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SUMMARY

Diet-microbe interactions play a crucial role in modulation of the early life micro-
biota and infant health. Bifidobacterium dominates the breast-fed infant gut and
may persist in individuals during transition from a milk-based to a more diversi-
fied diet. Here, we investigated adaptation of Bifidobacterium longum to the
changing nutritional environment. Genomic characterization of 75 strains iso-
lated from nine either exclusively breast- or formula-fed (pre-weaning) infants
in their first 18 months revealed subspecies- and strain-specific intra-individual
genomic diversity with respect to carbohydrate metabolism, which corre-
sponded to different dietary stages. Complementary phenotypic studies indi-
cated strain-specific differences in utilization of human milk oligosaccharides
and plant carbohydrates, whereas proteomic profiling identified gene clusters
involved in metabolism of selected carbohydrates. Our results indicate a strong
link between infant diet and B. longum diversity and provide additional insights
into possible competitive advantage mechanisms of this Bifidobacterium species
and its persistence in a single host.

INTRODUCTION

Microbial colonization shortly after birth is the first step in establishment of the mutualistic relationship be-

tween the host and its microbiota (Backhed et al., 2015; Wampach et al., 2017; Lawson et al., 2020). The

microbiota plays a central role in infant development by modulating immune responses, providing resis-

tance to pathogens, and also digesting the early life diet (Heikkila and Saris, 2003; Sela et al., 2008;

Marcobal and Sonnenburg, 2012; Sivan et al., 2015; de Aguero et al., 2016; Thongaram et al., 2017). Indeed,

diet-microbe interactions are proposed to play a crucial role during infancy and exert health effects that

extend to later life stages (Turnbaugh et al., 2006; Renz et al., 2012; Olszak et al., 2012; Feng et al., 2015;

Bokulich et al., 2016; Tang et al., 2017). The gastrointestinal tract of vaginally delivered full-term healthy

infants harbors a relatively simplemicrobiota characterized by the dominance of the genus Bifidobacterium

(Dogra et al., 2015; Shao et al., 2019). In contrast, caesarean-section-born infants have disrupted transmis-

sion of maternal gastrointestinal bacteria, such as Bifidobacterium, and high levels of opportunistic hospi-

tal-associated pathogens (Shao et al., 2019).

Breast milk is considered the gold nutritional standard for infants, which also acts as an important dietary

supplement for early life microbial communities, including Bifidobacterium. The strong diet-microbe asso-

ciation has further been supported by reports of differences in microbial composition between breast- and

formula-fed infants (e.g. high versus low Bifidobacterium abundance) and related differential health out-

comes between the two groups: e.g. increased instances of asthma, allergy, and obesity in formula-fed in-

fants (Ip et al., 2007; Das, 2007; O’sullivan et al., 2015; Martin et al., 2016; Stiemsma and Michels, 2018; Or-

tega-Garcia et al., 2018; Forbes et al., 2018).

The high abundance of Bifidobacterium in breast-fed infants has been linked to the presence of specific

carbohydrate utilization genes and gene clusters in their genomes, particularly the ones involved in the

degradation of breast milk-associated human milk oligosaccharides (HMOs) (Sela et al., 2008). The pres-

ence of these genes is often species- and indeed strain-specific and has been described in Bifidobacterium

breve, Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium infantis, and more rarely in
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Bifidobacterium pseudocatenulatum (Sela et al., 2008; James et al., 2016; Katayama, 2016; Garrido et al.,

2016). However, previous studies have indicated co-existence of Bifidobacterium species and strains in in-

dividual hosts, resulting in interaction and metabolic co-operation within a single (HMO-associated)

ecosystem (Milani et al., 2015a; Lawson et al., 2020).

Transition from breastfeeding to a more diversified diet and the introduction of solid foods has been

considered to initiate the development of a functionally more complex adult-like microbiome, including

presence of genes responsible for degradation of plant-derived complex carbohydrates, starches, and xe-

nobiotics, as well as production of vitamins (Koenig et al., 2011, Mckeen et al., 2019). Non-digestible com-

plex carbohydrates such as inulin-type fructans (ITF), arabinoxylans (AX), or arabinoxylo-oligosaccharides

(AXOS) in complementary foods have been proposed to potentially exert beneficial health effects through

their bifidogenic and prebiotic properties and resulting modulation of the intestinal microbiota and meta-

bolic end-products (Roberfroid, 2007; Broekaert et al., 2011; Hald et al., 2016; Riviere et al., 2016).

Despite the shift in microbiota composition during weaning, specific strains of Bifidobacterium, and B. lon-

gum in particular, have previously been shown to persist in individuals over time (Maldonado-Gomez et al.,

2016; Oki et al., 2018). B. longum is currently recognized as four subspecies: longum and infantis (charac-

teristic of the human gut microbiota) and suis and suillum (from animal hosts) (Mattarelli et al., 2008; Yano-

kura et al., 2015). It is considered the most common and prevalent species found in the human gut, with B.

longum subsp. infantis detected in infants, and B. longum subsp. longum widely distributed in both infants

and adults (Turroni et al., 2009, 2012). The differences in prevalence between the two subspecies and the

ability of infant, adult, and elderly hosts to acquire new B. longum strains during a lifetime have been attrib-

uted to distinct bacterial carbohydrate utilization capabilities and the overall composition of the resident

microbiota (Garrido et al., 2012; Odamaki et al., 2018).

There have been several recent studies that have explored the early life microbiota in breast- and formula-

fed babies (Magne et al., 2006; Palmer et al., 2007; Roger and Mccartney, 2010; Roger et al., 2010). Strain-

level metagenomic investigation of the DIABIMMUNE cohort provided insights into diet-related functional

aspects of B. infantis in breast-fed infants (Vatanen et al., 2019). Longitudinal studies focusing specifically

on B. longum have highlighted intraspecies diversity, colonization, and long-term persistence (years) of this

species in hosts; however, there have been limited investigations into diet-related functions at early life

stages (Chaplin et al., 2015; Oki et al., 2018; Odamaki et al., 2018). Furthermore, although there are studies

examining B. longum strains in relation to diet, these have not been profiled over longitudinal and chang-

ing dietary periods (Arboleya et al., 2018). Hence, longitudinal assessments of B. longum strains in single

hosts over time, with focus on changing dietary patterns, are lacking, and further detailed studies are

required.

Here, we investigate the adaptations of Bifidobacterium to the changing infant diet and examine a unique

collection of B. longum strains isolated from nine infants across their first 18 months, encompassing pre-

weaning, weaning, and post-weaning phases. We probed the genomic and phenotypic similarities

between 62 B. longum strains and 13 B. infantis strains isolated from either exclusively breast-fed or for-

mula-fed infants (pre-weaning). Our results indicate a strong link between host diet and Bifidobacterium

species/strains, which appears to correspond to the changing nutritional environment.
RESULTS

Previous investigations into B. longum across the human lifespan have determined a broad distribution of

this species, including prolonged periods of colonization (Maldonado-Gomez et al., 2016; Oki et al., 2018).

To gain insight into potential mechanisms facilitating these properties during the early life window, we

investigated the genotypic and phenotypic characteristics of B. longum strains within individual infant

hosts in relation to diet (i.e. breast milk versus formula) and dietary stages (i.e. pre-weaning, weaning

and post-weaning), following up on a longitudinal study of the infant fecal microbiota published in 2010

(Roger and Mccartney, 2010). Briefly, fecal samples from exclusively breast-fed infants and exclusively for-

mula-fed infants were collected regularly from 1 month to 18 months of age (Roger and Mccartney, 2010).

