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Abstract

We consider the Newton stratification on Iwahori-double cosets in the loop group of a reductive group. We describe

a group-theoretic condition on the generic Newton point, called cordiality, under which the Newton poset (that is,

the index set for non-empty Newton strata) is saturated and Grothendieck’s conjecture on closures of the Newton

strata holds. Finally, we give several large classes of Iwahori-double cosets for which this condition is satisfied by

studying certain paths in the associated quantum Bruhat graph.
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1. Introduction

Let � be a reductive group over a finite field F@ . In their seminal paper [7], Deligne and Lusztig

described the representations of the finite group � (F@) by realizing them in the cohomology of suitable

coverings of a family of varieties indexed by the elements of the finite Weyl group , of �. These so-

called Deligne-Lusztig varieties are locally closed subschemes of the flag variety associated with �. In

addition, they are smooth and have dimension equal to the length ℓ(F) of the element F ∈ , .
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We consider affine Deligne-Lusztig varieties, which are an analogue of the above in affine flag

varieties. Now let� be a quasi-split reductive group defined over � = F@ ((C)). In contrast to the classical

case considered by Deligne and Lusztig, affine Deligne-Lusztig varieties depend on two parameters: an

element of the Iwahori-Weyl group ,̃ of �, and an element 1 ∈ � (�̆), where �̆ = F@ ((C)). To define

these varieties, we consider the affine Bruhat decomposition. For �, an Iwahori subgroup of � and

Ŏ = F@ [[C]], the ring of integers in �̆, we have

� (�̆) =
∐

G∈,̃

� (Ŏ)G� (Ŏ).

Let f denote the Frobenius automorphism of �̆ over � mapping all coefficients of the Laurent series to

their @th powers. The affine Deligne-Lusztig variety associated with G ∈ ,̃ and 1 ∈ � (�̆) is defined as

the locally closed reduced subscheme -G (1) of the affine flag variety of � given by

-G (1) (F@) = {6 ∈ � (�̆)/� (Ŏ) | 6
−11f(6) ∈ �G�}.

Besides being a natural analog of the classical theory, these varieties play an important role when

studying the special fiber of both Shimura varieties and moduli spaces of shtukas. More precisely, affine

Deligne-Lusztig varieties describe the Kottwitz-Rapoport stratification of the special fiber of Rapoport-

Zink moduli spaces [33]. However, their geometry is much harder to understand than in the classical

case. Even the question of whether -G (1) ≠ ∅ for a given pair (G, 1) is a notoriously difficult problem

and remains unsettled. Questions on the geometry of -G (1) are closely related to understanding the

intersection of �G� with the f-conjugacy class

[1] = {6−11f(6) | 6 ∈ � (�̆)}.

These f-conjugacy classes �(�) = {[1] | 1 ∈ � (�̆)} were classified by Kottwitz in [24] by two

invariants: the Newton point and the Kottwitz point. The set �(�) has a partial order, induced by

requiring equality of the Kottwitz points and using the dominance order on Newton points.

Denote by �(�)G the subset of those f-conjugacy classes that meet the given double coset �G�. A

necessary condition for [1] ∈ �(�)G is that the Kottwitz points of 1 and G coincide. However, this

necessary condition is far from sufficient, and a complete description of �(�)G is known only in very

special cases. Whenever it is non-empty, N[1],G := [1] ∩ �G� is shown in [34] to be the set of geometric

points of a locally closed reduced subscheme of �G�: namely, the Newton stratum associated with [1].

Another natural (and similarly unsolved) question is to describe the closure of N[1],G in �G�.

This situation is in stark contrast to the case in which � is replaced by a hyperspecial maximal

compact subgroup  of � (assuming that this exists). Here, the  -double cosets in � (�̆) are indexed

by the dominant cocharacters ` of a fixed maximal torus of �. For a given `, the set of f-conjugacy

classes meeting  `(C) is non-empty if and only if the Newton point a(1) is less than or equal to ` in

dominance order, in addition to the obvious criterion that the Kottwitz points of 1 and ` coincide; see

[26, 28, 10]. Furthermore, the similarly defined affine Deligne-Lusztig varieties are equidimensional

of known dimension, and the closure of a Newton stratum is equal to the union of all Newton strata

associated with [1′] ≤ [1]; compare [37]. We remark that, strictly speaking, some of these results are

only shown under the additional assumption that� is split. However, the same proofs also work without

this additional assumption.

In the case of Iwahori-double cosets, however, none of these properties hold in general. In particular,

the Newton strata are not equidimensional [11, Section 5], it is unknown under which conditions the

closure of any Newton stratum is a union of strata, and we do not even have a general conjecture

describing the set �(�)G . The goal of this paper is to identify a large family of elements G ∈ ,̃ for

which both the non-emptiness pattern for the intersections [1] ∩ �G� and the closure relations of Newton

strata resemble the known picture for hyperspecial subgroups  .
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1.1. Statements of the main theorems

One element of the Newton poset �(�)G that is of particular interest is the unique maximal element,

which coincides with the generic f-conjugacy class [1G] in the irreducible double coset �G�. There

are descriptions of [1G] that give finite algorithms to compute it, but they are not themselves closed

formulas; see [38, Corollary 5.6] and [29, Theorem 3.2].

We define an element G ∈ ,̃ to be cordial if it satisfies the equality

ℓ(G) − ℓ([(G)) = 〈2d, aG〉 − def (1G),

where d is the half-sum of the positive roots and aG = a(1G) is the generic Newton point in �G�. See

Definition 3.14 for a formal discussion of cordial elements, and refer to Section 2 for the definitions of the

map [ and the defect. To introduce our first main theorem, we comment on the chosen terminology. The

notion cordial refers to the fact (explained in Section 3) that satisfying the above equality is equivalent

to the condition that the dimension of the affine Deligne-Lusztig variety -G (1G) agrees with its virtual

dimension in the sense of [16]. The cordial condition is thus equivalent to the condition that this variety

‘has the correct dimension’. Moreover, the following theorem illustrates that the cordial condition also

gives rise to especially ‘well-behaved’ geometry for the associated Newton strata.

Theorem 1.1. Let G be cordial. Then �(�)G is saturated, and for [1] ∈ �(�)G , we have

(a) N[1],G is equidimensional, and its codimension in �G� is equal to the maximal length of any chain
from [1] to [1G] in �(�)G (or, equivalently, in �(�)).

(b) N[1],G is the union of all N[1′ ],G with [1′] ∈ �(�)G and [1′] ≤ [1].

Here, a subset ( of �(�) is called saturated if for any [11] ≤ [12] ≤ [13] in �(�) such that

[11], [13] ∈ (, we also have [12] ∈ (.

Theorem 1.1 gives a condition that can be checked from the maximal element of �(�)G alone but

implies that the shape of the entire poset �(�)G , as well as all dimensions and closures of the Newton

strata within �G�, behave as nicely as the Newton strata for  -double cosets. The only difference that

may occur is that the set �(�)G does not, in general, contain all elements of the form {[1] ∈ �(�) |

[1] ≤ [1G]}; small elements up to a certain lower bound (discussed in [39]) may be missing. In fact, one

can also show a stronger statement, which has assumptions that are more difficult to check in general;

compare Theorem 3.16. In Theorem 3.19, we also prove a partial converse of Theorem 1.1, showing

that non-cordial elements cannot share all of these same good geometric properties.

