60 min (82% total conversion). The co-
polymerization with LL proceeded vice versa, and the co-
polymer composition was poly(5-3S66%·LL34%) at 60 s (7.9%
total conversion), poly(5-3S58%·LL42%) at 240 s (34.5% total
conversion) and poly(5-3S52%·LL48%) at 60 min (64.4% total
conversion). From this, it can be concluded that the relative
rates of consumption are CL > 5-3S > LL.

To further evaluate the optical properties, we fabricated
films of the co-polyamides and poly5-3R by dissolving them
in HFIP and slow evaporation of the solvent. Commercial
and self-made PA6 and PA12 resulted in colourless non-
transparent films. From the amorphous co-polymers, however,
relatively transparent foil-like films could be produced (Fig. 8).
Although some of the films show little amounts of residual
monomers and—due to the preparation method—inclusions of
solvent and other irregularities, the increasing transparency is
obvious.
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Fig. 7 Co-polymerization effects. Influence of the inclusion of 5-3S on the
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Crystal structures of the monomers. Comparison of the struc-
tures of the monomers, determined by single-crystal X-ray dif-
fractometry (details see Supplementary Note 1), shows that the
methyl-group inversion at C3 leads to a changed conformation of
the seven-membered ring. This might explain the different
properties of the monomers: 5-3S has a higher melting point
(about 170 °C instead of 140 °C as observed for 5-3R, Supple-
mentary Fig. 30); increased monomer sublimation was detected
during the heating process, and 5-3S crystallizes more rapidly
from EtOAc.

The higher quality low-temperature (100 K) data obtained for
5-3R (CCDC 1938733) agree with published values for a room
temperature measurement (CCDC 145220)46. The crystal struc-
tures derived from the diffraction patterns (Fig. 9, Supplementary
Fig. 31a, b, Supplementary Table 18) illustrate that hydrogen
bonds are formed between symmetry-identical molecules in 5-3S
(CCDC 1938732), as well as between the two independent
molecules in the asymmetric unit of 5-3R. In case of 5-3R a dimer
formation via classic hydrogen bonding through antiparallel
arrangement of the amide groups is observed and non-classic
hydrogen bonding to the methyl groups at C9 and C10 leads to an
extended hydrogen bonding through the crystal. The independent
molecules of 5-3R have identical absolute configurations (Supple-
mentary Figs. 32–34). In case of 5-3s the bonding network is
different, since each amide oxygen atom forms hydrogen bonds
to an amide hydrogen atom of one symmetry generated molecule,
as well as a non-classic hydrogen bond to one of the C5-bound
hydrogen atoms of another symmetry generated molecule in the
crystal structure. Comparison of the lactam structures with their
respective energy-minimized shapes (MOPAC, PM7, singlet)
yields the root mean square displacements 0.032 Å (S) and
0.042 Å (R). This confirms the expected low-energy conformation
of the unconstrained monomeric species. The amide motif
(C3–N1–C4–C5) is almost planar for both isomers, reflecting

the partial double bond character. In contrast, the absolute
configuration of the stereogenic centre C3 significantly influences
the different conformations of the seven-membered ring. In case
of 5-3R, derived from the thermodynamically favoured ketone
3-3R, the seven-membered ring can be divided in two groups of
coplanar arranged atoms: one plane spanned by C1–C2 and
C5–C6 and the other by C2–C5 including N1. In case of 5-3S the
situation is different since one plane is spanned by C3–C5
including N1 and the other plane by C5–C6 and C1–C3.

Crystal structure of poly5-3S. The diffraction patterns recorded
from poly5-3S were characteristic of a semi-crystalline polymer
(Supplementary Data 1, Supplementary Fig. 31c), allowing
structural determination by the direct space method simulated
annealing (SA, Supplementary Methods, Supplementary Note 2,
Fig. 10, Supplementary Figs. 35 and 36). By scaling the amor-
phous reference patterns to match them at 2Θ values outside the
range of Bragg peaks, we obtained a fraction of crystalline phase
(fc) of 0.42 from the ratios of the integrated intensities. Patterns
from poly5-3R showed no distinct reflexes, except those from
residual monomers (Supplementary Fig. 31d).