The number of samples obtained from the breast-fed infants during the pre-weaning period was higher

than that obtained from the formula-fed group, which may correlate with differences in weaning age

(~20.6 versus ~17 weeks old). Collected samples were subjected to quantitative analysis using fluorescence

in situ hybridization (FISH) to enumerate the predominant bacterial groups (Table S1) (Roger and
2 iScience 23, 101368, August 21, 2020



Figure 1. Proportional Representation of Bacterial Populations in the Fecal Microbiota of Infants

Based on FISH analysis in (A) breast-fed and (B) formula-fed infants. Numbers are expressed as percentage of the total bacterial population obtained using

DAPI. The vertical solid black lines mark the different dietary phases in each infant (pre-weaning, weaning, and post-weaning). Oligonucleotide probes used

to determine bacterial populations: Bif164—most Bifidobacterium species and Parascardovia denticolens; Bac303—most members of the genus

Bacteroides, some Parabacteroides and Prevotella species, Paraprevotella, Xylanibacter, Barnesiella species, and Odoribacter splanchnicus; ER482—most

members of Clostridium cluster XIVa; Ato291—Cryptobacterium curtum, Gordonibacter pamelaeae, Paraeggerthella hongkongensis, all Eggerthella,

Collinsella,Olsenella and Atopobium species; Chis150—most members of Clostridium cluster I, all members of Clostridium cluster II; EC1531—Escherichia

coli; Lab158—all Oenococcus, Vagococcus, Melissococcus, Tetragenococcus, Enterococcus, Catellicoccus, Paralactobacillus, Pediococcus and

Lactococcus species, most Lactobacillus, Weissella, and Leuconostoc species. See also Table S1.
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Mccartney, 2010). Bacterial isolation was also carried out on selected samples and the isolated colonies

identified using ribosomal intergenic spacer analysis (Roger and Mccartney, 2010).
Quantitative Analysis of Microbial Communities in Breast- and Formula-Fed Infants

To provide context to the microbiome environment the strains selected for the present study, we reana-

lyzed the data originally generated by FISH (Figure 1 and Table S1) (Roger and Mccartney, 2010). Bacteria

detected using probe Bif164 (bifidobacteria) proportionally constituted the predominant group in samples

isolated from breast-fed infants during pre-weaning and weaning: between 16.5% and 100% of the micro-

biota across the study period. During post-weaning, proportions of bifidobacteria across all breast-fed

samples decreased considerably and ranged from 4.6% to 12.1%. The levels of bacteria detected by

ER482 (members of Clostridium cluster XIVa) started to increase during weaning, increasing to 18.2%

(from 0.25% at pre-weaning). Bacteria detectable by probe Bac303 (members of genus Bacteroides, Para-

bacteroides and Prevotella species, Paraprevotella, Xylanibacter, Barnesiella species and Odoribacter

splanchnicus) were identified in all samples throughout the study, with this bacterial group showing exten-

sive inter-individual variation. Other microbiota members were detected in breast-fed samples at lower

levels, including members of family Coriobacteriia (Ato291, mean < 2% of microbiota), Escherichia coli

(EC1531, <1%), members of Clostridium clusters I and II (Chis150, <1%), and lactic acid bacteria (Lab158,

mean < 1%).

In contrast to the breast-fed group, no drastic shift in bacterial populations was observed in formula-fed

infants throughout the study. Overall, lower levels of bifidobacteria were detected during pre-weaning

and weaning, fluctuating from 0.0% to 73.3% of the microbiota at different time points. Similar to the

breast-fed group, proportions of Bifidobacterium decreased during post-weaning across all formula-fed

samples and ranged from 6.5% to 12% at month 18. The levels of bacteria detected by probe ER482

were overall higher in formula-fed samples throughout study duration: 19.96 G 17.41%, 25.39 G 14.63%,

and 30.6 G 15.92% for pre-weaning, weaning, and post-weaning phases. Similarly, proportions of bacteria

detected by Bac303 during all dietary phases were higher in the formula-fed group compared with the

breast-fed group. Contrastingly to the breast-fed group, levels of bacteria detected by Chis150 (Clos-

tridium clusters I and II) started to increase during weaning in the formula-fed group and continued to in-

crease (1.23 G 1.28%, 7.03 G 9.18%, and 21.72 G 11.47% for pre-weaning, weaning, and post-weaning,

respectively). Levels of bacteria identified by Ato291 and EC1531 in formula-fed samples were slightly
iScience 23, 101368, August 21, 2020 3
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higher than in the breast-fed group (means of <3.5% and <1.25%, respectively), whereas the mean propor-

tion of lactic acid bacteria (Lab158) remained below 1%.

Overall, these results confirm previous studies that have indicated differences in fecal microbiota compo-

sition between breast- and formula-fed babies, particularly during the pre-weaning and weaning phases,

and demonstrate the succession of bacterial species over time and in relation to diet, including

Bifidobacterium.
General Features of B. longum Genomes

Based on the results of bacterial culture and colony identification published previously (for details, refer to

(Roger et al., 2010)), 88 isolates originally identified as Bifidobacterium were selected for this study, 46 from

five exclusively breast-fed infants (BF1-BF5, including identical twins BF3 and BF4) and 42 from four exclu-

sively formula-fed infants (FF1-FF3 and FF5). Following sequencing and ANI analysis (Tables S2 and S3), 75

strains were identified as B. longum sp. and included in further analysis, with 62 strains identified as B. lon-

gum subsp. longum (B. longum) and 13 strains identified as B. longum subsp. infantis (B. infantis)

(Figure 2A).

To determine possible genotypic factors facilitating establishment and persistence of B. longum in the

changing early life environment, we assessed the genome diversity of our strains. Sequencing generated

between 12 and 193 contigs for each B. longum strain, with 74/75 containing fewer than 70 contigs, yielding

a mean of 66.95-fold coverage for strains (Table S2). The predicted genome size for strains identified as B.

longum ranged from 2.21 Mb to 2.58 Mb, possessing an average G + C% content of 60.11%, an average

predicted ORF number of 2,023, and number of tRNA genes ranging from 55–88. For strains identified

as B. infantis, the predicted genome size ranged from 2.51 Mb to 2.75 Mb, with an average G + C% content

of 59.69%, an average predicted ORF number of 2,280, and the number of tRNA genes ranging from 57 to

62.
Comparative Genomics

To identify B. longum strains among the sequenced isolates and assess nucleotide-level genomic differ-

ences, we performed ANI analysis. Results (Table S3) indicated that B. longum strains isolated from individ-

ual infant hosts displayed higher levels of sequence identity than strains isolated from different hosts. More

specifically, pairwise identity values for strains isolated from infant BF3 showed the narrowest range

(average value of 99.99G 3.15 3 10�5%), followed by infant FF2 strains (99.98 G 1.12 3 10�4%), with infant

BF2 strains having the broadest identity value range (averaging 99.13 G 7.8 3 10�3%).

Next, we examined genetic diversity of newly sequenced B. longum strains and their relatedness to each

other, alongside B. longum type strains. We identified a total of 1,002 core genes present in at least 99% of

the analyzed B. longum subspecies genomes that allowed clear distinction between B. longum subspecies

(i.e. longum versus infantis) based on the presence/absence of specific genes (Table S4). Phylogenetic anal-

ysis revealed that B. longum strains within each subspecies clustered mainly according to isolation source,

i.e. individual infants, rather than dietary stage (i.e. pre-weaning, weaning and post-weaning) (Figure 2B).

Interestingly, strains isolated from formula-fed baby FF5 clustered into two separate clusters, irrespective

of the isolation period, suggesting presence of two highly related B. longum groups within this infant.

Furthermore, strains isolated from identical twins BF3 and BF4 clustered together, indicating their close

relatedness.