Our next theorem explicitly identifies several families of cordial elements. For sufficiently low-rank

groups, it is sometimes possible to directly calculate the Newton poset �(�)G for every G ∈ ,̃ . For

example, all of the questions we address in this paper can be settled for the group � = SL3 using

Milićević’s thesis [3]. For this group, an element G is cordial if and only if �(�)G is saturated, and one

can give a complete description of the set of cordial elements. Further, for� = SL3, all Newton strata are

equidimensional, and part (b) of Theorem 1.1 also holds in all cases. See Example 4.12 for more details.

In general, it appears to be a fairly difficult problem to fully characterize the cordial elements in a

manner that does not require specific knowledge of the generic Newton point, but we provide several

interesting families of cordial elements in the following theorem.

Theorem 1.2. Assume that � is quasi-split. Let G = CE_F ∈ ,̃ with _ dominant.

(a) If G is in the antidominant Weyl chamber in which case E = F0, then G is cordial.

Now suppose that � is split, connected, and semisimple. Assume that for all simple roots U8 , we have
〈U8 , _〉 > " , where " is a fixed constant depending on � and G.

(b) If any reduced expression for [(G) = E−1FE ∈ , uses each simple reflection at most once, then G
is cordial.

(c) If G is in the dominant Weyl chamber in which case E = 1, then G is cordial if and only if every reduced
expression for [(G) = F avoids all non-simple reflections BU such that ℓ(BU) = 〈2d, U∨〉 − 1.
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The hypotheses on � in parts (b) and (c) of Theorem 1.2 are a direct reflection of the reliance

on Milićević’s formula for calculating the generic Newton point via the quantum Bruhat graph [29],

which is stated in precisely this level of generality. The additional hypothesis on the coroot _ that keeps

G sufficiently far from the walls of any Weyl chamber is referred to as superregularity; see [29] for

precise formulas for the constant " and related discussion. Under this superregularity hypothesis, we

characterize cordiality purely in terms of calculating lengths of certain paths in the quantum Bruhat

graph; see Proposition 4.2. Those elements that use each simple reflection at most once, as in (b), are

called standard parabolic Coxeter elements in Definition 4.6. We make the condition appearing in (c)

precise in Definition 4.7, where we refer to those elements as small-height-avoiding; see Section 4.2 for

further discussion of this terminology and related properties.

Remark 1.3. Throughout the paper, we assume that the local field � is of equal characteristic ?. Instead,

one can also study the analogous questions, replacing � by the fraction field of the Witt ring , (F@).

In that case, the loop group and the affine flag variety are perfect schemes; see [42, 5]. Our results

on cordiality of certain elements (in particular, Theorem 1.2), as well as on the non-emptiness and

dimensions of affine Deligne-Lusztig varieties, can be directly translated to corresponding results in the

arithmetic case, and thus they still hold in that context. Indeed, all of these assertions can be translated

into properties of associated elements of the extended affine Weyl group and degrees of certain class

polynomials via [16, Section 6]. These results are then independent of the characteristic of the chosen

field. On the other hand, the proof of Theorem 1.1 that we give here does not directly generalize to

mixed characteristic. In particular, there are currently no analogues for our assertions concerning closure

relations of the Newton strata.

Furthermore, we assume that � is quasi-split. Using the argument in [13, Section 2], one can reduce

the question of determining non-emptiness and dimensions of affine Deligne-Lusztig varieties for a

general connected reductive group over � to those for the quasi-split inner form of its adjoint group. In

this way, our results imply corresponding results for these more general groups.

2. Notation

Let � be a local field of characteristic ? with ring of integers O� , uniformizer C, and residue field F@;

that is, � � F@ ((C)). Let �̆ � F@ ((C)) denote the completion of the maximal unramified extension of �,

and Ŏ its ring of integers. Let f denote the Frobenius of �̆ over �.

Let � be a quasi-split connected reductive group over �. Let ( be a maximal �̆-split torus of �

that contains a maximal split torus. Let ) = �� (() be its centralizer, a maximal torus. Let A be the

apartment of the Bruhat-Tits building of � �̆ corresponding to (�̆ . Then the f-action on the building

preserves A. Let a be an alcove in A that is fixed by f. Let � be the corresponding Iwahori subgroup.

Let #) denote the normalizer of) . Then the (relative) Weyl group, of� is defined as #) (�̆)/) (�̆).

The Iwahori-Weyl group is ,̃ = #) (�̆)/() (�̆)∩ �̆). The Frobenius f of �̆ over � acts on� (�̆) and also

induces an automorphism of ,̃ , which we denote again by f. We fix a special vertex of the base alcove

a. This induces a splitting of the natural projection ,̃ → , and an isomorphism ,̃ � -∗())�� ⋊, ,

where �� is the inertia subgroup of the absolute Galois group of �. We then have

� (�̆) =
∐

G∈,̃

� (Ŏ)G� (Ŏ).

Here, for every G ∈ ,̃ , we choose a representative in � (�̆) that we denote again by G.

To define a length function ℓ on ,̃ , let,0 be the affine Weyl group. We have ,̃ � ,0 ⋊Ω, where Ω

is the normalizer of the base alcove. Since we fixed �, we obtain a length function ℓ and a Bruhat order

≤ on the infinite Coxeter group ,0. We extend ℓ and ≤ from ,0 to ,̃ by setting ℓ(l) = 0 for l ∈ Ω

and defining G ≤ H if and only if G and H are of the form G ′l and H′l for some l ∈ Ω and G ′ ≤ H′ ∈ ,0.
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We choose the dominant Weyl chamber to be the Weyl chamber containing a, and let � be the

corresponding Borel subgroup of �. Write G ∈ ,̃ as G = E_(C)E−1F =: CE_F, where E, F ∈ , ,

_ ∈ -∗()), and C_E−1F maps the base alcove to the dominant chamber. The map [ : ,̃ → , is then

defined by [(G) = f−1 (E−1F)E. Notice that in the literature, this map is sometimes also denoted [X to

emphasize that f induces an automorphism X of ,̃ , which is used in the definition of [.

For 1 ∈ � (�̆), let [1] = {6−11f(6) | 6 ∈ � (�̆)} be its f-conjugacy class, and let �(�) denote

the set of f-conjugacy classes. The elements [1] ∈ �(�) are classified by two invariants (compare

[23, 24, 34]). The first is the Newton point a(1) ∈ # (�) = (Hom(D
�
, �

�
)/� (�))Γ, whereD is the pro-

torus with character groupQ, where� (�) acts by conjugation, and where Γ denotes the absolute Galois

group of �. We have an identification with the set of dominant rational Galois-invariant cocharacters,

# (�) = (-∗ ())Q/,)
Γ = -∗())

Γ

Q,dom
. The second invariant is the Kottwitz point ^� (1) ∈ c1 (�)Γ.

Here, c1 (�) is the quotient of -∗ ()) by the coroot lattice. The two invariants a(1) and ^� (1) have the

same image in c1 (�)Γ,Q. For a fixed G ∈ ,̃ , denote the set �(�)G of f-conjugacy classes [1] ∈ �(�)

such that N[1],G := [1] ∩ �G� ≠ ∅.

The defect of [1] ∈ �(�) is defined as def (1) = rk�� − rk� �1 , where �1 is the reductive group

over � with

�1 (�) = {6 ∈ � (�̆) | 61 = 1f(6)}.

There is a partial ordering ≤ on �(�) defined by [1] ≤ [1′] if ^� (1) = ^� (1
′) and a(1) ≤ a(1′); that

is, the difference a(1′) − a(1) is a non-negative linear combination of positive coroots; compare [34,

Section 2].

3. Maximal Newton points and cordial elements

The aim of this section is to formally define cordial elements and to prove Theorem 1.1. Fix G ∈ ,̃ and

1 ∈ � (�̆). The associated affine Deligne-Lusztig variety is defined to be the locally closed, reduced

subvariety -G (1) of the affine flag variety with

-G (1) (F@) = {6 ∈ � (�̆)/� (Ŏ) | 6
−11f(6) ∈ � (Ŏ)G� (Ŏ)}.