In poly5-3S, the arrangement of N1 and O1 within the
polymer chain is similar to that found in β-peptides70. Within
crystallites of 5-3S, hydrogen bonds are formed between pairs of
antiparallel chains (Fig. 10, Supplementary Fig. 35). Conse-
quently, the obtained crystal structure for poly5-3S is one of
antiparallel two-strand β-sheets. The inter-sheet distances are
a/2= 4.90(3) Å, and the repeat distances along the chain c= 6.44
(6) Å (Fig. 10, Supplementary Table 18). The distance from N1 to
O1 of 2.79 Å corresponds well to the distances typically found in
polyamides71. Further, the density of the crystalline phase of
1.167 g cm−3 is a good match for the densities of the 5-3S
monomer crystalline phase of 1.147 g cm−3 and well in the range
of standard polyamides2. Finally, the bond angle C5–C6–C1 of

a b c d

e f g h

Fig. 8 Transparent polyamide films. Photographs taken under identical conditions of pure polymers and co-polymers in front of a sector of the Fraunhofer
lines. a PA12; b copoly(5-3S32%·LL68%); c copoly(5-3S33%·LL67%); d copoly(5-3S41%·LL59%); e PA6; f copoly(5-3S18%·CL82%); g copoly(5-3S48%·CL52%);
h poly5-3R.
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104.49° is within a realistic margin to the ideal tetrahedron angle
of 109.28°. The view of the expanded repeating unit demonstrates
that the chain conformation is strongly influenced by the three-
membered ring C1–C6–C7–C1 (Fig. 10). The crystal structure
view in the same figure shows that the “bend” shape of the
C2–C3–N1–C4O1–C5 segment results from the hydrogen bonds
across chains, in conjunction with the angle imposed by the
three-membered ring.

Discussion
To summarize, a stereoselective reaction sequence for two ste-
reoisomeric lactams—starting from the chiral biomolecule (+)-3-
carene—was developed. The selective Meinwald rearrangement
enables the deliberate synthesis of 5-3S or 5-3R—new bio-based
building blocks for either amorphous (transparent) or semi-
crystalline polyamides. 5-3S can be produced in an at least partly
sustainable one-vessel process without purification of any inter-
mediates. The final product was effortlessly purified by crystal-
lization. The initial oxidation step could be achieved by in situ
generated peracetic acid, formed by a lipase, H2O2, and acetic

acid, a considerably environmentally benign and safe method for
epoxidation.

The results of our small-scale basic polymerization experiments
show that 5-3S and 5-3R polymerize comparably facile and
that the molecular weight can be adjusted by variation of the
activator amount. Additionally, the general potential to form
co-polyamides with CL and LL allows the formation of new
partially bio-based materials. The homopolymers and the
co-polymers have very intriguing characteristics, regarding ther-
mal properties, crystallinity, and transparency. These properties
can be attributed to the three-membered ring and the methyl
group at C3, which—according to NMR analysis—maintain their
configuration throughout the polymerization. Especially the co-
polymers are of high interest as the properties of these new
polymers highly differ from PA6 and PA12, possibly giving way
to new fields of application without the need of additional
additives to introduce similar effects. Furthermore, all produced
polyamides are, by chemical logic, chiral as the starting material
(+)-3-carene consists of only one enantiomer and the three-
membered ring is unable to isomerize. This might enable appli-
cations in chiral separation techniques.

b
a

c d

Fig. 9 Crystal structures of the monomers. Crystal structures and monomer molecule conformations of each 5-3R (a, c) and 5-3S (b, d) with bonding
hydrogens only viewed in unit cell direction b.
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In the future, we plan to scale-up the polymerization of the
homo- and co-polymers, the investigation of the hydrolytic
polymerization, compatibility tests with commercial poly-
merization systems and additives, and polymer processing to
produce standardized specimen to further demonstrate that
high-performance bio-polyamides can not only keep up with
their fossil-based counterparts but also that bio can be better.