We next sought to identify whether specific components of the B. longum subspecies pangenome were

enriched in infant hosts. Each candidate gene in the accessory genome was sequentially scored according

to its apparent correlation to host diet (breast vs. formula) or dietary stage. A gene annotated as a-L-ara-

binofuranosidase, along with four other genes coding for hypothetical proteins, were predicted to be en-

riched in B. longum strains isolated from breast-fed infants. Alpha-L-arabinofuranosidases are enzymes

involved in hydrolysis of terminal non-reducing a-L-arabinofuranoside residues in a-L-arabinosides and

act on such carbohydrates as (arabino)xylans (Ichinose et al., 2008; Ahmed et al., 2013). In addition, two

genes coding for hypothetical proteins and a gene coding for mobility protein A were overrepresented

in strains isolated from formula-fed infants. No associations between genes and dietary stages in B. longum

nor any associations in B. infantis were observed (Table S5).
4 iScience 23, 101368, August 21, 2020



Figure 2. Identification and Relatedness of B. longum Strains

(A) Sampling scheme and strain identification within individual breast-fed (BF1-BF5) and formula-fed (FF1-FF3 and FF5)

infants based on average nucleotide identity values (ANI). The three levels of shading mark different dietary phases: pre-

weaning, weaning, and post-weaning.

(B) Relatedness of B. longum strains based on core proteins. Colored strips represent isolation period (pre-weaning,

weaning, and post-weaning) and isolation source (individual infants), respectively.

See also Tables S2, Table S3, and S4.
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As our strains were isolated from individual infants at different time points, we next sought to determine

their intra-strain diversity; for this we used the first B. longum isolate from each infant as the ‘‘reference’’

strain to which all other strains from the same infant were compared (Figure 3). Infants BF1, BF3, and

FF2 had the lowest strain diversity, with respective mean pairwise SNP distances of 18.7 G 20.3 SNPs
iScience 23, 101368, August 21, 2020 5



Figure 3. Pairwise SNP Distances between B. longum Strains of the Same Subspecies within Individual Infants

Individual points show data distribution, diamonds indicate the group mean, box plots show group median and

interquartile range. See also Table S6.
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(mean G sd), 10.3 G 5.0 SNPs, and 13.3 G 5.3 SNPs. These results suggest strains isolated from these in-

fants may be clonal, indicating long-term persistence despite dietary changes. Surprisingly, analysis of

strains isolated from breast-fed identical twins BF3 and BF4 revealed higher strain diversity in baby BF4

(1034.5G 1327.1 SNPs), compared with the highly similar strains in infant BF3 (i.e. 10.3G 5.0 SNPs). Based

on these results, we conducted SNP analysis on B. longum strains isolated from both babies and found that

out of 13 strains analyzed (n = 8 fromBF3 and n = 5 fromBF4), 12 isolated during pre-weaning, weaning, and

post-weaning appeared to be clonal (with mean pairwise SNP distance of 10.0 G 5.5 SNPs) and one strain

from baby BF4 isolated post-weaning was more distant, 2,595.4 G 2.8 SNPs. The difference in strain diver-

sity may relate to the fact that infant BF4 received a course of antibiotics during pre-weaning (Figure 1 and

Tables S1 and S2) (Roger and Mccartney, 2010). Furthermore, the presence of clonal strains in both babies

suggests vertical transmission of B. longum from mother to both infants, or potential horizontal transmis-

sion between babies, consistent with previous reports (Makino et al., 2011, 2013; Milani et al., 2015b; Oda-

maki et al., 2018). B. infantis strains isolated from infant BF2 showed the highest strain diversity of 9,030.9G

8,036.6 SNPs. Seven strains isolated during both pre-weaning and weaning periods appeared to be clonal,

6.3 G 1.6 SNPs, whereas four strains isolated during weaning and post-weaning were more distant, with

mean pairwise SNP distance of 14,983.5 G 4,658.3 SNPs (Table S6).
Functional Annotation of B. longum Subspecies Genomes—Carbohydrate Utilization

To assess genomic differences between our strains at a functional level, we next assigned functional cate-

gories to ORFs of each B. longum genome. Carbohydrate transport and metabolism was identified as the

secondmost abundant category (after unknown function), reflecting the saccharolytic lifestyle of Bifidobac-

terium (Figure S1) (Pokusaeva et al., 2011, Milani et al., 2015a). B. longum had a slightly higher proportion of

carbohydrate metabolism and transport genes (11.39G 0.31%) compared with B. infantis (10.20G 0.60%),

which is consistent with previous reports (Ventura et al., 2009; Sela and Mills, 2010). B. longum strains iso-

lated during pre-weaning had a similar proportion of carbohydrate metabolism genes in comparison with

the strains isolated post-weaning: 11.28 G 0.23% and 11.48 G 0.38%, respectively. Furthermore, we ob-

tained similar results for B. longum strains isolated from breast- and formula-fed infants, with respective

values of 11.41G 0.21% and 11.38G 0.38%. In contrast, B. infantis strains isolated pre-weaning had a lower

proportion of carbohydrate metabolism genes in their genomes compared with the ones isolated post-

weaning: 9.90 G 0.24% and 11.20 G 0.01%, respectively (Table S7).
6 iScience 23, 101368, August 21, 2020



Figure 4. Gene-Loss Events and Abundance of GH Families within B. longum Subspecies

Pie charts superimposed on the whole genome SNP tree represent predicted GH family gain-loss events within B. longum

and B. infantis lineages. Due to the size of the tree, examples of detailed gain loss events have been provided for main

ll
OPEN ACCESS

iScience 23, 101368, August 21, 2020 7

iScience
Article



Figure 4. Continued

lineages, as well as baby BF2 (strains highlighted with light blue) and BF5 (strains highlighted with yellow). Heatmap

represents abundance of specific GH families predicted in analyzed B. longum strains. See also Tables S8 and S9.
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One of the major classes of carbohydrate-active enzymes comprises glycosyl hydrolases (GH), which facil-

itate glycan metabolism in the gastrointestinal tract. We thus sought to investigate and compare the

arsenal of GHs in B. longum using dbCAN2. We identified a total of 36 different GH families in all Bifido-

bacterium strains. B. longum was predicted to contain 55 GH genes per genome on average (2.72% of

OFRs), whereas this number was lower for B. infantis strains, ~37 GH genes per genome (1.62% of ORFs)

(Figure 4 and Table S8). The predominant GH family was GH43—enzymes involved in metabolism of com-

plex plant carbohydrates such as (arabino)xylans (Viborg et al., 2013), followed by GH13 (starch), GH51

(hemicelluloses), and GH3 (plant glycans) (Milani et al., 2015a, 2016).

Within the B. longum group, strains isolated during pre-weaning had a slightly lower mean number of GH

genes compared with strains isolated post-weaning (54.46 G 2.81 vs. 56.85 G 2.77). Moreover, strains iso-

lated from breast-fed babies contained an average of 53.96 G 3.82 GH genes per genome, whereas this

number was slightly higher for strains isolated from formula-fed infants—56.47 G 2.96. Further analysis

revealed that these differences appeared to be intra-host-specific and diet-related. For example, strains

isolated from breast-fed twins BF3 and BF4 pre-weaning had 11 GH43 genes per genome, whereas the

pre-weaning strain from formula-fed baby FF3 had 13 GH genes per genome predicted to belong to

this GH family. Similarly, strains isolated from babies BF3 and BF4 post-weaning had 11 predicted GH

genes, whereas the three strains isolated from infant FF3 were predicted to contain 16, 16, and 18GHgenes

per genome, respectively (Table S8).

We next determined if these GH genes differences statistically correlated with breast- and formula-fed

groups (Table S8). Significant differences (p < 0.05) were observed between mean numbers of GH genes

belonging to the predominant GH families (GH43—higher abundance in FF babies, GH13—higher abun-

dance in BF babies, and GH51—higher abundance in FF babies), and several other GH families, including

GH5 (b-glucosidases and b-mannosidases), GH38 (mannosylglycerate hydrolases), and GH36 (a-galactosi-

dases), all more abundant in BF babies. Further analysis of dietary phases suggested significant differences

in GH genes between breast- and formula-fed groups during pre-weaning (e.g. families GH43, GH13, GH5,

GH38) but not in the post-weaning phase (Table S8).

Because glycosyl hydrolases belonging to distinct GH families may have similar catalytic properties, we

next grouped the GH genes for which the predicted enzyme class annotation was available and investi-

gated their abundance (Table S9). The predominant enzyme classes in B. longum strains were non-

reducing end a-L-arabinofuranosidases belonging to GH43 and GH51, followed by b-galactosidases

(GH2 and GH42), oligo-1,6-glucosidases (GH13), and b-N-acetylhexosaminidases (GH3 and GH20).