In the first subsection, we compute the dimension of an affine Deligne-Lusztig variety -G (1) in terms

of the dimension of the corresponding Newton stratum in �G�. In the second subsection, we compare the

expression obtained in this way to He’s virtual dimension of the same affine Deligne-Lusztig variety. If

these two dimensions agree for the generic f-conjugacy class in �G�, we will call the element G cordial.

Definition 3.1. Given an element G ∈ ,̃ , let [1G] be the f-conjugacy class in the (unique) generic point

of �G�, and thus the unique maximal element in �(�)G with respect to the partial ordering on �(�).

We define the Newton point a(G) of G to be the Newton point a( ¤G) of [ ¤G] for any representative ¤G of

G in � (�). The maximal Newton point aG of G is then defined as the Newton point of [1G].

By definition, aG satisfies _ ≤ aG for all Newton points _ of elements of �(�)G . The first concrete

description of the maximal element of �(�)G was given by Viehmann [38, Corollary 5.6], a weaker

version of which can be expressed as

aG = max{a(H) | H ∈ ,̃, H ≤ G}.

Here the maximum is taken with respect to dominance order, and the elements H and G are related by

Bruhat order. Note that this yields a finite algorithm to compute aG , but not a closed formula. A slightly

more explicit description of aG provided by Milićević [29, Theorem 3.2] is discussed in Section 4, albeit

under an additional superregularity hypothesis on _, and for split �.
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3.1. Comparing dimensions of Newton strata and affine Deligne-Lusztig varieties

Although we do not dispose of a closed formula for [1G] here, we can relate its Newton point aG to the

dimension of the corresponding affine Deligne-Lusztig variety.

Lemma 3.2. Let G ∈ ,̃ . Then -G (1G) is equidimensional with

dim -G (1G) = ℓ(G) − 〈2d, aG〉.

For the proof of Lemma 3.2, we develop a more general theory for all Newton strata that will also

be helpful later. Notice that the dimension formula itself is known by [17, Theorem 2.23] using a

completely different proof. However, we will crucially use the equidimensionality for our applications.

The rough idea of our proof is to express dimensions of affine Deligne-Lusztig varieties using a product

structure up to finite morphism on a corresponding Newton stratum. The construction closely follows the

corresponding theory for hyperspecial maximal subgroups of [41]. We therefore replace most proofs by

references to the corresponding arguments given in [41]. Let us first recall some well-known notions for

subschemes of loop groups. Let !� be the loop group associated with �. It is defined as the ind-group

scheme representing the functor ' ↦→ � ('((C))) on the category of F@-algebras.

Definition 3.3. Let B be a subscheme of the loop group !�.

1. Let G ∈ ,̃ . Then B is bounded by G if it is contained in the closure of �G� in !�. It is bounded if

it is contained in a finite union of double cosets �G�.

2. Let �= be the kernel of the projection map � → � (O�/(C
=)). Then B is admissible if there is an

= ∈ N with B�= = B.

3. For a bounded and admissible algebraic set with -�= = - , let

dim - := dim (-/�=) − = · dim (�).

Notice that this notion of dimension is normalized in a different way than the one in [41].

Remark 3.4. We can make several initial observations about subschemes of !�:

1. Let B be bounded. Then one easily sees that B is admissible if and only if there is an =′ ∈ N

with �=′B = B. Here =′ can be given in terms of the bound for B and the integer = arising in the

definition of admissibility.

2. The dimension of a bounded and admissible subscheme of !� is independent of the choice of =.

3. Similarly, one can define the codimension of a closed irreducible admissible subscheme B′ of

some bounded and admissible scheme B. If B is also equidimensional, one easily sees that this

codimension agrees with dimB − dimB′.

Proposition 3.5. Let B be a bounded subset of !� (:). Then there is an integer 2 ∈ N such that for each
3 ∈ N, each 6 ∈ B, and ℎ ∈ �3+2 (:), there is an ; ∈ �3 (:) with 6ℎ = ;−16f(;).

Proof. Any bounded subset is contained in a finite union of Iwahori-double cosets �G�. Each �(�)G
being finite, this implies that B meets only finitely many [1] ∈ �(�). Considering the intersection with

each f-conjugacy class and each Iwahori double coset separately, we may assume that B ⊂ [1] ∩ �G�.

By [16, Theorem 3.7], there is a straight element H1 ∈ ,̃ whose representative in � lies in [1].

Notice that the additional assumptions on � made in [16, Theorem 3.7] are not necessary for the proof

of this statement. By [31, Theorem 1.3], H1 is also %-fundamental for some semi-standard parabolic

subgroup % of �.

By [20, Proposition 5.1], there is a bounded subset C of !� such that every element of B is

f-conjugate by an element of C to H1 . In this situation, the same argument as in the last paragraph of

the proof of [21, Theorem 10.1] reduces the proof to showing the following claim: For every = ∈ # and

every 6 ∈ �=, there is an ℎ ∈ �= with H16 = ℎ−1H1f(ℎ). This in its turn is shown in the same way as the

statement for = = 0, see the proof of [12, Theorem 6.3.1]. �
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Corollary 3.6. Let 1 ∈ �G�. Then the �-f-conjugacy class C1 = {81f(8)−1 | 8 ∈ �} of 1 is contained in
�G�, admissible, and a smooth and locally closed subscheme of !�. Further, N[1],G is admissible.

Proof. In both cases, admissibility follows from the previous proposition. Since C1 is one �-orbit, it is

smooth and locally closed. �

The last assertion in Corollary 3.6 also follows from a corresponding assertion on Newton strata in

the whole loop group by He; see [18, Theorem A.1].

Definition 3.7. Let = ∈ N, and let 1 ∈ �G�. Here �G� =
⋃

G′≤G �G� denotes the closure of �G� in !�. We

consider the following functor on the category (�AC/:) of Artinian local :-algebras with residue field ::

�4 5 (1)= : (�AC/:) → ((4CB),

� ↦→ {1̃ ∈ (�G�) (�) with 1̃: = 1}/�= .

Here, 1̃ �= 1̃
′ if there exists a 6 ∈ �= (�) with 6: = 1 such that 1̃′ = 6−11̃f(6). We call �4 5 (1)= the

deformation functor of level = of 1.

Proposition 3.8. The functor �4 5 (1)= is pro-represented by the formal completion of �=\�G� at �=1,
which we denote by �1,=.

Proof. This is shown completely analogously to the proof of [41, Proposition 2.9]. �

For a given =, consider the projection morphism �1,= → �1,0. The projection !� → �\!� has

sections étale locally. Thus we also have a (non-unique) section B : �1,0 → �1,=. Let (�1,0 × (�=\�))
∧

denote the completion of �1,0 × (�=\�) at (1, 1). Using that �= is normal in �, the section B induces a

(still non-canonical) morphism

q : (�1,0 × (�=\�))
∧ → �1,=

given by (1, 6) ↦→ 6−1B(1)f(6).

Lemma 3.9. The morphism q : (�1,0 × (�=\�))
∧ → �1,= is an isomorphism.

Proof. Compare the proof of [41, Lemma 2.10]. �

Recall from [41, Lemma 2.11] that for any admissible F@-algebra ' with filtered index poset N0,

the pullback by the natural morphism Spf' → Spec ' induces a bijection between the Spec '-valued

points and the Spf'-valued points of �G�. Thus we can associate with the formal scheme �1,= a scheme

� ′
1,=

, and we have a section � ′
1,=
→ !�. In particular, we can study the Newton stratification on � ′

1,=
.