Methods
Instrumental and characterization. GCMS was performed using GC-2010 Plus
(Shimadzu) with an auto-injector AOC-5000 (Jain, Combi PAL), a GC capillary
column (BPX 5: 5% phenyl, 95% methyl polysilphenylene/siloxane; SGE), and MS-
QO2010 Plus (Shimadzu) at 70 eV. NMR measurements were carried out on a
JNM-ECA 400MHz spectrometer from JEOL. Chemical shifts δ are indicated in
parts per million with respect to residual solvent signals. SEC was performed using
a SECcurity GPC system with an autosampler (1260 Infinity; Agilent Technologies)
and a TCC6000 column oven (Polymer Standards Service, PSS). DSC was per-
formed on a DSC 1 from Mettler Toledo with the software STARe V. 16.00.
MALDI-TOF was conducted on a Bruker Ultra Flex TOF/TOF mass spectrometer.
Single-crystal analysis was performed by single-crystal X-ray diffractometry (SC-
XRD, D8 Venture, Bruker AXS, Madison, WI, USA) equipped with a 4-circle
goniometer (Kappa geometry), a CMOS detector (Photon 100, Bruker AXS), a
rotating anode (TXS, Bruker AXS) with MoKα radiation (λ= 0.71073 Å), and a
multilayer mirror monochromator (HELIOS, Bruker AXS). Powder X-ray dif-
fraction was carried out using Bragg-Brentano geometry (PXRD, Miniflex, Rigaku,
Japan, with silicon strip detector D/teX Ultra) and copper Kα radiation. Detailed
information about applied methods and sample preparation is described in
the Supplementary Methods.

Monomer synthesis. All applied chemicals, including solvents, were purchased in
industrial grade and used as received. All monomer synthesis reactions were car-
ried out under air without inert atmosphere. For the enzymatic epoxidation,

Novozyme-435 (CALB lipase immobilized on acrylic resin) was applied. The
reaction progress was monitored by GCMS or TLC. Purification of the products
was achieved by distillation, crystallization, or column chromatography. Product
characterization was realized by NMR and GCMS. The exact structure of 5-3S and
5-3R was determined by XRD. TLC was performed using aluminium plates coated
with SiO2 (Merck 60, F-254) and the spots were visualized with a KMnO4 stain.
Flash column was performed using SiO2 (0.06–0.2 mm, 230–400 mesh ASTM)
from Roth. NMR assignments of all intermediates are provided beneath the
synthesis protocol, NMR data are displayed in Supplementary Figs. 37–46.

One-vessel scale-up. The reaction cascade was performed under application of
the METTLER TOLEDO LaBMax Automatic Lab Reactor equipped with a 4.50 L
reaction vessel with a bottom outlet, a stirrer (shaft stirrer blade), a condenser, a
distillation bridge, and active water cooling (minimum temperature: 15 °C). A
detailed step-by-step protocol is described in the Supplementary Methods.

Polymerization method A. 3S-caranalctam (5-3S), 3R-caranlactam (5-3R), CL or
LL and the specific amount of activator (N-Bz-caranlactams Bz5-3S and NBz5-3R)
and NaH (60% on paraffin) were put into a glass vial (10 mL) equipped with a
magnetic stir bar. The vial was closed with a screw lid with a rubber septum and
vacuum was applied via a syringe connected to a vacuum pump for 10 min before
the vial was vortexed for 30 s. The vial was placed in an oil bath and stirred at a
specific temperature. When the reaction time was over, the vial was removed from
the oil bath and cooled down to room temperature without external cooling.

Polymerization method B. 3S-caranalctam (5-3S), 3R-caranlactam (5-3R), CL and
LL, and the specific amount of activator (N-Bz-caranlactams Bz5-3S and NBz5-
3R) and NaH (60% on paraffin) were put into a glass vial (10 mL), flushed with
nitrogen and closed with a screw lid with a rubber septum and vortexed for 30 s.
The vial was then placed into a heating block at different temperatures for the
respective amount of time. The heating block was covered with aluminium foil to
decrease the temperature gradient. After the reaction time was reached, the vial
cooled down to room temperature without external cooling.

a b

Fig. 10 Crystal structure of poly5-3S. Structure of poly5-3S, viewed in unit cell direction a (a) and the expanded repeating unit (b). In the unit cell view,
only bonding hydrogens are shown.
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Polymer work-up method A. The glass vial was destroyed and glass residues
sticking to the polymer were removed before it was broken down to small pieces
under application of scissors, hammering and liquid nitrogen if necessary. The
polymers from lactam 5-3S were more brittle than the polymers from 5-3R,
whereas the poly-3R-caranlactam (poly5-3R) was at least partly soluble in EtOH.
The polymer pieces were transferred to a mortar and grinded in the presence of a
few millilitres of organic solvent (EtOAc for poly5-3R, EtOH for poly5-3S) until a
fine powder was produced. In cases of non-homogeneous particles, the powder was
refluxed in a mixture of EtOH and water (1:1) for at least 12 h, filtered off, and
washed several times with water, acetone, and EtOAc and grinded again. Finally,
the colourless or slightly yellow powders were dried under reduced pressure and
analysed by IR, NMR, DSC, and GPC.