The mean numbers of enzyme classes between breast- and formula-fed babies significantly differed (p <

0.05) in the top three above-mentioned predominant enzyme classes as well as several other less abundant

ones, including non-reducing end b-L-arabinofuranosidases (GH127 and GH146—higher abundance in BF

babies), a-galactosidases (GH36—higher abundance in BF babies), and endo-1,5-a-L-arabinases (GH43—

higher abundance in FF babies). Additional analysis of dietary phases indicated significant differences be-

tween breast- and formula-fed groups during pre-weaning (e.g. non-reducing end a-L-arabinofuranosi-

dases, b-galactosidases, oligo-1,6-glucosidases as well as a-galactosidases) but not during post-weaning

(Table S9).

We next examined the predicted glycosyl hydrolase repertoire of B. infantis strains, with the caveat that the

majority of the strains belonging to this subspecies were isolated from a single infant. In contrast to the B.

longum group, themost abundant GH family was GH13 (starch), followed byGH42, GH20, andGH38 (Table

S8). B. infantis strains also harbored genes predicted to encode members of the GH33 family, which con-

tains exo-sialidases (Milani et al., 2015a). Strains isolated pre-weaning were predicted to contain an

average of 34.83 G 0.4 GH genes per genome, whereas this number was higher for the strains isolated

post-weaning (i.e. 43.00 G 0.00 GH genes). B. infantis strains isolated post-weaning contained families

GH1 and GH43 that were absent in the strains isolated pre-weaning. The GH1 family contains enzymes

such as b-glucosidases, b-galactosidases, and b-D-fucosidases active on a wide variety of (phosphorylated)
8 iScience 23, 101368, August 21, 2020
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disaccharides, oligosaccharides, and sugar–aromatic conjugates (Suzuki et al., 2013). The analysis of

enzyme classes in the B. infantis strains suggested that b-galactosidases (GH2 and GH42) were predomi-

nant in this group, followed by b-N-acetylhexoaminidases (GH3 and GH20), 4-a-glucanotransferases

(GH77), and oligo-1,6-glucosidases (GH13) (Table S9).

Members of the genus Bifidobacterium have previously been shown to contain GH genes involved in meta-

bolism of various HMOs present in breast milk (Garrido et al., 2015, 2016). We identified genes belonging

to GH29 and GH95 (a-L-fucosidases found active on fucosylated HMOs (Sela et al., 2012; Garrido et al.,

2016)) in all our B. infantis strains, as well as four B. longum strains isolated from formula-fed baby FF3.

Furthermore, we found GH20 and GH112 genes (lacto-N-biosidases and galacto-N-biose/lacto-N-biose

phosphorylases shown to be involved in degradation of isomeric lacto-N-tetraose (LNT) (Kitaoka, 2012))

in all our B. infantis and B. longum strains (Table S8).

Overall, these findings suggest differences in general carbohydrate utilization at different stages suggest-

ing adaptation of Bifidobacterium to a changing early life nutritional diet, which may be a factor facilitating

establishment of these bacteria within individuals during infancy.

Prediction of Gain and Loss of GH Families in B. longum

Given the differences in the carbohydrate utilization profiles between B. longum and B. infantis, we next

investigated the acquisition and loss of GH families. For this purpose, we additionally predicted the pres-

ence of GH families in type strains B. longum subsp. longum JCM 1217T, B. longum subsp. infantis ATCC

15697T, and B. longum subsp. suis LMG 21814T with dbCAN2 and generated a whole genome SNP tree to

reflect gene loss/gain events more accurately (Figure 4 and Table S10). Both B. longum and B. infantis lin-

eages appear to have acquired GH families (when compared to the common ancestor of the phylogenetic

group), with the B. longum lineage gaining two GH families (GH121 and GH146) and the B. infantis lineage

one GH family (GH33). Within the B. infantis lineage, which also contains the B. suis type strain, the B. in-

fantis taxon has further acquired two and lost five GH families. These findings suggest that the two human-

related subspecies have followed different evolutionary paths, which is consistent with our observation of

differences between B. longum and B. infantis resulting from phylogenomic analyses. Intriguingly, strain

adaptation to the changing host environment (i.e. individual infant gut) seems to be driven by loss of spe-

cific GH families (Figure 4). For example, B. infantis strains isolated during pre-weaning and weaning from

baby BF2 appear to be missing up to three GH families (GH1, GH43, and GH109) present in strains isolated

post-weaning. Lack of family GH43 (containing enzymes involved in metabolism of a variety of complex car-

bohydrates, including plant-derived polysaccharides) in early life B. infantis strains may explain nutritional

preference of this subspecies for an HMO-rich diet. Similarly, we observed differential gene loss events in B.

longum strains from individual hosts. For example, all strains isolated from baby BF5 appear to lack GH

families GH1, GH29, and GH95. However, strains isolated pre-weaning additionally lacked GH53 family,

which includes endogalactanases shown to be involved in liberating galactotriose from type I arabinoga-

lactans in B. longum (Hinz et al., 2005). In contrast, strain B_38 isolated from this infant (BF5) post-weaning

appears to have lost families GH136 and GH146. Interestingly, members of family GH136 are lacto-N-bio-

sidases responsible for liberating lacto-N-biose I from LNT, an abundant HMO unique to human milk (Ya-

mada et al., 2017), whereas family GH146 contains b-L-arabinofuranosidases displaying exo-activity on

b-linked arabinofuranosyl groups. These events may be linked to dietary changes (withdrawal of breast

milk) and/or a shift in the composition of the microbiota post-weaning. Only one B. longum strain was iso-

lated post-weaning from this baby; however, FISH analysis (Figure 1 and Table S1) revealed an increase in

the bacteroides group, which might explain the loss of family GH146 by strain B_38 as the founding mem-

ber of GH146 family, b-L-arabinofuranosidase, was first characterized in Bacteroides thetaiotaomicron (Luis

et al., 2018). Overall, the presence of intra-individual and strain-specific GH family repertoires in B. longum

suggests their adaptation to host-specific diet. The presence of strains with different GH content at

different dietary stages further indicates potential acquisition of new Bifidobacterium strains with

nutrient-specific adaptations in response to the changing infant diet.

Prediction of Single Nucleotide Polymorphisms in Glycosyl Hydrolases

Given the intra-strain diversity in the nine babies and the differences in GH repertoires between B. longum

and B. infantis, we next sought to examine nucleotide-level differences in glycosyl hydrolase genes be-

tween strains in individual infants (Table S11). Unsurprisingly, we did not identify any significant SNPs

that may lead to functional changes in GH genes in infants that had the lowest strain diversity (infants
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Figure 5. Growth Performance of B. longum Strains on Different Carbon Sources

Heatmap displays the difference in average growth of triplicates between T2 (30 min) and Tend (48 hr). Moderate growth is considered above 0.15 difference

in OD from time T2, high growth above 0.25 difference in OD from time T2. Asterisks represent strains for which inconsistent growth was recorded (difference

in OD of at least 0.15 between any of the duplicates in the triplicate experiment). See also Table S12.
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BF1, BF3 and FF2) (Table S6). The highest number of GH genes with predicted variants was recorded for B.

infantis strains from baby BF2. In total, 52 synonymous variants and 29 missense variants were predicted at

81 different positions in 12 GH genes across strains that showed the highest diversity from the first ‘‘refer-

ence’’ isolate, namely one strain isolated during weaning and the three strains isolated post-weaning.

Several missense variants, both complex and single, were recorded at several positions in the predominant

enzyme classes, i.e. b-galactosidases (EC 3.2.1.23) and b-N-hexosaminidases (EC 3.2.1.52).