For large =, Corollary 3.6 implies that the Newton stratification does not depend on the choice of the lift.

For [1] ∈ �(�), let H1 ∈ ,̃ be as in the proof of Proposition 3.5 a %-fundamental element with

[H1] = [1], for some semistandard parabolic subgroup %. Its Levi subgroup " containing ) centralizes

the "-dominant Newton point a of H1 . From the definition of %-fundamental alcoves, one can then

easily see that H1 is also %̃-fundamental for %̃ = "̃% ⊃ %, where "̃ is the centralizer of a, so %̃ and H1
are as in the theorem below. If H is %-fundamental for some parabolic %, let # be the unipotent radical

of the opposite parabolic, and let �
#

= � ∩ !# . Then by definition of %-fundamental alcoves, we have

H−1�f−1 ( #̄ ) H ⊆ �#̄ .

Theorem 3.10. Let 1 ∈ �G�. Let N[1] be the Newton stratum of [1] in Spec� ′
1,0
. Let H1 be a %-

fundamental alcove associated with [1], where % is chosen such that the Levi subgroup" of % containing
) equals the centralizer of the"-dominant Newton point of H1 . Then there is a finite surjective morphism

((-G (1) ×: �#̄ /H
−1
1 �f−1 ( #̄ ) H1)

∧) ′→ N[1] .

Here again, (·) ′ denotes the scheme associated with the formal scheme obtained by completion. Fur-
thermore, the locus in Spec� ′

1,0
of elements �-f-conjugate to 1 is smooth and equal to the image of

({1}×̂: �#̄ /H
−1
1
�f−1 ( #̄ ) H1)

∧) ′ in N[1] .
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8 Elizabeth Milićević and Eva Viehmann

Proof. This follows from essentially the same proof as [41, Theorem 2.9], which in turn was a natural

generalization of the proof of Theorem 6.5 or Theorem 6.6 from [22] to unramified groups. �

Recall that N[1],G is the Newton stratum for [1] in �G�.

Corollary 3.11. For G ∈ ,̃ and 1 ∈ �G�, let ℎ ∈ N[1],G (:). Let 6 ∈ -G (1) (:) with 6−11f(6) =

ℎ. Denote by -G (1)
∧
6 and (N[1],G)∧ℎ the completions in the two points, respectively. Assume that

((N[1],G)
∧
ℎ
) ′ is irreducible. Then

dim (-G (1)
∧
6 )
′
= ℓ(G) − 〈2d, a(1)〉 − codim((N[1],G)

∧
ℎ )
′.

Proof. This follows from the previous theorem, using that �#̄ /H
−1
1
�f−1 ( #̄ ) H1 is irreducible and of

dimension ℓ(H1) = 〈2d, a(1)〉. �

Corollary 3.12. Using the notation of the previous corollary,

dim -G (1) = ℓ(G) − 〈2d, a(1)〉 − codim(N[1],G),

where codim(N[1],G) denotes the minimal codimension of all irreducible components. Furthermore,
-G (1) is equidimensional if and only if the same holds for N[1],G .

Proof. Apply the previous corollary to all elements contained in just one irreducible component of

N[1],G . �

Again, the dimension formula is known from [17, Theorem 2.23], and the equidimensionality asser-

tion is new. We are now able to prove Lemma 3.2 as an immediate consequence.

Proof of Lemma 3.2 Apply Corollary 3.12 to [1G], and use that in this case, the Newton stratum is

irreducible and of codimension 0 in �G�. �

3.2. Virtual dimension and cordiality

We recall from [16, Section 10.1] the notion of virtual dimension. For G ∈ ,̃ and [1] ∈ �(�) with

^� (1) = ^� (G), define

3G (1) =
1

2
(ℓ(G) + ℓ([(G)) − def (1) − 〈2d, a(1)〉)

to be the virtual dimension of the pair (G, [1]). By [17, Theorem 2.30], we have for G ∈ ,̃ and

[1] ∈ �(�) with ^� (G) = ^� (1) that

dim -G (1) ≤ 3G (1). (3.1)

Notice that the additional assumptions on � made in [17, Theorem 2.30] are not needed for the

proof of the above theorem, so that it also holds in our context. We combine this with the formula for

dim -G (1) from the preceding subsection.

Lemma 3.13. Let G ∈ ,̃ , and let [1G] ∈ �(�) be the generic f-conjugacy class in �G�. Then

ℓ(G) − ℓ([(G)) ≤ 〈2d, aG〉 − def (1G).

Proof. By (3.1), we have dim -G (1G) ≤ 3G (1G). Together with Lemma 3.2, we have

ℓ(G) − 〈2d, aG〉 ≤
1

2
(ℓ(G) + ℓ([(G)) − def (1) − 〈2d, aG〉) ,

which is equivalent to the above inequality. �
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Definition 3.14. Let G ∈ ,̃ . Let [1G] ∈ �(�) be the generic f-conjugacy class in �G�. Then G is called

cordial if

ℓ(G) − ℓ([(G)) = 〈2d, aG〉 − def (1G).

In other words, G is cordial if and only if dim -G (1G) = 3G (1G).

Example 3.15. Suppose that G = CF0_F ∈ ,̃ so that G is in the antidominant Weyl chamber. Then by

Mazur’s inequality, aG ≤ _. Since CF0_ ∈ �G�, the generic Newton point aG cannot be strictly smaller

than _, and hence [1G] = [C
_]. Thus def (1G) = 0, and 〈2d, aG〉 = ℓ(C_) = ℓ(G) − ℓ(F0Ff(F0)) =

ℓ(G)−ℓ([(G)). Hence all G in the antidominant Weyl chamber are cordial, which proves the first assertion

(a) of Theorem 1.2.

The following theorem is a stronger version of Theorem 1.1. The idea of the proof (first used in [37])

is to combine a strong version of purity of the Newton stratification with upper bounds on the dimension

of the Newton strata obtained via Corollary 3.12; see [40, Section 5] for an overview.

Theorem 3.16. Let G ∈ ,̃ . Then for [1] ∈ �(�)G , the following are equivalent:

1. 3G (1′) − dim -G (1
′) ≥ 3G (1G) − dim -G (1G) for all [1′] ∈ �(�)G with [1] ≤ [1′].

2. 3G (1′) − dim -G (1
′) = 3G (1G) − dim -G (1G) for all [1′] ∈ �(�)G with [1] ≤ [1′].

3. If [1′] ∈ �(�) with [1] ≤ [1′] ≤ [1G], then [1′] ∈ �(�)G , and the closure of N[1′ ] is the union
of all N[1′′ ] for [1′′] ∈ �(�)G with [1′′] ≤ [1′].

If this is the case, then all -G (1
′) with [1] ≤ [1′] are also equidimensional.

Proof. We first reformulate (1). For 6 ∈ -G (1
′), let 1′6 = 6−11′f(6). Then (1) is equivalent to the

following estimate for the dimension of the completion of -G (1
′) for each [1′] and each element 6, as

above:

dim -G (1
′)∧6 ≤ dim -G (1

′) ≤ 3G (1
′) − 3G (1G) + dim -G (1G).

By Corollary 3.11 and Lemma 3.2, this is equivalent to

codim(N[1′ ],G)
∧
16
≥ 3G (1G) − 3G (1

′) + 〈2d, aG − a(1
′)〉

=
1

2
(def (1′) − def (1G) + 〈2d, aG − a(1

′)〉) ,

where the last equality follows from the definition of the virtual dimension.