Polymer work-up method B. The polymers were dissolved in HFIP within the
polymerization glass vial and a sample of the homogeneous solution was analysed
by GPC. Another sample was dried under reduced pressure, re-dissolved in
DCOOD and investigated by NMR. Specific NMR signals as well as the GPC
elugrams were used for the determination of monomer conversion.

Effect of temperature and activator concentration on M. Lactam 53-S was
converted to poly5-3S at 180 and 220 °C at different concentrations of activator
Bz5-3S. Monomer (300 mg, 1.8 mmol, 1.00 equiv.), NaH (60% on paraffin,
1.6–4.0 mg, 0.04–0.10 mmol, 0.02–0.05 equiv.), and activator Bz5-3S was poly-
merized for 1 h as described in polymerization method A. Polymer work-up A was
used for further investigations. The results are displayed in Supplementary Figs. 8
and 9 and Supplementary Table 11.

Impact of the activator concentration on the conversion. Monomer (500 mg,
3.0 mmol, 1.00 equiv.), NaH (60% on paraffin, 3.5 mg, 0.09 mmol, 0.03 equiv.), and
a varying amount of activator was polymerized at 190 °C for 1 h as described in
polymerization method B. Polymer work-up B was used for further investigations.
The results are displayed in Supplementary Figs. 11–16 and Supplementary
Table 13.

Impact of the reaction time on the conversion. 3S-caranlactam (5-3S, 300 mg,
1.80 mmol, 1.00 equiv.), NaH (60% on paraffin, 6.0 mg, 0.15 mmol, 0.08 equiv.),
and Bz5-3S (15.0 mg, 0.06 mmol, 0.03 equiv.) was polymerized by polymerization
method B several times. Each polymerization experiment was terminated after a
specific reaction time. The polymers were dissolved in a mixture of HFIP and
EtOH, and a sample was dried under reduced pressure. The remaining residue was
re-dissolved in DCOOD and analysed by NMR as displayed in Supplementary
Fig. 20 and Supplementary Table 14.

Copolymerizations of 3S-caranlactam (5-3S). Lactam 5-3S was co-polymerized
with 5-3R, LL, and CL under various conditions as displayed in Supplementary
Table 8. The ratio of lactam 5-3S and the specific co-monomer (Built-in) of the
polyamides copoly(5-3S·5-3R), copoly(5-3S·LL), and copoly(5-3S·5-CL) was
investigated by NMR. The protons used for integration and comparison are
highlighted in Supplementary Fig. 27; the results are displayed in Supplementary
Figs. 23–25 and Supplementary Table 16. 1H and 13C spectra showing the full ppm
range are displayed for an example of each type of co-polyamide as Supplementary
Figs. 47–49.

Time-dependent integration of 5-3S in the CL/LL co-polymers. The time-
dependent integration of 5-3S, CL, and LL in the growing co-polymer chain was
investigated. 1:1 mixtures of the monomers were polymerized as follows: The
monomers were melted in a round bottom flask equipped with a magnetic stirrer
bar in a nitrogen atmosphere. NaH was added, followed by Bz5-3S. Samples from
the melt were taken at different reaction times until the reaction mixture became
solid. A final sample was taken from the solid after 60 min. The samples were
analysed by NMR and the conversion and integration were determined (Supple-
mentary Figs. 28, 29 and Supplementary Table 17).

Film-cast experiments. 0.5 g of PA6, PA12, copoly(5-3S·CL), or copoly(5-3S·LL)
were dissolved in HFIP (20 mL) for at least 12 h. The solution was filtered and
transferred in a crystallizing dish (diameter: 11 or 5.5 cm) and left under a fume
hood until a clear film was formed. The film was carefully separated from the dish
and dried in an oven at 85 °C for 3 h to remove residual solvent. For poly5-3R, this
method proved unsuitable as the dried polyamide film could not be separated from
the glass. Therefore, a PTFE foil was used as an inlay. Films of poly5-3R could then
be separated from the PTFE inlay after drying.

Single-crystal production of the lactams. Single crystals were obtained by
crystallization at 4 °C within 3 days. The crystals were separated by filtration,
washed with cold acetone, and dried under air atmosphere.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article (and its Supplementary Information files). The X-ray crystallographic
coordinates for structures reported in this study have been deposited at the Cambridge
Crystallographic Data Centre (CCDC), under deposition numbers 1938732 (5-3S) and
1938733 (5-3R). These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Crystallographic
data of the polymers are available from Daniel Van Opdenbosch (daniel.van-
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