Similarly, both synonymous and missense variants were predicted in B. longum strains less closely related

to ‘‘reference’’ strains from breast-fed (BF4 and BF5) and formula-fed (FF1, FF3 and FF5) babies. We did not

observe any trend in the distribution of SNPs across GH genes in B. longum strains. The number of pre-

dicted variants, the number of GH genes with identified mutations, and their enzyme classification differed

between individual infants. For example, in baby BF4 9 out of 10 predicted variants (4 synonymous and 5

missense) were identified in an a-xylosidase in a strain isolated post-weaning, whereas in baby FF5 14 syn-

onymous and 10 missense variants were predicted at 24 positions in 7 different GH genes across strains

isolated during weaning and post-weaning. Some missense changes do not compromise normal protein

function, whereas others can change essential aspects of protein maturation, activity, or stability (Miosge

et al., 2015). The presence of missense variants in GH genes of B. longum strains may indicate potential

functional differences and provide additional explanation to intra-strain and intra-individual carbohydrate

metabolism profiles of these bacteria; however, experimental evidence would be essential to confirm the

importance of these predictions.
Phenotypic Characterization of Carbohydrate Utilization

Bifidobacterium longum has previously been shown to metabolize a range of carbohydrates, including di-

etary and host-derived glycans (Watson et al., 2013; Arboleya et al., 2018). Given the predicted differences

in carbohydrate metabolism profiles and to understand strain-specific nutrient preferences, we next deter-

mined their glycan fermentation capabilities. We performed growth assays on 49 representative strains

from all nine infants, cultured in modified MRS supplemented with selected carbohydrates as the sole car-

bon source. For these experiments, we chose both plant- and host-derived glycans that we would expect to

constitute components of the early life infant diet (Mills et al., 2019). Although all B. longum strains were

able to grow on simple carbohydrates (i.e. glucose and lactose), we also observed subspecies-specific

complex carbohydrate preferences, consistent with bioinformatic predictions (Figure 5). To represent

host-derived carbohydrates, we selected 20-fucosyllactose (20-FL) and lacto-N-neotetraose (LNnT) as exam-

ples of HMOs found in breast milk. Out of the tested isolates, all B. infantis strains were able to metabolize

20-FL, as were three B. longum strains isolated from a formula-fed baby FF3 during weaning and post-wean-

ing (Figure 5). These results supported the computational analysis and the identification of genes poten-

tially involved in degradation of fucosylated carbohydrates in the genomes of these isolates (GH29 and

GH95). Although bioinformatics identified the presence of genes involved in metabolism of isomeric

LNT in all our strains (GH20 and GH112), LNnTmetabolism in B. infantiswas strain specific, withmost strains

showing what we considered moderate (above 0.15 difference in OD from time T2) to high growth rates

(above 0.25 difference in OD from time T2), with two strains displaying inconsistent growth (Table S12).
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Out of B. longum strains, B_24 and B_25 (isolated during weaning from breast-fed baby BF3) also showed

growth on LNnT, albeit this was inconsistent. In contrast to all other B. longum strains, strain B_25 was not

able tometabolize plant-derived arabinose and xylose despite the predicted presence of genes involved in

metabolism of monosaccharides (GH43, GH31, GH2). However, it was one of the two strains (out of 49

tested) that showed growth on cellobiose in 2/3 experiments, the other one being the post-weaning B. in-

fantis strain B_19 isolated from baby BF2. Given these interesting results, we performed additional assays

using cellobiose as the sole carbon source over 72 h, in which the B. longum strain B_25 showed high

growth rate (above 0.25 difference in OD from time T2), whereas the B. infantis B_19 strain did not grow

at all (Table S12). In addition, both B. longum and B. infantis strains showed varying degrees of growth per-

formance on mannose, even when analyzing the same strain, whereas none of the tested strains were able

to grow on arabinogalactan, pectin, or rhamnose (Figure 5).

To further characterize strains identified above for putative carbohydrate degradation genes, we per-

formed carbohydrate uptake analysis and proteomics. B. longum strain B_25, from one of the breast-fed

identical twins that showed growth on LNnT and cellobiose, and formula-fed strain B_71, which was able

to grow on 20-FL, were chosen. Supernatant from these cultures was initially subjected to high-performance

anion-exchange chromatography (HPAEC) to evaluate the carbohydrate-depletion profiles (Figure 6). In all

three cases, the chromatograms showed complete utilization of the tested carbohydrates and absence of

any respective degradation products in the stationary phase culture. The depletion of cellobiose by B_25

and 20-FL by B_71 occurred in the early exponential phase, whereas LNnT was still detected in the culture

supernatant until the late exponential phase of growth, suggesting that cellobiose and 20-FL were internal-

ized more efficiently than LNnT. We next determined the proteome of B_25 and B_71 when growing on

cellobiose, LNnT and 20-FL compared with glucose (Figures 6A–6C and Table S13). The top 10 most abun-

dant proteins in the cellobiose proteome of B_25 included three b-glucosidases belonging to GH3 family,

as well as a homologue of transport gene cluster previously shown to be upregulated in B. animalis subsp.

lactis Bl-04 during growth on cellobiose (Figure 6A and Table S14) (Andersen et al., 2013). Among the three

b-glucosidases, B_25_00240 showed 98% sequence identity to the structurally characterized BlBG3 from B.

longum, which has been shown to be involved in metabolism of the natural glycosides saponins (Yan et al.,

2018). B_25_01763 and B_25_00262 showed 46% identity to the b-glucosidase Bgl3B from Thermotoga

neapolitana (Pozzo et al., 2010) and 83% identity to BaBgl3 from B. adolescentis ATCC 15703 (Florindo

et al., 2018), respectively, two enzymes previously shown to hydrolyze cello-oligosaccharides. With respect

to LNnTmetabolism by the same strain, themost abundant proteins were encoded by genes located in two

gene clusters (B_25_00111–00117 and B_25_00130-00133) with functions compatible with LNnT import,

degradation to monosaccharides, and further metabolism. The gene clusters contain the components of

an ABC-transporter (B_25_00111–00113), a predicted intracellular GH112 lacto-N-biose phosphorylase

(B_25_00114), an N-acetylhexosamine 1-kinase (B_25_00115) and enzymes involved in the Leloir pathway.

All these proteins were close homologues to proteins previously implicated in the degradation of LNT/

LNnT by type strain B. infantis ATCC 15697T (Ozcan and Sela, 2018) (Figure 6B and Table S14). Interestingly,

all clonal strains isolated from twin babies BF3 and BF4 also contained close homologues of all the above-

mentioned genes in their genomes, in some cases identical to those determined in B_25; however, only

strain B_25 was able to grow on cellobiose and LNnT. Growth of B_71 on 20-FL corresponded to increased

abundance of proteins encoded by the gene cluster B_71_00973-00983. These proteins showed close ho-

mology to proteins described for B. longum SC596 and included genes for import of fucosylated oligosac-

charides, fucose metabolism, and two a-fucosidases belonging to the families GH29 and GH95 (Figure 6C

and Table S14) (Garrido et al., 2016).
DISCUSSION

High abundance of Bifidobacterium, and B. longum in particular, in early infancy is strongly linked to avail-

ability of nutrients (Koenig et al., 2011; Backhed et al., 2015; Yamada et al., 2017). In this study, we aimed to

investigate the adaptations of B. longum to the changing infant diet during the early life developmental

window. Profiling microbiota composition data (Roger and Mccartney, 2010), genomic diversity of 75 B.

longum strains (isolated from infants at different dietary stages), and growth performance on different car-

bohydrates revealed intra-individual and diet-related differences, which links to strain-level metabolism

properties for specific dietary components.