The right-hand side of this estimate is equal to the length of every maximal chain of elements in

�(�) from [1′] to [1G]. Indeed, this follows directly from [40, Theorem 3.4], which in its turn is a

slight correction of [6, Theorem 7.4] combined with the main result of [25] and [14, Proposition 3.8].

To show that (1) implies (2) and (3) as well as equidimensionality, we use [40, Lemma 5.12]. The

assumption on strong purity of the stratification made in the lemma can be replaced by topological strong

purity in the sense of [15, Section 2.1]. By [15, Proposition 1], this is satisfied for the stratification we

consider. By the above reformulation of (1), the assumption of [40, Lemma 5.12] on the codimensions

of the Newton strata is satisfied. Then the lemma implies that the Newton stratification on the scheme

associated with the completion of �G� in any 1′6 satisfies that each Newton stratum associated with some

[1̃] ∈ �(�) with [1′] ≤ [1̃] ≤ [1G] is non-empty, and its closure is the union of all Newton strata

for [1′′] with [1′′] ≤ [1̃]. Since all of the above holds for every 6 ∈ -G (1
′), and in particular for all

elements contained in exactly one irreducible component, (3) and equidimensionality follow.

It remains to show that (3) implies (1). Let [1′] ∈ �(�) with [1] ≤ [1′] . Every chain [1′] = [10] <

[11] < · · · < [1=] = [1G] in �(�) is by (3) also a chain in �(�)G . By the second assumption of (3), we
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10 Elizabeth Milićević and Eva Viehmann

have thatN[18 ] ⊂ N[18+1 ] for all 8. Thus for every ℎ ∈ N[1′ ] , the codimension of (N[1′ ],G)
∧
ℎ

is greater than

or equal to the maximal length of such a chain. By the above reformulation, this is equivalent to (1). �

We are now prepared to prove our first main result and an immediate corollary.

Proof of Theorem 1.1 By (3.1) together with cordiality, we have

3G (1
′) − dim -G (1

′) ≥ 0 = 3G (1G) − dim -G (1G)

for all [1] ≤ [1′] ∈ �(�)G . Then the theorem follows from Theorem 3.16. �

Corollary 3.17. Let G be cordial. Then for every [1] ∈ �(�)G , we have that -G (1) is equidimensional
of dimension dim -G (1) = 3G (1).

Remark 3.18. If G is in the shrunken Weyl chamber and the basic locus is non-empty, then [19,

Theorem 4.2] says that dim -G (1) = 3G (1) for the basic class [1] ∈ �(�)G . A necessary and sufficient

criterion for non-emptiness of the basic locus is given in [13]. In this case, our theorem shows that if G

is cordial, then �(�)G = {[1] ≤ [1G]}.

Theorem 3.16 also implies the following result that is a partial converse to Theorem 1.1.

Corollary 3.19. Suppose that G ∈ ,̃ is not cordial. Assume that there is a [1] ∈ �(�)G such that
dim -G (1) = 3G (1). Then there is a [1′] ∈ �(�) such that

(a) [1] < [1′] < [1G] but [1′] ∉ �(�)G (in particular, �(�)G is not saturated), or
(b) [1] < [1′] < [1G] and [1′] ∈ �(�)G , but the closure of N[1′ ] is not the union of all N[1′′ ] for
[1′′] ∈ �(�)G with [1′′] < [1′].

Proof. We have dim -G (1G) < 3G (1G), and hence 3G (1) −dim -G (1) = 0 < 3G (1G) −dim -G (1G). �

Along these same lines, one could also formulate more precise statements relating 3G (1G) −

dim -G (1G) − 3G (1) + dim -G (1) to the number of [1′], as in Corollary 3.19.

4. Families of cordial elements

Characterizing the cordial elements in ,̃ requires a good description of the maximal Newton point aG .

One especially useful description of aG uses paths in the quantum Bruhat graph and is available for

groups � that are split, connected, and semisimple. Thus for the remainder of the paper, we make these

additional assumptions on �.

Let Φ be the set of relative roots of� over �̆ with respect to ) , and let Φ+ be the set of positive roots.

Let ( be the basis of Φ of simple roots corresponding to �. We also identify ( with the set of simple

reflections in, . The finite Weyl group, acts on RA as a finite reflection group, where A is the rank of

�. The set of reflections in, is defined as ' = {FBF−1 | B ∈ (, F ∈ ,}. There is a bijection between

Φ+ and '. More precisely, let U ∈ Φ+, and write U = F(U8) for some simple root U8 and F ∈ , .

Then U corresponds to the well-defined reflection BU := FB8F
−1 ∈ , . Throughout, we denote simple

reflections by B8 (the index being a roman letter) and reflections associated with a positive root (which

may or may not be simple) by BU (the index being a Greek letter).

4.1. Cordial elements and the quantum Bruhat graph

The primary tool in the proof of Theorem 1.2 (b) and (c) is a labeled directed graph associated with the

group � called the quantum Bruhat graph. We now review some key properties of this graph and its

relation to maximal Newton points.
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Figure 1. The quantum Bruhat graph Γ� for � = SL3.

Definition 4.1 ([9]). We construct the quantum Bruhat graph Γ� as follows:

1. The vertices of the graph are the elements F ∈ , .

2. Draw a directed edge F −→ FBU for any U ∈ Φ+ if either of the following is satisfied:

F −→ FBU if ℓ(FBU) = ℓ(F) + 1, or

F −→ FBU if ℓ(FBU) = ℓ(F) − 〈2d, U
∨〉 + 1.

3. Label the edge F −→ FBU by the corresponding root U.

Figure 1 shows the quantum Bruhat graph for � = SL3. As in Figure 1, we can always draw Γ�

such that vertices are ranked by length increasing upward, in which case the first type of edge (colored

blue) always points upward and the second type (colored red) downward; this will be our convention

throughout the paper. Note that the upward edges correspond precisely to the covering relations in

Bruhat order, so we can also view the vertices in Γ� as a ranked partially ordered set. We write E ⋖ F

if E ≤ F in Bruhat order and ℓ(E) = ℓ(F) − 1 to denote such a covering relation.

Define the weight of an edge in the quantum Bruhat graph Γ� as follows:

1. An upward edge F −→ FBU carries no weight.

2. A downward edge F −→ FBU carries a weight of U∨.

The weight of a path in Γ� is the sum of the weights over all of the edges in the path. For example, in

ΓSL3
from Figure 1, the weight of each of the three shortest paths from B1B2 = B12 to B2 equals U∨

1
+ U∨

2
.

In general, given any D, E ∈ , , by [32, Lemma 1], there always exists a path in Γ� from D to E, and all

paths of minimal length between D and E have the same weight.

Since � is split, connected, and semisimple, then under a superregularity hypothesis guaranteeing

that G = CE_F ∈ ,̃ is sufficiently far from the walls of any Weyl chamber, the maximal Newton point aG
can be computed from the weight of certain paths in the quantum Bruhat graph Γ� . More specifically,

[29, Theorem 3.2] says that under a superregularity hypothesis on _, the maximal Newton point aG can

be expressed as

aG = _ − U∨G , (4.1)

where U∨G denotes the weight of any path of minimal length from F−1E to E in Γ� .

Denote by 3Γ (D, E) the minimum length among all paths in Γ� from D to E; the choice of notation

represents the fact that 3Γ (D, E) equals the distance between these two elements in the graph Γ� . As an

important special case, denote the minimum length of any path in Γ� from F to the identity that uses

exclusively downward edges by 3↓(F). We remark that such a path always exists, since by definition
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12 Elizabeth Milićević and Eva Viehmann

of Γ� , any reduced expression for F determines an all-downward path from F to the identity having

ℓ(F) edges. We say that any path in Γ� from D to E that uses exactly 3Γ (D, E) edges realizes 3Γ (D, E).
Similarly, any downward path in Γ� from F to 1 consisting of exactly 3↓(F) edges realizes 3↓(F).