The FISH results corroborate findings of previous studies investigating the infant gut microbiota—inter-in-

dividual variability during pre-weaning and weaning, with a shift toward a more adult-like fecal microbiota
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Figure 6. Carbohydrate Uptake Analysis and Proteomics of B. longum Strains B_25 and B_71

HPAEC-PAD traces showing mono-, di-, and oligo-saccharides detected in the supernatant of either B_25 or B_71 single cultures during growth in mMRS

supplemented with (A) cellobiose; (B) LNnT; (C) 20-FL. The data are representative of biological triplicates. Abbreviations: LNnT, Lacto-N-neotetraose; Glc,

glucose; Glc2, cellobiose; 20-FL, 20-fucosyllactose. Panel on the right shows (A) cellobiose; (B) LNnT; (C) 20-FL utilization clusters in B_25 and B_71 and

proteomic detection of the corresponding proteins during growth on HMOs. Heatmaps above genes show the LFQ detection levels for the corresponding

proteins in triplicates grown on glucose (G); cellobiose (C); LNnT (L); and 20-FL (F). Numbers between genes indicate percent identity between

corresponding genes in homologous gene clusters relative to strains B_25 and B_71. Numbers below each gene show the locus tag in the corresponding

genome. Locus tag numbers are abbreviated with the last numbers after the second hyphen (for example B_25_XXXXX). The locus tag prefix for each strain is

indicated in parenthesis beside the organism name. See also Tables S13 and S14.

ll
OPEN ACCESS

iScience
Article
associated with more complex diet at post-weaning across all samples (Koenig et al., 2011, Mckeen et al.,

2019). Bifidobacterium constituted the predominant group in breast-fed infants during pre-weaning and

weaning, whereas the composition of microbiota of the formula-fed infants during these stages was

more complex.

Our comparative genomic analysis indicates that clonal strains of B. longum can persist in individuals

through infancy, for at least 18 months, despite significant changes in diet during weaning, which is consis-

tent with previous reports (Maldonado-Gomez et al., 2016; Odamaki et al., 2018). Concurrently, new strains

(that display different genomic content and potential carbohydrate metabolism capabilities) can be ac-

quired, possibly in response to the changing diet. Previously, strain shift in relation to withdrawal of breast

milk has been suggested for B. infantis by Vatanen et al. (2019) based on strain-level metagenomic

approach. Similarly, Asnicar et al. (2017) suggested that originally acquired maternal strains of B. longum

can be replaced at later life stages. Initial vertical acquisition of Bifidobacterium from mother to newborn
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babies has been well documented (Mikami et al., 2012; Makino et al., 2013; Milani et al., 2015b; Asnicar et

al., 2017); however, details of strain transmission events in later life are currently unclear. Work of Odamaki

et al. (2018) suggested person-to-person horizontal transmission of a particular B. longum strain between

members of the same family, with direct transfer, common dietary sources, or environmental reservoirs,

such as family homes (Lax et al., 2014) acting as potential vehicles and routes for strain transmission. Our

results showed the presence of clonal strains in identical twins BF3 and BF4, which may have resulted

from maternal transfer. However, potential strain transmission between these infants living in the same

environment may also occur. Wider studies involving both mothers and twin babies (and other siblings)

could provide details on the extent, timing, and location of transmission events between members of

the same household.

Another aspect of comparative genomic analysis involved in silico prediction of genes belonging toGH families.

This analysis revealed genome flexibility withinB. longum, with differences in GH family content between strains

belonging to the same subspecies as described previously; B. infantis predominantly enriched in GH families

implicated in the degradation of host-derived breast milk-associated dietary components such as HMOs and

B. longum containing GH families involved in the metabolism of plant-derived substrates (Milani et al., 2015a;

Milani et al., 2016). Previously, Vatanen et al. (2019) suggested that the presence of the HMOgene cluster allow-

ing for intracellular HMOutilization inB. infantis strains, in particular, confers a competitive advantage leading to

higher relative abundance of this subspecies in the early life microbiota. Our analysis of B. infantis group

identified the presenceof glycosyl hydrolases associatedwith HMOdegradation in all isolates and revealed sub-

species-specific differences in GH content between pre- and post-weaning strains. Moreover, we observed dif-

ferences in the number of genes belonging to the most abundant GH families (e.g. GH43) between breast-fed

and formula-fed strains at different dietary stages, which can be linked to nutrient availability. Surprisingly, we

computationally and phenotypically identified closely related weaning and post-weaning B. longum strains

capable of metabolizing HMOs (i.e. 20-FL) in a formula-fed baby that only received standard non-supplemented

(i.e. no prebiotics or synthetic HMOs) formula. The analysis of SNP variants in genes identified as glycosyl hydro-

lases predicted the presence of missense mutations in both B. longum and B. infantis strains. Given that some

missense variants can compromise protein function (Miosge et al., 2015), our results suggest potential functional

differences that could further explain intra-strain and intra-individual carbohydratemetabolismprofiles ofB. lon-

gum. However, experimental validation would be essential to confirm the importance of variant predictions.

Recorded phenotypic data support the results of genomic analyses and further highlight differences in carbohy-

drate utilization profiles between and within B. longum and B. infantis. As highlighted above, the ability of B. in-

fantis to grow on different HMOs may facilitate their early life establishment. Similarly, B. longum preference for

plant-based nutrients may influence their ability to persist within individual hosts through significant dietary

changes. Differential growth of strains that are genotypically similar on various carbohydrate substrates and the

ability of formula-fed strains to metabolize selected HMOs suggest that Bifidobacterium possess an overall

very broad repertoire of genes for carbohydrate acquisition and metabolism that may be differentially switched

on and off in response to the presence of specific dietary components (Dworkin and Losick, 2001; Slager and Ve-

ening, 2016). Anotherexplanation for these resultsmaybeapotential influenceof the intra-individual environment

on epigenetic mechanisms in these bacteria. One potential factor involved in this process may be a cooperative

effort supported by cross-feeding activities amongBifidobacteriumor betweenBifidobacterium and othermem-

bers of the early life microbiota, e.g. Bacteroides and Eubacterium species (Rios-Covian et al., 2013; Milani et al.,

2015a; Schwab et al., 2017; Lawson et al., 2020). Indeed, the FISH analysis revealed the presence of bacteria de-

tected by probes Bac303 (bacteroides) and ER482 (eubacterium) in fecal samples of both breast- and formula-

fed infants, with intra-individual variation at different dietary stages. Although B. infantis is principally known as

a specialist HMO degrader, we did note growth of one of the B. infantis strains from formula-fed baby FF1 on

xylose. However, this growth profile was not consistent between experiments and therefore we did not pursue

a fuller characterization.However, futureexaminationof the ability ofB. longum subsp. infantis todegradeawider

range of non-HMO carbohydrate sources in early life could provide additional insight into carbohydrate meta-

bolismpropertiesof this subspecies and its role in ecosystemstructuringduring transition toamore complexdiet.

Glycan uptake analysis and proteomic investigation allowed us to determine mechanisms that selected B.

longum strains to metabolize different carbohydrates. A common feature, based on the predicted activity

of the most abundant proteins detected during grown on the three substrates (cellobiose, LNnT and 20-FL),
was that they were all imported and ‘‘selfishly’’ degraded intracellularly, therefore, limiting release of

degradation products that could allow cross-feeding by other gut bacteria. This is in line with the
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carbohydrate uptake analysis, where no peak for cellobiose, LNnT, and 20-FL degradation products could

be detected. Cellobiose uptake in B_25 occurs via a mechanism similar to B. animalis subsp. lactis Bl-04 (B.

lactis) (Andersen et al., 2013); cellobiose hydrolysis appears to be mediated by the activity of three intra-

cellular b-glucosidases, although further confirmatory biochemical characterization of these enzyme is still

required. B_25 was observed to utilize LNnT using a pathway similar to that described in B. longum subsp.

infantis whereby LNnT is internalized via an ABC-transporter (B_25_00111-00113) followed by intracellular

degradation into constituent monosaccharides by a GH112 (B_25_00114) and anN-acetylhexosamine 1-ki-

nase (B_25_00115). LNnT degradation products are further metabolized to fructose-6-phosphate by activ-

ities that include B_25_00116-00117 (galactose-1-phosphate uridyltransferase, UDP-glucose 4-epimerase,

involved in the Leloir pathway) and B_25_01030-01033 (for metabolism of N-acetylgalactosamine) prior to

entering the Bifidobacterium genus-specific fructose-6-phosphate phosphoketolase (F6PPK) pathway (Oz-

can and Sela, 2018). B_71 is predicted to deploy an ABC-transporter (B_71_00974-00976) that allows uptake

of intact 20-FL that is subsequently hydrolyzed to L-fucose and lactose by the two predicted intracellular

a-fucosidases GH29 (B_71_00982) and GH95 (B_71_00983). L-fucose is further metabolized to L-lactate

and pyruvate, via a pathway of non-phosphorylated intermediates that include activities of L-fucose muta-

rotase (B_71_00981), L-fucose dehydrogenase (B_71_00978), and L-fuconate hydrolase (B_71_00977) as

previously described for B. longum subsp. longum SC596 (Garrido et al., 2016). Considering that the pro-

teins encoded by the aforementioned genes are located in the cellobiose, LNnT and 20-FL gene clusters

that share high similarity and similar organization with those found in equivalent systems in other B. longum

and B. lactis, it is reasonable to suggest that the gene clusters are related and may be the results of hori-

zontal gene transfer events between B. longum/B. lactis members residing in the infant gut microbiota.