We are now able to characterize the cordial elements under our additional superregularity hypothesis

in a purely combinatorial manner that does not require any explicit knowledge of the maximal Newton

point.

Proposition 4.2. Let G = CE_F ∈ ,̃ , and suppose that 〈U8 , _〉 > " for all simple roots U8 , where " is
the constant defined in [29, Equation 6.1]. Then G is cordial if and only if

3Γ (F
−1E, E) = ℓ(E−1FE) = ℓ([(G)).

Proof. First note by (4.1) that aG is integral under our superregularity hypothesis on _. Therefore,

def (1G) = 0 in this case, and so G is cordial if and only if ℓ(G) − ℓ([(G)) = 〈2d, aG〉. Now recall a length

formula for G from [27, Lemma 3.4], which applies since _ is both regular and dominant:

ℓ(G) = ℓ(C_) − ℓ(F−1E) + ℓ(E) = 〈2d, _〉 − ℓ(F−1E) + ℓ(E). (4.2)

Combine Equations (4.1) and (4.2) to write

ℓ(G) − 〈2d, aG〉 =
(
〈2d, _〉 − ℓ(F−1E) + ℓ(E)

)
− 〈2d, _ − U∨G 〉

= 〈2d, U∨G 〉 − ℓ(F
−1E) + ℓ(E),

where U∨G is the weight of any minimal-length path ? in Γ� from F−1E to E. Therefore, G is cordial if

and only if 〈2d, U∨G 〉 − ℓ(F
−1E) + ℓ(E) = ℓ([(G)). It thus suffices to show that

〈2d, U∨G 〉 − ℓ(F
−1E) + ℓ(E) = 3Γ (F

−1E, E). (4.3)

Note that the quantity −ℓ(F−1E) + ℓ(E) equals the difference in rank in the poset Γ� from the

beginning to the end of the path ?, where the quantity is positive, negative, or zero according to whether

the rank of the final vertex of ? is higher, lower, or the same as the rank of its initial vertex. For ease of

reference, denote this quantity by Δrk(?) = −ℓ(F−1E) + ℓ(E). Recall that we draw an edge F −→ FBU
in Γ� if and only if

ℓ(FBU) =

{
ℓ(F) + 1, or

ℓ(F) − 〈2d, U∨〉 + 1,

where the edges of the first type are directed upward and the second type are directed downward.

Therefore, each upward edge in ? contributes +1 to Δrk(?), and each downward edge in ? labeled

by U contributes −〈2d, U∨〉 + 1 to Δrk(?). Denote the roots labeling the downward edges by U38 for

8 = 1, . . . , 3, where 3 equals the number of downward edges in ?. Denote the number of upward edges

in ? by D. We can thus write

Δrk(?) = D +

3∑

8=8

(−〈2d, U∨38 〉 + 1)

= (D + 3) −

3∑

8=8

〈2d, U∨38 〉 (4.4)

= 3Γ (F
−1E, E) −

3∑

8=8

〈2d, U∨38 〉.
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On the other hand, recall that the weight of the path ? is defined to be
∑
U∨
38

summing over all the

downward edges, so that by linearity we can rewrite (4.4) as

Δrk(?) = 3Γ (F
−1E, E) −

〈
2d,

3∑

8=8

U∨38

〉
= 3Γ (F

−1E, E) − 〈2d, U∨G 〉.

Therefore,

3Γ (F
−1E, E) = 〈2d, U∨G 〉 + Δrk(?) = 〈2d, U∨G 〉 − ℓ(F

−1E) + ℓ(E),

confirming (4.3) and concluding the proof. �

Lemma 4.3. For any D, E ∈ , , we have 3Γ (D, E) ≤ ℓ(D−1E).

Proof. Taking any reduced expression for D−1E = B81 · · · B8: , and following the edges labeled by the

simple roots U81 , . . . , U8: in order, we obtain a path from D to E that has exactly ℓ(D−1E) edges. �

Remark 4.4. In particular, under the superregularity hypothesis, cordial elements are precisely those

for which no shorter path exists from F−1E to E than the one constructed in the proof of Lemma 4.3,

where E, F are as in Proposition 4.2.

We now provide an example that illustrates how to use Proposition 4.2 to identify families of cordial

elements. Recall that we already considered this case (in greater generality) in Example 3.15.

Example 4.5. Suppose that G = CF0_F ∈ ,̃ so that G is in the antidominant Weyl chamber. If _ is

superregular, we want to also show with this new method that G is cordial. By Proposition 4.2, it suffices

to prove that 3Γ (F
−1F0, F0) = ℓ([(G)). Since the end vertex of the path in Γ� is the longest element

F0, and since every upward edge increases the length by only one, any path of minimal length ending at

F0 is necessarily a path containing only upward edges. Comparing rank, any minimal path from F−1F0

to F0 then has exactly ℓ(F0) − ℓ(F
−1F0) = ℓ(F0) − ℓ(F0F) edges. Recall from [1, Corollary 2.3.3] that

ℓ(F0F) = ℓ(F0) − ℓ(F) and ℓ(F0FF0) = ℓ(F) for all F ∈ , . Therefore, for these elements, we have

ℓ([(G)) = ℓ(F0FF0) = ℓ(F) = ℓ(F0) − ℓ(F
−1F0) = 3Γ (F

−1F0, F0).

By Proposition 4.2, G is cordial. Compare Theorem 1.2 (a), which we recall was proved in Example

3.15 without any superregularity hypothesis.

4.2. Standard parabolic Coxeter and small-height-avoiding elements

In this section, we develop the necessary background to study the latter two families of cordial elements

identified in Theorem 1.2.

The reflection length of F ∈ , is the minimal number of reflections required to express F as a

product of elements in ': namely,

ℓ' (F) = min
{
A ∈ N

�� F = BV1
· · · BVA for BV8 ∈ '

}
.

By definition, ℓ' (F) ≤ ℓ(F). We now recall a characterization of those elements such that ℓ' (F) =

ℓ(F).

Definition 4.6. The element F ∈ , is a standard parabolic Coxeter element if each simple reflection is

used at most once in any (equivalently, every) reduced expression for F.

As the terminology suggests, standard parabolic Coxeter elements are those that are Coxeter elements

in some standard parabolic subgroup of , . (We remark that standard parabolic Coxeter elements have

also appeared by other names in the literature; for example, they are called boolean in [35].) By [2,
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Lemma 2.1], the element F is standard parabolic Coxeter if and only if ℓ' (F) = ℓ(F), a property that

will be critical in the proof of Theorem 1.2 (b).

Next we define a slightly more general family of elements in, , which properly contains the standard

parabolic Coxeter elements.

Definition 4.7. We say F ∈ , contains the element E ∈ , if there exist D, D′ ∈ , such that F = DED′

and ℓ(F) = ℓ(D) +ℓ(E) +ℓ(D′). An element F ∈ , is called small-height-containing if F contains a non-

simple reflection BU such that ℓ(BU) = 〈2d, U
∨〉 − 1. Otherwise, we say that F is small-height-avoiding.

Note that all simple reflections U8 satisfy ℓ(BU8
) = 〈2d, U8〉 − 1, so we intentionally exclude these.

Also note that the small-height-avoiding condition cannot be verified by looking at only one reduced

expression, as the example B1213 = B1231 in type �3 illustrates.

This terminology is inspired by the related notion of short-braid-avoiding elements, which are those

elements of , that do not contain a subexpression of the form B8B 9 B8 in any reduced expression; see

[8]. If � is simply laced, then for any U ∈ Φ+, we have ℓ(BU) = 〈2d, U
∨〉 − 1 by [4, Lemma 4.3], and

so the notions of small-height-avoiding and short-braid-avoiding coincide in this case. More generally,

for any U ∈ Φ+, we always have ℓ(BU) ≤ 〈2d, U
∨〉 − 1, and the inequality may be strict. Rewriting this

expression, we see that htU∨ ≥
ℓ (BU)+1

2
, and so those reflections that we avoid in Definition 4.7 are

precisely those whose height is as ‘small’ as it could possibly be. There is also a relationship between

the small-height-avoiding and fully commutative elements defined in [36], which are those for which

any reduced expression can be obtained from any other by means of only commuting relations. In the

simply laced case, it follows from [36, Proposition 2.1] that all of these notions coincide.

Example 4.8. As an example that illustrates the relations among these families, we identify the standard

parabolic Coxeter, small-height-avoiding, short-braid-avoiding, and fully commutative elements for �

of type �2. In this case,, = 〈B1, B2 | B
2
1
= B2

2
= (B1B2)

4 = 1〉 so that the four reflections are B1, B2, B121,

and B212, and the other nontrivial elements (all of which are rotations in R2) are B12, B21, and F0 = B1212.

The standard parabolic Coxeter elements are thus {1, B1, B2, B12, B21}, which coincides here with the set

of short-braid-avoiding elements. All of the elements besides F0 are fully commutative. To determine

the small-height-avoiding elements, we must further identify the coroots that correspond to each non-

simple reflection. We follow the convention that U1 is the short simple root and U2 the long one. Then

B121 ←→ U1 + U2 ←→ U∨1 + U
∨
2 ,

B212 ←→ 2U1 + U2 ←→ U∨1 + 2U∨2 .

We thus see that ℓ(B121) = 〈2d, U
∨
1
+U∨

2
〉−1, so that small-height-avoiding elements cannot contain B121.

By contrast, 3 = ℓ(B212) ≠ 〈2d, U
∨
1
+2U∨

2
〉−1 = 5, so B212 does not need to be avoided. Therefore, the set

of small-height-avoiding elements in �2 is {1, B1, B2, B12, B21, B212}, which sits properly between the sets

of standard parabolic Coxeter (or equivalently, short-braid-avoiding) and fully commutative elements.

4.3. Two additional families of cordial elements

The goal of this section is to prove parts (b) and (c) of Theorem 1.2. For part (c), we first require two

more technical lemmas as stepping stones to Proposition 4.11, which allows us to focus exclusively on

paths in Γ� with all-downward edges.

Lemma 4.9. Let BV ∈ ' be a non-simple reflection such that ℓ(BV) = 〈2d, V∨〉 − 1 for some V ∈ Φ+,
and suppose that BVBU ⋖ BV for some U ∈ Φ+. Then BVBU = BW1

BW2
, where ℓ(BVBU) = ℓ(BW1

) + ℓ(BW2
)

and ℓ(BW8 ) = 〈2d, W
∨
8 〉 − 1.

Proof. For any reduced expression BV = B81 · · · B8< , the condition BVBU ⋖ BV together with the strong

exchange property implies that there is a reduced expression BVBU = B81 · · · B̂8; · · · B8< for some 1 ≤ ; ≤ <.

Moreover, since BV is a reflection, ℓ(BV) = < is odd, and we may choose the reduced expression
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for BV to be palindromic by [4, Lemma 4.1]. For ; = (< + 1)/2, the resulting expression for BVBU
is trivial, and the hypothesis BVBU ⋖ BV is not satisfied. Thus, for symmetry reasons, it is enough

to consider the cases where ; > (< + 1)/2. In this situation, we have BU = B8< · · · B8; · · · B8< , and

ℓ(BU) < ℓ(BV) − 1 = ℓ(BVBU) = ℓ(BUBV). By [1, Proposition 4.4.6], this inequality implies that

BU (V) > 0. By the same proposition, ℓ(BVBU) < ℓ(BV) implies that BV (U) = U − 〈U, V
∨〉V < 0. Since U

and V are positive, 〈U, V∨〉 also has to be positive. Therefore,

(BU (V))
∨
= BU∨ (V

∨) = V∨ − 2′U∨ (4.5)

for some integral 2′ > 0.

Now, recalling that ; > (<+1)/2, we will prove that we may choose W1 = U and W2 = BU (V) to satisfy

the conclusion of the lemma. Certainly, BVBU = BU (BUBVBU) = BW1
BW2

. We next show that this product

is length-additive. Since ℓ(BV) − 1 = ℓ(BVBU) = ℓ(BBU (V) BU) ≤ ℓ(BBU (V) ) + ℓ(BU), length-additivity is

implied by the following claim.

Claim. ℓ(BBU (V) ) + ℓ(BU) ≤ ℓ(BV) − 1.

For every positive root W, we have ℓ(BW) ≤ 〈2d, W
∨〉 −1 by [4, Lemma 4.3], and we assumed equality

for W = V. Then we have

ℓ(BBU (V) ) ≤ 〈2d, (BU (V))
∨〉 − 1

(4.5)
= 〈2d, V∨ − 2′U∨〉 − 1 (4.6)

≤ 〈2d, V∨ − U∨〉 − 1

≤ ℓ(BV) − ℓ(BU) − 1,

which proves the claim.

Furthermore, since both sides of the inequality in the claim are equal, each of the inequalities in

(4.6) also has to be an equality. From the first line of (4.6), we see that ℓ(BBU (V) ) = 〈2d, (BU (V))
∨〉 − 1.

Finally, since ℓ(BV) = 〈2d, V
∨〉 − 1 by hypothesis, the last equality in (4.6) yields ℓ(BU) = 〈2d, U

∨〉 − 1,

which completes the proof. �

Lemma 4.9 forms the technical heart of the proof of Lemma 4.10, which says that using an upward

edge does not ultimately provide savings on the number of edges required to go from an element F

down to the identity in Γ� .

Lemma 4.10. Let F ∈ , , and suppose that F ⋖ FBU for some U ∈ Φ+. Then

3↓(F) ≤ 3↓(FBU) + 1.

Proof. Let F ∈ , , and suppose that F ⋖ FBU for some U ∈ Φ+. Consider any path in Γ� realizing

3↓(FBU), which then corresponds to a length-additive expression as a product of reflections of the form

FBU = BV1
· · · BVA , where each of the reflections satisfies ℓ(BV8 ) = 〈2d, V

∨
8 〉 − 1.

On the other hand, since F ⋖ FBU is a cocover, then for any reduced expression FBU = B81 · · · B8: ,

we have F = B81 · · · B̂8ℓ · · · B8: for some 1 ≤ ℓ ≤ : by the strong exchange property. Further, since

ℓ(F) = ℓ(FBU) −1, then the expression F = B81 · · · B̂8ℓ · · · B8: is still reduced. Therefore, F has a reduced

expression of the form F = BV1
· · · (B 91 · · · B̂ 9? · · · B 9< ) · · · BVA , where B8ℓ = B 9? is the single factor

removed from the reflection BV 9
= B 91 · · · B 9< . Since the entire expression for F remains reduced when

removing B 9? , then the expression B 91 · · · B̂ 9? · · · B 9< is also reduced. Defining BW = B 9< · · · B 9? · · · B 9< ,

we then see that BV 9
BW ⋖ BV 9

, and the hypotheses of Lemma 4.9 are satisfied. Therefore, we may write

BV 9
BW = BW1

BW2
, where ℓ(BV 9

BW) = ℓ(BW1
) + ℓ(BW2

) and ℓ(BW8 ) = 〈2d, W
∨
8 〉 − 1.