Collectively, these data reflect inter- and intra-host phenotypic diversity of B. longum strains in terms of

their carbohydrate degradation capabilities and suggest that intra-individual environment may influence

epigenetic mechanisms in Bifidobacterium, resulting in differential growth on carbohydrate substrates.

In conclusion, this research provides new insight into distinct genomic and phenotypic abilities of B. lon-

gum species and strains isolated from the same individuals during the early life developmental window

by demonstrating that subspecies- and strain-specific differences between members of B. longum sp. in

infant hosts can be correlated to their adaptation at specific age and diet stages.
Limitations of the Study

Here, we used a combination of bioinformatic approaches and experimental techniques to assess genomic

and phenotypic abilities of B. longum species and strains isolated during the early life developmental win-

dow. This study, however, is not without its limitations. One important caveat is the small number of B. in-

fantis strains (n = 13) available for analysis and the fact that most of these strains (n = 11) were isolated from

a single breast-fed baby (BF2). The examination of these strains provides important insight into the prop-

erties of B. infantis during the transition from breastfeeding to more diversified diet; however, it is difficult

to assess how representative these results are of wider population. In addition, only one strain isolated from

a formula-fed baby was identified as B. infantis, making it impossible to examine properties of members of

this subspecies within this dietary group and make comparisons with breast-fed strains. Another important

limitation is the fact that our strain collection only contains one bacterial strain per time point. Inclusion of

additional strains could contribute further observations on inter-individual diversity of Bifidobacterium in

infant hosts and their functional properties. To examine bacterial communities in fecal samples, we revis-

ited and reanalyzed the data generated using FISH, but this technique has a detection limit (~106 bacterial

cells (wet weight feces)�1) (Roger and Mccartney, 2010). Thus, FISH allows investigation of important bac-

terial groups, but fecal samples may contain several organisms at levels below the methodological detec-

tion threshold. In addition, this technique does not allow for tracking species-level changes. This limitation

could be addressed by the use of comprehensive sequencing methods, such as shotgun metagenomics,

combined with advanced computational methods to achieve strain-level resolution. Furthermore, pheno-

typic investigation of carbohydrate metabolism properties of B. longum revealed inconsistencies in growth

of individual strains on certain carbohydrates, including LNnT, cellobiose, and mannose, and we therefore

only explored reproducible findings further with proteomics. Previously, variability in growth of B. longum

on mannose, even when analyzing the same strain (Bifidobacterium longum NCC2705) has been reported

(Parche et al., 2007; Liu et al., 2011). Finally, no metadata on complementary foods during weaning and in-

fant diet post-weaning were available. This information could allow bioinformatic predictions of carbohy-

drate degradation properties of B. longum to be related to the specific dietary components present in

weaning infant foods. Future longitudinal studies could be designed to include these data.
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Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Lindsay J. Hall (lindsay.hall@quadram.ac.uk).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The draft genomes of 75 B. longum isolates have been deposited to GOLD database at https://img.jgi.

doe.gov. The accession number for the draft genomes reported in this paper is GOLD: Gs0145337.

The proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the partner repository with dataset identifier (PRIDE). The accession number for

the proteomics data reported in this paper is PRIDE: PXD017277.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101368.
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Supplemental Figures 
 
 
Figure S1. COG classification of the proteins encoded by B. longum strains. Related to Figure 4. 
 
 
  



Transparent Methods 
 

Sample collection, FISH and bacterial isolates  

Infants were recruited between 2005 and 2007: five were exclusively breast-fed and 

four were exclusively formula-fed (Table S2). Faecal samples were obtained from 

infants at specific intervals during the first 18 months of life. For inclusion in the 

study, infants had to meet the following criteria: have been born at full-term (>37 

weeks gestation); be of normal birth weight (>2.5 kg); be <5 weeks old and 

generally healthy; and be exclusively breast-fed or exclusively formula-fed [SMA 

Gold or SMA White (Wyeth Pharmaceuticals), to avoid supplemented formulae and 

to keep consistency within the formula group]. The mothers of the breast-fed 

infants had not consumed any antibiotics within the 3 months prior to the study and 

had not taken any prebiotics and/or probiotics. Ethical approval was obtained from 

the University of Reading Ethics Committee (Roger and McCartney, 2010). Faecal 

bacterial populations were assessed by FISH analysis. For details, refer to paper by 

Rogers and McCartney from 2010 (Roger and McCartney, 2010). Briefly, 

commercially synthesized 5′ Cy3-labelled oligonucleotide probes Bif164, Bac303, 

Chis150, ER482, Ato291, EC1531 and Lab158 (MWG Biotech) were used for 

detection of specific bacterial populations. 4′,6-diamidino-2-phenylindole (DAPI; 

500 ng μl−1) was used to enumerate the total bacterial load of samples. 

Bifidobacterium strains (n=88) were isolated from alternate faecal samples from 

both exclusively breast-fed (BF) and formula-fed (FF) infants. For details of the 

cultivation work, refer to the paper by Roger & McCartney from 2010 (Roger et al., 

2010). Briefly, serially diluted aliquots of faecal homogenates (10−1–10−8 in pre-

reduced peptone water (Oxoid)) were plated in duplicate onto pre-reduced 

Beerens agar and incubated in an anaerobic cabinet at 37 °C for 3–5 days. Fifteen 

colonies were randomly selected and re-streaked on Beerens agar to purity. Pure 

cultures were stored on Microbank cryogenic beads (ProLab Diagnostics) at –70 °C. 



The isolates were originally identified using ribosomal intergenic spacer analysis; 

for details, refer to the paper by Roger & McCartney (Roger and McCartney, 2010). 

 

DNA extraction, whole-genome sequencing, assembly and annotation 

Phenol-chloroform method used for genomic DNA extraction as described 

previously (Lawson et al., 2020). DNA isolated from pure bacterial cultures was 

subjected to multiplex Illumina library preparation protocol followed by sequencing 

on Illumina HiSeq 2500 platform (n=87) at the Wellcome Trust Sanger Institute 

(Hinxton, UK) or Illumina MiSeq (n=1) at Quadram Institute Bioscience (Norwich, 

UK) with read length of PE125 bp and PE300 bp, respectively, with an average 

sequencing coverage of 66.95-fold for isolates sequenced on HiSeq (minimum 46-

fold, maximum 77-fold) and 231-fold for the isolate sequenced on MiSeq. 

Sequencing reads were checked for contamination using Kraken v1.1 (MiniKraken) 

(Wood and Salzberg, 2014) and pre-processed with fastp v0.20 (Chen et al., 2018) 

before assembling using SPAdes v3.11 with “careful” option (Bankevich et al., 

2012). Contigs below 500bp were filtered out from the assemblies. Incorrectly 

assembled sequences were removed from further analysis (n=3). Additionally, 

publicly available assemblies of Bifidobacterium type strains (n=70) were retrieved 

from NCBI Genome database and all genomes were annotated with Prokka v1.13 

(Seemann, 2014). The draft genomes of 75 B. longum isolates have been deposited 

to GOLD database at https://img.jgi.doe.gov, GOLD Study ID: Gs0145337. 