Altogether, we have thus shown that we have a length-additive expression for F as a product of

reflections of the form F = BV1
· · · BV 9−1

BW1
BW2
BV 9+1
· · · BVA , where each of the reflections in the product
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satisfies the criterion for drawing a downward edge in Γ� . Therefore, this expression corresponds to a

downward path of length A + 1 = 3↓(FBU) + 1 from F to 1 in Γ� , and so 3↓(F) ≤ 3↓(FBU) + 1. �

Lemma 4.10 provides the foundation for the proof of Proposition 4.11, which allows us to trade

paths from F to the identity containing upward edges for a path of the same length that uses exclusively

downward edges.

Proposition 4.11. Let F ∈ , . Then 3Γ (F, 1) = 3↓(F).

Proof. Define < to be the minimal number of upward edges contained in any path in Γ� realizing

3Γ (F, 1). We have to prove that < = 0. Assume that < ≥ 1, and let ? be such a path. Denote the upward

edges in ? by D8 −→ D8BV8 , encountered in the order 8 = 1, . . . , < as we travel along the path. Consider

the subpath of ? that starts at D<. Since the edge D< −→ D<BV< is upward, then the length increases

by only one, and D< ⋖ D<BV< . Lemma 4.10 then says that 3↓(D<) ≤ 3↓(D<BV< ) + 1. Therefore, the

subpath of ? beginning at D<, which continues upward to D<BV< , contains at least as many edges as

any path realizing 3↓(D<). Define a new path ?< in Γ� from F to 1 by following the original path ?

until the vertex D<, after which we follow any path down to 1, realizing 3↓(D<). By Lemma 4.10 and

the fact that ? realizes 3Γ (F, 1), the length of the path ?< also equals 3Γ (F, 1). However, the path ?<
has < − 1 upward edges, contradicting the minimality of < and proving that indeed < = 0. �

We are now prepared to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Recall that part (a) was already proved in Example 3.15, and so it remains only to

prove parts (b) and (c). Let G = CE_F ∈ ,̃ , and suppose that _ is superregular in the sense of Proposition

4.2 and thus also Theorem 1.2. Then G is cordial if and only if 3Γ (F
−1E, E) = ℓ(E−1FE).

(b) We first prove that if [(G) = E−1FE is a standard parabolic Coxeter element, then G is cordial.

Consider any path that realizes 3Γ (F
−1E, E) = <, say

F−1E −→ F−1EBV1
−→ F−1EBV1

BV2
−→ · · · −→ F−1EBV1

· · · BV< = E.

Note that E−1FE = BV1
· · · BV< , so this path corresponds to an expression for [(G) as a product of <

reflections. By definition, ℓ' ([(G)) ≤ <, but since [(G) is standard parabolic Coxeter, by [2, Lemma 2.1],

we have

ℓ([(G)) = ℓ' ([(G)) ≤ < = 3Γ (F
−1E, E).

The opposite inequality follows from Lemma 4.3. Therefore, if [(G) is a standard parabolic Coxeter

element, we see that 3Γ (F
−1E, E) = ℓ([(G)) = ℓ(E−1FE), and so G is cordial by Proposition 4.2.

(c) We now prove that if G is in the dominant Weyl chamber, then G is cordial if and only if [(G) = F

is small-height-avoiding. Since E = 1 when G is dominant, by Proposition 4.2, we aim to prove that

3Γ (F
−1, 1) = ℓ(F) if and only if F is small-height-avoiding. Note that F is small-height-avoiding if

and only if F−1 is small-height-avoiding, and recall that ℓ(F) = ℓ(F−1). Therefore, in fact it suffices to

prove that 3Γ (F, 1) = ℓ(F) if and only if F is small-height-avoiding.

First suppose that F is small-height-containing. By definition, there exists an expression for F of

the form F = DBVE, where ℓ(F) = ℓ(D) + ℓ(BV) + ℓ(E), for some D, E ∈ , , and BV , some non-simple

reflection such that ℓ(BV) = 〈2d, V
∨〉 − 1. Taking any reduced expressions for D and E, say D = B81 · · · B8:

and E = B 91 · · · B 9ℓ , we can construct the following path in Γ�:

F
U9ℓ
−−−→ FB 9ℓ

U9ℓ−1
−−−−→ · · ·

U91
−−−→ FB 9ℓ · · · B 91

V
−−→ FB 9ℓ · · · B 91 BV

U8:
−−−→ · · ·

U81
−−→ 1.

Each edge exists because length is additive in the expression F = DBVE, which means that at each step

in this path, the length drops by precisely 1 = ℓ(B8<) = ℓ(B 9= ) or ℓ(BV) = 〈2d, V
∨〉 − 1, as required for a

downward edge in Γ� . Since BV is non-simple, then ℓ(BV) ≥ 3, which means the length of this particular

path is at most ℓ(F) − 2. Therefore, 3Γ (F, 1) ≤ ℓ(F) − 2 < ℓ(F) in this case, and so G is not cordial by

Proposition 4.2.
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Conversely, assume that F is small-height-avoiding. We aim to show that 3Γ (F, 1) = ℓ(F). Recall

Proposition 4.11, which says that 3Γ (F, 1) = 3↓(F), and so there exists a path ? consisting of all

downward edges that also minimizes length among all paths from F to 1. By the definition of the

downward edges in Γ� , this path corresponds to an expression F = BV1
· · · BVA such that the length

decreases by exactly 〈2d, V∨8 〉 − 1 for all 1 ≤ 8 ≤ A when right-multiplying F by BVA , . . . , BV1
in order.

Note, however, that length cannot decrease by more than ℓ(BV8 ) when right-multiplying by BV8 . On the

other hand, we always have ℓ(BV8 ) ≤ 〈2d, V
∨
8 〉 − 1, and so in fact ℓ(BV8 ) = 〈2d, V

∨
8 〉 − 1 for all 1 ≤ 8 ≤ A .

Therefore, the expression F = BV1
· · · BVA is also length-additive. By definition of small-height-avoiding,

F cannot contain any non-simple reflection BV such that ℓ(BV) = 〈2d, V
∨〉−1. This means each reflection

in the expression F = BV1
· · · BVA must in fact be simple, and so ℓ(F) = 3↓(F) = 3Γ (F, 1). The element

G is thus cordial by Proposition 4.2. �

Example 4.12. For � = SL3, the Newton stratification of each double coset �G� has been computed in

[3]. Note, however, that our description below corrects an error in the tables at the end of [3]. In SL3,

all Newton strata are equidimensional, and the closure of any Newton stratum [1] ∩ �G� ≠ ∅ in �G�

is equal to the union of all [1′] ∩ �G� such that [1′] ∈ �(�)G and [1′] ≤ [1]. Write G = CE_F, and

first assume that E = 1—that is, G is in the dominant Weyl chamber—and that _ = (_1, _2, _3) with

|_8 − _8+1 | ≠ 1. Then G is non-cordial if and only if F = F0. Thus, in this case, we obtain exactly the

condition of Theorem 1.2 (b) or equivalently (c), but under a much weaker superregularity assumption

on _. Furthermore, all non-cordial elements (even without any regularity assumption) are of the form Gl

for some non-cordial G in the dominant Weyl chamber and l normalizing �. For G outside the dominant

Weyl chamber with E ∈ {B1, B2, F0}, there exist cordial elements that are not covered by Theorem 1.2

applied directly to G or to Gl for any l normalizing �.
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