 

Phylogenetic analysis 

Python3 module pyANI v0.2.7 with default BLASTN+ settings was employed to 

calculate the average nucleotide identity (ANI) (Pritchard et al., 2016). Species 

delineation cut-off was set at 95% identity (Chun et al., 2018) and based on that 

only sequences identified as Bifidobacterium longum subspecies were selected for 

further analysis (n=75). 



General feature format files of B. longum strains were inputted into the Roary 

pangenome pipeline v.3.12.0 to obtain core-genome data and the multiple 

sequence alignment (msa) of core genes (Mafft v7.313) (Page et al., 2015, Katoh et 

al., 2019). All SNP analyses of strains from individual infants was performed using 

Snippy v4.2.1 (Seemann, 2015) and the resulting msa was passed to the 

recombination removal tool Gubbins (Croucher et al., 2015). Alignments resulting 

from all previous steps were cleaned from poorly aligned positions using manual 

curation and Gblocks v0.9b where appropriate (Talavera and Castresana, 2007). 

The core-genome tree was generated using FastTree v2.1.9 using the GTR model 

with 1000 bootstrap iterations (Price et al., 2010). Snp-dists v0.2 was used to 

generate pairwise SNP distance matrix between strains within individual infants 

(Seemann et al., 2017). Altogether, the results of the SNP analysis reflected ANI 

results, showing that pairwise sequence identities were inversely proportional to 

pairwise SNP distances in B. longum subspecies isolates recovered from individual 

hosts. 

 

Functional annotation and genome-wide association study analysis 

Scoary v1.6.16 with Benjamini Hochberg correction (Brynildsrud et al., 2016) was 

used to associate subsets of genes with specific traits – breast-fed, formula-fed, 

pre-weaning, weaning and post-weaning. The p-value cut-off was set to <1e-5, 

sensitivity cut-off to ≥70 % and specificity cut-off to ≥90 % to report the most 

overrepresented genes. Functional categories (COG categories) were assigned to 

genes using EggNOG-mapper v0.99.3, based on the EggNOG database (bacteria) 

(Huerta-Cepas et al., 2017) and the abundance of genes involved in carbohydrate 

metabolism was calculated. As most B. infantis strains (12 out of 13) were isolated 

from breast-fed infants, we did not compare abundances of carbohydrate 

metabolism genes in breast-fed and formula-fed groups for this subspecies. 

Standalone version of dbCAN2 (v2.0.1) was used for CAZyme annotation (Zhang et 



al., 2018). T-test function implemented in Microsoft Excel v16.16.20 was used to 

calculate statistically significant differences between average numbers of GH genes 

belonging to the predominant GH families (p < 0.05). Glycosyl hydrolase (GH) gain-

loss events were predicted using Dollo parsimony implemented in Count v9.1106 

(Csuros and Miklos, 2006). Snippy v4.2.1 with the “--ctgs” option, SNP-sites v2.3.3 

(Page et al., 2016) and FastTree v2.1.9 (GTR model with 1000 bootstrap iterations) 

were used to generate the whole genome SNP tree. 

 

Carbohydrate utilisation 

To assess the carbohydrate utilisation profile, Bifidobacterium (1%, v/v) was grown 

in modified (m)MRS (pH 6.8) supplemented with cysteine HCl at 0.05% and 2% 

(w/v) of selected carbohydrates (HMOs obtained from Glycom, Hørsholm, 

Denmark) as described previously (Lawson et al., 2020), except for pectin and 

mucin which were added at 1% (w/v). Growth was determined over a 48-h period 

using Tecan Infinite 50 (Tecan Ltd, UK) microplate spectrophotometer at OD595. 

Experiments were performed in biologically independent triplicates, and the plate 

reader measurements were taken automatically every 15 min following 60 s of 

shaking at normal speed. Due to the expected drop in initial OD values (i.e. 

recorded between T0 and T1) growth data were expressed as mean of the replicates 

between T2 (30 min) and Tend (48-h). 

 

High-performance anion-exchange chromatography (HPAEC) 

Mono-, di- and oligo- saccharides present in the spent media samples were 

analyzed on a Dionex ICS-5000 HPAEC system operated by the Chromeleon 

software version 7 (Dionex, Thermo Scientific). Samples were bound to a Dionex 

CarboPac PA1 (Thermo Scientific) analytical column (2 × 250 mm) in combination 

with a CarboPac PA1 guard column (2 × 50 mm), equilibrated with 0.1 M NaOH. 

Carbohydrates were detected by pulsed amperometric detection (PAD). The 



system was run at a flow rate of 0.25 mL/min. The separation was done using a 

stepwise gradient going from 0.1 M NaOH to 0.1 M NaOH–0.1 M sodium acetate 

(NaOAc) over 10 min, 0.1 M NaOH–0.3 M NaOAc over 25 min followed by a 5 min 

exponential gradient to 1 M NaOAc, before reconditioning with 0.1 M NaOH for 

10 min. Commercial glucose, cellobiose, fucose, lactose and lacto-N-neotetraose 

(LNnT) were used as external standards. 

 

Proteomics 

B. longum subsp. longum strain 25 (B_25) was grown in triplicate in mMRS 

supplemented with cysteine HCl at 0.05% and 2% (w/v) glucose, cellobiose or LNnT 

as a sole carbon source. B. longum subsp. longum strain 71 (B_71) was grown in 

triplicate in mMRS supplemented with cysteine HCl at 0.05% and either 2% (w/v) 

glucose or 2’-fucosyllactose (2’-FL) as a sole carbon source. Cell pellets from 50 mL 

samples (at the mid-exponential growth phase) were collected by centrifugation 

(4500 × g, 10 min, 4 °C) and washed three times with PBS pH 7.4. Cells were 

resuspended in 50 mM Tris-HCl pH 8.4 and disrupted by bead-beating in three 60 s 

cycles using a FastPrep24 (MP Biomedicals, CA). Protein concentration was 

determined using a Bradford protein assay (Bio-Rad, Germany). Protein samples, 

containing 50 μg total protein, were separated by SDS-PAGE with a 10% Mini-

PROTEAN gel (Bio-Rad Laboratories, CA) and then stained with Coomassie brilliant 

blue R250. The gel was cut into five slices, after which proteins were reduced, 

alkylated, and in-gel digested as previously described (Arntzen et al., 2015). 

Peptides were dissolved in 2% acetonitrile containing 0.1% trifluoroacetic acid and 

desalted using C18 ZipTips (Merck Millipore, Germany). Each sample was 

independently analysed on a Q-Exactive hybrid quadrupole-orbitrap mass 

spectrometer (Thermo Scientific) equipped with a nano-electrospray ion source. MS 

and MS/MS data were acquired using Xcalibur (v.2.2 SP1). Spectra were analysed 

using MaxQuant 1.6.1.0 (Cox and Mann, 2008) and searched against a sample-



specific database generated from the B_25 and B_71 genomes. Proteins were 

quantified using the MaxLFQ algorithm (Cox et al., 2014). The enzyme specificity 

was set to consider tryptic peptides and two missed cleavages were allowed. 

Oxidation of methionine, N-terminal acetylation and deamidation of asparagine 

and glutamine and formation of pyro-glutamic acid at N-terminal glutamines were 

used as variable modifications, whereas carbamidomethylation of cysteine residues 

was used as a fixed modification. All identifications were filtered in order to achieve 

a protein false discovery rate (FDR) of 1% using the target-decoy strategy. A 

protein was considered confidently identified if it was detected in at least two of 

the three biological replicates in at least one glycan substrate. The MaxQuant 

output was further explored in Perseus v.1.6.1.1 (Tyanova et al., 2016). The 

proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

with dataset identifier PXD017277. 
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